WO2022105681A1 - 量子点发光二极管及其制备方法 - Google Patents

量子点发光二极管及其制备方法 Download PDF

Info

Publication number
WO2022105681A1
WO2022105681A1 PCT/CN2021/130260 CN2021130260W WO2022105681A1 WO 2022105681 A1 WO2022105681 A1 WO 2022105681A1 CN 2021130260 W CN2021130260 W CN 2021130260W WO 2022105681 A1 WO2022105681 A1 WO 2022105681A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
ligand
acid
layer
emitting diode
Prior art date
Application number
PCT/CN2021/130260
Other languages
English (en)
French (fr)
Inventor
聂志文
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Priority to EP21893828.0A priority Critical patent/EP4131447A4/en
Publication of WO2022105681A1 publication Critical patent/WO2022105681A1/zh
Priority to US17/962,433 priority patent/US20230043770A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/865Intermediate layers comprising a mixture of materials of the adjoining active layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the field of quantum dot light-emitting devices, and in particular, to a quantum dot light-emitting diode and a preparation method thereof.
  • Quantum dots are usually composed of tens to millions of atoms, and the geometric size is similar to that of excitons. It not only partially inherits the characteristics of bulk semiconductors, but also exhibits its own unique optoelectronic properties. It has high color purity, continuously adjustable emission spectrum with size and composition, narrow half-peak width, high fluorescence efficiency, long life, excellent monodispersity and photothermal stability, and also excellent solution processability. It has a wide range of application prospects in the fields of display, laser, photovoltaic, and biomarkers. Among them, the application of quantum dots in the display field, especially the QD-LCD TV vigorously promoted by manufacturers such as TCL and Samsung, also marks its initial commercial Transformation has begun to take shape.
  • the continuous improvement of quantum dot synthesis technology With the continuous improvement of quantum dot synthesis technology, the continuous optimization of device structure and the continuous deepening of theoretical research on the life of QLED (quantum dot light-emitting diode) devices, the efficiency and life of the device have been greatly improved.
  • the device performance of red and green QLEDs has been comparable to the existing widely used OLEDs (organic light-emitting diodes), marking a solid step towards the real commercialization of QLEDs.
  • Existing high-performance QLEDs usually use ZnO with high electron mobility as the electron transport layer. On the one hand, this kind of ZnO is usually prepared by a low-temperature solution method, and the surface is polar.
  • the purpose of the present disclosure is to provide a quantum dot light-emitting diode and a preparation method thereof, aiming at solving the problem that the polarity difference between the quantum dot layer and the electron transport layer is large, resulting in poor film formation quality of the electron transport layer. question.
  • a first aspect of the present disclosure provides a quantum dot light-emitting diode, comprising: a quantum dot layer and an electron transport layer formed on the quantum dot layer, the quantum dot layer being close to the side where the electron transport layer is located esters are bound to the surface.
  • the surface of the quantum dot layer on the side where the electron transport layer is located is replaced with an ester substance. Since the ester substance has good hydrophilicity, its polarity is the same as that of the electron transport layer, which effectively improves the efficiency of the quantum dot layer and the electron transport layer.
  • the compatibility between the transport layers reduces the surface contact angle between the quantum dot layer and the electron transport layer, fills the gaps and defects between the film layers, effectively avoids the occurrence of non-radiative recombination, reduces leakage current, and significantly improves the device. luminous properties.
  • a second aspect of the present disclosure provides a method for preparing a quantum dot light-emitting diode, comprising the steps of:
  • An electron transport layer is formed on the surface of the quantum dot layer to which the ester substance is bound.
  • the surface of the quantum dot layer on the side where the electron transport layer is located is replaced by an ester substance, while the remaining area of the quantum dot layer remains as the non-polar ligand of the quantum dot, because the ester substance has good hydrophilicity, so
  • the surface of the quantum dot layer in contact with the electron transport layer is in a polar state, and the rest of the quantum dot layer remains in the original non-polar state. In this way, the fluorescence efficiency of the original quantum dot is not lost.
  • FIG. 1 is a schematic structural diagram of a quantum dot light emitting diode provided in an embodiment of the present disclosure.
  • FIG. 2 is a schematic flowchart of a method for fabricating a quantum dot light-emitting diode provided in an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of the quantum dot layer before and after processing (ligand exchange + esterification) in an embodiment of the disclosure.
  • FIG. 4 is a schematic structural diagram of an inversion quantum dot light emitting diode provided in an embodiment of the present disclosure.
  • the present disclosure provides a quantum dot light-emitting diode and a preparation method thereof.
  • the present disclosure will be described in further detail below. It should be understood that the embodiments described herein are only used to explain the present disclosure, but not to limit the present disclosure.
  • Embodiments of the present disclosure provide a quantum dot light-emitting diode, which includes a quantum dot layer and an electron transport layer formed on the quantum dot layer, and an ester substance is bound to a surface of the quantum dot layer close to the side where the electron transport layer is located.
  • the surface of the entire quantum dot layer is usually coordinated with original ligands.
  • the surface in contact with the electron transport layer is replaced with an ester substance, and the rest of the quantum dot layer remains as the original ligand.
  • the electron injection with the same charge as the ester functional group can be hindered to a certain extent.
  • the original ligand in a part of the quantum dot layer can accelerate the injection of holes opposite to the charge of the functional group of the ligand to a certain extent, thereby helping to improve the injection balance of electrons and holes and improve the current carrying capacity.
  • the recombination efficiency of electrons in the whole quantum dot layer improves the device performance.
  • the original ligands coordinated by the quantum dots are usually non-polar ligands, the entire surface of the quantum dot layer is in a non-polar state, and the surface of the electron transport layer in contact with the quantum dot layer is in a non-polar state.
  • the quantum dot layer and the electron transport layer In a polar state, the quantum dot layer and the electron transport layer have a large difference in polarity, resulting in a large surface contact angle between the quantum dot layer and the electron transport layer, a large number of defects, difficulty in electron injection, and serious non-radiative recombination.
  • the existing method is to first perform ligand exchange in the form of quantum dot solution, and then deposit the quantum dot solution after ligand exchange to form a quantum dot layer.
  • This method can improve the quantum dot layer and electron transport layer. compatibility between.
  • this method can achieve efficient ligand exchange, the ligand exchange occurs on all QD surfaces, which leads to a significant decrease in the self-fluorescence efficiency of QDs.
  • the rest of the quantum dot layer remains the non-polar ligand of the quantum dot, because the ester substance has good Hydrophilic, so that the surface of the quantum dot layer in contact with the electron transport layer exhibits a polar state, and the rest of the quantum dot layer remains in the original non-polar state. In this way, the fluorescence efficiency of the original quantum dots is maintained.
  • the surface of the quantum dot layer away from the side where the electron transport layer is located is bound with the first ligand (ie, the original ligand to which the quantum dots are bound).
  • the first ligand is selected from the group consisting of organic carboxylic acids with 8 or more carbon atoms, primary amines with 8 or more carbon atoms, secondary or tertiary amines with branched chain carbon atoms of 4 or more, and branched One or more of organic phosphines with a chain carbon number of 4 or more.
  • the first ligand is an organic carboxylic acid with a carbon number greater than or equal to 8, or an organic phosphine with a branched carbon number greater than or equal to 4, or an organic carboxylic acid with a carbon number greater than or equal to 8 and a carbon number greater than or equal to 8.
  • the first ligand is selected from organic carboxylic acids with carbon number greater than or equal to 8 and less than or equal to 20, primary amines with carbon number greater than or equal to 8 and less than or equal to 20, branched carbon atoms greater than or equal to 4 and less than or equal to One or more of secondary or tertiary amines of 20 and organic phosphines with a branched carbon number of 4 or more and 20 or less.
  • the organic carboxylic acid with carbon number greater than or equal to 8 and less than or equal to 20 is selected from octanoic acid, nonanoic acid, capric acid, undecyl acid, dodecyl acid, tridecyl acid, tetradecyl acid, Hexadecylic acid, octadecyl acid, undecenoic acid, dodecenoic acid, tridecenoic acid, tetradecenoic acid, pentadecenoic acid, hexadecenoic acid, heptadecenoic acid and octadecenoic acid One or more of acids, etc.
  • the primary amine with a carbon number of 8 or more and less than or equal to 20 is selected from one or more of octylamine, nonylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, and octadecylamine.
  • the secondary or tertiary amines with branched carbon atoms of 4 or more and less than or equal to 20 are selected from tributylamine, trihexylamine, triheptylamine, trioctylamine, trinonylamine and tridecylamine one or more of etc.
  • the organic phosphine having a branched chain carbon number of 4 or more and less than or equal to 20 is selected from tributylphosphine, trihexylphosphine, triheptylphosphine, trioctylphosphine, trinonylphosphine and tridecylphosphine, etc. one or more.
  • the ester species is formed by an esterification reaction of a second ligand and a third ligand, and the second ligand and the third ligand are bound to the surface of the quantum dot layer.
  • the carbon chain length of the first ligand is the same as the carbon chain length of the second and third ligands forming the ester species, and the molar ratio of the second ligand to the third ligand is 1: 1.
  • the first ligand is undecanoic acid
  • the second ligand is 11-mercaptoundecanoic acid
  • the third ligand is 11-mercapto-1-undecanol
  • 11-mercaptoundecanoic acid and The molar ratio of 11-mercapto-1-undecanol was 1:1.
  • the carbon chains of each ligand have the same length, which can further avoid the problem that the self-fluorescence efficiency of quantum dots is greatly reduced due to conventional ligand replacement.
  • one end of the carbon chain of the second ligand is a sulfhydryl group, and the other end is a carboxyl group, and the second ligand is bound to the surface of the quantum dot layer through the sulfhydryl group.
  • the carbon chain of the second ligand may be the same as the carbon chain of the first ligand.
  • one end of the carbon chain of the third ligand is a sulfhydryl group, and the other end is a hydroxyl group, and the third ligand is bound to the surface of the quantum dot layer through the sulfhydryl group.
  • the carbon chain of the third ligand may be the same as the carbon chain of the first ligand.
  • the quantum dot light-emitting diodes are divided into two types: a positive structure and an inversion structure, and the quantum dot light-emitting diodes of each structure may have various forms.
  • the structure and material selection of the quantum dot light emitting diode of this embodiment will be described below by taking the quantum dot light emitting diode of the positive structure shown in FIG. 1 as an example.
  • the quantum dot light-emitting diode includes a substrate, an anode, a hole injection layer, a hole transport layer, a quantum dot layer, an electron transport layer and a cathode in sequence from bottom to top; wherein, the quantum dot layer is located in the electron transport layer.
  • the quantum dot light-emitting diode of the inversion structure of the present disclosure includes a substrate, a cathode, an electron transport layer, a quantum dot layer, a hole transport layer, a hole injection layer and an anode in order from bottom to top.
  • the substrate may be a rigid substrate or a flexible substrate, and the substrate is selected from glass, silicon wafer, polycarbonate, polymethyl methacrylate, polyethylene terephthalate, Polyethylene naphthalate, polyamide, polyethersulfone, or combinations thereof, and the like.
  • the material of the anode can be selected from nickel, platinum, vanadium, chromium, copper, zinc, gold or their alloys; the material of the anode can also be selected from zinc oxide, indium oxide, tin oxide, indium zinc oxide , one or more of indium-doped tin oxide, fluorine-doped tin oxide, antimony-doped tin oxide, and aluminum-doped zinc oxide; the material of the anode can also be any two or a combination of two or more of the above.
  • the material of the hole injection layer may be selected from materials with good hole injection properties, such as, but not limited to, poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT). : PSS), copper phthalocyanine (CuPc), 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanoquinone-dimethane (F4-TCNQ), 2,3,6, 7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HATCN), doped or undoped transition metal oxides, doped or undoped metals
  • chalcogenide compounds wherein, transition metal oxides include but are not limited to one or more of MoO 3 , VO 2 , WO 3 , and CuO; metal chalcogenide compounds include but are not limited to MoS 2 , One or more of MoSe 2 , WS 2 , WSe 2
  • the material of the hole transport layer can be selected from organic materials with good hole transport ability, such as, but not limited to, poly(9,9-dioctylfluorene-CO-N-(4- Butylphenyl)diphenylamine)(TFB), polyvinylcarbazole (PVK), poly(N,N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine)( Poly-TPD), poly(9,9-dioctylfluorene-co-bis-N,N-phenyl-1,4-phenylenediamine) (PFB), 4,4',4"-tris(carbohydrate) oxazol-9-yl)triphenylamine (TCTA), 4,4'-bis(9-carbazole)biphenyl (CBP), N,N'-diphenyl-N,N'-bis(3-methyl) Phenyl)-1,1'-b
  • the quantum dots may be selected from group II-VI CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS , HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe, CdHgSeS, Cd
  • the electron transport layer may be selected from one or more of ZnO, TiO2 , Alq3 , SnO, ZrO, AlZnO, ZnSnO, BCP, TAZ, PBD, TPBI, Bphen, CsCO3. In one embodiment, the electron transport layer has a thickness of 5-100 nm.
  • the cathode may be selected from metals or alloys thereof, such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, lead, cesium, barium, or combinations thereof Alloys; the cathode can also be composed of multi-layer structural materials, such as a first layer and a second layer located on the first layer, the material of the first layer is alkali metal halide, alkaline earth metal halide, alkali metal oxide, Or a combination thereof, the material of the second layer is an alkaline earth metal, a Group III metal, or a combination thereof.
  • the cathode is LiF/Al, LiO 2 /Al, LiF/Ca, Liq/Al, and BaF 2 /Ca, but not limited thereto.
  • An embodiment of the present disclosure provides a method for preparing a quantum dot light-emitting diode, as shown in FIG. 2 , including the following steps:
  • the rest of the quantum dot layer remains the non-polar ligand of the quantum dot, because the ester substance has good Hydrophilic, so that the surface of the quantum dot layer in contact with the electron transport layer exhibits a polar state, and the rest of the quantum dot layer remains in the original non-polar state. In this way, the fluorescence efficiency of the original quantum dots is maintained.
  • a method for preparing a quantum dot layer with an ester substance bound to its surface includes the following steps:
  • the difference in the concentration of the ligand and the cations on the surface of the quantum dots are related to the second ligand and the third ligand.
  • the second ligand and the third ligand will directly diffuse along the direction of the hole transport layer (usually the quantum dot layer is located on the surface of the hole transport layer), thereby inducing the surface of the quantum dot layer.
  • Part of the ligand (the surface to be in contact with the electron transport layer) undergoes ligand exchange.
  • vacuum treatment is performed above the quantum dot film layer (vacuum condition is ⁇ 5 ⁇ 10 -4 Pa).
  • vacuum condition is ⁇ 5 ⁇ 10 -4 Pa.
  • the ligand to be exchanged generates an upward pulling force, so as to better balance the ligand to be exchanged.
  • the ligand exchange occurs in the entire quantum dot film layer.
  • the region in contact with the hole transport layer does not undergo ligand exchange, and this region is still the original ligand (ie, the first ligand) of the quantum dot.
  • the surfaces of all quantum dots in the quantum dot layer before ligand exchange are coordinated with the first ligand, and the surface of the quantum dot layer after ligand exchange close to the side of the electron transport layer is simultaneously coordinated as the second ligand and the first ligand. Tri-ligand, while the remaining regions keep the original first ligand.
  • the above-mentioned ligand exchange method can effectively avoid the problem that the self-fluorescence efficiency of the quantum dots is greatly reduced due to the conventional ligand exchange without losing the original fluorescence efficiency of the quantum dots, and realize the partial area of the surface of the quantum dots. Ligand exchange occurs.
  • the second ligand and the third ligand on the surface of the quantum dot layer after ligand exchange undergo an esterification reaction to generate an ester substance.
  • the ester substance has good hydrophilicity, its polarity is the same as that of the electron transport layer. , which effectively improves the compatibility between the quantum dot layer and the electron transport layer, reduces the surface contact angle between the quantum dot layer and the electron transport layer, fills the gaps and defects between the film layers, and effectively avoids the occurrence of non-radiative recombination.
  • the generation of leakage current is reduced, thereby significantly improving the light-emitting performance of the device.
  • this embodiment has the advantages of simple, mild, effective, fast, and strong universality, etc., and is very suitable for the future large-scale application of quantum dots.
  • the original ligand in a part of the quantum dot layer can accelerate the injection of holes opposite to the charge of the functional group of the ligand to a certain extent, thereby helping to improve the injection balance of electrons and holes and improve the current carrying capacity.
  • the recombination efficiency of electrons in the whole quantum dot layer improves the device performance.
  • step S11 in the quantum dot layer with the first ligand bound to the surface, the first ligand is also the original ligand of the quantum dot, and the surface of the original quantum dot layer away from the side where the hole transport layer is located presents a non-polar state. . See above for the type of the first ligand, which will not be repeated here. It should be noted that, in this step, in the quantum dot layer, the surfaces of all the quantum dots are bound with the first ligand, so the surface of the entire quantum dot layer presents a non-polar state.
  • the quantum dot layer is prepared by the following method: spin-coating the prepared quantum dot solution on the prepared hole transport layer, and then performing thermal annealing treatment to obtain the quantum dot layer.
  • the film thickness can be controlled by adjusting the concentration of the solution, the spin coating speed and the spin coating time.
  • the quantum dots are quantum dots with the first ligand bound to the surface. In one embodiment, the thickness of the quantum dot layer may be 20-60 nm, such as 30 nm.
  • the quantum dot solution has a concentration of 10-30 mg/mL.
  • the solvent used to disperse the quantum dots is selected from at least one of n-octane, n-hexane, cyclohexane, cyclooctane, etc., but is not limited thereto.
  • step S12 includes: adding a second ligand and a third ligand on one surface of the quantum dot layer, and then placing it in a vacuum of ⁇ 5 ⁇ 10 -4 Pa, performing spin coating, and spinning at a rotational speed of It is 100-2000rpm, and the spin coating time is 10-120s.
  • the second ligand and the third ligand are used for ligand exchange with the first ligand located on one surface of the quantum dot layer; after the ligand exchange is completed, the quantum dots are exchanged.
  • the surface of the dot layer is cleaned and finally dried to obtain a quantum dot layer with the second ligand and the third ligand bound on the surface.
  • the second ligand and the third ligand are added to one surface of the quantum dot layer according to the ratio of the total volume of the second ligand and the third ligand to the mass of the quantum dots of 0.01-10:1. ligand exchange. In one embodiment, the molar ratio of the second ligand to the third ligand is 1:1.
  • the quantum dot layer After completion, a small amount of isopropanol is added to clean the surface of the quantum dot layer, and finally it is dried at 50-120° C. for 0.5-4 hours to obtain a surface with the second ligand and the third ligand bound to the surface. the quantum dot layer.
  • the ratio of the volume of isopropanol to the total volume of the second ligand to the third ligand is 1-20:1.
  • the length of the carbon chain of the first ligand, the carbon chain of the second ligand, and the carbon chain of the third ligand are the same.
  • the first ligand is undecanoic acid
  • the second ligand is 11-mercaptoundecanoic acid
  • the third ligand is 11-mercapto-1-undecanol
  • 11-mercaptoundecanoic acid and The molar ratio of 11-mercapto-1-undecanol was 1:1.
  • the length of the carbon chain of the second ligand and the carbon chain of the third ligand are the same as the carbon chain of the first ligand, it is equivalent to in-situ ligand exchange on the surface of the quantum dots in contact with the electron transport layer, which further ensures that On the premise that the fluorescence of the original quantum dots is not lost, the problem that the self-fluorescence efficiency of the quantum dots is greatly reduced due to the conventional ligand exchange is effectively avoided.
  • one end of the carbon chain of the second ligand is a sulfhydryl group, and the other end is a carboxyl group, and the second ligand is bound to the surface of the quantum dot layer through the sulfhydryl group.
  • the carbon chain of the second ligand may be the same as the carbon chain of the first ligand.
  • one end of the carbon chain of the third ligand is a sulfhydryl group, and the other end is a hydroxyl group, and the third ligand is bound to the surface of the quantum dot layer through the sulfhydryl group.
  • the carbon chain of the third ligand may be the same as the carbon chain of the first ligand.
  • the first ligand is usually an organic carboxylic acid, primary amine, secondary amine, tertiary amine or organic phosphine, etc. Since the binding force of the sulfhydryl group in the second ligand and the third ligand to the quantum dot is greater than that of the carboxyl group, The binding force of the amine group, phosphoric acid, etc. and the quantum dots, therefore, the coordination ability of the second ligand and the coordination ability of the third ligand are greater than the coordination ability of the first ligand, which is conducive to promoting ligand exchange.
  • the step of making the second ligand and the third ligand undergo an esterification reaction includes: under the catalysis of an inorganic acid, the second ligand and the third ligand are subjected to an esterification reaction , wherein the temperature of the esterification reaction is 50-180°C, and the time of the esterification reaction is 0.5-4h.
  • the inorganic acid is used as a catalyst to catalyze the reaction between the carboxyl group at one end of the second ligand and the hydroxyl group at one end of the third ligand to generate an ester substance.
  • the step further includes: adding a small amount of isopropanol to clean the surface of the quantum dot layer, and finally drying at 50-120° C. for 0.5-4 hours.
  • the inorganic acid may be dichromic acid, diphosphoric acid, hypoiodic acid, hypochlorous acid, hypobromous acid, hypophosphorous acid, hyposulfuric acid, superoxic acid, iodic acid, telluric acid, fluoroboric acid, fluorine Silicic acid, fluoroantimonic acid, fluorophosphoric acid, fluorosulfuric acid, fluoroplatinic acid, fluorooxyacid, vanadic acid, perchloric acid, permanganic acid, ferric acid, periodic acid, perbromic acid, perxenic acid, chromic acid, Silicic acid, cobalt acid, peroxymonosulfuric acid, peroxodisulfuric acid, peroxydicarbonic acid, perboric acid, percarbonic acid, peroxyacid, pyrophosphoric acid, pyrosulfuric acid, pyrosulfite, dithionous acid, dithionite, phosphoric acid, Phosphomol
  • the obtained quantum dot light-emitting diode can be packaged.
  • the encapsulation processing can be performed by a common machine encapsulation or by a manual encapsulation.
  • the oxygen content and the water content are both lower than 0.1 ppm in the packaging process environment to ensure the stability of the device.
  • Example 1 of the present disclosure 11-mercaptoundecanoic acid and 11-mercapto-1-undecanol are used for ligand exchange in the CdZnSe/ZnSe/ZnS quantum dot layer, and then the quantum dot layer is obtained by esterification .
  • the original ligand of quantum dots is undecanoic acid.
  • a CdZnSe/ZnSe/ZnS quantum dot layer is deposited on the hole transport layer.
  • the quantum dot concentration was 20 mg/mL
  • the solvent was n-octane
  • the volume was 0.8 mL.
  • step (3) 0.1 mL of HCl was then added dropwise to the surface of step (2), and then placed at 100° C. for esterification for 60 min, to obtain the ester substance bound to the surface of the quantum dot layer. After completion, add a small amount of isopropanol to rinse the surface of the quantum dot layer.
  • the quantum dot light-emitting diode of this embodiment includes, from bottom to top, an anode, a hole injection layer, a hole transport layer, a quantum dot layer, an electron transport layer and a cathode sequentially deposited on the substrate.
  • the substrate is a glass substrate;
  • the anode is ITO with a thickness of 110 nm;
  • the hole injection layer is PEDOT:PSS with a thickness of 90 nm;
  • the hole transport layer is TFB with a thickness of 70 nm.
  • the quantum dot layer is the quantum dot layer prepared in the above step 1, and the thickness is 60 nm.
  • the electron transport layer is ZnO with a thickness of 50 nm;
  • the cathode is Al with a thickness of 60 nm.
  • Comparative Example 1 provided by the present disclosure and Example 1 is that the quantum dot layer does not undergo the ligand exchange process (ie step (2)) and the esterification reaction process (ie step (3)) in the above step 1.
  • Embodiment 2 of the present disclosure for the quantum dot layer of Cd x Zn 1-x Se/Cd y Zn 1-y Se/ZnSe/CdZnS (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and x ⁇ y) 11-mercaptoundecanoic acid and 11-mercapto-1-undecanol were used for ligand exchange, and then the quantum dot layer was obtained by esterification.
  • the original ligand of quantum dots is undecanoic acid.
  • step (3) 0.1 mL of HCl was then added dropwise to the surface of step (2), and then dried at 100° C. for 60 min to obtain the ester substance bound to the surface of the quantum dot layer. After completion, add a small amount of isopropanol to rinse the surface of the quantum dot layer.
  • the quantum dot light-emitting diode of this embodiment includes, from bottom to top, an anode, a hole injection layer, a hole transport layer, a quantum dot layer, an electron transport layer and a cathode sequentially deposited on the substrate.
  • the substrate is a glass substrate;
  • the anode is ITO with a thickness of 110 nm;
  • the hole injection layer is PEDOT:PSS with a thickness of 90 nm;
  • the hole transport layer is TFB with a thickness of 70 nm.
  • the quantum dot layer is the quantum dot layer prepared in the above step 1, and the thickness is 60 nm.
  • the electron transport layer is ZnO with a thickness of 50 nm;
  • the cathode is Al with a thickness of 60 nm.
  • Comparative Example 2 provided in the present disclosure and Example 2 is that the quantum dot layer does not undergo the ligand exchange process (ie step (2)) and the esterification reaction process (ie step (3)) in the above step 1.
  • Embodiment 3 of the present disclosure adopts 11- The ligand exchange of mercaptoundecanoic acid and 11-mercapto-1-undecanol was carried out, and then the quantum dot layer was obtained by esterification.
  • the original ligand of quantum dots is undecanoic acid.
  • step (3) 0.1 mL of HCl was then added dropwise to the surface of step (2), and then dried at 100° C. for 60 min to obtain the ester substance bound to the surface of the quantum dot layer. After completion, add a small amount of isopropanol to rinse the surface of the quantum dot layer.
  • the quantum dot light-emitting diode of this embodiment includes, from bottom to top, an anode, a hole injection layer, a hole transport layer, a quantum dot layer, an electron transport layer and a cathode sequentially deposited on the substrate.
  • the substrate is a glass substrate;
  • the anode is ITO with a thickness of 110 nm;
  • the hole injection layer is PEDOT:PSS with a thickness of 90 nm;
  • the hole transport layer is TFB with a thickness of 70 nm.
  • the quantum dot layer is the quantum dot layer prepared in the above step 1, and the thickness is 60 nm.
  • the electron transport layer is ZnO with a thickness of 50 nm;
  • the cathode is Al with a thickness of 60 nm.
  • Comparative Example 3 provided by the present disclosure and Example 3 is that the quantum dot layer does not undergo the ligand exchange process (ie step (2)) and the esterification reaction process (ie step (3)) in the above step 1.
  • the quantum dot layers and quantum dot light-emitting diodes prepared in the comparative examples and Examples 1-3 were tested for performance, and the test method was as follows:
  • the ratio of the number of electron-hole pairs injected into the quantum dots converted into the number of photons emitted, in %, is an important parameter to measure the quality of electroluminescent devices, which can be obtained by measuring the EQE optical testing instrument. Calculated as follows:
  • ⁇ e is the optical output coupling efficiency
  • ⁇ r is the ratio of the number of recombined carriers to the number of injected carriers
  • is the ratio of the number of excitons that generate photons to the total number of excitons
  • K R is the radiation process rate
  • K NR is the nonradiative process rate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

本公开涉及一种量子点发光二极管及其制备方法,所述量子点发光二极管包括量子点层和形成于所述量子点层上的电子传输层,所述量子点层的靠近所述电子传输层所在侧的表面结合有酯物质。

Description

量子点发光二极管及其制备方法
优先权
本公开要求申请日为2020年11月18日,申请号为“202011294195.7”,申请名称为“量子点发光二极管及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及量子点发光器件领域,尤其涉及一种量子点发光二极管及其制备方法。
背景技术
量子点(quantum dot,QD)通常是由几十到几百万个原子组成,几何尺寸与激子尺寸相近,既部分继承了体相半导体的特性,又表现出自身独特的光电性能,具体表现为色纯度高、发光光谱随尺寸和组份连续可调、半峰宽窄、荧光效率高、寿命长、优良的单分散性和光热稳定性、同时也兼具优异的可溶液加工性等。在显示、激光、光伏、生物标记等领域具有广泛的应用前景,其中,量子点在显示领域的应用,尤其是以TCL和三星等厂商大力推广的QD-LCD电视,也标志着其初步的商业化已初见端倪。
随着量子点合成技术的不断改进、器件结构的不断优化以及对于QLED(量子点发光二级管)器件的寿命问题的理论研究的不断深入,器件的效率和寿命得到了极大地提高。特别是红色和绿色QLED的器件性能已能够和现有广泛应用的OLED(有机发光二级管)相媲美,标志着QLED真正实现商业化迈出了坚实的一步。现有高性能的QLED通常使用的是具有高电子迁移率的ZnO作为电子传输层。一方面,该种ZnO通常采用的是低温溶液法制备,表面呈现极性。当向量子点发光层沉积ZnO层时,ZnO的极性表面与量子点的非极性表面接触角大,ZnO纳米颗粒的成膜性变差,电子注入变得困难。同时,量子点表面的结构呈现混乱无序、晶格不完整,量子点层的电学性能变化。另一方面,由于现有QLED器件结构的电子迁移率远高于空穴迁移率,使得量子点与电子传 输层的界面电荷积累的非常严重,不仅使得器件产生过多的热量,同时导致电压升高、寿命和效率呈现大幅度降低趋势。
因此,传统技术还有待于改进和发展。
公开内容
鉴于上述传统技术的不足,本公开的目的在于提供一种量子点发光二极管及其制备方法,旨在解决量子点层与电子传输层之间极性差异大,导致电子传输层成膜质量差的问题。
本公开的技术方案如下:
本公开的第一方面,提供一种量子点发光二极管,其中,包括:量子点层和形成于所述量子点层上的电子传输层,所述量子点层的靠近所述电子传输层所在侧的表面结合有酯物质。
本公开将量子点层的位于电子传输层所在侧的表面替换为酯物质,由于酯物质具有良好的亲水性,其极性与电子传输层的极性相同,这样有效改善量子点层与电子传输层之间的相容性,减小量子点层与电子传输层间的表面接触角,填补膜层间的空隙和缺陷,有效避免非辐射复合的发生,减少漏电流产生,进而显著提升器件的发光性能。
本公开的第二方面,提供一种量子点发光二极管的制备方法,其中,包括步骤:
提供表面结合有酯物质的量子点层;
在所述量子点层的结合有所述酯物质的表面形成电子传输层。
本公开通过将量子点层的位于电子传输层所在侧的表面替换为酯物质,而量子点层其余区域仍保持为量子点的非极性配体,由于酯物质具有良好的亲水性,这样使得与电子传输层接触的量子点层表面呈现极性态,量子点层其余区域仍保持为原有的非极性态,通过这种方式在保持原有量子点荧光效率不损失的前提下,有效改善量子点层与电子传输层之间的相容性,减小量子点层与电子传输层间的表面接触角,填补膜层间的空隙和缺陷,有效避免非辐射复合的发生,减少漏电流产生,进而显著提升器件的发光性能。
附图说明
图1为本公开实施例中提供的一种量子点发光二极管的结构示意图。
图2为本公开实施例中提供的一种量子点发光二极管的制备方法的流程示意图。
图3为本公开实施例中量子点层进行处理(配体交换+酯化反应)前后的示意图。
图4为本公开实施例中提供的一种反型量子点发光二极管的结构示意图。
具体实施方式
本公开提供一种量子点发光二极管及其制备方法,为使本公开的目的、技术方案及效果更加清楚、明确,以下对本公开进一步详细说明。应当理解,此处所描述的实施例仅仅用以解释本公开,并不用于限定本公开。
本公开实施例提供一种量子点发光二极管,其中,包括:量子点层和形成于量子点层上的电子传输层,量子点层的靠近电子传输层所在侧的表面结合有酯物质。
现有量子点发光二极管中,整个量子点层的表面通常都配位有原始配体。而本实施例的量子点发光二极管的量子点层中,与电子传输层接触的表面替换为酯物质,量子点层其余区域仍保留为原始配体。根据同种电荷排斥,异种电荷相吸的原则,当量子点层的靠近电子传输层所在侧的表面配体替换成了酯物质时,可以一定程度上阻碍与酯基官能团的电荷相同的电子注入,而量子点层的部分区域的原始配体,可以一定程度上加快与该种配体的官能团的电荷相反的空穴的注入,从而有助于改善电子与空穴的注入平衡,提升载流子在整个量子点层中的复合效率,提升器件性能。
另外,现有量子点发光二极管中,量子点配位的原始配体通常为非极性配体,量子点层的整个表面呈非极性态,而与量子点层接触的电子传输层的表面呈极性态,这样量子点层与电子传输层因为极性差异大,导致量子点层与电子传输层之间表面接触角较大,存在大量的缺陷,电子注入困难,非辐射复合严重,器件发光性能低。针对该技术问题,现有方法是先采用量子点溶液的形式进行配体交换,再将配体交换后的量子点溶液沉积,形成量子点层,通过该方法以改善量子点层与电子传输层之间的相容性。该方法尽管可以实现配体的有效交换,但是配体交换发生在所有的量子点表面,这导致量子点自身荧 光效率大幅降低。
本实施例量子点发光二极管中,通过将量子点层的靠近电子传输层的区域替换为酯物质,而量子点层其余区域仍保持为量子点的非极性配体,由于酯物质具有良好的亲水性,这样使得与电子传输层接触的量子点层表面呈现极性态,量子点层其余区域仍保持为原有的非极性态,通过这种方式在保持原有量子点荧光效率不损失的前提下,有效改善量子点层与电子传输层之间的相容性,减小量子点层与电子传输层间的表面接触角,填补膜层间的空隙和缺陷,有效避免非辐射复合的发生,减少漏电流产生,进而显著提升器件的发光性能。
在一种实施方式中,量子点层的远离电子传输层所在侧的表面结合有第一配体(即量子点结合的原始配体)。
在一种实施方式中,第一配体选自碳原子数大于等于8的有机羧酸、碳原子数大于等于8的伯胺、支链碳原子数大于等于4的仲胺或叔胺和支链碳原子数大于等于4的有机膦等中的一种或多种。作为举例,第一配体为碳原子数大于等于8的有机羧酸,或者为支链碳原子数大于等于4的有机膦,或者为碳原子数大于等于8的有机羧酸和碳原子数大于等于8的伯胺的组合,或者为碳原子数大于等于8的伯胺、支链碳原子数大于等于4的仲胺或叔胺以及支链碳原子数大于等于4的有机膦的组合。
在一种实施方式中,第一配体选自碳原子数大于等于8小于等于20的有机羧酸、碳原子数大于等于8小于等于20的伯胺、支链碳原子数大于等于4小于等于20的仲胺或叔胺和支链碳原子数大于等于4小于等于20的有机膦等中的一种或多种。
作为举例,碳原子数大于等于8小于等于20的有机羧酸选自辛酸、壬酸、癸酸、十一烷基酸、十二烷基酸、十三烷基酸、十四烷基酸、十六烷基酸、十八烷基酸、十一烯酸、十二烯酸、十三烯酸、十四烯酸、十五烯酸、十六烯酸、十七烯酸和十八烯酸等中的一种或多种。
作为举例,碳原子数大于等于8小于等于20的伯胺选自辛胺、壬胺、癸胺、十二胺、十四胺、十六胺和十八胺等中的一种或多种。
作为举例,支链碳原子数大于等于4小于等于20的仲胺或叔胺选自三丁基胺、三 己基胺、三庚基胺、三辛基胺、三壬基胺和三癸基胺等中的一种或多种。
作为举例,支链碳原子数大于等于4小于等于20的有机膦选自三丁基膦、三己基膦、三庚基膦、三辛基膦、三壬基膦和三癸基膦等中的一种或多种。
在一种实施方式中,酯物质由第二配体和第三配体经过酯化反应形成,第二配体和第三配体结合于量子点层的表面。
在一种实施方式中,第一配体的碳链长度与形成酯物质的第二配体和第三配体的碳链长度相同,第二配体与第三配体的摩尔比为1:1。例如,当第一配体为十一烷酸时,第二配体为11-巯基十一烷酸,第三配体为11-巯基-1-十一醇,11-巯基十一烷酸和11-巯基-1-十一醇的摩尔比为1:1。本实施例中,各配体的碳链的长度相同,可以进一步避免常规的配体替换导致的量子点自身荧光效率大幅度降低的问题。
在一种实施方式中,第二配体碳链的一端为巯基,另一端为羧基,第二配体通过巯基结合于量子点层的表面。第二配体的碳链可以与第一配体的碳链相同。
在一种实施方式中,第三配体碳链的一端为巯基,另一端为羟基,第三配体通过巯基结合于量子点层的表面。第三配体的碳链可以与第一配体的碳链相同。
本实施例中,量子点发光二极管分为两种:正型结构和反型结构,每种结构的量子点发光二极管可以有多种形式。下面以图1所示的正型结构的量子点发光二极管为例对本实施例量子点发光二极管的结构及其材料选择进行介绍。如图1所示,量子点发光二极管自下而上依次包括衬底、阳极、空穴注入层、空穴传输层、量子点层、电子传输层和阴极;其中,量子点层的位于电子传输层所在侧的表面结合有酯物质。如图4所示为本公开的反型结构的量子点发光二极管,自下而上依次包括衬底、阴极、电子传输层、量子点层、空穴传输层、空穴注入层和阳极。
在一种实施方式中,衬底可以为钢性衬底或柔性衬底,衬底选自玻璃、硅晶片、聚碳酸酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰胺、聚醚砜、或其组合等。
在一种实施方式中,阳极的材料可以选自镍、铂、钒、铬、铜、锌、金或它们的合金;阳极的材料也可以选自氧化锌、氧化铟、氧化锡、氧化铟锌、铟掺杂氧化锡、氟掺 杂氧化锡、锑掺杂氧化锡和铝掺杂氧化锌等中的一种或多种;阳极的材料也可以为以上任意两种或两种以上的组合。
在一种实施方式中,空穴注入层的材料可选自具有良好空穴注入性能的材料,例如可以为但不限于聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)、酞菁铜(CuPc)、2,3,5,6-四氟-7,7',8,8'-四氰醌-二甲烷(F4-TCNQ)、2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HATCN)、掺杂或非掺杂过渡金属氧化物、掺杂或非掺杂金属硫系化合物中的一种或多种;其中,过渡金属氧化物包括但不限于MoO 3、VO 2、WO 3、CuO中的一种或多种;金属硫系化合物包括但不限于MoS 2、MoSe 2、WS 2、WSe 2、CuS中的一种或多种。在一种实施方式中,空穴注入层的厚度为10-150nm。
在一种实施方式中,空穴传输层的材料可选自具有良好空穴传输能力的有机材料,例如可以为但不限于聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)、聚乙烯咔唑(PVK)、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)、掺杂石墨烯、非掺杂石墨烯、C60中的一种或多种。在一种实施方式中,空穴传输层的厚度为10-150nm。
在一种实施方式中,量子点可选自II-VI族的CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;或III-V族的GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb;或IV-VI族的SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、 SnPbSTe;或者以上任意一种或多种的组合。
在一种实施方式中,电子传输层可以选自ZnO、TiO 2、Alq3、SnO、ZrO、AlZnO、ZnSnO、BCP、TAZ、PBD、TPBI、Bphen、CsCO 3中的一种或多种。在一种实施方式中,电子传输层的厚度为5-100nm。
在一种实施方式中,阴极可以选自金属或其合金,例如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡、铅、铯、钡、或它们的合金;阴极也可以由多层结构材料组成,例如由第一层和位于第一层上的第二层组成,第一层的材料为碱金属卤化物、碱土金属卤化物、碱金属氧化物、或其组合,第二层的材料为碱土金属、III族金属、或其组合。例如阴极为LiF/Al、LiO 2/Al、LiF/Ca、Liq/Al、和BaF 2/Ca,但不限于此。
本公开实施例提供一种量子点发光二极管的制备方法,如图2所示,包括如下步骤:
S10、提供表面结合有酯物质的量子点层;
S20、在量子点层的结合有酯物质的表面形成电子传输层。
本实施例量子点发光二极管中,通过将量子点层的靠近电子传输层的区域替换为酯物质,而量子点层其余区域仍保持为量子点的非极性配体,由于酯物质具有良好的亲水性,这样使得与电子传输层接触的量子点层表面呈现极性态,量子点层其余区域仍保持为原有的非极性态,通过这种方式在保持原有量子点荧光效率不损失的前提下,有效改善量子点层与电子传输层之间的相容性,减小量子点层与电子传输层间的表面接触角,填补膜层间的空隙和缺陷,有效避免非辐射复合的发生,减少漏电流产生,进而显著提升器件的发光性能。
步骤S10中,在一种实施方式中,表面结合有酯物质的量子点层的制备方法,包括如下步骤:
S11、提供两个表面(例如,图3中的上表面和下表面)均结合有第一配体的量子点层;
S12、在<5×10 -4Pa的真空条件下,利用第二配体和第三配体与位于量子点层的两个表面中的一个表面(例如,图3中的上表面)的第一配体进行配体交换;
S13、使第二配体和第三配体进行酯化反应,得到表面结合有酯物质的量子点层。
本实施例中,当向具有第一配体的量子点层表面加入第二配体和第三配体时,在配体浓度差和量子点表面的阳离子与第二配体和第三配体的官能团之间的相互作用的双重诱导作用下,第二配体和第三配体会直接沿着空穴传输层方向(通常量子点层位于空穴传输层表面)扩散,从而诱导量子点层表面(待与电子传输层接触的表面)的部分配体发生配体交换。同时,为了防止由于浓度差过大导致整个量子点膜层全部发生配体交换,为此通过在量子点膜层的上方进行真空处理(真空条件为<5×10 -4Pa)。在抽真空的条件下,对待交换的配体产生一个向上的拉力,从而更好的平衡待交换配体由于浓度差过大,造成配体交换发生在整个量子点膜层。而与空穴传输层接触的区域不发生配体交换,该区域仍旧为量子点的原始配体(即第一配体)。配体交换前的量子点层中所有量子点的表面均配位有第一配体,配体交换后的量子点层中靠近电子传输层所在侧的表面同时配位为第二配体和第三配体,而其余区域均保持原有的第一配体。采用上述配体交换的方法,可以在保持原有量子点荧光效率不损失的前提下,有效避免常规的配体交换导致的量子点自身荧光效率大幅度降低的问题,实现量子点表面部分区域的配体发生交换。
接着,配体交换后的量子点层表面的第二配体和第三配体进行酯化反应生成酯物质,由于酯物质具有良好的亲水性,其极性与电子传输层的极性相同,这样有效改善量子点层与电子传输层之间的相容性,减小量子点层与电子传输层间的表面接触角,填补膜层间的空隙和缺陷,有效避免非辐射复合的发生,减少漏电流产生,进而显著提升器件的发光性能。另外,本实施例具有方法简单、温和、有效、快捷,普适性强等优点,非常适合量子点未来规模化应用。
如图3所示,配体交换前的量子点层1中所有量子点的表面均配位为第一配体,经配体交换和酯化反应后,量子点层2中靠近电子传输层所在侧的表面配体替换成了酯物质(由第二配体和第三配体经酯化反应得到的),而其余区域均保持原有的第一配体。根据同种电荷排斥,异种电荷相吸的原则,当量子点层的靠近电子传输层所在侧的表面配体替换成了酯物质时,可以一定程度上阻碍与酯基官能团的电荷相同的电子注入,而量子点层的部分区域的原始配体,可以一定程度上加快与该种配体的官能团的电荷相反 的空穴的注入,从而有助于改善电子与空穴的注入平衡,提升载流子在整个量子点层中的复合效率,提升器件性能。
步骤S11中,表面结合有第一配体的量子点层中,该第一配体也就是量子点的原始配体,原始量子点层的远离空穴传输层所在侧的表面呈现非极性态。关于第一配体的种类见上文,在此不再赘述。需说明的是,本步骤中,量子点层中,所有的量子点的表面均结合有该第一配体,因此整个量子点层的表面呈现非极性态。
在一种实施方式中,量子点层通过以下方法制备得到:将配制好的量子点溶液旋涂于准备好的空穴传输层上,然后进行热退火处理,得到量子点层。其中,可以通过调节溶液的浓度、旋涂速度和旋涂时间来控制膜厚。其中,量子点为表面结合有第一配体的量子点。在一种实施方式中,量子点层的厚度可以为20-60nm,如30nm。
在一种实施方式中,量子点溶液的浓度为10-30mg/mL。在一种实施方式中,用于分散量子点的溶剂选自正辛烷、正己烷、环己烷、环辛烷等中的至少一种,但不限于此。
在一种实施方式中,步骤S12包括:在量子点层的一个表面加入第二配体和第三配体,然后置于<5×10 -4Pa的真空下,进行旋涂,旋涂转速为100-2000rpm,旋涂时间为10-120s,利用第二配体和第三配体与位于量子点层的一个表面的第一配体进行配体交换;待配体交换完成后,对量子点层表面进行清洗,最后进行干燥,得到表面结合有第二配体和第三配体的量子点层。
在一种实施方式中,按第二配体与第三配体的总体积与量子点的质量之比为0.01-10:1,在量子点层的一个表面加入第二配体和第三配体进行配体交换。在一种实施方式中,第二配体和第三配体的摩尔比为1:1。
在一种实施方式中,待完成后,加入少量异丙醇对量子点层表面进行清洗,最后置于50-120℃下干燥0.5-4h,得到表面结合有第二配体和第三配体的量子点层。在一种实施方式中,异丙醇的体积与第二配体与第三配体的总体积的比为1-20:1。
在一种实施方式中,第一配体碳链的长度、第二配体碳链的长度和第三配体碳链的长度相同。例如,当第一配体为十一烷酸时,第二配体为11-巯基十一烷酸,第三配体为11-巯基-1-十一醇,11-巯基十一烷酸和11-巯基-1-十一醇的摩尔比为1:1。由于第二配 体碳链的长度、第三配体碳链的长度与第一配体碳链的长度相同,相当于与电子传输层接触的量子点表面发生原位的配体交换,进一步确保在原有量子点荧光不损失的前提下,有效避免常规的配体交换导致的量子点自身荧光效率大幅度降低的问题。
本实施例中,第二配体碳链的一端为巯基,另一端为羧基,第二配体通过巯基结合于量子点层的表面。第二配体的碳链可以与第一配体的碳链相同。
本实施例中,第三配体碳链的一端为巯基,另一端为羟基,第三配体通过巯基结合于量子点层的表面。第三配体的碳链可以与第一配体的碳链相同。
本实施例中,第一配体通常为有机羧酸、伯胺、仲胺、叔胺或有机膦等,由于第二配体和第三配体中的巯基与量子点的结合力大于羧基、胺基、磷酸等与量子点的结合力,因此,第二配体的配位能力、第三配体的配位能力均大于第一配体的配位能力,从而有利于促进配体交换。
步骤S13中,在一种实施方式中,使第二配体和第三配体进行酯化反应的步骤,包括:在无机酸催化作用下,第二配体和第三配体进行酯化反应,其中酯化反应的温度为50-180℃,酯化反应的时间为0.5-4h。本实施例中,无机酸作为催化剂,催化第二配体一端的羧基与第三配体一端的羟基发生反应,生成酯物质。
在一种实施方式中,酯化反应结束后,还包括步骤:加入少量异丙醇对量子点层表面进行清洗,最后置于50-120℃下干燥0.5-4h。
在一种实施方式中,无机酸可以为重铬酸、重磷酸、次碘酸、次氯酸、次溴酸、次磷酸、次硫酸、超氧酸、碘酸、碲酸、氟硼酸、氟硅酸、氟锑酸、氟磷酸、氟硫酸、氟铂酸、氟氧酸、钒酸、高氯酸、高锰酸、高铁酸、高碘酸、高溴酸、高氙酸、铬酸、硅酸、钴酸、过氧一硫酸、过二硫酸、过二碳酸、过硼酸、过碳酸、过氧酸、焦磷酸、焦硫酸、焦亚硫酸、连四硫酸、连二亚硫酸、磷酸、磷钼酸、硫代硫酸、硫酸、硫氰酸、氯酸、氯金酸、氯铂酸、氯磺酸、铝酸、锰酸、钼酸、镍酸、硼酸、偏硼酸、偏磷酸、偏亚砷酸、偏铝酸、铅酸、氰酸、氢碘酸、氢叠氮酸、氢碲酸、氢氟酸、氢硫酸、氢氯酸、氢氰酸、氢溴酸、砷酸、三硅酸、四硼酸、四羟基合铝酸、四羟基合铜酸、钛酸、碳酸、铁酸、钨酸、硝酸、硒酸、锡酸、锌酸、溴酸、氙酸、亚碲酸、亚硫酸、亚磷酸、 亚氯酸、盐酸、亚铬酸、亚铅酸、亚砷酸、亚硝酸、亚硒酸、亚锡酸、铀酸、原硅酸、原磷酸、原硫酸、原碳酸等中至少一种,但不限于此。
本实施例中,可以对得到的量子点发光二极管进行封装处理。其中封装处理可采用常用的机器封装,也可以采用手动封装。在一种实施方式中,封装处理的环境中,氧含量和水含量均低于0.1ppm,以保证器件的稳定性。
下面通过实施例对本公开进行详细说明。
1、本公开的实施例1中对CdZnSe/ZnSe/ZnS量子点层采用11-巯基十一烷酸和11-巯基-1-十一醇进行配体交换,然后通过酯化反应得到量子点层。量子点原有配体为十一烷酸。
(1)首先,在空穴传输层上沉积CdZnSe/ZnSe/ZnS量子点层。量子点浓度为20mg/mL,溶剂为正辛烷,体积为0.8mL。
(2)然后,将0.4mL的11-巯基十一烷酸和11-巯基-1-十一醇(两者间的摩尔比为1:1)滴加至量子点层表面,然后在真空条件为6×10 -4Pa下,进行旋涂(速度为1000rpm,时间为2min)。待完成后,加入1.5mL异丙醇来冲洗量子点层表面。
(3)接着将0.1mL的HCl滴加至步骤(2)的表面,然后置于100℃下进行酯化反应60min,即可得到结合于量子点层表面的酯物质。待完成后,加入少量异丙醇来冲洗量子点层表面。
2、量子点发光二极管制备:
本实施例量子点发光二极管,自下而上依次包括:在衬底上依次沉积的阳极、空穴注入层、空穴传输层、量子点层、电子传输层和阴极。其中,衬底为玻璃基底;阳极为ITO,厚度为110nm;空穴注入层为PEDOT:PSS,厚度为90nm;空穴传输层为TFB,厚度为70nm。量子点层为采用上述步骤1中所制备得到的量子点层,厚度为60nm。电子传输层为ZnO,厚度为50nm;阴极为Al,厚度为60nm。
本公开提供的对比例1与实施例1的区别主要在于,量子点层不经过上述步骤1中的配体交换过程(即步骤(2))和酯化反应过程(即步骤(3))。
1、本公开的实施例2中对Cd xZn 1-xSe/Cd yZn 1-ySe/ZnSe/CdZnS(0<x<1,0<y<1, 且x<y)量子点层采用11-巯基十一烷酸和11-巯基-1-十一醇进行配体交换,然后通过酯化反应得到量子点层。量子点原有配体为十一烷酸。
(1)首先,在空穴传输层上沉积Cd xZn 1-xSe/Cd yZn 1-ySe/ZnSe/CdZnS(0<x<1,0<y<1,且x<y)量子点层。量子点浓度为20mg/mL,溶剂为正辛烷,体积为0.8mL。
(2)然后,将0.4mL的11-巯基十一烷酸和11-巯基-1-十一醇(两者间的摩尔比为1:1)滴加至量子点层表面,然后在真空条件为6×10 -4Pa下,进行旋涂(速度为1000rpm,时间为2min)。待完成后,加入1.5mL异丙醇来冲洗量子点层表面。
(3)接着将0.1mL的HCl滴加至步骤(2)的表面,然后置于100℃下干燥60min,即可得到结合于量子点层表面的酯物质。待完成后,加入少量异丙醇来冲洗量子点层表面。
2、量子点发光二极管制备:
本实施例量子点发光二极管,自下而上依次包括:在衬底上依次沉积的阳极、空穴注入层、空穴传输层、量子点层、电子传输层和阴极。其中,衬底为玻璃基底;阳极为ITO,厚度为110nm;空穴注入层为PEDOT:PSS,厚度为90nm;空穴传输层为TFB,厚度为70nm。量子点层为采用上述步骤1中所制备得到的量子点层,厚度为60nm。电子传输层为ZnO,厚度为50nm;阴极为Al,厚度为60nm。
本公开提供的对比例2与实施例2的区别主要在于,量子点层不经过上述步骤1中的配体交换过程(即步骤(2))和酯化反应过程(即步骤(3))。
1、本公开的实施例3对Cd xZn 1-xS/Cd yZn 1-yS/ZnS(0<x<1,0<y<1,且x<y)量子点层采用11-巯基十一烷酸和11-巯基-1-十一醇进行配体交换,然后通过酯化反应得到量子点层。量子点原有配体为十一烷酸。
(1)首先,在空穴传输层上沉积Cd xZn 1-xS/Cd yZn 1-yS/ZnS(0<x<1,0<y<1,且x<y)量子点层。量子点浓度为20mg/mL,溶剂为正辛烷,体积为0.8mL。
(2)然后,将0.4mL的11-巯基十一烷酸和11-巯基-1-十一醇(两者间的摩尔比为1:1)滴加至量子点层表面,然后在真空条件为6×10 -4Pa下,进行旋涂(速度为1000rpm,时间为2min)。待完成后,加入1.5mL异丙醇来冲洗量子点层表面。
(3)接着将0.1mL的HCl滴加至步骤(2)的表面,然后置于100℃下干燥60min,即可得到结合于量子点层表面的酯物质。待完成后,加入少量异丙醇来冲洗量子点层表面。
2、量子点发光二极管制备:
本实施例量子点发光二极管,自下而上依次包括:在衬底上依次沉积的阳极、空穴注入层、空穴传输层、量子点层、电子传输层和阴极。其中,衬底为玻璃基底;阳极为ITO,厚度为110nm;空穴注入层为PEDOT:PSS,厚度为90nm;空穴传输层为TFB,厚度为70nm。量子点层为采用上述步骤1中所制备得到的量子点层,厚度为60nm。电子传输层为ZnO,厚度为50nm;阴极为Al,厚度为60nm。
本公开提供的对比例3与实施例3的区别主要在于,量子点层不经过上述步骤1中的配体交换过程(即步骤(2))和酯化反应过程(即步骤(3))。
表1、对比例和实施例1-3所制备的器件EQE(%)
Figure PCTCN2021130260-appb-000001
以上对对比例和实施例1-3中制备的量子点层和量子点发光二级管进行性能测试,测试方法如下:
外量子点效率:
注入到量子点中的电子-空穴对数转化为出射的光子数的比值,单位是%,是衡量电致发光器件优劣的一个重要参数,采用EQE光学测试仪器测定即可得到。计算公式如下:
Figure PCTCN2021130260-appb-000002
式中ηe为光输出耦合效率,ηr为复合的载流子数与注入载流子数的比值,χ为产生光子的激子数与总激子数的比值,K R为辐射过程速率,K NR为非辐射过程速率。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。

Claims (20)

  1. 一种量子点发光二极管,其中,包括量子点层和形成于所述量子点层上的电子传输层,所述量子点层的靠近所述电子传输层所在侧的表面结合有酯物质。
  2. 根据权利要求1所述的量子点发光二极管,其中,所述量子点层的远离所述电子传输层所在侧的表面结合有第一配体。
  3. 根据权利要求2所述的量子点发光二极管,其中,所述酯物质由第二配体和第三配体经过酯化反应形成。
  4. 根据权利要求3所述的量子点发光二极管,其中,所述第一配体的碳链长度与形成所述酯物质的第二配体和第三配体的碳链长度相同。
  5. 根据权利要求3所述的量子点发光二极管,其中,所述第二配体与所述第三配体的摩尔比为1:1。
  6. 根据权利要求2所述的量子点发光二极管,其中,所述第一配体选自碳原子数大于等于8的有机羧酸、碳原子数大于等于8的伯胺、支链碳原子数大于等于4的仲胺或叔胺和支链碳原子数大于等于4的有机膦中的一种或多种。
  7. 根据权利要求1至6任一项所述的量子点发光二极管,其中,还包括衬底,形成于所述衬底上的阳极和阴极,形成于所述阳极和所述量子点层之间的空穴注入层,形成于所述空穴注入层和所述量子点层之间的空穴传输层,所述电子传输层位于所述量子点层和所述阴极之间。
  8. 根据权利要求3至5任一项所述的量子点发光二极管,其中,所述第二配体碳链的一端为巯基,另一端为羧基,所述第二配体通过所述巯基结合于所述量子点层的表面;
    所述第三配体碳链的一端为巯基,另一端为羟基,所述第三配体通过所述巯基结合于所述量子点层的表面。
  9. 根据权利要求6所述的量子点发光二极管,其中,所述有机羧酸选自辛酸、壬酸、癸酸、十一烷基酸、十二烷基酸、十三烷基酸、十四烷基酸、十六烷基酸、十八烷基酸、十一烯酸、十二烯酸、十三烯酸、十四烯酸、十五烯酸、十六烯酸、十七烯酸和十八烯酸等中的一种或多种。
  10. 根据权利要求6所述的量子点发光二极管,其中,所述伯胺选自辛胺、壬胺、癸胺、十二胺、十四胺、十六胺和十八胺等中的一种或多种。
  11. 根据权利要求6所述的量子点发光二极管,其中,所述仲胺或叔胺选自三丁基胺、三己基胺、三庚基胺、三辛基胺、三壬基胺和三癸基胺等中的一种或多种。
  12. 根据权利要求6所述的量子点发光二极管,其中,所述有机膦选自三丁基膦、三己基膦、三庚基膦、三辛基膦、三壬基膦和三癸基膦等中的一种或多种。
  13. 根据权利要求3至5任一项所述的量子点发光二极管,其中,所述第二配体碳链的一端为巯基,另一端为羧基,所述第二配体通过巯基结合于量子点层的表面。
  14. 根据权利要求3至5任一项所述的量子点发光二极管,其中,所述第三配体碳链的一端为巯基,另一端为羧基,所述第三配体通过巯基结合于量子点层的表面。
  15. 一种权利要求1至14中任一项所述的量子点发光二极管的制备方法,其中,包括如下步骤:
    提供表面结合有酯物质的量子点层;
    在所述量子点层的结合有所述酯物质的表面形成电子传输层。
  16. 根据权利要求15所述的量子点发光二极管的制备方法,其中,所述表面结合有酯物质的量子点层的制备方法,包括如下步骤:
    提供两个表面均结合有第一配体的量子点层;
    在真空的条件下,利用第二配体和第三配体与位于所述量子点层的两个表面中的一个表面的所述第一配体进行配体交换;
    使所述第二配体和所述第三配体进行酯化反应,得到所述表面结合有酯物质的量子点层。
  17. 根据权利要求16所述的量子点发光二极管的制备方法,其中,所述第二配体和所述第三配体的总体积与量子点的质量之比为0.01-10:1。
  18. 根据权利要求16所述的量子点发光二极管的制备方法,其中,进行酯化反应的步骤包括:在无机酸催化作用下,使所述第二配体和所述第三配体进行酯化反应,其中所述酯化反应的温度为50-180℃,所述酯化反应的时间为0.5-4h。
  19. 根据权利要求15所述的量子点发光二极管的制备方法,其中,还包括:
    在衬底上沉积阳极;
    在所述阳极上沉积空穴注入层;
    在所述空穴注入层上沉积空穴传输层;
    提供表面结合有酯物质的量子点层并沉积在所述空穴传输层上;
    在所述量子点层上形成所述电子传输层;
    在所述电子传输层上沉积阴极。
  20. 根据权利要求15所述的量子点发光二极管的制备方法,其中,还包括:在衬底上沉积阴极;
    在所述阴极上沉积电子传输层;
    提供表面结合有酯物质的量子点层形成在电子传输层上;
    在所述量子点层上沉积空穴传输层;
    在所述空穴传输层上沉积空穴注入层;
    在所述空穴注入层上沉积阳极。
PCT/CN2021/130260 2020-11-18 2021-11-12 量子点发光二极管及其制备方法 WO2022105681A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21893828.0A EP4131447A4 (en) 2020-11-18 2021-11-12 LIGHT-EMITTING DIODE WITH QUANTUM DOTS AND PREPARATION METHOD THEREFOR
US17/962,433 US20230043770A1 (en) 2020-11-18 2022-10-07 Quantum dot light-emitting diode and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011294195.7 2020-11-18
CN202011294195.7A CN114520291A (zh) 2020-11-18 2020-11-18 量子点发光二极管及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/962,433 Continuation US20230043770A1 (en) 2020-11-18 2022-10-07 Quantum dot light-emitting diode and fabrication method thereof

Publications (1)

Publication Number Publication Date
WO2022105681A1 true WO2022105681A1 (zh) 2022-05-27

Family

ID=81594583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130260 WO2022105681A1 (zh) 2020-11-18 2021-11-12 量子点发光二极管及其制备方法

Country Status (4)

Country Link
US (1) US20230043770A1 (zh)
EP (1) EP4131447A4 (zh)
CN (1) CN114520291A (zh)
WO (1) WO2022105681A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024013866A1 (ja) * 2022-07-13 2024-01-18 シャープディスプレイテクノロジー株式会社 発光素子の製造方法および発光素子
CN116144358A (zh) * 2022-12-27 2023-05-23 无锡极电光能科技有限公司 钙钛矿量子点及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109929557A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 一种复合膜及其制备方法与应用
CN110739404A (zh) * 2018-07-18 2020-01-31 Tcl集团股份有限公司 量子点发光二极管及其制备方法
CN111384244A (zh) * 2018-12-27 2020-07-07 Tcl集团股份有限公司 量子点发光二极管及其制备方法
CN111384278A (zh) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN111490169A (zh) * 2019-01-25 2020-08-04 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11152584B2 (en) * 2019-02-13 2021-10-19 Sharp Kabushiki Kaisha Quantum dots with salt ligands with charge transporting properties

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109929557A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 一种复合膜及其制备方法与应用
CN110739404A (zh) * 2018-07-18 2020-01-31 Tcl集团股份有限公司 量子点发光二极管及其制备方法
CN111384244A (zh) * 2018-12-27 2020-07-07 Tcl集团股份有限公司 量子点发光二极管及其制备方法
CN111384278A (zh) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN111490169A (zh) * 2019-01-25 2020-08-04 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4131447A4

Also Published As

Publication number Publication date
EP4131447A4 (en) 2023-11-08
EP4131447A1 (en) 2023-02-08
CN114520291A (zh) 2022-05-20
US20230043770A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
US10961446B2 (en) Quantum dots, production methods thereof, and light emitting device including the same
KR101557498B1 (ko) 양자점 발광소자 및 그 제조방법
US11050033B2 (en) Light-emitting film, production method thereof, and a light emitting device including the same
JP2019160796A (ja) 電界発光素子及び表示装置
US20230043770A1 (en) Quantum dot light-emitting diode and fabrication method thereof
CN110828681B (zh) 量子点发光器件及包括其的显示设备
US10535829B1 (en) Quantum dot device and display device
KR20190106819A (ko) 양자점 및 이를 포함하는 발광 소자
CN113809271B (zh) 复合材料及其制备方法和量子点发光二极管
KR20190074153A (ko) 전계 발광 소자, 및 표시 장치
KR20200008976A (ko) 발광 소자와 이를 포함한 표시 장치
KR20200122933A (ko) 발광 소자 및 이를 포함하는 표시 장치
KR20210041373A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
CN114520290A (zh) 量子点发光二极管及其制备方法
CN113801648B (zh) 复合材料及其制备方法和量子点发光二极管
WO2024139481A1 (zh) 发光器件及制备方法、显示装置
WO2024139449A1 (zh) 核壳量子点及其制备方法、量子点电致发光器件
CN113809248B (zh) 复合材料及其制备方法和量子点发光二极管
WO2024109334A1 (zh) 复合材料、组合物及发光器件
CN114520293A (zh) 量子点发光二极管及其制备方法
CN114686231A (zh) 颗粒及其制备方法、量子点发光二极管
CN114316942A (zh) 复合材料及其制备方法和发光二极管
CN118284085A (zh) 发光器件及制备方法、显示装置
CN118272089A (zh) 量子点团簇、量子点发光器件以及量子点团簇的制备方法
CN117858531A (zh) 复合材料、光电器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021893828

Country of ref document: EP

Effective date: 20221102

NENP Non-entry into the national phase

Ref country code: DE