WO2022095991A1 - 一种车辆扭矩控制方法、装置、车辆及存储介质 - Google Patents

一种车辆扭矩控制方法、装置、车辆及存储介质 Download PDF

Info

Publication number
WO2022095991A1
WO2022095991A1 PCT/CN2021/129218 CN2021129218W WO2022095991A1 WO 2022095991 A1 WO2022095991 A1 WO 2022095991A1 CN 2021129218 W CN2021129218 W CN 2021129218W WO 2022095991 A1 WO2022095991 A1 WO 2022095991A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
vehicle
real
time
target
Prior art date
Application number
PCT/CN2021/129218
Other languages
English (en)
French (fr)
Inventor
刘元治
姜明慧
南海
张立平
郭丁伊
宋浩源
徐家良
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Priority to EP21888683.6A priority Critical patent/EP4227146A4/en
Publication of WO2022095991A1 publication Critical patent/WO2022095991A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/28Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed without contact making and breaking, e.g. using a transductor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2063Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for creeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2072Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for drive off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2072Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for drive off
    • B60L15/2081Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for drive off for drive off on a slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/32Driving direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/22Standstill, e.g. zero speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the embodiments of the present application relate to the technical field of automotive design, for example, to a vehicle torque control method, device, vehicle, and storage medium.
  • electric vehicles do not have a complex gearbox structure.
  • the positive and negative torques from the motor can be used to realize the forward and reverse drive of the entire vehicle.
  • there is no gearbox structure which determines that the electric vehicle is equipped with an electronic shifter as standard, and there is no mechanical shift limit device.
  • the control system can identify the driver's target gear, and then execute the corresponding shift. operate.
  • the present application provides a vehicle torque control method, device, vehicle and storage medium, so as to realize fast and smooth gear shifting of the vehicle.
  • an embodiment of the present application provides a vehicle torque control method, including:
  • Vehicle operation is controlled based on the real-time torque demand.
  • an embodiment of the present application further provides a vehicle torque control device, the device comprising:
  • a target torque determination module configured to determine the vehicle target torque according to the current state of the vehicle and the vehicle target gear in response to detecting that the driver switches to the reverse gear
  • a first demanded torque determination module configured to determine the real-time demanded torque according to the vehicle target torque, the vehicle real-time torque and the vehicle real-time state in response to the vehicle target torque being greater than or equal to a torque threshold corresponding to the current state of the vehicle;
  • a torque control module configured to control vehicle operation according to the real-time demanded torque.
  • an embodiment of the present application also provides a vehicle, including:
  • storage means arranged to store at least one program
  • the at least one processor When the at least one program is executed by the at least one processor, the at least one processor implements the vehicle torque control method according to the first aspect of the present application.
  • embodiments of the present application further provide a storage medium containing computer-executable instructions, the computer-executable instructions, when executed by a computer processor, are used to perform the vehicle torque control according to the first aspect of the present application method.
  • FIG. 1 is a flowchart of a vehicle torque control method provided in Embodiment 1 of the present application;
  • FIG. 2 is a flowchart of a vehicle torque control method provided in Embodiment 2 of the present application.
  • FIG. 3 is a flowchart of determining period demand torque in a vehicle torque control method provided in Embodiment 2 of the present application;
  • FIG. 4 is a schematic diagram of the principle of a vehicle torque control method provided in Embodiment 2 of the present application.
  • FIG. 5 is a torque control effect diagram of a vehicle torque control method provided in Embodiment 2 of the present application.
  • FIG. 6 is a structural block diagram of a vehicle torque control device provided in Embodiment 3 of the present application.
  • FIG. 7 is a structural block diagram of a vehicle according to Embodiment 4 of the present application.
  • the torque is first output at a fixed reverse torque to slow down the vehicle, reduce the vehicle speed to a certain range, and then change to the target torque.
  • the problem with this control method is that the fixed reverse torque is not easy to set, and it will cause inconsistent deceleration feeling under different vehicle speeds; secondly, when the torque changes from the current value to the fixed torque value, the characteristics of the drive train are not considered, which will cause transmission.
  • the power train is sensitive to torque changes, and it is difficult to control the change from a fixed torque to a target torque.
  • the present application comprehensively considers various factors such as the characteristics of the drive train, the consistency of vehicle performance, and the driver's operating intention, and can respond to the driver's shift intention more quickly and stably.
  • FIG. 1 is a flowchart of a vehicle torque control method according to the first embodiment of the application. This embodiment is applicable to the situation where the vehicle performs reverse gear switching.
  • the method can be executed by a vehicle torque control device, which can Implemented in software and/or hardware.
  • the method includes the following steps:
  • Step 110 When it is detected that the driver switches to the reverse gear, determine the vehicle target torque according to the current state of the vehicle and the vehicle target gear.
  • the reverse gear can be understood as a gear that changes the forward direction of the vehicle.
  • a general vehicle may include a forward gear, a parking gear, a neutral gear, and a reverse gear, wherein the reverse gear of the forward gear can be a reverse gear, and a reverse gear
  • the reverse gear can be a forward gear.
  • the current state of the vehicle can be understood as the state information of the vehicle when it is detected that the driver switches to the reverse gear, which may include data such as the opening value of the depressed accelerator pedal and the speed of the vehicle.
  • the vehicle target gear can be understood as the gear that the driver switches to at the current moment.
  • the vehicle target torque can be understood as the torque value that the vehicle needs to meet at the current moment in order to meet the driver's current driving demand.
  • the vehicle torque control device detects that the driver switches to a reverse gear, such as switching from a forward gear to a reverse gear, or from a reverse gear to a forward gear
  • the current state of the vehicle can be obtained at this time.
  • the driving state that the driver wants to achieve can be determined according to the opening value of the depressed accelerator pedal in the current state of the vehicle. When the depressed opening value is small, it indicates that the driver wants to control the vehicle to drive slowly. According to the current state of the vehicle and the target gear of the vehicle, the corresponding target torque of the vehicle can be calculated.
  • Step 120 When the vehicle target torque is greater than or equal to the torque threshold corresponding to the current state of the vehicle, determine the real-time demand torque according to the vehicle target torque, the vehicle real-time torque and the vehicle real-time state.
  • the torque threshold can be understood as a torque threshold that affects the stability of the vehicle.
  • the real-time torque of the vehicle can be understood as the torque value obtained by the vehicle in real time during the gear switching process.
  • the real-time state of the vehicle can be understood as the real-time vehicle state value obtained by the vehicle in the process of gear switching, such as the real-time vehicle speed.
  • the real-time demand torque can be understood as the torque value that the vehicle needs to reach in real time during the gear switching process.
  • a real vehicle test can be performed on different models of vehicles in advance to obtain the torque threshold that will cause vehicle shock or vibration when different vehicles switch to the reverse gear in different states.
  • the vehicle target torque is greater than or equal to the current state of the vehicle corresponding to
  • the torque threshold is , it means that switching gears directly according to the target torque of the vehicle will cause the vehicle to shock or shake. Therefore, the real-time torque of the vehicle can be adjusted according to the real-time status of the vehicle and combined with the target torque of the vehicle, and the real-time demand torque can be determined periodically.
  • the torque change rate of the real-time demand torque can be appropriately slowed down to reduce the possibility of shock or vibration of the vehicle.
  • Step 130 Control the operation of the vehicle according to the real-time demanded torque.
  • the real-time demanded torque of the vehicle can be obtained periodically, and the vehicle can be controlled to drive according to the real-time demanded torque, so that the vehicle can avoid shock or vibration under the premise of quickly responding to the gear switching operation, and keep the vehicle running safely and smoothly.
  • the real-time demand torque is close to the vehicle target torque, or when the real-time demand torque is equal to the vehicle target torque, you can exit the torque control process of switching gears this time, and control the torque output according to the normal driving conditions.
  • the vehicle target torque is determined according to the current state of the vehicle and the vehicle target gear, and when the vehicle target torque is greater than or equal to the torque threshold corresponding to the current state of the vehicle, according to The vehicle target torque, the vehicle real-time torque, and the vehicle real-time state determine the real-time demanded torque, and control the vehicle operation according to the real-time demanded torque.
  • FIG. 2 is a flowchart of a vehicle torque control method according to Embodiment 2 of the present application. This embodiment refines the above-mentioned vehicle torque control method on the basis of the above-mentioned embodiment.
  • the method includes:
  • Step 210 When it is detected that the driver switches to the reverse gear, the vehicle target torque is determined according to the current state of the vehicle and the target gear of the vehicle, where the current state of the vehicle includes the current accelerator pedal opening and the current vehicle speed.
  • the accelerator pedal opening can be understood as the opening value of the accelerator pedal being depressed.
  • the current vehicle speed can be understood as the vehicle speed value at the current moment, that is, the vehicle speed value of the vehicle when it is detected that the driver switches to the reverse gear.
  • the vehicle torque control device detects that the driver switches to a reverse gear, such as switching from a forward gear to a reverse gear, or from a reverse gear to a forward gear, etc.
  • the current state of the vehicle can be obtained
  • the current state of the vehicle May include current accelerator pedal opening and current vehicle speed.
  • the driving state that the driver wants to achieve can be analyzed according to the accelerator pedal opening and the vehicle target gear. For example, when the accelerator pedal opening is large, it indicates that the driver wants to control the vehicle to drive fast in the opposite direction. Indicates that the driver wants to control the vehicle to drive slowly in the opposite direction.
  • the torque value that the vehicle needs to meet at the current moment in order to quickly reach the driving state the driver wants to achieve can be calculated.
  • Step 220 Obtain a preset mapping table of vehicle speed and torque value, and determine the torque value corresponding to the current vehicle speed as the torque threshold value corresponding to the current state of the vehicle.
  • the vehicle speed and torque value mapping table can be understood as a relationship mapping table that records the torque value that will cause the vehicle to shock or shake when the current vehicle switches to the reverse gear at different driving speeds.
  • a real vehicle test can be performed on different models of vehicles in advance, to obtain the torque values that will cause vehicle shock or vibration when different vehicles switch to the reverse gear at different vehicle speeds, and map the vehicle speed with the corresponding torque value. relationship to form a mapping table of vehicle speed and torque value.
  • the corresponding torque value is searched in the vehicle speed and torque value mapping table according to the current vehicle speed, and the torque value is used as the torque threshold value corresponding to the current state of the vehicle.
  • Step 230 Determine whether the vehicle target torque is greater than or equal to a torque threshold corresponding to the current state of the vehicle.
  • the vehicle target torque determined according to the current state of the vehicle and the target gear of the vehicle is numerically compared with a torque threshold corresponding to the current state of the vehicle.
  • the numerical comparison at this time is the comparison of the torque value of the vehicle target torque and the torque threshold value, which has nothing to do with the direction of the control torque.
  • Step 240 Periodically obtain the real-time torque, real-time vehicle speed, and real-time accelerator pedal opening of the vehicle according to a preset time interval.
  • the preset time interval may be understood as a preset periodic time interval for updating the periodic demand torque.
  • the real-time vehicle torque can be understood as the actual torque value of the vehicle obtained at the beginning of the current cycle.
  • the real-time vehicle speed can be understood as the actual vehicle speed value obtained at the beginning of the current cycle.
  • the real-time accelerator pedal opening can be understood as the opening value of the accelerator pedal depressed by the driver obtained at the beginning of the current cycle.
  • the corresponding cycle time interval can be preset according to the performance of different vehicles, and after each preset time interval, the real-time torque, real-time vehicle speed, and real-time accelerator pedal opening of the vehicle are re-acquired to accurately calculate the next cycle.
  • Step 250 Determine the periodic demand torque according to the vehicle target torque, the vehicle real-time torque, the real-time vehicle speed and the real-time accelerator pedal opening.
  • the period demand torque can be understood as the torque expectation value of the control output in one period.
  • the period demand torque in this period may be determined according to the vehicle real-time torque, real-time vehicle speed and real-time accelerator pedal opening obtained at the beginning of the current period, combined with the vehicle target torque.
  • the periodic demand torque satisfies the vehicle under the premise that the vehicle responds quickly to the gear switching operation without shock or jitter.
  • the periodic demand torque that can quickly respond to the gear switching operation can be calculated, and it can be appropriately adjusted according to the real-time accelerator pedal opening and real-time vehicle speed.
  • FIG. 3 is a flowchart of determining the periodic demand torque in a vehicle torque control method provided in Embodiment 2 of the present application. As shown in FIG. 3 , step 250 can be divided into:
  • Step 2501 Determine a first torque change rate according to the real-time vehicle torque and real-time vehicle speed, and use the real-time accelerator pedal opening to correct the first torque change rate.
  • determining the first torque change rate according to the vehicle's real-time torque and real-time vehicle speed may include: obtaining a preset torque and change rate mapping table, and searching for a first candidate change rate corresponding to the vehicle's real-time torque; If the difference between the real-time torque threshold corresponding to the real-time vehicle speed is smaller than the preset torque difference, the difference between the first candidate change rate and the first preset change adjustment value is used as the first torque change rate; When the difference between the real-time torque thresholds is greater than or equal to the preset torque difference, the first candidate change rate is used as the first torque change rate.
  • a preset torque and rate of change mapping table may be searched according to the real-time torque of the vehicle to obtain the first candidate rate of change corresponding to the real-time torque of the vehicle.
  • the first candidate change rate is appropriately reduced to obtain the first torque change rate, so as to prevent the torque change from causing an impact on the drive train.
  • the first torque change rate can be corrected according to the real-time accelerator pedal opening.
  • Step 2502 Determine a second torque change rate according to the real-time torque difference between the vehicle's real-time torque and the vehicle's target torque, and use the real-time accelerator pedal opening to correct the second torque change rate.
  • determining the second torque change rate according to the real-time torque difference between the vehicle's real-time torque and the vehicle's target torque may include: determining the real-time torque difference between the vehicle's real-time torque and the vehicle's target torque, a preset torque The difference and change rate mapping table is used to look up the second torque change rate corresponding to the real-time torque difference value.
  • the difference between the real-time torque of the vehicle and the target torque of the vehicle can be obtained to obtain the real-time torque difference, and the preset torque difference and rate of change mapping table can be searched to obtain the second torque change rate corresponding to the real-time torque difference.
  • the second torque change rate is larger.
  • the second torque change rate is appropriately reduced, and the specific value can be manually calibrated.
  • the second torque change rate can be corrected according to the real-time accelerator pedal opening. The larger the accelerator pedal opening, the higher the second torque change rate can be appropriately adjusted, in order to respond quickly to the driver's operation.
  • Step 2503 According to the revised first torque change rate, the revised second torque change rate, the vehicle real-time torque and the vehicle target torque, adjust the period demand torque corresponding to the previous period to obtain the period demand torque corresponding to the current period. .
  • step 2503 may include: determining the first torque change value and the second torque change value within the preset time interval according to the corrected first torque change rate and the corrected second torque change rate; determining the first torque change value and the second torque change value within the preset time interval; The minimum torque change value among the torque change value, the second torque change value and the real-time torque difference value; if the vehicle target torque is greater than or equal to the vehicle real-time torque, add the cycle demand torque corresponding to the previous cycle and the minimum torque change value to obtain Periodic demand torque corresponding to this period; when the vehicle target torque is less than the vehicle real-time torque, subtract the minimum torque change value from the period demand torque corresponding to the previous period to obtain the period demand torque corresponding to this period.
  • the period demand torque corresponding to the previous period is adjusted to obtain the period demand torque corresponding to the current period.
  • the calculated corrected first torque change rate and the corrected second torque change rate can be multiplied by the preset time interval respectively to obtain the first torque change value and the second torque change value. Select the minimum value from the second torque change value and the real-time torque difference to adjust the periodic demand torque corresponding to the previous cycle to obtain the periodic demand torque corresponding to the current cycle. This operation can ensure that the vehicle does not shock or shake.
  • the real-time torque of the vehicle may be denoted as T act
  • the determined first torque change rate after correction may be denoted as G 1
  • the target torque of the vehicle may be denoted as T tgt
  • the real-time torque difference may be denoted as ⁇ T
  • the determined The corrected first torque change rate is denoted as G 2
  • the cycle demand torque corresponding to the previous cycle may be denoted as T delay
  • the cycle demand torque corresponding to this cycle may be denoted as T req
  • the preset time interval may be denoted as ⁇ t
  • the vehicle target torque T tgt ⁇ the vehicle real-time torque T act the period demand torque T req corresponding to this period can be calculated according to the following formula:
  • T req T delay +min(G 1 ⁇ t,G 2 ⁇ t, ⁇ T),
  • T req T delay -min(G 1 ⁇ t, G 2 ⁇ t, ⁇ T).
  • Step 260 Determine whether the periodic demand torque is equal to the vehicle target torque.
  • the period demand torque of the current cycle is calculated, the period demand torque is compared with the vehicle target torque, and if the period demand torque is equal to the vehicle target torque, step 280 is performed; if the period demand torque is not equal to the vehicle target torque In the case of the target torque, step 270 is performed.
  • Step 270 Determine the periodic demand torque as the real-time demand torque, and control the operation of the vehicle according to the real-time demand torque.
  • the periodic demand torque may be determined as the real-time demand torque in this cycle, and the operation of the vehicle is controlled according to the real-time demand torque, and after the end of this cycle, return to step 240 to re-obtain the vehicle's real-time torque, real-time vehicle speed, and real-time accelerator pedal opening. degrees to determine the cycle demand torque for the next cycle.
  • Step 280 Determine the vehicle target torque as the real-time demand torque, and control the operation of the vehicle according to the real-time demand torque.
  • the vehicle target torque when the vehicle target torque is less than the torque threshold corresponding to the current state of the vehicle, it can be considered that controlling the vehicle driving directly according to the vehicle target torque will not cause vehicle shock or vibration, so the vehicle target torque can be determined as the real-time demand torque, according to Real-time torque demand controls vehicle operation.
  • the periodic demand torque is equal to the vehicle target torque
  • the vehicle target torque it can be considered that the vehicle real-time torque is very close to the vehicle target torque at this time, so the vehicle target torque can be determined as the real-time demand torque, and the vehicle operation can be controlled according to the real-time demand torque.
  • the torque control process of switching gears can be exited, and the torque output can be controlled according to the normal driving conditions.
  • FIG. 4 is a schematic diagram of the principle of a vehicle torque control method provided in Embodiment 2 of the present application.
  • the torque control system of the embodiment of the present application may include a vehicle controller, an electronic shifter, a meter, a motor controller, a motor body, a drive train, wheels, an accelerator pedal sensor, and a vehicle speed sensor.
  • the electronic shifter can recognize the driver's operation, convert it into a shift handle position signal and send it to the vehicle controller.
  • the vehicle controller can receive the shift handle position signal sent by the electronic shifter, identify the driver's shift intention, determine the vehicle's target gear, and analyze the current accelerator pedal opening through the signals sent by the accelerator pedal sensor and the vehicle speed sensor.
  • the instrument sends out the torque request during the shifting process, and sends the vehicle target gear information to the instrument.
  • the instrument can receive the vehicle target gear information sent by the vehicle controller, and display the vehicle target gear.
  • the motor controller receives the demand torque request sent by the vehicle controller, converts it into a torque control command and sends it to the motor body, and feeds back the current actual torque to the vehicle controller.
  • the motor body is controlled by the motor controller. After receiving the torque control command, it outputs the corresponding torque.
  • the drive train transmits the torque from the motor body to the wheels to drive or brake the entire vehicle.
  • FIG. 5 is a torque control effect diagram of a vehicle torque control method provided in Embodiment 2 of the present application.
  • the driver switches from the reverse gear R gear to the forward gear D gear at time t1 , and the time period from t1 to t5 is the change process of the output torque from negative to positive, wherein the positive and negative of the torque indicates the torque direction.
  • the driver's intention to switch gears is detected, and the target torque of the vehicle changes abruptly.
  • the rate of change of the real-time demand torque is determined according to the difference between the vehicle's target torque and the vehicle's real-time torque.
  • the real-time demand torque is appropriately slowed down near the torque threshold that produces the shock, and it can also be corrected by the accelerator pedal opening; at t 3 -t 4 During the time period, the real-time demand torque can change rapidly after passing the torque threshold that produces the shock, which is consistent with the torque change rate in the time period t 1 -t 2 ; at the time t 4 , the real-time demand torque is close to the vehicle target torque, which can be The torque change rate is slowed down.
  • the real-time demand torque is equal to the vehicle target torque, and the torque control process of this gear switching can be exited, and the torque output can be controlled according to the normal driving conditions.
  • it can be expressed as the driver switching from the forward gear D to the reverse gear R.
  • it can be expressed as the change process of the torque from positive to negative, which is the same as the torque in the time period from t 1 to t 5 .
  • the control principle is the same.
  • the vehicle target torque is determined according to the current state of the vehicle and the vehicle target gear, and the vehicle target torque is determined according to the preset vehicle speed and torque value mapping table.
  • the magnitude relationship of the torque threshold corresponding to the current state of the vehicle When the vehicle target torque is greater than or equal to the torque threshold corresponding to the current state of the vehicle, the real-time vehicle torque, real-time vehicle speed and real-time accelerator pedal opening are periodically obtained according to preset time intervals, and the real-time vehicle torque, real-time vehicle torque, and real-time vehicle speed and the real-time accelerator pedal opening to determine the periodic demand torque.
  • the periodic demand torque is determined as the real-time demand torque, and the vehicle operation is controlled according to the real-time demand torque, and then the periodic demand torque corresponding to the next cycle is carried out. calculation.
  • the required torque of the vehicle is continuously adjusted dynamically, which solves the problem of directly switching to the opposite gear in related technologies. It is easy to cause the problem of vehicle shock or jitter, realizes the refined control of torque changes according to the vehicle state, ensures the rapid switching of torque while keeping the vehicle stable, avoids the impact of torque changes on the whole vehicle, and improves the driving experience and driving safety.
  • FIG. 6 is a structural block diagram of a vehicle torque control device provided in Embodiment 3 of the present application. As shown in FIG. 6 , the device includes a target torque determination module 310 , a first demand torque determination module 320 and a torque control module 330 .
  • the target torque determination module 310 is configured to determine the vehicle target torque according to the current state of the vehicle and the vehicle target gear when it is detected that the driver switches to the reverse gear.
  • the first demanded torque determination module 320 is configured to determine the real-time demanded torque according to the vehicle target torque, the vehicle real-time torque and the vehicle real-time state when the vehicle target torque is greater than or equal to a torque threshold corresponding to the current state of the vehicle.
  • the torque control module 330 is configured to control vehicle operation according to the real-time demanded torque.
  • the vehicle target torque is determined according to the current state of the vehicle and the vehicle target gear, and when the vehicle target torque is greater than or equal to the torque threshold corresponding to the current state of the vehicle, according to The vehicle target torque, the vehicle real-time torque, and the vehicle real-time state determine the real-time demanded torque, and control the vehicle operation according to the real-time demanded torque.
  • the apparatus further includes a second required torque determination module 340, and the second required torque determination module 340 is configured to:
  • the vehicle target torque is determined as the real-time demand torque.
  • the current state of the vehicle includes the current accelerator pedal opening and the current vehicle speed
  • the process of determining the torque threshold includes:
  • a preset vehicle speed and torque value mapping table is acquired, and the torque value corresponding to the current vehicle speed is determined as the torque threshold value corresponding to the current state of the vehicle.
  • the determining the real-time demanded torque according to the vehicle target torque, the vehicle real-time torque and the vehicle real-time state includes:
  • the periodic demand torque is determined as the real-time demand torque until the periodic demand torque equals the vehicle target torque.
  • the determining the periodic demand torque according to the vehicle target torque, the vehicle real-time torque, the real-time vehicle speed, and the real-time accelerator pedal opening degree includes:
  • the period demand torque corresponding to the previous period is adjusted to obtain the period demand corresponding to the current period torque.
  • the determining the first torque change rate according to the real-time torque of the vehicle and the real-time vehicle speed includes:
  • the difference between the real-time vehicle torque and the real-time torque threshold corresponding to the real-time vehicle speed is smaller than the preset torque difference, the difference between the first candidate change rate and the first preset change adjustment value is used as the first torque change Rate;
  • the difference between the real-time vehicle torque and the real-time torque threshold corresponding to the real-time vehicle speed is greater than or equal to a preset torque difference, use the first candidate change rate as the first torque change rate;
  • the determining of the second torque change rate according to the real-time torque difference between the vehicle's real-time torque and the vehicle's target torque includes:
  • the period demand torque corresponding to the previous period is adjusted to obtain:
  • the cycle demand torque corresponding to this cycle includes:
  • the minimum torque change value is subtracted from the period demand torque corresponding to the previous period to obtain the period demand torque corresponding to the current period.
  • the vehicle target torque is determined according to the current state of the vehicle and the vehicle target gear, and the vehicle target torque is determined according to the preset vehicle speed and torque value mapping table.
  • the magnitude relationship of the torque threshold corresponding to the current state of the vehicle When the vehicle target torque is greater than or equal to the torque threshold corresponding to the current state of the vehicle, the real-time vehicle torque, real-time vehicle speed and real-time accelerator pedal opening are periodically obtained according to preset time intervals, and the real-time vehicle torque, real-time vehicle torque, and real-time vehicle speed and the real-time accelerator pedal opening to determine the periodic demand torque.
  • the periodic demand torque is determined as the real-time demand torque, and the vehicle operation is controlled according to the real-time demand torque, and then the periodic demand torque corresponding to the next cycle is carried out. calculation.
  • the required torque of the vehicle is continuously adjusted dynamically, which solves the problem of directly switching to the opposite gear in related technologies. It is easy to cause the problem of vehicle shock or jitter, realizes the refined control of torque changes according to the vehicle state, ensures the rapid switching of torque while keeping the vehicle stable, avoids the impact of torque changes on the whole vehicle, and improves the driving experience and driving safety.
  • FIG. 7 is a structural block diagram of a vehicle according to Embodiment 4 of the application.
  • the vehicle includes a processor 410, a memory 420, an input device 430 and an output device 440; the number of processors 410 in the vehicle may be At least one, a processor 410 is taken as an example in FIG. 7 ; the processor 410 , memory 420 , input device 430 and output device 440 in the vehicle can be connected through a bus or other means, and FIG. 7 takes the connection through a bus as an example.
  • the memory 420 may be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the vehicle torque control method in the embodiments of the present application (for example, in the vehicle torque control device).
  • the processor 410 executes various functional applications and data processing of the vehicle by running the software programs, instructions and modules stored in the memory 420 , that is, implements the vehicle torque control method in any of the above embodiments.
  • the memory 420 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the terminal, and the like. Additionally, memory 420 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device. In some examples, memory 420 may include memory located remotely from processor 410, which may be connected to the vehicle through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input device 430 may be configured to receive input numerical or character information, and to generate key signal input related to user settings and function control of the vehicle.
  • the output device 440 may include a display device such as a display screen.
  • Embodiment 5 of the present application further provides a storage medium containing computer-executable instructions, where the computer-executable instructions are used to execute a vehicle torque control method when executed by a computer processor, and the method includes:
  • the vehicle target torque is determined according to the current state of the vehicle and the vehicle target gear
  • Vehicle operation is controlled based on the real-time torque demand.
  • a storage medium containing computer-executable instructions provided by the embodiments of the present application, the computer-executable instructions of which are not limited to the above-mentioned method operations, and can also execute any of the vehicle torque control methods provided by any of the embodiments of the present application. related operations.
  • the present application can be implemented by means of software and necessary general-purpose hardware, and certainly can also be implemented by hardware.
  • the technical solutions of the present application can be embodied in the form of software products in essence or the parts that make contributions to related technologies, and the computer software products can be stored in a computer-readable storage medium, such as a computer floppy disk, Read-Only Memory (ROM), Random Access Memory (RAM), flash memory (FLASH), hard disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, A server, or a network device, etc.) executes the methods described in the various embodiments of the present application.
  • a computer-readable storage medium such as a computer floppy disk, Read-Only Memory (ROM), Random Access Memory (RAM), flash memory (FLASH), hard disk or optical disk, etc.
  • the units and modules included are only divided according to functional logic, but are not limited to the above division, as long as the corresponding functions can be realized; in addition, The specific names of the functional units are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

一种车辆扭矩控制方法、装置、车辆及存储介质。该方法包括:响应于检测到驾驶员切换到反向挡位,根据车辆当前状态和车辆目标挡位确定车辆目标扭矩;响应于车辆目标扭矩大于或等于车辆当前状态对应的扭矩阈值,根据车辆目标扭矩、车辆实时扭矩和车辆实时状态确定实时需求扭矩;根据实时需求扭矩控制车辆运行。通过对切换挡位时车辆状态和挡位信息的判断,以及切换挡位过程中对实时的车辆状态进行分析,解决了现有技术中直接切换到相反挡位时,容易造成车辆冲击或抖动的问题,实现了根据车辆状态精细化控制扭矩变化,确保扭矩快速切换的同时保持车辆平稳,避免扭矩变化对整车产生冲击,提高驾驶体验和行车安全。

Description

一种车辆扭矩控制方法、装置、车辆及存储介质
本申请要求在2020年11月9日提交中国专利局、申请号为202011239644.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及汽车设计技术领域,例如涉及一种车辆扭矩控制方法、装置、车辆及存储介质。
背景技术
随着人们环境保护意识的日益增强,电动汽车也在迅速推广。
电动车与传统车不同,没有复杂的变速箱结构,通过电机发出的正扭矩及负扭矩,即可实现整车的正向驱动与反向驱动。同时,无变速箱结构,决定了电动汽车标配电子换挡器,无机械换挡限制装置,驾驶员通过操作换挡手柄,控制系统即可识别驾驶员目标挡位,进而执行对应的换挡操作。实际驾驶中,在车辆未停稳的状态下,驾驶员即从前进档切换后退档,或从后退档切换前进档的情况十分常见,若此时整车按照空档响应,则会产生较长的滑行距离,产生安全隐患,若直接切换到相反的挡位,由于传动系特性,电机扭矩方向紧急切换会造成车辆的冲击或抖动,驾驶体验不好。
发明内容
本申请提供一种车辆扭矩控制方法、装置、车辆及存储介质,以实现车辆快速且平稳的切换挡位。
第一方面,本申请实施例提供了一种车辆扭矩控制方法,包括:
响应于检测到驾驶员切换到反向挡位,根据车辆当前状态和车辆目标挡位确定车辆目标扭矩;
响应于所述车辆目标扭矩大于或等于所述车辆当前状态对应的扭矩阈值, 根据所述车辆目标扭矩、车辆实时扭矩和车辆实时状态确定实时需求扭矩;
根据所述实时需求扭矩控制车辆运行。
第二方面,本申请实施例还提供了一种车辆扭矩控制装置,该装置包括:
目标扭矩确定模块,设置为响应于检测到驾驶员切换到反向挡位,根据车辆当前状态和车辆目标挡位确定车辆目标扭矩;
第一需求扭矩确定模块,设置为响应于所述车辆目标扭矩大于或等于所述车辆当前状态对应的扭矩阈值,根据所述车辆目标扭矩、车辆实时扭矩和车辆实时状态确定实时需求扭矩;
扭矩控制模块,设置为根据所述实时需求扭矩控制车辆运行。
第三方面,本申请实施例还提供了一种车辆,包括:
至少一个处理器;
存储装置,设置为存储至少一个程序,
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如本申请第一方面所述的车辆扭矩控制方法。
第四方面,本申请实施例还提供了一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如本申请第一方面所述的车辆扭矩控制方法。
附图说明
图1是本申请实施例一提供的一种车辆扭矩控制方法的流程图;
图2是本申请实施例二提供的一种车辆扭矩控制方法的流程图;
图3是本申请实施例二提供的一种车辆扭矩控制方法中确定周期需求扭矩的流程图;
图4是本申请实施例二提供的一种车辆扭矩控制方法的原理示意图;
图5是本申请实施例二提供的一种车辆扭矩控制方法的扭矩控制效果图;
图6是本申请实施例三提供的一种车辆扭矩控制装置的结构框图;
图7是本申请实施例四提供的一种车辆的结构框图。
具体实施方式
针对电动车换挡工况,目前常用的有以下三种扭矩控制方法:
第一,驾驶员切换挡位后,先按零扭矩控制,待车辆停止运动后,再输出反方向扭矩,此种控制方法会造成车辆滑行距离较长,有安全隐患,同时车辆减速依托于制动,若在车辆从运动到停止期间,驾驶员踩下加速踏板,车辆无扭矩响应,会造成驾驶员困惑等问题。
第二,驾驶员切换挡位后,扭矩按照一定变化速率由当前值过渡到相反的目标值,此种控制方式过于粗糙,扭矩变化速率设定较为困难,如果速率过大,扭矩过快的变化会造成传动系的冲击及抖动,若斜率较慢,会导致扭矩变化慢,车辆会沿之前的挡位方向继续行驶较长距离。
第三,驾驶员切换挡位后,扭矩先以固定的反向扭矩输出,让车辆减速,车速降低到一定范围,再向目标扭矩变化。此种控制方法的问题在于,固定的反向扭矩不好设定,不同车速下会造成不一致的减速感;其次,扭矩从当前值变化到固定扭矩值时,未考虑传动系特性,会造成传动系的冲击及抖动;另外,车速降低后,传动系对扭矩变化敏感,由固定扭矩向目标扭矩的变化很难控制。
本申请与上述三种算法相比,综合考虑了传动系特性、整车表现一致性以及驾驶员操作意向等多方面因素,可以更加快速、平稳的响应驾驶员换挡意图。
下面结合附图和实施例对本申请作详细说明。
实施例一
图1为本申请实施例一提供的一种车辆扭矩控制方法的流程图,本实施例可适用于车辆进行反向挡位切换的情况,该方法可以由车辆扭矩控制装置来执行,该装置可以通过软件和/或硬件实现。
如图1所示,该方法包括如下步骤:
步骤110、当检测到驾驶员切换到反向挡位时,根据车辆当前状态和车辆目标挡位确定车辆目标扭矩。
其中,反向挡位可以理解为改变车辆前进方向的挡位,例如一般车辆可以包括前进挡、驻车挡、空挡和后退档,其中前进挡的反向挡位可以是后退档,后退档的反向挡位可以是前进挡。车辆当前状态可以理解为检测到驾驶员切换到反向挡位时车辆的状态信息,可以包括加速踏板被踩压的开度值、车辆的车速等数据。车辆目标挡位可以理解为当前时刻驾驶员切换到的挡位。车辆目标扭矩可以理解为为达到驾驶员当前驾驶需求,车辆当前时刻所需满足的扭矩值。
示例性的,车辆扭矩控制装置检测到驾驶员切换到反向挡位,如从前进挡切换到后退档,或是从后退档切换到前进挡等,此时可以获取车辆当前状态。可以根据车辆当前状态中加速踏板被踩压的开度值判断驾驶员想要达到的行车状态,例如加速踏板被踩压的开度值较大时,表明驾驶员想控制车辆快速行驶,加速踏板被踩压的开度值较小时,则表明驾驶员想控制车辆缓慢行驶。根据车辆当前状态,以及车辆目标挡位,可以计算出相应的车辆目标扭矩。
步骤120、在车辆目标扭矩大于等于车辆当前状态对应的扭矩阈值时,根据车辆目标扭矩、车辆实时扭矩和车辆实时状态确定实时需求扭矩。
其中,扭矩阈值可以理解为是否影响车辆稳定性的扭矩临界值。车辆实时扭矩可以理解为车辆在挡位切换的过程中实时获取的扭矩值。车辆实时状态可以理解为车辆在挡位切换的过程中实时获取的车辆状态值,如实时车速等。实时需求扭矩可以理解为车辆在挡位切换的过程中实时需要到达的扭矩值。
示例性的,可以预先对不同型号的车辆进行实车测试,获取不同车辆在不同状态下切换到反向挡位时会造成车辆冲击或抖动的扭矩阈值,当车辆目标扭矩大于等于车辆当前状态对应的扭矩阈值时,表明此时若直接根据车辆目标扭矩切换挡位会造成车辆冲击或抖动,因此可以根据车辆实时状态,结合车辆目标扭矩对车辆实时扭矩进行调整,周期性的确定实时需求扭矩。在车辆实时扭矩接近车辆实时状态对应的扭矩阈值时,可以将实时需求扭矩的扭矩变化率适 当放缓,降低车辆发生冲击或抖动的可能性。
步骤130、根据实时需求扭矩控制车辆运行。
示例性的,可以周期性的获取车辆的实时需求扭矩,并根据实时需求扭矩控制车辆行驶,使车辆在快速响应挡位切换操作的前提下,避免发生冲击或抖动的现象,保持车辆安全平稳行驶。当实时需求扭矩接近车辆目标扭矩,或者实时需求扭矩等于车辆目标扭矩时,可以退出本次切换挡位的扭矩控制流程,按照正常驾驶工况控制扭矩输出即可。
本实施例的技术方案,在检测到驾驶员切换到反向挡位时,根据车辆当前状态和车辆目标挡位确定车辆目标扭矩,在车辆目标扭矩大于等于车辆当前状态对应的扭矩阈值时,根据车辆目标扭矩、车辆实时扭矩和车辆实时状态确定实时需求扭矩,并根据实时需求扭矩控制车辆运行。通过对切换挡位时车辆状态和挡位信息的判断,以及切换挡位过程中对实时的车辆状态进行分析,解决了相关技术中直接切换到相反挡位时,容易造成车辆冲击或抖动的问题,实现了根据车辆状态精细化控制扭矩变化,确保扭矩快速切换的同时保持车辆平稳,避免扭矩变化对整车产生冲击,提高驾驶体验和行车安全。
实施例二
图2为本申请实施例二提供的一种车辆扭矩控制方法的流程图。本实施例在上述实施例的基础上,细化了上述车辆扭矩控制方法。
如图2所示,该方法包括:
步骤210、当检测到驾驶员切换到反向挡位时,根据车辆当前状态和车辆目标挡位确定车辆目标扭矩,车辆当前状态包括当前加速踏板开度和当前车速。
其中,加速踏板开度可以理解为加速踏板被踩压的开度值。当前车速可以理解为当前时刻的车速值,即检测到驾驶员切换到反向挡位时车辆的车速值。
示例性的,车辆扭矩控制装置检测到驾驶员切换到反向挡位,如从前进挡切换到后退档,或是从后退档切换到前进挡等,此时可以获取车辆当前状态, 车辆当前状态可以包括当前加速踏板开度和当前车速。可以根据加速踏板开度和车辆目标挡位分析驾驶员想要达到的行车状态,例如加速踏板开度较大时,表明驾驶员想控制车辆向反方向快速行驶,加速踏板开度较小时,则表明驾驶员想控制车辆向反方向缓慢行驶。结合根据车辆的当前车速,可以计算出为快速达到驾驶员想要达到的行车状态,车辆当前时刻所需满足的扭矩值。
步骤220、获取预先设置的车速与扭矩值映射表,将当前车速对应的扭矩值确定为车辆当前状态对应的扭矩阈值。
其中,车速与扭矩值映射表可以理解为记录当前车辆在不同行车速度下切换到反向挡位时会造成车辆冲击或抖动的扭矩值的关系映射表。
示例性的,可以预先对不同型号的车辆进行实车测试,获取不同车辆在不同车速下切换到反向挡位时会造成车辆冲击或抖动的扭矩值,并将车速与对应的扭矩值建立映射关系,形成车速与扭矩值映射表。在切换反向挡位时,根据当前车速在车速与扭矩值映射表中查找对应的扭矩值,将该扭矩值作为车辆当前状态对应的扭矩阈值。
步骤230、判断车辆目标扭矩是否大于等于车辆当前状态对应的扭矩阈值。
示例性的,将根据车辆当前状态和车辆目标挡位确定的车辆目标扭矩与车辆当前状态对应的扭矩阈值进行数值比较。此时的数值比较为车辆目标扭矩和扭矩阈值的扭矩值大小比较,与控制扭矩的方向无关,例如,为了方便记录扭矩的控制方向,对扭矩值的记载做正负区分时,该步骤中可以取车辆目标扭矩的绝对值和扭矩阈值的绝对值的进行数值比较。如果车辆目标扭矩大于等于车辆当前状态对应的扭矩阈值,则进行步骤240;如果车辆目标扭矩小于车辆实时状态对应的扭矩阈值,进行步骤280。
步骤240、根据预设时间间隔,周期性的获取车辆实时扭矩、实时车速和实时加速踏板开度。
其中,预设时间间隔可以理解为预先设置的用于更新周期需求扭矩的周期时间间隔。车辆实时扭矩可以理解为当前周期开始时获取到的车辆的实际扭矩 值。实时车速可以理解为当前周期开始时获取到的车辆的实际车速值。实时加速踏板开度可以理解为当前周期开始时获取到的加速踏板被驾驶员踩压的开度值。
示例性的,可以根据不同车辆的性能,预先设置对应的周期时间间隔,每过一个预设时间间隔,都重新获取车辆实时扭矩、实时车速和实时加速踏板开度,以准确的计算下一周期的需要输出的扭矩值。
步骤250、根据车辆目标扭矩、车辆实时扭矩、实时车速和实时加速踏板开度确定周期需求扭矩。
其中,周期需求扭矩可以理解为一个周期内控制输出的扭矩期望值。
示例性的,可以根据本周期开始时获取的车辆实时扭矩、实时车速和实时加速踏板开度,结合车辆目标扭矩,确定出本周期内的周期需求扭矩。该周期需求扭矩满足车辆在快速响应挡位切换操作的前提下,不会发生冲击或抖动的现象。可以根据车辆目标扭矩和车辆实时扭矩,计算出可以快速响应挡位切换操作的周期需求扭矩,并根据实时加速踏板开度和实时车速对其进行适当调整。
可选的,图3是本申请实施例二提供的一种车辆扭矩控制方法中确定周期需求扭矩的流程图,如图3所示,步骤250可以分为:
步骤2501、根据车辆实时扭矩和实时车速,确定第一扭矩变化率,并利用实时加速踏板开度对第一扭矩变化率进行修正。
可选的,根据车辆实时扭矩和实时车速,确定第一扭矩变化率,可以包括:获取预先设置的扭矩与变化率映射表,查找车辆实时扭矩对应的第一候选变化率;如果车辆实时扭矩与实时车速所对应实时扭矩阈值之差小于预设扭矩差值,则将第一候选变化率与第一预设变化调整值的差值作为第一扭矩变化率;在车辆实时扭矩与实时车速所对应的实时扭矩阈值之差大于或等于预设扭矩差值的情况下,,将第一候选变化率作为第一扭矩变化率。
示例性的,可以根据车辆实时扭矩,查找预先设置的扭矩与变化率映射表,得到车辆实时扭矩对应的第一候选变化率。查找实时车速所对应的实时扭矩阈 值,如果车辆实时扭矩与实时车速所对应实时扭矩阈值之差小于预设扭矩差值,说明车辆当前的输出扭矩接近会造成车辆冲击或抖动的扭矩阈值,因此可以将第一候选变化率适当减小,得到第一扭矩变化率,防止扭矩变化过快对传动系产生冲击。同时可以根据实时加速踏板开度对第一扭矩变化率进行修正,加速踏板开度越大,可以将第一扭矩变化率适当调整的越高,目的是快速响应响应驾驶员操作。如果车辆实时扭矩与实时车速所对应实时扭矩阈值之差大于预设扭矩差值,说明车辆短时间内按当前的输出扭矩运行不会造成车辆冲击或抖动,因此可以直接将第一候选变化率确定为第一扭矩变化率。
步骤2502、根据车辆实时扭矩和车辆目标扭矩的实时扭矩差值,确定第二扭矩变化率,并利用实时加速踏板开度对第二扭矩变化率进行修正。
可选的,根据车辆实时扭矩和车辆目标扭矩的实时扭矩差值,确定第二扭矩变化率,可以包括:确定所述车辆实时扭矩和所述车辆目标扭矩的实时扭矩差值,预先设置的扭矩差与变化率映射表,查找所述实时扭矩差值对应的第二扭矩变化率。
示例性的,可以将车辆实时扭矩和车辆目标扭矩作差,得到实时扭矩差值,查找预先设置的扭矩差与变化率映射表,得到实时扭矩差值对应的第二扭矩变化率。实时扭矩差值越大时,第二扭矩变化率越大,当实时扭矩差值较小时,第二扭矩变化率也适当放小,具体数值可以人为标定。同时可以根据实时加速踏板开度对第二扭矩变化率进行修正,加速踏板开度越大,可以将第二扭矩变化率适当调整的越高,目的是快速响应响应驾驶员操作。
步骤2503、根据修正后的第一扭矩变化率、修正后的第二扭矩变化率、车辆实时扭矩和车辆目标扭矩,对上一周期对应的周期需求扭矩进行调整,得到本周期对应的周期需求扭矩。
可选的,步骤2503可以包括:根据修正后的第一扭矩变化率和修正后的第二扭矩变化率,确定预设时间间隔内的第一扭矩变化值和第二扭矩变化值;确定第一扭矩变化值、第二扭矩变化值和实时扭矩差值中的最小扭矩变化值;如 果车辆目标扭矩大于等于车辆实时扭矩,则将上一周期对应的周期需求扭矩与最小扭矩变化值相加,得到本周期对应的周期需求扭矩;在车辆目标扭矩小于车辆实时扭矩的情况下,,将上一周期对应的周期需求扭矩减去最小扭矩变化值,得到本周期对应的周期需求扭矩。
示例性的,可以在根据修正后的第一扭矩变化率、修正后的第二扭矩变化率、车辆实时扭矩和车辆目标扭矩,在快速响应挡位切换操作和避免发生冲击或抖动的现象的前提下,对上一周期对应的周期需求扭矩进行调整,得到本周期对应的周期需求扭矩。可以将计算出的修正后的第一扭矩变化率、修正后的第二扭矩变化率分别与预设时间间隔相乘,得到第一扭矩变化值和第二扭矩变化值,在第一扭矩变化值、第二扭矩变化值和实时扭矩差值中选取最小值对上一周期对应的周期需求扭矩进行调整,得到本周期对应的周期需求扭矩,该操作可以保证车辆不会发生冲击或抖动的现象。
为了方便理解,可以将车辆实时扭矩记为T act,将确定的第修正后的一扭矩变化率记为G 1,将车辆目标扭矩记为T tgt,将实时扭矩差值记为ΔT,将确定的修正后的第一扭矩变化率记为G 2,可以将上一周期对应的周期需求扭矩记为T delay,将本周期对应的周期需求扭矩记为T req,将预设时间间隔记为Δt,当车辆目标扭矩T tgt≥车辆实时扭矩T act时,可以根据以下公式计算本周期对应的周期需求扭矩T req
T req=T delay+min(G 1Δt,G 2Δt,ΔT),
当车辆目标扭矩T tgt<车辆实时扭矩T act时,可以根据以下公式计算本周期对应的周期需求扭矩T req
T req=T delay-min(G 1Δt,G 2Δt,ΔT)。
步骤260、判断周期需求扭矩是否等于车辆目标扭矩。
示例性的,在计算出本周期的周期需求扭矩后,将周期需求扭矩与车辆目标扭矩进行比较,在周期需求扭矩等于车辆目标扭矩的情况下,则进行步骤280;在周期需求扭矩不等于车辆目标扭矩的情况下,进行步骤270。
步骤270、将周期需求扭矩确定为实时需求扭矩,根据实时需求扭矩控制车辆运行。
示例性的,在本周期内可以将周期需求扭矩确定为实时需求扭矩,并根据实时需求扭矩控制车辆运行,在本周期结束后,返回步骤240重新获取车辆实时扭矩、实时车速和实时加速踏板开度,以确定下一周期的周期需求扭矩。
步骤280、将车辆目标扭矩确定为实时需求扭矩,根据实时需求扭矩控制车辆运行。
示例性的,当车辆目标扭矩小于车辆当前状态对应的扭矩阈值时,可以认为直接根据车辆目标扭矩控制车辆行驶并不会造成车辆冲击或抖动,因此可以将车辆目标扭矩确定为实时需求扭矩,根据实时需求扭矩控制车辆运行。或周期需求扭矩等于车辆目标扭矩时,可以认为此时车辆实时扭矩已经很接近车辆目标扭矩,因此可以将车辆目标扭矩确定为实时需求扭矩,根据实时需求扭矩控制车辆运行。当车辆实时扭矩等于车辆目标扭矩时,可以退出本次切换挡位的扭矩控制流程,按照正常驾驶工况控制扭矩输出即可。
示例性的,图4是本申请实施例二提供的一种车辆扭矩控制方法的原理示意图。如图4所示,本申请实施例的扭矩控制系统可以包含整车控制器、电子换挡器、仪表、电机控制器、电机本体、传动系、车轮、加速踏板传感器及车速传感器。在切换挡位的过程中,电子换挡器可以识别驾驶员操作,将其转化为换挡手柄位置信号发送给整车控制器。整车控制器可以接收电子换挡器发送的换挡手柄位置信号,识别出驾驶员的换挡意图,确定车辆目标挡位,通过加速踏板传感器及车速传感器信号发送的信号解析出当前加速踏板开度及当前车速,发出换挡过程需求扭矩请求,并将车辆目标挡位信息发送给仪表。仪表可以接收整车控制器发送的车辆目标挡位信息,将车辆目标挡位进行显示。电机控制器接收整车控制器发送的需求扭矩请求,转化为扭矩控制指令发送给电机本体,同时将当前实际扭矩反馈给整车控制器。电机本体受电机控制器控制,接收扭矩控制指令后,输出对应扭矩。传动系将电机本体发出的扭矩传递给车 轮,实现整车驱动或制动。
图5是本申请实施例二提供的一种车辆扭矩控制方法的扭矩控制效果图。如图5所示,驾驶员在t 1时刻由倒车档R挡切换到前进挡D挡,t 1-t 5时间段为输出扭矩由负向正的变化过程,其中扭矩的正负表示扭矩的方向。在t 1时刻,检测到驾驶员有切换挡位的意图,车辆目标扭矩发生突变,在t 1-t 2时间段内,实时需求扭矩的变化率根据车辆目标扭矩与车辆实时扭矩的差值确定,同时根据实时加速踏板开度进行修正;t 2-t 3时间段内,实时需求扭矩在产生冲击的扭矩阈值附近适当放缓,同时也可被加速踏板开度修正;在t 3-t 4时间段内,实时需求扭矩经过产生冲击的扭矩阈值后,可快速变化,与t 1-t 2时间段内的扭矩变化率一致;在t 4时刻,实时需求扭矩接近车辆目标扭矩,此时可以将扭矩变化率放缓,在t 5时刻,实时需求扭矩等于车辆目标扭矩,可以退出本次切换挡位的扭矩控制流程,按照正常驾驶工况控制扭矩输出即可。t 6时刻,可以表示为驾驶员由前进挡D挡切换到倒车档R挡,t 6-t 10时间段内,可以表示扭矩由正向负的变化过程,与t 1-t 5时间段扭矩控制原理一致。
本实施例的技术方案,在检测到驾驶员切换到反向挡位时,根据车辆当前状态和车辆目标挡位确定车辆目标扭矩,根据预先设置的车速与扭矩值映射表,判断车辆目标扭矩与车辆当前状态对应的扭矩阈值的大小关系。在车辆目标扭矩大于等于车辆当前状态对应的扭矩阈值时,根据预设时间间隔,周期性的获取车辆实时扭矩、实时车速和实时加速踏板开度,并根据车辆目标扭矩、车辆实时扭矩、实时车速和实时加速踏板开度确定周期需求扭矩,当周期需求扭矩不等于车辆目标扭矩时,将周期需求扭矩确定为实时需求扭矩,根据实时需求扭矩控制车辆运行,再进行下一周期对应的周期需求扭矩的计算。通过对切换挡位时车辆状态和挡位信息的判断,以及切换挡位过程中对实时的车辆状态进行分析,不断对车辆的需求扭矩进行动态调整,解决了相关技术中直接切换到相反挡位时,容易造成车辆冲击或抖动的问题,实现了根据车辆状态精细化控制扭矩变化,确保扭矩快速切换的同时保持车辆平稳,避免扭矩变化对整车产 生冲击,提高驾驶体验和行车安全。
实施例三
本申请实施例所提供的车辆扭矩控制装置可执行本申请任意实施例所提供的车辆扭矩控制方法,具备执行方法相应的功能模块。图6是本申请实施例三提供的一种车辆扭矩控制装置的结构框图,如图6所示,该装置包括:目标扭矩确定模块310、第一需求扭矩确定模块320和扭矩控制模块330。
目标扭矩确定模块310,设置为当检测到驾驶员切换到反向挡位时,根据车辆当前状态和车辆目标挡位确定车辆目标扭矩。
第一需求扭矩确定模块320,设置为在所述车辆目标扭矩大于等于所述车辆当前状态对应的扭矩阈值时,根据所述车辆目标扭矩、车辆实时扭矩和车辆实时状态确定实时需求扭矩。
扭矩控制模块330,设置为根据所述实时需求扭矩控制车辆运行。
本实施例的技术方案,在检测到驾驶员切换到反向挡位时,根据车辆当前状态和车辆目标挡位确定车辆目标扭矩,在车辆目标扭矩大于等于车辆当前状态对应的扭矩阈值时,根据车辆目标扭矩、车辆实时扭矩和车辆实时状态确定实时需求扭矩,并根据实时需求扭矩控制车辆运行。通过对切换挡位时车辆状态和挡位信息的判断,以及切换挡位过程中对实时的车辆状态进行分析,解决了相关技术中直接切换到相反挡位时,容易造成车辆冲击或抖动的问题,实现了根据车辆状态精细化控制扭矩变化,确保扭矩快速切换的同时保持车辆平稳,避免扭矩变化对整车产生冲击,提高驾驶体验和行车安全。
可选的,所述装置还包括第二需求扭矩确定模块340,所述第二需求扭矩确定模块340设置为:
在所述车辆目标扭矩小于所述车辆当前状态对应的扭矩阈值时,将所述车辆目标扭矩确定为所述实时需求扭矩。
可选的,所述车辆当前状态包括当前加速踏板开度和当前车速;
相应的,所述扭矩阈值的确定过程包括:
获取预先设置的车速与扭矩值映射表,将所述当前车速对应的扭矩值确定为所述车辆当前状态对应的扭矩阈值。
可选的,所述根据所述车辆目标扭矩、车辆实时扭矩和车辆实时状态确定实时需求扭矩,包括:
根据预设时间间隔,周期性的获取车辆实时扭矩、实时车速和实时加速踏板开度;
针对每个周期,根据所述车辆目标扭矩、所述车辆实时扭矩、所述实时车速和所述实时加速踏板开度确定周期需求扭矩;
将所述周期需求扭矩确定为实时需求扭矩,直至所述周期需求扭矩等于所述车辆目标扭矩。
可选的,所述根据所述车辆目标扭矩、所述车辆实时扭矩、所述实时车速和所述实时加速踏板开度确定周期需求扭矩,包括:
根据所述车辆实时扭矩和所述实时车速,确定第一扭矩变化率,并利用所述实时加速踏板开度对所述第一扭矩变化率进行修正;
根据所述车辆实时扭矩和所述车辆目标扭矩的实时扭矩差值,确定第二扭矩变化率,并利用所述实时加速踏板开度对所述第二扭矩变化率进行修正;
根据修正后的第一扭矩变化率、修正后的第二扭矩变化率、所述车辆实时扭矩和所述车辆目标扭矩,对上一周期对应的周期需求扭矩进行调整,得到本周期对应的周期需求扭矩。
可选的,所述根据所述车辆实时扭矩和所述实时车速,确定第一扭矩变化率,包括:
获取预先设置的扭矩与变化率映射表,查找所述车辆实时扭矩对应的第一候选变化率;
如果所述车辆实时扭矩与所述实时车速所对应实时扭矩阈值之差小于预设扭矩差值,则将所述第一候选变化率与第一预设变化调整值的差值作为第一扭 矩变化率;
在所述车辆实时扭矩与所述实时车速所对应的实时扭矩阈值之差大于或等于预设扭矩差值的情况下,将所述第一候选变化率作为所述第一扭矩变化率;
所述根据所述车辆实时扭矩和所述车辆目标扭矩的实时扭矩差值,确定第二扭矩变化率,包括:
确定所述车辆实时扭矩和所述车辆目标扭矩的实时扭矩差值,预先设置的扭矩差与变化率映射表,查找所述实时扭矩差值对应的第二扭矩变化率。
可选的,所述根据修正后的第一扭矩变化率、修正后的第二扭矩变化率、所述车辆实时扭矩和所述车辆目标扭矩,对上一周期对应的周期需求扭矩进行调整,得到本周期对应的周期需求扭矩,包括:
根据所述修正后的第一扭矩变化率和所述修正后的第二扭矩变化率,确定所述预设时间间隔内的第一扭矩变化值和第二扭矩变化值;
确定所述第一扭矩变化值、所述第二扭矩变化值和所述实时扭矩差值中的最小扭矩变化值;
如果所述车辆目标扭矩大于等于所述车辆实时扭矩,则将上一周期对应的周期需求扭矩与所述最小扭矩变化值相加,得到本周期对应的周期需求扭矩;
在所述车辆目标扭矩小于所述车辆实时扭矩的情况下,将上一周期对应的周期需求扭矩减去所述最小扭矩变化值,得到本周期对应的周期需求扭矩。
本实施例的技术方案,在检测到驾驶员切换到反向挡位时,根据车辆当前状态和车辆目标挡位确定车辆目标扭矩,根据预先设置的车速与扭矩值映射表,判断车辆目标扭矩与车辆当前状态对应的扭矩阈值的大小关系。在车辆目标扭矩大于等于车辆当前状态对应的扭矩阈值时,根据预设时间间隔,周期性的获取车辆实时扭矩、实时车速和实时加速踏板开度,并根据车辆目标扭矩、车辆实时扭矩、实时车速和实时加速踏板开度确定周期需求扭矩,当周期需求扭矩不等于车辆目标扭矩时,将周期需求扭矩确定为实时需求扭矩,根据实时需求扭矩控制车辆运行,再进行下一周期对应的周期需求扭矩的计算。通过对切换 挡位时车辆状态和挡位信息的判断,以及切换挡位过程中对实时的车辆状态进行分析,不断对车辆的需求扭矩进行动态调整,解决了相关技术中直接切换到相反挡位时,容易造成车辆冲击或抖动的问题,实现了根据车辆状态精细化控制扭矩变化,确保扭矩快速切换的同时保持车辆平稳,避免扭矩变化对整车产生冲击,提高驾驶体验和行车安全。
实施例四
图7为本申请实施例四提供的一种车辆的结构框图,如图7所示,该车辆包括处理器410、存储器420、输入装置430和输出装置440;车辆中处理器410的数量可以是至少一个,图7中以一个处理器410为例;车辆中的处理器410、存储器420、输入装置430和输出装置440可以通过总线或其他方式连接,图7中以通过总线连接为例。
存储器420作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的车辆扭矩控制方法对应的程序指令/模块(例如,车辆扭矩控制装置中的目标扭矩确定模块310、第一需求扭矩确定模块320和扭矩控制模块330)。处理器410通过运行存储在存储器420中的软件程序、指令以及模块,从而执行车辆的各种功能应用以及数据处理,即实现上述任意实施例中的车辆扭矩控制方法。
存储器420可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器420可包括相对于处理器410远程设置的存储器,这些远程存储器可以通过网络连接至车辆。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置430可设置为接收输入的数字或字符信息,以及产生与车辆的用 户设置以及功能控制有关的键信号输入。输出装置440可包括显示屏等显示设备。
实施例五
本申请实施例五还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种车辆扭矩控制方法,该方法包括:
当检测到驾驶员切换到反向挡位时,根据车辆当前状态和车辆目标挡位确定车辆目标扭矩;
在所述车辆目标扭矩大于等于所述车辆当前状态对应的扭矩阈值时,根据所述车辆目标扭矩、车辆实时扭矩和车辆实时状态确定实时需求扭矩;
根据所述实时需求扭矩控制车辆运行。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的车辆扭矩控制方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
值得注意的是,上述车辆扭矩控制装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并 不用于限制本申请的保护范围。

Claims (10)

  1. 一种车辆扭矩控制方法,包括:
    响应于检测到驾驶员切换到反向挡位,根据车辆当前状态和车辆目标挡位确定车辆目标扭矩;
    响应于所述车辆目标扭矩大于或等于所述车辆当前状态对应的扭矩阈值,根据所述车辆目标扭矩、车辆实时扭矩和车辆实时状态确定实时需求扭矩;
    根据所述实时需求扭矩控制车辆运行。
  2. 根据权利要求1所述的方法,还包括:
    响应于所述车辆目标扭矩小于所述车辆当前状态对应的扭矩阈值,将所述车辆目标扭矩确定为所述实时需求扭矩。
  3. 根据权利要求1所述的方法,其中,所述车辆当前状态包括当前加速踏板开度和当前车速;
    所述扭矩阈值的确定过程包括:
    获取预先设置的车速与扭矩值映射表,将所述当前车速对应的扭矩值确定为所述车辆当前状态对应的扭矩阈值。
  4. 根据权利要求3所述的方法,其中,所述根据所述车辆目标扭矩、车辆实时扭矩和车辆实时状态确定实时需求扭矩,包括:
    根据预设时间间隔,周期性的获取车辆实时扭矩、实时车速和实时加速踏板开度;
    针对每个周期,根据所述车辆目标扭矩、所述车辆实时扭矩、所述实时车速和所述实时加速踏板开度确定周期需求扭矩;
    将所述周期需求扭矩确定为实时需求扭矩,直至所述周期需求扭矩等于所述车辆目标扭矩。
  5. 根据权利要求4所述的方法,其中,所述根据所述车辆目标扭矩、所述车辆实时扭矩、所述实时车速和所述实时加速踏板开度确定周期需求扭矩,包括:
    根据所述车辆实时扭矩和所述实时车速,确定第一扭矩变化率,并利用所 述实时加速踏板开度对所述第一扭矩变化率进行修正;
    根据所述车辆实时扭矩和所述车辆目标扭矩的实时扭矩差值,确定第二扭矩变化率,并利用所述实时加速踏板开度对所述第二扭矩变化率进行修正;
    根据修正后的第一扭矩变化率、修正后的第二扭矩变化率、所述车辆实时扭矩和所述车辆目标扭矩,对上一周期对应的周期需求扭矩进行调整,得到本周期对应的周期需求扭矩。
  6. 根据权利要求5所述的方法,其中,所述根据所述车辆实时扭矩和所述实时车速,确定第一扭矩变化率,包括:
    获取预先设置的扭矩与变化率映射表,查找所述车辆实时扭矩对应的第一候选变化率;
    在所述车辆实时扭矩与所述实时车速所对应实时扭矩阈值之差小于预设扭矩差值的情况下,将所述第一候选变化率与第一预设变化调整值的差值作为第一扭矩变化率;
    在所述车辆实时扭矩与所述实时车速所对应的实时扭矩阈值之差大于或等于预设扭矩差值的情况下,将所述第一候选变化率作为所述第一扭矩变化率;
    所述根据所述车辆实时扭矩和所述车辆目标扭矩的实时扭矩差值,确定第二扭矩变化率,包括:
    确定所述车辆实时扭矩和所述车辆目标扭矩的实时扭矩差值,根据预先设置的扭矩差与变化率映射表,查找所述实时扭矩差值对应的第二扭矩变化率。
  7. 根据权利要求5所述的方法,其中,所述根据修正后的第一扭矩变化率、修正后的第二扭矩变化率、所述车辆实时扭矩和所述车辆目标扭矩,对上一周期对应的周期需求扭矩进行调整,得到本周期对应的周期需求扭矩,包括:
    根据所述修正后的第一扭矩变化率和所述修正后的第二扭矩变化率,确定所述预设时间间隔内的第一扭矩变化值和第二扭矩变化值;
    确定所述第一扭矩变化值、所述第二扭矩变化值和所述实时扭矩差值中的最小扭矩变化值;
    在所述车辆目标扭矩大于或等于所述车辆实时扭矩的情况下,将上一周期对应的周期需求扭矩与所述最小扭矩变化值相加,得到本周期对应的周期需求扭矩;
    在所述车辆目标扭矩小于所述车辆实时扭矩的情况下,将上一周期对应的周期需求扭矩减去所述最小扭矩变化值,得到本周期对应的周期需求扭矩。
  8. 一种车辆扭矩控制装置,包括:
    目标扭矩确定模块,设置为响应于检测到驾驶员切换到反向挡位,根据车辆当前状态和车辆目标挡位确定车辆目标扭矩;
    第一需求扭矩确定模块,设置为响应于所述车辆目标扭矩大于或等于所述车辆当前状态对应的扭矩阈值,根据所述车辆目标扭矩、车辆实时扭矩和车辆实时状态确定实时需求扭矩;
    扭矩控制模块,设置为根据所述实时需求扭矩控制车辆运行。
  9. 一种车辆,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序,
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-7中任一所述的车辆扭矩控制方法。
  10. 一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如权利要求1-7中任一所述的车辆扭矩控制方法。
PCT/CN2021/129218 2020-11-09 2021-11-08 一种车辆扭矩控制方法、装置、车辆及存储介质 WO2022095991A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21888683.6A EP4227146A4 (en) 2020-11-09 2021-11-08 METHOD AND DEVICE FOR CONTROLLING VEHICLE TORQUE, VEHICLE AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011239644.8 2020-11-09
CN202011239644.8A CN112339576B (zh) 2020-11-09 2020-11-09 一种车辆扭矩控制方法、装置、车辆及存储介质

Publications (1)

Publication Number Publication Date
WO2022095991A1 true WO2022095991A1 (zh) 2022-05-12

Family

ID=74428618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129218 WO2022095991A1 (zh) 2020-11-09 2021-11-08 一种车辆扭矩控制方法、装置、车辆及存储介质

Country Status (3)

Country Link
EP (1) EP4227146A4 (zh)
CN (1) CN112339576B (zh)
WO (1) WO2022095991A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114607762A (zh) * 2022-03-03 2022-06-10 一汽解放汽车有限公司 车辆换挡控制方法、装置、计算机设备和存储介质
CN115096605A (zh) * 2022-06-22 2022-09-23 无锡市朗迪测控技术有限公司 一种汽车测试方法、系统、电子设备及存储介质
CN115384513A (zh) * 2022-08-31 2022-11-25 东风柳州汽车有限公司 车辆控制方法、装置、设备及存储介质
CN115570988A (zh) * 2022-09-30 2023-01-06 东风越野车有限公司 一种汽车转矩监控控制方法、装置及电子设备
WO2024021543A1 (zh) * 2022-07-28 2024-02-01 浙江极氪智能科技有限公司 电动车及其电机控制方法、装置和存储介质

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112339576B (zh) * 2020-11-09 2022-05-13 中国第一汽车股份有限公司 一种车辆扭矩控制方法、装置、车辆及存储介质
CN112977087B (zh) * 2021-03-05 2023-05-26 恒大新能源汽车投资控股集团有限公司 一种电动汽车的扭矩确定方法、装置及设备
CN113002547B (zh) * 2021-03-31 2022-05-17 安徽江淮汽车集团股份有限公司 车辆齿隙贴合控制方法、装置、设备及存储介质
CN113071330B (zh) * 2021-04-16 2022-12-02 中国第一汽车股份有限公司 一种电机扭矩控制方法、系统、车辆及存储介质
CN113044036B (zh) * 2021-05-12 2023-02-21 中国第一汽车股份有限公司 一种车辆换道的控制方法、装置、电子设备及存储介质
CN113247011A (zh) * 2021-06-17 2021-08-13 中国第一汽车股份有限公司 一种车辆控制方法、装置、电子设备及存储介质
CN113401126B (zh) * 2021-07-14 2022-06-24 中国第一汽车股份有限公司 车辆驱动扭矩监控系统、方法及车辆
CN113415281B (zh) * 2021-07-23 2022-01-04 上海洛轲智能科技有限公司 车辆的控制方法、装置、设备及介质
CN113883265A (zh) * 2021-10-18 2022-01-04 东风德纳车桥有限公司 换挡控制方法、电驱动力总成及车辆
CN113858973A (zh) * 2021-10-29 2021-12-31 上海拿森汽车电子有限公司 扭矩修正方法、车辆及计算机可读存储介质
CN114704626B (zh) * 2022-04-02 2023-10-24 中国第一汽车股份有限公司 一种双离合换挡降噪方法、汽车及存储介质
CN115723575B (zh) * 2022-11-30 2024-04-09 重庆赛力斯凤凰智创科技有限公司 一种扭矩控制方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100137097A1 (en) * 2008-12-02 2010-06-03 Kia Motors Corporation Method of controlling hybrid vehicle
CN103587427A (zh) * 2012-08-16 2014-02-19 上海大众汽车有限公司 电动车换挡控制方法
CN103711889A (zh) * 2012-09-29 2014-04-09 北汽福田汽车股份有限公司 电动汽车的换挡控制方法及电动汽车
CN106364369A (zh) * 2016-11-08 2017-02-01 潍柴动力股份有限公司 纯电动汽车工作模式的切换控制方法及装置
CN108501765A (zh) * 2017-02-28 2018-09-07 长城汽车股份有限公司 电动汽车的换挡控制方法、装置及车辆
CN109050346A (zh) * 2018-07-09 2018-12-21 北京车和家信息技术有限公司 车辆换挡方法、装置及车辆
CN112339576A (zh) * 2020-11-09 2021-02-09 中国第一汽车股份有限公司 一种车辆扭矩控制方法、装置、车辆及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457363A (en) * 1993-02-09 1995-10-10 Toyota Jidosha Kabushiki Kaisha Driving-force regulating apparatus for electric vehicle
DE102012223867A1 (de) * 2012-12-19 2014-06-26 Bayerische Motoren Werke Aktiengesellschaft Halten eines ein elektrisches Antriebssystem umfassenden Kraftfahrzeugs auf einer geneigten Fläche
CN107253476B (zh) * 2017-06-23 2019-12-27 北京新能源汽车股份有限公司 车辆换挡的扭矩控制方法、装置、整车控制器及车辆
CN110682798B (zh) * 2018-07-05 2023-08-18 蔚来(安徽)控股有限公司 电机扭矩控制方法、装置、系统和计算机存储介质
KR102602922B1 (ko) * 2018-11-29 2023-11-15 현대자동차주식회사 전기차량의 크립토크 제어방법
KR20200068156A (ko) * 2018-12-04 2020-06-15 현대자동차주식회사 차량 및 그 제어방법
CN111559251B (zh) * 2020-04-26 2022-03-18 东风汽车集团有限公司 一种纯电动汽车需求扭矩驾驶性滤波修正方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100137097A1 (en) * 2008-12-02 2010-06-03 Kia Motors Corporation Method of controlling hybrid vehicle
CN103587427A (zh) * 2012-08-16 2014-02-19 上海大众汽车有限公司 电动车换挡控制方法
CN103711889A (zh) * 2012-09-29 2014-04-09 北汽福田汽车股份有限公司 电动汽车的换挡控制方法及电动汽车
CN106364369A (zh) * 2016-11-08 2017-02-01 潍柴动力股份有限公司 纯电动汽车工作模式的切换控制方法及装置
CN108501765A (zh) * 2017-02-28 2018-09-07 长城汽车股份有限公司 电动汽车的换挡控制方法、装置及车辆
CN109050346A (zh) * 2018-07-09 2018-12-21 北京车和家信息技术有限公司 车辆换挡方法、装置及车辆
CN112339576A (zh) * 2020-11-09 2021-02-09 中国第一汽车股份有限公司 一种车辆扭矩控制方法、装置、车辆及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4227146A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114607762A (zh) * 2022-03-03 2022-06-10 一汽解放汽车有限公司 车辆换挡控制方法、装置、计算机设备和存储介质
CN115096605A (zh) * 2022-06-22 2022-09-23 无锡市朗迪测控技术有限公司 一种汽车测试方法、系统、电子设备及存储介质
CN115096605B (zh) * 2022-06-22 2023-11-14 无锡市朗迪测控技术有限公司 一种汽车测试方法、系统、电子设备及存储介质
WO2024021543A1 (zh) * 2022-07-28 2024-02-01 浙江极氪智能科技有限公司 电动车及其电机控制方法、装置和存储介质
CN115384513A (zh) * 2022-08-31 2022-11-25 东风柳州汽车有限公司 车辆控制方法、装置、设备及存储介质
CN115384513B (zh) * 2022-08-31 2024-05-14 东风柳州汽车有限公司 车辆控制方法、装置、设备及存储介质
CN115570988A (zh) * 2022-09-30 2023-01-06 东风越野车有限公司 一种汽车转矩监控控制方法、装置及电子设备

Also Published As

Publication number Publication date
CN112339576A (zh) 2021-02-09
EP4227146A4 (en) 2024-04-10
CN112339576B (zh) 2022-05-13
EP4227146A1 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
WO2022095991A1 (zh) 一种车辆扭矩控制方法、装置、车辆及存储介质
WO2022062572A1 (zh) 基于多维度的换挡控制方法、装置、车辆及介质
EP3718846A1 (en) Cruise control method and system for electric vehicle, vehicle, controller, and storage medium
CN110194171B (zh) 驾驶需求扭矩的确定方法、装置、车辆及存储介质
CN107415704B (zh) 复合制动方法、装置和自适应巡航控制器
US11254309B2 (en) Cruise control system and method for vehicle
JP5367155B2 (ja) 車両用アクセルペダル装置及びペダル反力制御方法
CN113561993B (zh) 车速规划方法、装置及电子设备
JP2018144751A (ja) 自動駐車装置
EP3647136B1 (en) Vehicle traveling assistance method and vehicle traveling assistance device
US7206690B2 (en) Vehicle control apparatus
KR101745152B1 (ko) 전자동 주차 시스템 및 그 동작 방법
CN108639061B (zh) 一种自动驾驶车辆主动防晕车辅助驾驶控制方法
CN108909709A (zh) 自动跟车方法及装置
KR20120139151A (ko) 지능형 순항 제어 시스템 및 이 시스템을 이용한 차간 거리 제어 방법
CN108501769B (zh) 一种起步控制方法、装置及汽车
JP2019148248A (ja) 駆動力制御装置
CN115476837A (zh) 一种车速控制方法、系统及车辆
CN114194194A (zh) 自动切换车辆驾驶模式的方法和装置
JP2011144790A (ja) 車両走行制御装置
CN115195680B (zh) 一种车辆制动参数确定方法、装置、设备、存储介质
JP5262124B2 (ja) 車両走行制御装置
JP3060795B2 (ja) 自動車の走行制御装置
WO2022012217A1 (zh) 一种自适应巡航控制方法及装置
JP6648615B2 (ja) 車両の制御システムおよびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021888683

Country of ref document: EP

Effective date: 20230510

NENP Non-entry into the national phase

Ref country code: DE