WO2022102460A1 - エラストマー組成物及びタイヤ - Google Patents

エラストマー組成物及びタイヤ Download PDF

Info

Publication number
WO2022102460A1
WO2022102460A1 PCT/JP2021/040279 JP2021040279W WO2022102460A1 WO 2022102460 A1 WO2022102460 A1 WO 2022102460A1 JP 2021040279 W JP2021040279 W JP 2021040279W WO 2022102460 A1 WO2022102460 A1 WO 2022102460A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
group
resin
mass
elastic modulus
Prior art date
Application number
PCT/JP2021/040279
Other languages
English (en)
French (fr)
Inventor
友洋 赤堀
晴子 澤木
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to US18/035,630 priority Critical patent/US20230407059A1/en
Priority to CN202180049103.5A priority patent/CN115916888B/zh
Priority to EP21891707.8A priority patent/EP4163330A4/en
Publication of WO2022102460A1 publication Critical patent/WO2022102460A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc

Definitions

  • the present disclosure relates to elastomer compositions and tires.
  • the present disclosure is an elastomer composition containing a butadiene-based elastomer and a temperature-responsive resin whose hydrophilicity changes with temperature change.
  • the above elastomer composition has a low temperature side temperature and an elastic modulus at a low temperature side / a low temperature side temperature and an elastic modulus at the time of drying ⁇ 0.95, and a high temperature side temperature at a predetermined two-point temperature having a temperature difference of 10 ° C. or more.
  • Elastic modulus during water immersion / high temperature side temperature and elastic modulus during drying> 0.95 is satisfied. It relates to an elastomer composition in which the temperature on the low temperature side is less than 25 ° C.
  • the present disclosure is an elastomer composition containing a butadiene-based elastomer and a temperature-responsive resin whose hydrophilicity changes with a temperature change, and the above-mentioned elastomer composition has a predetermined temperature difference of 10 ° C. or more.
  • the low temperature side temperature and the elastic coefficient when immersed in water / the low temperature side temperature and the elastic coefficient when dried ⁇ 0.95
  • the elastomer composition of the present disclosure is an elastomer composition containing a butadiene-based elastomer and a temperature-responsive resin whose hydrophilicity changes with a temperature change, and the above-mentioned elastomer composition has a predetermined temperature difference of 10 ° C. or more.
  • the low temperature side temperature and the elasticity when immersed in water / the low temperature side temperature and the elasticity when drying ⁇ 0.95
  • the high temperature side temperature and the elasticity when immersed in water / the high temperature side temperature and the elasticity when drying The rate> 0.95 is satisfied, and the temperature on the low temperature side is less than 25 ° C.
  • the tire performance can be changed in response to the temperature change.
  • the behavior of the elastic modulus of the elastomer composition changes due to the temperature change, so that the tire performance can be changed in response to the temperature change.
  • An elastomer composition having such properties can be achieved by containing a temperature-responsive resin whose hydrophilicity changes with temperature change. That is, since the hydrophilicity of the temperature-responsive resin changes with temperature change, an elastomer composition having the above-mentioned characteristics can be obtained by blending the resin.
  • the compatibility between the temperature-responsive polymer and the elastomer is low, and the temperature-responsive polymer
  • the compatibility between the temperature-responsive polymer and the elastomer is low, and the temperature-responsive polymer
  • the compatibility between the temperature-responsive resin and the elastomer is relatively high, and the temperature-responsive resin is dissolved in water and flows out from the elastomer composition. Therefore, the tire performance can be reversibly changed in response to the temperature change.
  • the present disclosure includes a butadiene-based elastomer and a temperature-responsive resin whose hydrophilicity changes with a temperature change, and responds to a temperature change by forming an elastomer composition satisfying the above elastic modulus parameter.
  • This solves the problem (purpose) of changing the tire performance. That is, the parameter does not define a problem (purpose), and the problem of the present application is to change the tire performance in response to a temperature change, and as a solution for that, an elastomer composition is used as a butadiene-based elastomer.
  • a temperature-responsive resin whose hydrophilicity changes with a change in temperature, and is configured to satisfy the above-mentioned elastic modulus parameter. That is, it is an indispensable constituent requirement to satisfy the above-mentioned elastic modulus parameter.
  • the temperature-responsive resin when the temperature-responsive resin is a resin exhibiting a lower limit critical solution temperature (LCST) in water, the temperature-responsive resin exhibits hydrophobicity at a higher temperature than LCST and hydrophilicity at a lower temperature than LCST. Therefore, at a high temperature, for example, at 60 ° C., the temperature-responsive resin is hydrophobic, so that the compatibility with the butadiene-based elastomer is improved. As a result, at high temperatures, the elastic modulus is high, and even when immersed in water, the elastic modulus is maintained at the same level as or slightly inferior to that at the time of drying, and good dry grip performance can be obtained.
  • LCST lower limit critical solution temperature
  • the temperature-responsive resin is hydrophilic at a low temperature such as on ice, it becomes incompatible with the butadiene-based elastomer, and the surface of the elastomer becomes hydrophilic due to the presence of the temperature-responsive resin exhibiting hydrophilicity. Due to the incompatibility, the glass transition temperature and elastic modulus are lowered, and the ice grip performance is improved. Further, since the surface of the elastomer becomes hydrophilic (the contact angle is lowered), the water in the water film existing on the surface of the ice road surface (also referred to as the ice road surface) is suitably removed, and the ice grip performance is improved.
  • the temperature-responsive resin exhibits hydrophobicity and attracts the plasticizer to the surroundings, but at low temperatures, for example 0 ° C, the temperature-responsive resin exhibits hydrophilicity. Since the plasticizer is easily released into the matrix elastomer, the concentration of the plasticizer in the matrix elastomer is increased, the elastic coefficient of the elastomer composition is lowered, and the ice grip performance is improved. In particular, when water is present at a low temperature, the surface of the elastomer becomes hydrophilic, so that the above-mentioned decrease in elastic modulus becomes remarkable.
  • the above-mentioned elastomer composition when the above-mentioned elastomer composition is exposed to a low temperature on an ice road surface, the water removal is high due to a decrease in contact angle, the glass transition temperature due to incompatibility (phase separation), a decrease in elastic modulus, and a matrix elastomer.
  • the ice grip performance is improved by lowering the elastic modulus due to the release of the plasticizer into it. Therefore, the above-mentioned elastomer composition can obtain good ice grip performance, and is also excellent in overall performance of ice grip performance and dry grip performance.
  • the above elastomer composition has a low temperature side temperature and an elastic modulus at a low temperature side / a low temperature side temperature and an elastic modulus at the time of drying ⁇ 0.95, and a high temperature side temperature at a predetermined two-point temperature having a temperature difference of 10 ° C. or more.
  • the elastic modulus at the time of immersion in water / the temperature on the high temperature side and the elastic modulus at the time of drying> 0.95 are satisfied, and the temperature on the low temperature side is less than 25 ° C. It is preferable that the above relational expression is reversibly satisfied at the temperatures of two points having a difference of 10 ° C. or more.
  • reversibly satisfying the above relational expression means that the temperature dependence of the elastic modulus is described above at two points of temperature having a difference of 10 ° C. or more even if the temperature is repeatedly changed or in contact with water. It means satisfying the relational expression.
  • the elastic modulus means a dynamic elastic modulus E * and is measured by the method described in Examples.
  • the elastic modulus of the elastomer composition means the elastic modulus of the elastomer composition after vulcanization (crosslinking).
  • the elastic modulus at the time of drying means the elastic modulus of the elastomer composition (after vulcanization) in a dry state, and specifically, the elastomer composition dried by the method described in Examples. It means the elastic modulus of an object (after vulcanization).
  • the elastic modulus at the time of immersion in water means the elastic modulus of the elastomer composition (after vulcanization) after immersion in water, and specifically, in water by the method described in Examples. It means the elastic modulus of the elastomer composition (after vulcanization) after immersion.
  • the elastic modulus (dynamic elastic modulus E *) of the elastomer composition (after vulcanization) is strained with respect to the vulcanized rubber sheet for test by using a spectrometer manufactured by Ueshima Seisakusho Co., Ltd. It is measured under the conditions of 2% and a frequency of 10 Hz.
  • the predetermined two-point temperature having a temperature difference of 10 ° C. or more is not particularly limited as long as the temperature on the low temperature side is less than 25 ° C.
  • a temperature within the range of 80 ° C. is preferable, the lower limit of the temperature range is more preferably ⁇ 50 ° C. or higher, further preferably ⁇ 20 ° C. or higher, and the upper limit of the temperature range is more preferably 80 ° C. or lower, further preferably 60 ° C. or lower. ..
  • the temperatures of the two points having a difference of 10 ° C. or more may be 5 ° C. and 60 ° C.
  • the temperature on the low temperature side is less than 25 ° C., but is preferably 15 ° C. or lower, more preferably 10 ° C. or lower, preferably 0 ° C. or higher, more preferably 1 ° C. or higher, still more preferably 2 ° C. or higher.
  • the elasticity at low temperature side temperature and soaking in water / elasticity at low temperature side temperature and drying is 0.95 or less, preferably 0.94 or less, more preferably 0.93 or less, still more preferably 0. 92 or less, particularly preferably 0.91 or less, most preferably 0.90 or less, more preferably 0.88 or less, still most preferably 0.85 or less, particularly most preferably 0.83 or less, more preferably It is 0.82 or less.
  • the lower limit is not particularly limited, but is preferably 0.70 or more, more preferably 0.75 or more, still more preferably 0.78 or more, and particularly preferably 0.80 or more. Within the above range, the effect tends to be more preferably obtained.
  • the elastic modulus (MPa) at a low temperature and when immersed in water is preferably 10 or more, more preferably 15 or more, still more preferably 20 or more, preferably 35 or less, more preferably 32 or less, still more preferably 30 or less. It is particularly preferably 28 or less, and most preferably 25 or less. Within the above range, the effect tends to be more preferably obtained.
  • the elastic modulus at the high temperature side temperature and soaking in water / the elastic modulus at the high temperature side temperature and drying exceeds 0.95, but is preferably 0.96 or more, more preferably 0.97 or more, still more preferably 0.98. As mentioned above, it is particularly preferably 0.99 or more.
  • the upper limit is not particularly limited, but is preferably 1.02 or less, more preferably 1.01 or less, and further preferably 1.00 or less. Within the above range, the effect tends to be more preferably obtained.
  • the elastic modulus (MPa) at the high temperature side temperature and when immersed in water is preferably 10 or more, more preferably 15 or more, still more preferably 18 or more, preferably 30 or less, more preferably 25 or less, still more preferably 23 or less. , Especially preferably 21 or less. Within the above range, the effect tends to be more preferably obtained.
  • Elastic modulus at low temperature and water immersion / elastic modulus at low temperature and drying ⁇ 0.95" means that the elastic modulus at low temperature is relatively large compared to that at dry time when immersed in water. ..
  • elastic modulus at high temperature side temperature and immersion in water / elastic modulus at high temperature side temperature and drying>0.95" has an elastic modulus equal to or slightly inferior to that at the time of drying even at high temperature. Means to be maintained.
  • An elastomer composition having such properties can be achieved by containing a temperature-responsive resin whose hydrophilicity changes with temperature change. When the temperature on the low temperature side and the elastic modulus when immersed in water are within the above numerical range, it means that the product is hydrophilic.
  • An elastomer composition having such properties can be achieved by containing a temperature-responsive resin whose hydrophilicity changes with temperature change.
  • the fact that the high temperature side temperature and the elastic modulus at the time of immersion in water are within the above numerical range means that the product is hydrophobic.
  • An elastomer composition having such properties can be achieved by containing a temperature-responsive resin whose hydrophilicity changes with temperature change. More specifically, rubber having these properties can be produced by using a temperature responsive resin exhibiting a lower critical solution temperature (LCST) in water.
  • LCST critical solution temperature
  • the elastic modulus (absolute value) at the time of drying can be adjusted by the type and amount of chemicals (particularly, rubber component, filler, plasticizer) to be blended in the composition. Increasing the amount tends to decrease the elastic modulus during drying, increasing the amount of the filler tends to increase the elastic modulus during drying, and decreasing the amount of sulfur tends to decrease the elastic modulus during drying.
  • the elastic modulus during drying can also be adjusted by adjusting the blending amount of sulfur and the vulcanization accelerator. More specifically, increasing the amount of sulfur tends to increase the elastic modulus during drying, and increasing the vulcanization accelerator tends to increase the elastic modulus during drying.
  • thermoresponsive resin whose hydrophilicity changes with temperature change, preferably the lower limit critical solution temperature (LCST) in water, after adjusting the elastic modulus during drying within a desired range.
  • LCST lower limit critical solution temperature
  • the above-mentioned elastomer composition contains a butadiene-based elastomer.
  • the butadiene-based polymer is not particularly limited as long as it is an elastomer having a unit based on butadiene, and for example, butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), and acrylonitrile butadiene rubber (NBR).
  • BR butadiene rubber
  • SBR styrene butadiene rubber
  • SIBR styrene isoprene butadiene rubber
  • NBR acrylonitrile butadiene rubber
  • Butadiene-based thermoplastic elastomer styrene-butadiene-styrene block copolymer (SBS), styrene-butadiene-butylene-styrene block copolymer (SBBS) and the like. These may be used alone or in combination of two or more. Among them, BR and SBR are preferable because the effect can be obtained more preferably.
  • the elastomer component (preferably the rubber component) is preferably a polymer (rubber) having a weight average molecular weight (Mw) of 200,000 or more, and more preferably 350,000 or more.
  • Mw weight average molecular weight
  • Mw and Mn are gel permeation chromatography (GPC) (GPC-8000 series manufactured by Tosoh Co., Ltd., detector: differential refractometer, column: manufactured by Tosoh Co., Ltd.). It can be obtained by standard polystyrene conversion based on the measured value by TSKGEL SUPERMULTIPORE HZ-M).
  • the content of the diene rubber in 100% by mass (preferably 100% by mass of the rubber component) of the elastomer component is preferably 20% by mass or more, more preferably 50% by mass or more, still more preferably 70% by mass or more, and particularly preferably 70% by mass or more. It is 80% by mass or more, most preferably 90% by mass or more, and may be 100% by mass. Within the above range, the effect tends to be better obtained.
  • the elastomer component may be a non-modified polymer or a modified polymer.
  • the modified polymer may be a polymer having a functional group that interacts with a filler such as silica (preferably a diene rubber).
  • a filler such as silica (preferably a diene rubber).
  • at least one end of the polymer is a compound having the above functional group (modifying agent).
  • Modified terminal-modified polymer terminal-modified polymer having the above-mentioned functional group at the end
  • main chain-modified polymer having the above-mentioned functional group in the main chain and main-chain end-modified having the above-mentioned functional group at the main chain and the end.
  • Modified with a polymer for example, a main chain terminal modified polymer having the above functional group in the main chain and at least one end modified with the above modifying agent
  • a polyfunctional compound having two or more epoxy groups in the molecule examples thereof include end-modified polymers that have been (coupled) and have hydroxyl groups or epoxy groups introduced.
  • Examples of the functional group include an amino group, an amide group, a silyl group, an alkoxysilyl group, an isocyanate group, an imino group, an imidazole group, a urea group, an ether group, a carbonyl group, an oxycarbonyl group, a mercapto group, a sulfide group and a disulfide.
  • Examples thereof include a group, a sulfonyl group, a sulfinyl group, a thiocarbonyl group, an ammonium group, an imide group, a hydrazo group, an azo group, a diazo group, a carboxyl group, a nitrile group, a pyridyl group, an alkoxy group, a hydroxyl group, an oxy group and an epoxy group. ..
  • these functional groups may have a substituent.
  • an amino group preferably an amino group in which the hydrogen atom of the amino group is replaced with an alkyl group having 1 to 6 carbon atoms
  • an alkoxy group preferably an alkoxy group having 1 to 6 carbon atoms
  • an alkoxysilyl group preferably an alkoxy group having 1 to 6 carbon atoms.
  • An alkoxysilyl group having 1 to 6 carbon atoms is preferable.
  • the BR is not particularly limited, and for example, a high cis BR having a high cis content, a BR containing syndiotactic polybutadiene crystals, a BR synthesized using a rare earth catalyst, and the like can be used. These may be used alone or in combination of two or more. Among them, a high cis BR having a cis content of 90% by mass or more is preferable because the wear resistance is improved. The cis content can be measured by infrared absorption spectrum analysis.
  • the BR may be a non-modified BR or a modified BR.
  • the modified BR include modified BR into which a functional group similar to that of the modified polymer has been introduced.
  • BR for example, products such as Ube Kosan Co., Ltd., JSR Corporation, Asahi Kasei Co., Ltd., and Nippon Zeon Co., Ltd. can be used.
  • the content of BR in 100% by mass of the elastomer component is preferably 5% by mass or more, more preferably 8% by mass or more, still more preferably 10% by mass or more, and particularly preferably 30% by mass. % Or more, preferably 80% by mass or less, and more preferably 60% by mass or less. Within the above range, the effect tends to be better obtained.
  • the SBR is not particularly limited, and for example, emulsion-polymerized styrene-butadiene rubber (E-SBR), solution-polymerized styrene-butadiene rubber (S-SBR) and the like can be used. These may be used alone or in combination of two or more.
  • E-SBR emulsion-polymerized styrene-butadiene rubber
  • S-SBR solution-polymerized styrene-butadiene rubber
  • the amount of styrene in the SBR is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, and particularly preferably 20% by mass or more.
  • the amount of styrene is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less, and particularly preferably 30% by mass or less. Within the above range, the effect tends to be better obtained.
  • the amount of styrene in SBR is calculated by 1 H-NMR measurement.
  • SBR for example, SBR manufactured and sold by Sumitomo Chemical Co., Ltd., JSR Corporation, Asahi Kasei Co., Ltd., Zeon Corporation, etc. can be used.
  • the SBR may be a non-modified SBR or a modified SBR.
  • modified SBR include modified SBRs into which functional groups similar to those of modified polymers have been introduced.
  • the content of SBR in 100% by mass of the elastomer component is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 40% by mass or more, and particularly preferably 50% by mass. % Or more, and may be 100% by mass, but preferably 90% by mass or less, and more preferably 70% by mass or less. Within the above range, the effect tends to be better obtained.
  • the content of the butadiene-based elastomer (preferably the total content of BR and SBR) in 100% by mass of the elastomer component (preferably 100% by mass of the rubber component) is preferably 50% by mass or more, more preferably 70% by mass or more. It is more preferably 80% by mass or more, particularly preferably 90% by mass or more, and may be 100% by mass. Within the above range, the effect tends to be better obtained.
  • the elastomer that can be used other than the butadiene-based elastomer is not particularly limited, and is generally used as a rubber component of a tire composition such as isoprene-based rubber, ethylene propylene diene rubber (EPDM), and chloroprene rubber (CR). Diene rubber; acrylic rubber such as butyl acrylate rubber, ethyl acrylate rubber, octyl acrylate rubber, nitrile rubber, isobutylene rubber, methyl methacrylate-butyl acrylate block copolymer, ethylene-propylene copolymer (EPR), chlorosulfone.
  • EPR ethylene-propylene copolymer
  • isoprene-based rubber examples include natural rubber (NR), isoprene rubber (IR), modified NR, modified NR, modified IR and the like.
  • NR natural rubber
  • IR isoprene rubber
  • modified NR for example, SIR20, RSS # 3, TSR20 and the like, which are common in the tire industry, can be used.
  • the IR is not particularly limited, and for example, an IR 2200 or the like, which is common in the tire industry, can be used.
  • Modified NR includes deproteinized natural rubber (DPNR), high-purity natural rubber (UPNR), etc.
  • modified NR includes epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), grafted natural rubber, etc.
  • modified IR examples include epoxidized isoprene rubber, hydrogenated isoprene rubber, grafted isoprene rubber, and the like. These may be used alone or in combination of two or more. Among them, NR is preferable.
  • the elastomer composition contains a temperature-responsive resin whose hydrophilicity changes with temperature change.
  • the temperature-responsive resin whose hydrophilicity changes due to a temperature change is not particularly limited as long as the hydrophilicity changes due to a temperature change.
  • the temperature-responsive resin can be used without particular limitation as long as it is a resin having a group (A described later) whose hydrophilicity changes with temperature change.
  • the resin is a solid organic compound at 0 ° C. or higher, that is, even if an organic compound having a shape different from that of the container is allowed to stand in the container for 1 minute, a portion that does not follow the container is generated. Means an organic compound. Further, the resin does not contain the above-mentioned butadiene-based elastomer.
  • the temperature-responsive resin is preferably a compound in which A and B are bonded.
  • A contains a group whose hydrophilicity changes with a change in temperature
  • B contains a terpene resin, a rosin resin, a styrene resin, a C5 resin, a C9 resin, a C5 / C9 resin, a kumaron resin, and an inden.
  • the group whose hydrophilicity changes with a change in temperature may be a group whose hydrophilicity changes with a change in temperature, and is preferably a group whose hydrophilicity changes reversibly with a change in temperature. ..
  • Examples of the group whose hydrophilicity is reversibly changed by a change in temperature include a temperature-responsive polymer (temperature-responsive polymer group). That is, A having a group whose hydrophilicity changes with a temperature change means, for example, A having a group formed of a temperature-responsive polymer.
  • Examples of the A include A grafted with a temperature-responsive polymer, A having a temperature-responsive polymer unit in the main chain, A having a temperature-responsive polymer block in the main chain, and the like. These may be used alone or in combination of two or more. Among them, it is preferable that A is a temperature-responsive polymer (A is composed of a temperature-responsive polymer).
  • the temperature-responsive polymer reversibly causes the conformational change of the polymer chain due to hydration and dehydration in response to the temperature change in water, and the hydrophilicity and hydrophobicity are reversibly changed by the temperature change. It is a material. It is known that this reversible change is caused by a molecular structure having a hydrophilic group capable of hydrogen bonding in one molecule and a hydrophobic group having difficulty in being compatible with water. According to the present disclosure, the hydrophilicity and hydrophobicity of the temperature-responsive polymer are reversibly changed by a change in temperature not only in water but also in a composition containing a resin and / or an elastomer. I found.
  • the temperature-responsive polymer includes a polymer showing a lower critical solution temperature (Lower Critical Solution Temperature; also referred to as LCST, a lower critical eutectic temperature, and a lower critical dissolution temperature) in water, and an upper critical solution temperature (Upper Critical) in water.
  • LCST Lower Critical Solution Temperature
  • Upper Critical Upper Critical Solution Temperature
  • UCST upper limit critical eutectic temperature
  • UCST upper limit critical melting temperature
  • the polymer showing LCST becomes hydrophobic because the hydrophobic bond in the molecule or between the molecules is strengthened and the polymer chain is aggregated.
  • the polymer chain binds water molecules to hydrate and become hydrophilic. In this way, a reversible phase transition behavior is exhibited with the LCST as a boundary.
  • the polymer showing UCST becomes hydrophobic and insoluble at a lower temperature than UCST, while it becomes hydrophilic and dissolves at a higher temperature than UCST. In this way, a reversible phase transition behavior is exhibited with UCST as the boundary. It is thought that this has a plurality of amide groups in the side chain, and an intramolecular force acts on the hydrogen bond between the side chains as a driving force to exhibit UCST type behavior.
  • the group whose hydrophilicity changes reversibly with a change in temperature is a polymer showing LCST
  • Tire performance eg, dry grip performance, ice grip performance
  • the group whose hydrophilicity changes reversibly with a change in temperature is a polymer showing LCST. That is, it is preferable that the group whose hydrophilicity changes with a temperature change is a group showing the lower limit critical solution temperature in water.
  • the group indicating the lower limit critical solution temperature (LCST) in water is defined by cleaving the group of A from A or cleaving the group of the temperature responsive resin from the temperature responsive resin. It means a group that shows the lower limit critical solution temperature in water when the cleaved group (polymer) is put into water.
  • the group indicating the upper limit critical solution temperature (UCST) in water is a group having A cleaved from A or a group having a temperature responsive resin cleaved from the temperature responsive resin. It means a group that shows the upper limit critical solution temperature in water when the cleaved group (polymer) is put into water.
  • the group (polymer) indicating LCST may be used alone or in combination of two or more.
  • the group (polymer) indicating LCST is not particularly limited as long as it is a group (polymer) indicating LCST, but poly (N-substituted (meth) acrylamide) is preferable, and poly (N-substituted (meth) acrylamide) is preferable.
  • the group represented by the following formula (I) is preferable.
  • n represents an integer from 1 to 1000
  • R 1 , R 2 and R 3 independently represent a hydrogen atom or a hydrocarbyl group, and at least one of R 1 and R 2 is not a hydrogen atom.
  • a ring structure may be formed by R 1 and R 2.
  • n is preferably 3 or more, more preferably 5 or more, still more preferably 10 or more, particularly preferably 20 or more, preferably 500 or less, more preferably 300 or less, still more preferably 150 or less, and particularly preferably 80 or less. Most preferably 40 or less, and most preferably 30 or less. Within the above range, the effect tends to be better obtained.
  • the carbon number of the hydrocarbyl group of R 1 and R 2 is not particularly limited, but is preferably 1 or more, more preferably 2 or more, still more preferably 3 or more, preferably 20 or less, more preferably 18 or less, still more preferable. Is 14 or less, particularly preferably 10 or less, most preferably 6 or less, and more preferably 4 or less. Within the above range, the effect tends to be better obtained.
  • Hydrocarbyl groups of R 1 and R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group and isopentyl group.
  • An alkyl group such as an n-hexyl group; a cycloalkyl group such as a cyclohexyl group; an aryl group such as a methylphenyl group and an ethylphenyl group.
  • an alkyl group and a cycloalkyl group are preferable, and an alkyl group is more preferable.
  • the number of carbon atoms in the ring structure formed by R 1 and R 2 is preferably 3 or more, more preferably 4 or more, preferably 7 or less, and more preferably 5 or less. Within the above range, the effect tends to be better obtained.
  • the hydrocarbyl groups of R 1 and R 2 may be branched or non-branched, but branching is preferred.
  • R 1 and R 2 a ring structure formed by a hydrogen atom, an alkyl group (particularly a branched alkyl group), a cycloalkyl group, and R 1 and R 2 is preferable, and the combination shown in Table 1 is more preferable, and hydrogen is more preferable.
  • a combination of an atom and an alkyl group (particularly a branched alkyl group) is more preferable, and a combination of a hydrogen atom and a propyl group (particularly an isopropyl group) is particularly preferable.
  • the carbon number of the hydrocarbyl group of R 3 is not particularly limited, but is preferably 1 or more, preferably 5 or less, more preferably 3 or less, still more preferably 2 or less, and particularly preferably 1. Within the above range, the effect tends to be better obtained.
  • hydrocarbyl group of R 3 examples include the same groups as the hydrocarbyl groups of R 1 and R 2 . Of these, an alkyl group is preferable.
  • the hydrocarbyl group of R 3 may be branched or unbranched.
  • R3 a hydrogen atom and an alkyl group are preferable, and a hydrogen atom is more preferable.
  • Examples of the group represented by the above formula (I) include poly (N-isopropylacrylamide), poly (N-ethylacrylamide), poly (Nn-propylacrylamide), and poly (N-ethyl, N-methyl).
  • Acrylamide poly (N, N-diethylacrylamide), poly (N-isopropyl, N-methylacrylamide), poly (N-cyclopropylacrylamide), poly (N-acrylloylpyrrolidin), poly (N-acrylloylpiperidin), etc.
  • Poly (N-alkylacrylamide) polymer Poly (N-isopropylmethacrylamide), poly (N-ethylmethacrylamide), poly (Nn-propylmethacrylamide), poly (N-ethyl, N-methylmethacrylamide), poly (N, N-diethylmethacrylate), poly (N, N-diethylmethacrylate) Poly (N-alkylmethacrylamide) such as poly (N-isopropyl, N-methylmethacrylamide), poly (N-cyclopropylmethacrylamide), poly (N-methacryloylpyrrolidine), poly (N-methacryloylpiperidin), etc. ) Polymer; etc.
  • poly (N-isopropylacrylamide) and poly (N, N-diethylacrylamide) are preferable, and poly (N-isopropylacrylamide) (PNIPAM) is more preferable.
  • PNIPAM is a heat sensitive material that exhibits large surface energy changes in response to small temperature changes.
  • PNIPAM has a hydrophobic isopropyl group in the side chain and a hydrophilic amide bond at the base of the isopropyl group. At temperatures lower than 32 ° C, amide bonds, which are hydrophilic portions, and water molecules form hydrogen bonds and dissolve in water, while at temperatures above 32 ° C, the thermal motion of the molecules becomes intense and hydrogen bonds are broken.
  • the isopropyl group which is the hydrophobic part of the side chain, strengthens the hydrophobic bond in and between the molecules, agglomerates the polymer chain, and makes it insoluble in water.
  • the LCST which is the switching temperature between the hydrophilic state and the hydrophobic state of PNIPAM
  • the contact angle of water droplets placed on the PNIPAM polymer membrane changes dramatically above and below the LSCT.
  • the contact angle of a water droplet placed on a PNIPAM membrane ranges from about 60 ° (hydrophilic) below 32 ° C to over about 93 ° (hydrophobic) when heated to temperatures above 32 ° C.
  • the hydrophilic / hydrophobic surface physical properties change significantly at about 32 ° C. of the PNIPAM group, so that the tire performance can be changed in response to the temperature change.
  • the above group can be preferably used, but poly (alkyl vinyl ether) is also preferable, and the group represented by the following formula (A) is more preferable. Thereby, the effect tends to be obtained more preferably.
  • m represents an integer from 1 to 1000, and R 4 , R 5 and R 6 each independently represent a hydrogen atom or a hydrocarbyl group.
  • m is preferably 3 or more, more preferably 5 or more, still more preferably 10 or more, particularly preferably 20 or more, preferably 500 or less, more preferably 300 or less, still more preferably 150 or less, and particularly preferably 80 or less. Most preferably 40 or less, and most preferably 30 or less. Within the above range, the effect tends to be better obtained.
  • the carbon number of the hydrocarbyl group of R4 is not particularly limited, but is preferably 1 or more, more preferably 2 or more, preferably 20 or less, more preferably 18 or less, still more preferably 14 or less, and particularly preferably 10 or less. , Most preferably 6 or less, and more preferably 4 or less. Within the above range, the effect tends to be better obtained.
  • the carbon number of the hydrocarbyl group of R5 and R6 is not particularly limited, but is preferably 1 or more, preferably 5 or less, more preferably 3 or less, still more preferably 2 or less, and particularly preferably 1. Within the above range, the effect tends to be better obtained.
  • Hydrocarbyl groups of R 4 , R 5 and R 6 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group and neopentyl group.
  • Isopentyl group alkyl group such as n-hexyl group; cycloalkyl group such as cyclohexyl group; aryl group such as methylphenyl group and ethylphenyl group.
  • an alkyl group and a cycloalkyl group are preferable, and an alkyl group is more preferable.
  • R 4 is an alkyl group
  • R 5 and R 6 are hydrogen atoms
  • R 4 is an ethyl group
  • R 5 and R 6 are hydrogen atoms.
  • Examples of the group represented by the above formula (A) include poly (methyl vinyl ether), poly (ethyl vinyl ether), poly (propyl vinyl ether), poly (butyl vinyl ether), poly (pentenyl ether), and poly (hexyl vinyl ether). , Poly (heptyl vinyl ether), poly (octyl ether) and the like. These may be used alone or in combination of two or more. Of these, poly (ethyl vinyl ether) (PEVE) is preferable. As a result of diligent studies by the present disclosure, it was found that PEVE exhibits LCST at -20 to + 5 ° C.
  • the above group can be preferably used, but the group represented by the following formula (B) is also preferable. Thereby, the effect tends to be obtained more preferably. These may be used alone or in combination of two or more.
  • m represents an integer from 1 to 1000, and R 7 , R 8 and R 9 each independently represent a hydrogen atom or a hydrocarbyl group.
  • m is preferably 3 or more, more preferably 5 or more, still more preferably 10 or more, particularly preferably 20 or more, preferably 500 or less, more preferably 300 or less, still more preferably 150 or less, and particularly preferably 80 or less. Most preferably 40 or less, and most preferably 30 or less. Within the above range, the effect tends to be better obtained.
  • the carbon number of the hydrocarbyl group of R 7 is not particularly limited, but is preferably 1 or more, more preferably 2 or more, preferably 20 or less, more preferably 18 or less, still more preferably 14 or less, and particularly preferably 10 or less. , Most preferably 6 or less, and more preferably 4 or less. Within the above range, the effect tends to be better obtained.
  • the carbon number of the hydrocarbyl group of R 8 and R 9 is not particularly limited, but is preferably 1 or more, preferably 5 or less, more preferably 3 or less, still more preferably 2 or less, and particularly preferably 1. Within the above range, the effect tends to be better obtained.
  • the hydrocarbyl groups of R 7 , R 8 and R 9 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group and neopentyl group.
  • Isopentyl group alkyl group such as n-hexyl group; cycloalkyl group such as cyclohexyl group; aryl group such as methylphenyl group and ethylphenyl group.
  • an alkyl group and a cycloalkyl group are preferable, and an alkyl group is more preferable.
  • R 7 is an alkyl group
  • R 8 and R 9 are hydrogen atoms
  • R 7 is an n-propyl group or an isopropyl group
  • R 8 and R 9 are hydrogen atoms.
  • Examples of the group represented by the above formula (B) include poly (isopropylvinylacrylamide) (PNIPVM , R7 is an isopropyl group, R8 and R9 are hydrogen atoms), and poly (n- propylvinylacrylamide ) (.
  • R7 is an n-propyl group, R8 and R9 are hydrogen atoms), poly (n- butylvinylacrylamide ) ( R7 is an n - butyl group, R8 and R9 are hydrogen atoms), poly (Tart-butylvinylacrylamide) ( R7 is a tert - butyl group, R8 and R9 are hydrogen atoms), poly (sec- butylvinylacrylamide ) ( R7 is a sec - butyl group, R8 and R9 are , Hydrogen atom), Poly (methyl vinylacrylamide) (R 7 is a methyl group, R 8 and R 9 are hydrogen atoms), Poly (ethyl vinyl acrylamide) (R 7 is an ethyl group, R 8 and R 9 are hydrogen Atom), poly (n- pentylvinylacrylamide ) ( R7 is n - pentyl group, R8 and R9 are hydrogen atoms), poly (isopent
  • PNIPVM may be used alone or in combination of two or more.
  • PNNPAM poly (n-butylvinylacrylamide) and poly (tert-butylvinylacrylamide) are preferable, and PNIPVM and PNNPAM are more preferable.
  • PNIPVM shows LCST at 39 ° C
  • PNNPAM shows LCST at 32 ° C, respectively.
  • Examples of the group (polymer) representing LCST other than the group represented by the above formula (I), the group represented by the above formula (A), and the group represented by the above formula (B) include the following formula (polymer).
  • diethyl ether and the like may be used alone or in combination of two or more.
  • Examples of the group (polymer) indicating LCST other than the above include a copolymer of N-isopropylacrylamide and butyl acrylate, a block polymer of N-isopropylacrylamide and polyethylene oxide, and a N-isopropylacrylamide and a fluorine monomer.
  • a polymer complex with polyacrylamide a polymer of N-acryloylglycine amide and N-acetylacrylamide, a polymer of 2methoxyethyl acrylate and N, N-dimethylacrylamide, and a compound represented by the following formula 1.
  • the weight average molecular weight of a group whose hydrophilicity changes with a temperature change is preferably 330 or more, more preferably 560 or more, still more preferably 1130 or more, and preferably 57,000 or less. , More preferably 34,000 or less, still more preferably 17,000 or less. Within the above range, the effect tends to be better obtained.
  • the phase transition temperature of the temperature-responsive polymer is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 40 ° C. or higher, still more preferably ⁇ 30 ° C. or higher. Particularly preferably ⁇ 20 ° C. or higher, most preferably ⁇ 10 ° C. or higher, more preferably 0 ° C. or higher, still most preferably 5 ° C. or higher, preferably 60 ° C. or lower, more preferably 50 ° C. or lower, still more preferable. Is 40 ° C. or lower, particularly preferably 35 ° C. or lower, most preferably 30 ° C. or lower, more preferably 25 ° C.
  • LCST lower limit critical solution temperature
  • UST upper limit critical solution temperature
  • the phase transition temperature of the temperature-responsive polymer is measured by using a spectrophotometer with a temperature control function. A temperature-responsive polymer aqueous solution adjusted to 10% by mass was placed in a cell, covered with a parafilm to prevent evaporation, and an in-cell temperature sensor was attached. The experiment was carried out at 1. ° C., and the phase transition temperature was set to the temperature when the permeability reached 90%.
  • the temperature-responsive polymer means a temperature-responsive polymer group (temperature-responsive polymer) after cutting the temperature-responsive polymer group contained in the temperature-responsive resin from the temperature-responsive resin.
  • terpene-based resin terpene-based resin, styrene-based resin, C9-based resin, C5 / C9-based resin, kumaron-based resin, and inden-based resin are selected because they have good compatibility with butadiene-based elastomer and the effect can be obtained more preferably. More preferably, a styrene resin is further preferable.
  • Examples of the resin include Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yasuhara Chemical Co., Ltd., Toso Co., Ltd., Rutgers Chemicals Co., Ltd., BASF Co., Ltd., Arizona Chemical Co., Ltd., Nikko Chemical Co., Ltd., Co., Ltd. ) Products such as Nippon Catalyst, JXTG Energy Co., Ltd., Arakawa Chemical Industry Co., Ltd., Taoka Chemical Industry Co., Ltd. can be used.
  • the above terpene compound is a hydrocarbon having a composition of (C 5 H 8 ) n and an oxygen-containing derivative thereof, and is a mono terpene (C 10 H 16 ), a sesqui terpene (C 15 H 24 ), and a diterpene (C 20 H). It is a compound having a terpene as a basic skeleton classified into 32 ) and the like. Examples thereof include terpinene, 1,8-cineol, 1,4-cineol, ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol and the like. These may be used alone or in combination of two or more.
  • the terpene compound examples include resin acids (rosin acid) such as abietic acid, neo-avietic acid, palastolic acid, levopimalic acid, pimaric acid, and isopimalic acid.
  • the resin containing the loginic acid obtained as a main component (50% by mass or more, preferably 80% by mass or more) is treated as a rosin-based resin in the present specification.
  • rosin-based resins include naturally occurring rosin resins (polymerized rosin) such as gum rosin, wood rosin, and tall oil rosin, modified rosin resins such as maleic acid-modified rosin resin and rosin-modified phenol resin, and rosing lysellin esters. Examples thereof include a rosin ester and a disproportionate rosin resin obtained by disproportionating a rosin resin. These may be used alone or in combination of two or more.
  • the styrene-based resin is a polymer using a styrene-based monomer as a constituent monomer, and examples thereof include a polymer obtained by polymerizing a styrene-based monomer as a main component (50% by mass or more, preferably 80% by mass or more). Be done.
  • styrene-based monomers styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p-phenylstyrene, o-Chlorostyrene, m-chlorostyrene, p-chlorostyrene, etc.
  • styrene-based monomers are individually polymerized, and in addition to copolymers obtained by copolymerizing two or more styrene-based monomers, styrene-based monomers And other monomer copolymers that can be copolymerized with this.
  • styrene-based monomer and another monomer copolymerizable therewith is preferable, and a styrene-based monomer is more preferable.
  • Examples of the other monomers include acrylonitriles such as acrylonitrile and methacrylate, unsaturated carboxylic acids such as acrylics and methacrylic acid, unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate, chloroprene and butadiene.
  • Examples thereof include dienes such as isoprene, olefins such as 1-butane and 1-pentene; ⁇ , ⁇ -unsaturated carboxylic acids such as maleic anhydride or acid anhydrides thereof; These may be used alone or in combination of two or more.
  • unsaturated carboxylic acids are preferable, and acrylics and methacrylic acid are more preferable.
  • styrene-based resins styrene-based resins
  • styrene homopolymers and ⁇ -methylstyrene resins are preferable, and styrene homopolymers are more preferable. ..
  • Examples of the C5-based resin include aliphatic petroleum resins containing olefins and diolefins in the C5 fraction obtained by naphtha decomposition as main components (50% by mass or more, preferably 80% by mass or more).
  • Examples of the C9-based resin include aromatic petroleum resins containing vinyltoluene in the C9 fraction obtained by decomposition of naphtha as a main component (50% by mass or more, preferably 80% by mass or more).
  • Examples of the C5 / C9-based resin include resins containing olefins and diolefins in the C5 fraction and vinyltoluene in the C9 fraction as main components (50% by mass or more, preferably 80% by mass or more). These resins may be copolymerized resins with the above other monomers. These may be used alone or in combination of two or more.
  • the kumaron resin is a resin containing kumaron as a main component (50% by mass or more, preferably 80% by mass or more), and the inden resin is mainly composed of inden or methyl inden (50% by mass or more, preferably 80% by mass). % Or more). These resins may be copolymerized resins with the above other monomers. These may be used alone or in combination of two or more.
  • the kumaron-based resin and the inden-based resin include the kumaron-based resin.
  • olefin-based resin examples include polyethylene, ethylene-propylene copolymer, ethylene-propylene-non-conjugated diene copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, ethylene-octene copolymer, and ethylene.
  • -Vinyl acetate copolymer ethylene-vinyl alcohol copolymer, ethylene-ethyl acrylate copolymer, polyethylene resin such as chlorinated polyethylene, polypropylene, propylene-ethylene random copolymer, propylene-ethylene block copolymer, Examples thereof include polypropylene-based resins such as chlorinated polypropylene, polybutene, polyisobutylene, polymethylpentene, and copolymers of cyclic olefins. These may be used alone or in combination of two or more.
  • the method for connecting A and B is not particularly limited, and a person skilled in the art can combine the two. For example, by first polymerizing a monomer capable of forming A to form a block of A, and then adding a monomer capable of forming B to the reaction system to form a block of B following a block of A. , A and B can be bonded to each other to produce a compound.
  • the temperature-responsive resin can be produced according to the description in JP-A-2019-83761.
  • the ratio (mass%) (A: B) of A and B in the temperature-responsive resin is preferably 20:80 to 98: 2.
  • the lower limit is preferably 30:70, more preferably 40:60, still more preferably 50:50, preferably 60:40, more preferably 65:35, and the upper limit is preferably 95: 5, more preferably 90 :. It is 10. Within the above range, the effect tends to be better obtained.
  • the ratio of A and B can be measured by NMR.
  • the temperature-responsive resin is preferably a block copolymer, more preferably a block copolymer having a block formed by A and a block formed by B, and is formed by A at one end. It is more preferably a block copolymer having a block and having a block formed by B at the other end, and a diblock co-weight formed by a block formed by A and a block formed by B. It is particularly preferred to be coalesced.
  • the temperature-responsive resin is preferably a compound in which A and B are bonded.
  • A a group whose hydrophilicity changes with a temperature change is preferable, a temperature-responsive polymer is more preferable, a polymer showing a lower limit critical solution temperature in water is further preferable, and poly (N-substituted (meth) acrylamide),
  • the group represented by the above formula (B) is particularly preferable, and the group represented by the above formula (I) and the group represented by the above formula (B) are most preferable.
  • a terpene resin, a styrene resin, a C9 resin, a C5 / C9 resin, a kumaron resin, and an inden resin are preferable, and a styrene resin is more preferable.
  • the weight average molecular weight (Mw) of the temperature-responsive resin is preferably 20,000 or more, more preferably 30,000 or more, preferably 100,000 or less, more preferably 80,000 or less, still more preferably 75, It is 000 or less. Within the above range, the effect tends to be better obtained.
  • the content of the temperature-responsive resin with respect to 100 parts by mass of the elastomer component is preferably 1 part by mass or more, more preferably 5 parts by mass or more, still more preferably 10 parts by mass or more, and particularly preferably 10 parts by mass or more. It is 15 parts by mass or more, preferably 45 parts by mass or less, more preferably 40 parts by mass or less, still more preferably 35 parts by mass or less, and particularly preferably 30 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the elastomer composition preferably contains a water-absorbent material such as a water-absorbent fiber, a water-absorbent elastomer, and / or a water-absorbent resin.
  • a water-absorbent material such as a water-absorbent fiber, a water-absorbent elastomer, and / or a water-absorbent resin.
  • water is suitably incorporated into the elastomer composition, and the temperature-responsive resin can more preferably change its hydrophilicity by changing the temperature.
  • the water-absorbent material include materials having a heteroatom (fiber, elastomer, resin).
  • the hetero atom means an atom other than a carbon atom and a hydrogen atom, and a reversible molecular bond such as a hydrogen bond or an ionic bond with respect to water is not particularly limited as much as possible, but an oxygen atom, a nitrogen atom and a silicon atom.
  • Sulfur atom, phosphorus atom, and halogen atom are preferably at least one selected from the group, oxygen atom, nitrogen atom, and silicon atom are more preferable, and oxygen atom is further preferable.
  • Examples of the structure and group containing an oxygen atom include an ether group, an ester, a carboxy group, a carbonyl group, an alkoxy group, and a hydroxy group. Of these, an ether group is preferable, and an oxyalkylene group is more preferable.
  • Examples of the structure and group containing a nitrogen atom include an amino group (primary amino group, secondary amino group, tertiary amino group), amide group, nitrile group, nitro group and the like. Of these, an amino group is preferable, and a tertiary amino group is more preferable.
  • Examples of the structure and group containing a silicon atom include a silyl group, an alkoxysilyl group, and a silanol group.
  • a silyl group is preferable, and an alkoxysilyl group is more preferable.
  • Examples of the structure and group containing a sulfur atom include a sulfide group, a sulfuric acid group, a sulfate ester, and a sulfo group.
  • Examples of the structure and group containing a phosphorus atom include a phosphoric acid group and a phosphoric acid ester.
  • Examples of the structure and group containing a halogen atom include a halogeno group such as a fluoro group, a chloro group, a bromo group and an iodine group.
  • examples of water-absorbent fibers include cellulose fibers.
  • cellulose fibers As the cellulose fiber, cellulose microfibrils are preferable.
  • Cellulose microfibrils are not particularly limited as long as they are derived from natural products, and for example, resource biomass such as fruits, grains and root vegetables, wood, bamboo, hemp, jute, kenaf, and pulp obtained from these as raw materials. Paper, cloth, agricultural waste, waste biomass such as food waste and sewage sludge, unused biomass such as rice straw, straw, and thinned wood, as well as those derived from cellulose produced by squirrels, acetic acid bacteria, etc. Be done. These may be used alone or in combination of two or more.
  • water-absorbent elastomer examples include an elastomer having an oxyalkylene group.
  • elastomer examples include an epoxide-allyl glycidyl ether copolymer, an amine-allyl glycidyl ether copolymer, a silyl allyl glycidyl ether copolymer and the like. These may be used alone or in combination of two or more.
  • water-absorbent resin examples include polyvinyl alcohol, polyurethane, polyvinyl acetate, epoxy resin, cellulose resin, polyethylene glycol, sodium polyacrylate and the like. These may be used alone or in combination of two or more.
  • the content of the water-absorbent fiber, the water-absorbent elastomer, and / or the water-absorbent resin with respect to 100 parts by mass of the elastomer component is preferably 1 part by mass or more, more preferably 5 parts by mass.
  • the above is preferably 25 parts by mass or less, more preferably 23 parts by mass or less, and further preferably 20 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the above-mentioned content means the total content.
  • the composition preferably contains silica as a filler (reinforcing filler). Since silica is a hydrophilic material having a hydroxyl group, water is suitably incorporated into the elastomer composition, and the temperature-responsive resin can more preferably change the hydrophilicity by changing the temperature.
  • the silica is not particularly limited, and examples thereof include dry method silica (anhydrous silicic acid) and wet method silica (hydrous silicic acid). These may be used alone or in combination of two or more. Of these, wet silica is preferable because it has a large number of silanol groups.
  • silica for example, products such as Degussa, Rhodia, Tosoh Silica Co., Ltd., Solvay Japan Co., Ltd., Tokuyama Corporation can be used.
  • the nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 70 m 2 / g or more, more preferably 140 m 2 / g or more.
  • the N 2 SA is preferably 300 m 2 / g or less, more preferably 250 m 2 / g or less. Within the above range, the effect tends to be better obtained.
  • the N 2 SA of silica can be measured according to ASTM D3037-81.
  • the content of silica with respect to 100 parts by mass of the elastomer component is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 15 parts by mass or more, and particularly preferably 20 parts by mass.
  • the above is most preferably 30 parts by mass or more, more preferably 50 parts by mass or more, preferably 200 parts by mass or less, more preferably 180 parts by mass or less, still more preferably 150 parts by mass or less, and particularly preferably 120 parts by mass.
  • it is most preferably 100 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the composition preferably contains a silane coupling agent together with silica.
  • the silane coupling agent is not particularly limited, and for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (4-triethoxysilylbutyl) tetrasulfide, and the like.
  • Examples thereof include nitro-based systems such as 3-nitropropyltrimethoxysilane and 3-nitropropyltriethoxysilane, and chloro-based systems such as 3-chloropropyltrimethoxysilane and 3-chloropropyltriethoxysilane. These may be used alone or in combination of two or more. Of these, a sulfide-based silane coupling agent is preferable.
  • silane coupling agent for example, products such as Degussa, Momentive, Shinetsu Silicone Co., Ltd., Tokyo Chemical Industry Co., Ltd., Azumax Co., Ltd., Toray Dow Corning Co., Ltd. can be used.
  • the content of the silane coupling agent is preferably 0.1 part by mass or more, more preferably 3 parts by mass or more, still more preferably 6 parts by mass or more with respect to 100 parts by mass of silica. Is.
  • the content is preferably 20 parts by mass or less, more preferably 16 parts by mass or less, still more preferably 12 parts by mass or less, and particularly preferably 10 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the composition preferably contains carbon black.
  • carbon black examples include N134, N110, N220, N234, N219, N339, N330, N326, N351, N550 and N762. These may be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 5 m 2 / g or more, more preferably 30 m 2 / g or more, still more preferably 60 m 2 / g or more, and particularly preferably 80 m 2 / g or more. It is preferably 100 m 2 / g or more.
  • the N 2 SA is preferably 300 m 2 / g or less, more preferably 200 m 2 / g or less, and further preferably 150 m 2 / g or less. Within the above range, the effect tends to be better obtained.
  • the nitrogen adsorption specific surface area of carbon black is determined by JIS K6217-2: 2001.
  • the dibutyl phthalate oil absorption (DBP) of carbon black is preferably 5 ml / 100 g or more, more preferably 70 ml / 100 g or more, and further preferably 90 ml / 100 g or more.
  • the DBP is preferably 300 ml / 100 g or less, more preferably 200 ml / 100 g or less, still more preferably 160 ml / 100 g or less, and particularly preferably 120 ml / 100 g or less. Within the above range, the effect tends to be better obtained.
  • the carbon black DBP can be measured according to JIS-K6217-4: 2001.
  • As carbon black for example, products of Asahi Carbon Co., Ltd., Cabot Japan Co., Ltd., Tokai Carbon Co., Ltd., Mitsubishi Chemical Corporation, Lion Corporation, Shin Nikka Carbon Co., Ltd., Columbia Carbon Co., Ltd., etc. Can be used.
  • the content of carbon black with respect to 100 parts by mass of the elastomer component is preferably 0.1 part by mass or more, more preferably 1 part by mass or more, still more preferably 3 parts by mass or more, and particularly preferably 3 parts by mass or more. It is 5 parts by mass or more, preferably 100 parts by mass or less, more preferably 50 parts by mass or less, further preferably 30 parts by mass or less, particularly preferably 20 parts by mass or less, and most preferably 10 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the composition preferably contains sulfur.
  • sulfur include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, and soluble sulfur commonly used in the rubber industry. These may be used alone or in combination of two or more.
  • sulfur for example, products such as Tsurumi Chemical Industry Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Chemicals Corporation, Flexis Co., Ltd., Nippon Inui Kogyo Co., Ltd., Hosoi Chemical Industry Co., Ltd. can be used.
  • the sulfur content is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 part by mass or more with respect to 100 parts by mass of the elastomer component (preferably 100 parts by mass of the rubber component). Is.
  • the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 8 parts by mass or less, and particularly preferably 5 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the composition preferably contains a vulcanization accelerator.
  • vulcanization accelerator include thiazole-based vulcanization accelerators such as 2-mercaptobenzothiazole and di-2-benzothiazolyl disulfide; tetramethylthiuram disulfide (TMTD), tetrabenzylthium disulfide (TBzTD), and tetrakis (2).
  • Thiuram-based vulcanization accelerators such as thiuram disulfide (TOT-N); N-cyclohexyl-2-benzothiazolylsulfenamide, Nt-butyl-2-benzothiazolylsulfenamide, N-oxy Sulfenamide-based vulcanization accelerators such as ethylene-2-benzothiazolesulfenamide, N, N'-diisopropyl-2-benzothiazolesulfenamide; guanidines such as diphenylguanidine, dioltotrilguanidine, orthotrilbiguanidine. Examples include system vulcanization accelerators. These may be used alone or in combination of two or more.
  • vulcanization accelerator for example, products manufactured by Kawaguchi Chemical Industry Co., Ltd., Ouchi Shinko Chemical Co., Ltd., Line Chemie Co., Ltd. and the like can be used.
  • the content of the vulcanization accelerator is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 with respect to 100 parts by mass of the elastomer component (preferably 100 parts by mass of the rubber component). It is more than a mass part.
  • the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 8 parts by mass or less, and particularly preferably 5 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the composition preferably contains stearic acid.
  • stearic acid conventionally known ones can be used, and for example, products such as NOF Corporation, Kao Corporation, Wako Pure Chemical Industries, Ltd., and Chiba Fatty Acid Co., Ltd. can be used.
  • the content of stearic acid is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 part by mass with respect to 100 parts by mass of the elastomer component (preferably 100 parts by mass of the rubber component). That is all.
  • the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 8 parts by mass or less, and particularly preferably 5 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the composition may contain zinc oxide.
  • Conventionally known zinc oxide can be used.
  • products of Mitsui Metal Mining Co., Ltd., Toho Zinc Co., Ltd., HakusuiTech Co., Ltd., Shodo Chemical Industry Co., Ltd., Sakai Chemical Industry Co., Ltd., etc. Can be used.
  • the content of zinc oxide is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 part by mass with respect to 100 parts by mass of the elastomer component (preferably 100 parts by mass of the rubber component). That is all.
  • the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 8 parts by mass or less, and particularly preferably 5 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the composition may contain an anti-aging agent.
  • the antiaging agent include naphthylamine-based antiaging agents such as phenyl- ⁇ -naphthylamine; diphenylamine-based antiaging agents such as octylated diphenylamine and 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine; N. -Isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N, N'-di-2-naphthyl-p-phenylenediamine, etc.
  • P-Phenylenediamine-based antioxidants P-Phenylenediamine-based antioxidants; quinoline-based antioxidants such as polymers of 2,2,4-trimethyl-1,2-dihydroquinolin; 2,6-di-t-butyl-4-methylphenol, Monophenolic antioxidants such as styrenated phenol; Tetraquis- [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] bis, tris, polyphenolic aging such as methane Examples include preventive agents. These may be used alone or in combination of two or more. Among them, p-phenylenediamine-based antiaging agents and quinoline-based antiaging agents are preferable, and p-phenylenediamine-based antiaging agents are more preferable.
  • the content of the antiaging agent is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 part by mass with respect to 100 parts by mass of the elastomer component (preferably 100 parts by mass of the rubber component). It is more than a part.
  • the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 8 parts by mass or less, and particularly preferably 5 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the composition may contain wax.
  • the wax is not particularly limited, and examples thereof include petroleum wax such as paraffin wax and microcrystalline wax; natural wax such as plant wax and animal wax; and synthetic wax such as a polymer such as ethylene and propylene. These may be used alone or in combination of two or more.
  • wax for example, products of Ouchi Shinko Kagaku Kogyo Co., Ltd., Nippon Seiro Co., Ltd., Seiko Kagaku Co., Ltd. and the like can be used.
  • the content of the wax is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 part by mass or more with respect to 100 parts by mass of the elastomer component (preferably 100 parts by mass of the rubber component). Is.
  • the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 8 parts by mass or less, and particularly preferably 5 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the rubber composition preferably contains a liquid plasticizer.
  • the plasticizer is an organic compound that imparts plasticity to rubber
  • the liquid plasticizer is a liquid plasticizer at 0 ° C. or higher, that is, an organic compound having a shape different from that of a container for 1 minute. It means a plasticizer that has a shape that conforms to the container when it is allowed to stand in the container.
  • the liquid plasticizer may be used alone or in combination of two or more.
  • liquid plasticizer examples include oils, ester-based plasticizers, liquid resins (collectively referred to as oils and the like) and the like. These may be used alone or in combination of two or more. Of these, oil is preferable.
  • the content of the liquid plasticizer is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and further preferably 10 parts by mass or more with respect to 100 parts by mass of the elastomer component (preferably 100 parts by mass of the rubber component). ..
  • the content is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and further preferably 30 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • oils are not particularly limited, and are paraffin-based process oils, aroma-based process oils, naphthen-based process oils and other process oils, low PCA (polycyclic aromatic) process oils such as TDAE and MES, vegetable oils and fats, and oils and fats. Conventionally known oils such as these mixtures can be used. These may be used alone or in combination of two or more. Of these, aroma-based process oils are preferable. Specific examples of the aroma-based process oil include Diana process oil AH series manufactured by Idemitsu Kosan Co., Ltd.
  • oils examples include Idemitsu Kosan Co., Ltd., Sankyo Yuka Kogyo Co., Ltd., Japan Energy Co., Ltd., Orisoi Co., Ltd., H & R Co., Ltd., Toyokuni Seiyu Co., Ltd., Showa Shell Sekiyu Co., Ltd., and Fuji Kosan Co., Ltd. And other products can be used.
  • ester-based plasticizer examples include the above-mentioned vegetable oil; synthetic products such as glycerin fatty acid monoester, glycerin fatty acid diester, and glycerin fatty acid triester, and processed products of vegetable oil; phosphoric acid ester (phosphate-based, mixture thereof, etc.). These may be used alone or in combination of two or more.
  • ester-based plasticizer for example, a fatty acid ester represented by the following formula can be preferably used.
  • R 11 was substituted with a linear or branched alkyl group having 1 to 8 carbon atoms, a linear or branched alkenyl group having 1 to 8 carbon atoms, or a hydroxyl group having 1 to 5 carbon atoms.
  • R 12 represents an alkyl group or alkenyl group having 11 to 21 carbon atoms.
  • R 11 examples include a methyl group, an ethyl group, a 2-ethylhexyl group, an isopropyl group, an octyl group, a group in which these groups are substituted with 1 to 5 hydroxyl groups, and the like.
  • R 12 examples include a linear or branched alkyl group such as a lauryl group, a myristyl group, a palmityl group, a stearyl group and an oleyl group, and an alkenyl group.
  • Fatty acid esters include fatty acids (oleic acid, stearic acid, linoleic acid, palmitic acid, etc.) and alcohols (ethylene glycol, glycerol, trimethylolpropane, pentaerythritol, erythritol, xylitol, sorbitol, zulcitol, mannitol, inositol, etc.).
  • fatty acid monoesters and fatty acid diesters are also mentioned.
  • oleic acid monoester is preferable.
  • the content of the oleic acid monoester in the total amount of the fatty acid monoester and the fatty acid diester is preferably 80% by mass or more.
  • a phosphoric acid ester can also be preferably used.
  • the phosphoric acid ester is preferably a compound having 12 to 30 carbon atoms, and among them, trialkyl phosphate having 12 to 30 carbon atoms is preferable.
  • the number of carbon atoms of trialkyl phosphate means the total number of carbon atoms of the three alkyl groups, and the three alkyl groups may be the same group or different groups.
  • the alkyl group include a linear or branched alkyl group, which may contain a hetero atom such as an oxygen atom or may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
  • phosphoric acid ester mono, di or triester of phosphoric acid and a monoalcohol having 1 to 12 carbon atoms or a (poly) oxyalkylene adduct thereof; one or two of the alkyl groups of the trialkyl phosphate may be used.
  • Known phosphate ester-based plasticizers such as compounds substituted with phenyl groups; etc. may also be mentioned.
  • tris (2-ethylhexyl) phosphate trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyldiphenyl phosphate, 2-ethylhexyl diphenyl phosphate.
  • Tris (2-butoxyethyl) phosphate and the like Tris (2-butoxyethyl) phosphate and the like.
  • liquid resin examples include terpene-based resin, rosin-based resin, styrene-based resin, C5-based resin, C9-based resin, C5 / C9-based resin, kumaron-based resin, inden-based resin, and olefin-based resin, which are liquid at 0 ° C.
  • resins that are liquid at 0 ° C. such as urethane resin, acrylic resin, pt-butylphenol acetylene resin, and dicyclopentadiene resin (DCPD resin). These may be one kind or a mixture of two or more kinds, or the resin itself may be a copolymer of a plurality of derived monomer components.
  • liquid resin for example, a liquid farnesene homopolymer, a liquid farnesene-styrene copolymer, a liquid farnesene-butadiene copolymer, a liquid farnesene-styrene-, for example, a liquid (meaning liquid at 0 ° C., the same applies hereinafter).
  • Liquid farnesene polymers such as butadiene copolymers, liquid farnesene-isoprene copolymers, liquid farnesene-styrene-isoprene copolymers; liquid millsen homopolymers, liquid millsen-styrene copolymers, liquid millsen-butadiene copolymers.
  • Liquid milsen-styrene-butadiene copolymer Liquid milsen-styrene-butadiene copolymer, liquid milsen-isoprene copolymer, liquid milsen-styrene-isoprene copolymer and other liquid milsen-based polymers; liquid styrene butadiene copolymer (liquid SBR), liquid butadiene polymer (Liquid BR), Liquid isoprene polymer (Liquid IR), Liquid styrene isoprene copolymer (Liquid SIR), Liquid styrene butadiene styrene block polymer (Liquid SBS block polymer), Liquid styrene isoprene styrene block copolymer (Liquid) Liquid diene polymer such as SIS block polymer); Liquid ole
  • liquid resin examples include Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yasuhara Chemical Co., Ltd., Toso Co., Ltd., Rutgers Chemicals Co., Ltd., BASF Co., Ltd., Arizona Chemical Co., Ltd., Nikko Chemical Co., Ltd., ( Products such as Nippon Catalyst Co., Ltd., JXTG Energy Co., Ltd., Arakawa Chemical Industry Co., Ltd., Taoka Chemical Industry Co., Ltd., Sartmer Co., Ltd., and Clare Co., Ltd. can be used.
  • additives generally used in the tire industry can be added to the composition, and sulfurizing agents other than sulfur (for example, organic cross-linking agents and organic peroxides) and calcium carbonate can be added.
  • sulfurizing agents other than sulfur for example, organic cross-linking agents and organic peroxides
  • calcium carbonate examples thereof include mica such as calcium and sericite, aluminum hydroxide, magnesium oxide, magnesium hydroxide, clay, talc, alumina, and titanium oxide.
  • the content of each of these components is preferably 0.1 parts by mass or more, and preferably 200 parts by mass or less with respect to 100 parts by mass of the elastomer component (preferably the rubber component).
  • the composition can be produced, for example, by kneading each of the above components using a rubber kneading device such as an open roll or a Banbury mixer, and then vulcanizing.
  • a rubber kneading device such as an open roll or a Banbury mixer
  • the kneading temperature is usually 100 to 180 ° C., preferably 120 to 170 ° C.
  • the kneading temperature is usually 120 ° C. or lower, preferably 80 to 110 ° C.
  • the composition in which the vulcanizing agent and the vulcanization accelerator are kneaded is usually subjected to a vulcanization treatment such as press vulcanization.
  • the vulcanization temperature is usually 140 to 190 ° C, preferably 150 to 185 ° C.
  • the above composition includes, for example, tread (cap tread), sidewall, base tread, under tread, clinch, bead apex, breaker cushion rubber, carcass cord covering rubber, insulation, chafer, inner liner, etc. It can be used (as a rubber composition for tires) for tire members such as side reinforcing layers of flat tires. Among them, it is preferably used for outer layer members of tires such as treads (cap treads), sidewalls, clinches, and inner liners, and is more preferably used for treads (cap treads).
  • the tires of the present disclosure are manufactured by a conventional method using the above composition. That is, the composition containing various additives as needed is extruded according to the shape of each member of the tire (particularly, the outer layer member of the tire such as a tread (cap tread)) at the unvulcanized stage, and the tire is tired. After forming an unvulcanized tire by molding it on a molding machine by a usual method and laminating it together with other tire members, the tire can be manufactured by heating and pressurizing in the vulcanizing machine.
  • the tire is not particularly limited, and examples thereof include a pneumatic tire, a solid tire, and an airless tire. Of these, pneumatic tires are preferable.
  • the above tires are passenger car tires, large passenger car tires, large SUV tires, truck / bus tires, two-wheeled vehicle tires, competition tires, winter tires (studless tires, snow tires, stud tires), all-season tires, and runs. It is suitably used as flat tires, aircraft tires, mining tires and the like. Among them, it is more preferably used as a winter tire (studless tire, snow tire, stud tire) and an all-season tire.
  • the tire preferably includes a temperature-responsive member made of the elastomer composition, and the maximum thickness of the temperature-responsive member is preferably 1 mm or more.
  • the maximum thickness of the temperature-responsive member is preferably 1 mm or more, more preferably 1.5 mm or more, further preferably 2.0 mm or more, and the upper limit is not particularly limited, but is preferably 5.0 mm or less, more preferably 4 It is 5.5 mm or less, more preferably 4.0 mm or less. Within the above range, the effect tends to be better obtained.
  • the temperature-responsive member is preferably the outer layer member, and more preferably a tread (cap tread).
  • Adjacent to the temperature-responsive member Adjacent to the temperature-responsive member, at least one adjacent member made of a material different from the elastomer composition is provided, and the hardness difference between the adjacent member and the temperature-responsive member at 25 ° C. is 15 or less. preferable.
  • the hardness difference is more preferably 13 or less, still more preferably 10 or less, particularly preferably 7 or less, most preferably 5 or less, more preferably 2 or less, and even more preferably 0. Within the above range, the effect tends to be better obtained.
  • the hardness of the temperature-responsive member at 25 ° C. is preferably 55 or more, more preferably 60 or more, preferably 80 or less, and more preferably 75 or less. Within the above range, the effect tends to be better obtained.
  • the temperature-responsive member is preferably a tread (cap tread), and the adjacent member is preferably a base tread.
  • the compounding of the adjacent members include a compounding in which the temperature-responsive resin is omitted from the above-mentioned elastomer composition.
  • the hardness is measured by a type A durometer according to JIS K6253-3 (2012) "Vulcanized rubber and thermoplastic rubber-How to determine hardness-Part 3: Durometer hardness”. JIS-A hardness.
  • SBR Nippon Zeon Co., Ltd. Nipol 1502 (E-SBR, styrene content: 23.5% by mass, vinyl content: less than 20%)
  • BR BR150B manufactured by Ube Corporation (cis content: 98% by mass)
  • NR TSR20 (natural rubber)
  • Carbon black Mitsubishi Chemical Corporation's Seast N220 (N 2 SA: 111m 2 / g, DBP: 115ml / 100g)
  • Silica Ultrasil VN3 manufactured by Evonik Tegussa (N 2 SA: 175m 2 / g)
  • Silane coupling agent Si266 (bis (3-triethoxysilylpropyl) disulfide) manufactured by Evonik Tegussa.
  • Wax Ozoace wax manufactured by Nippon Seiro Co., Ltd.
  • Anti-aging agent Nocrack 6C (N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd. )
  • Oil PS-32 manufactured by Idemitsu Kosan Co., Ltd.
  • PNIPAM-b-Sty (1): N-isopropylacrylamide-styrene diblock copolymer (Mw: 70,000, NIPAM: Sty 90: 10) synthesized with reference to the polymerization method described in JP-A-2019-83761.
  • Examples and comparative examples According to the formulation shown in Tables 2 and 3, using a 1.7 L Banbury mixer manufactured by Kobe Steel, Ltd., chemicals other than sulfur and vulcanization accelerator were kneaded under the condition of 150 ° C. for 5 minutes. I got a kneaded product. Next, sulfur and a vulcanization accelerator were added to the obtained kneaded product, and the mixture was kneaded under the condition of 80 ° C. for 5 minutes using an open roll to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press-vulcanized under the condition of 170 ° C. for 12 minutes to obtain a vulcanized rubber composition sheet having a thickness of 2 mm.
  • the obtained unvulcanized rubber composition was used to form an unvulcanized rubber composition according to the shape of the cap tread, and bonded together with other tire members to prepare an unvulcanized tire. Vulcanization for minutes gave a test tire (size: 195 / 65R15).
  • the base tread rubber was blended according to Comparative Example 1, and the amount of oil and the amount of filler were appropriately adjusted in order to change the hardness.
  • the tire was manufactured so that the base tread was adjacent to the cap tread in the radial direction of the tire.
  • the obtained vulcanized rubber composition and test tire were stored in a dark place at room temperature for 3 months, and then evaluated as follows. The results are shown in Tables 2-4.
  • the elastic modulus was measured using a vulcanized rubber composition sheet having a thickness of 2 mm. Specifically, after keeping the vulcanized rubber composition sheet having a thickness of 2 mm at the measured temperature for 10 minutes, the vulcanized rubber composition sheet is strained by using a spectrometer manufactured by Ueshima Seisakusho Co., Ltd. The dynamic elastic modulus E * was measured under the conditions of 2% and a frequency of 10 Hz.
  • the vulcanized rubber composition sheet for measurement was prepared as follows. A vulcanized rubber composition sheet having a thickness of 2 mm was immersed in water at 25 ° C. for 10 hours and then dried under reduced pressure at 80 ° C.
  • Rubber hardness (Hs) The hardness was measured using the rubber cut out from the cap tread and base tread of each test tire as test pieces. Specifically, the hardness of the test piece was measured with a type A durometer according to "Vulcanized rubber and thermoplastic rubber-How to determine hardness-Part 3: Durometer hardness" of JIS K6253-3 (2012). (JIS-A hardness). The measurement was performed at 25 ° C.
  • the test tires were mounted on a domestic 2000cc FR car, and the actual car was run on ice to evaluate the ice grip performance. Specifically, as an ice grip performance evaluation, the above-mentioned vehicle is used to drive on ice, and the stop distance (stopping distance on ice) required to step on the lock brake at a speed of 30 km / h and stop is measured. It is displayed as an index when Comparative Example 5 is set to 100 (ice grip performance index). The larger the index, the better the braking performance (ice grip performance) on ice.
  • the present disclosure (1) is an elastomer composition containing a butadiene-based elastomer and a temperature-responsive resin whose hydrophilicity changes with temperature change.
  • the elastomer composition has a low temperature side temperature and an elastic modulus when immersed in water / a low temperature side temperature and an elastic modulus when dried ⁇ 0.95, and a high temperature side temperature at a predetermined two-point temperature having a temperature difference of 10 ° C. or more.
  • Elastic modulus during water immersion / high temperature side temperature and elastic modulus during drying> 0.95 is satisfied.
  • the temperature on the low temperature side is less than 25 ° C., which is an elastomer composition.
  • the present disclosure (2) is the elastomer composition according to the present disclosure (1), which satisfies the elastic modulus at low temperature side temperature and water immersion / elastic modulus at low temperature side temperature and drying ⁇ 0.94 or less.
  • the present disclosure (3) is the elastomer composition according to the present disclosure (1), which satisfies the elastic modulus at low temperature side temperature and water immersion / elastic modulus at low temperature side temperature and drying ⁇ 0.93 or less.
  • the present disclosure (4) is the elastomer composition according to any one of the present disclosures (1) to (3), which satisfies the elastic modulus at high temperature side temperature and water immersion / elastic modulus at high temperature side temperature and drying ⁇ 0.96. It is a thing.
  • the present disclosure (5) is the elastomer composition according to any one of the present disclosures (1) to (3), which satisfies the elastic modulus at high temperature side temperature and water immersion / elastic modulus at high temperature side temperature and drying ⁇ 0.97. It is a thing.
  • the temperature-responsive resin is a compound in which A and B are bonded.
  • A contains a group whose hydrophilicity changes with temperature change
  • B includes a terpene-based resin, a rosin-based resin, a styrene-based resin, a C5-based resin, a C9-based resin, a C5 / C9-based resin, a kumaron-based resin, an inden-based resin, and / or an olefin-based resin.
  • the elastomer composition according to any one of (5) to (5).
  • the present disclosure (7) is the elastomer composition according to the present disclosure (6), wherein the group is a group showing a lower limit critical solution temperature in water.
  • the present disclosure (8) is the elastomer composition according to any one of the present disclosures (1) to (7), wherein the temperature-responsive resin is a block copolymer.
  • the present disclosure (9) is the elastomer composition according to the present disclosure (6), wherein the ratio (% by mass) of A and B in the temperature-responsive resin is 20:80 to 98: 2.
  • the present disclosure (10) is the elastomer composition according to any one of the present disclosures (1) to (9), wherein the temperature-responsive resin has a weight average molecular weight of 20,000 or more and 100,000 or less.
  • the present disclosure (11) is the elastomer composition according to any one of the present disclosures (1) to (10), further comprising a water-absorbent fiber, an elastomer, and / or a resin.
  • the present disclosure (12) is the elastomer composition according to any one of the present disclosures (1) to (11), further comprising a liquid plasticizer.
  • the present disclosure (13) is a tire comprising the temperature-responsive member made of the elastomer composition according to any one of the present disclosures (1) to (12), and the maximum thickness of the temperature-responsive member is 1 mm or more. be.
  • the present disclosure (15) comprises at least one adjacent member adjacent to the temperature responsive member and made of a material different from the elastomer composition, and the hardness difference between the adjacent member and the temperature responsive member at 25 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

温度変化に応答してタイヤ性能を変化させることができるエラストマー組成物及びタイヤを提供する。 本開示は、ブタジエン系エラストマーと、温度変化により親水性が変化する温度応答性樹脂とを含むエラストマー組成物であって、前記エラストマー組成物は、10℃以上の温度差がある所定の2点温度において、低温側温度かつ水浸漬時の弾性率/低温側温度かつ乾燥時の弾性率 ≦0.95、高温側温度かつ水浸漬時の弾性率/高温側温度かつ乾燥時の弾性率 >0.95を満たし、前記低温側の温度は25℃未満である、エラストマー組成物に関する。

Description

エラストマー組成物及びタイヤ
本開示は、エラストマー組成物及びタイヤに関する。
従来からタイヤには、種々の性能が求められている(例えば、特許文献1参照)。
特開2008-214377号公報
タイヤの中でも、特にオールシーズンタイヤでは、大きな外気温の変化や路面の状況変化によって、タイヤ性能を変化させることが望ましい。
しかしながら、タイヤ業界では、温度変化に応答してタイヤ性能を変化させる点についてこれまであまり着目されておらず、従来の技術では、温度変化に応答してタイヤ性能を変化させるという点では改善の余地がある。
本開示は、上記課題を解決し、温度変化に応答してタイヤ性能を変化させることができるエラストマー組成物及びタイヤを提供することを目的とする。
本開示は、ブタジエン系エラストマーと、温度変化により親水性が変化する温度応答性樹脂とを含むエラストマー組成物であって、
上記エラストマー組成物は、10℃以上の温度差がある所定の2点温度において、低温側温度かつ水浸漬時の弾性率/低温側温度かつ乾燥時の弾性率 ≦0.95、高温側温度かつ水浸漬時の弾性率/高温側温度かつ乾燥時の弾性率 >0.95を満たし、
上記低温側の温度は25℃未満である、エラストマー組成物に関する。
本開示によれば、ブタジエン系エラストマーと、温度変化により親水性が変化する温度応答性樹脂とを含むエラストマー組成物であって、上記エラストマー組成物は、10℃以上の温度差がある所定の2点温度において、低温側温度かつ水浸漬時の弾性率/低温側温度かつ乾燥時の弾性率 ≦0.95、高温側温度かつ水浸漬時の弾性率/高温側温度かつ乾燥時の弾性率 >0.95を満たし、上記低温側の温度は25℃未満である、エラストマー組成物であるので、温度変化に応答してタイヤ性能を変化させることができる。
本開示のエラストマー組成物は、ブタジエン系エラストマーと、温度変化により親水性が変化する温度応答性樹脂とを含むエラストマー組成物であって、上記エラストマー組成物は、10℃以上の温度差がある所定の2点温度において、低温側温度かつ水浸漬時の弾性率/低温側温度かつ乾燥時の弾性率 ≦0.95、高温側温度かつ水浸漬時の弾性率/高温側温度かつ乾燥時の弾性率 >0.95を満たし、上記低温側の温度は25℃未満である。これにより、温度変化に応答してタイヤ性能を変化させることができる。
上記エラストマー組成物は前述の効果が得られるが、このような作用効果が得られる理由は必ずしも明らかではないが、以下のように推察される。
「低温側温度かつ水浸漬時の弾性率/低温側温度かつ乾燥時の弾性率 ≦0.95」は、低温では、水浸漬時に乾燥時に比べて比較的大きく弾性率が低下することを意味する。一方、「高温側温度かつ水浸漬時の弾性率/高温側温度かつ乾燥時の弾性率 >0.95」は、高温では、水浸漬時においても乾燥時と同等又は少し劣る程度の弾性率が維持されることを意味する。このように、上記エラストマー組成物では、温度変化により、エラストマー組成物の弾性率の挙動が変化するため、温度変化に応答してタイヤ性能を変化させることができる。
このような特性を有するエラストマー組成物は、温度変化により親水性が変化する温度応答性樹脂を含有することにより達成できる。すなわち、温度応答性樹脂が温度変化により親水性が変化するため、該樹脂を配合することにより、上記特性を有するエラストマー組成物が得られる。
ここで、温度応答性樹脂ではなく、後述するような温度応答性高分子をエラストマー組成物に配合した場合は、温度応答性高分子とエラストマーとの相溶性が低く、また、温度応答性高分子が水に溶解すること等により、雨天時等に溶解してエラストマー組成物から流出するため、温度変化に応答したタイヤ性能を可逆的に変化させることができない。これに対して、温度応答性樹脂を配合することにより、温度応答性樹脂とエラストマーとの相溶性が比較的高く、また、温度応答性樹脂が水に溶解すること等によりエラストマー組成物から流出することもないため、温度変化に応答してタイヤ性能を可逆的に変化させることができる。
このように、本開示は、ブタジエン系エラストマーと、温度変化により親水性が変化する温度応答性樹脂とを含み、上記弾性率のパラメーターを満たすエラストマー組成物の構成にすることにより、温度変化に応答してタイヤ性能を変化させるという課題(目的)を解決するものである。すなわち、当該パラメーターは課題(目的)を規定したものではなく、本願の課題は、温度変化に応答してタイヤ性能を変化させることであり、そのための解決手段として、エラストマー組成物を、ブタジエン系エラストマーと、温度変化により親水性が変化する温度応答性樹脂とを含み、上記弾性率のパラメーターを満たす構成にしたものである。つまり、上記弾性率のパラメーターを満たすことが必須の構成要件である。
特に、温度応答性樹脂が、水中で下限臨界溶液温度(LCST)を示す樹脂である場合、温度応答性樹脂は、LCSTよりも高温では疎水性を示し、LCSTよりも低温では親水性を示す。
よって、高温時、例えば、60℃では、温度応答性樹脂が疎水性であるため、ブタジエン系エラストマーとの相溶性が向上する。その結果、高温では、弾性率が高く、更には、水浸漬時においても乾燥時と同等又は少し劣る程度の弾性率が維持される特性を有し、良好なドライグリップ性能が得られる。
一方、氷上などの低温において、温度応答性樹脂が親水性であるため、ブタジエン系エラストマーと非相溶となり、更には親水性を示す温度応答性樹脂の存在によりエラストマー表面が親水性となる。
非相溶となることにより、ガラス転移温度、弾性率が低下し、アイスグリップ性能が向上する。
更には、エラストマー表面が親水性となる(接触角が低下する)ことにより、アイス路面(氷上路面ともいう)の表面に存在する水膜の水が好適に除去され、アイスグリップ性能が向上する。
更には、高温時、例えば、60℃では、温度応答性樹脂は疎水性を示し、可塑剤を周囲に引き寄せているものの、低温時、例えば、0℃では、温度応答性樹脂は親水性を示し、可塑剤をマトリクスエラストマー中に放出しやすいため、マトリクスエラストマー中の可塑剤濃度が高くなり、エラストマー組成物の弾性率が低下し、アイスグリップ性能が向上する。
特に、低温時に水が存在する場合、エラストマー表面が親水性となるため、上述の弾性率の低下が顕著となる。
以上の通り、上記エラストマー組成物は、アイス路面において、低温にさらされると、接触角の低下による高除水化、非相溶(相分離)によるガラス転移温度、弾性率の低下化、マトリクスエラストマー中への可塑剤の放出による弾性率の低下化によって、アイスグリップ性能が向上する。
よって、上記エラストマー組成物は、良好なアイスグリップ性能が得られ、また、アイスグリップ性能、ドライグリップ性能の総合性能にも優れる。
上記エラストマー組成物は、10℃以上の温度差がある所定の2点温度において、低温側温度かつ水浸漬時の弾性率/低温側温度かつ乾燥時の弾性率 ≦0.95、高温側温度かつ水浸漬時の弾性率/高温側温度かつ乾燥時の弾性率 >0.95を満たし、上記低温側の温度は25℃未満である。
10℃以上差のある2点の温度において、上記関係式を可逆的に満たすことが好ましい。本明細書において、上記関係式を可逆的に満たすとは、温度変化を繰り返しても、水と接触しても、10℃以上差のある2点の温度において、弾性率の温度依存性が上記関係式を満たすことを意味する。
また、本明細書において、弾性率は、動的弾性率E*を意味し、実施例に記載の方法により測定される。
なお、本明細書において、エラストマー組成物の弾性率は、加硫(架橋)後のエラストマー組成物の弾性率を意味する。
本明細書において、乾燥時の弾性率とは、乾燥している状態のエラストマー組成物(加硫後)の弾性率を意味し、具体的には、実施例に記載の方法により乾燥したエラストマー組成物(加硫後)の弾性率を意味する。
本明細書において、水浸漬時の弾性率とは、水に浸漬した後のエラストマー組成物(加硫後)の弾性率を意味し、具体的には、実施例に記載の方法により、水に浸漬した後のエラストマー組成物(加硫後)の弾性率を意味する。
本明細書において、エラストマー組成物(加硫後)の弾性率(動的弾性率E*)は、(株)上島製作所製のスペクトロメータを用いて、試験用加硫ゴムシートに対して、歪2%、周波数10Hzの条件にて測定される。
10℃以上の温度差がある所定の2点温度は、低温側の温度が25℃未満であれば特に限定されず、タイヤの使用温度の範囲内に収まる温度であればよく、-80℃~80℃の範囲内に収まる温度が好ましく、温度範囲の下限は-50℃以上がより好ましく、-20℃以上が更に好ましく、温度範囲の上限は80℃以下がより好ましく、60℃以下が更に好ましい。
例えば、10℃以上差のある2点の温度として、5℃、60℃とすればよい。
低温側の温度は、25℃未満であるが、好ましくは15℃以下、より好ましくは10℃以下であり、好ましくは0℃以上、より好ましくは1℃以上、更に好ましくは2℃以上である。
低温側温度かつ水浸漬時の弾性率/低温側温度かつ乾燥時の弾性率は、0.95以下であるが、好ましくは0.94以下、より好ましくは0.93以下、更に好ましくは0.92以下、特に好ましくは0.91以下、最も好ましくは0.90以下、より最も好ましくは0.88以下、更に最も好ましくは0.85以下、特に最も好ましくは0.83以下、より最も好ましくは0.82以下である。下限は特に限定されないが、好ましくは0.70以上、より好ましくは0.75以上、更に好ましくは0.78以上、特に好ましくは0.80以上である。上記範囲内であると、効果がより好適に得られる傾向がある。
低温側温度かつ水浸漬時の弾性率(MPa)は、好ましくは10以上、より好ましくは15以上、更に好ましくは20以上であり、好ましくは35以下、より好ましくは32以下、更に好ましくは30以下、特に好ましくは28以下、最も好ましくは25以下である。上記範囲内であると、効果がより好適に得られる傾向がある。
高温側温度かつ水浸漬時の弾性率/高温側温度かつ乾燥時の弾性率は、0.95を超えるが、好ましくは0.96以上、より好ましくは0.97以上、更に好ましくは0.98以上、特に好ましくは0.99以上である。上限は特に限定されないが、好ましくは1.02以下、より好ましくは1.01以下、更に好ましくは1.00以下である。上記範囲内であると、効果がより好適に得られる傾向がある。
高温側温度かつ水浸漬時の弾性率(MPa)は、好ましくは10以上、より好ましくは15以上、更に好ましくは18以上であり、好ましくは30以下、より好ましくは25以下、更に好ましくは23以下、特に好ましくは21以下である。上記範囲内であると、効果がより好適に得られる傾向がある。
次に、上記弾性率のパラメーター、水浸漬時の弾性率を満たすための製造指針について説明する。
「低温側温度かつ水浸漬時の弾性率/低温側温度かつ乾燥時の弾性率 ≦0.95」は、低温では、水浸漬時に乾燥時に比べて比較的大きく弾性率が低下することを意味する。一方、「高温側温度かつ水浸漬時の弾性率/高温側温度かつ乾燥時の弾性率 >0.95」は、高温では、水浸漬時においても乾燥時と同等又は少し劣る程度の弾性率が維持されることを意味する。このような特性を有するエラストマー組成物は、温度変化により親水性が変化する温度応答性樹脂を含有することにより達成できる。
低温側温度かつ水浸漬時の弾性率が上記数値範囲内であることは、親水性であることを意味する。このような特性を有するエラストマー組成物は、温度変化により親水性が変化する温度応答性樹脂を含有することにより達成できる。
高温側温度かつ水浸漬時の弾性率が上記数値範囲内であることは、疎水性であることを意味する。このような特性を有するエラストマー組成物は、温度変化により親水性が変化する温度応答性樹脂を含有することにより達成できる。
より具体的には、これらの特性を有するゴムは、水中で下限臨界溶液温度(LCST)を示す温度応答性樹脂を使用することにより製造できる。
なお、乾燥時の弾性率(絶対値)は、組成物に配合される薬品(特に、ゴム成分、充填材、可塑剤)の種類や量によって調整することが可能であり、例えば、可塑剤の量を増量すると乾燥時の弾性率は小さくなる傾向、充填材の量を増量すると乾燥時の弾性率は大きくなる傾向、硫黄の量を減らすと乾燥時の弾性率は小さくなる傾向がある。また、硫黄と加硫促進剤の配合量を調整することによっても、乾燥時の弾性率を調整できる。より具体的には、硫黄量を増やすと乾燥時の弾性率は大きくなる傾向、加硫促進剤を増やすと乾燥時の弾性率は大きくなる傾向がある。
より具体的に説明すると、乾燥時の弾性率を所望の範囲内に調整した上で、温度変化により親水性が変化する温度応答性樹脂、好ましくは、水中で下限臨界溶液温度(LCST)を示す温度応答性樹脂を配合することにより、上記弾性率のパラメーター、水浸漬時の弾性率を満たすことが可能となる。
以下、エラストマー組成物に使用可能な薬品について説明する。
上記エラストマー組成物は、ブタジエン系エラストマーを含む。
ブタジエン系エラストマーとしては、ブタジエンに基づく単位を有するエラストマーであれば特に限定されず、例えば、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、アクリロニトリルブタジエンゴム(NBR)、ブタジエン系熱可塑性エラストマー、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-ブタジエン・ブチレン-スチレンブロック共重合体(SBBS)等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、効果がより好適に得られるという理由から、BR、SBRが好ましい。
ここで、エラストマー成分(好ましくはゴム成分)は、重量平均分子量(Mw)が20万以上が好ましく、より好ましくは35万以上のポリマー(ゴム)である。Mwの上限は特に限定されないが、好ましくは400万以下、より好ましくは300万以下である。
なお、本明細書において、Mw、数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMULTIPORE HZ-M)による測定値を基に標準ポリスチレン換算により求めることができる。
エラストマー成分100質量%(好ましくはゴム成分100質量%)中のジエン系ゴムの含有量は、好ましくは20質量%以上、より好ましくは50質量%以上、更に好ましくは70質量%以上、特に好ましくは80質量%以上、最も好ましくは90質量%以上であり、100質量%であってもよい。上記範囲内であると、効果がより良好に得られる傾向がある。
エラストマー成分は、非変性ポリマーでもよいし、変性ポリマーでもよい。
変性ポリマーとしては、シリカ等の充填剤と相互作用する官能基を有するポリマー(好ましくはジエン系ゴム)であればよく、例えば、ポリマーの少なくとも一方の末端を、上記官能基を有する化合物(変性剤)で変性された末端変性ポリマー(末端に上記官能基を有する末端変性ポリマー)や、主鎖に上記官能基を有する主鎖変性ポリマーや、主鎖及び末端に上記官能基を有する主鎖末端変性ポリマー(例えば、主鎖に上記官能基を有し、少なくとも一方の末端を上記変性剤で変性された主鎖末端変性ポリマー)や、分子中に2個以上のエポキシ基を有する多官能化合物により変性(カップリング)され、水酸基やエポキシ基が導入された末端変性ポリマー等が挙げられる。
上記官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。なかでも、アミノ基(好ましくはアミノ基が有する水素原子が炭素数1~6のアルキル基に置換されたアミノ基)、アルコキシ基(好ましくは炭素数1~6のアルコキシ基)、アルコキシシリル基(好ましくは炭素数1~6のアルコキシシリル基)が好ましい。
BRは特に限定されず、例えば、高シス含量のハイシスBR、シンジオタクチックポリブタジエン結晶を含有するBR、希土類系触媒を用いて合成したBR(希土類BR)等を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、耐摩耗性能が向上するという理由から、シス含量が90質量%以上のハイシスBRが好ましい。なお、シス含量は、赤外吸収スペクトル分析法により測定できる。
また、BRは、非変性BRでもよいし、変性BRでもよい。変性BRとしては、変性ポリマーと同様の官能基が導入された変性BRが挙げられる。
BRとしては、例えば、宇部興産(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等の製品を使用できる。
エラストマー成分100質量%(好ましくはゴム成分100質量%)中のBRの含有量は、好ましくは5質量%以上、より好ましくは8質量%以上、更に好ましくは10質量%以上、特に好ましくは30質量%以上であり、好ましくは80質量%以下、より好ましくは60質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
SBRとしては特に限定されず、例えば、乳化重合スチレンブタジエンゴム(E-SBR)、溶液重合スチレンブタジエンゴム(S-SBR)等を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
SBRのスチレン量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上、特に好ましくは20質量%以上である。また、該スチレン量は、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは40質量%以下、特に好ましくは30質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、本明細書において、SBRのスチレン量は、H-NMR測定により算出される。
SBRとしては、例えば、住友化学(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等により製造・販売されているSBRを使用できる。
SBRは、非変性SBRでもよいし、変性SBRでもよい。変性SBRとしては、変性ポリマーと同様の官能基が導入された変性SBRが挙げられる。
エラストマー成分100質量%(好ましくはゴム成分100質量%)中のSBRの含有量は、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは40質量%以上、特に好ましくは50質量%以上であり、100質量%でもよいが、好ましくは90質量%以下、より好ましくは70質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
エラストマー成分100質量%(好ましくはゴム成分100質量%)中のブタジエン系エラストマーの含有量(好ましくはBR及びSBRの合計含有量)は、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、特に好ましくは90質量%以上であり、100質量%であってもよい。上記範囲内であると、効果がより良好に得られる傾向がある。
ブタジエン系エラストマー以外に使用可能なエラストマーとしては、特に限定されず、例えば、イソプレン系ゴム、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)等、タイヤ用組成物のゴム成分として一般的に使用されるジエン系ゴム;ブチルアクリレートゴム、エチルアクリレートゴム、オクチルアクリレートゴムなどのアクリルゴム、ニトリルゴム、イソブチレンゴム、メチルメタクリレート-ブチルアクリレートブロック共重合体、エチレン-プロピレン共重合体(EPR)、クロロスルホン化ポリエチレン、シリコーンゴム(ミラブル型、室温加硫型)、ブチルゴム、フッ素ゴム、オレフィン系熱可塑性エラストマー、塩ビ系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、フッ素系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-イソブチレンブロック共重合体(SIB)、スチレン-エチレン・ブテン-スチレンブロック共重合体(SEBS)、スチレン-エチレン・プロピレン-スチレンブロック共重合体(SEPS)、スチレン-エチレン・エチレン・プロピレン-スチレンブロック共重合体(SEEPS)等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、ジエン系ゴムが好ましい。
イソプレン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、改質NR、変性NR、変性IR等が挙げられる。NRとしては、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。IRとしては、特に限定されず、例えば、IR2200等、タイヤ工業において一般的なものを使用できる。改質NRとしては、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)等、変性NRとしては、エポキシ化天然ゴム(ENR)、水素添加天然ゴム(HNR)、グラフト化天然ゴム等、変性IRとしては、エポキシ化イソプレンゴム、水素添加イソプレンゴム、グラフト化イソプレンゴム等、が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、NRが好ましい。
上記エラストマー組成物は、温度変化により親水性が変化する温度応答性樹脂を含む。
温度変化により親水性が変化する温度応答性樹脂は、温度変化により親水性が変化する限り特に限定されない。温度応答性樹脂は、温度変化により親水性が変化する基(後述するA)を有する樹脂であれば特に制限なく使用できる。
なお、本明細書において、樹脂とは、0℃以上で固体の有機化合物、すなわち、容器とは異なる形状の有機化合物を1分間、当該容器内に静置しても容器に沿わない部分が生じる有機化合物を意味する。また、樹脂には、上記ブタジエン系エラストマーは含まれない。
温度応答性樹脂は、AとBとが結合した化合物であることが好ましい。ここで、Aは温度変化により親水性が変化する基を含み、Bはテルペン系樹脂、ロジン系樹脂、スチレン系樹脂、C5系樹脂、C9系樹脂、C5/C9系樹脂、クマロン系樹脂、インデン系樹脂、及び/又はオレフィン系樹脂を含む。AとBとが結合することにより、A(温度変化により親水性が変化する基)が水中に溶出することを抑制でき、温度変化に応答してタイヤ性能を可逆的に変化させることができる。
まず、Aについて説明する。
本明細書において、温度変化により親水性が変化する基とは、温度の変化によって親水性が変化する基であればよく、温度の変化によって親水性が可逆的に変化する基であることが好ましい。
温度の変化によって親水性が可逆的に変化する基としては、温度応答性高分子(温度応答性高分子基)が挙げられる。すなわち、温度変化により親水性が変化する基を有するAとは、例えば、温度応答性高分子により形成された基を有するAを意味する。上記Aとしては、例えば、温度応答性高分子がグラフトされたA、主鎖中に温度応答性高分子単位を有するA、主鎖中に温度応答性高分子ブロックを有するA等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、Aが温度応答性高分子である(Aが温度応答性高分子からなる)ことが好ましい。
温度応答性高分子は、水中で温度変化に応じて、水和と脱水和に伴うポリマー鎖のコンフォメーション変化を可逆的に生起し、温度の変化によって親水性、疎水性が可逆的に変化する材料である。この可逆変化は、一つの分子内に水素結合が可能な親水性基と、水とはなじみにくい疎水性基を有する分子構造に起因するものであることが知られている。
そして、本開示者は、温度応答性高分子は、水中だけではなく、樹脂及び/又はエラストマーを含む組成物中であっても、温度の変化によって親水性、疎水性が可逆的に変化することを見出した。
温度応答性高分子としては、水中で下限臨界溶液温度(Lower Critical Solution Temperature;LCST、下限臨界共溶温度、下限臨界溶解温度とも言う)を示す高分子と、水中で上限臨界溶液温度(Upper Critical Solution Temperature;UCST、上限臨界共溶温度、上限臨界溶解温度とも言う)を示す高分子が知られている。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
LCSTを示す高分子は、LCSTを境にそれより高い温度ではその分子内、又は分子間の疎水結合が強まりポリマー鎖が凝集し、疎水性となる。一方、LCSTよりも低い温度では、ポリマー鎖が水分子を結合し水和し、親水性となる。このように、LCSTを境に可逆的な相転移挙動を示す。
逆にUCSTを示す高分子は、UCSTよりも低温で疎水性となって不溶となる一方、UCSTよりも高温で親水性となり溶解する。このように、UCSTを境に可逆的な相転移挙動を示す。これは、複数個のアミド基を側鎖に有しており、側鎖間の水素結合を駆動力として分子間力が働き、UCST型挙動を示すと考えられている。
温度の変化によって親水性が可逆的に変化する基が、LCSTを示す高分子である場合、温度変化により、組成物中の他の成分と非相溶となることでガラス転移温度が変化し、温度変化に応答してタイヤ性能(例えば、ドライグリップ性能、アイスグリップ性能)を変化させることができる。
上記Aでは、温度の変化によって親水性が可逆的に変化する基が、LCSTを示す高分子であることが好ましい。すなわち、温度変化により親水性が変化する基が、水中で下限臨界溶液温度を示す基であることが好ましい。
ここで、本明細書において、水中で下限臨界溶液温度(LCST)を示す基とは、Aが有する基をAから切断し、又は温度応答性樹脂が有する基を温度応答性樹脂から切断し、切断した基(高分子)を水中に投入した場合に、水中で下限臨界溶液温度を示す基を意味する。
同様に、本明細書において、水中で上限臨界溶液温度(UCST)を示す基とは、Aが有する基をAから切断し、又は温度応答性樹脂が有する基を温度応答性樹脂から切断し、切断した基(高分子)を水中に投入した場合に、水中で上限臨界溶液温度を示す基を意味する。
以下において、LCSTを示す基(高分子)について説明する。
LCSTを示す基(高分子)は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
LCSTを示す基(高分子)としては、LCSTを示す基(高分子)であれば特に限定されないが、ポリ(N-置換(メタ)アクリルアミド)が好ましく、ポリ(N-置換(メタ)アクリルアミド)のなかでも、下記式(I)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000001
(式中、nは1~1000の整数を表し、R、R及びRは、それぞれ独立に、水素原子又はヒドロカルビル基を表し、R及びRの少なくとも1つが水素原子ではなく、RとRとで環構造を形成してもよい。)
nは、好ましくは3以上、より好ましくは5以上、更に好ましくは10以上、特に好ましくは20以上であり、好ましくは500以下、より好ましくは300以下、更に好ましくは150以下、特に好ましくは80以下、最も好ましくは40以下、より最も好ましくは30以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
及びRのヒドロカルビル基の炭素数は、特に限定されないが、好ましくは1以上、より好ましくは2以上、更に好ましくは3以上であり、好ましくは20以下、より好ましくは18以下、更に好ましくは14以下、特に好ましくは10以下、最も好ましくは6以下、より最も好ましくは4以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
及びRのヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、n-ヘキシル基などのアルキル基;シクロヘキシル基等のシクロアルキル基;メチルフェニル基、エチルフェニル基等のアリール基等があげられる。なかでも、アルキル基、シクロアルキル基が好ましく、アルキル基がより好ましい。
とRとで形成する環構造の炭素数は、好ましくは3以上、より好ましくは4以上であり、好ましくは7以下、より好ましくは5以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
及びRのヒドロカルビル基は、分岐であっても非分岐であってもよいが、分岐が好ましい。
及びRとしては、水素原子、アルキル基(特に、分岐のアルキル基)、シクロアルキル基、RとRとで形成する環構造が好ましく、表1に示す組み合わせがより好ましく、水素原子、アルキル基(特に、分岐のアルキル基)の組み合わせが更に好ましく、水素原子、プロピル基(特に、イソプロピル基)の組み合わせが特に好ましい。
Figure JPOXMLDOC01-appb-T000002
のヒドロカルビル基の炭素数は、特に限定されないが、好ましくは1以上、好ましくは5以下、より好ましくは3以下、更に好ましくは2以下、特に好ましくは1である。上記範囲内であると、効果がより良好に得られる傾向がある。
のヒドロカルビル基としては、R及びRのヒドロカルビル基と同様の基があげられる。なかでも、アルキル基が好ましい。
のヒドロカルビル基は、分岐であっても非分岐であってもよい。
としては、水素原子、アルキル基が好ましく、水素原子がより好ましい。
上記式(I)で表される基としては、例えば、ポリ(N-イソプロピルアクリルアミド)、ポリ(N-エチルアクリルアミド)、ポリ(N-n-プロピルアクリルアミド)、ポリ(N-エチル,N-メチルアクリルアミド)、ポリ(N,N-ジエチルアクリルアミド)、ポリ(N-イソプロピル,N-メチルアクリルアミド)、ポリ(N-シクロプロピルアクリルアミド)、ポリ(N-アクリロイルピロリジン)、ポリ(N-アクリロイルピペリジン)等のポリ(N-アルキルアクリルアミド)ポリマー;
ポリ(N-イソプロピルメタクリルアミド)、ポリ(N-エチルメタクリルアミド)、ポリ(N-n-プロピルメタクリルアミド)、ポリ(N-エチル,N-メチルメタクリルアミド)、ポリ(N,N-ジエチルメタクリルアミド)、ポリ(N-イソプロピル,N-メチルメタクリルアミド)、ポリ(N-シクロプロピルメタクリルアミド)、ポリ(N-メタクリロイルピロリジン)、ポリ(N-メタクリロイルピペリジン)等のポリ(N-アルキルメタクリルアミド)ポリマー;等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、ポリ(N-イソプロピルアクリルアミド)、ポリ(N,N-ジエチルアクリルアミド)が好ましく、ポリ(N-イソプロピルアクリルアミド)(PNIPAM)がより好ましい。
PNIPAMは、小さな温度変化に応答して、大きな表面エネルギーの変化を示す熱感受性材料である。例えば、N.Moriら、Temperature Induced Changes in the Surface Wettability of SBR+PNIPA Films、292、Macromol.Mater.Eng.917、917-22(2007)を参照。
PNIPAMは、側鎖に疎水性のイソプロピル基と、イソプロピル基の根元部分に親水性のアミド結合を有する。
32℃より低い温度では、親水性部分であるアミド結合と水分子が水素結合を形成し、水に溶解する一方、32℃以上の温度では、分子の熱運動が激しくなり、水素結合が切断され、側鎖の疎水性部分であるイソプロピル基によって、分子内、分子間において疎水結合が強まりポリマー鎖が凝集し、水に不溶となる。
このように、PNIPAMの親水性状態と疎水性状態のスイッチング温度であるLCSTは約32℃である。
PNIPAMポリマー膜の上に置かれた水滴の接触角は、温度がLSCTより上および下で劇的に変化する。例えば、PNIPAM膜の上に置かれた水滴の接触角は、32℃未満で約60°(親水性)から、32℃を超える温度まで加熱すると、約93°を超える(疎水性)。
PNIPAM基を有する温度応答性樹脂は、PNIPAM基が約32℃で親水性/疎水性の表面物性が大きく変化するため、温度変化に応答してタイヤ性能を変化させることができる。
LCSTを示す基(高分子)としては、上記基も好適に使用できるが、ポリ(アルキルビニルエーテル)も好ましく、下記式(A)で表される基もより好ましい。これにより、効果がより好適に得られる傾向がある。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000003
(式中、mは1~1000の整数を表し、R、R及びRは、それぞれ独立に、水素原子又はヒドロカルビル基を表す。)
mは、好ましくは3以上、より好ましくは5以上、更に好ましくは10以上、特に好ましくは20以上であり、好ましくは500以下、より好ましくは300以下、更に好ましくは150以下、特に好ましくは80以下、最も好ましくは40以下、より最も好ましくは30以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
のヒドロカルビル基の炭素数は、特に限定されないが、好ましくは1以上、より好ましくは2以上であり、好ましくは20以下、より好ましくは18以下、更に好ましくは14以下、特に好ましくは10以下、最も好ましくは6以下、より最も好ましくは4以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
及びRのヒドロカルビル基の炭素数は、特に限定されないが、好ましくは1以上であり、好ましくは5以下、より好ましくは3以下、更に好ましくは2以下、特に好ましくは1である。上記範囲内であると、効果がより良好に得られる傾向がある。
、R及びRのヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、n-ヘキシル基などのアルキル基;シクロヘキシル基等のシクロアルキル基;メチルフェニル基、エチルフェニル基等のアリール基等があげられる。なかでも、アルキル基、シクロアルキル基が好ましく、アルキル基がより好ましい。
がアルキル基、R及びRが、水素原子であることが好ましく、Rがエチル基、R及びRが、水素原子であることがより好ましい。
上記式(A)で表される基としては、例えば、ポリ(メチルビニルエーテル)、ポリ(エチルビニルエーテル)、ポリ(プロピルビニルエーテル)、ポリ(ブチルビニルエーテル)、ポリ(ペンテニルエーテル)、ポリ(ヘキシルビニルエーテル)、ポリ(ヘプチルビニルエーテル)、ポリ(オクチルエーテル)などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、ポリ(エチルビニルエーテル)(PEVE)が好ましい。本開示者が鋭意検討を行った結果、PEVEは-20~+5℃においてLCSTを示すことがわかった。
LCSTを示す基(高分子)としては、上記基も好適に使用できるが、下記式(B)で表される基も好ましい。これにより、効果がより好適に得られる傾向がある。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000004
(式中、mは1~1000の整数を表し、R、R及びRは、それぞれ独立に、水素原子又はヒドロカルビル基を表す。)
mは、好ましくは3以上、より好ましくは5以上、更に好ましくは10以上、特に好ましくは20以上であり、好ましくは500以下、より好ましくは300以下、更に好ましくは150以下、特に好ましくは80以下、最も好ましくは40以下、より最も好ましくは30以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
のヒドロカルビル基の炭素数は、特に限定されないが、好ましくは1以上、より好ましくは2以上であり、好ましくは20以下、より好ましくは18以下、更に好ましくは14以下、特に好ましくは10以下、最も好ましくは6以下、より最も好ましくは4以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
及びRのヒドロカルビル基の炭素数は、特に限定されないが、好ましくは1以上であり、好ましくは5以下、より好ましくは3以下、更に好ましくは2以下、特に好ましくは1である。上記範囲内であると、効果がより良好に得られる傾向がある。
、R及びRのヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、n-ヘキシル基などのアルキル基;シクロヘキシル基等のシクロアルキル基;メチルフェニル基、エチルフェニル基等のアリール基等があげられる。なかでも、アルキル基、シクロアルキル基が好ましく、アルキル基がより好ましい。
がアルキル基、R及びRが、水素原子であることが好ましく、Rがn-プロピル基又はイソプロピル基、R及びRが、水素原子であることがより好ましい。
上記式(B)で表される基としては、例えば、ポリ(イソプロピルビニルアクリルアミド)(PNIPVM、Rがイソプロピル基、R及びRが、水素原子)、ポリ(n-プロピルビニルアクリルアミド)(PNNPAM、Rがn-プロピル基、R及びRが、水素原子)、ポリ(n-ブチルビニルアクリルアミド)(Rがn-ブチル基、R及びRが、水素原子)、ポリ(tert-ブチルビニルアクリルアミド)(Rがtert-ブチル基、R及びRが、水素原子)、ポリ(sec-ブチルビニルアクリルアミド)(Rがsec-ブチル基、R及びRが、水素原子)、ポリ(メチルビニルアクリルアミド)(Rがメチル基、R及びRが、水素原子)、ポリ(エチルビニルアクリルアミド)(Rがエチル基、R及びRが、水素原子)、ポリ(n-ペンチルビニルアクリルアミド)(Rがn-ペンチル基、R及びRが、水素原子)、ポリ(イソペンチルビニルアクリルアミド)(Rがイソペンチル基、R及びRが、水素原子)などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、PNIPVM、PNNPAM、ポリ(n-ブチルビニルアクリルアミド)、ポリ(tert-ブチルビニルアクリルアミド)が好ましく、PNIPVM、PNNPAMがより好ましい。本開示者が鋭意検討を行った結果、PNIPVMは39℃において、PNNPAMは32℃において、それぞれ、LCSTを示すことがわかった。
上記式(I)で表される基、上記式(A)で表される基、上記式(B)で表される基以外のLCSTを示す基(高分子)としては、例えば、下記式(II)で表されるポリ(N-ビニル-カプロラクタム)(LSCT:約31℃)、下記式(III)で表されるポリ(2-アルキル-2-オキサゾリン)(LSCTは、Rがエチル基の場合には約62℃、Rがイソプロピル基の場合には約36℃であり、Rがn-プロピル基の場合には約25℃)、アルキル置換セルロース(例えば、下記式(IV)で表されるメチルセルロース(LSCT:約50℃)、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース)、ポリ(N-エトキシエチルアクリルアミド)(LSCT:約35℃)、ポリ(N-エトキシエチルメタクリルアミド)(LSCT:約45℃)、ポリ(N-テトラヒドロフルフリルアクリルアミド)(LSCT:約28℃)、ポリ(N-テトラヒドロフルフリルメタクリルアミド)(LSCT:約35℃)、ポリビニルメチルエーテル、ポリ[2-(ジメチルアミノ)エチルメタクリレート]、ポリ(3-エチル-N-ビニル-2-ピロリドン)、ヒドロキシルブチルキトサン、ポリオキシエチレン(20)ソルビタンモノステアレート、ポリオキシエチレン(20)ソルビタンモノラウレート、ポリオキシエチレン(20)ソルビタンモノオレエート、2~6個のエチレングリコール単位を有するポリ(エチレングリコール)メタクリレート、ポリエチレングリコール-co-ポリプロピレングリコール(好ましくは2~8個のエチレングリコール単位と2~8個のポリプロピレン単位とを有するもの、より好ましくは式(A)の化合物)、エトキシル化イソ-C1327-アルコール(好ましくは4~8のエトキシル化度を有するもの)、4~50個、好ましくは4~20個のエチレングリコール単位を有するポリエチレングリコール、4~30個、好ましくは4~15個のプロピレングリコール単位を有するポリプロピレングリコール、4~50個、好ましくは4~20個のエチレングリコール単位を有するポリエチレングリコールのモノメチル、ジメチル、モノエチル、およびジエチルエーテル、4~50個、好ましくは4~20個のプロピレングリコール単位を有するポリプロピレングリコールのモノメチル、ジメチル、モノエチル、およびジエチルエーテル等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(A)HO-[-CH-CH-O]-[-CH(CH)-CH-O]-[-CH-CH-O]-H
(式中、y=3~10かつxおよびz=1~8であり、ここでy+x+zは5~18である)
Figure JPOXMLDOC01-appb-C000005
(式(II)~(IV)中、nは上記式(I)のnと同様である。式(III)中、Rは、n-プロピル基、イソプロピル基又はエチル基から選択されるアルキル基である。)
上記以外のLCSTを示す基(高分子)としては、例えば、N-イソプロピルアクリルアミドとブチルアクリレートとの共重合体、N-イソプロピルアクリルアミドとポリエチレンオキサイドとのブロック共重合体、N-イソプロピルアクリルアミドとフッ素モノマーとの共重合体、ポリ-N-アセチルアクリルアミドとポリエチレンオキサイドとの高分子複合体、ポリ-N-アセチルアクリルアミドとポリアクリルアミドとの高分子複合体、N-アセチルアクリルアミドとアクリルアミドとの共重合体とポリアクリルアミドとの高分子複合体、N-アクリロイルグリシンアミドとN-アセチルアクリルアミドとの共重合体、アクリル酸2メトキシエチルとN,N-ジメチルアクリルアミドとの共重合体、下記式1で表す化合物とN,N-ジメチルアクリルアミドとの共重合体、ポリ(N,N-ジメチル(アクリルアミドプロピル)アンモニウムプロパンサルフェイト)、N,N-ジエチルアクリルアミドと無水マレイン酸との共重合体、N,N-ジエチルアクリルアミドとフマル酸ジメチルとの共重合体、N,N-ジエチルアクリルアミドとヒドロキシエチルメタクリレートとの共重合体、N,N-ジエチルアクリルアミドとブタジエンとの共重合体、ポリビニルアルコール及びポリビニルアルコールの加水分解物とポリアクリルアミドとの高分子複合体、N-アクリロイルアスパラギンアミド重合体、N-アクリロイルグルタミンアミド重合体、N-メタクリロイルアスパラギンアミド重合体、N-アクリロイルグリシンアミドとビオチンメタクリアミド誘導体との共重合体、N-アクリロイルグリシンアミドとN-アクリロイルアスパラギンアミドとの共重合体、ビオチン固定化温度応答性磁性微粒子(N-アクリロイルグリシンアミド、メタクリル化磁性微粒子及びビオチンモノマーを反応させることにより得られる微粒子)、ポリ(スルホベタインメタクリルアミド)、N-ビニル-n-ブチルアミドと無水マレイン酸との共重合体、N-ビニル-n-ブチルアミドとフマル酸ジメチルとの共重合体、N-ビニル-n-ブチルアミドとヒドロキシエチルメタクリレートとの共重合体、N-ビニル-n-ブチルアミドとブタジエンとの共重合体、ポリエステルアミド、ポリエーテルアミド、エチレンオキサイドとプロピレンオキサイドとの共重合体、エチレンオキサイドとプロピレンオキサイドとの共重合体のモノアミン化物、ポリエチレンオキサイド-ポリプロピレンオキサイド-ポリエチレンオキサイドブロック共重合体、ポリエチレンオキサイドとポリビニルアルコールとの高分子複合体、マルトペンタオース修飾ポリプロピレンオキサイド、ポリ(ラクチド-コ-グリコライド)-ポリエチレンオキサイド-ポリラクチド トリブロック共重合体、アクリル酸2メトキシエチルとアクリロイルモルホリンとの共重合体、アクリル酸2メトキシエチルとN-ビニルピロリドンとの共重合体、アクリル酸2メトキシエチルと2-ヒドロキシエチルアクリレートとの共重合体、アクリル酸2メトキシエチルとメトキシトリエチレングリコールアクリレートとの共重合体、ポリ[2-(2-エトキシエトキシ)エチルアクリレート]、ポリ(2-(2-エトキシエトキシ)エチルアクリレート-コ-2-(メトキシエトキシ)エチルメタクリレート)、ポリ(2-(N,N-ジメチルアミノエチル)メタクリレート)、N-ビニルカプロラクタムとヒドロキシエチルメタクリレートとの共重合体、メチルビニルエーテルとヒドロキシエチルメタクリレートとの共重合体、N-ビニルカプロラクタム重合体、N-ビニルカプロラクタムと無水マレイン酸との共重合体、N-ビニルカプロラクタムとフマル酸ジメチルとの共重合体、N-ビニルカプロラクタムとブタジエンとの共重合体、N-ビニルカプロラクタムとビニルピロリジンとメタクリル酸グリシジルとの共重合体、N-ビニルカプロラクタムとビニルピロリジンとメタクリル酸との共重合体、N-ビニルカプロラクタムとビニルピロリドンとα,α-ジメチル-メタ-イソプロペニルベンジルイソシアネートとの共重合体、N-ビニルカプロラクタムとビニルピロリドンとヒドロキシエチルメタクリレートとの共重合体、ポリ(1-エチル-3-ビニル-2-イミダゾリドン)、ポリ(1-メチル-3-ビニル-2-イミダゾリドン)、ポリ(1-n-プロピル-3-ビニル-2-イミダゾリドン)、ポリ(1-イソプロピル-3-ビニル-2-イミダゾリドン)、ポリ(1-アセチル-3-ビニル-2-イミダゾリドン)、ポリ(1-プロピオニル-3-ビニル-2-イミダゾリドン)、下記式2で示す共重合体、ポリ(N-ビニル-2-イミダゾリドン化合物)、2-ヒドロキシエチルビニルエーテルと酢酸ビニルとの共重合体、ジエチレングリコールモノビニルエーテルと酢酸ビニルとの共重合体、メチルビニルエーテルと無水マレイン酸との共重合体、メチルビニルエーテルとフマル酸ジメチルとの共重合体、カルバモイル化したポリアミノ酸、下記式3で表す化合物の重合体、下記式4で表す化合物の重合体、ペンダント[N-(2-ヒドロキシエチル)-L-グルタミン]基を有するポリ(オルトエステル)、ポリアセタール-ポリ[N-(2-ヒドロキシエチル)-L-グルタミン]-ポリアセタールトリブロック共重合体、ポリ[N-(2-ヒドロキシエチル)-L-グルタミン]-ポリ(オルトエステル)-ポリ[N-(2-ヒドロキシエチル)-L-グルタミン]トリブロック共重合体、ポリ[N-(2-ヒドロキシエチル)-L-グルタミン]-ポリアセタールジブロック共重合体、アミノ末端ポリ[N-(2-ヒドロキシエチル)-L-グルタミン]、アミノ末端ポリ(オルトエステル)、アミノ末端ポリアセタール、セルローストリアセテート、磁性ナノ粒子、アミノ基を有するポリスチレン、グリコルリル重合体等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000006
温度変化により親水性が変化する基(温度応答性高分子により形成された基)の重量平均分子量は、好ましくは330以上、より好ましくは560以上、更に好ましくは1130以上であり、好ましくは57000以下、より好ましくは34000以下、更に好ましくは17000以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
温度応答性高分子の相転移温度(下限臨界溶液温度(LCST)又は上限臨界溶液温度(UCST))は、好ましくは-50℃以上、より好ましくは-40℃以上、更に好ましくは-30℃以上、特に好ましくは-20℃以上、最も好ましくは-10℃以上、より最も好ましくは0℃以上、更に最も好ましくは5℃以上であり、好ましくは60℃以下、より好ましくは50℃以下、更に好ましくは40℃以下、特に好ましくは35℃以下、最も好ましくは30℃以下、より最も好ましくは25℃以下、更に最も好ましくは20℃以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
本明細書において、温度応答性高分子の相転移温度の測定は、温調機能付き分光光度計を用いて行う。10質量%に調整した温度応答性高分子水溶液をセルに入れ、蒸発を防ぐためにパラフィルムでふたをし、セル内温度センサをとりつけ、測定波長600nm、取り込み温度0.1℃、昇温速度0.1℃として、実験を行い、相転移温度は透過率が90%に達したときの温度とした。
ここで、温度応答性高分子は、温度応答性樹脂が有する温度応答性高分子基を温度応答性樹脂から切断した切断後の温度応答性高分子基(温度応答性高分子)を意味する。
次に、Bについて説明する。
Bはテルペン系樹脂、ロジン系樹脂、スチレン系樹脂、C5系樹脂、C9系樹脂、C5/C9系樹脂、クマロン系樹脂、インデン系樹脂、及び/又はオレフィン系樹脂を含む限り特に限定されないが、Bはテルペン系樹脂、ロジン系樹脂、スチレン系樹脂、C5系樹脂、C9系樹脂、C5/C9系樹脂、クマロン系樹脂、インデン系樹脂、及び/又はオレフィン系樹脂であることが好ましい。これらは、1種でも2種以上の混合物でもよく、また、樹脂自体が複数の由来のモノマー成分を共重合したものでもよい。なかでも、ブタジエン系エラストマーとの相溶性がよく、効果がより好適に得られるという理由から、テルペン系樹脂、スチレン系樹脂、C9系樹脂、C5/C9系樹脂、クマロン系樹脂、インデン系樹脂がより好ましく、スチレン系樹脂が更に好ましい。
上記樹脂としては、例えば、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、JXTGエネルギー(株)、荒川化学工業(株)、田岡化学工業(株)等の製品を使用できる。
上記テルペン系樹脂としては、テルペン化合物に由来する単位を有する樹脂であれば特に限定されず、例えば、ポリテルペン(テルペン化合物を重合して得られる樹脂)、テルペン芳香族樹脂(テルペン化合物と芳香族化合物とを共重合して得られる樹脂)、芳香族変性テルペン樹脂(テルペン樹脂を芳香族化合物で変性して得られる樹脂)などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
上記テルペン化合物は、(Cの組成で表される炭化水素及びその含酸素誘導体で、モノテルペン(C1016)、セスキテルペン(C1524)、ジテルペン(C2032)などに分類されるテルペンを基本骨格とする化合物であり、例えば、α-ピネン、β-ピネン、ジペンテン、リモネン、ミルセン、アロオシメン、オシメン、α-フェランドレン、α-テルピネン、γ-テルピネン、テルピノレン、1,8-シネオール、1,4-シネオール、α-テルピネオール、β-テルピネオール、γ-テルピネオールなどが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
上記芳香族化合物としては、芳香環を有する化合物であれば特に限定されないが、例えば、フェノール、アルキルフェノール、アルコキシフェノール、不飽和炭化水素基含有フェノールなどのフェノール化合物;ナフトール、アルキルナフトール、アルコキシナフトール、不飽和炭化水素基含有ナフトールなどのナフトール化合物;スチレン、アルキルスチレン、アルコキシスチレン、不飽和炭化水素基含有スチレンなどのスチレン誘導体などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。これらのなかでも、スチレンが好ましい。
上記テルペン化合物としてはまた、アビエチン酸、ネオアビエチン酸、パラストリン酸、レボピマール酸、ピマール酸、イソピマール酸などの樹脂酸(ロジン酸)なども挙げられるが、上記テルペン系樹脂において、松脂を加工することにより得られるロジン酸を主成分(50質量%以上、好ましくは80質量%以上)とする樹脂は、本明細書では、ロジン系樹脂として扱う。
なお、ロジン系樹脂としては、ガムロジン、ウッドロジン、トール油ロジンなどの天然産のロジン樹脂(重合ロジン)の他、マレイン酸変性ロジン樹脂、ロジン変性フェノール樹脂などの変性ロジン樹脂、ロジングリセリンエステルなどのロジンエステル、ロジン樹脂を不均化することによって得られる不均化ロジン樹脂などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
上記スチレン系樹脂は、スチレン系単量体を構成モノマーとして用いたポリマーであり、スチレン系単量体を主成分(50質量%以上、好ましくは80質量%以上)として重合させたポリマー等が挙げられる。具体的には、スチレン系単量体(スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等)をそれぞれ単独で重合した単独重合体、2種以上のスチレン系単量体を共重合した共重合体の他、スチレン系単量体及びこれと共重合し得る他の単量体のコポリマーも挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、スチレン系単量体及びこれと共重合し得る他の単量体のコポリマーが好ましく、スチレン系単量体がより好ましい。
上記他の単量体としては、アクリロニトリル、メタクリロニトリルなどのアクリロニトリル類、アクリル類、メタクリル酸などの不飽和カルボン酸類、アクリル酸メチル、メタクリル酸メチルなどの不飽和カルボン酸エステル類、クロロプレン、ブタジエンイソプレンなどのジエン類、1-ブテン、1-ペンテンのようなオレフィン類;無水マレイン酸等のα,β-不飽和カルボン酸又はその酸無水物;等が例示できる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、不飽和カルボン酸類が好ましく、アクリル類、メタクリル酸がより好ましい。
スチレン系樹脂のなかでも、スチレン単独重合体、α-メチルスチレン系樹脂(α-メチルスチレン単独重合体、α-メチルスチレンとスチレンとの共重合体等)が好ましく、スチレン単独重合体がより好ましい。
C5系樹脂としては、ナフサ分解によって得られるC5留分中のオレフィン、ジオレフィン類を主成分(50質量%以上、好ましくは80質量%以上)とする脂肪族系石油樹脂などが挙げられる。C9系樹脂としては、ナフサ分解によって得られるC9留分中のビニルトルエンを主成分(50質量%以上、好ましくは80質量%以上)とする芳香族系石油樹脂などが挙げられる。C5/C9系樹脂としては、C5留分中のオレフィン、ジオレフィン類及びC9留分中のビニルトルエンを主成分(50質量%以上、好ましくは80質量%以上)とする樹脂などが挙げられる。これらの樹脂は、上記他の単量体との共重合樹脂であってもよい。これらは、単独で用いてもよく、2種以上を併用してもよい。
クマロン系樹脂としては、クマロンを主成分(50質量%以上、好ましくは80質量%以上)とする樹脂、インデン系樹脂としては、インデン、メチルインデンを主成分(50質量%以上、好ましくは80質量%以上)とする樹脂が挙げられる。これらの樹脂は、上記他の単量体との共重合樹脂であってもよい。これらは、単独で用いてもよく、2種以上を併用してもよい。なお、クマロン系樹脂、インデン系樹脂には、クマロンインデン樹脂が含まれる。
オレフィン系樹脂としては、例えば、ポリエチレン、エチレン-プロピレン共重合体、エチレン-プロピレン-非共役ジエン共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、エチレン-オクテン共重合体、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-エチルアクリレート共重合体、塩素化ポリエチレン等のポリエチレン系樹脂、ポリプロピレン、プロピレン-エチレンランダム共重合体、プロピレン-エチレンブロック共重合体、塩素化ポリプロピレン等のポリプロピレン系樹脂、ポリブテン、ポリイソブチレン、ポリメチルペンテン、環状オレフィンの共重合体等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
AとBとを結合する方法は、特に限定されず、当業者なら両者を結合することが可能である。例えば、まずAを形成可能なモノマーを重合してAのブロックを形成し、次いで、当該反応系にBを形成可能なモノマーを添加し、Aのブロックに続いてBのブロックを形成することにより、AとBとが結合した化合物を製造できる。具体的には、例えば、特開2019-83761号公報の記載に沿って温度応答性樹脂を製造することができる。
温度応答性樹脂中の、AとBとの割合(質量%)(A:B)は、好ましくは20:80~98:2である。下限は好ましくは30:70、より好ましくは40:60、更に好ましくは50:50、好ましくは60:40、より好ましくは65:35であり、上限は好ましくは95:5、より好ましくは90:10である。上記範囲内であると、効果がより良好に得られる傾向がある。
AとBとの割合は、NMRにより測定できる。
温度応答性樹脂はブロック共重合体であることが好ましく、Aにより形成されるブロックとBにより形成されるブロックを有するブロック共重合体であることがより好ましく、一方の末端にAにより形成されるブロックを有し、もう一方の末端にBにより形成されるブロックを有するブロック共重合体であることが更に好ましく、Aにより形成されるブロックとBにより形成されるブロックにより形成されるジブロック共重合体であることが特に好ましい。
温度応答性樹脂は、AとBとが結合した化合物であることが好ましい。
Aとしては、温度変化により親水性が変化する基が好ましく、温度応答性高分子がより好ましく、水中で下限臨界溶液温度を示す高分子が更に好ましく、ポリ(N-置換(メタ)アクリルアミド)、上記式(B)で表される基が特に好ましく、上記式(I)で表される基、上記式(B)で表される基が最も好ましい。
ここで、Bとしては、テルペン系樹脂、スチレン系樹脂、C9系樹脂、C5/C9系樹脂、クマロン系樹脂、インデン系樹脂が好ましく、スチレン系樹脂がより好ましい。
温度応答性樹脂の重量平均分子量(Mw)は、好ましくは20,000以上、より好ましくは30,000以上であり、好ましくは100,000以下、より好ましくは80,000以下、更に好ましくは75,000以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
エラストマー成分100質量部(好ましくはゴム成分100質量部)に対する温度応答性樹脂の含有量は、好ましくは1質量部以上、より好ましくは5質量部以上、更に好ましくは10質量部以上、特に好ましくは15質量部以上であり、好ましくは45質量部以下、より好ましくは40質量部以下、更に好ましくは35質量部以下、特に好ましくは30質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
温度変化によって、温度応答性樹脂がより好適に親水性を変化するためには、水が存在していることが好ましい。そのため、エラストマー組成物は、吸水性の繊維、吸水性のエラストマー、及び/又は吸水性の樹脂などの吸水性の材料を含むことが好ましい。これにより、エラストマー組成物に水が好適に取り込まれて、温度応答性樹脂がより好適に温度変化によって親水性を変化させることが可能となる。これらは、単独で用いてもよく、2種以上を併用してもよい。
吸水性の材料としては、ヘテロ原子を有する材料(繊維、エラストマー、樹脂)が挙げられる。
ヘテロ原子は、炭素原子、水素原子以外の原子を意味し、水に対して、水素結合、イオン結合などの可逆的な分子結合が可能な限り特に限定されないが、酸素原子、窒素原子、ケイ素原子、硫黄原子、リン原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子であることが好ましく、酸素原子、窒素原子、ケイ素原子がより好ましく、酸素原子が更に好ましい。
酸素原子を含む構造、基としては、エーテル基、エステル、カルボキシ基、カルボニル基、アルコキシ基、ヒドロキシ基等が挙げられる。なかでも、エーテル基が好ましく、オキシアルキレン基がより好ましい。
窒素原子を含む構造、基としては、アミノ基(第一級アミノ基、第二級アミノ基、第三級アミノ基)、アミド基、ニトリル基、ニトロ基等が挙げられる。なかでも、アミノ基が好ましく、第三級アミノ基がより好ましい。
ケイ素原子を含む構造、基としては、シリル基、アルコキシシリル基、シラノール基等が挙げられる。なかでも、シリル基が好ましく、アルコキシシリル基がより好ましい。
硫黄原子を含む構造、基としては、スルフィド基、硫酸基、硫酸エステル、スルホ基等が挙げられる。
リン原子を含む構造、基としては、リン酸基、リン酸エステル等が挙げられる。
ハロゲン原子を含む構造、基としては、フルオロ基、クロロ基、ブロモ基、ヨード基などのハロゲノ基等が挙げられる。
例えば、セルロース繊維は水酸基を有するため、吸水性の繊維としては、セルロース繊維が挙げられる。
セルロース繊維としては、セルロースミクロフィブリルが好ましい。セルロースミクロフィブリルとしては、天然物由来のものであれば特に制限されず、例えば、果実、穀物、根菜などの資源バイオマス、木材、竹、麻、ジュート、ケナフ、及びこれらを原料として得られるパルプや紙、布、農作物残廃物、食品廃棄物や下水汚泥などの廃棄バイオマス、稲わら、麦わら、間伐材などの未使用バイオマスの他、ホヤ、酢酸菌等の生産するセルロースなどに由来するものが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
吸水性のエラストマーとしては、例えば、オキシアルキレン基を有するエラストマーが挙げられる。該エラストマーとしては、例えば、エポキシド・アリルグリシジルエーテル共重合体、アミン・アリルグリシジルエーテル共重合体、シリル・アリルグリシジルエーテル共重合体等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
吸水性の樹脂としては、例えば、ポリビニルアルコール、ポリウレタン、ポリ酢酸ビニル、エポキシ樹脂、セルロース樹脂、ポリエチレングリコール、ポリアクリル酸ナトリウム等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
エラストマー成分100質量部(好ましくはゴム成分100質量部)に対する吸水性の繊維、吸水性のエラストマー、及び/又は吸水性の樹脂の含有量は、好ましくは1質量部以上、より好ましくは5質量部以上であり、好ましくは25質量部以下、より好ましくは23質量部以下、更に好ましくは20質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、吸水性の繊維、吸水性のエラストマー、及び/又は吸水性の樹脂として、2種以上を併用する場合は、上記含有量は合計含有量を意味する。
上記組成物は、充填剤(補強性充填剤)として、シリカを含有することが好ましい。シリカは、水酸基を有する親水性の材料であるため、エラストマー組成物に水が好適に取り込まれて、温度応答性樹脂がより好適に温度変化によって親水性を変化させることが可能となる。
シリカとしては特に限定されず、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、シラノール基が多いという理由から、湿式法シリカが好ましい。
シリカとしては、例えば、デグッサ社、ローディア社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。
シリカの窒素吸着比表面積(NSA)は、好ましくは70m/g以上、より好ましくは140m/g以上である。また、該NSAは好ましくは300m/g以下、より好ましくは250m/g以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、シリカのNSAは、ASTM D3037-81に準拠して測定できる。
エラストマー成分100質量部(好ましくはゴム成分100質量部)に対するシリカの含有量は、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは15質量部以上、特に好ましくは20質量部以上、最も好ましくは30質量部以上、より最も好ましくは50質量部以上であり、好ましくは200質量部以下、より好ましくは180質量部以下、更に好ましくは150質量部以下、特に好ましくは120質量部以下、最も好ましくは100質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、シリカを配合する場合、シリカと共にシランカップリング剤を含むことが好ましい。
シランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、などのスルフィド系、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、Momentive社製のNXT、NXT-Zなどのメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシランなどのアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、などのグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシランなどのニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシランなどのクロロ系などがあげられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、スルフィド系シランカップリング剤が好ましい。
シランカップリング剤としては、例えば、デグッサ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。
シランカップリング剤を含有する場合、シランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは0.1質量部以上、より好ましくは3質量部以上、更に好ましくは6質量部以上である。また、該含有量は、好ましくは20質量部以下、より好ましくは16質量部以下、更に好ましくは12質量部以下、特に好ましくは10質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、カーボンブラックを含有することが好ましい。
カーボンブラックとしては、N134、N110、N220、N234、N219、N339、N330、N326、N351、N550、N762などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
カーボンブラックの窒素吸着比表面積(NSA)は、好ましくは5m/g以上、より好ましくは30m/g以上、更に好ましくは60m/g以上、特に好ましくは80m/g以上、最も好ましくは100m/g以上である。また、上記NSAは、好ましくは300m/g以下、より好ましくは200m/g以下、更に好ましくは150m/g以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、カーボンブラックの窒素吸着比表面積は、JIS K6217-2:2001によって求められる。
カーボンブラックのジブチルフタレート吸油量(DBP)は、好ましくは5ml/100g以上、より好ましくは70ml/100g以上、更に好ましくは90ml/100g以上である。また、該DBPは、好ましくは300ml/100g以下、より好ましくは200ml/100g以下、更に好ましくは160ml/100g以下、特に好ましくは120ml/100g以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、カーボンブラックのDBPは、JIS-K6217-4:2001に準拠して測定できる。
カーボンブラックとしては、例えば、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱ケミカル(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。
エラストマー成分100質量部(好ましくはゴム成分100質量部)に対するカーボンブラックの含有量は、好ましくは0.1質量部以上、より好ましくは1質量部以上、更に好ましくは3質量部以上、特に好ましくは5質量部以上であり、好ましくは100質量部以下、より好ましくは50質量部以下、更に好ましくは30質量部以下、特に好ましくは20質量部以下、最も好ましくは10質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、硫黄を含むことが好ましい。
硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
硫黄としては、例えば、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレクシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。
硫黄の含有量は、エラストマー成分100質量部(好ましくはゴム成分100質量部)に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上である。また、上記含有量は、好ましくは20質量部以下、より好ましくは10質量部以下、更に好ましくは8質量部以下、特に好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、加硫促進剤を含有することが好ましい。
加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N′-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。
加硫促進剤としては、例えば、川口化学(株)、大内新興化学(株)、ラインケミー社製等の製品を使用できる。
加硫促進剤の含有量は、エラストマー成分100質量部(好ましくはゴム成分100質量部)に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上である。また、上記含有量は、好ましくは20質量部以下、より好ましくは10質量部以下、更に好ましくは8質量部以下、特に好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、ステアリン酸を含むことが好ましい。
ステアリン酸としては、従来公知のものを使用でき、例えば、日油(株)、花王(株)、富士フイルム和光純薬(株)、千葉脂肪酸(株)等の製品を使用できる。
ステアリン酸の含有量は、エラストマー成分100質量部(好ましくはゴム成分100質量部)に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上である。また、上記含有量は、好ましくは20質量部以下、より好ましくは10質量部以下、更に好ましくは8質量部以下、特に好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、酸化亜鉛を含有してもよい。
酸化亜鉛としては、従来公知のものを使用でき、例えば、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。
酸化亜鉛の含有量は、エラストマー成分100質量部(好ましくはゴム成分100質量部)に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上である。また、上記含有量は、好ましくは20質量部以下、より好ましくは10質量部以下、更に好ましくは8質量部以下、特に好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、老化防止剤を含んでもよい。
老化防止剤としては、例えば、フェニル-α-ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4′-ビス(α,α′-ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N-イソプロピル-N′-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン、N,N′-ジ-2-ナフチル-p-フェニレンジアミン等のp-フェニレンジアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス-[メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤などが挙げられる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。なかでも、p-フェニレンジアミン系老化防止剤、キノリン系老化防止剤が好ましく、p-フェニレンジアミン系老化防止剤がより好ましい。
老化防止剤としては、例えば、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレクシス社等の製品を使用できる。
老化防止剤の含有量は、エラストマー成分100質量部(好ましくはゴム成分100質量部)に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上である。また、上記含有量は、好ましくは20質量部以下、より好ましくは10質量部以下、更に好ましくは8質量部以下、特に好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、ワックスを含んでもよい。
ワックスとしては、特に限定されず、パラフィンワックス、マイクロクリスタリンワックス等の石油系ワックス;植物系ワックス、動物系ワックス等の天然系ワックス;エチレン、プロピレン等の重合物等の合成ワックスなどが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
ワックスとしては、例えば、大内新興化学工業(株)、日本精蝋(株)、精工化学(株)等の製品を使用できる。
ワックスの含有量は、エラストマー成分100質量部(好ましくはゴム成分100質量部)に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上である。また、上記含有量は、好ましくは20質量部以下、より好ましくは10質量部以下、更に好ましくは8質量部以下、特に好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記ゴム組成物は、液体可塑剤を含むことが好ましい。
本明細書において、可塑剤とは、ゴムに可塑性を付与する有機化合物であり、液体可塑剤とは、0℃以上で液体の可塑剤、すなわち、容器とは異なる形状の有機化合物を1分間、当該容器内に静置した場合に、容器に沿った形状となる可塑剤を意味する。液体可塑剤は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
液体可塑剤としては、具体的には、例えば、オイル、エステル系可塑剤、液状樹脂(まとめてオイル等とも言う)等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、オイルが好ましい。
液体可塑剤の含有量は、エラストマー成分100質量部(好ましくはゴム成分100質量部)に対して、好ましくは1質量部以上、より好ましくは5質量部以上、更に好ましくは10質量部以上である。また、上記含有量は、好ましくは100質量部以下、より好ましくは50質量部以下、更に好ましくは30質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記オイルとしては、特に限定されず、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイルなどのプロセスオイル、TDAE、MES等の低PCA(多環式芳香族)プロセスオイル、植物油脂、及びこれらの混合物等、従来公知のオイルを使用できる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。なかでも、アロマ系プロセスオイルが好ましい。上記アロマ系プロセスオイルとしては、具体的には、出光興産(株)製のダイアナプロセスオイルAHシリーズ等が挙げられる。
オイルとしては、例えば、出光興産(株)、三共油化工業(株)、(株)ジャパンエナジー、オリソイ社、H&R社、豊国製油(株)、昭和シェル石油(株)、富士興産(株)等の製品を使用できる。
エステル系可塑剤としては、前記植物油;グリセリン脂肪酸モノエステル、グリセリン脂肪酸ジエステル、グリセリン脂肪酸トリエステル等の合成品や植物油の加工品;リン酸エステル(ホスフェート系、これらの混合物等);が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
エステル系可塑剤として、例えば、下記式で示される脂肪酸エステルを好適に使用できる。
Figure JPOXMLDOC01-appb-C000007
(式中、R11は、炭素数1~8の直鎖若しくは分枝状アルキル基、炭素数1~8の直鎖若しくは分枝状アルケニル基、又は1~5個のヒドロキシル基で置換された炭素数2~6の直鎖又は分枝状アルキル基を表す。R12は、炭素数11~21のアルキル基又はアルケニル基を表す。)
11としては、メチル基、エチル基、2-エチルヘキシル基、イソプロピル基、オクチル基、これらの基が1~5個のヒドロキシル基で置換された基、等が挙げられる。R12としては、ラウリル基、ミリスチル基、パルミチル基、ステアリル基、オレイル基等の直鎖又は分岐状アルキル基、アルケニル基が挙げられる。
脂肪酸エステルとしては、オレイン酸アルキル、ステアリン酸アルキル、リノール酸アルキル、パルミチン酸アルキル等が挙げられる。なかでも、オレイン酸アルキル(オレイン酸メチル、オレイン酸エチル、オレイン酸2-エチルヘキシル、オレイン酸イソプロピル、オレイン酸オクチル等)が好ましい。この場合、脂肪酸エステル100質量%中のオレイン酸アルキルの含有量は、80質量%以上が好ましい。
脂肪酸エステルとしては、脂肪酸(オレイン酸、ステアリン酸、リノール酸、パルミチン酸等)と、アルコール(エチレングリコール、グリセロール、トリメチロールプロパン、ペンタエリトリトール、エリトリトール、キシリトール、ソルビトール、ズルシトール、マンニトール、イノシトール等)との脂肪酸モノエステル及び脂肪酸ジエステル等も挙げられる。なかでも、オレイン酸モノエステルが好ましい。この場合、脂肪酸モノエステル及び脂肪酸ジエステルの合計量100質量%中のオレイン酸モノエステルの含有量は、80質量%以上が好ましい。
エステル系可塑剤として、リン酸エステルも好適に使用できる。
リン酸エステルは、炭素数が12~30の化合物であることが好ましく、なかでも、炭素数12~30のリン酸トリアルキルが好適である。なお、リン酸トリアルキルの炭素原子数は、3つのアルキル基の炭素原子の総数を意味し、当該3つのアルキル基は、同一の基でも、異なる基でもよい。アルキル基は、例えば、直鎖又は分岐状アルキル基が挙げられ、酸素原子などのヘテロ原子を含むものでも、フッ素、塩素、臭素、ヨウ素などのハロゲン原子で置換されたものでもよい。
リン酸エステルとしては、リン酸と、炭素数1~12のモノアルコール又はその(ポリ)オキシアルキレン付加物とのモノ、ジ又はトリエステル;前記リン酸トリアルキルのアルキル基の1又は2個がフェニル基に置換された化合物;等、公知のリン酸エステル系可塑剤も挙げられる。具体的には、トリス(2-エチルヘキシル)ホスフェート、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、トリス(2-ブトキシエチル)ホスフェート等が挙げられる。
液状樹脂としては、例えば、0℃で液状のテルペン系樹脂、ロジン系樹脂、スチレン系樹脂、C5系樹脂、C9系樹脂、C5/C9系樹脂、クマロン系樹脂、インデン系樹脂、オレフィン系樹脂、ウレタン樹脂、アクリル系樹脂、p-t-ブチルフェノールアセチレン樹脂、ジシクロペンタジエン系樹脂(DCPD系樹脂)等の0℃で液状のレジンが挙げられる。これらは、1種でも2種以上の混合物でもよく、また、樹脂自体が複数の由来のモノマー成分を共重合したものでもよい。
更に別の液状樹脂としては、例えば、液状(0℃において液状を意味する、以下同様)のファルネセン単独重合体、液状ファルネセン-スチレン共重合体、液状ファルネセン-ブタジエン共重合体、液状ファルネセン-スチレン-ブタジエン共重合体、液状ファルネセン-イソプレン共重合体、液状ファルネセン-スチレン-イソプレン共重合体等の液状ファルネセン系ポリマー;液状ミルセン単独重合体、液状ミルセン-スチレン共重合体、液状ミルセン-ブタジエン共重合体、液状ミルセン-スチレン-ブタジエン共重合体、液状ミルセン-イソプレン共重合体、液状ミルセン-スチレン-イソプレン共重合体等の液状ミルセン系ポリマー;液状スチレンブタジエン共重合体(液状SBR)、液状ブタジエン重合体(液状BR)、液状イソプレン重合体(液状IR)、液状スチレンイソプレン共重合体(液状SIR)、液状スチレンブタジエンスチレンブロック共重合体(液状SBSブロックポリマー)、液状スチレンイソプレンスチレンブロック共重合体(液状SISブロックポリマー)等の液状ジエン系ポリマー;ポリエチレンやポリプロピレンなどのオレフィン系樹脂をハードセグメント(硬質相)とし、ゴム成分をソフトセグメント(軟質相)とする液状オレフィン系ポリマー;ハードセグメントとしてポリエステルと、ソフトセグメントとしてポリエーテルまたはポリエステルなどを含む液状エステル系ポリマー;等が挙げられる。これらは、末端や主鎖が極性基で変性されていても構わない。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記液状樹脂としては、例えば、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、JXTGエネルギー(株)、荒川化学工業(株)、田岡化学工業(株)、サートマー社、(株)クラレ等の製品を使用できる。
上記組成物には、上記成分の他、タイヤ工業において一般的に用いられている添加剤を配合することができ、硫黄以外の加硫剤(例えば、有機架橋剤、有機過酸化物)、炭酸カルシウム、セリサイトなどの雲母、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウム、クレー、タルク、アルミナ、酸化チタン等を例示できる。これら各成分の含有量は、エラストマー成分(好ましくはゴム成分)100質量部に対して、好ましくは0.1質量部以上であり、好ましくは200質量部以下である。
上記組成物は、例えば、上記各成分をオープンロール、バンバリーミキサーなどのゴム混練装置を用いて混練し、その後加硫する方法等により製造できる。
混練条件としては、架橋剤(加硫剤)及び加硫促進剤以外の添加剤を混練するベース練り工程では、混練温度は、通常100~180℃、好ましくは120~170℃である。加硫剤、加硫促進剤を混練する仕上げ練り工程では、混練温度は、通常120℃以下、好ましくは80~110℃である。また、加硫剤、加硫促進剤を混練した組成物は、通常、プレス加硫などの加硫処理が施される。加硫温度としては、通常140~190℃、好ましくは150~185℃である。
上記組成物は、例えば、トレッド(キャップトレッド)、サイドウォール、ベーストレッド、アンダートレッド、クリンチ、ビードエイペックス、ブレーカークッションゴム、カーカスコード被覆用ゴム、インスレーション、チェーファー、インナーライナー等や、ランフラットタイヤのサイド補強層などのタイヤ部材に(タイヤ用ゴム組成物として)用いることができる。なかでも、トレッド(キャップトレッド)、サイドウォール、クリンチ、インナーライナーなどタイヤの外層部材に好適に用いられ、トレッド(キャップトレッド)により好適に用いられる。
本開示のタイヤは、上記組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種添加剤を配合した組成物を、未加硫の段階でタイヤの各部材(特に、トレッド(キャップトレッド)などタイヤの外層部材)の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造することができる。
上記タイヤとしては、特に限定されず、例えば、空気入りタイヤ、ソリッドタイヤ、エアレスタイヤ等が挙げられる。なかでも、空気入りタイヤが好ましい。
上記タイヤは、乗用車用タイヤ、大型乗用車用、大型SUV用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、競技用タイヤ、冬用タイヤ(スタッドレスタイヤ、スノータイヤ、スタッドタイヤ)、オールシーズンタイヤ、ランフラットタイヤ、航空機用タイヤ、鉱山用タイヤ等として好適に用いられる。なかでも、冬用タイヤ(スタッドレスタイヤ、スノータイヤ、スタッドタイヤ)、オールシーズンタイヤとしてより好適に用いられる。
上記タイヤは、上記エラストマー組成物からなる温度応答性部材を備え、当該温度応答性部材の最大厚みが1mm以上であることが好ましい。
温度応答性部材の最大厚みは、好ましくは1mm以上、より好ましくは1.5mm以上、更に好ましくは2.0mm以上であり、上限は特に限定されないが、好ましくは5.0mm以下、より好ましくは4.5mm以下、更に好ましくは4.0mm以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
ここで、温度応答性部材としては、上記外層部材であることが好ましく、トレッド(キャップトレッド)であることがより好ましい。
上記温度応答性部材に隣接し、上記エラストマー組成物とは異なる材料からなる少なくとも1つの隣接部材を備え、当該隣接部材と上記温度応答性部材との25℃における硬度差が15以下であることが好ましい。
該硬度差は、より好ましくは13以下、更に好ましくは10以下、特に好ましくは7以下、最も好ましくは5以下、より最も好ましくは2以下、更に最も好ましくは0である。上記範囲内であると、効果がより良好に得られる傾向がある。
温度応答性部材の25℃における硬度は、好ましくは55以上、より好ましくは60以上であり、好ましくは80以下、より好ましくは75以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
ここで、温度応答性部材としては、トレッド(キャップトレッド)、隣接部材としては、ベーストレッドであることが好ましい。
なお、隣接部材の配合としては、例えば、上記エラストマー組成物から温度応答性樹脂を省いた配合が挙げられる。
なお、本明細書において、硬度は、JIS K6253-3(2012)の「加硫ゴム及び熱可塑性ゴム-硬さの求め方-第3部:デュロメータ硬さ」に従って、タイプAデュロメータにより、測定されるJIS-A硬度である。
実施例に基づいて、本開示を具体的に説明するが、本開示はこれらのみに限定されるものではない。
以下、以下の実施例及び比較例で使用した各種薬品について、まとめて説明する。
SBR:日本ゼオン(株)製のNipol 1502(E-SBR、スチレン量:23.5質量%、ビニル量:20%未満)
BR:宇部興産(株)製のBR150B(シス含量:98質量%)
NR:TSR20(天然ゴム)
カーボンブラック:三菱化学(株)製のシーストN220(NSA:111m/g、DBP:115ml/100g)
シリカ:エボニックテグッサ社製のウルトラシルVN3(NSA:175m/g)
シランカップリング剤:エボニックテグッサ社製のSi266(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
ワックス:日本精鑞(株)製のオゾエースワックス
老化防止剤:大内新興化学工業(株)製のノクラック6C(N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン)
オイル:出光興産(株)製のPS-32
PNIPAM-b-Sty(1):特開2019-83761号公報に記載の重合法を参考に合成したN-イソプロピルアクリルアミド-スチレンジブロック共重合体(Mw:7万、NIPAM:Sty=90:10(質量%))
PNIPAM-b-Sty(2):特開2019-83761号公報に記載の重合法を参考に合成したN-イソプロピルアクリルアミド-スチレンジブロック共重合体(Mw:5万、NIPAM:Sty=70:30(質量%))
PNNPAM-b-Sty(1):特開2019-83761号公報に記載の重合法を参考に合成したPNNPAM-スチレンジブロック共重合体(Mw:7万、NNPAM:Sty=90:10(質量%))
PNNPAM-b-Sty(2):特開2019-83761号公報に記載の重合法を参考に合成したPNNPAM-スチレンジブロック共重合体(Mw:5万、NNPAM:Sty=70:30(質量%))
エポキシド・アリルグリシジルエーテル共重合体:国際公開第2020/022325号公報の製造例2に記載のエポキシド・アリルグリシジルエーテル共重合体
セルロース繊維:(株)スギノマシン製のバイオマスナノファイバー(製品名「BiNFi-s セルロース」、ミクロフィブリル化セルロース繊維)
ステアリン酸:日油(株)製のステアリン酸
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
硫黄:鶴見化学(株)製の粉末硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーNS(N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド)
(実施例及び比較例)
表2、3に示す配合処方にしたがい、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の薬品を150℃の条件下で5分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。
得られた未加硫ゴム組成物を170℃の条件下で12分間プレス加硫し、厚みが2mmの加硫ゴム組成物シートを得た。
また、表4にしたがい、得られた未加硫ゴム組成物を用いて、キャップトレッドの形状に合わせて成形し、他のタイヤ部材とともに貼り合わせて未加硫タイヤを作製し、170℃で15分間加硫して試験用タイヤ(サイズ:195/65R15)を得た。
なお、ベーストレッドゴムの配合は、比較例1の配合とし、硬度を変化させるために、適宜オイル量、フィラー量を調整した。
また、キャップトレッドにベーストレッドがタイヤ半径方向において隣接するようにタイヤを作製した。
得られた加硫ゴム組成物、試験用タイヤについて、室温暗所で三ヶ月保管した後、下記の評価を行った。結果を表2~4に示した。
(弾性率の測定)
厚みが2mmの加硫ゴム組成物シートを用いて、弾性率を測定した。
具体的には、厚みが2mmの加硫ゴム組成物シートを測定温度に10分間保温してから、(株)上島製作所製のスペクトロメータを用いて、加硫ゴム組成物シートに対して、歪2%、周波数10Hzの条件にて動的弾性率E*を測定した。
なお、測定用の加硫ゴム組成物シートは、以下のように調製した。
厚みが2mmの加硫ゴム組成物シートを10時間、25℃の水に浸漬した後、80℃、1kPa以下の条件で恒量になるまで減圧乾燥し、乾燥後の加硫ゴム組成物シートを得た。得られた乾燥後の加硫ゴム組成物シートの温度を25℃に戻した後、該シートを乾燥時の弾性率測定用の加硫ゴム組成物シートとした。
また、乾燥後の加硫ゴム組成物シートを再度10時間、25℃の水に浸漬したものを水浸漬時の弾性率測定用の加硫ゴム組成物シートとした。
測定結果を表2、3に示す。
(ゴム硬度(Hs))
各試験用タイヤのキャップトレッド、ベーストレッドから切り出したゴムを試験片として硬度を測定した。具体的には、JIS K6253-3(2012)の「加硫ゴム及び熱可塑性ゴム-硬さの求め方-第3部:デュロメータ硬さ」に従って、タイプAデュロメータにより、試験片の硬度を測定した(JIS-A硬度)。測定は25℃で行った。
(アイスグリップ性能)
試験用タイヤを国産2000ccのFR車に装着し、氷上を実車走行し、アイスグリップ性能を評価した。アイスグリップ性能評価としては、具体的には、上記車両を用いて氷上を走行し、時速30km/hでロックブレーキを踏み、停止させるまでに要した停止距離(氷上制動停止距離)を測定し、比較例5を100としたときの指数で表示した(アイスグリップ性能指数)。指数が大きいほど、氷上での制動性能(アイスグリップ性能)に優れることを示す。
(ドライグリップ性能)
試験用タイヤを車両(国産FF2000cc)の全輪に装着して、ドライアスファルト路面にて初速度100km/hからの制動距離を求め、比較例5を100としたときの指数で表示した(ドライグリップ性能指数)。指数が大きいほど、制動距離が短く、ドライグリップ性能に優れることを示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
表2、3より、ブタジエン系エラストマーと、温度変化により親水性が変化する温度応答性樹脂とを含むエラストマー組成物であって、上記エラストマー組成物は、10℃以上の温度差がある所定の2点温度において、低温側温度かつ水浸漬時の弾性率/低温側温度かつ乾燥時の弾性率 ≦0.95、高温側温度かつ水浸漬時の弾性率/高温側温度かつ乾燥時の弾性率 >0.95を満たし、上記低温側の温度は25℃未満である、実施例のエラストマー組成物は、温度変化に応答してタイヤ性能を変化させることができることが分かった。
また、表4より、実施例のタイヤは、アイスグリップ性能、ドライグリップ性能の総合性能(アイスグリップ性能、ドライグリップ性能の2つの指数の総和で表す)に優れることが分かった。
また、比較例2と実施例の対比により、天然ゴムに比べて親油性の高いブタジエン系エラストマーが含まれていることで、低温時に可塑剤の吐き出し、ブタジエン系エラストマーへの可塑剤の移行が速やかに生じるものと推測される。
本開示(1)は、ブタジエン系エラストマーと、温度変化により親水性が変化する温度応答性樹脂とを含むエラストマー組成物であって、
前記エラストマー組成物は、10℃以上の温度差がある所定の2点温度において、低温側温度かつ水浸漬時の弾性率/低温側温度かつ乾燥時の弾性率 ≦0.95、高温側温度かつ水浸漬時の弾性率/高温側温度かつ乾燥時の弾性率 >0.95を満たし、
前記低温側の温度は25℃未満である、エラストマー組成物である。
本開示(2)は、低温側温度かつ水浸漬時の弾性率/低温側温度かつ乾燥時の弾性率 ≦0.94以下を満たす本開示(1)記載のエラストマー組成物である。
本開示(3)は、低温側温度かつ水浸漬時の弾性率/低温側温度かつ乾燥時の弾性率 ≦0.93以下を満たす本開示(1)記載のエラストマー組成物である。
本開示(4)は、高温側温度かつ水浸漬時の弾性率/高温側温度かつ乾燥時の弾性率 ≧0.96を満たす本開示(1)~(3)のいずれかに記載のエラストマー組成物である。
本開示(5)は、高温側温度かつ水浸漬時の弾性率/高温側温度かつ乾燥時の弾性率 ≧0.97を満たす本開示(1)~(3)のいずれかに記載のエラストマー組成物である。
本開示(6)は、前記温度応答性樹脂は、AとBとが結合した化合物であり、
Aは温度変化により親水性が変化する基を含み、
Bはテルペン系樹脂、ロジン系樹脂、スチレン系樹脂、C5系樹脂、C9系樹脂、C5/C9系樹脂、クマロン系樹脂、インデン系樹脂、及び/又はオレフィン系樹脂を含む、本開示(1)~(5)のいずれかに記載の記載のエラストマー組成物である。
本開示(7)は、前記基が、水中で下限臨界溶液温度を示す基である、本開示(6)記載のエラストマー組成物である。
本開示(8)は、前記温度応答性樹脂はブロック共重合体である、本開示(1)~(7)のいずれかに記載のエラストマー組成物である。
本開示(9)は、前記温度応答性樹脂中の、AとBとの割合(質量%)が20:80~98:2である、本開示(6)記載のエラストマー組成物である。
本開示(10)は、前記温度応答性樹脂の重量平均分子量が20,000以上100,000以下である、本開示(1)~(9)のいずれかに記載のエラストマー組成物である。
本開示(11)は、さらに、吸水性の繊維、エラストマー、及び/又は樹脂を含む、本開示(1)~(10)のいずれかに記載のエラストマー組成物である。
本開示(12)は、さらに、液体可塑剤を含む、本開示(1)~(11)のいずれかに記載のエラストマー組成物である。
本開示(13)は、本開示(1)~(12)のいずれかに記載のエラストマー組成物からなる温度応答性部材を備え、当該温度応答性部材の最大厚みが1mm以上である、タイヤである。
本開示(14)は、前記温度応答性部材はタイヤの外層部材である、本開示(13)記載のタイヤである。
本開示(15)は、前記温度応答性部材に隣接し、前記エラストマー組成物とは異なる材料からなる少なくとも1つの隣接部材を備え、当該隣接部材と前記温度応答性部材との25℃における硬度差が15以下である、本開示(13)又は(14)記載のタイヤである。
 

Claims (15)

  1. ブタジエン系エラストマーと、温度変化により親水性が変化する温度応答性樹脂とを含むエラストマー組成物であって、
    前記エラストマー組成物は、10℃以上の温度差がある所定の2点温度において、低温側温度かつ水浸漬時の弾性率/低温側温度かつ乾燥時の弾性率 ≦0.95、高温側温度かつ水浸漬時の弾性率/高温側温度かつ乾燥時の弾性率 >0.95を満たし、
    前記低温側の温度は25℃未満である、エラストマー組成物。
  2. 低温側温度かつ水浸漬時の弾性率/低温側温度かつ乾燥時の弾性率 ≦0.94以下を満たす請求項1記載のエラストマー組成物。
  3. 低温側温度かつ水浸漬時の弾性率/低温側温度かつ乾燥時の弾性率 ≦0.93以下を満たす請求項1記載のエラストマー組成物。
  4. 高温側温度かつ水浸漬時の弾性率/高温側温度かつ乾燥時の弾性率 ≧0.96を満たす請求項1~3のいずれかに記載のエラストマー組成物。
  5. 高温側温度かつ水浸漬時の弾性率/高温側温度かつ乾燥時の弾性率 ≧0.97を満たす請求項1~3のいずれかに記載のエラストマー組成物。
  6. 前記温度応答性樹脂は、AとBとが結合した化合物であり、
    Aは温度変化により親水性が変化する基を含み、
    Bはテルペン系樹脂、ロジン系樹脂、スチレン系樹脂、C5系樹脂、C9系樹脂、C5/C9系樹脂、クマロン系樹脂、インデン系樹脂、及び/又はオレフィン系樹脂を含む、請求項1~5のいずれかに記載の記載のエラストマー組成物。
  7. 前記基が、水中で下限臨界溶液温度を示す基である、請求項6記載のエラストマー組成物。
  8. 前記温度応答性樹脂はブロック共重合体である、請求項1~7のいずれかに記載のエラストマー組成物。
  9. 前記温度応答性樹脂中の、AとBとの割合(質量%)が20:80~98:2である、請求項6記載のエラストマー組成物。
  10. 前記温度応答性樹脂の重量平均分子量が20,000以上100,000以下である、請求項1~9のいずれかに記載のエラストマー組成物。
  11. さらに、吸水性の繊維、エラストマー、及び/又は樹脂を含む、請求項1~10のいずれかに記載のエラストマー組成物。
  12. さらに、液体可塑剤を含む、請求項1~11のいずれかに記載のエラストマー組成物。
  13. 請求項1~12のいずれかに記載のエラストマー組成物からなる温度応答性部材を備え、当該温度応答性部材の最大厚みが1mm以上である、タイヤ。
  14. 前記温度応答性部材はタイヤの外層部材である、請求項13記載のタイヤ。
  15. 前記温度応答性部材に隣接し、前記エラストマー組成物とは異なる材料からなる少なくとも1つの隣接部材を備え、当該隣接部材と前記温度応答性部材との25℃における硬度差が15以下である、請求項13又は14記載のタイヤ。
PCT/JP2021/040279 2020-11-11 2021-11-01 エラストマー組成物及びタイヤ WO2022102460A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/035,630 US20230407059A1 (en) 2020-11-11 2021-11-01 Elastomer composition and tire
CN202180049103.5A CN115916888B (zh) 2020-11-11 2021-11-01 弹性体组合物和轮胎
EP21891707.8A EP4163330A4 (en) 2020-11-11 2021-11-01 ELASTOMER COMPOSITION AND TIRES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-187835 2020-11-11
JP2020187835A JP7255581B2 (ja) 2020-11-11 2020-11-11 エラストマー組成物及びタイヤ

Publications (1)

Publication Number Publication Date
WO2022102460A1 true WO2022102460A1 (ja) 2022-05-19

Family

ID=81602243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040279 WO2022102460A1 (ja) 2020-11-11 2021-11-01 エラストマー組成物及びタイヤ

Country Status (5)

Country Link
US (1) US20230407059A1 (ja)
EP (1) EP4163330A4 (ja)
JP (1) JP7255581B2 (ja)
CN (1) CN115916888B (ja)
WO (1) WO2022102460A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248118A (ja) * 1993-02-16 1994-09-06 Goodyear Tire & Rubber Co:The 親水性高分子複合材料およびその複合材料を含む製品
JP2008214377A (ja) 2007-02-28 2008-09-18 Bridgestone Corp ゴム組成物及びそれを用いた空気入りタイヤ
JP2013136749A (ja) * 2011-12-21 2013-07-11 Goodyear Tire & Rubber Co:The ゴム組成物及び空気入りタイヤ
JP2013136748A (ja) * 2011-12-21 2013-07-11 Goodyear Tire & Rubber Co:The グラフトコポリマーの製造法
JP2018053179A (ja) * 2016-09-30 2018-04-05 住友ゴム工業株式会社 空気入りタイヤ
JP2019083761A (ja) 2017-11-08 2019-06-06 ダイキン工業株式会社 温度応答性細胞培養基材及びその製造方法
WO2020022325A1 (ja) 2018-07-27 2020-01-30 住友ゴム工業株式会社 ゴム組成物及びタイヤ
WO2020100627A1 (ja) * 2018-11-16 2020-05-22 株式会社ブリヂストン ゴム組成物、加硫ゴム及びタイヤ
JP2021161312A (ja) * 2020-04-01 2021-10-11 横浜ゴム株式会社 ゴム組成物およびそれを用いたスタッドレスタイヤ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678392B2 (ja) * 1985-09-28 1994-10-05 日本合成ゴム株式会社 金属腐蝕性が小さいゴム状重合体の製造方法
DE10254432A1 (de) * 2002-11-21 2004-06-03 Süd-Chemie AG LCST-Polymere
JP2009221472A (ja) * 2008-02-22 2009-10-01 Toray Ind Inc 熱可塑性樹脂組成物
WO2013043796A2 (en) * 2011-09-23 2013-03-28 Exxonmobil Chemical Patents Inc. Modified polyethylene compositions
EP2607102B1 (en) * 2011-12-21 2016-09-14 The Goodyear Tire & Rubber Company Method of making a graft polymer, copolymer and tire
JP2015131922A (ja) * 2014-01-15 2015-07-23 東ソー株式会社 水系樹脂組成物、該組成物を用いた繊維性基材用接着剤、該接着剤を用いた積層体、及び積層体の製造方法
JP2016199717A (ja) * 2015-04-14 2016-12-01 関西ペイント株式会社 感温性重合体、該感温性重合体を含有する塗料組成物及び複層塗膜形成方法
JP2019056086A (ja) * 2017-09-22 2019-04-11 興和株式会社 ゲル組成物
WO2019131389A1 (ja) * 2017-12-26 2019-07-04 住友ゴム工業株式会社 スタッドレスタイヤ用トレッドゴム組成物
LU100867B1 (en) * 2018-06-29 2019-12-30 Apollo Tyres Global R & D Bv Rubber composition for tires with good wet grip and rolling resistance properties

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248118A (ja) * 1993-02-16 1994-09-06 Goodyear Tire & Rubber Co:The 親水性高分子複合材料およびその複合材料を含む製品
JP2008214377A (ja) 2007-02-28 2008-09-18 Bridgestone Corp ゴム組成物及びそれを用いた空気入りタイヤ
JP2013136749A (ja) * 2011-12-21 2013-07-11 Goodyear Tire & Rubber Co:The ゴム組成物及び空気入りタイヤ
JP2013136748A (ja) * 2011-12-21 2013-07-11 Goodyear Tire & Rubber Co:The グラフトコポリマーの製造法
JP2018053179A (ja) * 2016-09-30 2018-04-05 住友ゴム工業株式会社 空気入りタイヤ
JP2019083761A (ja) 2017-11-08 2019-06-06 ダイキン工業株式会社 温度応答性細胞培養基材及びその製造方法
WO2020022325A1 (ja) 2018-07-27 2020-01-30 住友ゴム工業株式会社 ゴム組成物及びタイヤ
WO2020100627A1 (ja) * 2018-11-16 2020-05-22 株式会社ブリヂストン ゴム組成物、加硫ゴム及びタイヤ
JP2021161312A (ja) * 2020-04-01 2021-10-11 横浜ゴム株式会社 ゴム組成物およびそれを用いたスタッドレスタイヤ

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Rubber, vulcanized or thermoplastic -Determination of hardness- Part 3: Durometer method", JIS K 6253-3, 2012
"Rubber, vulcanized or thermoplastic -Determination of hardness-Part 3: Durometer method", JIS K 6253-3, 2012
N. MORI ET AL.: "Temperature Induced Changes in the Surface Wettability of SBR+PNIPA Films", MACROMOL. MATER. ENG., vol. 292, no. 917, 2007, pages 917 - 22
See also references of EP4163330A4

Also Published As

Publication number Publication date
JP7255581B2 (ja) 2023-04-11
CN115916888B (zh) 2024-02-09
EP4163330A1 (en) 2023-04-12
JP2022077144A (ja) 2022-05-23
US20230407059A1 (en) 2023-12-21
CN115916888A (zh) 2023-04-04
EP4163330A4 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US10844199B2 (en) Tire rubber composition and tire
JP2019026712A (ja) 空気入りタイヤ
JP2019183101A (ja) タイヤ用ゴム組成物及びタイヤ
JP7512610B2 (ja) タイヤ用組成物及びタイヤ
JP2022003147A (ja) 可塑剤、組成物及びタイヤ
JP7215304B2 (ja) タイヤトレッド用ゴム組成物及びタイヤ
EP3825356B1 (en) Tire rubber composition and tire
JP7255581B2 (ja) エラストマー組成物及びタイヤ
WO2022102459A1 (ja) エラストマー組成物及びタイヤ
WO2021246048A1 (ja) 高分子複合体、ゴム組成物及びタイヤ
JP7338209B2 (ja) タイヤトレッド用ゴム組成物及びタイヤ
WO2022102456A1 (ja) 可塑剤、組成物及びタイヤ
JP2023025858A (ja) タイヤ用ゴム組成物及びタイヤ
JP2023025857A (ja) タイヤ用ゴム組成物及びタイヤ
JP2022019301A (ja) タイヤ用ゴム組成物及びタイヤ
JP2021080406A (ja) タイヤ用ゴム組成物及びタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891707

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 21891707.8

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021891707

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE