WO2022202986A1 - 調光シート、調光シートの製造方法、および高分子分散型用液晶組成物 - Google Patents

調光シート、調光シートの製造方法、および高分子分散型用液晶組成物 Download PDF

Info

Publication number
WO2022202986A1
WO2022202986A1 PCT/JP2022/013928 JP2022013928W WO2022202986A1 WO 2022202986 A1 WO2022202986 A1 WO 2022202986A1 JP 2022013928 W JP2022013928 W JP 2022013928W WO 2022202986 A1 WO2022202986 A1 WO 2022202986A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polymerizable
crystal composition
light control
compound
Prior art date
Application number
PCT/JP2022/013928
Other languages
English (en)
French (fr)
Inventor
泰佑 塩谷
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to CN202280017873.6A priority Critical patent/CN116981984A/zh
Priority to EP22775767.1A priority patent/EP4318109A1/en
Publication of WO2022202986A1 publication Critical patent/WO2022202986A1/ja
Priority to US18/471,553 priority patent/US20240010917A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K19/544Macromolecular compounds as dispersing or encapsulating medium around the liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes

Definitions

  • the present disclosure relates to a light control sheet containing a non-polymerizable liquid crystal compound, a method for producing the light control sheet, and a polymer-dispersed liquid crystal composition.
  • the light control sheet includes a first transparent electrode layer, a second transparent electrode layer, and a light control layer sandwiched between the first transparent electrode layer and the second transparent electrode layer.
  • the orientation state of the non-polymerizable liquid crystal compound contained in the light control layer changes the light transmittance of the light control sheet following changes in the potential difference between the two transparent electrode layers. For example, when the alignment order of the non-polymerizable liquid crystal compound is constructed, the light control sheet exhibits high light transmittance. When the long axis direction of the non-polymerizable liquid crystal compound is disordered, the light control sheet exhibits low light transmittance (see Patent Document 1, for example).
  • the responsiveness of light transmittance to changes in the potential difference between the two transparent electrode layers changes based on the environmental temperature where the light control sheet is installed.
  • a light control sheet for solving the above problems includes an organic polymer layer that partitions a plurality of voids, and a liquid crystal composition that contains a non-polymerizable liquid crystal compound and fills the voids, wherein the non-polymerizable liquid crystal compound
  • the liquid crystal composition contains a non-polymerizable viscosity reducing agent represented by the following formula (1).
  • X in formula (1) is a linear or branched alkyl group or aryl group having 1 to 6 carbon atoms
  • R 1 , R 2 and R 3 are each independently a hydrogen atom or It is a functional group represented by (2)
  • r4 is a linear or branched alkyl group having 1 to 10 carbon atoms or an ether group
  • r 5 in formula (2) is a linear or branched alkyl group having 1 to 10 carbon atoms, or an ether group.
  • a light control sheet for solving the above problems includes an organic polymer layer that partitions a plurality of voids, and a liquid crystal composition that contains a non-polymerizable liquid crystal compound and fills the voids, wherein the non-polymerizable liquid crystal compound
  • the liquid crystal composition contains a non-polymerizable viscosity reducing agent represented by the following formula (3).
  • r 6 , r 7 and r 8 in formula (3) are each independently a linear alkyl group having 3 or more and 8 or less carbon atoms.
  • a method for manufacturing a light control sheet for solving the above problems includes an organic polymer layer partitioning a plurality of gaps, and a liquid crystal composition containing a non-polymerizable liquid crystal compound and filling the gaps, wherein the non-polymerizable liquid crystal
  • a method for manufacturing a light control sheet that changes the transmittance of visible light by driving a compound, wherein the liquid crystal composition is polymerized in a layer containing the liquid crystal composition and the ultraviolet curable compound, thereby polymerizing the ultraviolet curable compound.
  • the liquid crystal composition comprises a non-polymerizable viscosity reducing agent represented by the above formula (1), and the organic polymer layer and the liquid crystal
  • the ratio of the weight of the organic polymer layer to the total weight of the composition is 30% by mass or more and 60% by mass or less, and the ratio of the weight of the non-polymerizable viscosity-lowering agent to the weight of the non-polymerizable liquid crystal compound is It is 1% or more and 8% or less.
  • a method for manufacturing a light control sheet for solving the above problems includes an organic polymer layer partitioning a plurality of gaps, and a liquid crystal composition containing a non-polymerizable liquid crystal compound and filling the gaps, wherein the non-polymerizable liquid crystal
  • a method for manufacturing a light control sheet that changes the transmittance of visible light by driving a compound, wherein the liquid crystal composition is polymerized in a layer containing the liquid crystal composition and the ultraviolet curable compound, thereby polymerizing the ultraviolet curable compound.
  • the liquid crystal composition comprises a non-polymerizable viscosity reducing agent represented by the above formula (3), and the organic polymer layer and the liquid crystal
  • the ratio of the weight of the organic polymer layer to the total weight of the composition is 30% by mass or more and 60% by mass or less, and the ratio of the weight of the non-polymerizable viscosity-lowering agent to the weight of the non-polymerizable liquid crystal compound is It is 1% or more and 8% or less.
  • a polymer-dispersed liquid crystal composition for solving the above problems is obtained by polymerizing the UV-curable compound in a layer containing the liquid crystal composition and the UV-curable compound, thereby phase-separating from the organic polymer layer.
  • a liquid crystal composition for a polymer dispersion type wherein the liquid crystal composition contains a non-polymerizable liquid crystal compound and a non-polymerizable viscosity reducing agent represented by the above formula (1), and the UV-curable compound and the liquid crystal composition, the weight ratio of the ultraviolet curable compound is 30% by mass or more and 60% by mass or less, and the weight of the non-polymerizable viscosity-lowering agent relative to the weight of the non-polymerizable liquid crystal compound is 1% or more and 8% or less.
  • a polymer-dispersed liquid crystal composition for solving the above problems is obtained by polymerizing the UV-curable compound in a layer containing the liquid crystal composition and the UV-curable compound, thereby phase-separating from the organic polymer layer.
  • a liquid crystal composition for a polymer dispersion type the liquid crystal composition comprising a non-polymerizable liquid crystal compound and a non-polymerizable viscosity reducing agent represented by the above formula (3), wherein the UV-curable compound and the liquid crystal composition, the weight ratio of the ultraviolet curable compound is 30% by mass or more and 60% by mass or less, and the weight of the non-polymerizable viscosity-lowering agent relative to the weight of the non-polymerizable liquid crystal compound is 1% or more and 8% or less.
  • the interaction between the localization of electrons in the non-polymerizable liquid crystal compound and the localization of electrons in the non-polymerizable viscosity-lowering agent causes the Terminal alkyl groups are likely to intervene between adjacent non-polymerizable liquid crystal compounds.
  • the configuration in which the liquid crystal composition fills the gaps partitioned by the organic polymer layer uses a photopolymerizable compound and a liquid crystal composition for forming the organic polymer layer, and through polymerization of the photopolymerizable compound, organic It is formed by phase separation of the liquid crystal composition from the polymer layer.
  • the non-polymerizable viscosity reducing agent is suitable for phase separation from the organic polymer layer.
  • the low-molecular-weight structures represented by the above formulas (1) to (3) are also suitable for diffusing from the polymer of the photopolymerizable compound, that is, phase-separating from the organic polymer layer.
  • the ratio of the weight of the organic polymer layer to the total weight of the organic polymer layer and the liquid crystal composition may be 30% by mass or more and 60% by mass or less.
  • the weight ratio of the non-polymerizable viscosity reducing agent to the weight of the non-polymerizable liquid crystal compound may be 1% or more and 8% or less. Also in this configuration, it is possible to suppress the deterioration of the alignment order of the non-polymerizable liquid crystal compound at a low ambient temperature such as -20°C. Moreover, according to this configuration, the feasibility of obtaining the above effects is enhanced, and the transition of the non-polymerizable liquid crystal compound to the disordered phase at a high environmental temperature such as 100° C. can be easily controlled.
  • X in the formula (1) is a linear alkyl group having 1 to 6 carbon atoms
  • R 1 in the formula (1) is represented by the formula (2). It is a functional group
  • R 2 and R 3 in the above formula (1) may each independently be a hydrogen atom.
  • the non-polymerizable liquid crystal compound may have an NI point of 100° C. or higher and 145° C. or lower.
  • the non-polymerizable viscosity reducing agent is any one selected from the group consisting of diisodecyl adipate, dibutyl adipate, dioctyl adipate, bis(2-butoxyethyl) adipate, and diisononyl adipate.
  • one is fine. According to this configuration, it is possible to suppress the deterioration of the alignment order of the non-polymerizable liquid crystal compound at a low environmental temperature such as -20°C.
  • the ratio of the weight of all the non-polymerizable viscosity-lowering agents contained in the liquid crystal composition to the total weight of the non-polymerizable liquid crystal compound and the non-polymerizable viscosity-lowering agent is 2% by mass. It may be more than or equal to 6% by mass or less.
  • the light control sheet further includes a first transparent electrode layer and a second transparent electrode layer, the organic polymer layer is positioned between the transparent electrode layers, and the liquid crystal composition is applied from the organic polymer layer. It may be composed of phase-separated liquid crystal particles, and may be configured to change from a transparent state to an opaque state by releasing the voltage application between the transparent electrode layers. According to this configuration, it is possible to improve the responsiveness of the light transmittance at a low environmental temperature such as -20° C. in the normal type light control sheet.
  • the light control sheet further includes a first transparent electrode layer and a second transparent electrode layer, the organic polymer layer is positioned between the transparent electrode layers, and the liquid crystal composition is applied from the organic polymer layer. It may be composed of phase-separated liquid crystal particles, and may be configured to change from a transparent state to an opaque state by applying a voltage between the transparent electrode layers. According to this configuration, it is possible to improve the responsiveness of the light transmittance at an environmental temperature as low as -20° C. in the reverse type light control sheet.
  • a light control sheet, a method for manufacturing the light control sheet, and a liquid crystal composition for a polymer dispersion type are provided, which can shorten the time required to change the light transmittance in response to a change in potential difference. can.
  • FIG. 2 is a configuration diagram showing a cross-sectional configuration of a light control sheet according to one embodiment
  • 4 is a table showing the composition and evaluation results of the polymer-dispersed liquid crystal composition of each example.
  • 4 is a table showing the composition and evaluation results of the polymer-dispersed liquid crystal composition of each example.
  • 4 is a table showing the composition and evaluation results of the polymer-dispersed liquid crystal composition of each example.
  • 4 is a table showing the composition and evaluation results of the polymer-dispersed liquid crystal composition of each example.
  • 4 is a table showing the composition and evaluation results of the polymer-dispersed liquid crystal composition of each comparative example.
  • the light control sheet is attached to the transparent base material.
  • the transparent base material is a glass body or a resin body. Examples of transparent substrates are window glass mounted on moving bodies such as vehicles and aircraft, window glass installed in buildings, and partitions placed in vehicles and indoors.
  • the surface to which the light control sheet is attached is flat or curved.
  • the light control sheet may be sandwiched between two transparent substrates.
  • the driving type of the light control sheet is normal type or reverse type.
  • a normal type light control sheet transitions from an opaque state to a transparent state by voltage application, and returns from the transparent state to the opaque state when the voltage application is released.
  • a reverse type light control sheet transitions from a transparent state to an opaque state by voltage application, and returns from the opaque state to the transparent state by releasing the voltage application.
  • the normal type and the reverse type are common in that they include two transparent electrode layers and a light control layer. In the following, the configuration and operation of the reverse type will be mainly described, the configurations among the normal type that differ from the reverse type will be added, and the configurations that overlap with the reverse type among the normal type will be omitted.
  • the light control device 10 includes a light control sheet 11 and a driving section 12 .
  • the light control sheet 11 includes a light control layer 31, a first orientation layer 32, a second orientation layer 33, a first transparent electrode layer 34, a second transparent electrode layer 35, a first transparent support layer 36, and a second transparent support.
  • a layer 37 is provided.
  • the light control layer 31 is located between the first alignment layer 32 and the second alignment layer 33 .
  • the first surface 31F of the light modulating layer 31 is in contact with the first alignment layer 32 and the second surface 31S of the light control layer 31 is in contact with the second alignment layer 33 .
  • the first alignment layer 32 is located between the light control layer 31 and the first transparent electrode layer 34 and contacts the light control layer 31 and the first transparent electrode layer 34 .
  • the second alignment layer 33 is located between the light control layer 31 and the second transparent electrode layer 35 and contacts the light control layer 31 and the second transparent electrode layer 35 .
  • the first transparent electrode layer 34 is connected to the driving section 12 through the first connection terminal 22A and the first wiring 23A.
  • the first transparent electrode layer 34 is located between the first alignment layer 32 and the first transparent support layer 36 and contacts the first alignment layer 32 and the first transparent support layer 36 .
  • the second transparent electrode layer 35 is connected to the driving section 12 through the second connection terminal 22B and the second wiring 23B.
  • the second transparent electrode layer 35 is located between the second alignment layer 33 and the second transparent support layer 37 and contacts the second alignment layer 33 and the second transparent support layer 37 .
  • the light control layer 31 includes an organic polymer layer 31P (see FIG. 2) and a liquid crystal composition 31LC (see FIG. 2).
  • the organic polymer layer 31P partitions voids 31D filled with the liquid crystal composition 31LC.
  • the holding type of the liquid crystal composition 31LC by the organic polymer layer 31P is one selected from the group consisting of polymer dispersion type, polymer network type, and capsule type.
  • the polymer-dispersed light control layer 31 includes an organic polymer layer 31P that partitions a large number of isolated voids 31D, and holds a liquid crystal composition 31LC in the voids 31D dispersed in the organic polymer layer 31P.
  • the polymer network type light control layer 31 includes an organic polymer layer 31P with three-dimensional mesh-shaped voids 31D, and holds a liquid crystal composition 31LC in the interconnected mesh-shaped voids 31D.
  • the capsule-type light control layer 31 holds the liquid crystal composition 31LC in capsule-like voids 31D dispersed in the organic polymer layer 31P.
  • the first alignment layer 32 and the second alignment layer 33 respectively regulate the alignment direction of the non-polymerizable liquid crystal compound LCM.
  • the first alignment layer 32 and the second alignment layer 33 are visually recognized as colorless and transparent or colored and transparent, respectively.
  • the first alignment layer 32 and the second alignment layer 33 are vertical alignment films.
  • the vertical alignment film aligns the long axis direction of the non-polymerizable liquid crystal compound LCM with the thickness direction of the light control layer 31 and allows the light control layer 31 to transmit visible light.
  • the materials forming the first alignment layer 32 and the second alignment layer 33 are organic polymer compounds or inorganic oxides.
  • the organic polymer compound is one selected from the group consisting of polyimides, polyamides, polyvinyl alcohols and cyanide compounds.
  • the inorganic oxide is one of silicon oxide, zirconium oxide, and silicone.
  • the first transparent electrode layer 34 and the second transparent electrode layer 35 are visually recognized as colorless and transparent or colored and transparent, respectively.
  • Materials forming the first transparent electrode layer 34 and the second transparent electrode layer 35 are conductive inorganic oxides, metals, or conductive organic polymer compounds, respectively.
  • An example of the conductive inorganic oxide is any one selected from the group consisting of indium tin oxide, fluorine-doped tin oxide, tin oxide, and zinc oxide.
  • the metal is gold or silver nanowires.
  • An example of the conductive organic polymer compound is any one selected from the group consisting of carbon nanotubes and poly(3,4-ethylenedioxythiophene).
  • the first transparent support layer 36 and the second transparent support layer 37 are visually recognized as colorless and transparent or colored and transparent, respectively.
  • Materials constituting the first transparent support layer 36 and the second transparent support layer 37 are organic polymer compounds or inorganic polymer compounds, respectively.
  • An example of the organic polymer compound is one selected from the group consisting of polyesters, polyacrylates, polycarbonates and polyolefins.
  • An example of the inorganic polymer compound is one selected from the group consisting of silicon oxide, silicon oxynitride, and silicon nitride.
  • the drive unit 12 is separately connected to the first transparent electrode layer 34 and the second transparent electrode layer 35 .
  • the driving section 12 applies a driving voltage between the first transparent electrode layer 34 and the second transparent electrode layer 35 .
  • the drive voltage is a voltage for changing the alignment state of the non-polymerizable liquid crystal compound LCM.
  • the drive unit 12 changes the alignment state of the non-polymerizable liquid crystal compound LCM to switch the light control sheet 11 from one of a transparent state and an opaque state to the other.
  • the opaque state has a lower parallel line transmission than the transparent state and a higher haze than the transparent state.
  • the non-polymerizable liquid crystal compound LCM When the application of the driving voltage is released, the non-polymerizable liquid crystal compound LCM receives an alignment regulating force from the first alignment layer 32 and the second alignment layer 33, and the long axis direction of the non-polymerizable liquid crystal compound LCM is Along the thickness direction of the light modulating layer 31 . As a result, the light control sheet 11 suppresses scattering in the light control layer 31 over the entire visible light range, and becomes transparent.
  • the non-polymerizable liquid crystal compound LCM When the drive voltage starts to be applied, the non-polymerizable liquid crystal compound LCM receives an alignment control force due to the electric field, and the long axis direction of the non-polymerizable liquid crystal compound LCM begins to move in the direction perpendicular to the direction of the electric field. At this time, the long axis direction of the non-polymerizable liquid crystal compound LCM is restricted by the interaction between molecules in the liquid crystal composition 31LC and the size of the void 31D, and cannot move sufficiently, resulting in disorder. As a result, the light control sheet 11 causes scattering in the light control layer 31 over the entire visible light range, and the light control sheet 11 becomes opaque.
  • the non-polymerizable liquid crystal compound LCM is released from the alignment regulating force by the electric field, and according to the alignment regulating force by the first alignment layer 32 and the second alignment layer 33, the non-polymeric liquid crystal compound LCM
  • the longitudinal direction of the compound LCM is aligned with the thickness direction of the light modulating layer 31 .
  • the light control sheet 11 suppresses scattering in the light control layer 31 over the entire visible light range, and becomes transparent again.
  • the light control sheet 11 can be the first alignment layer 32 and the The second alignment layer 33 may be omitted.
  • the first surface 31F of the light control layer 31 is in contact with the first transparent electrode layer 34 and the second surface 31S of the light control layer 31 is in contact with the second transparent electrode layer 35 . That is, the driving type of the light control sheet 11 may be changed from the reverse type to the normal type.
  • the non-polymerizable liquid crystal compound LCM is not subjected to the alignment regulating force when the application of the drive voltage is released, and the non-polymerizable liquid crystal compound LCM The longitudinal direction of is disordered.
  • the light control sheet 11 causes scattering in the light control layer 31 over the entire visible light range, and the light control sheet 11 becomes opaque.
  • the non-polymerizable liquid crystal compound LCM When a drive voltage is applied, the non-polymerizable liquid crystal compound LCM is subjected to an alignment regulating force by the electric field, and the major axis direction of the non-polymerizable liquid crystal compound LCM is aligned along the direction of the electric field. As a result, the light control sheet 11 suppresses scattering in the light control layer 31 over the entire visible light range, and becomes transparent.
  • the non-polymerizable liquid crystal compound LCM is released from the alignment control force by the electric field, and the long axis direction of the non-polymerizable liquid crystal compound LCM becomes disordered.
  • the light control sheet 11 scatters the entire visible light range in the light control layer 31 and becomes opaque again.
  • the light modulating layer 31 includes an organic polymer layer 31P, a liquid crystal composition 31LC, and spacers SP.
  • the organic polymer layer 31P partitions voids 31D filled with the liquid crystal composition 31LC.
  • the organic polymer layer 31P partitions a plurality of voids 31D.
  • the void 31D may be isolated from other adjacent voids 31D, or may be connected to other adjacent voids 31D.
  • the gap 31D has two or more sizes, including a relatively large gap 31H1 and a relatively small gap 31H2.
  • the shape of the void 31D is spherical, ellipsoidal, or irregular.
  • the organic polymer layer 31P is a cured photopolymerizable compound.
  • the photopolymerizable compound may be an ultraviolet curable compound or an electron beam curable compound.
  • the photopolymerizable compound has compatibility with the liquid crystal composition 31LC.
  • the photopolymerizable compound is preferably an ultraviolet curable compound.
  • An example of a UV-curable compound contains polymerizable unsaturated bonds at the ends of its molecular structure.
  • the UV-curable compound contains a polymerizable unsaturated bond other than the terminal of the molecular structure.
  • a photopolymerizable compound is one polymerizable compound or a combination of two or more polymerizable compounds.
  • the UV-curable compound is at least one selected from the group consisting of acrylate compounds, methacrylate compounds, styrene compounds, thiol compounds, and oligomers of each compound.
  • Acrylate compounds include monoacrylate compounds, diacrylate compounds, triacrylate compounds, and tetraacrylate compounds.
  • acrylate compounds are butyl ethyl acrylate, ethylhexyl acrylate, cyclohexyl acrylate.
  • methacrylate compounds are dimethacrylate compounds, trimethacrylate compounds, tetramethacrylate compounds.
  • methacrylate compounds are N,N-dimethylaminoethyl methacrylate, phenoxyethyl methacrylate, methoxyethyl methacrylate, tetrahydrofurfuryl methacrylate.
  • thiol compounds are 1,3-propanedithiol, 1,6-hexanedithiol.
  • styrene compounds are styrene and methylstyrene.
  • the lower limit of the content of the organic polymer layer 31P with respect to the total amount of the organic polymer layer 31P and the liquid crystal composition 31LC is 20% by mass, and the more preferable lower limit of the content is 30% by mass.
  • the upper limit of the content of the organic polymer layer 31P with respect to the total amount of the organic polymer layer 31P and the liquid crystal composition 31LC is 70% by mass, and a more preferable upper limit of the content is 60% by mass.
  • the lower limit and upper limit of the content of the organic polymer layer 31P are ranges in which the liquid crystal particles made of the liquid crystal composition 31LC are phase-separated from the cured photopolymerizable compound during the curing process of the photopolymerizable compound.
  • the lower limit of the content of the organic polymer layer 31P is high.
  • the upper limit of the content of the organic polymer layer 31P is low.
  • the liquid crystal composition 31LC is a polymer dispersed liquid crystal composition.
  • the liquid crystal composition 31LC contains a non-polymerizable liquid crystal compound LCM and a non-polymerizable viscosity reducing agent DP, and fills the gap 31D.
  • the liquid crystal composition 31LC may contain a dichroic dye, an antifoaming agent, an antioxidant, a weathering agent, and a solvent. Examples of weathering agents are UV absorbers and light stabilizers.
  • the non-polymerizable liquid crystal compound LCM has a positive dielectric anisotropy in which the dielectric constant in the major axis direction is larger than the dielectric constant in the minor axis direction of the non-polymerizable liquid crystal compound LCM.
  • the non-polymerizable liquid crystal compound LCM has a negative dielectric anisotropy in which the dielectric constant in the major axis direction is lower than the dielectric constant in the minor axis direction of the non-polymerizable liquid crystal compound LCM.
  • the dielectric anisotropy of the non-polymerizable liquid crystal compound LCM is appropriately selected based on the presence or absence of each alignment layer in the light control sheet 11 and the driving mode.
  • Non-polymerizable liquid crystal compound LCM includes Schiff base, azo, azoxy, biphenyl, terphenyl, benzoate, tolan, pyrimidine, pyridazine, cyclohexanecarboxylate, phenylcyclohexane, biphenyl It is at least one selected from the group consisting of cyclohexane, dicyanobenzene, naphthalene, and dioxane.
  • the non-polymerizable liquid crystal compound LCM is one liquid crystal compound or a combination of two or more liquid crystal compounds.
  • R 11 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • One or two or more non-adjacent methylene bonds contained in the alkyl group of R 11 can be substituted with any one selected from the group consisting of an oxygen atom, an ethylene bond, an ester bond and a diether bond.
  • R 12 is a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a trifluoromethoxy group, a difluoromethoxy group, or an alkyl group having 1 to 15 carbon atoms.
  • One or two or more non-adjacent methylene bonds contained in the alkyl group of R12 can be substituted with any one selected from the group consisting of an oxygen atom, an ethylene bond, an ester bond and a diether bond.
  • a 11 , A 12 , A 13 and A 14 each independently represent a 1,4-phenylene group and a 2,6-naphthylene group.
  • One or two or more hydrogen atoms in the 1,4-phenylene group and 2,6-naphthylene group can be substituted with fluorine atoms, chlorine atoms, trifluoromethyl groups, and trifluoromethoxy groups.
  • a 11 , A 12 , A 13 and A 14 each independently represent a 1,4-cyclohexylene group, a 3,6-cyclohexenylene group, a 1,3-dioxane-2,5-diyl group, a pyridine- It may be a 2,5-diyl group.
  • A13 and A14 may each independently be a single bond.
  • Z 11 , Z 12 and Z 13 each independently represent one selected from the group consisting of a single bond, an ester bond, a diether bond, an ethylene bond, a fluoroethylene bond and a carbonyl bond.
  • the speed at which the alignment state of the non-polymerizable liquid crystal compound LCM changes in response to changes in the potential difference changes nonlinearly with the environmental temperature, and the lower the environmental temperature, the slower it becomes.
  • Changing the direction of the long axis of the non-polymerizable liquid crystal compound LCM in the gaps 31D partitioned by the organic polymer layer 31P allows the liquid crystals to be formed in a wide layered space like a liquid crystal panel used in a display device. This is particularly difficult compared to structures filled with composition 31LC.
  • the responsiveness of the non-polymerizable liquid crystal compound LCM largely depends on the interaction between the molecules of the non-polymerizable liquid crystal compound LCM.
  • the NI point of the non-polymerizable liquid crystal compound LCM is the temperature at which the non-polymerizable liquid crystal compound LCM undergoes a phase transition from the nematic phase (N phase) to the isotropic liquid phase (I phase).
  • the NI point of the non-polymerizable liquid crystal compound LCM indicates the degree to which the anisotropy of the non-polymerizable liquid crystal compound LCM disappears at ambient temperature. Also, the NI point of the non-polymerizable liquid crystal compound LCM not a little reflects the degree of intermolecular interaction in the non-polymerizable liquid crystal compound LCM.
  • the NI point of the non-polymerizable liquid crystal compound LCM is the weighted average of the NI points of each liquid crystal compound weighted by the compounding ratio of each liquid crystal compound. is.
  • the NI point of the non-polymerizable liquid crystal compound LCM can be increased or decreased depending on the composition of two or more types of liquid crystal compounds having mutually different NI points.
  • the NI point is preferably high, more preferably 100°C or higher.
  • the NI point is preferably low, more preferably 145° C. or less.
  • the CN point of the non-polymerizable liquid crystal compound LCM is the temperature at which the non-polymerizable liquid crystal compound LCM undergoes a phase transition from the crystalline phase (C phase) to the nematic phase (N phase).
  • the CN point of the non-polymerizable liquid crystal compound LCM indicates the degree to which the fluidity of the non-polymerizable liquid crystal compound LCM disappears at ambient temperature. Also, the CN point of the non-polymerizable liquid crystal compound LCM greatly reflects the degree of intermolecular interaction in the non-polymerizable liquid crystal compound LCM.
  • the CN point of the non-polymerizable liquid crystal compound LCM is the weighted average value of the CN points of each liquid crystal compound weighted by the compounding ratio of each liquid crystal compound. is.
  • the CN point of the non-polymerizable liquid crystal compound LCM can be increased or decreased depending on the composition of two or more types of liquid crystal compounds having mutually different NI points.
  • the CN point is preferably low, more preferably 25°C or less, and 0°C or less. is more preferable.
  • the refractive index difference ⁇ n of the non-polymerizable liquid crystal compound LCM is the difference in the refractive index in visible light with a wavelength of 650 nm, and the difference in the degree of scattering of visible light between when a driving voltage is applied and when it is not applied.
  • the upper limit of the refractive index difference ⁇ n of the non-polymerizable liquid crystal compound LCM is the upper limit obtained from the refractive index differences ⁇ n of all the liquid crystal compounds.
  • the lower limit of the refractive index difference ⁇ n of the non-polymerizable liquid crystal compound LCM is the lower limit obtained from the refractive index differences ⁇ n of all the liquid crystal compounds.
  • the lower limit of the refractive index difference ⁇ n is high. Also, if it is desired to increase the haze difference between the transparent state and the opaque state, it is preferable that the lower limit of the refractive index difference ⁇ n is high.
  • the lower limit of the refractive index difference ⁇ n of the non-polymerizable liquid crystal compound LCM is preferably 0.005. 0.01 is more preferred.
  • the lower limit of the refractive index difference ⁇ n of the non-polymerizable liquid crystal compound LCM is preferably 0.005, more preferably 0.01.
  • the upper limit of the refractive index difference ⁇ n is low.
  • the upper limit of the refractive index difference ⁇ n of the non-polymerizable liquid crystal compound LCM is 0.028, more preferably 0.02. is.
  • Non-polymerizable viscosity reducing agent contains non-polar groups such as alkyl groups to weaken the intermolecular interactions of mutually adjacent non-polymerizable liquid crystal compounds LCM.
  • the non-polymerizable viscosity-reducing agent DP contains polar groups such as polar ester bonds that interact with the polarity of the non-polymerizable liquid crystal compound LCM.
  • the non-polymerizable viscosity-lowering agent DP is represented by the following formula (1) or the following formula (3).
  • Examples of non-polymerizable viscosity-reducing agents DP represented by formula (1) include dibutyl adipate, bis(2-ethylhexyl) adipate, diisononyl adipate, diisodecyl adipate, bis(2-butoxyethyl) adipate, At least one selected from the group consisting of diethyl malonate, di-n-butyl phthalate, bis(2-ethylhexyl) phthalate, tris(2-ethylhexyl) trimellitate, tributyl o-acetylcitrate, and methyl benzoate is.
  • non-polymerizable viscosity-lowering agent DP represented by formula (3) is at least one selected from the group consisting of tripropyl phosphate, tributyl phosphate and tripentyl phosphate.
  • the non-polymeric viscosity-lowering agent DP is one viscosity-lowering agent or a combination of two or more viscosity-lowering agents.
  • X in formula (1) is a linear or branched alkyl group or aryl group having 1 to 6 carbon atoms.
  • R 1 , R 2 and R 3 in formula (1) are each independently a hydrogen atom or a functional group represented by formula (2).
  • r 4 in formula (1) is a linear or branched alkyl group having 1 to 10 carbon atoms, or an ether group.
  • r 5 in formula (2) is a linear or branched alkyl group having 1 to 10 carbon atoms, or an ether group.
  • r 6 , r 7 and r 8 in formula (3) are each independently a linear alkyl group having 3 or more and 6 or less carbon atoms or an ether group.
  • the lower limit of the content of the non-polymerizable viscosity-lowering agent DP with respect to the total amount of the non-polymerizable liquid crystal compound LCM and the non-polymerizable viscosity-lowering agent DP is 0.6% by mass, and the more preferable lower limit of the content is 1 mass. %, and a more preferable upper limit of the content is 2% by mass.
  • the upper limit of the content of the non-polymerizable viscosity-lowering agent DP with respect to the total amount of the non-polymerizable liquid crystal compound LCM and the non-polymerizable viscosity-lowering agent DP is 10% by mass, and a more preferable upper limit of the content is 8% by mass. , and a more preferable upper limit is 6% by mass.
  • the upper limit of the content of the non-polymerizable viscosity-lowering agent DP is low.
  • the upper limit of the content of the non-polymerizable liquid crystal compound LCM is high.
  • the dichroic dye exhibits color by being driven by a guest-host system using a non-polymerizable liquid crystal compound LCM as a host.
  • the dichroic dye is at least one selected from the group consisting of polyiodine, azo compounds, anthraquinone compounds, naphthoquinone compounds, azomethine compounds, tetrazine compounds, quinophthalone compounds, merocyanine compounds, perylene compounds, and dioxazine compounds.
  • a dichroic dye is a single compound or a combination of two or more compounds.
  • the dichroic dye is at least one selected from the group consisting of an azo compound and an anthraquinone compound, more preferably an azo compound. .
  • the spacers SP are dispersed throughout the organic polymer layer 31P.
  • the spacer SP defines the thickness of the light modulating layer 31 around the spacer SP and makes the thickness of the light modulating layer 31 uniform.
  • the spacers SP may be bead spacers or photospacers formed by exposing and developing a photoresist.
  • the spacer SP may be colorless and transparent, or may be colored and transparent.
  • the spacer SP preferably exhibits the same color as the dichroic dye.
  • the light control sheet 11 may include other functional layers.
  • the other functional layer may be a gas barrier layer that suppresses transmission of oxygen and moisture toward the light control layer 31, or an ultraviolet barrier layer that suppresses transmission of ultraviolet light other than a specific wavelength toward the light control layer 31.
  • the other functional layer may be a hard coat layer that mechanically protects each layer of the light control sheet 11 , or an adhesive layer that enhances adhesion between the layers of the light control sheet 11 .
  • the method for manufacturing the light control sheet 11 includes forming a coating film containing the above photopolymerizable compound and the liquid crystal composition 31LC between the first transparent support layer 36 and the second transparent support layer 37 .
  • a first transparent support layer 36 comprises a first alignment layer 32 and a first transparent electrode layer 34 .
  • a second transparent support layer 37 comprises a second alignment layer 33 and a second transparent electrode layer 35 .
  • the above-described photopolymerizable layer is placed between the first transparent support layer 36 and the second transparent support layer 37.
  • a coating film containing the compound and the liquid crystal composition 31LC is formed.
  • a first transparent support layer 36 omits the first alignment layer 32 and comprises a first transparent electrode layer 34 .
  • a second transparent support layer 37 omits the second alignment layer 33 and comprises a second transparent electrode layer 35 .
  • the coating film contains a polymerization initiator for initiating the polymerization of the photopolymerizable compound.
  • the polymerization initiator is at least one selected from the group consisting of diketone compounds, acetophenone compounds, benzoin compounds, benzophenone compounds and thioxanthone compounds.
  • the polymerization initiator may be a single compound or a combination of two or more compounds.
  • An example of the polymerization initiator is any one selected from the group consisting of benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and cyclohexylphenyl ketone.
  • the manufacturing method of the light control sheet 11 includes polymerizing a photopolymerizable compound in the coating film to phase separate the liquid crystal particles made of the liquid crystal composition 31LC from the polymer.
  • the light for polymerizing the photopolymerizable compound may be an ultraviolet ray or an electron beam.
  • the light with which the coating film is irradiated may be irradiated toward the first transparent support layer 36, may be irradiated toward the second transparent support layer 37, or may be a combination thereof.
  • Phase separation of the liquid crystal particles made of the liquid crystal composition 31LC proceeds through polymerization of the photopolymerizable compound and diffusion of the liquid crystal composition 31LC.
  • the speed at which the photopolymerizable compound polymerizes varies depending on the intensity of light with which the photopolymerizable compound is irradiated.
  • the diffusion speed of the liquid crystal composition 31LC varies depending on the treatment temperature during polymerization of the photopolymerizable compound.
  • the intensity of the light irradiated to the photopolymerizable compound is adjusted so that the liquid crystal particles have a desired size, that is, the voids 31D have a desired size. set. Further, in the phase separation of the liquid crystal composition 31LC, heating may be performed to promote diffusion of the liquid crystal composition 31LC.
  • each example and comparative example are normal type light control sheets 11 in which the first alignment layer 32 and the second alignment layer 33 are omitted.
  • a photopolymerizable compound and a liquid crystal composition 31LC are placed between the first transparent support layer 36 having the first transparent electrode layer 34 and the second transparent support layer 37 having the second transparent electrode layer 35.
  • a light control sheet 11 was obtained by forming a coating film containing the polymer and polymerizing the photopolymerizable compound in the coating film.
  • the constituent materials used in Examples and Comparative Examples are shown below.
  • the NI point of the non-polymerizable liquid crystal compound LCM is 110°C. 3 to 7 show the compounding ratios of the constituent materials of Examples 1 to 41 and Comparative Examples 1 to 7.
  • FIG. The compounding ratios shown in FIGS. 3 to 7 indicate the ratio of each constituent material to the total amount of the coating liquid for forming the coating film.
  • ⁇ First transparent electrode layer 34 indium tin oxide ⁇ Second transparent electrode layer 35: indium tin oxide ⁇ First transparent support layer 36: polyethylene terephthalate film ⁇ Second transparent support layer 37: polyethylene terephthalate film ⁇ Polymerization initiator PI1: 1-hydroxycyclohexylphenyl ketone/non-polymerizable liquid crystal compound LCM: cyanobiphenyl compound/spacer SP: spherical with a diameter of 15 ⁇ m (manufactured by PMMA) ⁇ Ultraviolet polymerizable compound (polymerizable unsaturated compound) Component M1: Isobornyl acrylate Component M2: Pentaerythritol triacrylate Component M3: Urethane acrylate/non-polymerizable viscosity reducing agent DP (non-polymerizable additive) Component NPA1: Dibutyl adipate Component
  • Examples 1 to 6 As shown in FIG. 3, the coating liquids of Examples 1 to 6 each used 0.5% by mass of Component NPA1 to Component NPA6 as the non-polymerizable viscosity reducing agent DP. Using the coating liquids of Examples 1 to 6, a coating film having a thickness of 20 ⁇ m was formed on the first transparent electrode layer 34, and spacers SP were dispersed in the coating film. Then, the coating film in which the spacers SP are dispersed is laminated with the first transparent electrode layer 34 and the second transparent electrode layer 35, and the first transparent support layer 36 is irradiated with ultraviolet rays of 365 nm, thereby obtaining the Light control sheets 11 of Examples 1 to 6 were obtained. At this time, the intensity of the ultraviolet rays was set to 10 mW/cm 2 and the irradiation time of the ultraviolet rays was set to 100 seconds.
  • Examples 7 to 12 As shown in FIGS. 3 and 4, the coating liquids of Examples 7 to 12 each used 1.0% by mass of Component NPA1 to Component NPA6 as the non-polymerizable viscosity reducing agent DP. Light control sheets 11 of Examples 7 to 12 were obtained in the same manner as in Example 1 except for the blending ratio of the non-polymerizable viscosity reducing agent DP and the blending ratio of the ultraviolet polymerizable compound.
  • Examples 13 to 18 As shown in FIG. 4, the coating liquids of Examples 13 to 18 each used 2.0% by mass of Component NPA1 to Component NPA6 as the non-polymerizable viscosity reducing agent DP. Light control sheets 11 of Examples 13 to 18 were obtained in the same manner as in Example 1 except for the blending ratio of the non-polymerizable viscosity reducing agent DP and the blending ratio of the ultraviolet polymerizable compound.
  • Examples 19 to 30 As shown in FIGS. 4 and 5, the coating liquids of Examples 19 to 30 each used 3.0% by mass of Component NPA1 to Component NPA12 as the non-polymerizable viscosity reducing agent DP. Light control sheets 11 of Examples 19 to 30 were obtained in the same manner as in Example 1 except for the blending ratio of the non-polymerizable viscosity reducing agent DP and the blending ratio of the ultraviolet polymerizable compound.
  • Examples 31 to 36 As shown in FIG. 6, the coating liquids of Examples 31 to 36 each used 4.0% by mass of Component NPA1 to Component NPA6 as the non-polymerizable viscosity reducing agent DP. Light control sheets 11 of Examples 31 to 36 were obtained in the same manner as in Example 1 except for the blending ratio of the non-polymerizable viscosity reducing agent DP and the blending ratio of the ultraviolet polymerizable compound.
  • Examples 37 to 39 As shown in FIG. 6, the coating liquids of Examples 37 to 39 each used 5.0% by mass of Component NPA3, Component NPA5, and Component NPA6 as the non-polymerizable viscosity reducing agent DP. Light control sheets 11 of Examples 37 to 39 were obtained in the same manner as in Example 1 except for the blending ratio of the non-polymerizable viscosity reducing agent DP and the blending ratio of the ultraviolet polymerizable compound.
  • Examples 40 to 41 As shown in FIG. 6, the coating liquids of Examples 40 to 41 each used 0.3% by mass of Component NPA4 and Component NPA6 as the non-polymerizable viscosity reducing agent DP. Light control sheets 11 of Examples 40 to 41 were obtained in the same manner as in Example 1 except for the blending ratio of the non-polymerizable viscosity reducing agent DP and the blending ratio of the ultraviolet polymerizable compound.
  • Comparative example 1 As shown in FIG. 7, the same coating liquid as in Example 1 except for the omission of the non-polymerizable viscosity-reducing agent DP and the compounding ratio of the ultraviolet polymerizable compound was used. Then, a light control sheet 11 of Comparative Example 1 was obtained.
  • Comparative Example 2 Comparative Example 3
  • a coating liquid to which 0.5% by mass of component MA1 is added as a polymerizable additive is used, and the non-polymerizable viscosity-reducing agent DP is omitted.
  • a light control sheet 11 of Comparative Example 2 was obtained in the same manner as in Example 1 except for addition of the polymerizable additive and the compounding ratio of the ultraviolet polymerizable compound.
  • the non-polymerizable viscosity-reducing agent DP is omitted, a coating liquid to which 4.0% by mass of the component MA1 is added as a polymerizable additive is used, the non-polymerizable viscosity-reducing agent DP is omitted, and the polymerizable additive is
  • a light control sheet 11 of Comparative Example 3 was obtained in the same manner as in Example 1 except for the addition of the agent and the compounding ratio of the ultraviolet polymerizable compound.
  • Comparative Examples 4 to 5 As shown in FIG. 7, the non-polymerizable viscosity-reducing agent DP is omitted, and a coating liquid to which 0.5% by mass of component MA2 is added as a polymerizable additive is used, and the non-polymerizable viscosity-reducing agent DP is omitted.
  • a light control sheet 11 of Comparative Example 4 was obtained in the same manner as in Example 1 except for addition of the polymerizable additive and the compounding ratio of the ultraviolet polymerizable compound.
  • the non-polymerizable viscosity-reducing agent DP is omitted, a coating liquid to which 4.0% by mass of the component MA2 is added as a polymerizable additive is used, and the non-polymerizable viscosity-reducing agent DP is omitted, and the polymerizable additive is
  • a light control sheet 11 of Comparative Example 5 was obtained in the same manner as in Example 1 except for the addition of the agent and the compounding ratio of the ultraviolet polymerizable compound.
  • Comparative Examples 6 to 7 As shown in FIG. 7, the non-polymerizable viscosity-reducing agent DP is omitted, and a coating liquid to which 0.5% by mass of component MA3 is added as a polymerizable additive is used, and the non-polymerizable viscosity-reducing agent DP is omitted.
  • a light control sheet 11 of Comparative Example 6 was obtained in the same manner as in Example 1 except for addition of the polymerizable additive and the compounding ratio of the ultraviolet polymerizable compound.
  • the non-polymerizable viscosity-reducing agent DP is omitted, a coating liquid to which 4.0% by mass of the component MA3 is added as a polymerizable additive is used, and the non-polymerizable viscosity-reducing agent DP is omitted, and the polymerizable additive is
  • a light control sheet 11 of Comparative Example 7 was obtained in the same manner as in Example 1 except for the addition of the agent and the compounding ratio of the ultraviolet polymerizable compound.
  • the time required for the light control sheet 11 to switch from the opaque state to the transparent state was measured as an ON operation at ⁇ 20° C., ⁇ 10° C., Measured at each temperature of 23°C.
  • the time required for switching from the opaque state to the transparent state is the time from the start of application of the drive voltage until the haze of the light control sheet 11 stabilizes.
  • the time required for the light control sheet 11 to switch from the transparent state to the opaque state was measured as an OFF operation at ⁇ 20° C., ⁇ 10° C., Measured at each temperature of 23°C.
  • the time required for switching from the transparent state to the opaque state is the time from when the application of the drive voltage is stopped until the haze of the light control sheet 11 stabilizes.
  • the difference between the ON operation at ⁇ 20° C. and the ON operation at 23° C. is 4 seconds or less in each of Examples 1 to 41, while in Comparative Examples 1 to 7, all was also found to be 6 seconds or longer.
  • the temperature is less likely to decrease than when the non-polymerizable viscosity-reducing agent DP is not added or when the polymerizable additive is added. It was confirmed that the degree of deterioration in the responsiveness of the ON operation due to this can be suppressed.
  • a comparison of the haze in the clear state of Examples 7 to 39 and the haze in the clear state of Examples 1 to 6 shows the ratio of the non-polymerizable viscosity reducing agent DP to the weight of the non-polymerizable liquid crystal compound LCM. It was found that haze in the transparent state can be further suppressed when the proportion is 2% or more.
  • the haze in the opaque state of Examples 33, 35 and 36 is 85% or more at 100°C, while the haze in the opaque state of Examples 37, 38 and 39 is 83% or less at 100°C. Admitted.
  • the ratio of the non-polymerizable viscosity reducing agent DP to the weight of the non-polymerizable liquid crystal compound LCM is 8% or less, the reduction in haze in the opaque state can be suppressed.
  • the deviation between the haze in the opaque state at ⁇ 20° C. and the haze in the opaque state at 23° C. was 10% or less. 39, all of them were found to be 12% or more. As a result, it was found that when the ratio of the non-polymerizable viscosity-reducing agent DP to the weight of the non-polymerizable liquid crystal compound LCM is 8% or less, the degree of decrease in the haze in the opaque state due to the decrease in temperature can be suppressed. was taken.
  • the liquid crystal composition 31LC contains the non-polymerizable viscosity-lowering agent DP represented by the above formulas (1) to (3), the alkyl group, which is a non-polar group, is included in the non-polymerizable liquid crystal compound LCM.
  • the alkyl group which is a non-polar group.
  • a low-molecular structure represented by the above formulas (1) to (3) is suitable for diffusing from the polymer of the ultraviolet polymerizable compound, that is, for phase separation from the organic polymer layer 31P as liquid crystal particles. is.
  • non-polymerizable viscosity-reducing agent DP is an adipate ester, such as components NPA1 to NPA6, the orientational order of the non-polymerizable liquid crystal compound LCM is reduced at ambient temperatures as low as -20°C. can be suppressed.
  • the non-polymerizable viscosity-reducing agent DP to the weight of the non-polymerizable liquid crystal compound LCM is 2% or more and 8% or less, the non-polymerizable liquid crystal compound LCM at a high ambient temperature such as 100 ° C. It also makes it easier to control the transition to the disordered phase.
  • the liquid crystal composition contains diisodecyl adipate as a non-polymerizable viscosity reducing agent, and the non-polymerizable viscosity relative to the weight of the non-polymerizable liquid crystal compound is
  • the weight ratio of the lowering agent may be 1% or more and 8% or less.
  • the liquid crystal composition is selected from the group consisting of dibutyl adipate, dioctyl adipate, and diisononyl adipate as a non-polymerizable viscosity reducing agent. and the ratio of the weight of the non-polymerizable viscosity-lowering agent to the weight of the non-polymerizable liquid crystal compound may be 1% or more and 8% or less.
  • the liquid crystal composition is a group consisting of diisodecyl adipate, dibutyl adipate, dioctyl adipate, and diisononyl adipate as a non-polymerizable viscosity reducing agent. and the ratio of the weight of the non-polymerizable viscosity-lowering agent to the weight of the non-polymerizable liquid crystal compound may be 1% or more and 8% or less.
  • the ratio of the weight of the organic polymer layer to the total weight of the organic polymer layer and the liquid crystal composition is 30% by mass or more and 60% by mass. It can be below.
  • the ratio of the weight of the non-polymerizable viscosity-lowering agent to the total weight of the non-polymerizable liquid crystal compound and the non-polymerizable viscosity-lowering agent is , 2% by mass or more and 6% by mass or less.
  • the weight of the non-polymerizable viscosity-lowering agent relative to the weight of the liquid crystal composition is 0.3%, in other words, the non-polymerizable liquid crystal compound
  • the OFF operation takes time, while the weight of the non-polymerizable viscosity-lowering agent to the weight of the liquid crystal composition is 0.5% or more, In other words, when the weight of the non-polymerizable viscosity reducing agent is 1% or more with respect to the weight of the non-polymerizable liquid crystal compound, the time required for the OFF operation can be sharply shortened.
  • the non-polymerizable viscosity-lowering agent includes any one selected from the group consisting of diisodecyl adipate, dibutyl adipate, dioctyl adipate, and diisononyl adipate, and is non-polymerized.
  • the weight of the non-polymerizable viscosity-lowering agent is 1% or more and 8% or less with respect to the weight of the liquid crystal compound, the time required for the OFF operation can be sharply shortened.
  • the time required for the OFF operation is It can be sharply shortened.
  • - X in formula (1) is a straight-chain alkyl group having 1 to 6 carbon atoms
  • R 1 , R 2 , and R 3 in formula (1) are the terminals of the straight-chain alkyl group may be bonded to one carbon positioned at , or may be bonded separately to one carbon positioned at the end of the straight-chain alkyl group and the other one carbon positioned at the end.
  • X in formula (1) is a straight-chain alkyl group having 1 to 6 carbon atoms
  • R 1 , R 2 , and R 3 in formula (1) are straight-chain alkyl groups other than the terminal may be attached to separate carbons located at X in formula (1) is one aryl group, one of R 1 , R 2 and R 3 in formula (1) is bonded to one carbon in the aryl group, and R 1 , R 2 , The remaining two of R 3 may be attached to one other carbon in the aryl group.
  • X in Formula (1) is one aryl group, and R 1 , R 2 , and R 3 in Formula (1) may each bond to different carbon atoms in the aryl group.
  • Non-polymerizable viscosity reducing agent LCM Non-polymerizable liquid crystal compound SP... Spacer 11... Light control sheet 12... Driving part 31... Light control layer 32... First alignment layer 33... Second alignment layer 34... First transparent electrode Layer 35... Second transparent electrode layer 36... First transparent support layer 37... Second transparent support layer 31P... Organic polymer layer 31D... Gap 31LC... Liquid crystal composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

複数の空隙31Dを区画する有機高分子層31Pと、非重合性液晶化合物LCMを含み空隙31Dを埋める液晶組成物31LCと、を備え、非重合性液晶化合物LCMの駆動によって可視光線の透過率を変える調光シートであって、液晶組成物31LCは、非重合性粘度低下剤DPとしてアジピン酸エステルを含み、非重合性液晶化合物LCMの重量に対する非重合性粘度低下剤DPの重量が1%以上であることによって、電位差の変化に対する光透過率の応答性を向上可能である。

Description

調光シート、調光シートの製造方法、および高分子分散型用液晶組成物
 本開示は、非重合性液晶化合物を含む調光シート、調光シートの製造方法、および高分子分散型用液晶組成物に関する。
 調光シートは、第1透明電極層、第2透明電極層、および第1透明電極層と第2透明電極層とに挟まれた調光層を備える。調光層に含まれる非重合性液晶化合物の配向状態は、2つの透明電極層の間の電位差の変化に追従して調光シートの光透過率を変える。例えば、非重合性液晶化合物の配向秩序が構築されるとき、調光シートは高い光透過率を示す。非重合性液晶化合物の長軸方向が無秩序であるとき、調光シートは低い光透過率を示す(例えば、特許文献1を参照)。
特開2018-45135号公報
 一方、2つの透明電極層の間の電位差の変化に対する光透過率の応答性は、調光シートの設置された環境温度に基づいて変わる。電位差の切り換えから所定時間以内に光透過率が変わる環境温度の範囲が広いほど、調光シートの適用分野は広がる。特に、寒冷地での駆動を要する適用分野には、低い環境温度において所定時間以内に光透過率が変わることが求められる。例えば、車両の窓ガラスに調光シートが貼り付けられる場合、調光シートの設置される環境温度は、車室内の物品よりも大きく低下する。光透過率の変更に要する時間を低温環境で短縮可能であれば、車両用に向けた調光シートの適性が高められる。
 上記課題を解決するための調光シートは、複数の空隙を区画する有機高分子層と、非重合性液晶化合物を含み前記空隙を埋める液晶組成物と、を備え、前記非重合性液晶化合物の駆動によって可視光線の透過率を変える調光シートであって、前記液晶組成物は、下記式(1)で表される非重合性粘度低下剤を含む。式(1)中のXは、炭素原子数が1以上6以下の直鎖または分岐のアルキル基、またはアリール基であり、R、R、Rは、それぞれ独立に水素原子、または式(2)で表される官能基であり、rは、炭素原子数が1以上10以下の直鎖または分岐のアルキル基、またはエーテル基である。式(2)中のrは、炭素原子数が1以上10以下の直鎖または分岐のアルキル基、またはエーテル基である。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 上記課題を解決するための調光シートは、複数の空隙を区画する有機高分子層と、非重合性液晶化合物を含み前記空隙を埋める液晶組成物と、を備え、前記非重合性液晶化合物の駆動によって可視光線の透過率を変える調光シートであって、前記液晶組成物は、下記式(3)で表される非重合性粘度低下剤を含む。式(3)中のr、r、rは、それぞれ独立に炭素原子数が3以上8以下の直鎖アルキル基である。
Figure JPOXMLDOC01-appb-C000012
 上記課題を解決するための調光シートの製造方法は、複数の空隙を区画する有機高分子層、および、非重合性液晶化合物を含み前記空隙を埋める液晶組成物を備え、前記非重合性液晶化合物の駆動によって可視光線の透過率を変える調光シートを製造する方法であって、前記液晶組成物と紫外線硬化性化合物とを含む層で前記紫外線硬化性化合物を重合することにより前記液晶組成物からなる液晶粒子を前記有機高分子層から相分離することを含み、前記液晶組成物は、上記式(1)で表される非重合性粘度低下剤を含み、前記有機高分子層と前記液晶組成物との総重量に対する前記有機高分子層の重量の割合は、30質量%以上60質量%以下であり、前記非重合性液晶化合物の重量に対する前記非重合性粘度低下剤の重量の割合が1%以上8%以下である。
 上記課題を解決するための調光シートの製造方法は、複数の空隙を区画する有機高分子層、および、非重合性液晶化合物を含み前記空隙を埋める液晶組成物を備え、前記非重合性液晶化合物の駆動によって可視光線の透過率を変える調光シートを製造する方法であって、前記液晶組成物と紫外線硬化性化合物とを含む層で前記紫外線硬化性化合物を重合することにより前記液晶組成物からなる液晶粒子を前記有機高分子層から相分離することを含み、前記液晶組成物は、上記式(3)で表される非重合性粘度低下剤を含み、前記有機高分子層と前記液晶組成物との総重量に対する前記有機高分子層の重量の割合は、30質量%以上60質量%以下であり、前記非重合性液晶化合物の重量に対する前記非重合性粘度低下剤の重量の割合が1%以上8%以下である。
 上記課題を解決するための高分子分散型液晶組成物は、液晶組成物と紫外線硬化性化合物とを含む層で前記紫外線硬化性化合物を重合することにより重合体である有機高分子層から相分離される高分子分散型用液晶組成物であって、前記液晶組成物は、非重合性液晶化合物と上記式(1)で表される非重合性粘度低下剤とを含み、前記紫外線硬化性化合物と前記液晶組成物との総重量に対する前記紫外線硬化性化合物の重量の割合は、30質量%以上60質量%以下であり、前記非重合性液晶化合物の重量に対する前記非重合性粘度低下剤の重量の割合が1%以上8%以下である。
 上記課題を解決するための高分子分散型液晶組成物は、液晶組成物と紫外線硬化性化合物とを含む層で前記紫外線硬化性化合物を重合することにより重合体である有機高分子層から相分離される高分子分散型用液晶組成物であって、前記液晶組成物は、非重合性液晶化合物と上記式(3)で表される非重合性粘度低下剤とを含み、前記紫外線硬化性化合物と前記液晶組成物との総重量に対する前記紫外線硬化性化合物の重量の割合は、30質量%以上60質量%以下であり、前記非重合性液晶化合物の重量に対する前記非重合性粘度低下剤の重量の割合が1%以上8%以下である。
 上記各構成によれば、非重合性液晶化合物のなかの電子の局在化と、非重合性粘度低下剤のなかの電子の局在化との相互作用によって、非重合性粘度低下剤の有する末端のアルキル基が、相互に隣り合う非重合性液晶化合物の間に介在しやすくなる。非極性基であるアルキル基が非重合性液晶化合物間に介在することは、非重合性液晶化合物における分子間相互作用を弱める。これにより、-20℃のような低い環境温度における光透過率の応答性を高めることが可能となる。
 また、有機高分子層が区画する空隙を液晶組成物が埋めるという構成は、有機高分子層を形成するための光重合性化合物と液晶組成物とを用い、光重合性化合物の重合を通じ、有機高分子層から液晶組成物が相分離されることによって形成される。この際、非重合性粘度低下剤は、有機高分子層から相分離されることに好適である。さらに、上記式(1)~(3)が表す低分子構造もまた、光重合性化合物の重合体から拡散すること、すなわち有機高分子層から相分離されることに好適である。
 上記調光シートにおいて、前記有機高分子層と前記液晶組成物との総重量に対する前記有機高分子層の重量の割合は、30質量%以上60質量%以下でもよい。
 上記調光シートにおいて、前記非重合性液晶化合物の重量に対する前記非重合性粘度低下剤の重量の割合は1%以上8%以下でもよい。この構成においても、-20℃のような低い環境温度における非重合性液晶化合物の配向秩序の低下が抑制可能ともなる。また、この構成によれば、上述した効果の得られる実行性が高められると共に、100℃のような高い環境温度において非重合性液晶化合物を無秩序相に転移させることの制御が容易ともなる。
 上記調光シートにおいて、前記式(1)においてXは、炭素原子数が1以上6以下の直鎖アルキル基であり、前記式(1)においてRは、前記式(2)で表される官能基であり、前記式(1)においてR、Rは、それぞれ独立に水素原子でもよい。
 上記調光シートにおいて、前記非重合性液晶化合物のNI点が100℃以上145℃以下でもよい。
 上記調光シートにおいて、非重合性粘度低下剤は、アジピン酸ジイソデシル、アジピン酸ジブチル、アジピン酸ジオクチル、アジピン酸ビス(2-ブトキシエチル)、およびアジピン酸ジイソノニルからなる群から選択されるいずれか1つでもよい。この構成によれば、-20℃のような低い環境温度において非重合性液晶化合物の配向秩序が低下することが抑制可能ともなる。
 上記調光シートにおいて、前記非重合性液晶化合物と前記非重合性粘度低下剤との総重量に対する前記液晶組成物に含まれる全ての前記非重合性粘度低下剤の重量の割合は、2質量%以上6質量%以下でもよい。
 上記調光シートは、第1透明電極層と、第2透明電極層と、をさらに備え、前記有機高分子層は、透明電極層間に位置し、前記液晶組成物は、前記有機高分子層から相分離された液晶粒子であり、前記透明電極層間の電圧印加の解除によって透明状態から不透明状態に移る構成であってもよい。この構成によれば、ノーマル型の調光シートにおいて-20℃のような低い環境温度における光透過率の応答性を高めることが可能となる。
 上記調光シートは、第1透明電極層と、第2透明電極層と、をさらに備え、前記有機高分子層は、透明電極層間に位置し、前記液晶組成物は、前記有機高分子層から相分離された液晶粒子であり、前記透明電極層間の電圧印加によって透明状態から不透明状態に移る構成であってもよい。この構成によれば、リバース型の調光シートにおいて-20℃のような低い環境温度における光透過率の応答性を高めることが可能となる。
 本開示によれば、電位差の変化に応答して光透過率を変化させることに要する時間を短縮可能にした調光シート、調光シートの製造方法、および高分子分散型用液晶組成物を提供できる。
一実施形態における調光装置の概略構成を示す構成図。 一実施形態における調光シートの断面構成を示す構成図。 各実施例の高分子分散型用液晶組成物の組成および評価結果を示す表。 各実施例の高分子分散型用液晶組成物の組成および評価結果を示す表。 各実施例の高分子分散型用液晶組成物の組成および評価結果を示す表。 各実施例の高分子分散型用液晶組成物の組成および評価結果を示す表。 各比較例の高分子分散型用液晶組成物の組成および評価結果を示す表。
 調光シート、高分子分散型用液晶組成物、および調光シートの製造方法の一実施形態を説明する。まず、図1を参照して調光装置の構成を説明する。次に、図2を参照して調光シート、および高分子分散型用液晶組成物の構成を説明する。最後に、調光シートの製造方法、および調光シートの各実施例を説明する。
 調光シートは、透明基材に貼り付けられる。透明基材は、ガラス体や樹脂体である。透明基材の一例は、車両や航空機等の移動体が搭載する窓ガラス、建物に設置された窓ガラス、車内や屋内に配置された間仕切りである。調光シートが貼り付けられる面は、平面状あるいは曲面状である。調光シートは、2つの透明基材によって挟まれてもよい。
 調光シートの駆動型式は、ノーマル型、あるいはリバース型である。ノーマル型の調光シートは、電圧印加によって不透明状態から透明状態に遷移し、当該電圧印加の解除によって透明状態から不透明状態に戻る。リバース型の調光シートは、電圧印加によって透明状態から不透明状態に遷移し、当該電圧印加の解除によって不透明状態から透明状態に戻る。
 なお、ノーマル型とリバース型とは、2つの透明電極層と調光層とを備える点において共通する。以下では、リバース型の構成と作用とを主に説明し、ノーマル型のなかでリバース型と相違する構成を付記し、ノーマル型のなかでリバース型と重複する構成を割愛する。
 [調光装置]
 図1が示すように、調光装置10は、調光シート11と、駆動部12とを備える。調光シート11は、調光層31、第1配向層32、第2配向層33、第1透明電極層34、第2透明電極層35、第1透明支持層36、および、第2透明支持層37を備える。
 調光層31は、第1配向層32と第2配向層33との間に位置する。調光層31の第1面31Fは、第1配向層32に接し、調光層31の第2面31Sは、第2配向層33に接する。第1配向層32は、調光層31と第1透明電極層34との間に位置し、かつ調光層31と第1透明電極層34とに接する。第2配向層33は、調光層31と第2透明電極層35との間に位置し、かつ調光層31と第2透明電極層35とに接する。
 第1透明電極層34は、第1接続端子22Aと第1配線23Aとを通じて、駆動部12に接続される。第1透明電極層34は、第1配向層32と第1透明支持層36との間に位置し、第1配向層32と第1透明支持層36とに接する。第2透明電極層35は、第2接続端子22Bと第2配線23Bとを通じて、駆動部12に接続される。第2透明電極層35は、第2配向層33と第2透明支持層37との間に位置し、第2配向層33と第2透明支持層37とに接する。
 調光層31は、有機高分子層31P(図2を参照)と液晶組成物31LC(図2を参照)とを備える。有機高分子層31Pは、液晶組成物31LCに埋められた空隙31Dを区画する。有機高分子層31Pによる液晶組成物31LCの保持型式は、高分子分散型、ポリマーネットワーク型、カプセル型からなる群から選択されるいずれか一種である。
 高分子分散型の調光層31は、孤立した多数の空隙31Dを区画する有機高分子層31Pを備え、有機高分子層31Pに分散した空隙31Dのなかに液晶組成物31LCを保持する。ポリマーネットワーク型の調光層31は、3次元の網目状を有した空隙31Dを有機高分子層31Pを備え、相互に連通した網目状の空隙31Dのなかに液晶組成物31LCを保持する。カプセル型の調光層31は、有機高分子層31Pのなかに分散したカプセル状の空隙31Dのなかに液晶組成物31LCを保持する。
 第1配向層32と第2配向層33とは、それぞれ非重合性液晶化合物LCMの配向方向を規制する。第1配向層32と第2配向層33とは、それぞれ無色透明、あるいは有色透明に視認される。第1配向層32と第2配向層33とは、垂直配向膜である。垂直配向膜は、非重合性液晶化合物LCMの長軸方向を調光層31の厚さ方向に沿わせ、調光層31に可視光線を透過させる。
 第1配向層32と第2配向層33とを構成する材料は、有機高分子化合物、あるいは無機酸化物である。有機高分子化合物は、ポリイミド、ポリアミド、ポリビニルアルコール、シアン化化合物からなる群から選択されるいずれか一種である。無機酸化物は、シリコン酸化物、酸化ジルコニウム、シリコーンからなるいずれか一種である。
 第1透明電極層34と第2透明電極層35とは、それぞれ無色透明、あるいは有色透明に視認される。第1透明電極層34と第2透明電極層35とを構成する材料は、それぞれ導電性無機酸化物、金属、あるいは導電性有機高分子化合物である。導電性無機酸化物の一例は、酸化インジウムスズ、フッ素ドープ酸化スズ、酸化スズ、酸化亜鉛からなる群から選択されるいずれか一種である。金属は、金や銀のナノワイヤーである。導電性有機高分子化合物の一例は、カーボンナノチューブ、ポリ(3,4‐エチレンジオキシチオフェン)からなる群から選択されるいずれか1種である。
 第1透明支持層36と第2透明支持層37とは、それぞれ無色透明、あるいは有色透明に視認される。第1透明支持層36と第2透明支持層37とを構成する材料は、それぞれ有機高分子化合物、あるいは無機高分子化合物である。有機高分子化合物の一例は、ポリエステル、ポリアクリレート、ポリカーボネート、ポリオレフィンからなる群から選択されるいずれか一種である。無機高分子化合物の一例は、酸化珪素、酸化窒化珪素、窒化珪素からなる群から選択されるいずれか一種である。
 駆動部12は、第1透明電極層34と第2透明電極層35とに別々に接続される。駆動部12は、第1透明電極層34と第2透明電極層35との間に、駆動電圧を印加する。駆動電圧は、非重合性液晶化合物LCMの配向状態を変えるための電圧である。駆動部12は、非重合性液晶化合物LCMの配向状態を変えて、透明状態と不透明状態とのうちの一方から他方に調光シート11を切り替える。不透明状態は、透明状態よりも低い平行線透過率を有し、また透明状態よりも高いヘイズを有する。
 駆動電圧の印加が解除されているとき、非重合性液晶化合物LCMは、第1配向層32と第2配向層33とから配向規制力を受け、非重合性液晶化合物LCMの長軸方向は、調光層31の厚さ方向に沿う。これにより、調光シート11は、可視光全域にわたり調光層31での散乱を抑えて、透明状態となる。
 駆動電圧が印加されはじめると、非重合性液晶化合物LCMは、電界による配向規制力を受け、非重合性液晶化合物LCMの長軸方向は、電界方向と直交する方向に向けて移動しはじめる。この際、非重合性液晶化合物LCMの長軸方向は、液晶組成物31LCでの分子間の相互作用と空隙31Dの大きさとによる制約を受け、十分に移動しきれず、無秩序になる。これにより、調光シート11は、可視光全域にわたり調光層31での散乱を生じ、不透明状態となる。
 駆動電圧の印加が再び解除されると、非重合性液晶化合物LCMは、電界による配向規制力を解除され、第1配向層32と第2配向層33とによる配向規制力に従い、非重合性液晶化合物LCMの長軸方向を調光層31の厚さ方向に沿わせる。これにより、調光シート11は、可視光全域にわたり調光層31での散乱を抑え、再び透明状態となる。
 なお、電圧印加による非重合性液晶化合物LCMの配向状態の変更に基づいて、調光シート11の透明状態と不透明状態とを切り換える構成であれば、調光シート11は、第1配向層32と第2配向層33とを割愛してもよい。この際、調光層31は、調光層31の第1面31Fは、第1透明電極層34に接し、調光層31の第2面31Sは、第2透明電極層35に接する。すなわち、調光シート11の駆動型式は、リバース型からノーマル型に変更してもよい。
 第1配向層32と第2配向層33とが割愛された場合、駆動電圧の印加が解除されているとき、非重合性液晶化合物LCMは、配向規制力を受けず、非重合性液晶化合物LCMの長軸方向は、無秩序になる。これにより、調光シート11は、可視光全域にわたり調光層31での散乱を生じ、不透明状態となる。
 駆動電圧が印加されると、非重合性液晶化合物LCMは、電界による配向規制力を受け、非重合性液晶化合物LCMの長軸方向は、電界方向に沿う配向状態となる。これにより、調光シート11は、可視光全域にわたり調光層31での散乱を抑えて、透明状態となる。
 駆動電圧の印加が再び解除されると、非重合性液晶化合物LCMは、電界による配向規制力を解除され、非重合性液晶化合物LCMの長軸方向は、無秩序になる。これにより、調光シート11は、可視光全域にわたり調光層31での散乱を生じ、再び不透明状態となる。
 [調光シート]
 図2が示すように、調光層31は、有機高分子層31P、液晶組成物31LC、およびスペーサーSPとを備える。有機高分子層31Pは、液晶組成物31LCに埋められた空隙31Dを区画する。有機高分子層31Pは、複数の空隙31Dを区画する。空隙31Dは、隣接する他の空隙31Dと隔絶されてもよいし、隣接する他の空隙31Dと接続されてもよい。空隙31Dの大きさは、2種類以上であり、相対的に大きい空隙31H1と、相対的に小さい空隙31H2とを含む。空隙31Dの形状は、球形状、楕円体状、あるいは不定形状である。
 [光重合性化合物]
 有機高分子層31Pは、光重合性化合物の硬化体である。光重合性化合物は、紫外線硬化性化合物でもよいし、電子線硬化性化合物でもよい。光重合性化合物は、液晶組成物31LCと相溶性を有する。空隙31Dの寸法制御性を高める場合、光重合性化合物は、紫外線硬化性化合物であることが好ましい。紫外線硬化性化合物の一例は、分子構造の末端に重合性不飽和結合を含む。あるいは、紫外線硬化性化合物は、分子構造の末端以外に重合性の不飽和結合を含む。光重合性化合物は、1種の重合性化合物、あるいは2種以上の重合性化合物の組み合わせである。
 紫外線硬化性化合物は、アクリレート化合物、メタクリレート化合物、スチレン化合物、チオール化合物、および、各化合物のオリゴマーからなる群から選択される少なくとも一種である。
 アクリレート化合物は、モノアクリレート化合物、ジアクリレート化合物、トリアクリレート化合物、テトラアクリレート化合物を含む。アクリレート化合物の一例は、ブチルエチルアクリレート、エチルヘキシルアクリレート、シクロヘキシルアクリレートである。メタクリレート化合物の一例は、ジメタクリレート化合物、トリメタクリレート化合物、テトラメタクリレート化合物である。メタクリレート化合物の一例は、N,N‐ジメチルアミノエチルメタクリレート、フェノキシエチルメタクリレート、メトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレートである。チオール化合物の一例は、1,3-プロパンジチオール、1,6-ヘキサンジチオールである。スチレン化合物の一例は、スチレン、メチルスチレンである。
 有機高分子層31Pと液晶組成物31LCとの総量に対する有機高分子層31Pの含有量の下限値は20質量%であり、より好ましい含有量の下限値は30質量%である。有機高分子層31Pと液晶組成物31LCとの総量に対する有機高分子層31Pの含有量の上限値は70質量%であり、より好ましい含有量の上限値は60質量%である。
 有機高分子層31Pの含有量の下限値、および上限値は、光重合性化合物の硬化過程において、液晶組成物31LCからなる液晶粒子が光重合性化合物の硬化体から相分離する範囲である。有機高分子層31Pの機械的な強度を高めることを要する場合、有機高分子層31Pの含有量の下限値が高いことが好ましい。非重合性液晶化合物LCMの駆動電圧を低めることを要する場合、有機高分子層31Pの含有量の上限値が低いことが好ましい。
 [液晶組成物]
 液晶組成物31LCは、高分子分散型液晶組成物である。液晶組成物31LCは、非重合性液晶化合物LCMと非重合性粘度低下剤DPとを含み、空隙31Dに充填されている。液晶組成物31LCは、二色性色素、消泡剤、酸化防止剤、耐候剤、溶剤を含有してもよい。耐候剤の一例は、紫外線吸収剤や光安定剤である。
 [非重合成性液晶化合物]
 非重合性液晶化合物LCMの長軸方向の誘電率は、非重合性液晶化合物LCMの短軸方向の誘電率よりも大きい、正の誘電異方性を有する。あるいは、非重合性液晶化合物LCMの長軸方向の誘電率は、非重合性液晶化合物LCMの短軸方向の誘電率よりも低い、負の誘電異方性を有する。非重合性液晶化合物LCMの誘電異方性は、調光シート11における各配向層の有無、および駆動型式に基づいて適宜選択される。
 非重合性液晶化合物LCMは、シッフ塩基系、アゾ系、アゾキシ系、ビフェニル系、ターフェニル系、安息香酸エステル系、トラン系、ピリミジン系、ピリダジン系、シクロヘキサンカルボン酸エステル系、フェニルシクロヘキサン系、ビフェニルシクロヘキサン系、ジシアノベンゼン系、ナフタレン系、ジオキサン系からなる群から選択される少なくとも一種である。非重合性液晶化合物LCMは、1種の液晶化合物、あるいは2種以上の液晶化合物の組み合わせである。
 非重合性液晶化合物LCMの一例は、下記式(10)に表される。
 R11-A11-Z11-A12-Z12-A13-Z13-A14-R12 …(10)
 R11は、水素原子、炭素原子数1以上20以下のアルキル基である。R11のアルキル基に含まれる1つ、または隣接しない2つ以上のメチレン結合は、酸素原子、エチレン結合、エステル結合、ジエーテル結合からなる群から選択されるいずれかに置換可能である。
 R12は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、トリフルオロメトキシ基、ジフルオロメトキシ基、または、炭素原子数1以上15以下のアルキル基である。R12のアルキル基に含まれる1つ、または隣接しない2つ以上のメチレン結合は、酸素原子、エチレン結合、エステル結合、ジエーテル結合からなる群から選択されるいずれかに置換可能である。
 A11、A12、A13、A14は、それぞれ独立して、1,4-フェニレン基、2,6-ナフチレン基を表す。1,4-フェニレン基、2,6-ナフチレン基の1つ、または2つ以上の水素原子は、フッ素原子、塩素原子、トリフルオロメチル基、トリフルオロメトキシ基に置換可能である。A11、A12、A13、A14は、それぞれ独立して、1,4-シクロヘキシレン基、3,6-シクロヘキセニレン基、1,3-ジオキサン-2,5-ジイル基、ピリジン-2,5-ジイル基でもよい。A13、A14は、それぞれ独立して、単結合でもよい。
 Z11、Z12、Z13は、それぞれ独立して、単結合、エステル結合、ジエーテル結合、エチレン結合、フルオロエチレン結合、カルボニル結合からなる群から選択されるいずれか一種を表す。
 非重合性液晶化合物LCMの配向状態が電位差の変更に対して変わる速度は、環境温度に対して非線形的に変わり、環境温度が低いほど大きく遅くなる。有機高分子層31Pに区画された空隙31Dのなかで非重合性液晶化合物LCMが長軸方向の向きを変えることは、表示装置に用いられる液晶パネルのように、層状の広い空間のなかに液晶組成物31LCが充填されている構造と比べて特に困難となる。非重合性液晶化合物LCMの応答性は、非重合性液晶化合物LCMの分子間における相互作用に大きく依存する。
 非重合性液晶化合物LCMのNI点は、非重合性液晶化合物LCMがネマチック相(N相)から等方性液体相(I相)に相転移する温度である。非重合性液晶化合物LCMのNI点は、環境温度において、非重合性液晶化合物LCMの異方性が消失する度合いを示す。また、非重合性液晶化合物LCMのNI点は、非重合性液晶化合物LCMにおける分子間相互作用の度合いを少なからず反映する。
 非重合性液晶化合物LCMが2種類以上の液晶化合物の組み合わせである場合、非重合性液晶化合物LCMのNI点は、各液晶化合物の配合比を加重とした各液晶化合物におけるNI点の加重平均値である。非重合性液晶化合物LCMのNI点は、NI点が相互に異なる2種類以上の液晶化合物の組成によって上昇も降下も可能である。
 100℃のような高い環境温度において非重合性液晶化合物LCMの配向秩序を高めることが求められる場合、NI点が高いことが好ましく、100℃以上であることがより好ましい。非重合性液晶化合物LCMと光重合性化合物との均一化を高めることが求められる場合、NI点が低いことが好ましく、145℃以下であることがより好ましい。
 非重合性液晶化合物LCMのCN点は、非重合性液晶化合物LCMが結晶相(C相)からネマチック相(N相)に相転移する温度である。非重合性液晶化合物LCMのCN点は、環境温度において、非重合性液晶化合物LCMの流動性が消失する度合いを示す。また、非重合性液晶化合物LCMのCN点は、非重合性液晶化合物LCMにおける分子間相互作用の度合いを大きく反映する。
 非重合性液晶化合物LCMが2種類以上の液晶化合物の組み合わせである場合、非重合性液晶化合物LCMのCN点は、各液晶化合物の配合比を加重とした各液晶化合物におけるCN点の加重平均値である。非重合性液晶化合物LCMのCN点は、NI点が相互に異なる2種類以上の液晶化合物の組成によって上昇も降下も可能である。
 -20℃のような高い環境温度において非重合性液晶化合物LCMの流動性を高めることが求められる場合、CN点が低いことが好ましく、25℃以下であることがより好ましく、0℃以下であることがより好ましい。
 非重合性液晶化合物LCMの長軸方向と短軸方向との屈折率差Δn(Δn=異常光屈折率ne-常光屈折率no)は、非重合性液晶化合物LCMにおける分子間相互作用の度合いを示す。また、非重合性液晶化合物LCMの屈折率差Δnは、波長が650nmの可視光線における屈折率の差であり、駆動電圧の印加時と非印加時との間での可視光線の散乱度合いの差を示す。非重合性液晶化合物LCMが2種類以上の液晶化合物の組み合わせである場合、非重合性液晶化合物LCMの屈折率差Δnの上限値は、全ての液晶化合物の屈折率差Δnから得られる上限値である。非重合性液晶化合物LCMの屈折率差Δnの下限値は、全ての液晶化合物の屈折率差Δnから得られる下限値である。
 高い環境温度における非重合性液晶化合物LCMの配向制御性を高めることを要する場合、屈折率差Δnの下限値が高いことが好ましい。また、透明状態と不透明状態との間のヘイズの差を高めることを要する場合、屈折率差Δnの下限値が高いことが好ましい。100℃のような高い環境温度において非重合性液晶化合物LCMの配向制御性を高めることを要する場合、非重合性液晶化合物LCMの屈折率差Δnの下限値が0.005であることが好ましく、0.01であることがより好ましい。あるいは、ヘイズの差を高めることを要する場合、非重合性液晶化合物LCMの屈折率差Δnの下限値が0.005であることが好ましく、0.01であることがより好ましい。
 低い環境温度における透過率の応答性を高めることを要する場合、屈折率差Δnの上限値が低いことが好ましい。-20℃のような低い環境温度において透過率の応答性をさらに高めることを要する場合、非重合性液晶化合物LCMの屈折率差Δnの上限値が0.028であり、より好ましくは0.02である。
 [非重合成性粘度低下剤]
 非重合性粘度低下剤DPは、相互に隣り合う非重合性液晶化合物LCMの分子間相互作用を弱めるためのアルキル基などの非極性基を含む。非重合性粘度低下剤DPは、非重合性液晶化合物LCMの極性と相互作用する極性を有したエステル結合などの極性基を含む。
 非重合性粘度低下剤DPは、下記式(1)、あるいは下記式(3)で表される。式(1)で表される非重合性粘度低下剤DPの一例は、アジピン酸ジブチル、アジピン酸ビス(2-エチルヘキシル)、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ビス(2-ブトキシエチル)、マロン酸ジエチル、フタル酸ジ-n-ブチル、フタル酸ビス(2-エチルヘキシル)、トリメリット酸トリス(2-エチルヘキシル)、o-アセチルクエン酸トリブチル、安息香酸メチルからなる群から選択される少なくとも一種である。式(3)で表される非重合性粘度低下剤DPの一例は、リン酸トリプロピル、リン酸トリブチル、リン酸トリペンチルからなる群から選択される少なくとも一種である。非重合性粘度低下剤DPは、1種の粘度低下剤、あるいは2種以上の粘度低下剤の組み合わせである。
Figure JPOXMLDOC01-appb-C000013
 式(1)中のXは、炭素原子数が1以上6以下の直鎖または分岐のアルキル基、またはアリール基である。式(1)中のR、R、Rは、それぞれ独立に水素原子、または式(2)で表される官能基である。式(1)中のrは、炭素原子数が1以上10以下の直鎖または分岐のアルキル基、またはエーテル基である。
Figure JPOXMLDOC01-appb-C000014
 式(2)中のrは、炭素原子数が1以上10以下の直鎖または分岐のアルキル基、またはエーテル基である。
Figure JPOXMLDOC01-appb-C000015
 式(3)中のr、r、rは、それぞれ独立に炭素原子数が3以上6以下の直鎖アルキル基、またはエーテル基である。
 非重合性液晶化合物LCMと非重合性粘度低下剤DPとの総量に対する非重合性粘度低下剤DPの含有量の下限値は0.6質量%であり、より好ましい含有量の下限値は1質量%であり、さらに好ましい含有量の上限値は2質量%である。非重合性液晶化合物LCMと非重合性粘度低下剤DPの総量に対する非重合性粘度低下剤DPの含有量の上限値は10質量%であり、より好ましい含有量の上限値は8質量%であり、さらに好ましい上限値は6質量%である。
 高い環境温度における非重合性液晶化合物LCMの配向制御性を高めることを要する場合、非重合性粘度低下剤DPの含有量の上限値が低いことが好ましい。低い環境温度における透過率の応答性を高めることを要する場合、非重合性液晶化合物LCMの含有量の上限値が高いことが好ましい。
 二色性色素は、非重合性液晶化合物LCMをホストとしたゲストホスト型式によって駆動されて有色を呈する。二色性色素は、ポリヨウ素、アゾ化合物、アントラキノン化合物、ナフトキノン化合物、アゾメチン化合物、テトラジン化合物、キノフタロン化合物、メロシアニン化合物、ペリレン化合物、ジオキサジン化合物からなる群から選択される少なくとも一種である。二色性色素は、1種の化合物、あるいは2種以上の化合物の組み合わせである。
 耐光性を高めること、および二色比を高めることが求められる場合、二色性色素は、アゾ化合物、およびアントラキノン化合物からなる群から選択される少なくとも一種であり、よりが好ましくはアゾ化合物である。
 スペーサーSPは、有機高分子層31Pの全体にわたり分散されている。スペーサーSPは、スペーサーSPの周辺において調光層31の厚さを定めると共に、調光層31の厚さを均一にする。スペーサーSPは、ビーズスペーサーでもよいし、フォトレジストの露光および現像によって形成されるフォトスペーサーでもよい。スペーサーSPは、無色透明でもよいし、有色透明でもよい。液晶組成物31LCが二色性色素を含む場合、スペーサーSPの呈する色は、二色性色素の呈する色と同色であることが好ましい。
 なお、電圧印加による非重合性液晶化合物LCMの配向状態の変化に基づいて、調光シート11の透明状態と不透明状態とを切り換える構成であれば、調光シート11は、他の機能層を備えてもよい。他の機能層は、調光層31に向けた酸素や水分の透過を抑えるガスバリア層でもよいし、調光層31に向けた特定波長以外の紫外光線の透過を抑える紫外線バリア層でもよい。他の機能層は、調光シート11の各層を機械的に保護するハードコート層でもよいし、調光シート11における層間の密着性を高める接着層でもよい。
 [調光シートの製造方法]
 調光シート11の製造方法は、第1透明支持層36と第2透明支持層37との間に、上述した光重合性化合物と液晶組成物31LCとを含む塗膜を形成することを含む。第1透明支持層36は、第1配向層32と第1透明電極層34とを備える。第2透明支持層37は、第2配向層33と第2透明電極層35とを備える。なお、第1配向層32と第2配向層33とが割愛された調光シート11の製造方法では、第1透明支持層36と第2透明支持層37との間に、上述した光重合性化合物と液晶組成物31LCとを含む塗膜を形成する。第1透明支持層36は、第1配向層32を割愛され、第1透明電極層34を備える。第2透明支持層37は、第2配向層33を割愛され、第2透明電極層35を備える。
 塗膜は、光重合性化合物の重合を開始するための重合開始剤を含む。重合開始剤は、ジケトン化合物、アセトフェノン化合物、ベンゾイン化合物、ベンゾフェノン化合物、チオキサンソン化合物からなる群から選択される少なくとも一種である。重合開始剤は、1種の化合物でもよいし、2種以上の化合物の組み合わせでもよい。重合開始剤の一例は、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、シクロヘキシルフェニルケトンからなる群から選択されるいずれか一種である。
 調光シート11の製造方法は、塗膜のなかで光重合性化合物を重合させることによって、液晶組成物31LCからなる液晶粒子を重合体から相分離させることを含む。光重合性化合物を重合させる光は、紫外光線でもよいし、電子線でもよい。塗膜に照射される光は、第1透明支持層36に向けて照射されてもよいし、第2透明支持層37に向けて照射されてもよいし、これらの組み合わせでもよい。
 液晶組成物31LCからなる液晶粒子の相分離は、光重合性化合物の重合と、液晶組成物31LCの拡散とを通じて進む。光重合性化合物の重合する速度は、光重合性化合物に照射される光の強度によって変わる。液晶組成物31LCの拡散する速度は、光重合性化合物の重合時の処理温度によって変わる。液晶組成物31LCの相分離では、液晶粒子の大きさを所望の大きさとするように、すなわち空隙31Dの大きさを所望の大きさとするように、光重合性化合物に照射される光の強度が設定される。また、液晶組成物31LCの相分離では、液晶組成物31LCの拡散を促すための加熱を行ってもよい。
 空隙31Dの大きさを小さくすることが求められる場合、光重合性化合物に照射される光の強度を高めて、液晶組成物31LCの拡散を抑えるための低い温度で重合を進めることが好ましい。空隙31Dの大きさを大きくすることが求められる場合、光重合性化合物に照射される光の強度を低めて、液晶組成物31LCの拡散を促すための高い温度で重合を進めることが好ましい。
 [実施例]
 調光シート11の具体的な実施例、および比較例を以下に示す。なお、各実施例、および比較例は、第1配向層32と第2配向層33とが割愛されたノーマル型の調光シート11である。そして、第1透明電極層34を備えた第1透明支持層36と、第2透明電極層35を備えた第2透明支持層37との間に、光重合性化合物と液晶組成物31LCとを含む塗膜を形成し、塗膜のなかで光重合性化合物を重合させることによって、調光シート11を得た。
 なお、実施例、および比較例に用いた各構成材料を以下に示す。非重合性液晶化合物LCMのNI点は、110℃である。また、実施例1~41、および比較例1~7の各構成材料の配合比を図3~図7に示す。図3~図7に示す配合比は、塗膜を形成するための塗工液の総量に対する各構成材料の割合を示す。
・第1透明電極層34   : 酸化インジウムスズ
・第2透明電極層35   : 酸化インジウムスズ
・第1透明支持層36   : ポリエチレンテレフタレートフィルム
・第2透明支持層37   : ポリエチレンテレフタレートフィルム
・重合開始剤PI1    : 1-ヒドロキシシクロヘキシルフェニルケトン
・非重合性液晶化合物LCM: シアノビフェニル化合物
・スペーサーSP     : 直径15μmの真球状(PMMA製)
・紫外線重合性化合物(重合性不飽和化合物)
 成分M1 :イソボニルアクリレート
 成分M2 :ペンタエリスリトールトリアクリレート
 成分M3 :ウレタンアクリレート・非重合性粘度低下剤DP(非重合性添加剤)
 成分NPA1 : アジピン酸ジブチル
 成分NPA2 : アジピン酸ジオクチル
 成分NPA3 : アジピン酸ジイソノニル
 成分NPA4 : アジピン酸ジイソデシル
 成分NPA5 : アジピン酸ビス(2-ブトキシエチル)
 成分NPA6 : マロン酸ジエチル
 成分NPA7 : フタル酸ジ-n-ブチル
 成分NPA8 : フタル酸ビス(2-エチルヘキシル)
 成分NPA9 : トリメリット酸トリス(2-エチルヘキシル)
 成分NPA10: o-アセチルクエン酸トリブチル
 成分NPA11: 安息香酸メチル
 成分NPA12: リン酸トリブチル
・重合性添加剤
 成分MA1  : アクリル酸ブチル
 成分MA2  : トリエチレングルコールジアクリレート
 成分MA3  : ペンタエリスリトールトリアクリレート
 (実施例1~実施例6)
 図3が示すように、実施例1~実施例6の塗工液は、それぞれ非重合性粘度低下剤DPとして0.5質量%の成分NPA1~成分NPA6を用いた。実施例1~実施例6の塗工液を用いて、厚さが20μmの塗膜を第1透明電極層34の上に形成し、スペーサーSPを塗膜中に散布した。そして、スペーサーSPが散布された塗膜を第1透明電極層34と第2透明電極層35とによってラミネートし、第1透明支持層36に向けて365nmの紫外光線を照射することによって、実施例1~実施例6の調光シート11を得た。この際、紫外光線の強度を10mW/cmに設定し、紫外線の照射時間を100秒とした。
 (実施例7~実施例12)
 図3および図4が示すように、実施例7~実施例12の塗工液は、それぞれ非重合性粘度低下剤DPとして1.0質量%の成分NPA1~成分NPA6を用いた。非重合性粘度低下剤DPの配合比、および紫外線重合性化合物の配合比以外を実施例1と同様にして、実施例7~実施例12の調光シート11を得た。
 (実施例13~実施例18)
 図4が示すように、実施例13~実施例18の塗工液は、それぞれ非重合性粘度低下剤DPとして2.0質量%の成分NPA1~成分NPA6を用いた。非重合性粘度低下剤DPの配合比、および紫外線重合性化合物の配合比以外を実施例1と同様にして、実施例13~実施例18の調光シート11を得た。
 (実施例19~実施例30)
 図4および図5が示すように、実施例19~実施例30の塗工液は、それぞれ非重合性粘度低下剤DPとして3.0質量%の成分NPA1~成分NPA12を用いた。非重合性粘度低下剤DPの配合比、および紫外線重合性化合物の配合比以外を実施例1と同様にして、実施例19~実施例30の調光シート11を得た。
 (実施例31~実施例36)
 図6が示すように、実施例31~実施例36の塗工液は、それぞれ非重合性粘度低下剤DPとして4.0質量%の成分NPA1~成分NPA6を用いた。非重合性粘度低下剤DPの配合比、および紫外線重合性化合物の配合比以外を実施例1と同様にして、実施例31~実施例36の調光シート11を得た。
 (実施例37~実施例39)
 図6が示すように、実施例37~実施例39の塗工液は、それぞれ非重合性粘度低下剤DPとして5.0質量%の成分NPA3、成分NPA5、成分NPA6を用いた。非重合性粘度低下剤DPの配合比、および紫外線重合性化合物の配合比以外を実施例1と同様にして、実施例37~実施例39の調光シート11を得た。
 (実施例40~実施例41)
 図6が示すように、実施例40~実施例41の塗工液は、それぞれ非重合性粘度低下剤DPとして0.3質量%の成分NPA4、成分NPA6を用いた。非重合性粘度低下剤DPの配合比、および紫外線重合性化合物の配合比以外を実施例1と同様にして、実施例40~実施例41の調光シート11を得た。
 (比較例1)
 図7が示すように、非重合性粘度低下剤DPを割愛した塗工液を用い、非重合性粘度低下剤DPを割愛すること、および紫外線重合性化合物の配合比以外を実施例1と同様にして、比較例1の調光シート11を得た。
 (比較例2~比較例3)
 図7が示すように、非重合性粘度低下剤DPを割愛し、重合性添加剤として0.5質量%の成分MA1を加えた塗工液を用い、非重合性粘度低下剤DPを割愛すること、重合性添加剤を加えること、および紫外線重合性化合物の配合比以外を実施例1と同様にして、比較例2の調光シート11を得た。
 また、非重合性粘度低下剤DPを割愛し、重合性添加剤として4.0質量%の成分MA1を加えた塗工液を用い、非重合性粘度低下剤DPを割愛すること、重合性添加剤を加えること、および紫外線重合性化合物の配合比以外を実施例1と同様にして、比較例3の調光シート11を得た。
 (比較例4~比較例5)
 図7が示すように、非重合性粘度低下剤DPを割愛し、重合性添加剤として0.5質量%の成分MA2を加えた塗工液を用い、非重合性粘度低下剤DPを割愛すること、重合性添加剤を加えること、および紫外線重合性化合物の配合比以外を実施例1と同様にして、比較例4の調光シート11を得た。
 また、非重合性粘度低下剤DPを割愛し、重合性添加剤として4.0質量%の成分MA2を加えた塗工液を用い、非重合性粘度低下剤DPを割愛すること、重合性添加剤を加えること、および紫外線重合性化合物の配合比以外を実施例1と同様にして、比較例5の調光シート11を得た。
 (比較例6~比較例7)
 図7が示すように、非重合性粘度低下剤DPを割愛し、重合性添加剤として0.5質量%の成分MA3を加えた塗工液を用い、非重合性粘度低下剤DPを割愛すること、重合性添加剤を加えること、および紫外線重合性化合物の配合比以外を実施例1と同様にして、比較例6の調光シート11を得た。
 また、非重合性粘度低下剤DPを割愛し、重合性添加剤として4.0質量%の成分MA3を加えた塗工液を用い、非重合性粘度低下剤DPを割愛すること、重合性添加剤を加えること、および紫外線重合性化合物の配合比以外を実施例1と同様にして、比較例7の調光シート11を得た。
 [評価]
 実施例1~41、および比較例1~7の調光シート11を用い、不透明状態の調光シート11のヘイズ(非通電時)、および透明状態の調光シート11のヘイズ(通電時)をそれぞれ-20℃、-10℃、0℃、23℃、90℃、100℃の各温度で測定した。
 実施例1~41、および比較例1~7の調光シート11を用い、調光シート11が不透明状態から透明状態に切り替わるまでに要する時間を、オン動作として、-20℃、-10℃、23℃の各温度で測定した。不透明状態から透明状態に切り替わるまでに要する時間は、駆動電圧を印加しはじめてから調光シート11のヘイズが安定するまでの時間である。
 実施例1~41、および比較例1~7の調光シート11を用い、調光シート11が透明状態から不透明状態に切り替わるまでに要する時間を、オフ動作として、-20℃、-10℃、23℃の各温度で測定した。透明状態から不透明状態に切り替わるまでに要する時間は、駆動電圧の印加を停止してから調光シート11のヘイズが安定するまでの時間である。
 実施例1~実施例41の-20℃でのオン動作は、いずれも5秒以下である一方、比較例1~比較例7の-20℃でのオン動作は、いずれも7秒以上であることが認められた。これにより、非重合性粘度低下剤DPとして成分NPA1~NPA12を添加することで、非重合性粘度低下剤DPを添加しない場合、また重合性添加剤を添加する場合と比べて、-20℃でのオン動作の応答性を高められることが認められた。
 また、-20℃でのオン動作と、23℃でのオン動作との乖離は、実施例1~実施例41では、いずれも4秒以下である一方、比較例1~比較例7では、いずれも6秒以上であることが認められた。これにより、非重合性粘度低下剤DPとして成分NPA1~NPA12を添加することで、非重合性粘度低下剤DPを添加しない場合、また重合性添加剤を添加する場合と比べて、温度の低下に起因してオン動作の応答性が低下する度合いを抑えられることが認められた。
 また、実施例1~実施例39の透明状態でのヘイズは、いずれも6%以下である一方、実施例40~実施例41の透明状態でのヘイズは、7%以上であることが認められた。これにより、非重合性液晶化合物LCMの重量に対する非重合性粘度低下剤DPの割合が1%以上であれば、透明状態でのヘイズを抑えられることが認められた。
 実施例7~実施例39の透明状態でのヘイズと、実施例1~実施例6の透明状態でのヘイズとの比較から、非重合性液晶化合物LCMの重量に対する非重合性粘度低下剤DPの割合が2%以上であれば、透明状態でのヘイズをさらに抑えられることが認められた。
 実施例33,35,36の不透明状態でのヘイズは、100℃において85%以上である一方、実施例37,38,39の不透明状態でのヘイズは、100℃において83%以下であることが認められた。これにより、非重合性液晶化合物LCMの重量に対する非重合性粘度低下剤DPの割合が8%以下であれば、不透明状態でのヘイズの低下を抑えられることが認められた。
 また、-20℃での不透明状態のヘイズと、23℃での不透明状態のヘイズとの乖離は、実施例33,35,36では、いずれも10%以下である一方、実施例37,38,39では、いずれも12%以上であることが認められた。これにより、非重合性液晶化合物LCMの重量に対する非重合性粘度低下剤DPの割合が8%以下であれば、温度の低下に起因して不透明状態のヘイズが低下する度合いを抑えられることが認められた。
 実施例19~実施例23における-20℃での透明状態のヘイズは、実施例24,27~30における-20℃での透明状態のヘイズよりも低いことが認められた。また、実施例19~実施例23における100℃での不透明状態のヘイズは、実施例25~27における100℃での不透明状態のヘイズよりも高いことが認められた。これにより、低い環境温度において非重合性液晶化合物LCMの配向秩序を高めることが要求される場合、非重合性液晶化合物LCMのなかでも、成分NPA1~成分NPA6を用いることが好ましい。また、高い環境温度において非重合性液晶化合物LCMの流動性を高めることが要求される場合も、非重合性液晶化合物LCMのなかでも、成分NPA1~成分NPA6を用いることが好ましい。
 上記実施形態によれば、以下に列挙する効果を得ることができる。
 (1)上記式(1)~(3)で表される非重合性粘度低下剤DPを液晶組成物31LCに含む構成であれば、非極性基であるアルキル基が非重合性液晶化合物LCMの間に介在して、非重合性液晶化合物LCMにおける分子間相互作用を弱める。これにより、-20℃のような低い環境温度における光透過率の応答性を高めることが可能となる。
 (2)上記式(1)~(3)が表す低分子構造であれば、紫外線重合性化合物の重合体から拡散すること、すなわち有機高分子層31Pから液晶粒子として相分離されることに好適である。
 (3)成分NPA1~成分NPA6のように、非重合性粘度低下剤DPがアジピン酸エステルである場合、-20℃のような低い環境温度において、非重合性液晶化合物LCMの配向秩序が低下することが抑制可能ともなる。
 (4)非重合性液晶化合物LCMの重量に対する非重合性粘度低下剤DPの重量の割合が1%以上である場合、-20℃のような低い環境温度における非重合性液晶化合物LCMの配向秩序の低下が抑制可能ともなる。
 (5)非重合性液晶化合物LCMの重量に対する非重合性粘度低下剤DPの重量の割合が2%以上8%以下である場合、100℃のような高い環境温度における非重合性液晶化合物LCMを無秩序相に転移させることの制御が容易ともなる。
 なお、上記実施形態、および実施例によれば、以下に記載する技術的思想を導くことができる。
 ・調光シート、その製造方法、および高分子分散型用液晶組成物において、液晶組成物は、非重合性粘度低下剤としてアジピン酸ジイソデシルを含み、非重合性液晶化合物の重量に対する非重合性粘度低下剤の重量の割合は、1%以上8%以下でもよい。また、調光シート、その製造方法、および高分子分散型用液晶組成物において、液晶組成物は、非重合性粘度低下剤としてアジピン酸ジブチル、アジピン酸ジオクチル、およびアジピン酸ジイソノニルからなる群から選択されるいずれか1つを含み、非重合性液晶化合物の重量に対する非重合性粘度低下剤の重量の割合が1%以上8%以下でもよい。調光シート、その製造方法、および高分子分散型用液晶組成物において、液晶組成物は、非重合性粘度低下剤としてアジピン酸ジイソデシル、アジピン酸ジブチル、アジピン酸ジオクチル、およびアジピン酸ジイソノニルからなる群から選択されるいずれか1つを含み、非重合性液晶化合物の重量に対する非重合性粘度低下剤の重量の割合が1%以上8%以下でもよい。
 また、調光シート、その製造方法、および高分子分散型用液晶組成物において、有機高分子層と液晶組成物との総重量に対する有機高分子層の重量の割合が30質量%以上60質量%以下でもよい。加えて、調光シート、その製造方法、および高分子分散型用液晶組成物において、非重合性液晶化合物と非重合性粘度低下剤との総重量に対する非重合性粘度低下剤の重量の割合は、2質量%以上6質量%以下でもよい。
 図3~図7のうち、成分NPA4の-10℃におけるオフ動作が示すように、液晶組成物の重量に対する非重合性粘度低下剤の重量が0.3%、言い換えれば、非重合性液晶化合物の重量に対する非重合性粘度低下剤の重量が0.6%では、オフ動作に時間を要している一方、液晶組成物の重量に対する非重合性粘度低下剤の重量が0.5%以上、言い換えれば、非重合性液晶化合物の重量に対する非重合性粘度低下剤の重量が1%以上であれば、オフ動作に要する時間を急峻に短くできる。そして、上記各構成のように、非重合性粘度低下剤として、アジピン酸ジイソデシル、アジピン酸ジブチル、アジピン酸ジオクチル、およびアジピン酸ジイソノニルからなる群から選択されるいずれか1つを含み、かつ非重合性液晶化合物の重量に対する非重合性粘度低下剤の重量が1%以上8%以下であれば、オフ動作に要する時間を急峻に短くできる。また、非重合性液晶化合物と非重合性粘度低下剤との総重量に対する非重合性粘度低下剤の重量の割合が、2質量%以上6質量%以下であっても、オフ動作に要する時間を急峻に短くできる。
 ・式(1)中のXは、炭素原子数が1以上6以下の直鎖のアルキル基であり、式(1)中のR、R、Rは、直鎖のアルキル基における末端に位置する1つの炭素に結合してもよいし、直鎖のアルキル基における末端に位置する1つの炭素と他の1つの炭素とに別々に結合してもよい。式(1)中のXは、炭素原子数が1以上6以下の直鎖のアルキル基であり、式(1)中のR、R、Rは、直鎖のアルキル基における末端以外に位置する別々の炭素に結合してもよい。式(1)中のXは、1つのアリール基であり、式(1)中のR、R、Rなかの1つがアリール基における1つの炭素に結合し、R、R、Rなかの残りの2つがアリール基における他の1つの炭素に結合してもよい。式(1)中のXは、1つのアリール基であり、式(1)中のR、R、Rがそれぞれアリール基における別々の炭素に結合してもよい。
 DP…非重合性粘度低下剤
 LCM…非重合性液晶化合物
 SP…スペーサー
 11…調光シート
 12…駆動部
 31…調光層
 32…第1配向層
 33…第2配向層
 34…第1透明電極層
 35…第2透明電極層
 36…第1透明支持層
 37…第2透明支持層
 31P…有機高分子層
 31D…空隙
 31LC…液晶組成物

Claims (14)

  1.  複数の空隙を区画する有機高分子層と、
     非重合性液晶化合物を含み前記空隙を埋める液晶組成物と、を備え、
     前記非重合性液晶化合物の駆動によって可視光線の透過率を変える調光シートであって、
     前記液晶組成物は、下記式(1)で表される非重合性粘度低下剤を含み、
    Figure JPOXMLDOC01-appb-C000001
     Xは、炭素原子数が1以上6以下の直鎖または分岐のアルキル基、またはアリール基;
     R、R、Rは、それぞれ独立に水素原子、または式(2)で表される官能基;
     rは、炭素原子数が1以上10以下の直鎖または分岐のアルキル基、またはエーテル基;
    Figure JPOXMLDOC01-appb-C000002
     rは、炭素原子数が1以上10以下の直鎖または分岐のアルキル基、またはエーテル基である
     調光シート。
  2.  複数の空隙を区画する有機高分子層と、
     非重合性液晶化合物を含み前記空隙を埋める液晶組成物と、を備え、
     前記非重合性液晶化合物の駆動によって可視光線の透過率を変える調光シートであって、
     前記液晶組成物は、下記式(3)で表される非重合性粘度低下剤を含み、
    Figure JPOXMLDOC01-appb-C000003
     r、r、rは、それぞれ独立に炭素原子数が3以上8以下の直鎖アルキル基である
     調光シート。
  3.  前記有機高分子層と前記液晶組成物との総重量に対する前記有機高分子層の重量の割合は、30質量%以上60質量%以下である
     請求項1または2に記載の調光シート。
  4.  前記非重合性液晶化合物の重量に対する前記非重合性粘度低下剤の重量の割合が1%以上8%以下である
     請求項1から3のいずれか一項に記載の調光シート。
  5.  前記式(1)においてXは、炭素原子数が1以上6以下の直鎖アルキル基であり、
     前記式(1)においてRは、前記式(2)で表される官能基であり、
     前記式(1)においてR、Rは、それぞれ独立に水素原子である
    請求項1、3、4のいずれか一項に記載の調光シート。
  6.  前記非重合性液晶化合物のNI点が100℃以上145℃以下である
     請求項1、または3から5のいずれか一項に記載の調光シート。
  7.  前記非重合性粘度低下剤は、アジピン酸ジイソデシル、アジピン酸ジブチル、アジピン酸ジオクチル、アジピン酸ビス(2-ブトキシエチル)、およびアジピン酸ジイソノニルからなる群から選択されるいずれか1つである、
     請求項1、または3から6のいずれか一項に記載の調光シート。
  8.  前記非重合性液晶化合物と前記非重合性粘度低下剤との総重量に対する前記液晶組成物に含まれる全ての前記非重合性粘度低下剤の重量の割合は、2質量%以上6質量%以下である
     請求項7に記載の調光シート。
  9.  第1透明電極層と、
     第2透明電極層と、をさらに備え、
     前記有機高分子層は、透明電極層間に位置し、
     前記液晶組成物は、前記有機高分子層から相分離された液晶粒子であり、
     前記透明電極層間の電圧印加の解除によって透明状態から不透明状態に移る
     請求項1から8のいずれか一項に記載の調光シート。
  10.  第1透明電極層と、
     第2透明電極層と、をさらに備え、
     前記有機高分子層は、透明電極層間に位置し、
     前記液晶組成物は、前記有機高分子層から相分離された液晶粒子であり、
     前記透明電極層間の電圧印加によって透明状態から不透明状態に移る
     請求項1から8のいずれか一項に記載の調光シート。
  11.  複数の空隙を区画する有機高分子層、および、非重合性液晶化合物を含み前記空隙を埋める液晶組成物を備え、前記非重合性液晶化合物の駆動によって可視光線の透過率を変える調光シートを製造する方法であって、
     前記液晶組成物と紫外線硬化性化合物とを含む層で前記紫外線硬化性化合物を重合することにより前記液晶組成物からなる液晶粒子を前記有機高分子層から相分離することを含み、
     前記液晶組成物は、下記式(1)で表される非重合性粘度低下剤を含み、
    Figure JPOXMLDOC01-appb-C000004
     Xは、炭素原子数が1以上6以下の直鎖または分岐のアルキル基、またはアリール基;
     R、R、Rは、それぞれ独立に水素原子、または式(2)で表される官能基;
     rは、炭素原子数が1以上10以下の直鎖または分岐のアルキル基、またはエーテル基;
    Figure JPOXMLDOC01-appb-C000005
     rは、炭素原子数が1以上10以下の直鎖または分岐のアルキル基、またはエーテル基であり、
     前記有機高分子層と前記液晶組成物との総重量に対する前記有機高分子層の重量の割合は、30質量%以上60質量%以下であり、
     前記非重合性液晶化合物の重量に対する前記非重合性粘度低下剤の重量の割合が1%以上8%以下である
     調光シートの製造方法。
  12.  複数の空隙を区画する有機高分子層、および、非重合性液晶化合物を含み前記空隙を埋める液晶組成物を備え、前記非重合性液晶化合物の駆動によって可視光線の透過率を変える調光シートを製造する方法であって、
     前記液晶組成物と紫外線硬化性化合物とを含む層で前記紫外線硬化性化合物を重合することにより前記液晶組成物からなる液晶粒子を前記有機高分子層から相分離することを含み、
     前記液晶組成物は、下記式(3)で表される非重合性粘度低下剤を含み、
    Figure JPOXMLDOC01-appb-C000006
     r、r、rは、それぞれ独立に炭素原子数が3以上8以下の直鎖アルキル基であり、
     前記有機高分子層と前記液晶組成物との総重量に対する前記有機高分子層の重量の割合は、30質量%以上60質量%以下であり、
     前記非重合性液晶化合物の重量に対する前記非重合性粘度低下剤の重量の割合が1%以上8%以下である
     調光シートの製造方法。
  13.  液晶組成物と紫外線硬化性化合物とを含む層で前記紫外線硬化性化合物を重合することにより重合体である有機高分子層から相分離される高分子分散型用液晶組成物であって、
     前記液晶組成物は、非重合性液晶化合物と下記式(1)で表される非重合性粘度低下剤を含み、
    Figure JPOXMLDOC01-appb-C000007
     Xは、炭素原子数が1以上6以下の直鎖または分岐のアルキル基、またはアリール基;
     R、R、Rは、それぞれ独立に水素原子、または式(2)で表される官能基;
     rは、炭素原子数が1以上10以下の直鎖または分岐のアルキル基、またはエーテル基;
    Figure JPOXMLDOC01-appb-C000008
     rは、炭素原子数が1以上10以下の直鎖または分岐のアルキル基、またはエーテル基であり、
     前記紫外線硬化性化合物と前記液晶組成物との総重量に対する前記紫外線硬化性化合物の重量の割合は、30質量%以上60質量%以下であり、
     前記非重合性液晶化合物の重量に対する前記非重合性粘度低下剤の重量の割合が1%以上8%以下である
     高分子分散型用液晶組成物。
  14.  液晶組成物と紫外線硬化性化合物とを含む層で前記紫外線硬化性化合物を重合することにより重合体である有機高分子層から相分離される高分子分散型用液晶組成物であって、
     前記液晶組成物は、非重合性液晶化合物と下記式(3)で表される非重合性粘度低下剤を含み、
    Figure JPOXMLDOC01-appb-C000009
     r、r、rは、それぞれ独立に炭素原子数が3以上8以下の直鎖アルキル基であり、
     前記紫外線硬化性化合物と前記液晶組成物との総重量に対する前記紫外線硬化性化合物の重量の割合は、30質量%以上60質量%以下であり、
     前記非重合性液晶化合物の重量に対する前記非重合性粘度低下剤の重量の割合が1%以上8%以下である
     高分子分散型用液晶組成物。
PCT/JP2022/013928 2021-03-24 2022-03-24 調光シート、調光シートの製造方法、および高分子分散型用液晶組成物 WO2022202986A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280017873.6A CN116981984A (zh) 2021-03-24 2022-03-24 调光片材、调光片材的制造方法、以及高分子分散型用液晶组合物
EP22775767.1A EP4318109A1 (en) 2021-03-24 2022-03-24 Light control sheet, method for manufacturing light control sheet, and liquid crystal composition for polymer dispersion
US18/471,553 US20240010917A1 (en) 2021-03-24 2023-09-21 Light control sheet, method for producing light control sheet, and liquid crystal composition for polymer dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-049982 2021-03-24
JP2021049982A JP7010401B1 (ja) 2021-03-24 2021-03-24 調光シート、調光シートの製造方法、および高分子分散型用液晶組成物

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/471,553 Continuation US20240010917A1 (en) 2021-03-24 2023-09-21 Light control sheet, method for producing light control sheet, and liquid crystal composition for polymer dispersion

Publications (1)

Publication Number Publication Date
WO2022202986A1 true WO2022202986A1 (ja) 2022-09-29

Family

ID=80678852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013928 WO2022202986A1 (ja) 2021-03-24 2022-03-24 調光シート、調光シートの製造方法、および高分子分散型用液晶組成物

Country Status (5)

Country Link
US (1) US20240010917A1 (ja)
EP (1) EP4318109A1 (ja)
JP (2) JP7010401B1 (ja)
CN (1) CN116981984A (ja)
WO (1) WO2022202986A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7164061B1 (ja) 2022-03-08 2022-11-01 凸版印刷株式会社 調光シート、感光性組成物、及び調光シートの製造方法
JP7279841B1 (ja) 2022-09-14 2023-05-23 凸版印刷株式会社 調光シート、調光装置、および調光シートの製造方法
WO2024058041A1 (ja) * 2022-09-14 2024-03-21 Toppanホールディングス株式会社 調光シート、調光装置、および調光シートの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098358A (ja) * 1998-09-21 2000-04-07 Nippon Telegr & Teleph Corp <Ntt> 電気光学材料、それを用いた光素子および位相空間光変調器
WO2017180923A1 (en) * 2016-04-13 2017-10-19 Nitto Denko Corporation Liquid crystal compositions, mixtures, elements, and dimmable devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018152257A1 (en) * 2017-02-14 2018-08-23 Nitto Denko Corporation Liquid crystal composition containing a five-membered heterocyclic ring, reverse-mode polymer dispersed liquid crystal element, and associated selectively dimmable device
CN111902519A (zh) * 2018-01-24 2020-11-06 日东电工株式会社 包含五元杂环的液晶组合物、反向模式聚合物分散的液晶元件以及相关的选择性可调光装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098358A (ja) * 1998-09-21 2000-04-07 Nippon Telegr & Teleph Corp <Ntt> 電気光学材料、それを用いた光素子および位相空間光変調器
WO2017180923A1 (en) * 2016-04-13 2017-10-19 Nitto Denko Corporation Liquid crystal compositions, mixtures, elements, and dimmable devices

Also Published As

Publication number Publication date
JP2022151586A (ja) 2022-10-07
EP4318109A1 (en) 2024-02-07
JP2022148343A (ja) 2022-10-06
JP7010401B1 (ja) 2022-01-26
US20240010917A1 (en) 2024-01-11
CN116981984A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2022202986A1 (ja) 調光シート、調光シートの製造方法、および高分子分散型用液晶組成物
ITMI951226A1 (it) Cristalli liquidi stabilizzati con polimeri (pslc) e dispositivi flessibili di essi
TWI832804B (zh) 調光積層體及調光積層體用樹脂間隔件
KR20120130278A (ko) 폴리머-안정화 열방성 액정 장치
JP2724596B2 (ja) 液晶デバイス及びその製造方法
JP2016534176A (ja) 液晶ポリマー組成物、それを製造するための方法およびそれを含む液晶物品
WO2017217430A1 (ja) 液晶素子、液晶組成物並びに液晶素子を用いたスクリーン、ディスプレイ及び窓
JP7279841B1 (ja) 調光シート、調光装置、および調光シートの製造方法
JPH07175051A (ja) 液晶/プレポリマー組成物およびそれを用いた液晶表示素子
US5378391A (en) Liquid crystal film
CN112015018A (zh) 一种调光器件及其制备方法
JP2022159271A (ja) 調光シート、調光装置及び調光シートの製造方法
JP7485188B1 (ja) 調光シート
JP3308353B2 (ja) 液晶光学素子
WO2024058041A1 (ja) 調光シート、調光装置、および調光シートの製造方法
JP2024081856A (ja) 調光シート
JP7260030B1 (ja) 調光装置
JPH09329781A (ja) 光散乱型液晶デバイス及びその製造方法
JP7164061B1 (ja) 調光シート、感光性組成物、及び調光シートの製造方法
JP2022148342A (ja) 調光シート、調光装置、調光シートの製造方法、および調光シートの評価方法
EP4382999A1 (en) Dimming sheet and dimming device
CN115480419B (zh) 离子液体掺杂聚合物分散液晶的变色器件及其制备方法
JP2711546B2 (ja) 液晶デバイス
WO2023199915A1 (ja) 調光装置
JP2008287250A (ja) 調光構造体、その製造方法、および調光構造体を用いた車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775767

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280017873.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022775767

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022775767

Country of ref document: EP

Effective date: 20231024