WO2022105230A1 - 一种联产1,1-二氟乙烷和氯乙烯的方法 - Google Patents

一种联产1,1-二氟乙烷和氯乙烯的方法 Download PDF

Info

Publication number
WO2022105230A1
WO2022105230A1 PCT/CN2021/102310 CN2021102310W WO2022105230A1 WO 2022105230 A1 WO2022105230 A1 WO 2022105230A1 CN 2021102310 W CN2021102310 W CN 2021102310W WO 2022105230 A1 WO2022105230 A1 WO 2022105230A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
product
rectifying tower
difluoroethane
vinyl chloride
Prior art date
Application number
PCT/CN2021/102310
Other languages
English (en)
French (fr)
Inventor
余慧梅
洪江永
杨波
赵阳
张彦
李林辉
任亚文
Original Assignee
浙江衢化氟化学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江衢化氟化学有限公司 filed Critical 浙江衢化氟化学有限公司
Priority to US17/627,122 priority Critical patent/US11970430B2/en
Priority to JP2021572670A priority patent/JP7332724B2/ja
Priority to EP21867880.3A priority patent/EP4249457A1/en
Publication of WO2022105230A1 publication Critical patent/WO2022105230A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/864Cobalt and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/866Nickel and chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention relates to a preparation method of fluorine-containing hydrocarbons, in particular to a method for co-producing 1,1-difluoroethane and vinyl chloride.
  • R152a 1,1-Difluoroethane
  • ODP zero ozone depletion potential
  • GWP global warming potential
  • R152a is an environmentally friendly refrigerant.
  • R152a is an important component of mixed refrigerants R401, R405, R411, and can also be used as a single refrigerant.
  • R152a can be used as a raw material for the production of R142b, which is a raw material for the production of vinylidene fluoride resin.
  • R152a has good market availability, low price, and mass production in China.
  • the conventional synthetic routes of R152a mainly include the following:
  • the method uses acetylene as a raw material, and reacts with hydrofluoric acid under the action of catalysts such as boron trifluoride, fluorosulfonic acid and antimony pentafluoride, and the reaction formula is as follows:
  • the process flow is that the purified and dried acetylene is sent into a reaction kettle equipped with a catalyst (such as fluorosulfonic acid) and hydrofluoric acid, under a certain pressure (0.03MPa ⁇ 3MPa) and temperature (20 ⁇ 40°C) ) to generate R152a, after washing with water, alkali washing and acid removal, the material in the gas phase is compressed into a material in the liquid phase, and then it is obtained by fractional distillation and purification.
  • a catalyst such as fluorosulfonic acid
  • hydrofluoric acid under a certain pressure (0.03MPa ⁇ 3MPa) and temperature (20 ⁇ 40°C)
  • Chinese patent CN1994985A discloses a production method for producing R152a with acetylene as a raw material liquid phase method and a reaction kettle for the production method.
  • FIG. 101412654A Another example is Chinese patent CN101412654A, which provides a method for preparing R152a, which uses acetylene and anhydrous hydrofluoric acid as raw materials, and undergoes a fluorination reaction under the action of a chromium-based fluorination catalyst to prepare R152a.
  • the disadvantage of this production method is that the utilization rate of the catalyst is low, so that the reaction period is short, the unit consumption is high, and the discharge amount of the residual liquid is large; at the same time, the reaction temperature is difficult to control, and the reaction of acetylene and hydrofluoric acid is an exothermic reaction, With the change of the reaction speed, the heat released also changes. In the pre-reaction stage, the heat release is large, and no heating is required, but cooling is required; and in the post-reaction stage, heating is required, so temperature control is more difficult.
  • reaction temperature is on the low side, the reaction speed is slow, and the production capacity of the device declines; if the temperature is on the high side, the catalyst failure is fast, the high-boiling by-products increase, and the raw material consumption increases, both of which are unfavorable for production.
  • Chinese patent CN1141906A and patent CN1212678A respectively introduce the production method of preparing R152a by liquid phase fluorination method using vinyl chloride and anhydrous hydrofluoric acid as raw materials. This method affects the yield of the product because it produces a large amount of tar, and it is difficult to dispose of.
  • US Patent US5672788 discloses a two-step liquid phase reaction method for preparing R152a.
  • the first step involves adding at least one of HCl or HF to vinyl chloride to obtain 1,1-dichloroethane or R151a, and the second step involves converting 1,1-dichloroethane or R151a to R152a.
  • This method reduces the formation of high boilers and reduces the rate of tar formation, but does not completely eliminate it.
  • Chinese Patent Publication No. CN1860089A discloses the production of 1,1-difluoroethane by liquid-phase fluorination of 1,2-dichloroethane using hydrofluoric acid under the condition of Lewis acid catalyst and FeCl3 cocatalyst
  • the method prepares 1,1-difluoroethane in the liquid phase by fluorination of VCM in the presence of a catalyst.
  • the method adopts the method of liquid phase fluorination, which has low yield, short catalyst life and high content of by-product impurities, which is unfavorable for industrialized batch production.
  • alkenes and alkynes are known in the art to readily form tars.
  • the crude product of R152a generally contains 1% to 5% of unconverted vinyl chloride, and the unconverted vinyl chloride and R152a will form an azeotrope, which cannot be completely separated by ordinary rectification methods.
  • the purification technology of R152a product is also highly concerned by people.
  • the catalyst has a short life, many high-boiling by-products and high impurity content.
  • the object of the present invention is to provide a method for co-producing 1,1-difluoroethane and vinyl chloride with simple process, high conversion rate of raw materials, good catalyst activity and good product quality in view of the deficiencies of the prior art.
  • the present invention is achieved through the following technical solutions: a method for co-production of 1,1-difluoroethane and vinyl chloride, comprising the following steps:
  • reaction product is entered into the first rectifying tower and is separated to obtain the first rectifying tower overhead product and the first rectifying tower tower still product;
  • the 3rd rectifying tower tower still product enters the 4th rectifying tower and separates, obtains vinyl chloride product and the 4th rectifying tower tower still liquid.
  • the temperature of the catalytic reaction in step (a) is 150-300° C.
  • the space velocity is 500-3000 h-1
  • the pressure is 0.1-1.5 MPa
  • the moles of hydrogen fluoride and dichloroethane are The ratio is 3 to 10:1.
  • the catalyst described in step (a) uses chromium as an active component and one or two of Group IIIA, IIB, VIII, and VIIB metal elements as auxiliary components, and the chromium
  • the molar ratio to auxiliary components is 1:0.01-0.2.
  • the purification tower described in step (d) is filled with a solid deacidification agent and an auxiliary agent, and the mass ratio of the solid deacidification agent to the auxiliary agent is 3-5:1.
  • the solid deacidification agent is selected from the hydroxides of IA, IIA, VIIB, VIII, and IIB group elements
  • the auxiliary agent is selected from calcium phosphate, calcium hydrogen sulfite, calcium carbonate , at least one of calcium bicarbonate and sodium sulfite.
  • the saturated organic solvent described in step (e) is at least one of n-pentane, isopentane, carbon tetrachloride, dichloromethane, and dichloroethane.
  • the mass ratio of the purification tower top product described in the step (e) to the saturated organic solvent is 1:0.1-10.
  • the dichloroethane is at least one of 1,1-dichloroethane and 1,2-dichloroethane.
  • the first distillation column bottom product described in step (b) can be returned to the vaporizer.
  • the column bottom liquid of the fourth rectifying column described in step (f) can be returned to the third rectifying column.
  • dichloroethane and hydrogen fluoride are used as raw materials, and a reaction product is obtained through a one-step gas phase reaction, and the reaction product is separated and purified to obtain 1,1-difluoroethane.
  • the fluoroethane and vinyl chloride products have the advantages of simple process, high conversion rate of raw materials, less by-product impurities, low energy consumption, good catalyst activity and long service life.
  • the reaction of dichloroethane and HF to generate 1,1-difluoroethane is an exothermic reaction.
  • the volume of the reaction raw materials decreases, and the control of temperature, material ratio, pressure, and reactor space velocity are all controlled. It directly affects the conversion rate of raw materials and the selectivity of target product R152a.
  • the reaction temperature has an effect on the conversion of the raw materials and the selectivity of the target product R152a.
  • the reaction of dichloroethane with HF to form R152a is exothermic. But for the reaction to take place, a certain amount of energy must be provided to make it reach an activated state. If the temperature is too low, the reaction material cannot fully reach the activated state, which affects the conversion rate of the raw material and the selectivity of R152a.
  • the higher the temperature the higher the initial activity of the catalyst, and the faster the carbon deposition rate, which leads to accelerated aging of the catalyst, which not only easily blocks the pipeline, but also easily causes the catalyst to deactivate and shorten the catalyst life.
  • the present invention selects a reaction temperature control range of 150-300°C, preferably 180-280°C.
  • the reactor space velocity also has an effect on the conversion of the feedstock and the selectivity of the target product R152a.
  • the higher the space velocity of the reactor the shorter the contact time between the material and the catalyst, so with the increase of the space velocity of the reactor, the conversion rate of the raw material and the selectivity of R152a decreased.
  • the smaller the space velocity of the reactor the smaller the production capacity per unit volume of the reactor, which is not conducive to industrial production. Therefore, the suitable reactor space velocity range in the present invention is 500-3000h -1 , preferably 1000-2000h -1 .
  • the ratio of materials also affects the conversion rate of raw materials and the selectivity of the target product R152a.
  • the higher the molar ratio of HF and ethylene dichloride the higher the conversion rate of raw materials and the selectivity of R152a, and the large amount of HF in the reaction process can inhibit the carbon formation on the catalyst surface and prolong the life of the catalyst.
  • the larger the molar ratio of HF to dichloroethane the lower the reactor capacity at the same reactor space velocity. Therefore, in the present invention, the molar ratio of hydrogen fluoride and dichloroethane is 1-10:1, preferably 3-10:1.
  • reaction pressure is also one of the factors affecting the reaction effect. If the pressure is too low, the production capacity of the reactor per unit volume is low, which is uneconomical; if the pressure is too high, the requirements for the material of the equipment are strict. Therefore, the present invention comprehensively considers various factors, and selects a pressure control range of 0.1-1.5 MPa, preferably 0.5-1.0 MPa.
  • the top product of the purification tower and the saturated organic solvent are simultaneously entered into the third rectifying tower for separation, which effectively solves the difficult problem of azeotropic separation of vinyl chloride and R152a.
  • the mass ratio of the product of the third rectifying tower still to the saturated organic solvent is 1:0.1-10, preferably 1:0.4-2.5.
  • the traditional deacidification process uses water washing and alkali washing to further remove a small amount of acidic substances such as HF and HCl, resulting in a large amount of waste water, and the water is also removed through a drying process.
  • the purification tower is filled with solid deacidification agent and auxiliary agent. The process replaces the traditional water washing and alkaline washing processes, and does not require a drying process, thereby reducing waste water and energy consumption.
  • the process is simple and the efficiency is high.
  • the present invention adopts a gas-phase one-step reaction process, and two products of R152a and VCM can be co-produced at the same time through a set of devices.
  • the mild conditions greatly simplify the production process, and the single-pass conversion rate of raw materials is over 90%.
  • the catalyst has good activity and long service life.
  • the present invention delays the carbon deposition rate of the catalyst, effectively prolongs the service life of the catalyst, and the service life of the catalyst is more than 3 years.
  • the product quality is good.
  • the present invention adopts the purification tower top product and the saturated organic solvent to enter the third rectifying tower for separation at the same time, which effectively solves the difficult problem of azeotropic separation of vinyl chloride and R152a, and the product purity of R152a is above 99.9%. , to meet the requirements of GB/T 19602 industrial 1,1-difluoroethane.
  • the present invention uses a purification tower to remove trace amounts of hydrofluoric acid and hydrogen chloride, replacing the traditional water washing and alkaline washing processes, and no drying process is required, which significantly reduces waste water and energy consumption; and the saturated organic solvent can be recycled Utilize, further reduce the three wastes discharge.
  • Fig. 1 is the process flow schematic diagram of the present invention.
  • 1 is the vaporizer
  • 2 is the reactor
  • 3 is the first rectifying tower
  • 4 is the second rectifying tower
  • 5 is the purification tower
  • 6 is the third rectifying tower
  • 7 is the fourth rectifying tower
  • 8 to 21 represent the process pipeline.
  • the process flow of the present invention is shown in Figure 1.
  • the raw material dichloroethane and HF are mixed through pipelines 8 and 9 and then enter the vaporizer 1 for preheating and gasification; the mixed gas after preheating and gasification enters the reactor 2 filled with catalyst through pipeline 10.
  • the reaction product obtained after the reaction enters the first rectifying tower 3 through pipeline 11; the tower still liquid containing unreacted raw materials and other heavy components obtained from the first rectifying tower 3 stills is returned to the vaporizer 1 through pipeline 13,
  • the first rectifying tower overhead product obtained at the top of the tower enters the second rectifying tower 4 to separate HCl through pipeline 12;
  • the tower still product of tower 4 enters purification tower 5 through line 15, and removes acid substances such as trace hydrogen fluoride and hydrogen chloride;
  • the purified tower top product enters the third rectifying tower 6 through line 16, and simultaneously passes through line 20 to the third rectifying tower 6.
  • Distillation tower 6 is fed with saturated organic solvent, and through rectification, the R152a product obtained at the top of the tower is extracted through line 18, and the third rectification tower 6 still product enters the fourth rectification tower 7 through line 19; the fourth rectification tower 7 tower top obtains vinyl chloride product, and the tower still liquid containing saturated organic solvent that the tower still obtains is returned to the third rectifying tower 6 through pipeline 17 for recycling.
  • the purification tower After vaporizing the 1,2-dichloroethane (abbreviated as D12) and HF mixed gas, it enters the reactor equipped with 1# catalyst, and the reaction is carried out under the action of the catalyst; the purification tower is filled with solid deacidification agent Ca(OH) ) 2 and auxiliary agent calcium phosphate, the mass ratio of Ca(OH) 2 and calcium phosphate is 5:1; the saturated organic solvent is dichloromethane (CH 2 Cl 2 ), the mass ratio of purification tower top product and dichloromethane is 1:0.25, the reaction parameters and the composition of the organic matter at the reactor outlet (mass percentage, wt%) are shown in Table 2, and the separation results of the third rectifying tower are shown in Table 3.
  • the purification tower After vaporizing the 1,1-dichloroethane (abbreviated as D11) and HF mixed gas, it enters the reactor equipped with 3# catalyst, and the reaction is carried out under the action of the catalyst; the purification tower is filled with solid deacidification agent Zn(OH) ) 2 and auxiliary agent calcium carbonate, the mass ratio of Zn(OH) 2 and calcium carbonate is 3:1; the saturated organic solvent is dichloromethane (CH 2 Cl 2 ) and carbon tetrachloride (CCl 4 ) by mass ratio 1 : 1 composition, the ratio of purification tower top product to the total mass of the mixture of (CH 2 Cl 2 ) and carbon tetrachloride (CCl 4 ) is 1: 1, the reaction parameters and the organic matter composition at the reactor outlet (mass 100%) Contents, wt%) are shown in Table 2, and the third rectifying tower separation result is shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种联产1,1-二氟乙烷和氯乙烯的方法,包括:(a)将二氯乙烷与氟化氢经汽化后,进入反应器在催化剂作用下进行催化反应,得到反应产物;(b)将反应产物进入第一精馏塔分离,得到第一精馏塔塔顶产物和第一精馏塔塔釜产物;(c)将第一精馏塔塔顶产物进入第二精馏塔分离,得到氯化氢和第二精馏塔塔釜产物;(d)将第二精馏塔塔釜产物进入净化塔净化,得到净化塔塔顶产物;(e)将净化塔塔顶产物与饱和有机溶剂同时进入第三精馏塔分离,得到1,1-二氟乙烷产品和第三精馏塔塔釜产物;(f)将第三精馏塔塔釜产物进入第四精馏塔分离,得到氯乙烯产品和第四精馏塔塔釜液。本发明具有工艺简单,转化率高,产品质量好的优点。

Description

一种联产1,1-二氟乙烷和氯乙烯的方法 技术领域
本发明涉及含氟烃的制备方法,尤其涉及一种联产1,1-二氟乙烷和氯乙烯的方法。
背景技术
1,1-二氟乙烷(R152a),臭氧损耗潜能值(ODP)为零,全球变暖潜能值(GWP)只有140,具有沸点低,制冷系数大等特点,是一种环保型制冷剂。R152a是混合制冷剂R401、R405、R411的重要组分,也可以作为单工质制冷剂。同时,R152a可以用作R142b的生产原料,后者是生产偏氟乙烯树脂的原料。R152a市场可获得性好,价格便宜,国内有大量生产。
目前,R152a常规的合成路线主要有以下几种:
(1)以乙炔为原料的液相氟化法
该方法是利用乙炔为原料,在催化剂如:三氟化硼、氟磺酸、五氟化锑的作用下,与氢氟酸反应而制得,其反应式如下:
HC≡CH+2HF→CH 3CHF 2
其工艺流程是经净化、干燥处理后的乙炔,送入装有催化剂(如氟磺酸)和氢氟酸的反应釜中,在一定的压力(0.03MPa~3MPa)和温度(20~40℃)下反应,生成R152a,经过水洗、碱洗、除酸后,气相的物料经压缩成液相的物料,再经分馏提纯后制得。
如中国专利CN1994985A公开了以乙炔为原料液相法生产R152a的生产方法及用于该生产方法的反应釜。
又如中国专利CN101412654A提供一种R152a的制备方法,用乙炔和无水氢氟酸为原料,在铬基氟化催化剂作用下发生氟化反应制得R152a。
该生产方法的缺点是催化剂的利用率低,以致反应周期短、单耗高,且残液的排放量大;同时该反应温度较难控制,乙炔与氢氟酸的反应是一个放热反应,随着反应速度的变化放出的热量也在变化,在反应前阶段放热量大,不需加热,反而需要冷却;而在反应后阶段又需要加热,故温度控制比较困难。若反应温度偏低,则反应速度慢,装置的生产能力下降;若温度偏高,催化剂失效快,高沸副产物增多,原料消耗增大,二者 均不利于生产。
(2)以氯乙烯(VCM)为原料的液相氟化法
中国专利CN1141906A和专利CN1212678A分别介绍了以氯乙烯和无水氢氟酸为原料通过液相氟化法制备R152a的生产方法。这种方法因为产生大量的焦油,影响产品的收率,并且难以处置。
(3)以1,2-二氯乙烷为原料的液相氟化法
美国专利US5672788公开了两步液相反应制备R152a的方法。第一步包括将HCl或HF中的至少一种加入氯乙烯中以获得1,1-二氯乙烷或R151a,第二步包括将1,1-二氯乙烷或R151a转化为R152a。该方法减少了高沸点物质形成,降低了焦油形成速率,但不能完全消除。
中国专利公开号CN1860089A公开了在路易斯酸催化剂和FeCl 3助催化剂的条件下,通过使用氢氟酸的1,2-二氯乙烷的液相氟化来生产1,1-二氟乙烷的方法,在催化剂存在的条件下,在液相中通过VCM的氟化而制备1,1-二氟乙烷。该方法采用液相氟化的方法,产率低,催化剂寿命短,副产杂质含量高,不利于于工业化批量生产。
然而,作为用于制备R152a,特别是用于该化合物的工业制造的起始材料,本领域已知烯烃和炔烃(例如氯乙烯)易于形成焦油。同时,由于氯乙烯法生产R152a过程中,R152a粗产品中一般含有1%~5%未转化的氯乙烯,未转化的氯乙烯和R152a会形成共沸,用普通精馏方法无法使它们彻底分开,所以在氯乙烯法生产R152a过程中,R152a产品的纯化技术也被人们高度关注。
总之,制备R152a的常规方法存在以下难题:
(1)产生大量的焦油;
(2)氯乙烯和R152a共沸难分离难以得到纯的R152a产品;
(3)催化剂寿命短、高沸副产物多且杂质含量高。
发明内容
本发明的目的是针对现有技术的不足,提供一种工艺简单,原料转化率高,催化剂活性好,产品质量好的联产1,1-二氟乙烷和氯乙烯的方法。
为了解决上述技术问题,本发明是通过以下技术方案实现的:一种联产1,1-二氟乙 烷和氯乙烯的方法,包括以下步骤:
(a)将二氯乙烷与氟化氢经汽化器汽化后,进入反应器在催化剂作用下进行催化反应,得到反应产物;
(b)将反应产物进入第一精馏塔进行分离,得到第一精馏塔塔顶产物和第一精馏塔塔釜产物;
(c)将第一精馏塔塔顶产物进入第二精馏塔进行分离,第二精馏塔塔顶得到氯化氢,塔釜得到第二精馏塔塔釜产物;
(d)将第二精馏塔塔釜产物进入净化塔净化,得到净化塔塔顶产物;
(e)将净化塔塔顶产物与饱和有机溶剂同时进入第三精馏塔进行分离,塔顶得到1,1-二氟乙烷产品,塔釜得到第三精馏塔塔釜产物;
(f)将第三精馏塔塔釜产物进入第四精馏塔进行分离,得到氯乙烯产品和第四精馏塔塔釜液。
作为本发明的优选实施方式,步骤(a)中所述的催化反应的温度为150~300℃,空速为500~3000h-1,压力为0.1~1.5MPa,氟化氢与二氯乙烷的摩尔比为3~10:1。
作为本发明的优选实施方式,步骤(a)中所述的催化剂以铬为活性组分,以ⅢA、ⅡB、Ⅷ、ⅦB族金属元素中的一种或两种为辅助组分,所述铬与辅助组分的摩尔比为1:0.01~0.2。
作为本发明的优选实施方式,步骤(d)中所述的净化塔中装填有固体脱酸剂和助剂,所述的固体脱酸剂与助剂的质量比3~5:1。
作为本发明的优选实施方式,所述的固体脱酸剂选自ⅠA、ⅡA、ⅦB、Ⅷ、ⅡB族元素的氢氧化物,所述的助剂选自磷酸钙、亚硫酸氢钙、碳酸钙、碳酸氢钙、亚硫酸钠中的至少一种。
作为本发明的优选实施方式,步骤(e)中所述的饱和有机溶剂为正戊烷、异戊烷、四氯化碳、二氯甲烷、二氯乙烷中的至少一种。
作为本发明的优选实施方式,步骤(e)中所述的净化塔塔顶产物与饱和有机溶剂的质量比为1:0.1~10。
作为本发明的优选实施方式,所述的二氯乙烷为1,1-二氯乙烷、1,2-二氯乙烷中的至少一种。
作为本发明的优选实施方式,可将步骤(b)中所述的第一精馏塔塔釜产物返回至 汽化器中。
作为本发明的优选实施方式,可将步骤(f)中所述的第四精馏塔塔釜液返回至第三精馏塔中。
本发明的联产1,1-二氟乙烷和氯乙烯的方法,以二氯乙烷与氟化氢为原料,经一步气相反应得到反应产物,将反应产物经过分离提纯,得到1,1-二氟乙烷和氯乙烯产品,具有工艺简单,原料转化率高,副产杂质少,能耗低,催化剂活性好、寿命长的优点。
二氯乙烷与HF反应生成1,1-二氟乙烷的反应为放热反应,同时随着反应的发生,反应原料体积减小,温度、物料比、压力、反应器空速的控制都直接影响着原料的转化率和目标产物R152a的选择性。
反应温度对原料的转化率和目标产物R152a的选择性有影响。二氯乙烷与HF反应生成R152a的反应为放热反应。但要使反应发生,必须提供一定的能量,使其达到活化状态。温度太低,反应物料不能完全达到活化状态,影响原料的转化率和R152a的选择性。但是,温度越高,催化剂的初始活性越高,积碳速度也加快,导致催化剂加速老化,这样不仅易堵塞管道,而且易造成催化剂失活,缩短催化剂寿命。从试验情况看,原料转化率将随反应温度提高而提高,R152a的选择性将随反应温度提高而先提高后逐渐降低。所以本发明选择反应温度控制范围为150~300℃,优选为180~280℃。
反应器空速对原料的转化率和目标产物R152a的选择性也有影响。反应器空速越大,物料与催化剂的接触时间就越短,所以随着反应器空速的增加,原料的转化率和R152a的选择性有所下降。但反应器空速越小,单位体积反应器的产能就越小,不利于工业化生产。所以本发明中合适的反应器空速范围为500~3000h -1,优选为1000~2000h -1
物料配比对原料的转化率和目标产物R152a的选择性也有影响。根据试验结果来看,HF与二氯乙烷的摩尔比越高,原料的转化率和R152a的选择性越高,而且反应过程中大量的HF可以抑制催化剂表面结碳,延长催化剂寿命。但HF与二氯乙烷的摩尔比越大,在同样的反应器空速下,反应器产能下降。故本发明中氟化氢与二氯乙烷摩尔比为1~10∶1,优选为3~10∶1。
另外,反应压力也是影响反应效果的因素之一。压力太低,单位体积反应器产能较低,不经济;压力太高,对设备材质要求苛刻。故本发明综合考虑各种因素,选择压力控制范围为0.1~1.5MPa,优选为0.5~1.0MPa。
本发明中将净化塔塔顶产物与饱和有机溶剂同时进入第三精馏塔进行分离,有效解决了氯乙烯和R152a共沸难分离的难题。为了保证R152a和VCM的分离效果,本发明中第三精馏塔塔釜产物与饱和有机溶剂的质量比为1:0.1~10,优选为1:0.4~2.5。
传统的脱酸工艺都是采用水洗、碱洗法进一步除去如HF、HCl等少量的酸性物质,产生大量的废水,还要经过干燥工序除水。本发明采用的净化工艺,净化塔装填固体脱酸剂和助剂,该工艺取代了传统的水洗、碱洗工艺,且无需干燥工序,减少了废水,降低了能耗。
与现有技术相比,本发明的优点为:
1、工艺简单,效率高,本发明采用气相一步反应工艺,通过一套装置可同时联产R152a和VCM两种产品,通过改变反应条件可以控制产品的比例,实现集约化生产,操作简单,反应条件温和,显著简化了生产流程,原料单程转化率在90%以上。
2、催化剂活性好,寿命长,本发明延缓了催化剂的结碳速度,有效延长了催化剂的寿命,催化剂寿命在3年以上。
3、产品质量好,本发明采用将净化塔塔顶产物与饱和有机溶剂同时进入第三精馏塔进行分离,有效解决了氯乙烯和R152a共沸难分离的难题,R152a产品纯度在99.9%以上,达到GB/T 19602工业用1,1-二氟乙烷的要求。
4、绿色环保,本发明采用净化塔脱除微量氢氟酸和氯化氢,取代了传统的水洗、碱洗工艺,且无需干燥工序,显著减少了废水,降低了能耗;且饱和有机溶剂可循环利用,进一步减少了三废排放。
附图说明
图1为本发明的工艺流程示意图。
如图所示:1为汽化器,2为反应器,3为第一精馏塔,4为第二精馏塔,5为净化塔,6为第三精馏塔,7为第四精馏塔,8~21代表流程管线。
具体实施方式
本发明流程如图1所示,原料二氯乙烷与HF通过管线8和9混合后进入汽化器1预热气化;预热气化后的混合气经管线10进入装填有催化剂的反应器2进行反应,反应后得到的反应产物通过管线11进入第一精馏塔3;第一精馏塔3塔釜得到的含有未反应原料及其他重组分的塔釜液通过管线13返回至汽化器1,塔顶得到的第一精馏塔塔顶产物通过管线12进入第二精馏塔4分离HCl;第二精馏塔4塔顶分离出的HCl经管线14送至其他装置利用,第二精馏塔4塔釜产物经管线15进入净化塔5,脱除微量的氟化氢和氯化氢等酸性物质;经净化后的塔顶产物经管线16进入第三精馏塔6,同时经管线20向第三精馏塔6通入饱和有机溶剂,经过精馏,塔顶得到的R152a产品经管线18采出,第三精馏塔6塔釜产物经管线19进入第四精馏塔7;第四精馏塔7塔顶得到氯乙烯产品,塔釜得到的含有饱和有机溶剂的塔釜液经管线17返回至第三精馏塔6循环使用。
以下通过具体实施例对本发明作进一步详细描述,但本发明并不仅限于这些实施例。
实施例中的催化剂组成见表1。
表1实施例催化剂组成
催化剂编号 活性组分 辅助组分 摩尔比
1# Cr Zn Cr:Zn=1:0.01
2# Cr Mn Cr:Mn=1:0.05
3# Cr Fe Cr:Mn=1:0.2
4# Cr Ni、In Cr:Ni:In=1:0.02:0.02
5# Cr Co、Ga Cr:Co:Ga=1:0.05:0.05
实施例1
将1,2-二氯乙烷(简称D12)和HF混合气汽化后,进入装有1#催化剂的反应器中,在催化剂作用下进行反应;净化塔中装填有固体脱酸剂Ca(OH) 2和助剂磷酸钙,Ca(OH) 2与磷酸钙的质量比为5:1;饱和有机溶剂为二氯甲烷(CH 2Cl 2),净化塔塔顶产物与二氯甲烷的质量比为1:0.25,反应参数和反应器出口有机物组成(质量百分含量,wt%)见表2,第三精馏塔分离结果见表3。
实施例2
将1,1-二氯乙烷(简称D11)和HF混合气汽化后,进入装有2#催化剂的反应器中,在催化剂作用下进行反应;净化塔中装填有固体脱酸剂NaOH和助剂碳酸钙,NaOH与碳酸钙的质量比为4:1;饱和有机溶剂为四氯化碳(CCl4),净化塔塔顶产物与四氯化碳的质量比为1:0.4,反应参数和反应器出口有机物组成(质量百分含量,wt%)见表2,第三精馏塔分离结果见表3。
实施例3
将1,1-二氯乙烷(简称D11)和HF混合气汽化后,进入装有3#催化剂的反应器中,在催化剂作用下进行反应;净化塔中装填有固体脱酸剂Zn(OH) 2和助剂碳酸钙,Zn(OH) 2与碳酸钙的质量比为3:1;饱和有机溶剂为二氯甲烷(CH 2Cl 2)和四氯化碳(CCl 4)按质量比1:1组成的混合物,净化塔塔顶产物与(CH 2Cl 2)和四氯化碳(CCl 4)的混合物的总质量的比为1:1,反应参数和反应器出口有机物组成(质量百分含量,wt%)见表2,第三精馏塔分离结果见表3。
实施例4
将HF、D11和D12混合汽化后,进入装有4#催化剂的反应器中,在催化剂作用下进行反应;饱和有机溶剂为D12,净化塔塔顶产物与D12的质量比为1:2.3;净化塔中装填有固体脱酸剂Mg(OH) 2和助剂碳酸氢钙,Mg(OH) 2和碳酸氢钙的质量比为4:1,反应参数和反应器出口有机物组成(质量百分含量,wt%)见表2,第三精馏塔分离结果见表3。
实施例5
将1,2-二氯乙烷(简称D12)和HF混合气汽化后,进入装有5#催化剂的反应器中,在催化剂作用下进行反应;净化塔中装填有固体脱酸剂Ca(OH) 2和助剂亚硫酸氢钙,Ca(OH) 2与亚硫酸氢钙的质量比为5:1;饱和有机溶剂为D12,净化塔塔顶产物与D12的质量比为1:9,反应参数和反应器出口有机物组成(质量百分含量,wt%)见表2,第三精馏塔分离结果见表3。
表2实施例1-5反应参数及反应结果
Figure PCTCN2021102310-appb-000001
Figure PCTCN2021102310-appb-000002
表3实施例1~5第三精馏塔分离效果
Figure PCTCN2021102310-appb-000003

Claims (10)

  1. 一种联产1,1-二氟乙烷和氯乙烯的方法,其特征在于,包括以下步骤:
    (a)将二氯乙烷与氟化氢经汽化器汽化后,进入反应器在催化剂作用下进行催化反应,得到反应产物;
    (b)将反应产物进入第一精馏塔进行分离,得到第一精馏塔塔顶产物和第一精馏塔塔釜产物;
    (c)将第一精馏塔塔顶产物进入第二精馏塔进行分离,第二精馏塔塔顶得到氯化氢,塔釜得到第二精馏塔塔釜产物;
    (d)将第二精馏塔塔釜产物进入净化塔净化,得到净化塔塔顶产物;
    (e)将净化塔塔顶产物与饱和有机溶剂同时进入第三精馏塔进行分离,塔顶得到1,1-二氟乙烷产品,塔釜得到第三精馏塔塔釜产物;
    (f)将第三精馏塔塔釜产物进入第四精馏塔进行分离,得到氯乙烯产品和第四精馏塔塔釜液。
  2. 根据权利要求1所述的联产1,1-二氟乙烷和氯乙烯的方法,其特征在于,步骤
    (a)中所述的催化反应的温度为150~300℃,空速为500~3000h -1,压力为0.1~1.5MPa,氟化氢与二氯乙烷的摩尔比为3~10:1。
  3. 根据权利要求1所述的联产1,1-二氟乙烷和氯乙烯的方法,其特征在于,步骤
    (a)中所述的催化剂以铬为活性组分,以ⅢA、ⅡB、Ⅷ、ⅦB族金属元素中的一种或两种为辅助组分,所述铬与辅助组分的摩尔比为1:0.01~0.2。
  4. 根据权利要求1所述的联产1,1-二氟乙烷和氯乙烯的方法,其特征在于,步骤(d)中所述的净化塔中装填有固体脱酸剂和助剂,所述的固体脱酸剂与助剂的质量比3~5:1。
  5. 根据权利要求4所述的联产1,1-二氟乙烷和氯乙烯的方法,其特征在于,所述的固体脱酸剂选自ⅠA、ⅡA、ⅦB、Ⅷ、ⅡB族元素的氢氧化物,所述的助剂选自磷酸钙、亚硫酸氢钙、碳酸钙、碳酸氢钙、亚硫酸钠中的至少一种。
  6. 根据权利要求1所述的联产1,1-二氟乙烷和氯乙烯的方法,其特征在于,步骤(e)中所述的饱和有机溶剂为正戊烷、异戊烷、四氯化碳、二氯甲烷、二氯乙烷中的至少一种。
  7. 根据权利要求1所述的联产1,1-二氟乙烷和氯乙烯的方法,其特征在于,步骤(e)中所述的净化塔塔顶产物与饱和有机溶剂的质量比为1:0.1~10。
  8. 根据权利要求1所述的联产1,1-二氟乙烷和氯乙烯的方法,其特征在于,所述的二氯乙烷为1,1-二氯乙烷、1,2-二氯乙烷中的至少一种。
  9. 根据权利要求1所述的联产1,1-二氟乙烷和氯乙烯的方法,其特征在于,将步骤(b)中所述的第一精馏塔塔釜产物返回至汽化器中。
  10. 根据权利要求1所述的联产1,1-二氟乙烷和氯乙烯的方法,其特征在于,将步骤(f)中所述的第四精馏塔塔釜液返回至第三精馏塔中。
PCT/CN2021/102310 2020-11-23 2021-06-25 一种联产1,1-二氟乙烷和氯乙烯的方法 WO2022105230A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/627,122 US11970430B2 (en) 2020-11-23 2021-06-25 Method for co-production of 1,1-difluoroethane and vinyl chloride
JP2021572670A JP7332724B2 (ja) 2020-11-23 2021-06-25 1、1-ジフルオロエタンと塩化ビニルを同時に生産する方法
EP21867880.3A EP4249457A1 (en) 2020-11-23 2021-06-25 Method for co-producing 1,1-difluoroethane and vinyl chloride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011319668.4 2020-11-23
CN202011319668.4A CN112608216B (zh) 2020-11-23 2020-11-23 一种联产1,1-二氟乙烷和氯乙烯的方法

Publications (1)

Publication Number Publication Date
WO2022105230A1 true WO2022105230A1 (zh) 2022-05-27

Family

ID=75225536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102310 WO2022105230A1 (zh) 2020-11-23 2021-06-25 一种联产1,1-二氟乙烷和氯乙烯的方法

Country Status (5)

Country Link
US (1) US11970430B2 (zh)
EP (1) EP4249457A1 (zh)
JP (1) JP7332724B2 (zh)
CN (1) CN112608216B (zh)
WO (1) WO2022105230A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608216B (zh) * 2020-11-23 2022-01-21 浙江衢化氟化学有限公司 一种联产1,1-二氟乙烷和氯乙烯的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141906A (zh) 1995-04-24 1997-02-05 索尔维公司 制备1,1-二氟乙烷的方法
US5672788A (en) 1995-06-07 1997-09-30 E. I. Du Pont De Nemours And Company Two-step process for manufacturing 1,1-difluoroethane
CN1212678A (zh) 1996-01-05 1999-03-31 纳幕尔杜邦公司 1,1-二氟乙烷的生产方法
CN1860089A (zh) 2003-10-17 2006-11-08 阿克马公司 1,1-二氟乙烷的生产方法及其在生产1,1-二氟乙烯中的应用
CN1878738A (zh) * 2003-11-10 2006-12-13 昭和电工株式会社 1,1-二氟乙烷的提纯方法
CN1956940A (zh) * 2004-04-01 2007-05-02 霍尼韦尔国际公司 二氟甲烷、1,1,1-三氟乙烷和1,1-二氟乙烷的制备方法
CN1994985A (zh) 2006-12-22 2007-07-11 山东东岳化工有限公司 一种1,1-二氟乙烷生产工艺及设备
WO2008107578A1 (fr) * 2007-01-29 2008-09-12 Arkema France Procede de fabrication du 1,1-difluoroethane
CN101412654A (zh) 2008-07-21 2009-04-22 浙江衢化氟化学有限公司 一种1,1-二氟乙烷的制备方法及氟化催化剂
CN112608213A (zh) * 2020-11-23 2021-04-06 浙江衢化氟化学有限公司 一种气相制备1,1-二氟乙烷的方法
CN112608216A (zh) * 2020-11-23 2021-04-06 浙江衢化氟化学有限公司 一种联产1,1-二氟乙烷和氯乙烯的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2718437B1 (fr) * 1994-04-11 1996-06-28 Solvay Procédé de séparation du 1,1-difluoroéthane de ses mélanges avec le fluorure d'hydrogène.
US5874657A (en) * 1996-11-01 1999-02-23 E. I. Du Pont De Nemours And Company Process for the purification of 1,1-difluoroethane
JP2004209431A (ja) * 2003-01-08 2004-07-29 National Institute Of Advanced Industrial & Technology フッ素化触媒およびフルオロ化合物の製造方法
JP2005206584A (ja) * 2003-12-24 2005-08-04 Showa Denko Kk 1,1−ジフルオロエタンの精製方法および製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141906A (zh) 1995-04-24 1997-02-05 索尔维公司 制备1,1-二氟乙烷的方法
US5672788A (en) 1995-06-07 1997-09-30 E. I. Du Pont De Nemours And Company Two-step process for manufacturing 1,1-difluoroethane
CN1212678A (zh) 1996-01-05 1999-03-31 纳幕尔杜邦公司 1,1-二氟乙烷的生产方法
CN1860089A (zh) 2003-10-17 2006-11-08 阿克马公司 1,1-二氟乙烷的生产方法及其在生产1,1-二氟乙烯中的应用
CN1878738A (zh) * 2003-11-10 2006-12-13 昭和电工株式会社 1,1-二氟乙烷的提纯方法
CN1956940A (zh) * 2004-04-01 2007-05-02 霍尼韦尔国际公司 二氟甲烷、1,1,1-三氟乙烷和1,1-二氟乙烷的制备方法
CN1994985A (zh) 2006-12-22 2007-07-11 山东东岳化工有限公司 一种1,1-二氟乙烷生产工艺及设备
WO2008107578A1 (fr) * 2007-01-29 2008-09-12 Arkema France Procede de fabrication du 1,1-difluoroethane
CN101412654A (zh) 2008-07-21 2009-04-22 浙江衢化氟化学有限公司 一种1,1-二氟乙烷的制备方法及氟化催化剂
CN112608213A (zh) * 2020-11-23 2021-04-06 浙江衢化氟化学有限公司 一种气相制备1,1-二氟乙烷的方法
CN112608216A (zh) * 2020-11-23 2021-04-06 浙江衢化氟化学有限公司 一种联产1,1-二氟乙烷和氯乙烯的方法

Also Published As

Publication number Publication date
JP2023507691A (ja) 2023-02-27
CN112608216A (zh) 2021-04-06
EP4249457A1 (en) 2023-09-27
US11970430B2 (en) 2024-04-30
CN112608216B (zh) 2022-01-21
JP7332724B2 (ja) 2023-08-23
US20230265027A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
JP5974003B2 (ja) トランス−1−クロロ−3,3,3−トリフルオロプロペン、トランス−1,3,3,3−テトラフルオロプロペン、及び1,1,1,3,3−ペンタフルオロプロパンを共製造するための統合方法
CA2598382C (en) Integrated hfc trans-1234ze manufacture process
EP2814795B1 (en) PROCESS FOR THE PRODUCTION OF HCFC-1233zd
US3968178A (en) Chlorination of hydrocarbons
TWI403495B (zh) 方法
JP2018070656A (ja) 高純度e−1−クロロ−3,3,3−トリフルオロプロペン及びその製造方法
JP2015515464A (ja) trans−1−クロロ−3,3,3−トリフルオロプロペン、trans−1,3,3,3−テトラフルオロプロペンおよび1,1,1,3,3−ペンタフルオロプロパンを併産するための統合プロセス
CN102267863B (zh) 一种以二氯乙烷为原料生产三氯乙烯和四氯乙烯的方法
KR20110037960A (ko) 1,2-디클로로에탄 및 1,2-디클로로에탄과는 상이한 에틸렌 유도체 화합물 1종 이상을 제조하는 방법
WO2022105230A1 (zh) 一种联产1,1-二氟乙烷和氯乙烯的方法
US2822410A (en) Process for utilizing mixtures of ethylene and acetylene without separation thereof
CN107324968B (zh) 一种联产低碳发泡剂的方法
CN112608213B (zh) 一种气相制备1,1-二氟乙烷的方法
TWI417272B (zh) 製程
CN109809959A (zh) 一种1,1,1,2,3-五氯丙烷的制备方法
US2859258A (en) Process for the production of ethylene
JP6456231B2 (ja) ジエン化合物の製造方法
CN113501743B (zh) 一种1,1,1,3,3-五氟丙烷的制备方法
CN104140353A (zh) 偏氯乙烯液相一步氟化制1,1,1-三氟乙烷的方法
CN109734550B (zh) 一种1,1-二氟乙烷的制备方法
CN115403443B (zh) 一种含氟烯烃制备方法
US2210316A (en) Method of reacting olefins with sulphuric acid
US20240140887A1 (en) Process for starting up a plant for removing isobutene from a c4-hydrocarbon mixture
CN117567240A (zh) 一种二氟一氯甲烷的提纯方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021572670

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21867880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021867880

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021867880

Country of ref document: EP

Effective date: 20230623