WO2022105821A1 - 一种光伏电池及光伏组件 - Google Patents

一种光伏电池及光伏组件 Download PDF

Info

Publication number
WO2022105821A1
WO2022105821A1 PCT/CN2021/131407 CN2021131407W WO2022105821A1 WO 2022105821 A1 WO2022105821 A1 WO 2022105821A1 CN 2021131407 W CN2021131407 W CN 2021131407W WO 2022105821 A1 WO2022105821 A1 WO 2022105821A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic cell
layer
electrode
silicon wafer
pits
Prior art date
Application number
PCT/CN2021/131407
Other languages
English (en)
French (fr)
Inventor
吴兆
徐琛
李子峰
解俊杰
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Priority to JP2023530005A priority Critical patent/JP2023549905A/ja
Priority to AU2021383880A priority patent/AU2021383880A1/en
Priority to EP21893968.4A priority patent/EP4250373A1/en
Priority to US18/036,583 priority patent/US20240014333A1/en
Publication of WO2022105821A1 publication Critical patent/WO2022105821A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to the field of solar cells, and in particular, to a photovoltaic cell, a preparation method and a photovoltaic assembly.
  • pyramid and/or inverted pyramid-like textured structures can be prepared on the surface of photovoltaic cells through a texturing process to reduce the reflection of sunlight on the surface of photovoltaic cells, so that photovoltaic cells can absorb more sunlight for photoelectric conversion, thereby Improve the conversion efficiency of photovoltaic cells.
  • This structure has a better anti-reflection effect for direct light or light with a small incident angle, but for light with a large incident angle, the pyramid and/or inverted pyramid-shaped structures on the surface of the photovoltaic cell pass through. With the suede structure, a large part of the light will be reflected from the surface of the photovoltaic cell back into the air, and will not participate in the photoelectric conversion of the photovoltaic cell.
  • a nano-scale light trapping structure can be prepared on the surface of a photovoltaic cell through a black silicon process.
  • the nano-scale light trapping structure has a good trapping effect on incident light at a large angle, thereby improving the photoelectric conversion rate of the photovoltaic cell. .
  • the nano-scale light trapping structure greatly increases the surface area of monocrystalline silicon in photovoltaic cells, and it is difficult to generate a uniform passivation layer on the nanostructure, resulting in non-equilibrium carriers on the surface The recombination rate increases, thereby reducing the photoelectric conversion efficiency of photovoltaic cells.
  • the present disclosure provides a photovoltaic cell and a photovoltaic assembly, aiming at improving the conversion efficiency of the photovoltaic cell.
  • embodiments of the present disclosure provide a photovoltaic cell, the photovoltaic cell comprising:
  • At least one surface of the battery body includes a first area and a second area
  • the first area is set to a textured structure
  • the second area is set as a plurality of pits
  • the projected size of the pit on the surface of the battery body is 0.5 to 100 microns
  • the deviation angle of the side wall of the recess and the thickness direction of the battery body is less than 15 degrees.
  • the projected size of the pit on the surface of the battery body is 1 to 20 microns.
  • the plurality of pits are distributed in an array on the surface of the battery body
  • the spacing between adjacent said pits is 2 to 200 microns.
  • the ratio of the projected area of the pit on the surface of the battery body to the surface area of the battery body is 0.4 to 0.85.
  • the depth of the pit is greater than or equal to 0.1 microns.
  • the pits include: any one or more of circular holes, rectangular holes or irregular shapes.
  • the battery body includes a first electrode
  • the first electrode is at least partially disposed on the textured structure.
  • the photovoltaic cell further comprises: a passivation layer;
  • the passivation layer is disposed on the textured structure and the bottom surface and sidewall of the pit.
  • the first electrode includes a first busbar and a first fine grid
  • the first busbar is arranged on the textured structure and/or the pit
  • the first fine grid is arranged on the on the suede structure.
  • an embodiment of the present disclosure provides a photovoltaic assembly including the above photovoltaic cell.
  • the present application has the following beneficial effects: in the present application, at least one surface of the battery body of the photovoltaic cell includes a first area and a second area, and the first area is set to a textured structure, which is relatively small for the incident angle.
  • the incident light, the textured structure composed of the pyramid and/or inverted pyramid structure can reduce the probability of the incident light at a small angle being reflected out of the photovoltaic cell, and the second area is set to a plurality of projection sizes on the surface of the cell body ranging from 0.5 to A 100-micron pit, and the deviation angle between the side wall of the pit and the thickness direction of the battery body is less than 15 degrees.
  • micron-scale pits on the surface of the photovoltaic cell can reduce the size.
  • the structure size of micro-scale pits is larger, and the surface area of photovoltaic cells with micro-scale pits is small, so uniform passivation can be effectively generated on the surface of photovoltaic cells. layer, while reducing the recombination rate of non-equilibrium carriers on the surface of photovoltaic cells, thereby improving the photoelectric conversion efficiency of photovoltaic cells.
  • FIG. 1 shows a schematic structural diagram of a photovoltaic cell in an embodiment of the present invention
  • Figure 2 shows a top view of a photovoltaic cell in an embodiment of the present invention
  • FIG. 3 shows a schematic structural diagram of a double-sided electrode photovoltaic cell in an embodiment of the present invention
  • FIG. 4 shows a schematic structural diagram of a single-sided electrode photovoltaic cell in an embodiment of the present invention
  • FIG. 5 shows a flow chart of steps of a method for preparing a photovoltaic cell in an embodiment of the present invention
  • FIG. 6 shows a flow chart of steps of a method for preparing a double-sided electrode photovoltaic cell in an embodiment of the present invention
  • FIG. 7 shows a flow chart of steps of a method for manufacturing a single-sided electrode photovoltaic cell in an embodiment of the present invention.
  • photovoltaic cells are usually designed with a textured structure with a pyramid structure and an inverted pyramid structure on the surface through a texturing process. It has a good anti-reflection effect for vertical incident light or incident light with a small incident angle, which can reduce the probability of the incident light with a small angle being reflected out of the photovoltaic cell, but the effect is not good for incident light with a large incident angle, that is, photovoltaic
  • the omnidirectionality of the battery is not good, and the photovoltaic cell with poor omnidirectionality needs to set the best light receiving angle or adopt a tracking bracket to achieve a larger power generation.
  • the optimal light receiving angle changes according to the geographical location, time and season, etc., making it difficult to adjust the fixed bracket in real time, so that the photovoltaic cell can reach the optimal light receiving angle, and the tracking bracket is usually expensive, so improving the omnidirectionality of the photovoltaic cell is to increase the power generation. easier way.
  • the photovoltaic cell may include: a battery body 10 , and at least one surface of the battery body 10 includes a first region 20 and a second area 30 , wherein the first area 20 is provided with a textured structure, and the second area 30 is provided with a plurality of pits 31 .
  • the first region with the textured structure is composed of pyramid and/or inverted pyramid structures distributed along the surface of the battery body, and the battery body may be prepared from a single crystal silicon wafer.
  • the textured structure That is, the regular or irregular pyramid and/or inverted pyramid structure prepared on the surface of the monocrystalline silicon wafer by the texturing process, the battery body can also be prepared from the polycrystalline silicon wafer, correspondingly, the texture
  • the planar structure is the regular or irregular pyramid and/or inverted pyramid structure prepared on the surface of the polycrystalline silicon wafer by the texturing process.
  • the surface of the battery body may be the light-receiving surface of the battery body, that is, the surface that is in direct contact with incident light.
  • the incident light with an incident angle greater than or equal to 45 degrees can be determined as a large-angle incident light.
  • the incident angle of the incident light B is ⁇
  • is greater than 45 degrees, that is, the incident light B is a large-angle incident light.
  • the light B is irradiated on the first region 20 with a textured structure on the surface of the photovoltaic cell, and under the reflection of the pyramid and/or inverted pyramid structure in the textured structure, it is emitted in a direction away from the photovoltaic cell after one reflection. Therefore, The incident light B has a very small optical path in the photovoltaic cell, resulting in poor absorption of the incident light B by the photovoltaic cell.
  • incident light with an incident angle of less than 45 degrees can be determined as small-angle incident light.
  • the incident angle of incident light C is ⁇ , and ⁇ is less than 45 degrees, that is, incident light C is small-angle incident light, and the incident light C is irradiated on the first region 20 with a textured structure on the surface of the photovoltaic cell.
  • the incident light C Under the reflection of the pyramid and/or inverted pyramid structure in the textured structure, it can undergo multiple reflections in the textured structure of the photovoltaic cell, so , the incident light C has a larger optical path in the photovoltaic cell, so that the photovoltaic cell has a better absorption effect on the incident light C.
  • the photovoltaic cell with only the textured structure has a good absorption effect for small-angle incident light, but the absorption effect for large-angle incident light is poor. Therefore, the photovoltaic cell has poor omnidirectionality, including When the photovoltaic module of the photovoltaic cell is installed in aircraft, automobiles and buildings, the installation position is limited because the photovoltaic cell needs to have the best light receiving angle, or the tracking bracket needs to be used to achieve larger power generation, and the cost is high .
  • the surface of the battery main body of the photovoltaic cell further includes a second region, wherein a plurality of dimples are arranged in the second region, and the projected size of the dimples on the surface of the battery main body is 0.5 to 100 microns, that is, The pits are micron-scale pits, and at the same time, the deviation angle between the sidewalls of the pits and the thickness direction of the battery body is less than 15 degrees, so that small-angle incident light can be irradiated in the pits, and in the pits After multiple reflections.
  • the surface of the battery body 10 of the photovoltaic cell further includes a second region 30 provided with a plurality of micron-scale dimples 31 . Meanwhile, the sidewalls of the dimples 31 are offset from the thickness direction of the battery body 10 . is 0 degrees.
  • the shape of the micron-scale pits 31 can be any one or more of a circular hole, a rectangular hole or an irregular shape. If the shape of the micron-scale pits 31 is a circular hole, the The diameter ranges from 0.5 to 100 ⁇ m. If the shape of the micron-sized pits 31 is a rectangular hole or an irregularly shaped deep hole, the diagonal length of the micron-sized pits 31 ranges from 0.5 to 100 ⁇ m.
  • the incident light A is also a large-angle incident light with an incident angle ⁇ .
  • the incident light A irradiates the micron-scale pits 31 on the surface of the photovoltaic cell, the reflections on the sidewalls and bottom surfaces of the micron-scale pits 31 Under the action, the incident light A can be reflected multiple times in the micron-scale pits 31 of the photovoltaic cell. Therefore, the incident light A has a larger optical path in the photovoltaic cell, and the photovoltaic cell has a better absorption effect on the incident light A. .
  • the textured structure has a better absorption effect for small-angle incident light, and the micron-scale pits can improve the photovoltaic cell.
  • the micron-scale pits have a good absorption effect for large-angle incident light.
  • the photovoltaic cell has high omnidirectionality, and the photovoltaic module containing the photovoltaic cell is installed in the When used in aircraft, automobiles and buildings, the photovoltaic cells can have better incident light absorption effect without the need to install the position and use the tracking bracket, so as to improve the photoelectric conversion efficiency of photovoltaic modules and achieve larger power generation.
  • the structure size of the micron-scale pits is larger, which can avoid passivation.
  • the layer cannot be successfully prepared on the small-sized nano-scale light-trapping structure, so as to ensure that a uniform passivation layer can be effectively generated on the surface of the photovoltaic cell.
  • the photovoltaic cell with micro-scale pits has a smaller surface area.
  • the specific surface area of photovoltaic cells can be reduced, thereby reducing the recombination rate of non-equilibrium carriers on the surface of photovoltaic cells, without affecting the lateral transport and collection of carriers on the surface of photovoltaic cells, and ultimately improving the photoelectric conversion efficiency of photovoltaic cells.
  • a photovoltaic cell includes: a battery body; at least one surface of the battery body includes a first area and a second area; the first area is configured as a textured structure; the second area is configured as a plurality of pits ; the projected size of the pit on the surface of the battery body is 0.5 to 100 microns; the deviation angle between the sidewall of the pit and the thickness direction of the battery body is less than 15 degrees.
  • at least one surface of the battery main body of the photovoltaic cell includes a first region and a second region, the first region is set as a textured structure, and for incident light with a small incident angle, a structure composed of a pyramid and/or an inverted pyramid structure is formed.
  • the textured structure can reduce the probability that the incident light at a small angle is reflected out of the photovoltaic cell.
  • the deviation angle of the thickness direction of the battery body is less than 15 degrees.
  • multiple micron-scale pits on the surface of the photovoltaic cell can reduce the probability of the large-angle incident light being reflected out of the photovoltaic cell.
  • the light is reflected multiple times in the micron-scale pits, and has a large optical path in the photovoltaic cell, which can improve the absorption effect of the photovoltaic cell on the incident light.
  • the structure size of the pits is large, and the surface area of the photovoltaic cell with micron-scale pits is small.
  • a uniform passivation layer can be effectively generated on the surface of the photovoltaic cell, and at the same time, the non-equilibrium carriers on the surface of the photovoltaic cell can be reduced. Recombination rate, thereby improving the photoelectric conversion efficiency of photovoltaic cells.
  • the projected size of the pits on the surface of the battery body is 1 to 20 microns, so as to ensure that the size of the pits provided in the second region of the surface of the battery body is relatively uniform and moderate.
  • FIG. 2 a top view of a photovoltaic cell provided by an embodiment of the present disclosure is shown.
  • a plurality of micron-scale pits 31 may be distributed in an array on the surface of the battery body, And the interval between the adjacent micron-scale pits 31 can be 2 to 200 microns, so that other structures of photovoltaic cells can be arranged on the textured structure of the first region 20 between the adjacent micron-scale pits 31, so as to realize photovoltaic function of the battery.
  • the pits may include: any one or more of circular holes, rectangular holes or irregular shapes, so that when incident light irradiates the bottom surface and sidewalls of the micron-scale pits, the Multiple reflections are performed in the pits.
  • the micron-scale pits 31 are circular holes.
  • the depth of the pits may be greater than or equal to 0.1 micron, and the ratio of the projected area of the micron-scale pits on the surface of the battery body to the surface area of the battery body may be 0.4 to 0.85.
  • the depth of the micron-scale pit and the ratio can be determined according to the specific application scenario of the photovoltaic module including the photovoltaic cell.
  • the absorption effect of the battery on the incident light with a large angle for the application scenario where the incident light with a large angle accounts for a small proportion, the projected size of the pit on the surface of the battery body can be reduced, or the number of the pit can be reduced, so that the The ratio of the projected area of the pit on the surface of the battery body to the surface area of the battery body is small, so that the photovoltaic cell has a better absorption effect on incident light.
  • the micron-scale pits with a small depth can also complete multiple reflections of the incident light in the micron-scale pits, so the impact of the micron-scale pits can be reduced. Depth; when the incident angle of the incident light at a large angle is small, the micron-scale pits with a larger depth can ensure that the incident light is reflected multiple times in the micron-scale pits. Therefore, the depth of the micron-scale pits needs to be increased.
  • the battery body may include a first electrode, wherein the first electrode is at least partially disposed on the textured structure, that is, the first electrode cannot be completely disposed in the micron-scale pits, thereby reducing the impact of the first electrode on the micron-scale pits.
  • the filling of the pits avoids affecting the light trapping function of the micron-scale pits for large-angle reflected light.
  • the photovoltaic cell may further include: a passivation layer, wherein the passivation layer is provided on the textured structure and the bottom surface and sidewall of the pit, and the structure of the micron-scale pit is relative to the nano-scale light trapping structure.
  • a passivation layer wherein the passivation layer is provided on the textured structure and the bottom surface and sidewall of the pit, and the structure of the micron-scale pit is relative to the nano-scale light trapping structure.
  • a photovoltaic cell with a larger size and a micron-scale pit has a smaller surface area, therefore, a uniform passivation layer can be effectively generated on the surface of the photovoltaic cell to achieve surface passivation of the photovoltaic cell.
  • the photovoltaic cell in the embodiment of the present disclosure may be a photovoltaic cell with double-sided electrodes, such as a passivated emitter and rear cell (PERC), see FIG. 3 , which shows an embodiment of the present disclosure
  • a photovoltaic cell with double-sided electrodes such as a passivated emitter and rear cell (PERC)
  • FIG. 3 shows an embodiment of the present disclosure
  • the main body of the cell includes a silicon wafer substrate 11, a first electrode 13 and a first functional layer 12 arranged on one side of the silicon wafer substrate 11, and a The second functional layer 14 and the second electrode 15 on the other side of the silicon wafer substrate 11 .
  • the first functional layer 12 is disposed on the textured structure of the first area 20 and on the bottom surface and sidewall of the pit 31 in the second area 30, and the first functional layer 12 has a first hollow structure, and the first electrode 13 is located at the position of the first hollow structure, the second functional layer 14 is disposed on the other side of the silicon wafer substrate 11, and the second functional layer 14 has a second hollow structure, and the second electrode 15 is located at the position of the second hollow structure.
  • the silicon wafer substrate may be an n-type silicon wafer substrate prepared from an n-type crystalline silicon wafer;
  • the first functional layer may be a multi-layer structure, for example, the first functional layer may include 2 nm Silicon oxide with a thickness of 70 nanometers and silicon nitride with a thickness of 70 nanometers play the functions of surface passivation and anti-reflection respectively on one side of the photovoltaic cell;
  • the second functional layer can also be a multi-layer structure, for example, the second functional layer It can include silicon oxide with a thickness of 2 nanometers, aluminum oxide with a thickness of 15 nanometers, and silicon nitride with a thickness of 50 nanometers, so as to realize the functions of surface passivation and anti-reflection on the other side of the photovoltaic cell.
  • a first electrode is arranged on one side of the silicon wafer substrate, and a second electrode is arranged on the other side of the silicon wafer substrate, thereby forming a photovoltaic cell with double-sided electrodes.
  • a first hollow structure is prepared on a functional layer, and the first electrode is located at the position of the first hollow structure, so that the first electrode can be arranged on the textured structure or in the pit; or a mask can be used on the second hollow structure.
  • a second hollow structure is prepared on the functional layer, and the second electrode is located at the position of the second hollow structure, so that the second electrode can be arranged on the other side of the silicon wafer substrate.
  • the first electrode 13 may include a first bus bar 131 and a first fine grid 132 , wherein the first bus bar 131 may be disposed on the textured structure of the first region 20 and/or the second In the pits 31 in the region 30, the first fine grids 132 may be provided on the textured structure.
  • the main function of the first fine grid is to collect the current generated by the photovoltaic cells and transmit the current to the first bus grid, so that multiple photovoltaic cells can pass the first bus grid to generate electricity generated by multiple photovoltaic cells.
  • the current is aggregated and transmitted to the junction box, so as to provide power for external devices. Since the number of the first fine grids is large and its width is small, referring to FIG. 2 , the first fine grids 132 can be arranged in the adjacent recess On the textured structure between the pits 31, the number of the first busbars is small and the width thereof is relatively large, therefore, the first busbars 131 can be arranged in the pits 31 or in the adjacent pits 31. On the textured structure between the two, or at the same time in the pit 31 and on the textured structure, the structure of the photovoltaic cell is made more compact and the photoelectric conversion efficiency of the photovoltaic cell is improved.
  • the photovoltaic cells in the embodiments of the present disclosure may be photovoltaic cells with single-sided electrodes, such as tunnel oxide passivation contact cells (TOPCon), polysilicon oxide selective passivation contact cells (POLO), interdigitated contact cells Back contact cell (IBC), silicon heterojunction cell (SHJ), see FIG. 4 , which shows a schematic structural diagram of a single-sided electrode photovoltaic cell provided by an embodiment of the present disclosure. As shown in FIG.
  • TOPCon tunnel oxide passivation contact cells
  • POLO polysilicon oxide selective passivation contact cells
  • IBC interdigitated contact cells Back contact cell
  • SHJ silicon heterojunction cell
  • the cell body includes silicon The wafer substrate 11 , the first passivation layer 17 and the third functional layer 18 arranged on one side of the silicon wafer substrate 11 , and the second passivation layer 19 and the fourth functional layer 110 arranged on the other side of the silicon wafer substrate 11 , the third electrode 16 and the fourth electrode 120 .
  • the textured structure of the first region 20 is provided on one side of the silicon wafer substrate 11, the bottom surface of the pit 31 is provided in the silicon wafer substrate, and the first passivation layer 17 is provided on the textured structure and the pits 31, the third functional layer 18 is arranged on the side of the first passivation layer 17 away from the silicon wafer substrate 11, the second passivation layer 19 is arranged on the other side of the silicon wafer substrate 11, and the fourth functional layer is The layer 110 is disposed on the side of the second passivation layer 19 away from the silicon wafer substrate 11 , the fourth functional layer 110 has a third hollow structure, and the third electrode 16 and the fourth electrode 120 are arranged at intervals of the third hollow structure.
  • the silicon wafer substrate may be an n-type silicon wafer substrate prepared from an n-type crystalline silicon wafer;
  • the first passivation layer may be amorphous silicon or silicon oxide, so as to serve as the surface of one side of the photovoltaic cell
  • the function of passivation can be a multi-layer structure, for example, a multi-layer silicon nitride structure with a total thickness of 70 nanometers, which plays the function of surface field passivation and anti-reflection on one side of the photovoltaic cell;
  • the second passivation The layer can be amorphous silicon or silicon oxide, so as to function as surface passivation on the other side of the photovoltaic cell;
  • the fourth functional layer can function as surface field passivation and anti-reflection on the front side of the photovoltaic cell.
  • a third electrode and a fourth electrode are arranged on the other side of the silicon wafer substrate, thereby forming a photovoltaic cell with a single-sided electrode.
  • a reticle can be used to prepare a third hollow structure on the fourth functional layer.
  • the third electrode and the fourth electrode are spaced apart at the position of the third hollow structure.
  • a first collection layer 162 and a first transmission layer 161 are disposed between the third electrode 16 and the second passivation layer 19 , and the first collection layer 162 is disposed on the second passivation layer 19 away from the silicon
  • the first transfer layer 161 is arranged on the side of the first collection layer 162 away from the second passivation layer 19;
  • the second collection layer 122 and The second transmission layer 121 and the second collection layer 122 are arranged on the side of the second passivation layer 19 away from the silicon wafer substrate 11 , and the second transmission layer 121 is arranged at the side of the second collection layer 122 away from the second passivation layer 19 .
  • the first collection layer may be a multi-sub collection region composed of n-type doped amorphous silicon
  • the second collection layer may be composed of p-type doped amorphous silicon.
  • the first collection layer and the second collection layer are arranged at intervals on the surface of the second passivation layer on the other side of the silicon wafer substrate.
  • the first transmission layer corresponds to the first collection layer
  • the carrier transport layer that is, the multi-sub transport layer
  • the third electrode is the multi-sub terminal electrode of the photovoltaic cell with a single-sided electrode
  • the second transport layer is in the carrier transport layer corresponding to the second collection layer.
  • the minority carrier transport layer and the fourth electrode is the minority carrier end electrode of the photovoltaic cell with a single-sided electrode.
  • the present disclosure also provides a method for preparing the above photovoltaic cell.
  • a flow chart of the steps of the method for preparing a photovoltaic cell provided by an embodiment of the present disclosure is shown, and the method may include the following steps:
  • Step 101 preparing a textured structure on at least one surface of the battery body, where the textured structure is composed of pyramid and/or inverted pyramid structures distributed along one surface of the battery body.
  • a textured structure composed of a pyramid and/or an inverted pyramid structure can be prepared on the battery body through a texture making process.
  • the textured structure is composed of pyramids and/or inverted pyramid structures continuously distributed along one side of the battery body.
  • the battery body can be prepared from a single crystal silicon wafer.
  • the textured structure is obtained by manufacturing A regular pyramid and/or inverted pyramid structure prepared on one side of a monocrystalline silicon wafer by a texturing process, the battery body can also be prepared from a polycrystalline silicon wafer, and correspondingly, the textured structure is obtained by texturing The process produces irregular pyramid and/or inverted pyramid structures on one side of a polycrystalline silicon wafer.
  • Step 102 preparing a plurality of micron-scale pits on the surface of the battery body.
  • the surface of the battery body with the textured structure prepared in the above steps can be coated with a photoresist, and a mask with a corresponding pattern is used to illuminate and then wash off the photoresist in the unshielded position.
  • a mask with a corresponding pattern is used to illuminate and then wash off the photoresist in the unshielded position.
  • forming a corresponding hole structure, and further using a deep reactive particle etching process to etch a plurality of pits at the above-mentioned hole positions, and the projected size of the pits on the surface of the battery body is 0.5 to 100 microns.
  • the deviation angle of the side wall from the thickness direction of the battery body is less than 15 degrees.
  • FIG. 6 a flow chart of steps of a method for preparing a double-sided electrode photovoltaic cell provided by an embodiment of the present disclosure is shown, and the method may include the following steps:
  • Step 201 preparing the textured structure on at least one surface of the silicon wafer substrate of the battery body.
  • the silicon wafer substrate may be an n-type silicon wafer substrate prepared from an n-type crystalline silicon wafer, and the thickness of the silicon wafer substrate may be 150 microns or 10 to 50 microns in thickness.
  • the ultra-thin crystalline silicon wafer, or the medium crystalline silicon wafer with a thickness of 50 to 100 microns, the silicon wafer substrate can be single crystal or polycrystalline.
  • a textured structure composed of a pyramid and/or an inverted pyramid structure may be prepared on at least one surface of the silicon wafer substrate through a texturing process.
  • Step 202 preparing a plurality of pits on the surface of the silicon wafer substrate.
  • a photoresist can be applied, and a mask with a corresponding pattern is used to illuminate the surface, and then the unshielded position light can be washed away.
  • the resist is formed to form a corresponding hole structure, and a deep reactive particle etching process is further used to etch a plurality of pits at the positions of the holes, and the projected size of the pits on the surface of the battery body is 0.5 to 100 microns.
  • the deviation angle of the side wall of the pit from the thickness direction of the battery body is less than 15 degrees.
  • the pits may have a circular hole structure, the average pore diameter may be 5 microns, the spacing between adjacent pits may be 15 microns, and the depth may be 0.5 microns.
  • a layered PN junction structure layer can be prepared by diffusion on the surface of the textured structure and the sidewalls and bottom surfaces of the pits to achieve separation. carrier capacity.
  • Step 203 preparing a passivation layer on the textured structure and the sidewall and bottom surface of the pit.
  • a passivation layer may be deposited on the sidewalls and bottom surfaces of the textured structure and the pit, for example, the passivation layer may include silicon oxide with a thickness of 2 nanometers to function as a surface passivation on one side of the photovoltaic cell .
  • silicon nitride with a thickness of 70 nanometers can be prepared on the passivation layer, which has the function of anti-reflection on one side of the photovoltaic cell, and silicon oxide with a thickness of 2 nanometers and silicon nitride with a thickness of 70 nanometers forms a multi-layer structure. the first functional layer.
  • Step 204 preparing a first electrode on the textured structure and in the pit, and preparing a second electrode on the other side of the silicon wafer substrate.
  • a first electrode can be prepared on the textured structure and in the pits.
  • a mask can be used to prepare the first hollow structure on the first functional layer, and the first electrode can be located at the position of the first hollow structure, so that the first electrode can be arranged on the textured structure or in the pit.
  • a second functional layer may be deposited on the other side of the silicon wafer substrate, and the second functional layer may be a multi-layer structure.
  • the thickness of aluminum oxide and the thickness of 50 nanometers of silicon nitride can achieve the function of surface passivation and anti-reflection on the other side of the photovoltaic cell.
  • a second electrode is prepared on the other side of the silicon wafer substrate.
  • a reticle can be used to prepare a second hollow structure on the second functional layer, and the second electrode can be located at the position of the second hollow structure. , so that the second electrode can be disposed in the other side of the silicon wafer substrate.
  • FIG. 7 a flow chart of steps of a method for preparing a single-sided electrode photovoltaic cell provided by an embodiment of the present disclosure is shown, and the method may include the following steps:
  • Step 301 preparing the textured structure on at least one surface of the silicon wafer substrate of the battery body.
  • the silicon wafer substrate may be an n-type silicon wafer substrate prepared from an n-type crystalline silicon wafer, and the thickness of the silicon wafer substrate may be 100 microns.
  • continuously distributed pyramids and/or inverted pyramid structures may be prepared on at least one surface of the silicon wafer substrate through a texturing process to form a textured structure.
  • Step 302 preparing a plurality of pits on the surface of the silicon wafer substrate.
  • a deep hole with a certain depth can be formed on one side of the silicon wafer substrate with a textured structure prepared in the above-mentioned steps by a laser ablation process.
  • the deep hole can be chemically Polishing to obtain smooth sidewalls and bottom surfaces, thereby preparing a plurality of pits, and the projected size of the pits on the surface of the battery body is 0.5 to 100 microns, and the sidewalls of the pits are in the thickness direction of the battery body.
  • the deviation angle is less than 15 degrees.
  • the pits may have a circular hole structure, the average pore diameter may be 2 microns, the spacing between adjacent pits may be 5 microns, and the depth may be 1 micron.
  • Step 303 preparing a first passivation layer on the textured structure and the sidewalls and bottom surfaces of the pit, and preparing a third functional layer on the first passivation layer.
  • a first passivation layer can be prepared on the sidewalls and bottom surfaces of the textured structure and the pit, and the first passivation layer can be amorphous silicon or silicon oxide, so as to serve as the surface of one side of the photovoltaic cell Passivation function.
  • a third functional layer can be prepared on the first passivation layer, and the third functional layer can be a multi-layer structure, for example, a multi-layer silicon nitride structure with a total thickness of 70 nanometers, which plays a role in the photovoltaic cell side.
  • Surface field passivation and anti-reflection functions are provided on the third functional layer.
  • Step 304 preparing a second passivation layer on the other side of the silicon wafer substrate, and preparing a fourth functional layer on the second passivation layer.
  • a second passivation layer can be prepared on the other side of the silicon wafer substrate, and the second passivation layer can also be amorphous silicon or silicon oxide, so as to serve as the surface passivation of the other side of the photovoltaic cell function.
  • a fourth functional layer can be prepared on the second passivation layer, and the fourth functional layer can perform the functions of surface field passivation and anti-reflection on the front side of the photovoltaic cell.
  • Step 305 preparing a third electrode and a fourth electrode on the other side of the silicon wafer substrate.
  • a third electrode and a fourth electrode can be arranged on the other side of the silicon wafer substrate, thereby forming a photovoltaic cell with a single-sided electrode.
  • a mask can be used to prepare the fourth functional layer on the fourth functional layer.
  • Three hollow structures are arranged, and the third electrode and the fourth electrode are arranged at the position of the third hollow structure.
  • a first collection layer and a first transmission layer may be disposed between the third electrode and the second passivation layer, and the first collection layer is disposed on the side of the second passivation layer away from the silicon wafer substrate,
  • the first transmission layer is arranged on the side of the first collection layer away from the second passivation layer;
  • the second collection layer and the second transmission layer are arranged between the fourth electrode and the second passivation layer, and the second collection layer is arranged on the second passivation layer.
  • the passivation layer is on the side away from the silicon wafer substrate, and the second transmission layer is disposed on the side of the second collection layer away from the second passivation layer.
  • the first collection layer may be a multi-sub collection region composed of n-type doped amorphous silicon
  • the second collection layer may be composed of p-type doped amorphous silicon.
  • the first collection layer and the second collection layer are arranged at intervals on the surface of the second passivation layer on the other side of the silicon wafer substrate, and the first collection layer and the second collection layer are projected on the second passivation layer
  • the ratio of the area can be 5% to 45%, and an electrical isolation gap is provided between the first collection layer and the second collection layer.
  • the first transport layer is a carrier corresponding to the first collection layer.
  • the transport layer is a multi-sub transport layer
  • the third electrode is a multi-sub terminal electrode of a photovoltaic cell with a single-sided electrode
  • the second transport layer is a carrier transport layer corresponding to the second collection layer, that is, a minority carrier transport layer.
  • the fourth electrode is a minority terminal electrode of a photovoltaic cell with a single-sided electrode
  • the first collection layer and the second collection layer can also be made of doped polysilicon material.
  • the present disclosure also provides a photovoltaic assembly composed of the above photovoltaic cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Electromechanical Clocks (AREA)

Abstract

本公开中,光伏电池的电池主体的至少一个表面包含第一区域和第二区域,第一区域设置为绒面结构,由金字塔和/或倒金字塔结构组成的绒面结构可以减少小角度入射光被反射出光伏电池的几率;第二区域设置为多个在电池主体表面上的投影尺寸为0.5至100微米的凹坑,多个微米级的凹坑可以减少大角度入射光被反射出光伏电池的几率,大角度入射光在微米级的凹坑中经过多次反射,可以提高光伏电池对入射光的吸收效果,同时,相对于纳米级的陷光结构,微米级的凹坑的结构尺寸较大,具有微米级的凹坑的光伏电池表面积较小,因此,可以有效的在光伏电池的表面生成均匀的钝化层,同时降低非平衡载流子在光伏电池表面的复合率,进而提高光伏电池的光电转换效率。

Description

一种光伏电池及光伏组件
相关申请的交叉引用
本申请要求在2020年11月18日提交中国专利局、申请号为202011296656.4、名称为“一种光伏电池及光伏组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及太阳能电池领域,特别是涉及一种光伏电池、制备方法及光伏组件。
背景技术
随着传统能源的不断消耗及其对环境带来的负面影响,太阳能作为一种无污染、可再生能源,其开发和利用得到了迅速的发展,尤其是具有较高转化效率的光伏电池成为了目前研究的重点。
目前,可以通过制绒工艺在光伏电池表面制备金字塔和/或倒金字塔状的绒面结构,以减少光伏电池表面对于太阳光的反射,使得光伏电池能够吸收更多的太阳光进行光电转化,从而提高光伏电池的转化效率,这种结构对于直射光或入射角较小的光线具有较好的减反射效果,但对于入射角较大的光线,经过光伏电池表面的金字塔和/或倒金字塔状的绒面结构,会有很大一部分的光线从光伏电池表面反射回空气中,不参与光伏电池的光电转化。现有技术中可以通过黑硅工艺,在光伏电池表面制备纳米级的陷光结构,该纳米级的陷光结构对大角度入射光有较好的陷光效果,从而提升光伏电池的光电转换率。
但是,在目前的方案中,由于纳米级的陷光结构极大地增加了光伏电池中单晶硅的表面积,且在纳米结构上较难生成均匀的钝化层,导致非平衡载流子在表面的复合率升高,从而会降低光伏电池的光电转换效率。
概述
本公开提供一种光伏电池及光伏组件,旨在提升光伏电池的转化效率。
第一方面,本公开实施例提供了一种光伏电池,所述光伏电池包括:
电池主体;
所述电池主体的至少一个表面包含第一区域、第二区域;
所述第一区域设置为绒面结构;
所述第二区域设置为多个凹坑;
所述凹坑在所述电池主体的表面上的投影尺寸为0.5至100微米;
所述凹坑的侧壁与所述电池主体的厚度方向的偏离角度小于15度。
可选地,所述凹坑在所述电池主体的表面上的投影尺寸为1至20微米。
可选地,所述多个凹坑在所述电池主体的表面呈阵列分布;
相邻所述凹坑之间的间隔为2至200微米。
可选地,所述凹坑在所述电池主体的表面上的投影面积与所述电池主体的表面积的比值为0.4至0.85。
可选地,所述凹坑的深度大于或等于0.1微米。
可选地,所述凹坑包括:圆孔、矩形孔或不规则形状中的任意一种或多种。
可选地,所述电池主体包括第一电极;
其中,所述第一电极至少部分设置在所述绒面结构上。
可选地,所述光伏电池还包括:钝化层;
所述钝化层设置在所述绒面结构和所述凹坑的底面和侧壁上。
可选地,所述第一电极包括第一主栅和第一细栅,所述第一主栅设置在所述绒面结构和/或所述凹坑上,所述第一细栅设置在所述绒面结构上。
第二方面,本公开实施例提供了一种光伏组件,所述光伏组件包括上述光伏电池。
基于上述光伏电池及光伏组件,本申请存在以下有益效果:本申请中光伏电池的电池主体的至少一个表面包含第一区域和第二区域,第一区域设置为绒面结构,针对入射角较小的入射光,由金字塔和/或倒金字塔结构组成的绒面结构可以减少该小角度入射光被反射出光伏电池的几率,第二区域设置为多个在电池主体表面上的投影尺寸为0.5至100微米的凹坑,且该凹坑的侧壁与电池主体的厚度方向的偏离角度小于15度,针对入射角较大的入射 光,光伏电池表面的多个微米级的凹坑可以减少该大角度入射光被反射出光伏电池的几率,大角度入射光在微米级的凹坑中经过多次反射,在光伏电池中具有较大的光程,从而可以提高光伏电池对入射光的吸收效果,同时,相对于纳米级的陷光结构,微米级的凹坑的结构尺寸较大,具有微米级的凹坑的光伏电池表面积较小,因此,可以有效的在光伏电池的表面生成均匀的钝化层,同时降低非平衡载流子在光伏电池表面的复合率,进而提高光伏电池的光电转换效率。
附图简述
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例中的一种光伏电池的结构示意图;
图2示出了本发明实施例中的一种光伏电池的俯视图;
图3示出了本发明实施例中的一种双面电极光伏电池的结构示意图;
图4示出了本发明实施例中的一种单面电极光伏电池的结构示意图;
图5示出了本发明实施例中的一种光伏电池的制备方法的步骤流程图;
图6示出了本发明实施例中的一种双面电极光伏电池的制备方法的步骤流程图;
图7示出了本发明实施例中的一种单面电极光伏电池的制备方法的步骤流程图。
详细描述
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光伏电池为了减少入射光在光伏电池表面的反射,增加对于入射光的吸 收效果,提高发电量,通常在表面通过制绒工艺设计有具有金字塔结构和倒金字塔结构的绒面结构,该绒面结构对于垂直入射光或入射角较小的入射光具有较好的减反射效果,可以减少该小角度入射光被反射出光伏电池的几率,但是对于入射角较大的入射光效果不佳,即光伏电池的全向性不佳,全向性不佳的光伏电池需要设置最佳受光角度或采用追踪支架以实现较大的发电量。最佳受光角度依据地理位置与时间季节等发生变化,使得固定支架难以实时调节而使得光伏电池达到最佳受光角度,而追踪支架通常成本较高,因此提高光伏电池的全向性是提高发电量的较为简便的途径。
下面通过列举几个具体的实施例详细介绍本公开提供的一种光伏电池及光伏组件。
参见图1,示出了本公开实施例提供的一种光伏电池的结构示意图,如图1所示,所述光伏电池可以包括:电池主体10,电池主体10的至少一个表面包含第一区域20和第二区域30,其中,第一区域20设置为绒面结构,第二区域30设置有多个凹坑31。
其中,具有绒面结构的第一区域由沿电池主体的表面分布的金字塔和/或倒金字塔结构组成,所述电池主体可以是由单晶硅片制备得到的,相应的,所述绒面结构即为通过制绒工艺在单晶硅片的表面上制备得到的规则或不规则的金字塔和/或倒金字塔结构,所述电池主体也可以是由多晶硅片制备得到的,相应的,所述绒面结构即为通过制绒工艺在多晶硅片的表面上制备得到的规则或不规则的金字塔和/或倒金字塔结构。
在本公开实施例中,所述电池主体的表面可以为电池主体的受光面,即与入射光直接接触的面。同时,可以将入射角大于或等于45度的入射光确定为大角度入射光,参照图1,入射光B的入射角为α,α大于45度,即入射光B为大角度入射光,入射光B照射在光伏电池表面具有绒面结构的第一区域20上,在绒面结构中的金字塔和/或倒金字塔结构的反射作用下,经过一次反射便向远离光伏电池的方向射出,因而,入射光B在光伏电池中具有很小的光程,导致光伏电池对入射光B的吸收效果较差。
进一步的,可以将入射角小于45度的入射光确定为小角度入射光,参 照图1,入射光C的入射角为β,β小于45度,即入射光C为小角度入射光,入射光C照射在光伏电池表面具有绒面结构的第一区域20上,在绒面结构中的金字塔和/或倒金字塔结构的反射作用下,可以在光伏电池的绒面结构中经过多次反射,因而,入射光C在光伏电池中具有较大的光程,使得光伏电池对入射光C的吸收效果较好。
由此可知,仅具有绒面结构的光伏电池,对于小角度入射光具有较好的吸收效果,但对于大角度入射光的吸收效果较差,因此,该光伏电池的全向性不佳,包含该光伏电池的光伏组件安装在航空器、汽车及建筑物中时,由于需要使光伏电池具有最佳受光角度,因此安装位置受到限制,或者需要利用追踪支架以实现较大的发电量,成本较高。
此外,光伏电池的电池主体的表面还包括设置第二区域,所述第二区域中设置有多个凹坑,且所述凹坑在电池主体的表面上的投影尺寸为0.5至100微米,即所述凹坑为微米级的凹坑,同时,所述凹坑的侧壁与电池主体的厚度方向的偏离角度小于15度,使得小角度入射光能够照射在凹坑中,且在凹坑中经过多次反射。
参照图1,光伏电池的电池主体10的表面还包括设置有多个微米级的凹坑31的第二区域30,同时,所述凹坑31的侧壁与电池主体10的厚度方向的偏离角度为0度。
微米级的凹坑31的形状可以是圆孔、矩形孔或不规则形状中的任意一种或多种,若所述微米级的凹坑31的形状为圆孔,则微米级的凹坑31的直径范围为0.5至100微米,若所述微米级的凹坑31的形状为矩形孔或不规则形状深孔,则微米级的凹坑31的对角线的长度范围为0.5至100微米。
具体的,入射光A也为入射角为α的大角度入射光,入射光A照射在光伏电池表面的微米级的凹坑31中时,在微米级的凹坑31的侧壁和底面的反射作用下,入射光A可以在光伏电池的微米级的凹坑31中经过多次反射,因而,入射光A在光伏电池中具有较大的光程,光伏电池对入射光A的吸收效果较好。
由此可知,对于在电池主体中设置有绒面结构和微米级的凹坑的光伏电 池,其中,绒面结构对于小角度入射光具有较好的吸收效果,微米级的凹坑可以提高光伏电池对于小角度入射光的吸收效果,同时,微米级的凹坑对于大角度入射光具有很好的吸收效果,因此,该光伏电池具有较高的全向性,包含该光伏电池的光伏组件安装在航空器、汽车及建筑物中时,不需要通过安装位置和利用追踪支架,就可以使光伏电池具有较好的入射光吸收效果,从而可以提高光伏组件的光电转化效率,实现较大的发电量。
进一步的,由于微米级的凹坑在电池主体的表面上的投影尺寸为0.5至100微米,相对于纳米级的陷光结构而言,微米级的凹坑的结构尺寸较大,可以避免钝化层不能成功的制备在尺寸较小的纳米级的陷光结构上,从而保证可以有效的在光伏电池的表面生成均匀的钝化层,同时,具有微米级的凹坑的光伏电池表面积较小,因此,可以减少光伏电池的比表面积,进而降低非平衡载流子在光伏电池表面的复合率,也不会影响载流子在光伏电池表面的横向传输与收集,最终提高光伏电池的光电转换效率。
在本公开实施例中,一种光伏电池,包括:电池主体;电池主体的至少一个表面包含第一区域、第二区域;第一区域设置为绒面结构;第二区域设置为多个凹坑;凹坑在电池主体的表面上的投影尺寸为0.5至100微米;凹坑的侧壁与电池主体的厚度方向的偏离角度小于15度。本公开中,光伏电池的电池主体的至少一个表面包含第一区域和第二区域,第一区域设置为绒面结构,针对入射角较小的入射光,由金字塔和/或倒金字塔结构组成的绒面结构可以减少该小角度入射光被反射出光伏电池的几率,第二区域设置为多个在电池主体表面上的投影尺寸为0.5至100微米的凹坑,且该凹坑的侧壁与电池主体的厚度方向的偏离角度小于15度,针对入射角较大的入射光,光伏电池表面的多个微米级的凹坑可以减少该大角度入射光被反射出光伏电池的几率,大角度入射光在微米级的凹坑中经过多次反射,在光伏电池中具有较大的光程,从而可以提高光伏电池对入射光的吸收效果,同时,相对于纳米级的陷光结构,微米级的凹坑的结构尺寸较大,具有微米级的凹坑的光伏电池表面积较小,因此,可以有效的在光伏电池的表面生成均匀的钝化层,同时降低非平衡载流子在光伏电池表面的复合率,进而提高光伏电池的光电转换效率。
可选地,所述凹坑在电池主体的表面上的投影尺寸为1至20微米,从而确保电池主体表面的第二区域中设置的凹坑大小较为均匀和适中。
可选地,参见图2,示出了本公开实施例提供的一种光伏电池的俯视图,如图2所示,多个微米级的凹坑31可以在所述电池主体的表面呈阵列分布,且相邻微米级的凹坑31之间可以间隔2至200微米,从而可以在相邻微米级的凹坑31之间第一区域20的绒面结构上设置光伏电池的其他结构,以实现光伏电池的功能。
可选地,所述凹坑可以包括:圆孔、矩形孔或不规则形状中的任意一种或多种,使得入射光照射在微米级的凹坑的底面和侧壁时,可以在微米级的凹坑中进行多次反射,参照图2,所述微米级的凹坑31为圆孔。
可选地,所述凹坑的深度可以大于或等于0.1微米,微米级的凹坑在电池主体的表面上的投影面积与电池主体的表面积的比值可以为0.4至0.85。
在本公开实施例中,可以根据包含光伏电池的光伏组件的具体应用场景,确定微米级的凹坑的深度和所述比值,具体的,对于大角度入射光占比较多的应用场景,可以通过增加所述凹坑的在电池主体的表面上的投影尺寸,或增加所述凹坑的数量,使得凹坑在电池主体的表面上的投影面积与电池主体的表面积的比值较大,从而增加光伏电池对于大角度入射光的吸收效果;对于大角度入射光占比较少的应用场景,可以减小所述凹坑在电池主体的表面上的投影尺寸,或减小所述凹坑的数量,使得凹坑在电池主体的表面上的投影面积与电池主体的表面积的比值较小,即可使得光伏电池对于入射光具有较好的吸收效果。
同时,大角度入射光的入射角较大时,深度较小的微米级的凹坑也可以使入射光在微米级的凹坑中完成多次反射,因此,可以减小微米级的凹坑的深度;大角度入射光的入射角较小时,深度较大的微米级的凹坑才能确保入射光在微米级的凹坑中完成多次反射,因此,需要增加微米级的凹坑的深度。
可选地,电池主体可以包括第一电极,其中,第一电极至少部分设置在绒面结构上,即第一电极不能全部设置在微米级的凹坑中,从而减少第一电极对于微米级的凹坑的填充,避免影响微米级的凹坑进行大角度反射光的陷光功能。
可选地,光伏电池还可以包括:钝化层,其中,钝化层设置在绒面结构和凹坑的底面和侧壁上,相对于纳米级的陷光结构,微米级的凹坑的结构尺寸较大,具有微米级的凹坑的光伏电池表面积较小,因此,可以有效的在光伏电池的表面生成均匀的钝化层,实现光伏电池的表面钝化。
可选地,本公开实施例中的光伏电池可以为具有双面电极的光伏电池,例如钝化发射极和背面电池(Passivated Emitterand Rear Cell,PERC),参见图3,示出了本公开实施例提供的一种双面电极光伏电池的结构示意图,如图3所示,电池主体包括硅片衬底11、设置在硅片衬底11一面的第一电极13和第一功能层12,以及设置在硅片衬底11另一面的第二功能层14和第二电极15。
其中,第一功能层12设置在第一区域20的绒面结构上和第二区域30中的凹坑31的底面和侧壁上,且第一功能层12具有第一镂空结构,第一电极13位于第一镂空结构的位置,第二功能层14设置在硅片衬底11的另一面,且第二功能层14具有第二镂空结构,第二电极15位于第二镂空结构的位置。
具体的,所述硅片衬底可以是n型晶体硅片制备得到的n型硅片衬底;所述第一功能层可以为多层结构,例如,所述第一功能层可以包括2纳米厚度的氧化硅和70纳米厚度的氮化硅,分别起到光伏电池一面的表面钝化和减反射的功能;所述第二功能层也可以为多层结构,例如,所述第二功能层可以包括2纳米厚度的氧化硅、15纳米厚度的氧化铝及50纳米厚度的氮化硅,从而实现光伏电池另一面的表面钝化及减反射的功能。
进一步的,在硅片衬底一面上设置有第一电极,在硅片衬底的另一面上设置有第二电极,从而构成具有双面电极的光伏电池,具体的,可以利用掩模版在第一功能层上制备第一镂空结构,并使第一电极位于所述第一镂空结构的位置,从而使得第一电极可以设置在绒面结构上或凹坑中;也可以利用掩模版在第二功能层上制备第二镂空结构,并使第二电极位于所述第二镂空结构的位置,从而使得第二电极可以设置在硅片衬底的另一面上。
可选地,参照图3,第一电极13可以包括第一主栅131和第一细栅132,其中,第一主栅131可以设置在第一区域20的绒面结构上和/或第二区域30 中的凹坑31中,第一细栅132可以设置在绒面结构上。
具体的,对于光伏电池,第一细栅的主要作用是收集光伏电池产生的电流,并将电流传输至第一主栅,以供多个光伏电池通过第一主栅将多个光伏电池产生的电流进行汇总并传输至接线盒,从而为外部设备提供电能,由于第一细栅的数量较多,且其宽度较小,因此,参照图2,可以将第一细栅132设置在相邻凹坑31之间的绒面结构上,而第一主栅的数量较少,且其宽度较大,因此,可以将第一主栅131设置在凹坑31中,或设置在相邻凹坑31之间的绒面结构上,或同时设置在凹坑31中和绒面结构上,从而使得光伏电池的结构更加紧凑,提高光伏电池的光电转化效率。
可选地,本公开实施例中的光伏电池可以为具有单面电极的光伏电池,例如隧穿氧化层钝化接触电池(TOPCon)、多晶硅氧化物选择钝化接触电池(POLO)、交叉指式背接触电池(IBC)、硅异质结电池(SHJ),参见图4,示出了本公开实施例提供的一种单面电极光伏电池的结构示意图,如图4所示,电池主体包括硅片衬底11、设置在硅片衬底11一面的第一钝化层17和第三功能层18,以及设置在硅片衬底11另一面的第二钝化层19、第四功能层110、第三电极16和第四电极120。
其中,第一区域20的绒面结构设置在硅片衬底11的一面上,凹坑31的底面设置在所述硅片衬底中,第一钝化层17设置在绒面结构和凹坑31的底面和侧壁上,第三功能层18设置在第一钝化层17远离硅片衬底11的一面,第二钝化层19设置在硅片衬底11的另一面,第四功能层110设置在第二钝化层19远离硅片衬底11的一面,第四功能层110具有第三镂空结构,第三电极16和第四电极120间隔设置在第三镂空结构的位置。
具体的,所述硅片衬底可以是n型晶体硅片制备得到的n型硅片衬底;所述第一钝化层可以为非晶硅或氧化硅,从而起到光伏电池一面的表面钝化的功能;第三功能层可以为多层结构,例如,总厚度为70纳米的多层氮化硅结构,起到光伏电池一面的表面场钝化和减反射的功能;第二钝化层可以为非晶硅或氧化硅,从而起到光伏电池另一面的表面钝化的功能;第四功能层可以起到光伏电池领一面的表面场钝化和减反射的功能。
进一步的,在硅片衬底的另一面上设置有第三电极和第四电极,从而构 成具有单面电极的光伏电池,具体的,可以利用掩模版在第四功能层上制备第三镂空结构,并使第三电极和第四电极间隔设置在第三镂空结构的位置。
可选地,参照图4,第三电极16与第二钝化层19之间设置有第一收集层162和第一传输层161,第一收集层162设置在第二钝化层19远离硅片衬底11的一面,第一传输层161设置在第一收集层162远离第二钝化层19的一面;第四电极120与第二钝化层19之间设置有第二收集层122和第二传输层121,第二收集层122设置在第二钝化层19远离硅片衬底11的一面,第二传输层121设置在第二收集层122远离第二钝化层19的一面。
具体的,硅片衬底采用n型晶体硅片时,第一收集层可以为n型掺杂非晶硅构成的多子收集区,第二收集层可以为p型掺杂非晶硅构成的少子收集区,第一收集层和第二收集层在硅片衬底的另一面中的第二钝化层表面设置间隔排列,相应的,第一传输层是与所述第一收集层对应的在载流子传输层,即多子传输层,第三电极是具有单面电极的光伏电池的多子端电极,第二传输层是与所述第二收集层对应的在载流子传输层,即少子传输层,第四电极是具有单面电极的光伏电池的少子端电极。
本公开还提供了一种制备上述光伏电池的方法,参见图5,示出了本公开实施例提供的一种光伏电池的制备方法的步骤流程图,该方法可以包括如下步骤:
步骤101,在电池主体的至少一个表面上制备绒面结构,所述绒面结构由沿所述电池主体一面分布的金字塔和/或倒金字塔结构组成。
在该步骤中,可以通过制绒工艺,在电池主体上制备由金字塔和/或倒金字塔结构构成的绒面结构。
具体的,绒面结构由沿电池主体一面连续分布的金字塔和/或倒金字塔结构组成,所述电池主体可以是由单晶硅片制备得到的,相应的,所述绒面结构即为通过制绒工艺在单晶硅片的一面上制备得到的规则的金字塔和/或倒金字塔结构,所述电池主体也可以是由多晶硅片制备得到的,相应的,所述绒面结构即为通过制绒工艺在多晶硅片的一面上制备得到的不规则的金字塔和/或倒金字塔结构。
步骤102,在所述电池主体的表面上制备多个微米级凹坑。
在该步骤中,可以在上述步骤中制备得到的具有绒面结构的电池主体的表面上,通过涂覆光刻胶,并采用具备相应图案的掩模版进行光照后洗去未遮挡位置光刻胶,形成对应孔洞结构,进一步采用深度反应粒子刻蚀工艺,在上述孔洞位置刻蚀形成多个凹坑,且所述凹坑在电池主体的表面上的投影尺寸为0.5至100微米,凹坑的侧壁与电池主体的厚度方向的偏离角度小于15度。
参见图6,示出了本公开实施例提供的一种双面电极光伏电池的制备方法的步骤流程图,该方法可以包括如下步骤:
步骤201、在所述电池主体的硅片衬底的至少一个表面上制备所述绒面结构。
在该步骤中,所述硅片衬底可以是n型晶体硅片制备得到的n型硅片衬底,所述硅片衬底的厚度可以为150微米,也可以是厚度为10至50微米的超薄晶体硅片,或厚度为50至100微米的中等晶体硅片,所述硅片衬底可以为单晶,也可以为多晶。
进一步的,可以在所述硅片衬底的至少一个表面上通过制绒工艺,制备由金字塔和/或倒金字塔结构组成绒面结构。
步骤202、在所述硅片衬底的表面上制备多个凹坑。
在该步骤中,可以在上述步骤中制备得到的具有绒面结构的硅片衬底的表面上,通过涂覆光刻胶,并采用具备相应图案的掩模版进行光照后洗去未遮挡位置光刻胶,形成对应孔洞结构,进一步采用深度反应粒子刻蚀工艺,在上述孔洞位置刻蚀形成多个凹坑,且所述凹坑在电池主体的表面上的投影尺寸为0.5至100微米,凹坑的侧壁与电池主体的厚度方向的偏离角度小于15度。
具体的,所述凹坑可以为圆孔结构,平均孔径可以为5微米,相邻凹坑之间间距15微米,深度为0.5微米。
进一步的,在具有绒面结构的硅片衬底一面制备多个凹坑之后,可以在绒面结构的表面和凹坑的侧壁和底面上通过扩散制备层状的PN结结构层,实现分离载流子的能力。
步骤203、在所述绒面结构和所述凹坑的侧壁和底面上制备钝化层。
在该步骤中,可以在绒面结构和凹坑的侧壁和底面上沉积钝化层,例如,所述钝化层可以包括2纳米厚度的氧化硅,起到光伏电池一面的表面钝化功能。
进一步的,可以在所述钝化层上制备70纳米厚度的氮化硅,起到光伏电池一面的减反射的功能,2纳米厚度的氧化硅和70纳米厚度的氮化硅形成具有多层结构的第一功能层。
步骤204、在所述绒面结构上和所述凹坑中制备第一电极,以及在所述硅片衬底的另一面上制备第二电极。
在该步骤中,可以在绒面结构上和凹坑中制备第一电极。
具体的,可以利用掩模版在第一功能层上制备第一镂空结构,并使第一电极位于第一镂空结构的位置,从而使得第一电极可以设置在绒面结构上或凹坑中。
进一步的,可以在硅片衬底的另一面上沉积第二功能层,所述第二功能层可以为多层结构,例如,所述第二功能层可以包括2纳米厚度的氧化硅、15纳米厚度的氧化铝及50纳米厚度的氮化硅,从而实现光伏电池另一面的表面钝化及减反射的功能。
进一步的,在所述硅片衬底的另一面上制备第二电极,具体的,可以利用掩模版在第二功能层上制备第二镂空结构,并使第二电极位于第二镂空结构的位置,从而使得第二电极可以设置在硅片衬底的另一面中。
可选地,参见图7,示出了本公开实施例提供的一种单面电极光伏电池的制备方法的步骤流程图,该方法可以包括如下步骤:
步骤301、在所述电池主体的硅片衬底的至少一个表面上制备所述绒面结构。
在该步骤中,所述硅片衬底可以是n型晶体硅片制备得到的n型硅片衬底,所述硅片衬底的厚度可以为100微米。
进一步的,可以在所述硅片衬底的至少一个表面上通过制绒工艺,制备连续分布的金字塔和/或倒金字塔结构组成绒面结构。
步骤302、在所述硅片衬底的表面上制备多个凹坑。
在该步骤中,可以在上述步骤中制备得到的具有绒面结构的硅片衬底一面上,通过激光烧蚀工艺,形成具有一定深度的深孔,激光烧蚀工艺后可以对深孔进行化学抛光以获得平滑的侧壁和底面,从而制备得到多个凹坑,且所述凹坑在电池主体的表面上的投影尺寸为0.5至100微米,凹坑的侧壁与电池主体的厚度方向的偏离角度小于15度。
具体的,所述凹坑可以为圆孔结构,平均孔径可以为2微米,相邻凹坑之间间距5微米,深度为1微米。
步骤303、在所述绒面结构和所述凹坑的侧壁和底面上制备第一钝化层,并在所述第一钝化层上制备第三功能层。
在该步骤中,可以在绒面结构和凹坑的侧壁和底面上制备第一钝化层,所述第一钝化层可以为非晶硅或氧化硅,从而起到光伏电池一面的表面钝化的功能。
进一步的,可以在第一钝化层上制备第三功能层,所述第三功能层可以为多层结构,例如,总厚度为70纳米的多层氮化硅结构,起到光伏电池一面的表面场钝化和减反射的功能。
步骤304、在所述硅片衬底的另一面上制备第二钝化层,并在所述第二钝化层上制备第四功能层。
在该步骤中,可以在硅片衬底的另一面上制备第二钝化层,所述第二钝化层也可以为非晶硅或氧化硅,从而起到光伏电池另一面的表面钝化的功能。
进一步的,可以在第二钝化层上制备第四功能层,所述第四功能层可以起到光伏电池领一面的表面场钝化和减反射的功能。
步骤305、在所述硅片衬底的另一面上制备第三电极和第四电极。
在该步骤中,可以在硅片衬底的另一面上设置有第三电极和第四电极,从而构成具有单面电极的光伏电池,具体的,可以利用掩模版在第四功能层上制备第三镂空结构,并使第三电极和第四电极间隔设置在第三镂空结构的位置。
在本公开实施例中,第三电极与第二钝化层之间可以设置有第一收集层和第一传输层,第一收集层设置在第二钝化层远离硅片衬底的一面,第一传输层设置在第一收集层远离第二钝化层的一面;第四电极与第二钝化层之间设置有第二收集层和第二传输层,第二收集层设置在第二钝化层远离硅片衬底的一面,第二传输层设置在第二收集层远离第二钝化层的一面。
具体的,硅片衬底采用n型晶体硅片时,第一收集层可以为n型掺杂非晶硅构成的多子收集区,第二收集层可以为p型掺杂非晶硅构成的少子收集区,第一收集层和第二收集层在硅片衬底的另一面中的第二钝化层表面设置间隔排列,第一收集层和第二收集层在第二钝化层上投影面积的比值可以为5%至45%,且第一收集层和第二收集层之间设置有电气隔离间隙,相应的,第一传输层是与所述第一收集层对应的在载流子传输层,即多子传输层,第三电极是具有单面电极的光伏电池的多子端电极,第二传输层是与所述第二收集层对应的在载流子传输层,即少子传输层,第四电极是具有单面电极的光伏电池的少子端电极,此外,所述第一收集层和第二收集层还可以采用掺杂多晶硅材料。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本公开实施例并不受所描述的动作顺序的限制,因为依据本公开实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定都是本公开实施例所必须的。
此外,本公开还提供了一种光伏组件,所述光伏组件由上述光伏电池构成。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本公开的保护之内。

Claims (18)

  1. 一种光伏电池,其特征在于,所述光伏电池包括:
    电池主体;
    所述电池主体的至少一个表面包含第一区域、第二区域;
    所述第一区域设置为绒面结构;
    所述第二区域设置为多个凹坑;
    所述凹坑在所述电池主体的表面上的投影尺寸为0.5至100微米;
    所述凹坑的侧壁与所述电池主体的厚度方向的偏离角度小于15度。
  2. 根据权利要求1所述的光伏电池,所述凹坑在所述电池主体的表面上的投影尺寸大于等于1微米,且小于等于20微米。
  3. 根据权利要求1所述的光伏电池,其特征在于,所述多个凹坑在所述电池主体的表面呈阵列分布;
    相邻所述凹坑之间的间隔大于等于2微米,且小于等于200微米。
  4. 根据权利要求1所述的光伏电池,其特征在于,所述凹坑在所述电池主体的表面上的投影面积与所述电池主体的表面积的比值为0.4至0.85。
  5. 根据权利要求1-4任一项所述的光伏电池,其特征在于,所述凹坑的深度大于或等于0.1微米。
  6. 根据权利要求1-4任一项所述的光伏电池,其特征在于,所述凹坑包括:圆孔、矩形孔或不规则形状中的任意一种或多种。
  7. 根据权利要求1-4任一项所述的光伏电池,其特征在于,
    所述电池主体包括第一电极;
    其中,所述第一电极至少部分设置在所述绒面结构上。
  8. 根据权利要求7所述的光伏电池,其特征在于,所述光伏电池还包括:钝化层;
    所述钝化层设置在所述绒面结构和所述凹坑的底面和侧壁上。
  9. 根据权利要求7所述的光伏电池,其特征在于,
    所述第一电极包括第一主栅和第一细栅,所述第一主栅设置在所述绒面结构和/或所述凹坑上,所述第一细栅设置在所述绒面结构上。
  10. 根据权利要求1所述的光伏电池,其特征在于,
    所述光伏电池可以为具有单面电极的光伏电池,其中,所述电池主体包 括硅片衬底、设置在硅片衬底一面的第一钝化层和第三功能层,以及设置在硅片衬底另一面的第二钝化层、第四功能层、第三电极和第四电极。
  11. 根据权利要求10所述的光伏电池,其特征在于,所述第三电极与所述第二钝化层之间设置有第一收集层和第一传输层,所述第一收集层设置在所述第二钝化层远离硅片衬底的一面,所述第一传输层设置在所述第一收集层远离所述第二钝化层的一面;
    所述第四电极与所述第二钝化层之间设置有第二收集层和第二传输层,所述第二收集层设置在所述第二钝化层远离硅片衬底的一面,所述第二传输层设置在所述第二收集层远离所述第二钝化层的一面。
  12. 一种光伏电池的制备方法,其特征在于,所述方法包括:
    在电池主体的至少一个表面上制备绒面结构,所述绒面结构由沿所述电池主体一面分布的金字塔和/或倒金字塔结构组成;
    在所述电池主体的表面上制备多个微米级凹坑。
  13. 根据权利要求12所述的方法,其特征在于,所述在电池主体的至少一个表面上制备绒面结构,包括:
    在所述电池主体的硅片衬底的至少一个表面上制备所述绒面结构。
  14. 根据权利要求13所述的方法,其特征在于,所述在所述电池主体的表面上制备多个微米级凹坑,包括:
    在所述硅片衬底的表面上制备多个凹坑。
  15. 根据权利要求12所述的方法,其特征在于,还包括:
    在所述绒面结构和所述凹坑的侧壁和底面上制备钝化层。
  16. 根据权利要求12所述的方法,其特征在于,还包括:
    在所述绒面结构上和所述凹坑中制备第一电极,以及在所述硅片衬底的另一面上制备第二电极。
  17. 一种单面电极光伏电池的制备方法,其特征在于,所述方法包括:
    在所述电池主体的硅片衬底的至少一个表面上制备所述绒面结构;
    在所述硅片衬底的表面上制备多个凹坑;
    在所述绒面结构和所述凹坑的侧壁和底面上制备第一钝化层,并在所述第一钝化层上制备第三功能层;
    在所述硅片衬底的另一面上制备第二钝化层,并在所述第二钝化层上制备第四功能层;
    在所述硅片衬底的另一面上制备第三电极和第四电极。
  18. 一种光伏组件,其特征在于,所述光伏组件包括权利要求1-11中任一项所述的光伏电池。
PCT/CN2021/131407 2020-11-18 2021-11-18 一种光伏电池及光伏组件 WO2022105821A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023530005A JP2023549905A (ja) 2020-11-18 2021-11-18 太陽光発電電池及び太陽光発電モジュール
AU2021383880A AU2021383880A1 (en) 2020-11-18 2021-11-18 Photovoltaic cell and photovoltaic assembly
EP21893968.4A EP4250373A1 (en) 2020-11-18 2021-11-18 Photovoltaic cell and photovoltaic assembly
US18/036,583 US20240014333A1 (en) 2020-11-18 2021-11-18 Photovoltaic cell and photovoltaic module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011296656.4A CN112466968A (zh) 2020-11-18 2020-11-18 一种光伏电池及光伏组件
CN202011296656.4 2020-11-18

Publications (1)

Publication Number Publication Date
WO2022105821A1 true WO2022105821A1 (zh) 2022-05-27

Family

ID=74837849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131407 WO2022105821A1 (zh) 2020-11-18 2021-11-18 一种光伏电池及光伏组件

Country Status (6)

Country Link
US (1) US20240014333A1 (zh)
EP (1) EP4250373A1 (zh)
JP (1) JP2023549905A (zh)
CN (1) CN112466968A (zh)
AU (1) AU2021383880A1 (zh)
WO (1) WO2022105821A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112466968A (zh) * 2020-11-18 2021-03-09 隆基绿能科技股份有限公司 一种光伏电池及光伏组件
CN113707764A (zh) * 2021-08-27 2021-11-26 福建金石能源有限公司 一种采用倒金字塔绒面的太阳能电池的制造方法
CN113540269B (zh) * 2021-09-14 2022-04-12 浙江晶科能源有限公司 太阳能电池及其制备方法、光伏组件
CN115548144B (zh) * 2022-11-04 2024-05-07 安徽华晟新能源科技有限公司 半导体衬底及其处理方法、太阳能电池及其制备方法
CN116759473B (zh) * 2023-08-17 2023-11-10 福建金石能源有限公司 一种减少背面寄生吸收的背接触电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3493951B2 (ja) * 1997-05-13 2004-02-03 松下電器産業株式会社 シリコン基板の異方性エッチング方法及び太陽電池の製造方法
CN206194755U (zh) * 2016-10-20 2017-05-24 苏州阿特斯阳光电力科技有限公司 晶体硅电池的表面结构、晶体硅电池片及太阳能电池
CN111146313A (zh) * 2019-03-08 2020-05-12 欧浦登(顺昌)光学有限公司 晶硅片微纳浊透复合绒面的制备方法及其应用
CN112466968A (zh) * 2020-11-18 2021-03-09 隆基绿能科技股份有限公司 一种光伏电池及光伏组件

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3698746B2 (ja) * 1994-11-30 2005-09-21 シャープ株式会社 太陽電池とその製造方法
JP3772456B2 (ja) * 1997-04-23 2006-05-10 三菱電機株式会社 太陽電池及びその製造方法、半導体製造装置
US10644174B2 (en) * 2006-09-26 2020-05-05 Banpil Photonics, Inc. High efficiency photovoltaic cells with self concentrating effect
JP2011009733A (ja) * 2009-05-28 2011-01-13 Kyocera Corp 太陽電池素子、太陽電池モジュールおよび太陽光発電装置
TWI455342B (zh) * 2011-08-30 2014-10-01 Nat Univ Tsing Hua Solar cell with selective emitter structure and manufacturing method thereof
CN102610692A (zh) * 2012-03-09 2012-07-25 润峰电力有限公司 一种晶体硅纳米-微米复合绒面的制备方法
US9716194B2 (en) * 2012-05-01 2017-07-25 Chihhua Yang Thin film solar cell structure
JP2019054121A (ja) * 2017-09-15 2019-04-04 攝津製油株式会社 エッチング液
CN209709005U (zh) * 2019-03-08 2019-11-29 欧浦登(顺昌)光学有限公司 具有微纳浊透复合绒面的太阳能电池片
CN110137283A (zh) * 2019-06-10 2019-08-16 通威太阳能(安徽)有限公司 一种增大比表面积的单晶硅电池片及其制绒方法
CN110629290A (zh) * 2019-08-22 2019-12-31 山西潞安太阳能科技有限责任公司 湿法激光单晶硅嵌入式倒金字塔绒面制备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3493951B2 (ja) * 1997-05-13 2004-02-03 松下電器産業株式会社 シリコン基板の異方性エッチング方法及び太陽電池の製造方法
CN206194755U (zh) * 2016-10-20 2017-05-24 苏州阿特斯阳光电力科技有限公司 晶体硅电池的表面结构、晶体硅电池片及太阳能电池
CN111146313A (zh) * 2019-03-08 2020-05-12 欧浦登(顺昌)光学有限公司 晶硅片微纳浊透复合绒面的制备方法及其应用
CN112466968A (zh) * 2020-11-18 2021-03-09 隆基绿能科技股份有限公司 一种光伏电池及光伏组件

Also Published As

Publication number Publication date
EP4250373A1 (en) 2023-09-27
AU2021383880A1 (en) 2023-06-22
JP2023549905A (ja) 2023-11-29
US20240014333A1 (en) 2024-01-11
CN112466968A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2022105821A1 (zh) 一种光伏电池及光伏组件
US10084107B2 (en) Transparent conducting oxide for photovoltaic devices
WO2016078365A1 (zh) 高效n型双面太阳电池
WO2009150654A2 (en) Solar volumetric structure
JP7023975B2 (ja) P型perc両面太陽電池及びそのモジュール、システムと製造方法
JP2011512687A (ja) 非対称ウエーハのエッチング方法、非対称エッチングのウエーハを含む太陽電池、及び太陽電池の製造方法
CN101937944A (zh) 双面钝化的晶体硅太阳电池的制备方法
JP7023976B2 (ja) P型perc両面太陽電池の製造方法
JP2013513964A (ja) 裏面接点・ヘテロ接合太陽電池
JP2020509600A (ja) P型perc両面太陽電池及びそのモジュール、システムと製造方法
KR101729745B1 (ko) 태양전지 및 이의 제조 방법
CN110752274A (zh) 一种用阴罩掩膜镀膜制造hbc电池片及电池的方法
KR101179365B1 (ko) 전후면전계 태양전지 및 그 제조방법
CN102117850B (zh) 微纳复合结构的太阳能电池及其制备方法
US20110056548A1 (en) Wafer-Based Solar Cell with Deeply Etched Structure
KR101198438B1 (ko) 양면 수광형 국부화 에미터 태양전지 및 그 제조 방법
US20130118547A1 (en) Photovoltaic window with light-turning features
JP2020509606A (ja) 太陽光の吸収に有効なp型perc両面太陽電池及びその製造方法
CN106449847A (zh) 一种具有垂直pn异质结的太阳能电池及其制作方法
Dutta Prospects of nanotechnology for high-efficiency solar cells
CN111952377A (zh) 曲面陷光结构的钙钛矿/硅叠层太阳电池及其制作方法
CN107564976B (zh) 一种双面电池及其制备方法
KR101363103B1 (ko) 태양전지 및 그 제조방법
CN207705207U (zh) 全背接触式异质结太阳能电池
TWI812265B (zh) 熱載子太陽能電池及疊層太陽能電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893968

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18036583

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023530005

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021383880

Country of ref document: AU

Date of ref document: 20211118

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021893968

Country of ref document: EP

Effective date: 20230619