WO2022095577A1 - 一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法 - Google Patents

一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法 Download PDF

Info

Publication number
WO2022095577A1
WO2022095577A1 PCT/CN2021/116619 CN2021116619W WO2022095577A1 WO 2022095577 A1 WO2022095577 A1 WO 2022095577A1 CN 2021116619 W CN2021116619 W CN 2021116619W WO 2022095577 A1 WO2022095577 A1 WO 2022095577A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
impedance
manganese
zinc ferrite
frequency
Prior art date
Application number
PCT/CN2021/116619
Other languages
English (en)
French (fr)
Inventor
朱勇
王朝明
赵旭
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Priority to DE112021005797.9T priority Critical patent/DE112021005797T5/de
Publication of WO2022095577A1 publication Critical patent/WO2022095577A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • C04B2235/3212Calcium phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the invention relates to the technical field of soft ferrite materials, in particular to a manganese-zinc ferrite material with high magnetic permeability, high frequency, high impedance and high Curie temperature and a preparation method thereof.
  • EMI electromagnétique interference
  • the soft ferrite material used as anti-EMI should generally have the following characteristics: (1) high permeability; (2) high Curie temperature; (3) high frequency and high impedance; (4) good temperature stability.
  • the most widely used and most economical soft ferrite material for anti-EMI is manganese-zinc ferrite material.
  • the existing anti-EMI manganese-zinc ferrite materials on the market have achieved the characteristics of high magnetic permeability and high frequency and high impedance, but these anti-EMI manganese-zinc ferrite materials all have low Curie temperature and poor temperature stability. question.
  • Ferroxcube's 3E12 has a magnetic permeability of 12,000, but its Curie temperature is 130 °C; Hengdian East Magnetics' R12K has a magnetic permeability of 12,000 and its Curie temperature is also around 130 °C.
  • Chinese patent document CN111056830A discloses a wide temperature, high frequency, high impedance, and high permeability manganese - zinc ferrite material .
  • TiO 2 , NiO, MoO 3 , SiO 2 and Bi 2 O 3 as auxiliary components, the initial permeability at room temperature can reach more than 12000, but the Curie temperature is only 137°C.
  • Chinese patent document CN106747396A discloses a high-permeability manganese-zinc ferrite material for automotive electronics and a preparation method thereof.
  • the ferrite material of the invention consists of a main material and a dopant, and the main material includes: 52 ⁇ 53mol% Fe 2 O 3 , 17 ⁇ 20.5mol% ZnO, the rest are MnO, the additives are CuO, CaCO 3 , Ta 2 O 5 , In 2 O 3 , Bi 2 O 3 of analytical grade, the ferrite of the invention
  • the Curie temperature of the bulk material reaches 150°C, the magnetic permeability is only about 10,000, and the magnetic permeability is lower than 10,000 between the second peak position and the first peak position. Therefore, it is necessary to prepare a manganese-zinc ferrite material with high permeability, high frequency, high impedance and high Curie temperature.
  • the purpose of the present invention is to overcome the deficiencies of the above-mentioned background technology, and to provide a high-permeability, high-frequency, high-impedance, and high-Curie-temperature manganese-zinc ferrite material and a preparation method thereof.
  • Temperature means that the manganese-zinc ferrite material has the following characteristics: (1) initial permeability ⁇ i ⁇ 12000; (2) Curie temperature Tc ⁇ 150°C; (3) under the condition of 200KHz, the initial magnetic permeability Conductivity ⁇ i ⁇ 10000; (4) Impedance coefficient ⁇ 26 ⁇ /mm under the condition of 0.5-1MHz.
  • the manganese-zinc ferrite material prepared by the invention has good temperature stability in the range of 25-80°C.
  • the high-magnetic-permeability, high-frequency, high-impedance, and high-Curie-temperature manganese-zinc ferrite material of the present invention is composed of a main component and an auxiliary component, and the main component is composed of the following raw materials in mole percentage: 52 ⁇ 54mol % Fe 2 O 3 , 18-22 mol% ZnO, and the rest are MnO; based on the total amount of the main components, the auxiliary components are composed of the following raw materials: CaCO 3 200-1000ppm, Bi 2 O 3 200-1000ppm , Co 2 O 3 200-1000ppm, MoO 3 200-1000ppm.
  • the main components are composed of the following molar percentages of raw materials: 52.40mol% Fe 2 O 3 , 27.20mol% MnO, 20.40mol% ZnO;
  • the auxiliary components are composed of CaCO 3 200 ppm, Bi 2 O 3 500 ppm, Co 2 O 3 200 ppm, and MoO 3 200 ppm.
  • the present invention also provides a preparation method of the aforementioned high-permeability, high-frequency, high-impedance, and high-Curie-temperature manganese-zinc ferrite material, the method comprising the following steps:
  • One-time ball-milling mixing Weigh each raw material of the main components according to the proportions, mix them by ball-milling to obtain slurry, and spray-dry the slurry to obtain powder;
  • Pre-sintering pre-sintering the powder to obtain pre-sintering material
  • spray granulation after adding glue PVA to the slurry obtained by secondary ball milling, spray granulation is carried out to obtain granules;
  • a ball milling time is 30-40min.
  • the calcination temperature is 700-900° C.
  • the calcination time is 170-190 min.
  • the secondary ball milling time is 60-90min.
  • the particle size distribution of the secondary ball abrasive is controlled at X50: 1.2-1.4 ⁇ m; X99: 6.0-8.0 ⁇ m.
  • the above-mentioned X50 is the median diameter, which is a representation of the average particle size, which means that the particles smaller than 1.2-1.4 ⁇ m in the secondary sand abrasive account for 50%;
  • X99 means that the particles smaller than 6.0-8.0 ⁇ m in the secondary sand abrasive account for 99% %.
  • the particle size of the granular material obtained by spray granulation in the step (4) is 50-200 ⁇ m.
  • the density of the manganese-zinc ferrite blank is controlled to be 3.05-3.1 g/cm 3 .
  • the sintering in the step (6) includes the following stages:
  • Cooling reduce the temperature to 1100°C for 8-10 hours, and keep the atmosphere at the equilibrium oxygen partial pressure at different temperatures.
  • the oxygen partial pressure in the sintering atmosphere is controlled at 0.12-5vol%, and the rest of the atmosphere is not The protective atmosphere in which the material reacts, and as the temperature decreases, the oxygen partial pressure decreases;
  • the sintering atmosphere, heating rate and oxygen partial pressure are controlled in stages for the sintering process.
  • the sintering must be completed strictly according to the design of the above parameters, in order to obtain high magnetic permeability, high frequency, high impedance and high Curie temperature manganese zinc. Ferrite material.
  • the preparation process of the present invention strictly controls the feeding sequence and process parameters, and the sintering method of the present invention can mass-produce magnetic core samples and realize a low-cost production method, thereby realizing large-scale, low-cost, and high-volume production.
  • Magnetic permeability high frequency high impedance high Curie temperature manganese zinc ferrite material
  • the manganese-zinc ferrite material prepared by the formula and process of the present invention has the characteristics of high magnetic permeability, high frequency, high impedance and high Curie temperature: initial magnetic permeability ⁇ i (25°C) ⁇ 12000, Tc ⁇ 150°C, 0.5- Within the range of 1.0MHz, the impedance coefficient is greater than or equal to 26 ⁇ /mm.
  • compositions, step, method, article or device comprising the listed elements is not necessarily limited to those elements, but may include other elements not expressly listed or inherent to such composition, step, method, article or device elements.
  • the ratio is Fe 2 O 3 52.80 mol%, MnO 26.90 mol %, ZnO 20.30 mol % (converted to mass percentage: Fe 2 O 3 : 69.48 wt %, Mn 3 O 4 : 16.91 wt %, ZnO: 13.62 wt % ), the three main raw materials of ) were mixed by ball milling, and then calcined at 850 ° C.
  • the auxiliary components CaCO 3 200ppm, Bi 2 O 3 400ppm, Co 2 O 3 500ppm, and MoO 3 200ppm were added to the calcination material.
  • the sintering process is: heating to 1000 °C at a heating rate of 2 °C/min, the sintering atmosphere at this stage is air, and then 0.8 The heating rate of °C/min was heated to 1410 °C, and the temperature was maintained for 6 hours.
  • the oxygen partial pressure concentration was controlled at 5 vol%. After cooling to 1100 °C, the oxygen partial pressure concentration was controlled below 0.03 vol%. Finally, the temperature was lowered to room temperature at a rate of 3 °C/min. .
  • the proportions are Fe 2 O 3 52.00 mol%, MnO 27.60 mol %, ZnO 20.40 mol % (converted to mass percentage: Fe 2 O 3 : 68.80 wt %, Mn 3 O 4 : 17.44 wt %, ZnO: 13.76 wt % ), the three main raw materials of ) were mixed by ball milling, and then calcined at 850 ° C.
  • the auxiliary components CaCO 3 200ppm, Bi 2 O 3 400ppm, Co 2 O 3 500ppm, and MoO 3 200ppm were added to the calcination material.
  • the sintering process is: heating to 1000 °C at a heating rate of 2 °C/min, the sintering atmosphere at this stage is air, and then 0.8 The heating rate of °C/min was heated to 1410 °C, and the temperature was maintained for 6 hours.
  • the oxygen partial pressure concentration was controlled at 5 vol%. After cooling to 1100 °C, the oxygen partial pressure concentration was controlled below 0.03 vol%. Finally, the temperature was lowered to room temperature at a rate of 3 °C/min. .
  • the blank with the same formula as in Example 2 was used for debinding and sintering in a push-plate kiln.
  • the sintering process was: heating to 1000°C at a heating rate of 2°C/min.
  • the heating rate was heated to 1360 °C, and the temperature was kept for 6 h.
  • the oxygen partial pressure concentration was controlled at 5 vol%.
  • the temperature was lowered to room temperature at a rate of 3 °C/min.
  • the ratio of Fe 2 O 3 52.40 mol%, MnO 27.20 mol %, ZnO 20.40 mol % (converted to mass percentage: Fe2O3: 69.14 wt %, Mn 3 O 4 : 17.14 wt %, ZnO: 13.72 wt %)
  • the main raw materials are mixed by ball milling once, and then calcined at 850 ° C.
  • the auxiliary components CaCO 3 200ppm, Bi 2 O 3 400ppm, Co 2 O 3 500ppm, and MoO 3 200ppm are added to the calcination material, and after mixing, pass the secondary Ball milling, drying, granulation, pressing and molding, and finally sintering.
  • the sintering process is: heating to 1000°C at a heating rate of 2°C/min.
  • the sintering atmosphere at this stage is air, and then heating at a heating rate of 0.8°C/min to 1000°C.
  • the temperature was kept for 6h, the oxygen partial pressure concentration was controlled at 5vol%, the oxygen partial pressure concentration was controlled below 0.03vol% when the temperature was lowered to 1100°C, and finally the temperature was lowered to room temperature at a rate of 3°C/min.
  • the blank with the same formula as in Example 4 was used for debinding and sintering in a push-plate kiln.
  • the sintering process was as follows: heating to 1000°C at a heating rate of 2°C/min, the sintering atmosphere at this stage was air, and then at a temperature of 0.8°C/min.
  • the heating rate was heated to 1410 °C, and the temperature was maintained for 6 h.
  • the oxygen partial pressure concentration was controlled at 3 vol%. After cooling to 1100 °C, the oxygen partial pressure concentration was controlled below 0.03 vol%. Finally, the temperature was lowered to room temperature at a rate of 3 °C/min.
  • the blank with the same formula as in Example 4 was used for debinding and sintering in a push-plate kiln.
  • the sintering process was: heating to 1000°C at a heating rate of 2°C/min.
  • the heating rate was heated to 1410 °C, and the temperature was maintained for 6 h.
  • the oxygen partial pressure concentration was controlled at 7 vol%.
  • the temperature was lowered to room temperature at a rate of 3 °C/min.
  • the main ingredient formula of Example 4 was used as the target to carry out the pilot test, and the total amount was expanded from 400g in the small test to 400kg.
  • the auxiliary ingredient formula of Example 4 was also used. granules, press molding, and finally debinding and sintering in a push-plate kiln.
  • the slurry composition needs to be corrected after the secondary sanding, so as to make it reach the target composition: Fe 2 O 3 52.40 mol %, MnO 27.20 mol %, ZnO 20.40 mol % (converted to the mass percentage of Fe 2 O 3 : 69.14 wt %, Mn 3 O 4 : 17.14 wt %, ZnO: 13.72 wt %).
  • the sintering process is as follows: heating to 1000°C at a heating rate of 2°C/min, the sintering atmosphere at this stage is air, then heating to 1410°C at a heating rate of 0.8°C/min, holding for 6 hours, and the oxygen partial pressure concentration is controlled at 5vol%, After cooling to 1100 °C, the oxygen partial pressure concentration was controlled below 0.03 vol%, and finally the temperature was lowered to room temperature at a rate of 3 °C/min.
  • Example 4 On the basis of Example 4, it is ensured that the main formula is Fe 2 O 3 52.40 mol%, MnO 27.20 mol %, ZnO 20.40 mol % (converted to mass percentage: Fe 2 O 3 : 69.14 wt %, Mn3O4: 17.14 wt %, The three main raw materials of ZnO: 13.72wt%) were mixed by ball milling once, and then calcined at 850°C, and the auxiliary components CaCO 3 200ppm, Bi 2 O 3 500ppm, Co 2 O 3 200ppm, MoO were added to the calcination material. 3 200ppm, and the rest of the process is the same as in Example 4.
  • the results show that the initial permeability ⁇ i at 10KHz at room temperature reaches more than 12000, and the Curie temperature also reaches 150°C.
  • the specific temperature coefficient of permeability a ⁇ / ⁇ 1 (*10 -6 ) is 0.0305, indicating that the permeability The rate of change with temperature is small, and the permeability can remain above 10000 under the condition of 200KHZ.
  • Example 4 On the basis of Example 4, the content of Fe 2 O 3 is reduced and the content of ZnO is increased, and the main formula is Fe 2 O 3 52.30 mol%, MnO 27.00 mol %, ZnO 20.70 mol % (converted to mass percentage of Fe 2 O 3 : 69.04 wt%, Mn 3 O 4 : 17.04 wt %, ZnO: 13.92 wt %) and then calcined at 850°C, and auxiliary components CaCO 3 200 ppm, Bi 2 O 3 500 ppm, and Co 2 were added to the calcined material. O 3 750ppm, MoO 3 200ppm, the rest of the process is the same as that of Example 4.
  • Comparative Example 1 The formula of Comparative Example 1 was used as the target to carry out the pilot test, and the total amount was expanded from 400g in the small test to 400kg.
  • the auxiliary ingredient formula of Comparative Example 1 was also used. After ball milling, spray drying, pre-burning, sand grinding, spray granulation, Press molding, and finally debinding and sintering in a push-plate kiln.
  • the slurry composition needs to be corrected after the secondary sanding, so as to make it reach the target composition: Fe 2 O 3 52.40 mol %, MnO 27.20 mol %, ZnO 20.40 mol % (converted to the mass percentage of Fe 2 O 3 : 69.14 wt%, Mn3O4: 17.14 wt%, ZnO: 13.72 wt%).
  • the sintering process is as follows: heating to 1000°C at a heating rate of 2°C/min, the sintering atmosphere at this stage is air, then heating to 1410°C at a heating rate of 0.8°C/min, holding for 6 hours, and the oxygen partial pressure concentration is controlled at 5vol%, After cooling to 1100 °C, the oxygen partial pressure concentration was controlled below 0.03 vol%, and finally the temperature was lowered to room temperature at a rate of 3 °C/min.
  • the pellets after the pilot test in Comparative Example 3 were used for ring sintering, and then placed in a bell jar furnace for sintering. Heating at a heating rate of 2°C/min to 1370 (the sintering atmosphere at this stage is nitrogen) and holding for 5.5h (the oxygen partial pressure in the sintering atmosphere at this stage is 21vol%), and then kept for another 1h (the oxygen partial pressure in the sintering atmosphere at this stage is 21 vol%). 5 vol%), cooled to 1200 °C and the oxygen partial pressure was set to 2 vol%, maintained for 1 h, and finally lowered to room temperature at a rate of 3 °C/min.
  • Table 3 Impedance at different frequencies ( ⁇ /mm) comparison table

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明属于软磁铁氧体材料技术领域,公开了一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法。本发明的高磁导率高频高阻抗高居里温度锰锌铁氧体材料由主成份和辅助成分组成,所述主成份由以下摩尔百分比的原料组成:52~54mol%的Fe2O3,18~22mol%的ZnO,其余为MnO;以主成份总量为基准,所述辅助成分由以下含量的原料组成:CaCO3 200~1000ppm,Bi2O3 200~1000ppm,Co2O3 200~1000ppm,MoO3 200~1000ppm。采用本发明的配方及工艺制得的锰锌铁氧体材料具有高磁导率高频高阻抗高居里温度特性:初始磁率μi(25℃)≥12000,Tc≥150℃,0.5-1.0MHz的范围内,阻抗系数≥26Ω/mm。

Description

一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法 技术领域
本发明涉及软磁铁氧体材料技术领域,具体是涉及一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法。
背景技术
随着移动通信、卫星通信、计算机等电子技术领域的高速发展和普遍应用,我们周围形成了一种我们无法感知的无形的污染——电子产品辐射与泄露造成的电磁干扰(EMI)。EMI不仅对电子设备本身产生干扰,从而影响电子设备的正常工作,而且还会对人类的健康产生一定的威胁,为此,人们利用抗电磁波干扰材料来消除电磁波辐射与泄露造成的电磁干扰。
作为抗电磁干扰材料,要求衰减速度快,频带范围宽,同时应保证工作频率范围的信号不失真,能适应各种环境使用。因此,作为抗EMI用的软磁铁氧体材料一般应具有以下特点:(1)高磁导率;(2)具有较高的居里温度;(3)高频高阻抗;(4)良好的温度稳定性。
目前应用最广泛,最具有经济性的抗EMI用的软磁铁氧体材料为锰锌铁氧体材料。市场上现有的抗EMI锰锌铁氧体材料已经达到了高磁导率和高频高阻抗的特性,但是这些抗EMI锰锌铁氧体材料都存在着居里温度低和温度稳定性差等问题。例如,Ferroxcube公司的3E12虽然磁导率达到12000,但居里温度为130℃;横店东磁公司的R12K磁导率为12000,居里温度也在130℃附近。又如中国专利文献CN111056830A公开了一种宽温高频高阻抗高磁导率锰锌铁氧体材料,该发明以Fe 2O 3、Mn 3O 4、ZnO作为铁氧体主成分,同时添加TiO 2、NiO、MoO 3、SiO 2和Bi 2O 3作为辅助成分使得室温下的起始磁导率可以达到12000以上,但是居里温度只有137℃。再如中国专利文献CN106747396A公开了一种汽车电子用高磁导率锰锌铁氧体材料及其制备方 法,该发明的铁氧体材料由主料和掺杂剂组成,其主料包括:52~53mol%Fe 2O 3,17~20.5mol%ZnO,其余为MnO,添加剂为分析纯级的CuO、CaCO 3、Ta 2O 5、In 2O 3、Bi 2O 3,该发明的铁氧体材料的居里温度达到150℃,磁导率只有10000左右,并且在二峰位置和一峰位置之间存在磁导率低于10000的情况。因此,制备一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料是有必要的。
发明内容
本发明的目的是为了克服上述背景技术的不足,提供一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法,所述高磁导率高频高阻抗高居里温度是指所述锰锌铁氧体材料有以下几个特点:(1)起始磁导率μi≥12000;(2)居里温度Tc≥150℃;(3)200KHz条件下,起始磁导率μi≥10000;(4)0.5-1MHz条件下,阻抗系数≥26Ω/mm。此外,本发明制备的锰锌铁氧体材料在25-80℃范围内温度稳定性好。
为达到本发明的目的,本发明的高磁导率高频高阻抗高居里温度锰锌铁氧体材料由主成份和辅助成分组成,所述主成份由以下摩尔百分比的原料组成:52~54mol%的Fe 2O 3,18~22mol%的ZnO,其余为MnO;以主成份总量为基准,所述辅助成分由以下含量的原料组成:CaCO 3 200~1000ppm,Bi 2O 3200~1000ppm,Co 2O 3 200~1000ppm,MoO 3 200~1000ppm。
优选地,在本发明的一些实施例中,所述主成份由以下摩尔百分比的原料组成:52.40mol%的Fe 2O 3,27.20mol%的MnO,20.40mol%的ZnO;按占主成分总量计,所述辅助成分组成为CaCO 3 200ppm,Bi 2O 3 500ppm,Co 2O 3 200ppm,MoO 3 200ppm。
进一步地,本发明还提供了一种前述高磁导率高频高阻抗高居里温度锰锌铁氧体材料的制备方法,所述方法包括以下步骤:
(1)一次球磨混料:按配比分别称取主成分各原料,通过球磨混匀得浆料,对浆料进行喷雾干燥得到粉料;
(2)预烧:将粉料进行预烧,得预烧料;
(3)二次球磨:按配比称取辅助成分添加至预烧料中,加去离子水进行二次球磨得浆料;
(4)喷雾造粒:在二次球磨所得浆料中加入胶水PVA混匀后进行喷雾造粒得颗粒料;
(5)成型:对喷雾造粒后的颗粒料进行压制成型得锰锌铁氧体毛坯;
(6)烧结:将成型后的锰锌铁氧体毛坯放入烧结设备中进行烧结。
进一步地,所述步骤(1)中一次球磨时间为30-40min。
进一步地,所述步骤(2)中预烧温度为700-900℃,预烧时间为170-190min。
进一步地,所述步骤(3)中二次球磨时间为60-90min。
优选地,所述二次球磨料的粒度分布控制在X50:1.2-1.4μm;X99:6.0-8.0μm。
Xb=aμm表示粒径小于aμm的粒径占总体积的b%。上述X50为中位径,是平均粒径的一种表示形式,表示二次砂磨料中小于1.2-1.4μm的颗粒占50%;X99表示二次砂磨料中小于6.0-8.0μm的颗粒占99%。
进一步地,所述步骤(4)中喷雾造粒所得颗粒料的粒径为50-200μm。
进一步地,所述步骤(5)中锰锌铁氧体毛坯密度控制为3.05-3.1g/cm 3
进一步地,所述步骤(6)中烧结包括以下阶段:
(a)一次升温及保温:用8-10h将温度从室温升温至800-1000℃,保温至材料质量不再减少为止,该阶段烧结气氛为空气;
(b)二次升温及保温:用7-9h将温度继续升温至1350-1450℃,在最高温度下保温6-8h,烧结气氛中氧分压控制范围为3-7vol%,其余气氛为不与材料发生反应的保护气氛;
(c)降温:用8-10h将温度降低至1100℃,气氛保持为不同温度的平衡氧分压,在降温过程中,烧结气氛中氧分压控制在0.12-5vol%,其余气氛为不与材料发生反应的保护气氛,且随着温度的降低,氧分压降低;
(d)最终降温:以2.5-3.5℃/min的速率冷却至室温,得高磁导率高频高阻抗高居里温度锰锌铁氧体材料,此阶段烧结气氛中氧分压低于0.12vol%。
作为优选,阶段(c)中,所述不同温度的平衡氧分压按照以下公式的计算:lgPO 2=a-b/T,其中,PO 2为氧分压的大小,a取3~8,b为常数,取14000~15000,T为热力学温度。
本发明特别针对烧结工艺做了分阶段烧结气氛及升温速率、氧分压的控制,必须严格按照上述参数的设计去完成烧结,才能够制得高磁导率高频高阻抗高居里温度锰锌铁氧体材料。
与现有技术相比,本发明的优点如下:
(1)本发明的MnZn铁氧体材料配方中,设计ZnO的摩尔比多于20mol%的高锌配方,可以大大提高磁导率,又通过Fe 2O 3、Co 2O 3和其他几种添加剂的协同增效,相互作用,使其晶粒尺寸增大且生长均匀,使各向异性常数K 1趋近于0,不仅可提高其磁导率,又可以改善材料的温度稳定性,提高材料的居里温度;
(2)本发明制备工艺严格控制加料顺序及工艺参数,采用本发明的烧结方式,可以大规模量产磁芯样品,实现低成本的生产方式,从而实现大规模、低成本、批量化生产高磁导率高频高阻抗高居里温度锰锌铁氧体材料;
(3)采用本发明的配方及工艺制得的锰锌铁氧体材料具有高磁导率高频高阻抗高居里温度特性:初始磁率μi(25℃)≥12000,Tc≥150℃,0.5-1.0MHz的范围内,阻抗系数≥26Ω/mm。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。应当理解,以下描述仅仅用以解释本发明,并不用于限定本发明。
本文中所用的术语“包含”、“包括”、“具有”、“含有”或其任何其它变形,意在覆盖非排它性的包括。例如,包含所列要素的组合物、步骤、方法、制品或装置不必仅限于那些要素,而是可以包括未明确列出的其它要素或此种组合物、步骤、方法、制品或装置所固有的要素。
当量、浓度、或者其它值或参数以范围、优选范围、或一系列上限优选值和下限优选值限定的范围表示时,这应当被理解为具体公开了由任何范围上限或优选值与任何范围下限或优选值的任一配对所形成的所有范围,而不论该范围是否单独公开了。例如,当公开了范围“1至5”时,所描述的范围应被解释为包括范围“1至4”、“1至3”、“1至2”、“1至2和4至5”、“1至3和5”等。当数值范围在本文中被描述时,除非另外说明,否则该范围意图包括其端值和在该范围内的所有整数和分数。
此外,下面所描述的术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不是必须针对相同的实施例或示例。而且,在本发明中,若非特指,所有设备和原料均可从市场购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法,本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
将配比为Fe 2O 3 52.80mol%、MnO 26.90mol%、ZnO 20.30mol%(换算成质量百分比为Fe 2O 3:69.48wt%、Mn 3O 4:16.91wt%、ZnO:13.62wt%)的三种主原料进行一次球磨混合,然后在850℃下进行预烧,在预烧料中添加辅助成分CaCO 3 200ppm、Bi 2O 3 400ppm、Co 2O 3 500ppm、MoO 3 200ppm,混合后通过二次球磨、烘干、造粒、压制成型,最后在推板窑中进行烧结,烧结工艺为:以2℃/min的升温速率加热至1000℃,该阶段烧结气氛为空气,然后以0.8℃/min的升温速率加热至1410℃,保温6h,氧分压浓度控制在5vol%,降温至1100℃后氧分压浓度控制在0.03vol%以下,最后以3℃/min的速率降温至室温。
采用10匝绕线,在3302仪器上测得电压在0.25v,频率在10KHz条件下的磁导率温度特性,在3302仪器上测得电压在0.25v的磁导率频率特性和阻抗频率特性,测试结果见表1-3。
实施例2
将配比为Fe 2O 3 52.00mol%、MnO 27.60mol%、ZnO 20.40mol%(换算成质量百分比为Fe 2O 3:68.80wt%、Mn 3O 4:17.44wt%、ZnO:13.76wt%)的三种主原料进行一次球磨混合,然后在850℃下进行预烧,在预烧料中添加辅助成分CaCO 3 200ppm、Bi 2O 3 400ppm、Co 2O 3 500ppm、MoO 3 200ppm,混合后通过二次球磨、烘干、造粒、压制成型,最后在推板窑中进行烧结,烧结工艺为:以2℃/min的升温速率加热至1000℃,该阶段烧结气氛为空气,然后以0.8℃/min的升温速率加热至1410℃,保温6h,氧分压浓度控制在5vol%,降温至1100℃后氧分压浓度控制在0.03vol%以下,最后以3℃/min的速率降温至室温。
采用10匝绕线,在3302仪器上测得电压在0.25v,频率在10KHz条件下的磁导率温度特性,在3302仪器上测得电压在0.25v的磁导率频率特性和阻 抗频率特性,测试结果见表1-3。
实施例3
采用与实施例2同样配方的毛坯在推板窑中进行排胶烧结,烧结工艺为:以2℃/min的升温速率加热至1000℃,该阶段烧结气氛为空气,然后以1.5℃/min的升温速率加热至1360℃,保温6h,氧分压浓度控制在5vol%,降温至1100℃后氧分压浓度控制在0.03vol%以下,最后以3℃/min的速率降温至室温。
采用10匝绕线,在3302仪器上测得电压在0.25v,频率在10KHz条件下的磁导率温度特性,在3302仪器上测得电压在0.25v的磁导率频率特性和阻抗频率特性,测试结果见表1-3。
实施例4
将配比为Fe 2O 3 52.40mol%、MnO 27.20mol%、ZnO 20.40mol%(换算成质量百分比为Fe2O3:69.14wt%、Mn 3O 4:17.14wt%、ZnO:13.72wt%)的三种主原料进行一次球磨混合,然后在850℃下进行预烧,在预烧料中添加辅助成分CaCO 3 200ppm、Bi 2O 3 400ppm、Co 2O 3 500ppm、MoO 3 200ppm,混合后通过二次球磨、烘干、造粒、压制成型,最后进行烧结,烧结工艺为:以2℃/min的升温速率加热至1000℃,该阶段烧结气氛为空气,然后以0.8℃/min的升温速率加热至1410℃,保温6h,氧分压浓度控制在5vol%,降温至1100℃处氧分压浓度控制在0.03vol%以下,最后以3℃/min的速率降温至室温。
采用10匝绕线,在3302仪器上测得电压在0.25v,频率在10KHz条件下的磁导率温度特性,在3302仪器上测得电压在0.25v的磁导率频率特性和阻抗频率特性,测试结果见表1-3。
实施例5
采用与实施例4同样配方的毛坯在推板窑中进行排胶烧结,烧结工艺为: 以2℃/min的升温速率加热至1000℃,该阶段烧结气氛为空气,然后以0.8℃/min的升温速率加热至1410℃,保温6h,氧分压浓度控制在3vol%,降温至1100℃后氧分压浓度控制在0.03vol%以下,最后以3℃/min的速率降温至室温。
采用10匝绕线,在3302仪器上测得电压在0.25v,频率在10KHz条件下的磁导率温度特性,在3302仪器上测得电压在0.25v的磁导率频率特性和阻抗频率特性,测试结果见表1-3。
实施例6
采用与实施例4同样配方的毛坯在推板窑中进行排胶烧结,烧结工艺为:以2℃/min的升温速率加热至1000℃,该阶段烧结气氛为空气,然后以0.8℃/min的升温速率加热至1410℃,保温6h,氧分压浓度控制在7vol%,降温至1100℃后氧分压浓度控制在0.03vol%以下,最后以3℃/min的速率降温至室温。
采用10匝绕线,在3302仪器上测得电压在0.25v,频率在10KHz条件下的磁导率温度特性,在3302仪器上测得电压在0.25v的磁导率频率特性和阻抗频率特性,测试结果见表1-3。
实施例7
采用实施例4的主成分配方作为目标进行中试,总量由小试的400g扩大到400kg,同样采用实施例4的辅助成分配方,经过一次球磨、喷雾干燥、预烧、砂磨、喷雾造粒、压制成型,最终推板窑中进行排胶烧结。其中在二次砂磨后需要对浆料成分进行补正,从而使其达到目标成分:Fe 2O 3 52.40mol%、MnO 27.20mol%、ZnO 20.40mol%(换算成质量百分比为Fe 2O 3:69.14wt%、Mn 3O 4:17.14wt%、ZnO:13.72wt%)。烧结工艺为:以2℃/min的升温速率加热至1000℃,该阶段烧结气氛为空气,然后以0.8℃/min的升温速率加热至 1410℃,保温6h,氧分压浓度控制在5vol%,降温至1100℃后氧分压浓度控制在0.03vol%以下,最后以3℃/min的速率降温至室温。
采用10匝绕线,在3302仪器上测得电压在0.25v,频率在10KHz条件下的磁导率温度特性,在3302仪器上测得电压在0.25v的磁导率频率特性和阻抗频率特性,测试结果见表1-3。
对比例1
在实施例4的基础上,保证主配方为Fe 2O 3 52.40mol%、MnO 27.20mol%、ZnO 20.40mol%(换算成质量百分比为Fe 2O 3:69.14wt%、Mn3O4:17.14wt%、ZnO:13.72wt%)的三种主原料进行一次球磨混合,然后在850℃下进行预烧,在预烧料中添加辅助成分CaCO 3 200ppm、Bi 2O 3 500ppm、Co 2O 3 200ppm、MoO 3 200ppm,其余工艺与实施例4相同。
采用10匝绕线,在3302仪器上测得电压在0.25v,频率在10KHz条件下的磁导率温度特性,在3302仪器上测得电压在0.25v的磁导率频率特性和阻抗频率特性,测试结果见表1-3。
结果显示:室温下10KHz起始磁导率μi达到了12000以上,居里温度也达到了150℃,磁导率的比温度系数a μ1(*10 -6)为0.0305,表明磁导率随温度变化很小,并且磁导率在200KHZ的条件下还能保持在10000以上。
对比例2
在实施例4的基础上,降低Fe 2O 3的含量,增加ZnO的含量,主配方为Fe 2O 3 52.30mol%、MnO 27.00mol%、ZnO 20.70mol%(换算成质量百分比为Fe 2O 3:69.04wt%、Mn 3O 4:17.04wt%、ZnO:13.92wt%)然后在850℃下进行预烧,在预烧料中添加辅助成分CaCO 3 200ppm、Bi 2O 3 500ppm、Co 2O 3 750ppm、MoO 3 200ppm,其余工艺与实施例4相同。
采用10匝绕线,在3302仪器上测得电压在0.25v,频率在10KHz条件下 的磁导率温度特性,在3302仪器上测得电压在0.25v的磁导率频率特性和阻抗频率特性,测试结果见表1-3。
结果显示:室温下10KHz起始磁导率μi虽然达到了13000以上,但是居里温度不能达到150℃。
对比例3
采用对比例1的配方作为目标进行中试,总量由小试的400g扩大到400kg,同样采用对比例1的辅助成分配方,经过一次球磨、喷雾干燥、预烧、砂磨、喷雾造粒、压制成型,最终推板窑中进行排胶烧结。其中在二次砂磨后需要对浆料成分进行补正,从而使其达到目标成分:Fe 2O 3 52.40mol%、MnO 27.20mol%、ZnO 20.40mol%(换算成质量百分比为Fe 2O 3:69.14wt%、Mn3O4:17.14wt%、ZnO:13.72wt%)。烧结工艺为:以2℃/min的升温速率加热至1000℃,该阶段烧结气氛为空气,然后以0.8℃/min的升温速率加热至1410℃,保温6h,氧分压浓度控制在5vol%,降温至1100℃后氧分压浓度控制在0.03vol%以下,最后以3℃/min的速率降温至室温。
采用10匝绕线,在3302仪器上测得电压在0.25v,频率在10KHz条件下的磁导率温度特性,在3302仪器上测得电压在0.25v的磁导率频率特性和阻抗频率特性,测试结果见表1-3。
结果显示:中试投料完全能够达到小试对比例1的磁性能,表明可以按照对比例3的配方和工艺进行量产。
对比例4
采用对比例3中试后的颗粒料进行压环烧结,放到钟罩炉中烧结,烧结工艺为:以0.7℃/min的升温速率加热至950℃排胶,该阶段烧结气氛为空气,然后以2℃/min的升温速率加热至1370(该阶段烧结气氛为氮气)保温5.5h(该阶段烧结气氛中氧分压为21vol%),接着再保温1h(该阶段烧结气氛中 氧分压为5vol%),降温至1200℃处氧分压设为2vol%,保温1h,最终以3℃/min的速率降至室温。
采用10匝绕线,在3302仪器上测得电压在0.25v,频率在10KHz条件下的磁导率温度特性,在3302仪器上测得电压在0.25v的磁导率频率特性和阻抗频率特性,测试结果见表1-3。
结果显示:钟罩炉烧结可以改善阻抗的频率特性,但是钟罩炉烧结的效率比推板窑炉低,并且生产成本也比推板窑高。
性能测试结果
表1不同温度磁导率对比表
Figure PCTCN2021116619-appb-000001
表2不同频率磁导率对比表
频率(KHZ) 10 100 200 300
实施例1 7607 7051 7121 5960
实施例2 7742 7542 7335 6005
实施例3 6097 5864 5782 4958
实施例4 11474 11436 10036 6899
实施例5 9978 9566 8769 6200
实施例6 10625 10442 9046 6270
实施例7 11265 11226 9763 6835
对比例1 12019 12226 10117 6977
对比例2 13194 13097 10669 7334
对比例3 11913 12252 10195 7047
对比例4 12028 12142 9967 6838
表3不同频率阻抗(Ω/mm)对比表
频率(KHZ) 300 500 800 1000
实施例1 ≥14 ≥17 ≥16 ≥15
实施例2 ≥15 ≥20 ≥21 ≥21
实施例3 ≥15 ≥20 ≥21 ≥21
实施例4 ≥20 ≥24 ≥24 ≥23
实施例5 ≥18 ≥21 ≥20 ≥20
实施例6 ≥19 ≥23 ≥22 ≥22
实施例7 ≥21 ≥24 ≥24 ≥23
对比例1 ≥24 ≥28 ≥27 ≥26
对比例2 ≥23 ≥28 ≥27 ≥26
对比例3 ≥24 ≥28 ≥27 ≥26
对比例4 ≥24 ≥30 ≥31 ≥30
本领域的技术人员容易理解,以上所述仅为本发明的实施例而已(所述对比例的技术方案只要落入发明内容内也是本申请拟保护的技术方案,之所以表述为对比例是为了对比说明),并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料,其特征在于,所述高磁导率高频高阻抗高居里温度锰锌铁氧体材料由主成份和辅助成分组成,所述主成份由以下摩尔百分比的原料组成:52~54mol%的Fe 2O 3,18~22mol%的ZnO,其余为MnO;以主成份总量为基准,所述辅助成分由以下含量的原料组成:CaCO 3200~1000ppm,Bi 2O 3200~1000ppm,Co 2O 3200~1000ppm,MoO 3200~1000ppm。
  2. 根据权利要求1所述的高磁导率高频高阻抗高居里温度锰锌铁氧体材料,其特征在于,所述主成份由以下摩尔百分比的原料组成:52.40mol%的Fe 2O 3,27.20mol%的MnO,20.40mol%的ZnO;按占主成分总量计,所述辅助成分组成为CaCO 3200ppm,Bi 2O 3500ppm,Co 2O 3200ppm,MoO 3200ppm。
  3. 根据权利要求1所述的高磁导率高频高阻抗高居里温度锰锌铁氧体材料,其特征在于,所述高磁导率高频高阻抗高居里温度是指所述锰锌铁氧体材料有以下特点:(1)起始磁导率μi≥12000;(2)居里温度Tc≥150℃;(3)200KHz条件下,起始磁导率μi≥10000;(4)0.5-1MHz条件下,阻抗系数≥26Ω/mm。
  4. 权利要求1-3任一项所述高磁导率高频高阻抗高居里温度锰锌铁氧体材料的制备方法,其特征在于,所述方法包括以下步骤:
    (1)一次球磨混料:按配比分别称取主成分各原料,通过球磨混匀得浆料,对浆料进行喷雾干燥得到粉料;
    (2)预烧:将粉料进行预烧,得预烧料;
    (3)二次球磨:按配比称取辅助成分添加至预烧料中,加去离子水进行二次球磨得浆料;
    (4)喷雾造粒:在二次球磨所得浆料中加入胶水PVA混匀后进行喷雾造 粒得颗粒料;
    (5)成型:对喷雾造粒后的颗粒料进行压制成型得锰锌铁氧体毛坯;
    (6)烧结:将成型后的锰锌铁氧体毛坯放入烧结设备中进行烧结。
  5. 根据权利要求4所述高磁导率高频高阻抗高居里温度锰锌铁氧体材料的制备方法,其特征在于,所述步骤(1)中一次球磨时间为30-40min。
  6. 根据权利要求4所述高磁导率高频高阻抗高居里温度锰锌铁氧体材料的制备方法,其特征在于,所述步骤(2)中预烧温度为700-900℃,预烧时间为170-190min。
  7. 根据权利要求4所述高磁导率高频高阻抗高居里温度锰锌铁氧体材料的制备方法,其特征在于,所述步骤(3)中二次球磨时间为60-90min;优选地,所述二次球磨料的粒度分布控制在X50:1.2-1.4μm;X99:6.0-8.0μm。
  8. 根据权利要求4所述高磁导率高频高阻抗高居里温度锰锌铁氧体材料的制备方法,其特征在于,所述步骤(4)中喷雾造粒所得颗粒料的粒径为50-200μm。
  9. 根据权利要求4所述高磁导率高频高阻抗高居里温度锰锌铁氧体材料的制备方法,其特征在于,所述步骤(5)中锰锌铁氧体毛坯密度控制为3.05-3.1g/cm 3
  10. 根据权利要求4所述高磁导率高频高阻抗高居里温度锰锌铁氧体材料的制备方法,其特征在于,所述步骤(6)中烧结包括以下阶段:
    (a)一次升温及保温:用8-10h将温度从室温升温至800-1000℃,保温至材料质量不再减少为止,该阶段烧结气氛为空气;
    (b)二次升温及保温:用7-9h将温度继续升温至1350-1450℃,在最高温度下保温6-8h,烧结气氛中氧分压控制范围为3-7vol%,其余气氛为不与材料发生反应的保护气氛;
    (c)降温:用8-10h将温度降低至1100℃,气氛保持为不同温度的平衡氧分压,在降温过程中,烧结气氛中氧分压控制在0.12-5vol%,其余气氛为不与材料发生反应的保护气氛,且随着温度的降低,氧分压降低;
    (d)最终降温:以2.5-3.5℃/min的速率冷却至室温,得高磁导率高频高阻抗高居里温度锰锌铁氧体材料,此阶段烧结气氛中氧分压低于0.12vol%;
    作为优选,阶段(c)中,所述不同温度的平衡氧分压按照以下公式的计算:lgPO 2=a-b/T,其中,PO 2为氧分压的大小,a取3~8,b为常数,取14000~15000,T为热力学温度。
PCT/CN2021/116619 2020-11-03 2021-09-06 一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法 WO2022095577A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021005797.9T DE112021005797T5 (de) 2020-11-03 2021-09-06 Mangan-Zink-Ferritmaterial mit hoher magnetischer Permeabilität, hoher Frequenz, hoher Impedanz und hoher Curie-Temperatur und Herstellungsverfahren dafür

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011207677.4 2020-11-03
CN202011207677.4A CN112321293A (zh) 2020-11-03 2020-11-03 一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2022095577A1 true WO2022095577A1 (zh) 2022-05-12

Family

ID=74324667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116619 WO2022095577A1 (zh) 2020-11-03 2021-09-06 一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法

Country Status (3)

Country Link
CN (1) CN112321293A (zh)
DE (1) DE112021005797T5 (zh)
WO (1) WO2022095577A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196958A (zh) * 2022-06-02 2022-10-18 江苏信维感应材料科技有限公司 一种高频宽温MnZn铁氧体及其制备方法
CN115536379A (zh) * 2022-10-24 2022-12-30 苏州天源磁业股份有限公司 一种高频低损软磁铁氧体材料及其制备方法和应用
CN115745592A (zh) * 2022-11-17 2023-03-07 海宁联丰磁业股份有限公司 一种宽频高Tc高磁导率锰锌铁氧体材料及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112321293A (zh) * 2020-11-03 2021-02-05 横店集团东磁股份有限公司 一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法
CN113506667A (zh) * 2021-06-28 2021-10-15 宿迁菲莱特电子制品有限公司 一种小型超薄片状磁芯及其生产工艺
CN113443906B (zh) * 2021-07-26 2022-10-14 横店集团东磁股份有限公司 一种Mn-Zn铁氧体材料及其制备方法
CN115010480A (zh) * 2022-07-04 2022-09-06 娄底市玖鑫电子科技有限公司 一种锰锌铁氧体kah100材料制备方法
CN115132442A (zh) * 2022-07-12 2022-09-30 广州大学 一种超高磁饱和锰锌铁氧体磁芯材料及其制备方法
CN115710020A (zh) * 2022-11-21 2023-02-24 安徽龙磁金属科技有限公司 一种富铁配方锰锌铁氧体粉料的制备工艺
CN118184327A (zh) * 2022-12-13 2024-06-14 横店集团东磁股份有限公司 镍镁锌铜铁氧体及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859621A (zh) * 2009-04-08 2010-10-13 广东江粉磁材股份有限公司 一种高磁导率MnZn铁氧体材料及其制造方法
CN101870578A (zh) * 2010-04-14 2010-10-27 湖北凯立德新材料有限公司 高磁导率12000μi宽温锰锌铁氧体材料及其制备方法
CN107555984A (zh) * 2017-10-10 2018-01-09 浙江大学 一种高频宽温低损耗MnZn铁氧体的烧结过程气氛控制方法
CN112321293A (zh) * 2020-11-03 2021-02-05 横店集团东磁股份有限公司 一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011791A (zh) * 2012-12-14 2013-04-03 常熟市众盈电子有限公司 高磁导率铁氧体材料
CN105541316B (zh) * 2015-12-16 2017-12-22 横店集团东磁股份有限公司 一种抗emi用锰锌铁氧体材料及其制备方法
CN106747396B (zh) 2016-12-29 2020-04-14 天通控股股份有限公司 一种汽车电子用高磁导率锰锌铁氧体材料及其制备方法
CN111056830B (zh) 2019-12-30 2021-11-30 苏州冠达磁业有限公司 宽温高频高阻抗高磁导率锰锌铁氧体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859621A (zh) * 2009-04-08 2010-10-13 广东江粉磁材股份有限公司 一种高磁导率MnZn铁氧体材料及其制造方法
CN101870578A (zh) * 2010-04-14 2010-10-27 湖北凯立德新材料有限公司 高磁导率12000μi宽温锰锌铁氧体材料及其制备方法
CN107555984A (zh) * 2017-10-10 2018-01-09 浙江大学 一种高频宽温低损耗MnZn铁氧体的烧结过程气氛控制方法
CN112321293A (zh) * 2020-11-03 2021-02-05 横店集团东磁股份有限公司 一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H.SHOKROLLAHI ET AL.: "Influence of additives on the magnetic properties, microstructure and densification of Mn-Zn soft ferrites", MATERIALS SCIENCE AND ENGINEERING: B, vol. 141, no. 3, 15 August 2007 (2007-08-15), pages 91 - 107, XP022207583, DOI: 10.1016/j.mseb.2007.06.005 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196958A (zh) * 2022-06-02 2022-10-18 江苏信维感应材料科技有限公司 一种高频宽温MnZn铁氧体及其制备方法
CN115196958B (zh) * 2022-06-02 2023-08-15 江苏信维感应材料科技有限公司 一种高频宽温MnZn铁氧体及其制备方法
CN115536379A (zh) * 2022-10-24 2022-12-30 苏州天源磁业股份有限公司 一种高频低损软磁铁氧体材料及其制备方法和应用
CN115536379B (zh) * 2022-10-24 2023-09-05 苏州天源磁业股份有限公司 一种高频低损软磁铁氧体材料及其制备方法和应用
CN115745592A (zh) * 2022-11-17 2023-03-07 海宁联丰磁业股份有限公司 一种宽频高Tc高磁导率锰锌铁氧体材料及其制备方法
CN115745592B (zh) * 2022-11-17 2023-11-17 海宁联丰磁业股份有限公司 一种宽频高Tc高磁导率锰锌铁氧体材料及其制备方法

Also Published As

Publication number Publication date
DE112021005797T5 (de) 2023-08-24
CN112321293A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
WO2022095577A1 (zh) 一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法
KR100639770B1 (ko) MnZn페라이트의 제조 방법
CN106747396B (zh) 一种汽车电子用高磁导率锰锌铁氧体材料及其制备方法
CN108610037B (zh) 一种宽温高叠加高居里温度的锰锌高磁导率材料及其制备方法
KR20160033037A (ko) 전파 흡수체용 페라이트 조성물 및 전파 흡수체
CN111233452A (zh) 一种高频高阻抗的贫铁锰锌铁氧体及其制备方法
CN107089828B (zh) 一种宽温宽频低比磁导率温度系数的锰锌高磁导率材料及其制备方法
JP2004247603A (ja) MnZn系フェライト電波吸収体
JP2004217452A (ja) フェライト材料およびその製造方法
JP2003068515A (ja) Mn−Znフェライトおよび巻き線部品
JP4158081B2 (ja) 軟磁性六方晶フェライト複合粒子粉末、該軟磁性六方晶フェライト複合粒子粉末を用いたグリーンシート並びに軟磁性六方晶フェライト焼結体
JP3597673B2 (ja) フェライト材料
JP2005330126A (ja) MnZnフェライト及びその製造方法
KR101714895B1 (ko) 전파 흡수체용 페라이트 조성물 및 전파 흡수체
TW200423159A (en) Mn-Zn ferrite
CN112645702B (zh) 一种宽频宽温高磁导率Mn-Zn铁氧体材料及其制备方法与应用
JP2004247602A (ja) MnZn系フェライト電波吸収体
CN114773047A (zh) 一种宽频高阻抗的锰锌铁氧体材料及其制备方法和应用
WO2022070634A1 (ja) MnZn系フェライト、及びその製造方法
TW200416754A (en) Mn-Zn ferrite
CN108017382B (zh) MnZn铁氧体材料及其制备方法
JP2000331816A (ja) 六方晶系z型バリウムフェライトとその製造方法
JPH11307336A (ja) 軟磁性フェライトの製造方法
JPH1050512A (ja) 高透磁率酸化物磁性材料およびその製造方法
JP7160720B2 (ja) 耐熱性高透磁率MnZnフェライト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888276

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21888276

Country of ref document: EP

Kind code of ref document: A1