WO2022102183A1 - 二重管および溶接継手 - Google Patents
二重管および溶接継手 Download PDFInfo
- Publication number
- WO2022102183A1 WO2022102183A1 PCT/JP2021/029420 JP2021029420W WO2022102183A1 WO 2022102183 A1 WO2022102183 A1 WO 2022102183A1 JP 2021029420 W JP2021029420 W JP 2021029420W WO 2022102183 A1 WO2022102183 A1 WO 2022102183A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- content
- pipe
- total
- contained
- Prior art date
Links
- 239000000203 mixture Substances 0.000 claims abstract description 29
- 239000000126 substance Substances 0.000 claims abstract description 29
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 11
- 229910052715 tantalum Inorganic materials 0.000 claims description 11
- 229910052719 titanium Inorganic materials 0.000 claims description 11
- 229910052720 vanadium Inorganic materials 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 abstract description 22
- 229910052717 sulfur Inorganic materials 0.000 abstract description 17
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 14
- 229910052799 carbon Inorganic materials 0.000 abstract 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract 2
- 229910052760 oxygen Inorganic materials 0.000 abstract 2
- 238000003466 welding Methods 0.000 description 55
- 230000000694 effects Effects 0.000 description 38
- 229910052751 metal Inorganic materials 0.000 description 36
- 239000002184 metal Substances 0.000 description 36
- 239000000463 material Substances 0.000 description 33
- 229910052761 rare earth metal Inorganic materials 0.000 description 24
- 238000005336 cracking Methods 0.000 description 21
- 238000007711 solidification Methods 0.000 description 21
- 230000008023 solidification Effects 0.000 description 21
- 238000012360 testing method Methods 0.000 description 19
- 229910000851 Alloy steel Inorganic materials 0.000 description 16
- 230000035515 penetration Effects 0.000 description 15
- 229910001566 austenite Inorganic materials 0.000 description 13
- 230000007797 corrosion Effects 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 11
- 239000010959 steel Substances 0.000 description 11
- 230000006872 improvement Effects 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 9
- 230000007547 defect Effects 0.000 description 7
- 230000004927 fusion Effects 0.000 description 7
- 230000003749 cleanliness Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000009628 steelmaking Methods 0.000 description 5
- 229910001122 Mischmetal Inorganic materials 0.000 description 4
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- -1 respectively Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007778 shielded metal arc welding Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/056—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/04—Alloys containing less than 50% by weight of each constituent containing tin or lead
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3033—Ni as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
Definitions
- the present invention relates to a double pipe and a welded joint.
- the outer surface of the boilers for thermal power generation, waste incineration power generation boilers, and heater pipes for biomass power generation boilers are exposed to harsh environments such as corrosion due to molten salt and wear due to unburned materials at high temperatures.
- the heat exchanger tube used in the synthetic gas cooler of an integrated coal gasification combined cycle plant is exposed to a high temperature corrosion environment on the inner surface of the tube.
- the double pipe can be provided with excellent corrosion resistance and wear resistance by selecting appropriate materials for the outer pipe and inner pipe. Therefore, various double tubes in which various materials are combined have been proposed for the above-mentioned uses, energy transport, storage equipment, and the like (for example, Patent Documents 1 to 9).
- the present invention has been made in view of the above-mentioned current situation, and is a double pipe and a welded joint using the same, in which cracks generated in the weld metal during butt welding of the pipe are prevented and a sound welded joint can be stably obtained.
- the purpose is to provide.
- the gist of the present invention is the following double pipe and welded joint.
- the chemical composition of the first tube is mass%.
- the chemical composition of the second tube is mass%.
- Si ave Mean value (mass%) of Si content in the first and second pipes
- P ave Mean value (mass%) of P content in the first and second pipes
- S- ave Mean value (mass%) of S content in the first and second pipes
- Sn ave Mean value (mass%) of Sn content in the first tube and the second tube
- the chemical composition of the first tube is, instead of a part of Fe, by mass%.
- Cr 9.50% or less
- Total of Mo and / or W 4.00% or less
- Total of one or more selected from V, Nb, Ti and Ta 1.00% or less
- B 0.0200% or less
- Total of Ca and / or Mg 0.0100% or less
- REM 0.0500% or less, Containing at least one selected from the group consisting of The double pipe according to (1) above.
- the chemical composition of the second tube is, instead of a part of Fe, by mass%.
- the present inventors have a low alloy steel containing 0.0005 to 0.0400% and 0.0005 to 0.0300% Sn, respectively, and a high alloy steel for the purpose of improving corrosion resistance.
- a detailed investigation was conducted on cracks generated in the weld metal when butt welding was performed on a double pipe combined with alloy steel using a Ni-based alloy welding material. As a result, the following findings were clarified.
- (C) Si, P, S and Sn are distributed between the liquid phase and the solid phase (austenite phase) during solidification of the weld metal, and are concentrated at the columnar crystal boundary which is the association between the solid phases. Since all of these elements are elements that lower the solidus temperature, it is considered that the liquid phase remained at the columnar crystal boundary until the end of solidification and opened due to the shrinkage stress during solidification.
- (F) S is a surface active element and has an action of strengthening inward convection in the molten pool during welding. Therefore, the heat from the arc can be easily transported in the depth direction, and the melting depth is deepened. Further, Sn has the effect of evaporating from the surface of the molten pool during welding, forming an energization path for the arc, increasing the current density of the arc, and similarly increasing the penetration depth.
- the double pipe has a structure in which the outer pipe and the inner pipe are metallically coupled, and is sometimes referred to as a “clad pipe”.
- the double pipe according to the present invention includes a first pipe and a second pipe.
- the first pipe may be used for the outer pipe and the second pipe may be used for the inner pipe, or the second pipe may be used for the outer pipe and the first pipe may be used for the inner pipe, depending on the intended use.
- the double pipe of the present invention is a seamless steel pipe (sometimes referred to as "seamless steel pipe”).
- the dimensions of the double pipe are not particularly limited, but the outer diameter is 25.4 to 114.3 mm and the thickness is 2.0 to 15.0 mm, and the second pipe made of high alloy steel described below. It is preferable that the ratio of the above to the total thickness of the pipe is 0.10 to 0.50.
- the first pipe is made of low alloy steel and the second pipe is made of high alloy steel.
- the chemical composition of the first tube and the second tube will be described in detail.
- C More than 0.060% and 0.400% or less C dissolves in a substrate or precipitates as carbide during use at high temperature, and contributes to ensuring strength at room temperature and high temperature. In order to obtain this effect, an amount of C exceeding 0.060% is contained. However, if it is contained in an excessive amount, the heat-affected zone will be hardened during butt welding, and the sensitivity to low temperature cracking will be increased. Therefore, the C content is set to 0.400% or less.
- the C content is preferably more than 0.100%, more preferably 0.110% or more.
- the C content is preferably 0.380% or less, more preferably 0.350% or less.
- Si 0.01-1.00%
- Si is an element that has a deoxidizing effect and is effective in improving corrosion resistance and oxidation resistance at high temperatures.
- the Si content is 0.01% or more.
- the Si content is preferably 0.03% or more, more preferably 0.05% or more.
- the Si content is preferably 0.90% or less, more preferably 0.80% or less.
- Mn 0.01 to 1.20%
- Mn has a deoxidizing action like Si, and also enhances hardenability and contributes to improvement of strength.
- the Mn content is 0.01% or more.
- the Mn content is set to 1.20% or less.
- the Mn content is preferably 0.03% or more, more preferably 0.05% or more.
- the Mn content is preferably 1.10% or less, more preferably 1.00% or less.
- P 0.0350% or less
- P is mixed in the weld metal during welding and enhances the susceptibility to solidification and cracking. Therefore, the P content is 0.0350% or less. Furthermore, it is necessary to satisfy the relationship with the contents of Si, S and Sn described later.
- the P content is preferably 0.0330% or less, more preferably 0.0300% or less. It is not necessary to set a lower limit for the P content, and it may be 0 (zero), but an extreme reduction causes an increase in steelmaking cost. In addition, P has the effect of increasing the strength to no small extent. When this effect is desired, the P content is preferably 0.0015% or more, and more preferably 0.0030% or more.
- S 0.0150% or less S, like P, is mixed in the weld metal during welding and significantly increases the susceptibility to solidification and cracking. Therefore, the content of S is set to 0.0150% or less. Furthermore, it is necessary to satisfy the relationship with the contents of Si, P and Sn described later.
- the S content is preferably 0.0130% or less, more preferably 0.0100% or less. It is not necessary to set a lower limit for the S content, and it may be 0 (zero), but if it is extremely reduced, the penetration depth becomes small at the time of welding, and fusion failure is likely to occur. Therefore, the S content is preferably 0.0001% or more, more preferably 0.0002% or more, while satisfying the relationship with Sn described later.
- Sn 0.0005 to 0.0400%
- Sn has the effect of thickening under the scale of the surface of the steel and improving the corrosion resistance. In addition, it is mixed in the weld metal during welding to increase the penetration depth and suppress the occurrence of fusion defects. In order to obtain this effect, it is necessary to set the Sn content to 0.0005% or more and to satisfy the relationship with the S content described later. On the other hand, if it is contained in an excessive amount, the sensitivity to solidification cracking is increased during welding. Therefore, it is necessary to set the Sn content to 0.0400% or less and to satisfy the relationship with the Si, P and Sn contents described later.
- the Sn content is preferably 0.0008% or more, and more preferably 0.0010% or more.
- the Sn content is preferably 0.0380% or less, more preferably 0.0350% or less.
- Al 0.040% or less Al is contained for deoxidation. However, excessive content causes a decrease in toughness. Therefore, the Al content is 0.040% or less.
- the Al content is preferably 0.035% or less, more preferably 0.030% or less. It is not necessary to set a lower limit for the Al content, and it may be 0 (zero). However, if it is extremely reduced, the deoxidizing effect cannot be sufficiently obtained, the cleanliness of the steel is lowered, and the manufacturing cost is reduced. Invites an increase in. Therefore, the Al content is preferably 0.001% or more, and more preferably 0.002% or more.
- N 0.050% or less N, if contained in excess, causes a decrease in toughness. Therefore, the N content is set to 0.050% or less.
- the N content is preferably 0.045% or less, more preferably 0.040% or less. It is not necessary to set a lower limit for the N content, and it may be 0 (zero), but an extreme reduction causes an increase in steelmaking cost.
- N has the effect of forming a nitride and increasing the strength to no small extent. When this effect is desired, the N content is preferably 0.001% or more, and more preferably 0.003% or more.
- the O content is 0.030% or less.
- the O content is preferably 0.025% or less, more preferably 0.020% or less. It is not necessary to set a lower limit for the O content, and it may be 0 (zero), but an extreme reduction causes an increase in steelmaking cost. Therefore, the O content is preferably 0.001% or more, and more preferably 0.003% or more.
- the balance is Fe and impurities.
- impurities refer to those mixed by various factors in the manufacturing process, including raw materials such as ore or scrap, when steel materials are industrially manufactured.
- the chemical composition of the first tube may contain one or more selected from the following groups instead of a part of Fe. The reason is described below.
- Cr 9.50% or less Cr is effective in improving corrosion resistance and strength at high temperatures, and may be contained as necessary. However, if it is contained in an excessive amount, the toughness is lowered. Therefore, when it is contained, the Cr content is 9.50% or less.
- the Cr content is preferably 9.40% or less, more preferably 9.20% or less. If the above effect is to be surely obtained, the Cr content is preferably 0.01% or more, more preferably 0.02% or more.
- Total of one or more selected from Cu, Ni and Co 1.00% or less Cu, Ni and Co are all effective in improving hardenability and strength, and are therefore contained as necessary. May be good. However, since all of them are expensive elements, when they are contained, the total content of one or more selected from these elements is set to 1.00% or less. The total content is preferably 0.90% or less, more preferably 0.80% or less. If the above effect is to be surely obtained, the total content is preferably 0.01% or more, more preferably 0.02% or more.
- Total of Mo and / or W 4.00% or less Since both Mo and W are solid-solved in the substrate and contribute to the improvement of high-temperature strength, they may be contained as necessary. However, if it is contained in excess, coarse intermetallic compounds and / or carbides are generated during use at high temperature, resulting in a decrease in toughness. Therefore, when it is contained, the total content of Mo and / or W is 4. It shall be 00% or less. The total content is preferably 3.80% or less, more preferably 3.50% or less. If the above effect is to be surely obtained, the total content is preferably 0.01% or more, more preferably 0.02% or more.
- Total of one or more selected from V, Nb, Ti and Ta 1.00% or less V, Nb, Ti and Ta all form fine carbonitrides during use at high temperatures and have high temperature strength. It may be contained as needed in order to contribute to the improvement of the above. However, if it is contained in an excessive amount, a large amount of coarse carbonitride is generated, which causes a decrease in toughness. Therefore, when it is contained, the total content of one or more selected from these elements is 1.00% or less. do. The total content is preferably 0.90% or less, more preferably 0.80% or less. If the above effect is to be surely obtained, the total content is preferably 0.01% or more, more preferably 0.02% or more.
- B 0.0200% or less B may be contained as necessary because it enhances hardenability and contributes to improvement in strength. However, if it is excessively contained, it is mixed in the weld metal at the time of welding and the sensitivity to solidification cracking is increased. Therefore, when it is contained, the B content is 0.0200% or less.
- the B content is preferably 0.0180% or less, more preferably 0.0150% or less. If the above effect is to be surely obtained, the B content is preferably 0.0005% or more, more preferably 0.0010% or more.
- Total of Ca and / or Mg may be contained as necessary in order to improve hot workability. However, if it is contained in an excessive amount, the cleanliness is significantly deteriorated and the hot workability is deteriorated. Therefore, when the content is excessive, the total content of Ca and / or Mg is set to 0.0100% or less.
- the total content is preferably 0.0080% or less, more preferably 0.0060% or less. If the above effect is to be surely obtained, the total content is preferably 0.0005% or more, more preferably 0.0010% or more.
- REM 0.0500% or less REM, like Ca and Mg, may be contained as necessary in order to improve hot workability. However, if it is contained in an excessive amount, the cleanliness is remarkably lowered and the hot workability is impaired. Therefore, when it is contained, the REM content is 0.0500% or less.
- the REM content is preferably 0.0400% or less, more preferably 0.0300% or less. If the above effect is to be surely obtained, the REM content is preferably 0.0005% or more, and more preferably 0.0010% or more.
- REM is a general term for a total of 17 elements of Sc, Y and lanthanoids, and the REM content refers to the total content of one or more of the REM elements.
- REM is generally contained in misch metal. Therefore, for example, mischmetal may be added to the alloy so that the REM content is within the above range.
- C 0.003 to 0.100% C stabilizes the austenite structure and contributes to ensuring high-temperature strength. In order to obtain this effect, the C content is set to 0.003% or more. However, if it is contained in an excessive amount, carbides are generated during welding or use at a high temperature, resulting in a decrease in corrosion resistance. Therefore, the C content is set to 0.100% or less.
- the C content is preferably 0.005% or more, and more preferably 0.008% or more.
- the C content is preferably 0.090% or less, more preferably 0.080% or less.
- Si 0.01 to 1.50%
- Si is an element that has a deoxidizing effect and is effective in improving corrosion resistance and oxidation resistance at high temperatures.
- the Si content is 0.01% or more.
- the Si content is preferably 0.03% or more, more preferably 0.05% or more.
- the Si content is preferably 1.30% or less, more preferably 1.00% or less.
- Mn 0.01-2.20%
- Mn has a deoxidizing action, enhances the stability of the austenite structure, and contributes to ensuring high-temperature strength.
- the Mn content is 0.01% or more.
- the Mn content is 2.20% or less.
- the Mn content is preferably 0.03% or more, more preferably 0.05% or more.
- the Mn content is preferably 2.00% or less, more preferably 1.80% or less.
- P 0.0400% or less
- P is mixed in the weld metal during welding and enhances the susceptibility to solidification and cracking. Therefore, the P content is 0.0400% or less. Furthermore, it is necessary to satisfy the relationship with the contents of Si, S and Sn described later.
- the P content is preferably 0.0380% or less, more preferably 0.0350% or less. It is not necessary to set a lower limit for the P content, and it may be 0 (zero), but an extreme reduction causes an increase in steelmaking cost.
- P has the effect of increasing the strength to no small extent. When this effect is desired, the P content is preferably 0.0030% or more, and more preferably 0.0050% or more.
- S 0.0100% or less S, like P, is mixed in the weld metal during welding and significantly increases the susceptibility to solidification and cracking. In addition, the sensitivity to liquefaction cracking in the weld-affected portion is increased. Therefore, the content of S is set to 0.0100% or less. Furthermore, it is necessary to satisfy the relationship with the contents of Si, P and Sn described later.
- the S content is preferably 0.0090% or less, more preferably 0.0080% or less. It is not necessary to set a lower limit for the S content, and it may be 0 (zero), but if it is extremely reduced, the penetration depth becomes small at the time of welding, and fusion failure is likely to occur. Therefore, the S content is preferably 0.0001% or more, more preferably 0.0002% or more, while satisfying the relationship with Sn described later.
- Sn 0.0005 to 0.0300% Sn has the effect of improving corrosion resistance. In addition, it is mixed in the weld metal during welding to increase the penetration depth and suppress the occurrence of fusion defects. In order to obtain this effect, it is necessary to set the Sn content to 0.0005% or more and to satisfy the relationship with the S content described later. On the other hand, when it is contained in an excessive amount, the sensitivity to solidification cracking is increased during welding, and the sensitivity to liquefaction cracking of the welding affected portion is increased. Therefore, it is necessary to set the Sn content to 0.0300% or less and to satisfy the relationship with the Si, P and Sn contents described later.
- the Sn content is preferably 0.0008% or more, and more preferably 0.0010% or more.
- the Sn content is preferably 0.0280% or less, more preferably 0.0250% or less.
- Ni 7.0-52.0% Ni stabilizes the austenite structure and contributes to high temperature strength. In addition, it enhances corrosion resistance in the presence of chloride ions. In order to obtain this effect, the Ni content is set to 7.0% or more. However, since Ni is an expensive element, if it is contained in an excessive amount, the cost will increase. Therefore, the Ni content is set to 52.0% or less. The Ni content is preferably 7.2% or more, more preferably 7.5% or more. The Ni content is preferably 48.0% or less, more preferably 45.0% or less.
- Cr 15.0 to 27.0% Cr contributes to the improvement of oxidation resistance and corrosion resistance at high temperatures.
- the Cr content is set to 15.0% or more.
- the Cr content is preferably 15.2% or more, more preferably 15.5% or more.
- the Cr content is preferably 26.8% or less, more preferably 26.5% or less.
- Al 0.001 to 0.600%
- Al is contained for deoxidation. Further, it binds to Ni during use at high temperature and precipitates as an intermetallic compound, which contributes to the improvement of high temperature strength.
- the Al content is 0.001% or more. However, excessive content causes a decrease in toughness. Therefore, the Al content is set to 0.600% or less.
- the Al content is preferably 0.002% or more, more preferably 0.003% or more.
- the Al content is preferably 0.550% or less, more preferably 0.500% or less.
- N 0.001 to 0.150% N stabilizes the austenite phase and contributes to the improvement of high temperature strength.
- the N content is 0.001% or more.
- the N content is set to 0.150% or less.
- the N content is preferably 0.002% or more, more preferably 0.003% or more.
- the N content is preferably 0.130% or less, more preferably 0.100% or less.
- the O content is 0.030% or less.
- the O content is preferably 0.025% or less, more preferably 0.020% or less. It is not necessary to set a lower limit for the O content, and it may be 0 (zero), but an extreme reduction causes an increase in steelmaking cost. Therefore, the O content is preferably 0.001% or more, and more preferably 0.003% or more.
- the balance is Fe and impurities.
- impurities refer to those mixed by various factors in the manufacturing process, including raw materials such as ore or scrap, when steel materials are industrially manufactured.
- the chemical composition of the second tube may contain one or more selected from the following groups instead of a part of Fe. The reason is described below.
- Total of Cu and / or Co 6.00% or less Total of Mo and / or W: 8.00% or less Total of one or more selected from V, Nb, Ti and Ta: 2.00% or less
- B 0.0200% or less Total of Ca and / or Mg: 0.0100% or less
- REM 0.0500% or less
- Total of Cu and / or Co 6.00% or less Since both Cu and Co are effective in improving the stability of the austenite structure and improving the high temperature strength, they may be contained as necessary. However, all of them are expensive elements, and if they are contained in an excessive amount, the ductility is lowered. Therefore, when they are contained, the total content of Cu and / or Co is set to 6.00% or less. The total content is preferably 5.50% or less, more preferably 5.00% or less. If the above effect is to be surely obtained, the total content is preferably 0.01% or more, more preferably 0.02% or more.
- Total of Mo and / or W 8.00% or less Mo and W may be contained as necessary because they are solid-solved in the substrate and contribute to the improvement of high-temperature strength. However, excessive content impairs the stability of the austenite structure and produces coarse intermetallic compounds and / or carbides during use at high temperatures, leading to a decrease in toughness. Therefore, when it is contained, the total content of Mo and / or W is set to 8.00% or less.
- the total content is preferably 7.50% or less, more preferably 7.00% or less. If the above effect is to be surely obtained, the total content is preferably 0.01% or more, more preferably 0.02% or more.
- V, Nb, Ti and Ta all form fine carbonitrides during use at high temperatures and have high temperature strength. It may be contained as needed in order to contribute to the improvement of the above. However, if it is contained in an excessive amount, a large amount of coarse carbonitride is generated, which causes a decrease in toughness. Therefore, when it is contained, the total content of one or more selected from these elements is 2.00% or less. do. The total content is preferably 1.90% or less, more preferably 1.80% or less. If the above effect is to be surely obtained, the total content is preferably 0.01% or more, more preferably 0.02% or more.
- B 0.0200% or less B may be contained as necessary because it dissolves in carbide during high-temperature use and is finely dispersed to contribute to the improvement of high-temperature strength. However, if it is excessively contained, it is mixed in the weld metal at the time of welding and the sensitivity to solidification cracking is increased. Therefore, when it is contained, the B content is 0.0200% or less.
- the B content is preferably 0.0180% or less, more preferably 0.0150% or less. If the above effect is to be surely obtained, the B content is preferably 0.0005% or more, more preferably 0.0010% or more.
- Total of Ca and / or Mg may be contained as necessary in order to improve hot workability. However, if it is contained in an excessive amount, the cleanliness is significantly deteriorated and the hot workability is deteriorated. Therefore, when the content is excessive, the total content of Ca and / or Mg is set to 0.0100% or less.
- the total content is preferably 0.0080% or less, more preferably 0.0060% or less. If the above effect is to be surely obtained, the total content is preferably 0.0005% or more, more preferably 0.0010% or more.
- REM 0.0500% or less REM, like Ca and Mg, may be contained as necessary in order to improve hot workability. However, if it is contained in an excessive amount, the cleanliness is remarkably lowered and the hot workability is impaired. Therefore, when it is contained, the REM content is 0.0500% or less.
- the REM content is preferably 0.0400% or less, more preferably 0.0300% or less. If the above effect is to be surely obtained, the REM content is preferably 0.0005% or more, and more preferably 0.0010% or more.
- REM is a general term for a total of 17 elements of Sc, Y and lanthanoids, and the REM content refers to the total content of one or more of the REM elements.
- REM is generally contained in misch metal. Therefore, for example, mischmetal may be added to the alloy so that the REM content is within the above range.
- the double tube according to the present invention is welded using a welding material made of austenitic stainless steel or a Ni alloy
- the double tube (base material) is melted and the Si, P, S and Sn contained therein are contained. , Mixed into weld metal. All of these elements lower the solidus temperature and increase the solidification crack susceptibility of the weld metal. In particular, in the weld metal near the melting boundary, the mixing during welding is not sufficient, and the chemical composition of the weld metal is dominated by the influence of the base metal.
- the weld metal has an austenite single-phase solidification structure near the boundary between the inner and outer pipes, solidification cracks are likely to occur due to the influence of these elements.
- the lvalue of the following equation (i) is preferably 1.0500 or less, and more preferably 1.0000 or less.
- the meaning of each symbol in the above formula is as follows.
- Si ave Mean value (mass%) of Si content in the first and second pipes
- P ave Mean value (mass%) of P content in the first and second pipes
- S- ave Mean value (mass%) of S content in the first and second pipes
- Sn ave Mean value (mass%) of Sn content in the first tube and the second tube
- the double pipe melts during welding, and the contained S and Sn are mixed with the weld metal. While these elements increase the susceptibility to welding cracks, if they are reduced too much, the penetration depth during welding becomes small, and penetration defects are likely to occur.
- the relational expression considering the degree of influence of each element is managed within a predetermined range for the average amount of S and Sn contents in the first pipe and the second pipe. There is a need.
- the rvalue of the following equation (ii) is preferably 0.0020 or more, and more preferably 0.0025 or more. 0.0015 ⁇ 4 ⁇ S -ave + Sn -ave ... (ii)
- S- ave Mean value (mass%) of S content in the first and second pipes
- Sn ave Mean value (mass%) of Sn content in the first tube and the second tube
- the welded joint according to the present invention includes the above-mentioned double pipe. That is, a plurality of double pipes are welded and joined. When assembling a double pipe by butt welding, an appropriate welding material may be selected according to the intended use.
- the high alloy steel is generally used. Is welded using a welding material for austenite stainless steel or Ni-based alloy, then welded using a pure Ni welding material near the boundary, and the remaining low alloy steel part is for carbon steel. If the welding material of is used, a welded joint having the required performance can be obtained. Further, when the materials constituting the outer pipe and the inner pipe are opposite, welding can be performed by the reverse method.
- the welded joint according to the embodiment of the present invention is welded with either a welding material for austenitic stainless steel or a Ni-based alloy.
- the welding material used and the weld metal to be formed preferably have the following chemical composition.
- the chemical composition of the weld material and the weld metal is by mass%.
- C 0.003 to 0.100%, Si: 0.01-1.50%, Mn: 0.01-2.50%, P: 0.0400% or less, S: 0.0100% or less, Sn: 0.0300% or less, Total of Cu and / or Co: 0 to 15.00%, Ni: 12.0-75.0%, Cr: 18.0% to 27.0%, Total of Mo and / or W: 0 to 10.00%, Total of one or more selected from V, Nb, Ti and Ta: 0-4.00%, B: 0-0.0200%, Total of Ca and / or Mg: 0-0.0100%, Al: 0.001 to 1.500%, N: 0.001 to 0.150%, O: 0.030% or less, Remaining: Fe and impurities, It is preferable to satisfy the following equations (iii) and (iv).
- P w P content (mass%) of weld material or weld metal Sw : S content (mass%) of weld material or weld metal
- Sn w Sn content (mass%) of weld material or weld metal
- (F) Manufacturing method There is no particular limitation on the manufacturing method of the double pipe, but for example, the high alloy steel or low which constitutes the inner pipe is contained in the hollow billet of the low alloy steel or the high alloy steel which constitutes the outer pipe.
- the material assembled by inserting the solid billet of alloy steel is subjected to so-called "hot pipe making” such as hot extrusion and roll rolling, and the outer pipe and inner pipe are integrated to make the pipe.
- hot pipe making such as hot extrusion and roll rolling
- the outer pipe and inner pipe are integrated to make the pipe.
- a double pipe having the outer pipe as the first pipe and the inner pipe as the second pipe, or a double pipe having the outer pipe as the second pipe and the inner pipe as the first pipe can be obtained.
- the billet is assembled in a vacuum or in an inert gas atmosphere in order to ensure the cleanliness of the mating surface.
- the hot-made double pipe may be subjected to cold processing such as rolling or drawing, and further heat-treated to obtain a double pipe having a required shape.
- the low alloy steels L1 to L7 and the high alloy steels H1 to H7 having the chemical compositions shown in Table 1 are combined, and the first pipe made of low alloy steel and the second pipe made of high alloy steel are formed by a hot pipe making method.
- a double tube having a thickness of 6.5 mm and an outer diameter of 63 mm was prepared and used as a test tube.
- the thickness of the outer pipe is 4.2 mm and the thickness of the inner pipe is 2.3 mm, that is, the thickness of the entire pipe of the second pipe.
- the proportion of the tube was set to 0.35.
- the thickness of the outer pipe is 1.6 mm and the thickness of the inner pipe is 4.9 mm, that is, the thickness of the entire pipe of the second pipe.
- the proportion of the tube was set to 0.25.
- the groove shown in FIG. 1 was machined on one end of the test material.
- the groove was butted, and a solid rod having an outer diameter of 48 mm and a length of 250 mm, which was manufactured by machining from a commercially available steel plate equivalent to SM400B specified in JIS G 3106 (2008), was inserted into the steel pipe.
- both ends were welded to AWS A5.11-2005 ENICrMo-3 using a specified shielded metal arc welding rod, and two restraint welding test pieces shown in FIG. 2 were prepared for each test number.
- AWS A which has the chemical composition shown in Table 2 in the groove of the restraint welded test piece. 5.14-2009 Multilayer welding was performed with heat input of 8 to 12 J / cm by TIG welding using the filler wire specified for ERNiFeCr-1.
- test pieces were cut out from the restraint welded test piece after multi-layer welding so that the cross section of the welded joint became the observation surface, and mirror-polished.
- test piece After that, after the test piece was corroded, the presence or absence of defects was investigated in the cross section of the welded portion of a total of 8 cross sections (2 test pieces ⁇ 4 cross sections) for each test number using an optical microscope. Then, the test piece in which neither solidification cracking nor penetration failure was observed in all the cross sections was judged as "A”, and the test piece observed only in one cross section was judged as "B”, and it was observed in two or more cross sections. The test piece was regarded as "F” and was judged to be unacceptable.
- Table 3 shows the evaluation results.
- the chemical composition of the weld metal of the welded joint which does not satisfy the present invention, on average, satisfied the above-mentioned preferable chemical composition range, but was local to the weld metal near the melting boundary of the boundary between the outer pipe and the inner pipe. Since Eq. (I) or Eq. (Ii) was not satisfied in the region, it was determined that solidification cracking or poor penetration occurred.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Arc Welding In General (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
前記第1管の化学組成が、質量%で、
C:0.060%を超えて0.400%以下、
Si:0.01~1.00%、
Mn:0.01~1.20%、
P:0.0350%以下、
S:0.0150%以下、
Sn:0.0005~0.0400%、
Al:0.040%以下、
N:0.050%以下、
O:0.030%以下、
残部:Feおよび不純物であり、
前記第2管の化学組成が、質量%で、
C:0.003~0.100%、
Si:0.01~1.50%、
Mn:0.01~2.20%、
P:0.0400%以下、
S:0.0100%以下、
Sn:0.0005~0.0300%、
Ni:7.0~52.0%、
Cr:15.0~27.0%、
Al:0.001~0.600%、
N:0.001~0.150%、
O:0.030%以下、
残部:Feおよび不純物であり、
下記(i)および(ii)式を満足する、
二重管。
Siave+6×Pave+20×Save+2×Snave≦1.1000 ・・・(i)
0.0015≦4×Save+Snave ・・・(ii)
但し、上記式中の各記号の意味は以下のとおりである。
Siave:第1管および第2管のSi含有量の平均値(質量%)
Pave:第1管および第2管のP含有量の平均値(質量%)
Save:第1管および第2管のS含有量の平均値(質量%)
Snave:第1管および第2管のSn含有量の平均値(質量%)
Cr:9.50%以下、
Cu、NiおよびCoから選択される1種以上の合計:1.00%以下、
Moおよび/またはWの合計:4.00%以下、
V、Nb、TiおよびTaから選択される1種以上の合計:1.00%以下、
B:0.0200%以下、
Caおよび/またはMgの合計:0.0100%以下、
REM:0.0500%以下、
からなる群から選択される1種以上を含有する、
上記(1)に記載の二重管。
Cuおよび/またはCoの合計:6.00%以下、
Moおよび/またはWの合計:8.00%以下、
V、Nb、TiおよびTaから選択される1種以上の合計:2.00%以下、
B:0.0200%以下、
Caおよび/またはMgの合計:0.0100%以下、
REM:0.0500%以下、
から選択される1種以上を含有する、
上記(1)または(2)に記載の二重管。
二重管とは、外管と内管とが冶金的に結合した構造を有するものであり、「クラッド管」と称されることもある。本発明に係る二重管は、第1管と第2管とを備える。本発明においては、用途に応じて、外管に第1管、内管に第2管を用いてもよいし、外管に第2管、内管に第1管を用いてもよい。
各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
Cは、基質に固溶して、または高温での使用中に炭化物として析出して、常温および高温での強度の確保に寄与する。この効果を得るため、0.060%を超える量のCを含有させる。しかしながら、過剰に含有すると、突合せ溶接時に熱影響部の硬化を招き、低温割れ感受性を高める。そのため、C含有量は0.400%以下とする。C含有量は0.100%超であるのが好ましく、0.110%以上であるのがより好ましい。また、C含有量は0.380%以下であるのが好ましく、0.350%以下であるのがより好ましい。
Siは、脱酸作用を有するとともに、高温での耐食性および耐酸化性の向上に有効な元素である。この効果を得るため、Si含有量は0.01%以上とする。しかしながら、過剰に含有すると、溶接時に溶接金属中に混入し、凝固割れ感受性を高める。そのため、Si含有量は1.00%以下とするとともに、後述のP、SおよびSnの含有量との関係を満足する必要がある。Si含有量は0.03%以上であるのが好ましく、0.05%以上であるのがより好ましい。また、Si含有量は0.90%以下であるのが好ましく、0.80%以下であるのがより好ましい。
Mnは、Siと同様に脱酸作用を有するとともに、焼入れ性を高めて強度の向上に寄与する。この効果を得るため、Mn含有量は0.01%以上とする。しかしながら、過剰に含有すると、高温での使用中に脆化を招く。そのため、Mn含有量は1.20%以下とする。Mn含有量は0.03%以上であるのが好ましく、0.05%以上であるのがより好ましい。また、Mn含有量は1.10%以下であるのが好ましく、1.00%以下であるのがより好ましい。
Pは、溶接時に溶接金属中に混入し、凝固割れ感受性を高める。このため、P含有量は0.0350%以下とする。さらに、後述のSi、SおよびSnの含有量との関係を満足する必要がある。P含有量は0.0330%以下であるのが好ましく、0.0300%以下であるのがより好ましい。なお、P含有量には、特に下限は設ける必要はなく、0(ゼロ)でも構わないが、極端な低減は製鋼コストの増大を招く。加えて、Pは少なからず強度を高める効果を有する。この効果を得たい場合は、P含有量は0.0015%以上とするのが好ましく、0.0030%以上とするのがより好ましい。
SはPと同様、溶接時に溶接金属中に混入し、凝固割れ感受性を著しく高める。このため、Sの含有量は0.0150%以下とする。さらに、後述のSi、PおよびSnの含有量との関係を満足する必要がある。S含有量は0.0130%以下であるのが好ましく、0.0100%以下であるのがより好ましい。なお、S含有量には、特に下限は設ける必要はなく、0(ゼロ)でも構わないが、極端に低減すると、溶接時に溶け込み深さが小さくなり、融合不良を発生しやすくなる。このため、S含有量は後述のSnとの関係を満足するとともに、0.0001%以上とするのが好ましく、0.0002%以上とするのがより好ましい。
Snは、鋼の表面のスケール下に濃化し、耐食性を向上させる効果を有する。また、溶接時に溶接金属中に混入し、溶け込み深さを大きくして融合不良の発生を抑制する。この効果を得るため、Sn含有量は0.0005%以上とするとともに、後述のS含有量との関係を満足する必要がある。一方、過剰に含有する場合、溶接時に凝固割れ感受性を高める。このため、Sn含有量は0.0400%以下とするとともに、後述のSi、PおよびSnの含有量との関係を満足する必要がある。Sn含有量は0.0008%以上であるのが好ましく、0.0010%以上であるのがより好ましい。また、Sn含有量は0.0380%以下であるのが好ましく、0.0350%以下であるのがより好ましい。
Alは、脱酸のために含有される。しかしながら、過剰に含有すると靱性の低下を招く。このため、Al含有量は0.040%以下とする。Al含有量は0.035%以下であるのが好ましく、0.030%以下であるのがより好ましい。なお、Al含有量には、特に下限は設ける必要はなく、0(ゼロ)でも構わないが、極端に低減すると、脱酸効果が十分に得られず鋼の清浄性が低下するとともに、製造コストの増大を招く。このため、Al含有量は0.001%以上とするのが好ましく、0.002%以上とするのがより好ましい。
Nは、過剰に含有すると靭性の低下を招く。このため、N含有量は0.050%以下とする。N含有量は0.045%以下であるのが好ましく、0.040%以下であるのがより好ましい。なお、N含有量には、特に下限は設ける必要はなく、0(ゼロ)でも構わないが、極端な低減は製鋼コストの増大を招く。加えて、Nは窒化物を生成して、少なからず強度を高める効果を有する。この効果を得たい場合は、N含有量は0.001%以上とするのが好ましく、0.003%以上とするのがより好ましい。
Oは、過剰に含有すると加工性および延性の低下を招く。このため、O含有量は0.030%以下とする。O含有量は0.025%以下であるのが好ましく、0.020%以下であるのがより好ましい。なお、O含有量には、特に下限は設ける必要はなく、0(ゼロ)でも構わないが、極端な低減は製鋼コストの増大を招く。このため、O含有量は0.001%以上とするのが好ましく、0.003%以上とするのがより好ましい。
Cu、NiおよびCoから選択される1種以上の合計:1.00%以下
Moおよび/またはWの合計:4.00%以下
V、Nb、TiおよびTaから選択される1種以上の合計:1.00%以下
B:0.0200%以下
Caおよび/またはMgの合計:0.0100%以下
REM:0.0500%以下
Crは、高温での耐食性および強度の向上に有効であるため、必要に応じて含有してもよい。しかしながら、過剰に含有すると、靱性が低下するため、含有させる場合、Cr含有量は9.50%以下とする。Cr含有量は9.40%以下であるのが好ましく、9.20%以下であるのがより好ましい。なお、上記の効果を確実に得たい場合は、Cr含有量は0.01%以上であるのが好ましく、0.02%以上であるのがより好ましい。
Cu、NiおよびCoは、いずれも焼入れ性を高め、強度の向上に有効であるため、必要に応じて含有してもよい。しかしながら、いずれも高価な元素であるため、含有させる場合、これらの元素から選択される1種以上の合計含有量を1.00%以下とする。上記合計含有量は0.90%以下であるのが好ましく、0.80%以下であるのがより好ましい。なお、上記の効果を確実に得たい場合は、上記合計含有量は0.01%以上であるのが好ましく、0.02%以上であるのがより好ましい。
MoおよびWは、いずれも基質に固溶し、高温強度の向上に寄与するため、必要に応じて含有してもよい。しかしながら、過剰に含有すると、高温での使用中に粗大な金属間化合物および/または炭化物を生成して、靱性の低下を招くため、含有させる場合、Moおよび/またはWの合計含有量を4.00%以下とする。上記合計含有量は3.80%以下であるのが好ましく、3.50%以下であるのがより好ましい。なお、上記の効果を確実に得たい場合は、上記合計含有量は0.01%以上であるのが好ましく、0.02%以上であるのがより好ましい。
V、Nb、TiおよびTaは、いずれも高温での使用中に微細な炭窒化物を形成し、高温強度の向上に寄与するため、必要に応じて含有してもよい。しかしながら、過剰に含有すると、粗大な炭窒化物が多量に生成し、靱性の低下を招くため、含有させる場合、これらの元素から選択される1種以上の合計含有量を1.00%以下とする。上記合計含有量は0.90%以下であるのが好ましく、0.80%以下であるのがより好ましい。なお、上記の効果を確実に得たい場合は、上記合計含有量は0.01%以上であるのが好ましく、0.02%以上であるのがより好ましい。
Bは、焼入れ性を高めて強度の向上に寄与するため、必要に応じて含有してもよい。しかしながら、過剰に含有すると、溶接時に溶接金属中に混入し、凝固割れ感受性を高めるため、含有させる場合、B含有量は0.0200%以下とする。B含有量は0.0180%以下であるのが好ましく、0.0150%以下であるのがより好ましい。なお、上記の効果を確実に得たい場合は、B含有量は0.0005%以上であるのが好ましく、0.0010%以上であるのがより好ましい。
CaおよびMgは、いずれも熱間加工性を改善するため、必要に応じて含有させてもよい。しかしながら、過剰に含有すると清浄性を著しく低下させ、却って熱間加工性を損なうため、含有させる場合、Caおよび/またはMgの合計含有量を0.0100%以下とする。上記合計含有量は0.0080%以下であるのが好ましく、0.0060%以下であるのがより好ましい。なお、上記の効果を確実に得たい場合は、上記合計含有量は0.0005%以上であるのが好ましく、0.0010%以上であるのがより好ましい。
REMは、CaおよびMgと同様、熱間加工性を改善するため、必要に応じて含有させてもよい。しかしながら、過剰に含有すると清浄性を著しく低下させ、却って熱間加工性を損なうため、含有させる場合、REM含有量は0.0500%以下とする。REM含有量は0.0400%以下であるのが好ましく、0.0300%以下であるのがより好ましい。なお、上記の効果を確実に得たい場合は、REM含有量は0.0005%以上であるのが好ましく、0.0010%以上であるのがより好ましい。
各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
Cは、オーステナイト組織を安定にし、高温強度の確保に寄与する。この効果を得るため、C含有量は0.003%以上とする。しかしながら、過剰に含有すると、溶接中または高温での使用中に炭化物を生成し、耐食性の低下を招く。そのため、C含有量は0.100%以下とする。C含有量は0.005%以上であるのが好ましく、0.008%以上であるのがより好ましい。また、C含有量は0.090%以下であるのが好ましく、0.080%以下であるのがより好ましい。
Siは、脱酸作用を有するとともに、高温での耐食性および耐酸化性の向上に有効な元素である。この効果を得るため、Si含有量は0.01%以上とする。しかしながら、過剰に含有すると、溶接時に溶接金属中に混入し、凝固割れ感受性を高めるとともに、オーステナイト組織の安定性を損ない、高温強度の低下を招く。そのため、Si含有量は1.50%以下とするとともに、後述のP、SおよびSnとの関係を満足する必要がある。Si含有量は0.03%以上であるのが好ましく、0.05%以上であるのがより好ましい。また、Si含有量は1.30%以下であるのが好ましく、1.00%以下であるのがより好ましい。
Mnは、脱酸作用を有するとともに、オーステナイト組織の安定性を高めて、高温強度の確保に寄与する。この効果を得るため、Mn含有量は0.01%以上とする。しかしながら、過剰に含有すると、高温での使用中に脆化を招く。そのため、Mn含有量は2.20%以下とする。Mn含有量は0.03%以上であるのが好ましく、0.05%以上であるのがより好ましい。また、Mn含有量は2.00%以下であるのが好ましく、1.80%以下であるのがより好ましい。
Pは、溶接時に溶接金属中に混入し、凝固割れ感受性を高める。このため、P含有量は0.0400%以下とする。さらに、後述のSi、SおよびSnの含有量との関係を満足する必要がある。P含有量は0.0380%以下であるのが好ましく、0.0350%以下であるのがより好ましい。なお、P含有量には、特に下限は設ける必要はなく、0(ゼロ)でも構わないが、極端な低減は製鋼コストの増大を招く。加えて、Pは少なからず強度を高める効果を有する。この効果を得たい場合は、P含有量は0.0030%以上とするのが好ましく、0.0050%以上とするのがより好ましい。
SはPと同様、溶接時に溶接金属中に混入し、凝固割れ感受性を著しく高める。また、溶接影響部の液化割れ感受性を高める。このため、Sの含有量は0.0100%以下とする。さらに、後述のSi、PおよびSnの含有量との関係を満足する必要がある。S含有量は0.0090%以下であるのが好ましく、0.0080%以下であるのがより好ましい。なお、S含有量には、特に下限は設ける必要はなく、0(ゼロ)でも構わないが、極端に低減すると、溶接時に溶け込み深さが小さくなり、融合不良を発生しやすくなる。このため、S含有量は後述のSnとの関係を満足するとともに、0.0001%以上とするのが好ましく、0.0002%以上とするのがより好ましい。
Snは、耐食性を向上させる効果を有する。また、溶接時に溶接金属中に混入し、溶け込み深さを大きくして融合不良の発生を抑制する。この効果を得るため、Sn含有量は0.0005%以上とするとともに、後述のS含有量との関係を満足する必要がある。一方、過剰に含有する場合、溶接時に凝固割れ感受性を高めるとともに、溶接影響部の液化割れ感受性を高める。このため、Sn含有量は0.0300%以下とするとともに、後述のSi、PおよびSnの含有量との関係を満足する必要がある。Sn含有量は0.0008%以上であるのが好ましく、0.0010%以上であるのがより好ましい。また、Sn含有量は0.0280%以下であるのが好ましく、0.0250%以下であるのがより好ましい。
Niは、オーステナイト組織を安定にし、高温強度に寄与する。さらに、塩化物イオンが存在する環境下での耐食性を高める。この効果を得るため、Ni含有量は7.0%以上とする。しかしながら、Niは高価な元素であるため、過剰に含有するとコストの増大を招く。そのため、Ni含有量は52.0%以下とする。Ni含有量は7.2%以上であるのが好ましく、7.5%以上であるのがより好ましい。また、Ni含有量は48.0%以下であるのが好ましく、45.0%以下であるのがより好ましい。
Crは、高温での耐酸化性および耐食性の向上に寄与する。この効果を得るため、Cr含有量は15.0%以上とする。しかしながら、過剰に含有すると、オーステナイト組織の安定性を損ない、高温強度の低下を招く。そのため、Cr含有量は27.0%以下とする。Cr含有量は15.2%以上であるのが好ましく、15.5%以上であるのがより好ましい。また、Cr含有量は26.8%以下であるのが好ましく、26.5%以下であるのがより好ましい。
Alは、脱酸のために含有される。さらに、高温での使用中にNiと結合し、金属間化合物として析出し、高温強度の向上に寄与する。この効果を得るため、Al含有量は0.001%以上とする。しかしながら、過剰に含有すると、靱性の低下を招く。そのため、Al含有量は0.600%以下とする。Al含有量は0.002%以上であるのが好ましく、0.003%以上であるのがより好ましい。また、Al含有量は0.550%以下であるのが好ましく、0.500%以下であるのがより好ましい。
Nは、オーステナイト相を安定にし、高温強度の向上に寄与する。この効果を得るため、N含有量は0.001%以上とする。しかしながら、過剰に含有すると、延性の低下を招く。そのため、N含有量は0.150%以下とする。N含有量は0.002%以上であるのが好ましく、0.003%以上であるのがより好ましい。また、N含有量は0.130%以下であるのが好ましく、0.100%以下であるのがより好ましい。
Oは、過剰に含有すると加工性および延性の低下を招く。このため、O含有量は0.030%以下とする。O含有量は0.025%以下であるのが好ましく、0.020%以下であるのがより好ましい。なお、O含有量には、特に下限は設ける必要はなく、0(ゼロ)でも構わないが、極端な低減は製鋼コストの増大を招く。このため、O含有量は0.001%以上とするのが好ましく、0.003%以上とするのがより好ましい。
Moおよび/またはWの合計:8.00%以下
V、Nb、TiおよびTaから選択される1種以上の合計:2.00%以下
B:0.0200%以下
Caおよび/またはMgの合計:0.0100%以下
REM:0.0500%以下
CuおよびCoは、いずれもオーステナイト組織の安定性を高め、高温強度の向上に有効であるため、必要に応じて含有してもよい。しかしながら、いずれも高価な元素であるとともに、過剰に含有すると延性の低下を招くため、含有させる場合、Cuおよび/またはCoの合計含有量を6.00%以下とする。上記合計含有量は5.50%以下であるのが好ましく、5.00%以下であるのがより好ましい。なお、上記の効果を確実に得たい場合は、上記合計含有量は0.01%以上であるのが好ましく、0.02%以上であるのがより好ましい。
MoおよびWは、いずれも基質に固溶し、高温強度の向上に寄与するため、必要に応じて含有してもよい。しかしながら、過剰に含有すると、オーステナイト組織の安定性を損なうとともに、高温での使用中に粗大な金属間化合物および/または炭化物を生成して、靱性の低下を招く。そのため、含有させる場合、Moおよび/またはWの合計含有量を8.00%以下とする。上記合計含有量は7.50%以下であるのが好ましく、7.00%以下であるのがより好ましい。なお、上記の効果を確実に得たい場合は、上記合計含有量は0.01%以上であるのが好ましく、0.02%以上であるのがより好ましい。
V、Nb、TiおよびTaは、いずれも高温での使用中に微細な炭窒化物を形成し、高温強度の向上に寄与するため、必要に応じて含有してもよい。しかしながら、過剰に含有すると、粗大な炭窒化物が多量に生成し、靱性の低下を招くため、含有させる場合、これらの元素から選択される1種以上の合計含有量を2.00%以下とする。上記合計含有量は1.90%以下であるのが好ましく、1.80%以下であるのがより好ましい。なお、上記の効果を確実に得たい場合は、上記合計含有量は0.01%以上であるのが好ましく、0.02%以上であるのがより好ましい。
Bは、高温使用中に炭化物中に固溶して、微細に分散させ、高温強度の向上に寄与するため、必要に応じて含有してもよい。しかしながら、過剰に含有すると、溶接時に溶接金属中に混入し、凝固割れ感受性を高めるため、含有させる場合、B含有量は0.0200%以下とする。B含有量は0.0180%以下であるのが好ましく、0.0150%以下であるのがより好ましい。なお、上記の効果を確実に得たい場合は、B含有量は0.0005%以上であるのが好ましく、0.0010%以上であるのがより好ましい。
CaおよびMgは、いずれも熱間加工性を改善するため、必要に応じて含有させてもよい。しかしながら、過剰に含有すると清浄性を著しく低下させ、却って熱間加工性を損なうため、含有させる場合、Caおよび/またはMgの合計含有量を0.0100%以下とする。上記合計含有量は0.0080%以下であるのが好ましく、0.0060%以下であるのがより好ましい。なお、上記の効果を確実に得たい場合は、上記合計含有量は0.0005%以上であるのが好ましく、0.0010%以上であるのがより好ましい。
REMは、CaおよびMgと同様、熱間加工性を改善するため、必要に応じて含有させてもよい。しかしながら、過剰に含有すると清浄性を著しく低下させ、却って熱間加工性を損なうため、含有させる場合、REM含有量は0.0500%以下とする。REM含有量は0.0400%以下であるのが好ましく、0.0300%以下であるのがより好ましい。なお、上記の効果を確実に得たい場合は、REM含有量は0.0005%以上であるのが好ましく、0.0010%以上であるのがより好ましい。
本発明に係る第1管および第2管は、それぞれ上述した化学組成を有する必要があることに加えて、その平均化学組成が所定の関係式を満足する必要がある。その理由は、下記のとおりである。
Siave+6×Pave+20×Save+2×Snave≦1.1000 ・・・(i)
但し、上記式中の各記号の意味は以下のとおりである。
Siave:第1管および第2管のSi含有量の平均値(質量%)
Pave:第1管および第2管のP含有量の平均値(質量%)
Save:第1管および第2管のS含有量の平均値(質量%)
Snave:第1管および第2管のSn含有量の平均値(質量%)
0.0015≦4×Save+Snave ・・・(ii)
但し、上記式中の各記号の意味は以下のとおりである。
Save:第1管および第2管のS含有量の平均値(質量%)
Snave:第1管および第2管のSn含有量の平均値(質量%)
本発明に係る溶接継手は、上記の二重管を備えるものである。すなわち、複数の二重管が溶接接合されたものである。二重管を突合せ溶接して組み立てる場合、その使用用途に応じて、適切な溶接材料を選定すればよい。
C:0.003~0.100%、
Si:0.01~1.50%、
Mn:0.01~2.50%、
P:0.0400%以下、
S:0.0100%以下、
Sn:0.0300%以下、
Cuおよび/またはCoの合計:0~15.00%、
Ni:12.0~75.0%、
Cr:18.0%~27.0%、
Moおよび/またはWの合計:0~10.00%、
V、Nb、TiおよびTaから選択される1種以上の合計:0~4.00%、
B:0~0.0200%、
Caおよび/またはMgの合計:0~0.0100%、
Al:0.001~1.500%、
N:0.001~0.150%、
O:0.030%以下、
残部:Feおよび不純物であり、
下記(iii)および(iv)式を満足することが好ましい。
Siw+6×Pw+20×Sw+2×Snw≦1.1000% ・・・(iii)
0.0015%≦4×Sw+Snw ・・・(iv)
但し、上記式中の各記号の意味は以下のとおりである。
Siw:溶接材料または溶接金属のSi含有量(質量%)
Pw:溶接材料または溶接金属のP含有量(質量%)
Sw:溶接材料または溶接金属のS含有量(質量%)
Snw:溶接材料または溶接金属のSn含有量(質量%)
二重管の製造方法については特に制限はないが、例えば、外管を構成する低合金鋼または高合金鋼の中空ビレットの中に、内管を構成する高合金鋼または低合金鋼の中実ビレットを挿入して組み立てた素材に対して、熱間押出、ロール圧延等のいわゆる「熱間製管」を施し、外管と内管とを一体化させて製管することで製造することができる。これにより、外管が第1管、内管が第2管の二重管、または外管が第2管、内管が第1管の二重管が得られる。
Claims (4)
- 第1管と第2管とを備える二重管であって、
前記第1管の化学組成が、質量%で、
C:0.060%を超えて0.400%以下、
Si:0.01~1.00%、
Mn:0.01~1.20%、
P:0.0350%以下、
S:0.0150%以下、
Sn:0.0005~0.0400%、
Al:0.040%以下、
N:0.050%以下、
O:0.030%以下、
残部:Feおよび不純物であり、
前記第2管の化学組成が、質量%で、
C:0.003~0.100%、
Si:0.01~1.50%、
Mn:0.01~2.20%、
P:0.0400%以下、
S:0.0100%以下、
Sn:0.0005~0.0300%、
Ni:7.0~52.0%、
Cr:15.0~27.0%、
Al:0.001~0.600%、
N:0.001~0.150%、
O:0.030%以下、
残部:Feおよび不純物であり、
下記(i)および(ii)式を満足する、
二重管。
Siave+6×Pave+20×Save+2×Snave≦1.1000 ・・・(i)
0.0015≦4×Save+Snave ・・・(ii)
但し、上記式中の各記号の意味は以下のとおりである。
Siave:第1管および第2管のSi含有量の平均値(質量%)
Pave:第1管および第2管のP含有量の平均値(質量%)
Save:第1管および第2管のS含有量の平均値(質量%)
Snave:第1管および第2管のSn含有量の平均値(質量%) - 前記第1管の化学組成が、Feの一部に代えて、質量%で、
Cr:9.50%以下、
Cu、NiおよびCoから選択される1種以上の合計:1.00%以下、
Moおよび/またはWの合計:4.00%以下、
V、Nb、TiおよびTaから選択される1種以上の合計:1.00%以下、
B:0.0200%以下、
Caおよび/またはMgの合計:0.0100%以下、
REM:0.0500%以下、
からなる群から選択される1種以上を含有する、
請求項1に記載の二重管。 - 前記第2管の化学組成が、Feの一部に代えて、質量%で、
Cuおよび/またはCoの合計:6.00%以下、
Moおよび/またはWの合計:8.00%以下、
V、Nb、TiおよびTaから選択される1種以上の合計:2.00%以下、
B:0.0200%以下、
Caおよび/またはMgの合計:0.0100%以下、
REM:0.0500%以下、
から選択される1種以上を含有する、
請求項1または請求項2に記載の二重管。 - 請求項1から請求項3までのいずれか1項に記載の二重管を備える、溶接継手。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/249,779 US20240240295A1 (en) | 2020-11-13 | 2021-08-06 | Composite tube and welded joint |
CN202180075724.0A CN116507750A (zh) | 2020-11-13 | 2021-08-06 | 双重管和焊接接头 |
JP2022561278A JPWO2022102183A1 (ja) | 2020-11-13 | 2021-08-06 | |
KR1020237019647A KR20230106174A (ko) | 2020-11-13 | 2021-08-06 | 이중관 및 용접 이음 |
EP21891431.5A EP4245874A1 (en) | 2020-11-13 | 2021-08-06 | Double pipe and welded joint |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-189051 | 2020-11-13 | ||
JP2020189051 | 2020-11-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022102183A1 true WO2022102183A1 (ja) | 2022-05-19 |
Family
ID=81601065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/029420 WO2022102183A1 (ja) | 2020-11-13 | 2021-08-06 | 二重管および溶接継手 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240240295A1 (ja) |
EP (1) | EP4245874A1 (ja) |
JP (1) | JPWO2022102183A1 (ja) |
KR (1) | KR20230106174A (ja) |
CN (1) | CN116507750A (ja) |
WO (1) | WO2022102183A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024195857A1 (ja) * | 2023-03-22 | 2024-09-26 | 日本製鉄株式会社 | 二重管 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01139740A (ja) * | 1987-11-27 | 1989-06-01 | Kawasaki Steel Corp | 耐食二重管 |
JPH01180720A (ja) * | 1987-12-28 | 1989-07-18 | Kubota Ltd | 二層配管継手の製造方法 |
JPH04221034A (ja) | 1990-12-21 | 1992-08-11 | Nippon Steel Corp | V、Na、S、Clの存在する燃焼環境において耐食性 を有する合金および複層鋼管 |
JPH04329852A (ja) | 1991-05-07 | 1992-11-18 | Nippon Steel Corp | ごみ焼却炉ボイラ用合金および複層鋼管 |
JPH0517841A (ja) | 1990-12-21 | 1993-01-26 | Nippon Steel Corp | V、Na、S、Clの存在する燃焼環境において耐食性 を有する合金および複層鋼管 |
JPH06306518A (ja) | 1993-04-26 | 1994-11-01 | Nippon Steel Corp | V,Na,S,Clを含有する燃料を燃焼する環境において耐食性を有する合金および複層鋼管 |
JPH0741911A (ja) | 1993-08-02 | 1995-02-10 | Sumitomo Metal Ind Ltd | ボイラ用耐摩耗複層鋼管およびその製造方法 |
JPH0790496A (ja) | 1993-09-17 | 1995-04-04 | Sumitomo Metal Ind Ltd | ボイラ用耐摩耗複層鋼管およびその製造方法 |
JPH0790540A (ja) | 1993-09-17 | 1995-04-04 | Sumitomo Metal Ind Ltd | ボイラ用耐摩耗複層鋼管およびその製造方法 |
JPH08232031A (ja) | 1995-02-27 | 1996-09-10 | Nippon Steel Corp | ごみ焼却炉ボイラ用合金および複層鋼管 |
JP2013159840A (ja) | 2012-02-08 | 2013-08-19 | Nippon Steel & Sumitomo Metal Corp | 二重管およびそれを用いた溶接構造体 |
JP2014501620A (ja) * | 2010-10-21 | 2014-01-23 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | 製油所プロセス炉用のアルミナ形成バイメタル管ならびに製造および使用方法 |
WO2017043374A1 (ja) * | 2015-09-08 | 2017-03-16 | 日新製鋼株式会社 | オーステナイト系ステンレス鋼板の溶接方法 |
WO2020090936A1 (ja) * | 2018-10-30 | 2020-05-07 | 日鉄ステンレス株式会社 | オーステナイト系ステンレス鋼板 |
-
2021
- 2021-08-06 KR KR1020237019647A patent/KR20230106174A/ko unknown
- 2021-08-06 US US18/249,779 patent/US20240240295A1/en active Pending
- 2021-08-06 WO PCT/JP2021/029420 patent/WO2022102183A1/ja active Application Filing
- 2021-08-06 JP JP2022561278A patent/JPWO2022102183A1/ja active Pending
- 2021-08-06 CN CN202180075724.0A patent/CN116507750A/zh active Pending
- 2021-08-06 EP EP21891431.5A patent/EP4245874A1/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01139740A (ja) * | 1987-11-27 | 1989-06-01 | Kawasaki Steel Corp | 耐食二重管 |
JPH01180720A (ja) * | 1987-12-28 | 1989-07-18 | Kubota Ltd | 二層配管継手の製造方法 |
JPH04221034A (ja) | 1990-12-21 | 1992-08-11 | Nippon Steel Corp | V、Na、S、Clの存在する燃焼環境において耐食性 を有する合金および複層鋼管 |
JPH0517841A (ja) | 1990-12-21 | 1993-01-26 | Nippon Steel Corp | V、Na、S、Clの存在する燃焼環境において耐食性 を有する合金および複層鋼管 |
JPH04329852A (ja) | 1991-05-07 | 1992-11-18 | Nippon Steel Corp | ごみ焼却炉ボイラ用合金および複層鋼管 |
JPH06306518A (ja) | 1993-04-26 | 1994-11-01 | Nippon Steel Corp | V,Na,S,Clを含有する燃料を燃焼する環境において耐食性を有する合金および複層鋼管 |
JPH0741911A (ja) | 1993-08-02 | 1995-02-10 | Sumitomo Metal Ind Ltd | ボイラ用耐摩耗複層鋼管およびその製造方法 |
JPH0790496A (ja) | 1993-09-17 | 1995-04-04 | Sumitomo Metal Ind Ltd | ボイラ用耐摩耗複層鋼管およびその製造方法 |
JPH0790540A (ja) | 1993-09-17 | 1995-04-04 | Sumitomo Metal Ind Ltd | ボイラ用耐摩耗複層鋼管およびその製造方法 |
JPH08232031A (ja) | 1995-02-27 | 1996-09-10 | Nippon Steel Corp | ごみ焼却炉ボイラ用合金および複層鋼管 |
JP2014501620A (ja) * | 2010-10-21 | 2014-01-23 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | 製油所プロセス炉用のアルミナ形成バイメタル管ならびに製造および使用方法 |
JP2013159840A (ja) | 2012-02-08 | 2013-08-19 | Nippon Steel & Sumitomo Metal Corp | 二重管およびそれを用いた溶接構造体 |
WO2017043374A1 (ja) * | 2015-09-08 | 2017-03-16 | 日新製鋼株式会社 | オーステナイト系ステンレス鋼板の溶接方法 |
WO2020090936A1 (ja) * | 2018-10-30 | 2020-05-07 | 日鉄ステンレス株式会社 | オーステナイト系ステンレス鋼板 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024195857A1 (ja) * | 2023-03-22 | 2024-09-26 | 日本製鉄株式会社 | 二重管 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022102183A1 (ja) | 2022-05-19 |
EP4245874A1 (en) | 2023-09-20 |
KR20230106174A (ko) | 2023-07-12 |
CN116507750A (zh) | 2023-07-28 |
US20240240295A1 (en) | 2024-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100510979B1 (ko) | 페라이트계 내열강 | |
CN111183239B (zh) | 奥氏体系不锈钢焊接金属以及焊接结构物 | |
JP3446294B2 (ja) | 二相ステンレス鋼 | |
CN111344427B (zh) | 奥氏体系耐热钢焊接金属、焊接接头、奥氏体系耐热钢用焊接材料以及焊接接头的制造方法 | |
EP0867256B1 (en) | Welding material for stainless steels | |
US6042782A (en) | Welding material for stainless steels | |
KR20140091061A (ko) | 이음매 없는 오스테나이트계 내열 합금관 | |
EP2813594A1 (en) | Double pipe and welded structure utilizing same | |
WO2015111641A1 (ja) | Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手 | |
JP4784239B2 (ja) | ティグ溶接用フェライト系ステンレス鋼溶加棒 | |
EP3693127A1 (en) | Welding material for austenitic heat-resistant steel, weld metal and weld structure, and method for manufacturing weld metal and weld structure | |
WO2022102183A1 (ja) | 二重管および溶接継手 | |
CN111194360B (zh) | 奥氏体系不锈钢 | |
JPWO2019186701A1 (ja) | サブマージアーク溶接用Ni基合金ワイヤ、及び溶接継手の製造方法 | |
KR100378786B1 (ko) | 전봉 용접성이 우수한 보일러용 강 및 그것을 이용한 전봉보일러 강관 | |
JP2017014576A (ja) | オーステナイト系耐熱合金及び溶接構造物 | |
JP2017014575A (ja) | オーステナイト系耐熱合金及び溶接構造物 | |
JP7423395B2 (ja) | オーステナイト系ステンレス鋼溶接継手の製造方法 | |
JP7265203B2 (ja) | オーステナイト系耐熱鋼 | |
JP2000301377A (ja) | フェライト系耐熱鋼の溶接継手および溶接材料 | |
JP7376767B2 (ja) | フェライト系耐熱鋼異材溶接継手およびその製造方法 | |
JP7360032B2 (ja) | オーステナイト系耐熱鋼溶接継手 | |
JP7436821B2 (ja) | 二相ステンレス鋼材 | |
JPH11104885A (ja) | Fe−Ni系低熱膨張係数合金製の溶接構造物および溶接材料 | |
JP2024103391A (ja) | Niろう付け用ステンレス鋼、接合体、熱交換器および給湯器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21891431 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022561278 Country of ref document: JP Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023007921 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180075724.0 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20237019647 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021891431 Country of ref document: EP Effective date: 20230613 |
|
ENP | Entry into the national phase |
Ref document number: 112023007921 Country of ref document: BR Kind code of ref document: A2 Effective date: 20230426 |