WO2022102749A1 - 調光シート - Google Patents

調光シート Download PDF

Info

Publication number
WO2022102749A1
WO2022102749A1 PCT/JP2021/041745 JP2021041745W WO2022102749A1 WO 2022102749 A1 WO2022102749 A1 WO 2022102749A1 JP 2021041745 W JP2021041745 W JP 2021041745W WO 2022102749 A1 WO2022102749 A1 WO 2022102749A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimming
layer
transparent
liquid crystal
sheet
Prior art date
Application number
PCT/JP2021/041745
Other languages
English (en)
French (fr)
Inventor
泰佑 塩谷
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to EP21891994.2A priority Critical patent/EP4246219A4/en
Priority to CN202180071707.XA priority patent/CN116529659A/zh
Publication of WO2022102749A1 publication Critical patent/WO2022102749A1/ja
Priority to US18/309,959 priority patent/US20230266614A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13345Network or three-dimensional gels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2464Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13347Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals working in reverse mode, i.e. clear in the off-state and scattering in the on-state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings

Definitions

  • the present disclosure relates to, for example, a dimming sheet attached to a transparent member provided in various windows of a vehicle.
  • the dimming sheet includes a first transparent electrode layer, a second transparent electrode layer, and a dimming layer.
  • the dimming layer is sandwiched between a first transparent electrode layer and a second transparent electrode layer.
  • the dimming layer includes, for example, a transparent polymer layer and a liquid crystal composition.
  • the transparent polymer layer has a plurality of voids, and each void is filled with a liquid crystal composition.
  • the liquid crystal composition contains liquid crystal molecules. The liquid crystal molecules have different orientations between the state where no potential difference is generated between the pair of transparent electrode layers and the state where the potential difference is generated between the pair of transparent electrode layers.
  • the dimming sheet has an opaque state due to the orientation in a state where no potential difference is generated between the pair of transparent electrode layers, and is in a transparent state due to the orientation in a state where a potential difference is generated between the pair of transparent electrode layers.
  • the dimming sheet can have a transparent state and an opaque state, it is used as a partition separating the first space and the second space in two adjacent spaces via the dimming sheet. ..
  • the dimming sheet is attached to a transparent member fitted in a window of the building, a partition that divides the interior space of the building, and the like.
  • the purpose of this disclosure is to provide a dimming sheet that makes it possible to improve reliability.
  • the light control sheet is a light control layer sandwiched between a first transparent electrode layer, a second transparent electrode layer, the first transparent electrode layer, and the second transparent electrode layer, and has a plurality of voids.
  • the light control layer includes a transparent polymer layer containing the above, a liquid crystal composition containing a liquid crystal molecule, and the liquid crystal composition filled in the plurality of voids, and a plurality of spacers located in the light control layer. Each spacer is made of polymethyl methacrylate resin.
  • the dimming sheet is attached to a transparent member fitted in a window provided in the vehicle.
  • the transparent member may be, for example, a windshield glass, a side window glass, a rear window glass, a roof glass, or the like.
  • the dimming sheet has flexibility capable of following the shape of the transparent member. Therefore, the dimming sheet may have a curved surface while the dimming sheet is attached to the transparent member.
  • the type of the dimming sheet may be a normal type or a reverse type.
  • FIG. 1 shows the cross-sectional structure of the dimming sheet when the normal type dimming sheet is in an opaque state
  • FIG. 2 shows the cross-sectional structure of the dimming sheet when the normal type dimming sheet is in the transparent state. show.
  • the light control sheet 10N includes a first transparent electrode layer 11A, a second transparent electrode layer 11B, a light control layer 12, and a spacer 13.
  • the dimming layer 12 is sandwiched between the first transparent electrode layer 11A and the second transparent electrode layer 11B.
  • the dimming layer 12 includes a transparent polymer layer 12A and a liquid crystal composition 12B.
  • the transparent polymer layer 12A contains a plurality of voids 12D.
  • the liquid crystal composition 12B contains liquid crystal molecules 12BL and is filled in a plurality of voids 12D.
  • Each spacer 13 is located in the dimming layer 12.
  • Each spacer 13 is made of polymethyl methacrylate resin (PMMA).
  • PMMA includes the unit structure shown below, and has a structure in which the unit structure is repeated.
  • PMMA is a polymer of methyl methacrylate ( C5H8O2 ) composed of saturated hydrocarbons.
  • the spacer 13 is formed of a PMMA in which only the monomer, methyl methacrylate, is polymerized, in other words, a homopolymer of methyl methacrylate.
  • the spacer 13 provided in the dimming sheet 10N has often used a material containing an aromatic ring, for example, a spacer containing divinylbenzene as a main component as shown below.
  • the portion containing the aromatic ring is released when used in a harsh environment, especially in a high temperature environment. Since the liberated aromatic ring interferes with the driving of the liquid crystal molecule 12BL by the interaction with the liquid crystal molecule 12BL contained in the light control layer 12, the light control sheet 10N is in a state where the voltage for driving the liquid crystal molecule 12BL is applied.
  • the optical characteristics of the dimming sheet 10N deteriorate. Therefore, in the normal type dimming sheet 10N, the optical characteristics of the dimming sheet 10N deteriorate when the dimming sheet 10N is in a transparent state. For example, when the light control sheet 10N is in a transparent state, the haze of the light control sheet 10N becomes high.
  • the spacer 13 is formed by PMMA composed of saturated hydrocarbons, deterioration of the optical characteristics of the light control sheet 10N is suppressed in a high temperature environment. Be done. Therefore, the reliability of the dimming sheet 10N is enhanced.
  • the dimming sheet 10N is an in-vehicle dimming sheet.
  • the parts mounted on the vehicle must meet the high safety standards imposed on the vehicle. Therefore, the in-vehicle dimming sheet 10N is also required to have higher reliability than other applications.
  • the dimming sheet 10N provided with the spacer 13 made of PMMA it is possible to improve the reliability at high temperature, so that the dimming sheet 10N is suitable as a dimming sheet for automobiles.
  • the dimming sheet 10N preferably satisfies condition 1. (Condition 1)
  • the absolute value of the difference between the refractive index of the transparent polymer layer 12A and the refractive index of the spacer 13 is 0.04 or less.
  • the absolute value of the difference between the refractive index of the transparent polymer layer 12A and the refractive index of the spacer 13 is 0.04 or less, when the dimming sheet 10N is in a transparent state, the transparent polymer layer 12A and the spacer 13 The white turbidity of the dimming sheet 10N caused by the scattering of the incident light due to the difference in the refractive index between the two is suppressed.
  • a potential difference is generated between the first transparent electrode layer 11A and the second transparent electrode layer 11B, and the dimming sheet 10N is transparent in a state where the liquid crystal molecules are driven by the potential difference. Therefore, when the absolute value of the difference in refractive index described above is 0.04 or less, it is possible to increase the transparency of the dimming sheet 10N in a state where a potential difference is generated between the transparent electrode layers 11A and 11B. ..
  • the holding type of the liquid crystal composition is any one selected from the group consisting of a polymer network type, a polymer dispersion type, and a capsule type.
  • the transparent polymer layer 12A has a structure corresponding to the holding type of the liquid crystal composition.
  • the polymer network type includes a polymer network having a three-dimensional network.
  • the polymer network is an example of the transparent polymer layer 12A.
  • the polymer network holds the liquid crystal composition in the voids of the mesh that communicates with each other.
  • the polymer-dispersed type includes a transparent polymer layer 12A that partitions a large number of isolated voids, and holds the liquid crystal composition in the voids dispersed in the transparent polymer layer 12A.
  • the liquid crystal composition having a capsule shape is held in the transparent polymer layer 12A. It should be noted that FIGS. 1 to 4 show a dimming sheet when the holding type of the liquid crystal composition is a polymer network type.
  • the transparent polymer layer 12A is a polymer of an ultraviolet polymerizable compound.
  • the transparent polymer layer 12A may be formed from two or more kinds of ultraviolet polymerizable compounds.
  • the two or more kinds of ultraviolet polymerizable compounds may include an ultraviolet polymerizable compound containing an aromatic ring. That is, the transparent polymer layer 12A may be formed of a polymer in which two or more types of unit structures are polymerized. One or more of the two or more unit structures may include a unit structure containing an aromatic ring.
  • the spacer 13 is aromatic even if the unit structure constituting the transparent polymer layer 12A contains an aromatic ring.
  • the release of the aromatic ring is less likely to occur than in the case of being composed of a material containing a ring.
  • the dimming sheet since it is possible to use a unit structure containing an aromatic ring as the unit structure constituting the transparent polymer layer 12A, the material for forming the transparent polymer layer 12A can be freely selected. By extension, it is possible to increase the degree of freedom of the refractive index of the transparent polymer layer.
  • the dimming layer 12 is formed, for example, by irradiating the coating film with ultraviolet rays.
  • the coating film is a mixture of an ultraviolet polymerizable compound for forming the transparent polymer layer 12A and the liquid crystal composition 12B.
  • the distribution of the liquid crystal molecules 12BL and the monomers is not biased in the coating liquid, that is, the liquid crystal molecules 12BL and the monomers are dispersed in the coating liquid, respectively.
  • the average value of the number of aromatic rings contained in one unit structure in the transparent polymer layer 12A is 0. It is preferably 4 or more.
  • the size of the void 12D is grasped in the cross section along the plane perpendicular to the plane on which the transparent polymer layer 12A spreads.
  • the size of the void 12D is the length of the longest line segment among the line segments connecting arbitrary two points at the edge of the void 12D.
  • the diameter of the void 12D is the size of the void 12D.
  • the major axis of the void 12D is the size of the void 12D.
  • the diameter of the circle circumscribing the void 12D may be the size of the void 12D.
  • the dimming sheet 10N includes the spacer 13 containing divinylbenzene as a main component
  • the transparent polymer layer 12A preferably contains an aromatic ring from the viewpoint of suppressing an increase in the haze value in the above.
  • the interaction between the aromatic ring contained in the liquid crystal molecule and the aromatic ring contained in the spacer 13 is suppressed by the aromatic ring contained in the transparent polymer layer 12A, and the reliability at high temperature is enhanced.
  • increasing the compatibility of the monomer with the liquid crystal molecule 12BL increasing the number of aromatic rings in the transparent polymer layer 12A too much leads to lowering the compatibility.
  • the light control sheet 10N of the present disclosure it is possible to improve the reliability at high temperature by changing the material forming the spacer 13 from the material containing an aromatic ring to PMMA. Therefore, in the transparent polymer layer 12A, the number of aromatic rings per unit structure can be set from the viewpoint of compatibility between the monomer for forming the transparent polymer layer 12A and the liquid crystal molecule 12BL. ..
  • the liquid crystal composition 12B is filled in the void 12D.
  • the liquid crystal molecule 12BL is, for example, a group consisting of Schiff base type, azo type, azoxy type, biphenyl type, terphenyl type, benzoic acid ester type, trans type, pyrimidine type, cyclohexanecarboxylic acid ester type, phenylcyclohexane type, and dioxane type. It is a kind selected from.
  • the liquid crystal molecule 12BL may contain an aromatic ring as described above.
  • the liquid crystal composition 12B may contain a first liquid crystal molecule 12BL and a second liquid crystal molecule 12BL of a type different from that of the first liquid crystal molecule 12BL.
  • the main component of the liquid crystal composition 12B is the liquid crystal molecule 12BL.
  • the weight concentration of the main component in the liquid crystal composition 12B is 80% or more with respect to the liquid crystal composition 12B.
  • the liquid crystal composition 12B may contain, as a component other than the main component, a dichroic dye, a weather resistant agent, and an unavoidable component mixed in the formation of the light control layer 12.
  • the weathering agent is an ultraviolet absorber or a light stabilizer for suppressing deterioration of the liquid crystal composition 12B.
  • the unavoidable component is, for example, an unreacted component of the ultraviolet polymerizable compound used for forming the transparent polymer layer 12A.
  • the plurality of spacers 13 are dispersed in the dimming layer 12. In the thickness direction of the light control layer 12, the length of the spacer 13 is substantially equal to the thickness of the light control layer 12. The plurality of spacers 13 suppress the variation in the thickness of the dimming layer 12.
  • the dimming sheet 10N may include a spacer having a first size and a spacer having a second size.
  • the spacer 13 is, for example, a granular spacer.
  • Granular spacers include spherical spacers and non-spherical spacers.
  • Non-spherical spacers include rectangular parallelepiped spacers, cross-shaped spacers, and rod-shaped spacers. As mentioned above, each spacer 13 is formed by PMMA.
  • the spacer 13 may have fixing property to other layers in contact with the dimming layer 12.
  • the spacer 13 may be a spacer that has been surface-treated so as to adhere to the transparent electrode layers 11A and 11B or the resin layer in contact with the dimming layer 12.
  • the pair of transparent electrode layers 11A and 11B sandwich the dimming layer 12 in the thickness direction of the dimming layer 12.
  • Each of the transparent electrode layers 11A and 11B transmits light in the visible light region.
  • the material forming the transparent electrode layers 11A and 11B consists of, for example, indium tin oxide, fluorine-doped tin oxide, tin oxide, zinc oxide, carbon nanotubes, poly (3,4-ethylenedioxythiophene), and silver. One of the choices.
  • the dimming sheet 10N includes a first transparent base material 14A and a second transparent base material 14B.
  • the pair of transparent substrates 14A and 14B sandwich the pair of transparent electrode layers 11A and 11B in the thickness direction of the dimming layer 12.
  • Each of the transparent base materials 14A and 14B transmits light in the visible light region.
  • the material forming the transparent base materials 14A and 14B is, for example, transparent glass or a transparent synthetic resin.
  • the dimming layer 12 has a transparent state and an opaque state.
  • the dimming layer 12 changes the orientation of the liquid crystal molecule 12BL in response to the application of a voltage that changes the orientation of the liquid crystal molecule 12BL.
  • the dimming layer 12 switches between a transparent state and an opaque state based on the change in the orientation of the liquid crystal molecule 12BL.
  • the transparent state of the dimming layer 12 is a state in which the contour of the observation target can be visually recognized through the dimming sheet 10N.
  • the opaque state of the light control layer 12 is a state in which the contour of the observation target cannot be visually recognized through the light control sheet 10N.
  • the dimming sheet 10N in FIG. 1 shows a state in which a voltage for changing the orientation is not applied.
  • the orientation direction of the liquid crystal molecules 12BL located in each void 12D is random.
  • Light incident on the dimming sheet 10N from any of the pair of transparent substrates 14A and 14B is scattered in the dimming layer 12 in various directions.
  • the normal type dimming layer 12 has an opaque state which is a turbid state when no voltage is applied.
  • the opaque dimming layer 12 may be white and may have turbidity, or may be colored and may have turbidity.
  • the light control layer 12 contains a dye.
  • the orientation of the plurality of liquid crystal molecules 12BL changes from the random orientation to the direction in which light is transmitted.
  • each liquid crystal molecule 12BL changes its orientation so that the long axis of the liquid crystal molecule 12BL is substantially perpendicular to the plane on which the dimming layer 12 spreads.
  • Light incident on the dimming sheet 10N from any of the pair of transparent substrates 14A and 14B passes through the dimming layer 12 with almost no scattering in the dimming layer 12.
  • the normal dimming layer 12 has a transparent state when a voltage is applied.
  • FIG. 3 shows a cross-sectional structure when the reverse type dimming layer 12 is in a transparent state
  • FIG. 4 shows a cross-sectional structure when the reverse type dimming layer 12 is in an opaque state.
  • the reverse type dimming sheet 10R includes a pair of transparent electrode layers 11A and 11B, a dimming layer 12, and a pair of transparent base materials 14A and 14B, as well as a pair of alignment layers 15A and 15A. It is equipped with 15B.
  • the pair of alignment layers 15A and 15B sandwich the light control layer 12 in the thickness direction of the light control layer 12, and the light control sheet 10R is more than the pair of transparent electrode layers 11A and 11B in the thickness direction of the light control layer 12. It is located near the center of.
  • the first alignment layer 15A is located between the dimming layer 12 and the first transparent electrode layer 11A.
  • the first alignment layer 15A exerts an orientation regulating force on the liquid crystal molecule 12BL.
  • the second alignment layer 15B is located between the dimming layer 12 and the second transparent electrode layer 11B.
  • the second alignment layer 15B exerts an orientation regulating force on the liquid crystal molecule 12BL.
  • the material forming each of the alignment layers 15A and 15B may be an organic compound, an inorganic compound, or a mixture thereof.
  • the organic compound may be, for example, polyimide, polyamide, polyvinyl alcohol, cyanide compound or the like.
  • the inorganic compound may be silicon oxide, zirconium oxide or the like. Further, the material forming each of the alignment layers 15A and 15B may be silicone.
  • the alignment layers 15A and 15B are vertically oriented layers, when the voltage for changing the orientation of the liquid crystal molecules 12BL is not applied to the dimming layer 12, the orientation direction of the liquid crystal molecules 12BL located in each void 12D is vertically oriented. Is. Then, the light incident on the light control sheet 10R from any of the pair of transparent base materials 14A and 14B passes through the light control layer 12 without being scattered in the light control layer 12. As a result, the reverse dimming layer 12 has a transparent state when a voltage that changes the orientation of the liquid crystal molecule 12BL is not applied.
  • the orientation of the plurality of liquid crystal molecules 12BL changes from, for example, vertical orientation to horizontal orientation.
  • each liquid crystal molecule 12BL is located in the void 12D so that the long axis of the liquid crystal molecule 12BL extends along the plane on which the dimming layer 12 spreads.
  • the light incident on the light control sheet 10R from any of the pair of transparent base materials 14A and 14B is scattered by the light control layer 12.
  • the reverse dimming layer 12 has an opaque state when a voltage that changes the orientation of the liquid crystal molecules 12BL is applied.
  • Example Examples and comparative examples will be described with reference to Table 1.
  • the transparent polymer layer was formed by a plurality of monomers among the first to seventh monomers described below.
  • Example 1 50% by mass of a liquid crystal containing a liquid crystal molecule containing an aromatic ring (MLC-6609 manufactured by Merck), 9% by mass of a first monomer, and 9% by mass with respect to the total solid content in the coating liquid for forming a dimming layer.
  • the 4th monomer was set to 18% by mass
  • the 5th monomer was set to 6% by mass
  • the 7th monomer was set to 15% by mass.
  • the refractive index of the coating liquid in the cured state of the material forming the transparent polymer layer was adjusted to 1.50.
  • the polymerization initiator (Omnirad 184 (Irgacure 184) manufactured by IGM Refraction) (Omnirad and Irgacre are registered trademarks) has a diameter of 1% by mass and 15 ⁇ m with respect to the total solid content in the coating liquid, and has a diameter of 15 ⁇ m.
  • a PMMA spacer (SD-BD15, manufactured by Hayakawa Rubber Co., Ltd.) (refractive index 1.50) was set to 1% by mass.
  • Example 1 A pair of transparent substrates that support the transparent conductive film were prepared.
  • the coating liquid was cured by irradiating the coating liquid with ultraviolet rays with the coating liquid sandwiched between the pair of transparent conductive films. As a result, the dimming sheet of Example 1 was obtained.
  • Example 2 In Example 1, a dimming sheet of Example 2 was obtained by the same method as in Example 1 except that the composition of the coating liquid was changed as follows. That is, the second monomer was set to 9% by mass, the fourth monomer was set to 18% by mass, the fifth monomer was set to 6% by mass, and the seventh monomer was set to 15% by mass with respect to the total solid content in the coating liquid. Further, the other monomers were set to 0% by mass. As a result, the refractive index of the material forming the transparent polymer layer in a cured state was adjusted to 1.51.
  • Example 3 A spacer (SD-BD17, manufactured by Hayakawa Rubber Co., Ltd.) (refractive index 1.50) having a diameter different from that of the spacer used in Example 1 was used, except that the spacer was changed to a spacer having a diameter of 17 ⁇ m.
  • a dimming sheet of Example 3 was obtained by the same method as in Example 1.
  • Example 4 In Example 3, a dimming sheet of Example 4 was obtained by the same method as in Example 3 except that the composition of the coating liquid was changed as follows. That is, the third monomer was set to 9% by mass, the fourth monomer was set to 18% by mass, the sixth monomer was set to 6% by mass, and the seventh monomer was set to 15% by mass with respect to the total solid content in the coating liquid. Further, the other monomers were set to 0% by mass. As a result, the refractive index of the material forming the transparent polymer layer in a cured state was adjusted to 1.55.
  • Example 5 a dimming sheet of Example 5 was obtained by the same method as in Example 3 except that the composition of the coating liquid was changed as follows. That is, the second monomer was set to 18% by mass, the third monomer was set to 10% by mass, the sixth monomer was set to 5% by mass, and the seventh monomer was set to 15% by mass with respect to the total solid content in the coating liquid. Further, the other monomers were set to 0% by mass. As a result, the refractive index in the cured state of forming the transparent resin layer was adjusted to 1.54.
  • Example 6 In Example 3, a dimming sheet of Example 6 was obtained by the same method as in Example 3 except that the composition of the coating liquid was changed as follows. That is, the third monomer was set to 27% by mass, the sixth monomer was set to 6% by mass, and the seventh monomer was set to 15% by mass with respect to the total solid content in the coating liquid. Further, the other monomers were set to 0% by mass. As a result, the refractive index of the material forming the transparent polymer layer in a cured state was adjusted to 1.59.
  • Comparative Example 1 In Example 4, Comparative Example 1 was carried out by the same method as in Example 4 except that a spacer made of a divinylbenzene copolymer (SP-215 manufactured by Sekisui Chemical Co., Ltd.) (refractive index 1.57) was used. Dimming sheet was obtained.
  • SP-215 manufactured by Sekisui Chemical Co., Ltd.
  • Comparative Example 2 In Example 1, Comparative Example 2 was carried out by the same method as in Example 1 except that a spacer made of a divinylbenzene copolymer (SP-215 manufactured by Sekisui Chemical Co., Ltd.) (refractive index 1.57) was used. Dimming sheet was obtained.
  • SP-215 manufactured by Sekisui Chemical Co., Ltd.
  • Comparative Example 3 was carried out by the same method as in Example 1 except that the spacer was changed to a spacer made of a divinylbenzene copolymer (SP-215 manufactured by Sekisui Chemical Co., Ltd.) (refractive index 1.57). Dimming sheet was obtained.
  • SP-215 manufactured by Sekisui Chemical Co., Ltd.
  • Comparative Example 4 In Comparative Example 3, a dimming sheet of Comparative Example 4 was obtained by the same method as in Comparative Example 3 except that the composition of the coating liquid was changed as follows. That is, the second monomer was set to 27% by mass, the fifth monomer was set to 6% by mass, and the seventh monomer was set to 15% by mass with respect to the total solid content in the coating liquid. Further, the other monomers were set to 0% by mass. As a result, the refractive index of the material forming the transparent polymer layer in a cured state was adjusted to 1.50.
  • the haze in the transparent state was measured for each dimming sheet.
  • the haze of the dimming sheet was measured using a method conforming to JIS K 7136: 2000. Further, the haze when a voltage at which the haze value in the light control sheet was saturated was applied between the layers of the pair of transparent electrodes was measured as the haze in the transparent state. Then, each dimming sheet was allowed to stand in a space maintained at 110 ° C. for 720 hours to perform an acceleration test for each dimming sheet. Then, for each dimming sheet after the accelerated test, the haze in the transparent state was measured by the same method as before the test.
  • the case where the haze value is less than 4% is set to " ⁇ "
  • the case where the haze value is 4% or more and less than 5% is set to " ⁇ ”.
  • the haze value is 5% or more and 6% or less, it is set to " ⁇ "
  • the haze value exceeds 6% it is set to "x”.
  • the number of aromatic rings contained in each monomer is determined by the mole fraction of the monomer. From this, the number of aromatic rings derived from each monomer per unit structure was calculated. Next, the total number of aromatic rings derived from each monomer was calculated, thereby calculating the average value of aromatic rings per unit structure of the transparent polymer layer.
  • the haze value is " ⁇ " in the dimming sheets of Examples 1, 3, 5, 5, and Comparative Example 3. Admitted. Further, before the acceleration test, it was confirmed that the haze value was " ⁇ ” in the dimming sheet of Example 4. On the other hand, before the accelerated test, it was confirmed that the haze value was " ⁇ " in the dimming sheets of Example 6, Comparative Example 2, and Comparative Example 4.
  • the haze in the dimming sheet of Comparative Example 4 is the comparative example. It was found that the haze in the dimming sheet of No. 3 was significantly large. That is, in a dimming sheet provided with a spacer containing divinylbenzene, it can be said that it is possible to improve the reliability of the dimming sheet at high temperatures by including the aromatic ring in the unit structure contained in the transparent polymer layer.
  • the absolute value of the difference between the refractive index of the transparent polymer layer and the refractive index of the spacer is preferably less than 0.05. That is, in order to lower the initial value of the haze value in the transparent state before the heating test, in other words, the haze value in the transparent state, the absolute value of the difference between the refractive index of the transparent polymer layer and the refractive index of the spacer is , It can be said that it is preferably less than 0.05.
  • Examples 4 to 6 it was found that the amount of change in the haze value obtained by subtracting the haze value before the accelerated test from the haze value after the accelerated test was smaller than the amount of change in Examples 1 to 3. Was done. In particular, in Examples 4 to 6, it was found that the amount of change in the haze value in Example 6 was the smallest. From these results, it can be said that the inclusion of the aromatic ring in the transparent polymer layer makes it possible to reduce the amount of change in the haze value before and after the heating test.
  • the following effects can be obtained. (1) Since the spacer 13 is formed by PMMA composed of saturated hydrocarbons, deterioration of the optical characteristics of the dimming sheets 10N and 10R can be suppressed in a high temperature environment. Therefore, the reliability of the dimming sheets 10N and 10R is enhanced.
  • the transparent polymer layer 12A and the refractive index of the spacer 13 Since the absolute value of the difference between the refractive index of the transparent polymer layer 12A and the refractive index of the spacer 13 is 0.04 or less, the transparent polymer layer is obtained when the dimming sheets 10N and 10R are in a transparent state. White turbidity of the dimming sheets 10N and 10R caused by scattering of incident light due to the difference in refractive index between 12A and the spacer 13 is suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)

Abstract

調光シートは、第1透明電極層と、第2透明電極層と、第1透明電極層と第2透明電極層とに挟まれた調光層であって、複数の空隙を含む透明高分子層と、液晶分子を含み、複数の空隙に充填されている液晶組成物とを含む調光層と、調光層のなかに位置する複数のスペーサーと、を備える。各スペーサーは、ポリメタクリル酸メチル樹脂によって形成されている。

Description

調光シート
 本開示は、例えば、車両の各種窓が備える透明部材に取り付けられる調光シートに関する。
 調光シートは、第1透明電極層、第2透明電極層、および、調光層を備えている。調光層は、第1透明電極層と第2透明電極層とに挟まれている。調光層は、例えば、透明高分子層と液晶組成物とを備えている。透明高分子層は複数の空隙を有し、各空隙には液晶組成物が充填されている。液晶組成物は、液晶分子を含んでいる。液晶分子は、一対の透明電極層間に電位差が生じていない状態と、一対の透明電極層間に電位差が生じている状態とにおいて、互いに異なる配向を有する。例えば、調光シートは、一対の透明電極層間に電位差が生じていない状態での配向によって不透明な状態を有し、かつ、一対の透明電極層間に電位差が生じた状態での配向によって透明な状態を有する(例えば、特許文献1を参照)。
特開2017-187775号公報
 調光シートは、透明な状態と不透明な状態とを有することが可能であるから、調光シートを介して隣り合う2つの空間において、第1の空間から第2の空間を区切る仕切りとして用いられる。例えば、調光シートは、建物が有する窓に嵌め込まれた透明部材、および、建物の室内空間を区切るパーティションなどに取り付けられる。近年では、調光シートの適用範囲の拡張に伴い、車両の各種窓が備える透明部材に対する調光シートの取り付けが提案されている。車両は、建物に比べて過酷な環境、特に高温での使用が想定されるから、調光シートには、車両が使用されうる環境においても高い信頼性を有することが求められる。
 本開示は、信頼性を高めることを可能とした調光シートを提供することを目的とする。
 調光シートの一態様は、第1透明電極層と、第2透明電極層と、前記第1透明電極層と前記第2透明電極層とに挟まれた調光層であって、複数の空隙を含む透明高分子層と、液晶分子を含み、前記複数の空隙に充填されている液晶組成物とを含む前記調光層と、前記調光層のなかに位置する複数のスペーサーとを備える。各スペーサーは、ポリメタクリル酸メチル樹脂によって形成されている。
ノーマル型の調光シートにおいて透明電極層間に電圧差が生じていない状態を示す断面図。 ノーマル型の調光シートにおいて透明電極層間に電圧差が生じている状態を示す断面図。 リバース型の調光シートにおいて透明電極層間に電圧差が生じていない状態を示す断面図。 リバース型の調光シートにおいて透明電極層間に電圧差が生じている状態を示す断面図。
 図1から図4を参照して、調光シートの一実施形態を説明する。以下では、調光シート、および、実施例を順に説明する。
 [調光シート]
 調光シートは、車両が備える窓に嵌め込まれた透明部材に取り付けられる。透明部材は、例えば、ウィンドシールドガラス、サイドウィンドウガラス、リヤウィンドウガラス、および、ルーフガラスなどであってよい。調光シートは、透明部材の形状に追従することが可能な可撓性を有している。そのため、調光シートが透明部材に貼り付けられている状態において、調光シートは曲面状を有してよい。調光シートの型式は、ノーマル型であってもよいし、リバース型であってもよい。
 図1、および、図2を参照して、ノーマル型の調光シート、および、ノーマル型の調光シートを備えた調光装置を説明する。図1は、ノーマル型の調光シートが不透明状態であるときの調光シートの断面構造を示し、図2は、ノーマル型の調光シートが透明状態であるときの調光シートの断面構造を示す。
 図1が示すように、調光シート10Nは、第1透明電極層11A、第2透明電極層11B、調光層12、および、スペーサー13を備えている。調光層12は、第1透明電極層11Aと第2透明電極層11Bとに挟まれている。調光層12は、透明高分子層12Aと液晶組成物12Bとを含んでいる。透明高分子層12Aは、複数の空隙12Dを含んでいる。液晶組成物12Bは、液晶分子12BLを含み、複数の空隙12Dに充填されている。各スペーサー13は、調光層12のなかに位置している。
 各スペーサー13は、ポリメタクリル酸メチル樹脂(PMMA)によって形成されている。PMMAは、以下に示す単位構造を含み、当該単位構造が繰り返された構造を有している。PMMAは、飽和炭化水素から構成されたメタクリル酸メチル(C)の重合体である。スペーサー13は、モノマーであるメタクリル酸メチルのみが重合されたPMMA、言い換えればメタクリル酸メチルの単独重合体によって形成されている。
Figure JPOXMLDOC01-appb-C000001
 従来、調光シート10Nが備えるスペーサー13には、芳香環を含む材料、例えば以下に示すジビニルベンゼンを主成分とするスペーサーが多用されていた。
Figure JPOXMLDOC01-appb-C000002
 芳香環を含む材料からなるスペーサーでは、過酷な環境での使用、特に高温な環境での使用において、芳香環を含む部分が遊離する。遊離した芳香環は、調光層12が含む液晶分子12BLとの相互作用によって液晶分子12BLの駆動を妨げるから、調光シート10Nに液晶分子12BLを駆動するための電圧が印加された状態において、調光シート10Nの光学特性が劣化する。そのため、ノーマル型の調光シート10Nでは、調光シート10Nが透明状態である場合に調光シート10Nの光学特性が劣化する。例えば、調光シート10Nが透明状態である場合に、調光シート10Nが有するヘイズが高くなる。
 この点で、本開示の調光シート10Nによれば、スペーサー13が、飽和炭化水素によって構成されたPMMAによって形成されるから、高温な環境において、調光シート10Nが有する光学特性の劣化が抑えられる。したがって、調光シート10Nの信頼性が高められる。上述したように、調光シート10Nは、車載用の調光シートである。車両の搭載される部品には、車両に課される高い安全基準を満たす必要がある。そのため、車載用の調光シート10Nにも、他の用途に比べて、より高い信頼性が求められる。この点、PMMA製のスペーサー13を備える調光シート10Nによれば、高温での信頼性を高めることが可能であるから、当該調光シート10Nは、車載用の調光シートとして好適である。
 調光シート10Nは、条件1を満たすことが好ましい。
 (条件1)透明高分子層12Aの屈折率と、スペーサー13の屈折率との差の絶対値が、0.04以下である。
 透明高分子層12Aの屈折率とスペーサー13の屈折率との差の絶対値が0.04以下であるから、調光シート10Nが透明状態である場合に、透明高分子層12Aとスペーサー13との間における屈折率の差による入射光の散乱に起因した調光シート10Nの白濁が抑えられる。ノーマル型の調光シート10Nでは、第1透明電極層11Aと第2透明電極層11Bとの間に電位差が生じ、これによって液晶分子が駆動された状態において、調光シート10Nは透明である。そのため、上述した屈折率の差の絶対値が0.04以下であることによって、透明電極層11A,11B間に電位差が生じている状態において、調光シート10Nの透明度を高めることが可能である。
 調光層12において、液晶組成物の保持型式は、ポリマーネットワーク型、高分子分散型、カプセル型からなる群から選択されるいずれか一種である。透明高分子層12Aは、液晶組成物の保持形式に応じた構造を有している。ポリマーネットワーク型は、3次元の網目状を有したポリマーネットワークを備える。ポリマーネットワークは、透明高分子層12Aの一例である。ポリマーネットワークは、相互に連通した網目の空隙のなかに液晶組成物を保持する。高分子分散型は、孤立した多数の空隙を区画する透明高分子層12Aを備え、透明高分子層12Aに分散した空隙のなかに液晶組成物を保持する。カプセル型は、カプセル状を有した液晶組成物を透明高分子層12Aのなかに保持する。なお、図1から図4には、液晶組成物の保持形式がポリマーネットワーク型である場合の調光シートが示されている。
 透明高分子層12Aは、紫外線重合性化合物の重合体である。透明高分子層12Aは、2種以上の紫外線重合性化合物から形成されてよい。例えば、2種以上の紫外線重合性化合物には、芳香環を含む紫外線重合性化合物が含まれてよい。すなわち、透明高分子層12Aは、2種以上の単位構造が重合した高分子によって形成されてよい。2種以上の単位構造のうちの1種以上は、芳香環を含む単位構造を含んでもよい。
 透明高分子層12Aは、透明高分子層12Aを構成する高分子が複雑に絡み合った構造を有するため、透明高分子層12Aを構成する単位構造が芳香環を含んでいても、スペーサー13が芳香環を含む材料によって構成される場合に比べて、芳香環の遊離が生じにくい。この点、上記調光シートによれば、透明高分子層12Aを構成する単位構造に芳香環を含む単位構造を用いることが可能であるから、透明高分子層12Aを形成する材料の選択における自由度、ひいては、透明高分子層が有する屈折率の自由度を高めることが可能である。
 調光層12は、例えば、塗膜に対する紫外線の照射によって形成される。塗膜は、透明高分子層12Aを形成するための紫外線重合性化合物と、液晶組成物12Bとの混合物である。
 透明高分子層12Aが芳香環を含む単位構造を含む場合には、透明高分子層12Aにおいて、2種以上の単位構造に含まれる芳香環の平均値が、1つの単位構造当たり0.4以上であってよい。液晶分子12BLは、芳香環を含んでもよい。液晶分子12BLが芳香環を含む場合には、透明高分子層12Aが含む単位構造、すなわち、透明高分子層12Aを形成するためのモノマーが芳香環を含むことによって、調光シート10Nを形成するための塗液において、液晶分子12BLに対するモノマーの相溶性を高めることが可能である。これにより、塗液において液晶分子12BLおよびモノマーの分布が偏りを有しない、すなわち塗液において液晶分子12BLおよびモノマーがそれぞれ分散している。これにより、塗液を用いて形成された塗膜に紫外線を照射し、これによって相分離を生じさせることによって、1μm以上10μm以下の大きさを有した空隙12Dを形成することが可能である。こうした大きさの空隙12Dを可能にするために、液晶分子12BLに対するモノマーの相溶性を高める観点において、透明高分子層12Aにおいて、1つの単位構造に含まれる芳香環の数における平均値が0.4以上であることが好ましい。
 なお、空隙12Dの大きさは、透明高分子層12Aが広がる面と垂直な面に沿う断面において把握される。当該断面において、空隙12Dの大きさは、空隙12Dの縁における任意の2点を結んだ線分のうち、最長の線分が有する長さである。例えば、空隙12Dが円形状を有する場合には、空隙12Dの直径が空隙12Dの大きさである。空隙12Dが楕円状を有する場合には、空隙12Dの長軸が空隙12Dの大きさである。空隙12Dが円形状および楕円形状以外の形状を有する場合には、空隙12Dに外接する円における直径が、空隙12Dの大きさであってよい。
 一方で、調光シート10Nが、ジビニルベンゼンを主成分とするスペーサー13を備える場合には、高温下での調光シート10Nの信頼性を高める観点、すなわち、高温に曝されることによって透明時におけるヘイズの値が高まることを抑える観点では、透明高分子層12Aが芳香環を含むことが好ましい。これにより、液晶分子が含む芳香環と、スペーサー13が含む芳香環との間での相互作用が透明高分子層12Aが含む芳香環によって抑えられ、高温での信頼性が高められると考えられる。しかしながら、液晶分子12BLに対するモノマーの相溶性を高める観点では、透明高分子層12Aにおける芳香環の数を増やしすぎることは、相溶性を低めることに繋がる。
 この点で、本開示の調光シート10Nによれば、スペーサー13を形成する材料を芳香環を含む材料からPMMAに変更することによって、高温下での信頼性を高めることが可能である。そのため、透明高分子層12Aにおいて、1つの単位構造当たりにおける芳香環の数を、透明高分子層12Aを形成するためのモノマーと液晶分子12BLとの相溶性の観点から設定することも可能である。
 液晶組成物12Bは、空隙12Dに充填されている。液晶分子12BLは、例えば、シッフ塩基系、アゾ系、アゾキシ系、ビフェニル系、ターフェニル系、安息香酸エステル系、トラン系、ピリミジン系、シクロヘキサンカルボン酸エステル系、フェニルシクロヘキサン系、ジオキサン系からなる群から選択される一種である。液晶分子12BLは、上述したように芳香環を含んでいてもよい。液晶組成物12Bは、第1の液晶分子12BLと、第1の液晶分子12BLとは異なる種類の第2の液晶分子12BLを含んでもよい。液晶組成物12Bの主成分は、液晶分子12BLである。
 液晶組成物12Bにおける主成分の重量濃度は、液晶組成物12Bに対して80%以上である。液晶組成物12Bは、主成分以外の成分として、二色性色素、耐候剤、および、調光層12の形成に際して混入する不可避成分を含んでもよい。耐候剤は、液晶組成物12Bの劣化を抑制するための紫外線吸収剤、あるいは、光安定剤である。不可避成分は、例えば、透明高分子層12Aの形成に用いられる紫外線重合性化合物の未反応成分である。
 複数のスペーサー13は、調光層12のなかに分散している。調光層12の厚さ方向において、スペーサー13の有する長さは、調光層12の厚みとほぼ等しい。複数のスペーサー13は、調光層12の厚さにばらつきが生じることを抑える。なお、調光シート10Nは、第1の大きさを有したスペーサーと、第2の大きさを有したスペーサーとを含んでもよい。スペーサー13は、例えば、粒状スペーサーである。粒状スペーサーは、球状スペーサー、および、非球状スペーサーを含む。非球状スペーサーは、直方体状スペーサー、十字状スペーサー、および、棒状スペーサーを含む。上述したように、各スペーサー13は、PMMAによって形成されている。
 スペーサー13は、調光層12と接する他の層に対して定着性を有してもよい。例えば、スペーサー13は、透明電極層11A,11B、あるいは、調光層12と接する樹脂層と接着するように表面処理が施されたスペーサーであってもよい。
 一対の透明電極層11A,11Bは、調光層12の厚さ方向において、調光層12を挟んでいる。各透明電極層11A,11Bは、可視光領域の光を透過する。各透明電極層11A,11Bを形成する材料は、例えば、酸化インジウムスズ、フッ素ドープ酸化スズ、酸化スズ、酸化亜鉛、カーボンナノチューブ、ポリ(3,4-エチレンジオキシチオフェン)、銀からなる群から選択されるいずれか一種である。
 調光シート10Nは、第1透明基材14Aおよび第2透明基材14Bを備えている。一対の透明基材14A,14Bは、調光層12の厚さ方向において、一対の透明電極層11A,11Bを挟んでいる。各透明基材14A,14Bは、可視光領域の光を透過する。各透明基材14A,14Bを形成する材料は、例えば、透明ガラス、または、透明合成樹脂などである。
 調光層12は、透明状態と不透明状態とを有する。調光層12は、液晶分子12BLの配向を変える電圧の印加に応じて、液晶分子12BLの配向を変える。調光層12は、液晶分子12BLの配向の変化に基づいて、透明状態と不透明状態とに切り替わる。調光層12の透明状態は、観測対象の輪郭を、調光シート10Nを通して視覚認識可能とする状態である。調光層12の不透明状態は、観測対象の輪郭を、調光シート10Nを通して視覚認識不能とする状態である。
 図1の調光シート10Nは、配向を変える電圧が印加されていない状態を示す。配向を変える電圧が調光層12に印加されていないとき、各空隙12Dに位置する液晶分子12BLの配向方向はランダムである。一対の透明基材14A,14Bのいずれかから調光シート10Nに入射した光は、調光層12において様々な方向に散乱される。結果として、ノーマル型の調光層12は、電圧が印加されていないときに、濁った状態である不透明状態を有する。不透明状態の調光層12は、白色であり、かつ、濁りを有した状態であってもよいし、有色であり、かつ、濁りを有した状態であってもよい。調光層12が有色である場合には、調光層12は色素を含む。
 図2が示すように、液晶分子12BLの配向を変える電圧が駆動回路10Dから調光層12に印加されると、複数の液晶分子12BLの配向がランダムな配向から光を透過する方向に変わる。例えば、各液晶分子12BLは、調光層12が広がる平面に対して、液晶分子12BLの長軸がほぼ垂直であるように、配向を変える。一対の透明基材14A,14Bのいずれかから調光シート10Nに入射した光は、調光層12においてほぼ散乱されることなく、調光層12を透過する。結果として、ノーマル型の調光層12は、電圧が印加されるときに透明状態を有する。
 図3、および、図4を参照して、リバース型の調光シート、および、リバース型の調光シートを備えた調光装置を説明する。図3は、リバース型の調光層12が透明状態であるときの断面構造を示し、図4は、リバース型の調光層12が不透明状態であるときの断面構造を示す。
 図3が示すように、リバース型の調光シート10Rは、一対の透明電極層11A,11B、調光層12、および、一対の透明基材14A,14Bに加えて、一対の配向層15A,15Bを備えている。一対の配向層15A,15Bは、調光層12の厚さ方向において調光層12を挟み、かつ、調光層12の厚さ方向において一対の透明電極層11A,11Bよりも調光シート10Rの中央部寄りに位置している。
 第1配向層15Aは、調光層12と第1透明電極層11Aとの間に位置している。第1配向層15Aは、液晶分子12BLに配向規制力を作用させる。第2配向層15Bは、調光層12と第2透明電極層11Bとの間に位置している。第2配向層15Bは、液晶分子12BLに配向規制力を作用させる。各配向層15A,15Bを形成する材料は、有機化合物、無機化合物、または、これらの混合物であってよい。有機化合物は、例えば、ポリイミド、ポリアミド、ポリビニルアルコール、シアン化化合物などであってよい。無機化合物は、シリコン酸化物、酸化ジルコニウムなどであってよい。また、各配向層15A,15Bを形成する材料は、シリコーンであってもよい。
 各配向層15A,15Bが垂直配向層である場合、液晶分子12BLの配向を変える電圧が調光層12に印加されていないとき、各空隙12Dに位置する液晶分子12BLの配向方向は、垂直配向である。そして、一対の透明基材14A,14Bのいずれかから調光シート10Rに入射した光は、調光層12においてほぼ散乱されることなく、調光層12を透過する。結果として、リバース型の調光層12は、液晶分子12BLの配向を変える電圧が印加されていないときに、透明状態を有する。
 図4が示すように、液晶分子12BLの配向を変える電圧が駆動回路10Dから調光層12に印加されるとき、複数の液晶分子12BLの配向は、例えば、垂直配向から水平配向に変わる。このとき、各液晶分子12BLは、液晶分子12BLの長軸が、調光層12が広がる平面に沿って延びるように、空隙12Dに位置する。一対の透明基材14A,14Bのいずれかから調光シート10Rに入射した光は、調光層12によって散乱される。結果として、リバース型の調光層12は、液晶分子12BLの配向を変える電圧が印加されるときに、不透明状態を有する。
 [実施例]
 表1を参照して実施例および比較例を説明する。なお、以下に説明する実施例および比較例では、以下に記載の第1モノマーから第7モノマーのうち、複数のモノマーによって透明高分子層を形成した。
 [モノマー名]
 ・第1モノマー アクリル酸ヘキシル(屈折率1.428)
 ・第2モノマー アクリル酸ドデシル(屈折率1.443)
 ・第3モノマー エトキシ化o‐フェニルフェノールアクリレート(屈折率1.577)
 ・第4モノマー シクロヘキシルアクリレート(屈折率1.460)
 ・第5モノマー ペンタエリスリトールトリアクリレート(屈折率1.480)
 ・第6モノマー 9,9‐ビス[4‐(2‐アクリロイルオキシエトキシ)フェニル]フルオレン(屈折率1.622)
 ・第7モノマー ウレタンアクリレート(サートマー・ジャパン(株)製、CN962)(屈折率1.482)
 [実施例1]
 調光層を形成するための塗液における全固形分量に対して、芳香環を含む液晶分子を含む液晶(メルク社製、MLC‐6609)を50質量%、第1モノマーを9質量%、第4モノマーを18質量%、第5モノマーを6質量%、第7モノマーを15質量%に設定した。これにより、塗液のうちで、透明高分子層を形成する材料が硬化された状態での屈折率を1.50に調整した。また、塗液における全固形分量に対して、重合開始剤(IGM Resins社製、Omnirad 184(Irgacure 184))(OmniradおよびIrgacureは登録商標)を1質量%、15μmの直径を有し、かつ、PMMA製のスペーサー(早川ゴム(株)製、SD‐BD15)(屈折率1.50)を1質量%に設定した。
 透明導電膜を支持する透明基材を一対準備した。一対の透明導電膜間に塗液を挟んだ状態で、塗液に紫外線を照射することによって、塗液を硬化させた。これにより、実施例1の調光シートを得た。
 [実施例2]
 実施例1において、塗液の組成を以下のように変更した以外は、実施例1と同様の方法によって、実施例2の調光シートを得た。すなわち、塗液における全固形分量に対して、第2モノマーを9質量%、第4モノマーを18質量%、第5モノマーを6質量%、第7モノマーを15質量%に設定した。また、それ以外のモノマーを0質量%に設定した。これにより、透明高分子層を形成する材料が硬化された状態での屈折率を1.51に調整した。
 [実施例3]
 実施例1において用いたスペーサーとは異なる直径を有したスペーサー(早川ゴム(株)製、SD‐BD17)(屈折率1.50)であって、17μmの直径をしたスペーサーに変更した以外は、実施例1と同様の方法によって、実施例3の調光シートを得た。
 [実施例4]
 実施例3において、塗液の組成を以下のように変更した以外は、実施例3と同様の方法によって、実施例4の調光シートを得た。すなわち、塗液における全固形分量に対して、第3モノマーを9質量%、第4モノマーを18質量%、第6モノマーを6質量%、第7モノマーを15質量%に設定した。また、それ以外のモノマーを0質量%に設定した。これにより、透明高分子層を形成する材料が硬化された状態での屈折率を1.55に調整した。
 [実施例5]
 実施例3において、塗液の組成を以下のように変更した以外は、実施例3と同様の方法によって、実施例5の調光シートを得た。すなわち、塗液における全固形分量に対して、第2モノマーを18質量%、第3モノマーを10質量%、第6モノマーを5質量%、第7モノマーを15質量%に設定した。また、それ以外のモノマーを0質量%に設定した。これにより、透明樹脂層を形成する硬化された状態での屈折率を1.54に調整した。
 [実施例6]
 実施例3において、塗液の組成を以下のように変更した以外は、実施例3と同様の方法によって、実施例6の調光シートを得た。すなわち、塗液における全固形分量に対して、第3モノマーを27質量%に設定し、第6モノマーを6質量%に設定し、第7モノマーを15質量%に設定した。また、それ以外のモノマーを0質量%に設定した。これにより、透明高分子層を形成する材料が硬化された状態での屈折率を1.59に調整した。
 [比較例1]
 実施例4において、ジビニルベンゼン共重合体製のスペーサー(積水化学(株)製、SP‐215)(屈折率1.57)を用いた以外は、実施例4と同様の方法によって、比較例1の調光シートを得た。
 [比較例2]
 実施例1において、ジビニルベンゼン共重合体製のスペーサー(積水化学(株)製、SP‐215)(屈折率1.57)を用いた以外は、実施例1と同様の方法によって、比較例2の調光シートを得た。
 [比較例3]
 実施例6において、ジビニルベンゼン共重合体製のスペーサー(積水化学(株)製、SP‐215)(屈折率1.57)に変更した以外は、実施例1と同様の方法によって、比較例3の調光シートを得た。
 [比較例4]
 比較例3において、塗液の組成を以下のように変更した以外は、比較例3と同様の方法によって、比較例4の調光シートを得た。すなわち、塗液における全固形分量に対して、第2モノマーを27質量%に設定し、第5モノマーを6質量%に設定し、第7モノマーを15質量%に設定した。また、それ以外のモノマーを0質量%に設定した。これにより、透明高分子層を形成する材料が硬化された状態での屈折率を1.50に調整した。
Figure JPOXMLDOC01-appb-T000003
 [評価方法]
 各調光シートについて、透明状態でのヘイズを測定した。この際に、JIS K 7136:2000に準拠した方法を用いて、調光シートのヘイズを測定した。また、調光シートにおけるヘイズの値が飽和する電圧を一対の透明電極層間に印加したときのヘイズを透明状態でのヘイズとして測定した。その後、各調光シートを110℃に維持された空間内に720時間にわたって静置することによって、各調光シートに対する加速試験を行った。そして、加速試験後の各調光シートについて、試験前と同様の方法によって透明状態でのヘイズを測定した。
 なお、試験前および試験後の各々において、ヘイズの値が4%未満である場合を「◎」に設定し、ヘイズの値が4%以上5%未満である場合を「○」に設定し、ヘイズの値が5%以上6%以下である場合を「△」に設定し、ヘイズの値が6%を超える場合を「×」に設定した。
 [評価結果]
 加速試験前と加速試験後の各々においてヘイズを測定した結果は、以下の表2に示す通りであった。なお、液晶を除いた組成においてモノマーを硬化させた場合に得られる透明高分子層の屈折率は、液状体での屈折率よりも0.04だけ高いことが認められている。液晶を含む組成においてモノマーを硬化させた場合においても液晶と分離された状態でモノマーの硬化が進むため得られる透明高分子層の屈折率は液状体での屈折率よりも0.04だけ高いと推定される。
 また、各調光シートが備える透明高分子層について、透明高分子層を形成するための各モノマーのモル分率を算出した後、各モノマーに含まれる芳香環の数をそのモノマーのモル分率と乗算し、これによって、単位構造当たりにおいて各モノマーに由来する芳香環の数を算出した。次いで、各モノマーに由来する芳香環の数の総和を算出し、これによって、透明高分子層の単位構造当たりにおける芳香環の平均値を算出した。
Figure JPOXMLDOC01-appb-T000004
 表2が示すように、加速試験前において、実施例1から実施例3、実施例5、比較例1、および、比較例3の調光シートでは、ヘイズの値が「◎」であることが認められた。また、加速試験前において、実施例4の調光シートでは、ヘイズの値が「○」であることが認められた。これに対して、加速試験前において、実施例6、比較例2、および、比較例4の調光シートでは、ヘイズの値が「△」であることが認められた。
 加速試験後において、実施例1から実施例3の調光シートでは、ヘイズの値が「○」であることが認められた。また、加速試験後において、実施例4から実施例6の調光シートでは、ヘイズの値が「△」であることが認められた。これに対して、比較例1から比較例4の調光シートでは、ヘイズの値が「×」であることが認められた。このように、実施例1から実施例6の調光シートでは、加速試験の前後においてヘイズの値が変化しない一方で、比較例1から比較例4の調光シートでは、加速試験の前後においてヘイズの値が変化することが認められた。こうした結果から、実施例1から実施例6の調光シートによれば、PMMA製のスペーサーを用いることによって、高温下での調光シートの信頼性が高められることが認められた。
 なお、比較例3の調光シートにおける加速試験後のヘイズと、比較例4の調光シートにおける加速試験後のヘイズとを比較した場合に、比較例4の調光シートにおけるヘイズが、比較例3の調光シートにおけるヘイズに対して大幅に大きいことが認められた。すなわち、ジビニルベンゼンを含むスペーサーを備える調光シートでは、透明高分子層が含む単位構造が芳香環を含むことによって、高温下での調光シートの信頼性を高めることは可能ではあるといえる。
 また、加速試験前において、実施例1から実施例3、実施例5、比較例1、および、比較例3ではヘイズの値が「◎」であるから、透明状態でのヘイズの値を低める上では、透明高分子層の屈折率とスペーサーの屈折率との差の絶対値は、0.05未満であることが好ましいと言える。すなわち、加熱試験前における透明状態でのヘイズの値、言い換えれば透明状態でのヘイズの値における初期値を低める上では、透明高分子層の屈折率とスペーサーの屈折率との差の絶対値は、0.05未満であることが好ましいといえる。
 なお、実施例4から6では、加速試験後におけるヘイズの値から加速試験前におけるヘイズの値を減算したヘイズの値における変化量が、実施例1から3での変化量よりも小さいことが認められた。特に、実施例4から6において、実施例6でのヘイズの値における変化量が最も小さいことが認められた。こうした結果から、透明高分子層に芳香環が含まれることによって、加熱試験前後でのヘイズの値における変化量を小さくすることが可能であるといえる。
 以上説明したように、調光シートの一実施形態によれば以下に記載の効果を得ることができる。
 (1)スペーサー13が、飽和炭化水素によって構成されたPMMAによって形成されるから、高温な環境において、調光シート10N,10Rが有する光学特性の劣化が抑えられる。したがって、調光シート10N,10Rの信頼性が高められる。
 (2)透明高分子層12Aの屈折率とスペーサー13の屈折率との差の絶対値が0.04以下であるから、調光シート10N,10Rが透明状態である場合に、透明高分子層12Aとスペーサー13との間における屈折率の差による入射光の散乱に起因した調光シート10N,10Rの白濁が抑えられる。
 (3)透明高分子層12Aを構成する単位構造に芳香環を含む単位構造を用いる場合には、透明高分子層12Aを形成する材料の選択における自由度、ひいては、透明高分子層が有する屈折率の自由度を高めることが可能である。
 10N,10R…調光シート
 11A…第1透明電極層
 11B…第2透明電極層
 12…調光層
 13…スペーサー
 14A…第1透明基材
 14B…第2透明基材
 15A…第1配向層
 15B…第2配向層

Claims (4)

  1.  第1透明電極層と、
     第2透明電極層と、
     前記第1透明電極層と前記第2透明電極層とに挟まれた調光層であって、複数の空隙を含む透明高分子層と、液晶分子を含み、前記複数の空隙に充填されている液晶組成物とを含む前記調光層と、
     前記調光層のなかに位置する複数のスペーサーと、を備え、
     各スペーサーは、ポリメタクリル酸メチル樹脂によって形成されている
     調光シート。
  2.  前記透明高分子層の屈折率と、前記スペーサーの屈折率との差の絶対値が、0.04以下である
     請求項1に記載の調光シート。
  3.  前記透明高分子層は、2種以上の単位構造が重合した高分子によって形成され、三次元の網目状を有し、
     前記2種以上の単位構造のうちの1種以上は、芳香環を含む単位構造を含む
     請求項1または2に記載の調光シート。
  4.  前記透明高分子層において、前記2種以上の単位構造に含まれる前記芳香環の平均値が、1つの単位構造あたり0.4以上である
     請求項3に記載の調光シート。
PCT/JP2021/041745 2020-11-13 2021-11-12 調光シート WO2022102749A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21891994.2A EP4246219A4 (en) 2020-11-13 2021-11-12 LIGHT CONTROL SHEET
CN202180071707.XA CN116529659A (zh) 2020-11-13 2021-11-12 调光片
US18/309,959 US20230266614A1 (en) 2020-11-13 2023-05-01 Light control sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-189124 2020-11-13
JP2020189124A JP7047885B1 (ja) 2020-11-13 2020-11-13 調光シート

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/309,959 Continuation US20230266614A1 (en) 2020-11-13 2023-05-01 Light control sheet

Publications (1)

Publication Number Publication Date
WO2022102749A1 true WO2022102749A1 (ja) 2022-05-19

Family

ID=81259116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041745 WO2022102749A1 (ja) 2020-11-13 2021-11-12 調光シート

Country Status (5)

Country Link
US (1) US20230266614A1 (ja)
EP (1) EP4246219A4 (ja)
JP (2) JP7047885B1 (ja)
CN (1) CN116529659A (ja)
WO (1) WO2022102749A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070648A1 (ja) * 2022-09-28 2024-04-04 日東電工株式会社 高分子分散型液晶フィルム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119656A (ja) * 1998-10-20 2000-04-25 Asahi Glass Co Ltd 液晶光学素子およびその製造方法
JP2005326801A (ja) * 2003-09-24 2005-11-24 Sharp Corp 液晶表示装置
JP2015503773A (ja) * 2011-12-29 2015-02-02 サン−ゴバン グラス フランス 液晶による可変の散乱を有する複層グレージング

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2992648B2 (ja) * 1990-12-20 1999-12-20 株式会社半導体エネルギー研究所 液晶電気光学装置の作製方法
KR0171444B1 (ko) * 1993-12-27 1999-03-20 모리시다 요이치 고분자 분산형 액정패널, 그 제조방법 및 액정표시장치
JP2531468B2 (ja) * 1994-09-21 1996-09-04 日本電気株式会社 液晶光学素子
JP3949535B2 (ja) * 2002-08-06 2007-07-25 日本板硝子株式会社 調光体、合わせガラス、及び調光体の製造方法
US8187493B2 (en) 2006-04-13 2012-05-29 Université de Mons PDLC films
CN103631045A (zh) * 2012-08-28 2014-03-12 北京京东方光电科技有限公司 一种液晶显示面板及其制作方法
FR2997517B1 (fr) 2012-10-31 2015-11-20 Saint Gobain Systeme a diffusion lumineuse variable comprenant une couche pdlc
EP3489741B1 (en) * 2016-07-19 2022-06-22 Sekisui Chemical Co., Ltd. Light control laminate and resin spacer for light control laminates
JP7440499B2 (ja) * 2018-09-27 2024-02-28 サン-ゴバン グラス フランス 液晶による可変の拡散を有する電気的に制御可能な装置及びその方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119656A (ja) * 1998-10-20 2000-04-25 Asahi Glass Co Ltd 液晶光学素子およびその製造方法
JP2005326801A (ja) * 2003-09-24 2005-11-24 Sharp Corp 液晶表示装置
JP2015503773A (ja) * 2011-12-29 2015-02-02 サン−ゴバン グラス フランス 液晶による可変の散乱を有する複層グレージング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4246219A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070648A1 (ja) * 2022-09-28 2024-04-04 日東電工株式会社 高分子分散型液晶フィルム

Also Published As

Publication number Publication date
JP2022078443A (ja) 2022-05-25
EP4246219A1 (en) 2023-09-20
JP7047885B1 (ja) 2022-04-05
JP2022078998A (ja) 2022-05-25
CN116529659A (zh) 2023-08-01
JP7533512B2 (ja) 2024-08-14
US20230266614A1 (en) 2023-08-24
EP4246219A4 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
TWI832804B (zh) 調光積層體及調光積層體用樹脂間隔件
KR101822700B1 (ko) 점착제 조성물, 이로부터 형성된 점착필름 및 이를 포함하는 디스플레이 부재
CN101454692A (zh) 具有低折射率层的光学叠层体
JP5600874B2 (ja) 調光フィルム
WO2022202986A1 (ja) 調光シート、調光シートの製造方法、および高分子分散型用液晶組成物
WO2022102749A1 (ja) 調光シート
JP2023112207A (ja) 調光積層体及び調光積層体用樹脂スペーサ
JP2012037558A (ja) 調光性構造体
US20240027836A1 (en) Light control sheet, light control device, photosensitive composition, and method for producing light control sheet
EP4439163A1 (en) Colored resin particles and dimming laminate
JP2022148342A (ja) 調光シート、調光装置、調光シートの製造方法、および調光シートの評価方法
EP4439161A1 (en) Adhesive particles and laminate
EP4439164A1 (en) Colored resin particle and dimmer laminate
WO2023090457A1 (ja) 接着性粒子及び積層体
CN110709449B (zh) 复合粒子、复合粒子粉末以及调光材料
JP2023028551A (ja) 調光シートの製造方法および調光シートの評価方法
JP2024028493A (ja) 調光シート、および、スクリーン
JP2024026634A (ja) 調光シート
JP2023155712A (ja) 調光装置
JP2023155711A (ja) 調光装置
JP2023157287A (ja) 調光装置
JP2024081856A (ja) 調光シート
TW202436594A (zh) 調光積層體及調光積層體用樹脂間隔件
JP2018049219A (ja) 電磁波調整材料及び電磁波調整素子
JPH05188358A (ja) 液晶デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891994

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180071707.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021891994

Country of ref document: EP

Effective date: 20230613