WO2022089668A1 - 一种负载铂的花状铁铈复合材料及其制备方法与在低温热催化处理甲苯中的应用 - Google Patents

一种负载铂的花状铁铈复合材料及其制备方法与在低温热催化处理甲苯中的应用 Download PDF

Info

Publication number
WO2022089668A1
WO2022089668A1 PCT/CN2021/140638 CN2021140638W WO2022089668A1 WO 2022089668 A1 WO2022089668 A1 WO 2022089668A1 CN 2021140638 W CN2021140638 W CN 2021140638W WO 2022089668 A1 WO2022089668 A1 WO 2022089668A1
Authority
WO
WIPO (PCT)
Prior art keywords
flower
iron
composite material
platinum
cerium
Prior art date
Application number
PCT/CN2021/140638
Other languages
English (en)
French (fr)
Inventor
路建美
陈冬赟
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2022089668A1 publication Critical patent/WO2022089668A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention belongs to the technical field of nano-composite materials, and in particular relates to a platinum-loaded flower-shaped iron-cerium composite material, a preparation method thereof, and an application in low-temperature thermal catalytic treatment of toluene.
  • VOCs volatile organic compounds
  • concentration is low and difficult to remove completely, and it can form secondary pollutants, which has become the top priority of air treatment.
  • Toluene is one of the common indoor volatile organic compounds.
  • the emission of toluene gas mainly comes from building materials, interior decoration materials and household and office supplies; the incomplete combustion of household fuels and tobacco leaves is very harmful to human body. Pollution is very important for future development.
  • noble metal catalysts are often used for low-temperature catalytic oxidation treatment of toluene, and in practical applications, noble metals usually need a carrier to support to achieve better dispersion and better stability.
  • Commonly used carriers are CeO 2 , MnO 2 , Co 3 O 4 and so on.
  • the carrier plays an important role in the flow of electrons in the catalytic process.
  • bimetallic oxides have become a good choice. It utilizes the interaction between bimetals, which can better promote the transfer of electrons, thereby effectively improving the catalytic effect.
  • Iron oxide is a kind of easy-to-prepare and low-cost carrier, but its low-temperature thermal catalytic activity needs to be improved.
  • cerium oxide has a good ability to store and release oxygen.
  • the preparation methods of how to combine the advantages of the two and uniformly support the metal nanoparticles on their surfaces are relatively complicated, and how to realize the catalysis of the catalyst at low temperature, all of which need to be solved urgently. Therefore, in view of the current situation, it is necessary to develop an effective method and supported catalyst.
  • the purpose of the present invention is to provide a platinum-loaded flower-shaped iron-cerium composite material and a preparation method thereof.
  • the dipping method is used to load platinum nanoparticles on the flower-shaped iron-cerium composite material, so as to achieve the purpose of treating toluene gas at low temperature and high efficiency.
  • the present invention adopts the following specific technical scheme: a platinum-loaded flower-shaped iron-cerium composite material, the preparation method comprising the following steps: (1) calcining after solvothermal reaction of iron salt to obtain flower-shaped porous iron oxide (2) In the presence of a chelating agent, the flower-like iron oxide is reacted with a cerium salt in a solvent to obtain a flower-like iron-cerium composite material; (3) The flower-like iron-cerium composite material is mixed with a solution containing a platinum salt and then the solvent is removed , and then calcined at a low temperature to obtain a platinum-loaded flower-like iron-cerium composite material.
  • a method for low-temperature thermal catalytic treatment of toluene comprising the following steps: (1) calcining after solvothermal reaction of iron salts to obtain flower-shaped porous iron oxide; (2) in the presence of a chelating agent, mixing the flower-shaped iron oxide in a solvent with cerium salt reaction to obtain a flower-like iron-cerium composite material; (3) mixing the flower-like iron-cerium composite material with a solution containing platinum salt, removing the solvent, and then calcining at a low temperature to obtain a platinum-loaded flower-like iron-cerium composite material; (4) ) The platinum-loaded flower-like iron-cerium composite material is placed in an environment containing toluene, and heated at a low temperature to complete the toluene treatment.
  • the iron salt is iron sulfate hydrate
  • the cerium salt is cerium nitrate hexahydrate
  • the platinum salt is chloroplatinic acid
  • the solvent containing the platinum salt is water
  • the chelating agent is hexamethylenetetramine (HMT).
  • the iron salt is mixed in ethanol, and then a solvothermal reaction is performed; preferably, the temperature of mixing iron sulfate hydrate and ethanol is 50 to 60° C., and the time is 3 to 4 hours. More preferably, iron sulfate hydrate The temperature at which the compound is mixed with ethanol is 50 °C, and the time is 3 hours; the temperature of the solvothermal reaction is 140 to 160 °C, and the time is 20 to 30 hours, preferably, the temperature of the solvothermal reaction is 150 °C, and the time is 24 hours; The calcination of the obtained product is carried out in an air atmosphere at a temperature of 600-700°C and a time of 10 minutes.
  • the heating rate is 10°C/min
  • the temperature is 700°C and the time is 10 minutes.
  • the dosage ratio of ferric sulfate hydrate and ethanol is (0.12-0.13 g): (28-32 mL), preferably, the dosage ratio of ferric sulfate hydrate and ethanol is 0.12 g: 30 mL.
  • the solvent is the mixed solution of water and ethanol, and the volume ratio of water and ethanol is 1: 1; the temperature of the reaction of flower-shaped iron oxide and cerium salt is 60 ⁇ 80 °C, and the time is 3 ⁇ 4 hours, preferably, The reaction temperature was 70°C and the time was 3 hours.
  • the chelating agent is added in the form of a solution, preferably, the concentration of the chelating agent solution is 0.02 g/mL; the molar ratio of iron and cerium elements is (1-6):1.
  • the low-temperature calcination temperature is 200-250°C, and the time is 2-3 hours.
  • the low-temperature calcination temperature is 200°C
  • the heating rate is 2°C/min
  • the time is 2 hours.
  • the mass fraction of platinum element in the iron-cerium composite is 0.5-3 wt%.
  • the present invention firstly adopts solvothermal method, and then prepares a porous flower-like iron oxide by means of rapid heating and calcination, which has uniform pore size, controllable structure, and good repeatability, and then further compounding of iron element and cerium element promotes
  • the electron transfer between elements in the reaction process makes it a good carrier to support platinum nanoparticles.
  • simple low-temperature calcination is adopted, and platinum particles are directly loaded on the surface of the flower-like iron-cerium composite material.
  • the resulting platinum nanoparticles are small in size and uniformly loaded on the surface of the catalyst, which is conducive to low-temperature catalytic oxidation of toluene .
  • the flower-shaped iron-cerium composite material quantitatively loaded with platinum nanoparticles is put into an environment with a certain concentration of toluene, heated and catalyzed by a fixed-bed reactor, and the complete catalysis is found by GC-MS test.
  • the temperature of oxidizing toluene can realize low-temperature catalytic oxidation of toluene.
  • the invention further discloses the application of the above-mentioned platinum nano-particle-loaded flower-shaped iron-cerium composite material in low-temperature catalytic oxidation of toluene.
  • the above-mentioned flower-shaped iron-cerium composite material loaded with platinum nanoparticles is placed in an environment containing toluene, and a fixed-bed reactor is used to complete the treatment of toluene.
  • the optimum temperature for oxidizing toluene gas is 195 °C.
  • the flower-shaped iron-cerium composite material loaded with platinum nanoparticles disclosed in the present invention has a uniform pore size and a controllable structure, and the formed platinum nanoparticles have a small particle size and are uniformly loaded on the catalyst surface. , is a good supported catalyst material.
  • the preparation method of the platinum nanoparticle-loaded flower-like iron-cerium composite material disclosed in the present invention is simple, and at the same time, the cost is low, the raw materials are readily available, and the catalytic performance is excellent, which can realize the catalytic oxidation of toluene at a lower temperature, and has better performance. Economical practicality.
  • Figure 1 is a transmission electron microscope (TEM) image of flower-like Fe 2 O 3 .
  • Figure 2 is a scanning electron microscope (SEM) image of flower-like Fe 2 O 3 .
  • Figure 3 is a transmission electron microscope (TEM) image of flower-like Fe 2 O 3 -CeO 2 .
  • Figure 4 is a scanning electron microscope (SEM) image of flower-like Fe 2 O 3 -CeO 2 .
  • Figure 5 is a transmission electron microscope (TEM) image of the Pt/Fe 2 O 3 -CeO 2 composite.
  • Figure 6 is a scanning electron microscope (SEM) image of the Pt/Fe 2 O 3 -CeO 2 composite.
  • Figure 7 is a graph showing the thermocatalytic effect of flower-like iron-cerium composites on toluene gas.
  • Figure 8 is a graph showing the thermocatalytic effect of the flower-like iron-cerium composites loaded with platinum nanoparticles on toluene gas.
  • Figure 9 is a scanning electron microscope (SEM) image of hexagonal Fe 2 O 3 .
  • FIG. 10 is a comparison diagram of the thermocatalytic effect of flower-shaped Fe 2 O 3 and hexagonal Fe 2 O 3 on toluene gas.
  • the preparation method of a flower-like iron-cerium composite material supporting platinum nanoparticles of the present invention is as follows: (1) adding ferric sulfate hydrate into anhydrous ethanol, mixing and performing a solvothermal reaction, then washing and drying the obtained product and then calcining , to obtain flower-shaped porous iron oxide; (2) disperse flower-shaped iron oxide in a mixed solution of water and ethanol, add a certain amount of cerium nitrate hexahydrate and HMT solution, and fully stir and react at a certain temperature to obtain flower-shaped iron oxide cerium composite material; (3) soaking the flower-like iron-cerium composite material in a solution containing platinum salt, removing the solvent after stirring, and then calcining at a low temperature to obtain a platinum-loaded flower-like iron-cerium composite material.
  • Example 1 Preparation of flower-shaped porous iron oxide, the specific steps are as follows: Disperse 0.12g of ferric sulfate hydrate "CAS No.: 15244-10-7" in 30mL of absolute ethanol, place it in an environment of 50 ° C, and stir it conventionally 3h, then the obtained light yellow dispersion was transferred to a 50 mL autoclave, reacted at 150°C for 24h, naturally cooled to room temperature, the obtained light yellow powder was washed twice with ethanol, and dried at 60°C for 12h, then Transfer it to a muffle furnace, raise the temperature from room temperature to 700°C at a heating rate of 10°C/min, hold for 10 minutes, and naturally cool to room temperature to obtain flower-like porous iron oxide (flower-like Fe 2 O 3 ).
  • Figure 1 is a TEM image of the flower-shaped Fe 2 O 3
  • Figure 2 is a SEM image of the flower-shaped Fe 2 O 3 . From the figure, it can be seen that the flower-shaped iron oxide has a better morphology and a uniform pore structure.
  • Embodiment 2 The preparation of flower-shaped iron-cerium composite material, the specific steps are as follows: 0.15g flower-shaped Fe 2 O 3 and 0.27g hexahydrate cerium nitrate (the molar ratio of iron element to cerium element is 3: 1) are dispersed in 15mL of water and 15mL of ethanol, conventional ultrasonic dispersion for 15min, followed by adding 15mL of 0.02g/mL HMT aqueous solution, the mixed solution was placed in the environment of 70 °C for 3h, cooled to room temperature and washed three times with deionized water and ethanol respectively , and dried at 60 °C for 12 h to obtain flower-like iron-cerium composites.
  • Figure 3 is a TEM image of the flower-shaped iron-cerium composite material
  • Figure 4 is a SEM image of the flower-shaped iron-cerium composite material. It can be seen from the figure that the iron oxide and the cerium oxide are successfully combined.
  • Example 3 The preparation of the platinum-loaded flower-like iron-cerium composite material, the specific steps are as follows: 0.15 g flower-like iron-cerium composite material and an aqueous solution of chloroplatinic acid (the mass fraction of platinum element in the iron-cerium composite is 1 wt% ) mixing, conventional ultrasonic dispersion for 2 h, and then the solvent was removed by evaporation at a temperature of 80 °C; the product was then calcined at low temperature in an air atmosphere at a heating rate of 2 °C/min (from room temperature to 200 °C), and the temperature was At 200 °C for 2 h, a platinum-loaded flower-like iron-cerium composite material with a larger specific surface area and a more uniform distribution of nanoparticles was obtained by calcining.
  • chloroplatinic acid the mass fraction of platinum element in the iron-cerium composite is 1 wt%
  • FIG. 5 is a TEM image of the platinum-loaded flower-shaped iron-cerium composite material
  • FIG. 6 is a SEM image of the platinum-loaded flower-shaped iron-cerium composite material. It can be seen from the figure that the platinum particles were successfully loaded on the catalyst surface, and the distribution of metal nanoparticles was relatively uniform.
  • the thermal catalysis condition of the toluene gas in the present embodiment is: the toluene concentration is 50 ppm, the amount of the catalyst is 50 mg, and the catalyst is fixed in the fixed-bed reactor by the U-shaped pipe Above, the catalytic effect of the composite material on toluene gas under heating conditions was analyzed by gas chromatography.
  • FIG. 7 is a graph showing the thermocatalytic effect of the flower-shaped iron-cerium composite material on toluene gas
  • FIG. 8 is a graph showing the thermocatalytic effect of the platinum-loaded flower-shaped iron-cerium composite material on toluene gas.
  • the present invention can be applied to the conversion of toluene at lower temperature.
  • Toluene pollution in the air mainly comes from building materials, interior decoration materials, daily life and office supplies, outdoor industrial waste gas, automobile exhaust, photochemical smog, etc.
  • the specific catalytic effect of toluene is analyzed by gas chromatography.
  • the calculation method of toluene conversion rate is as follows Equation (1): .
  • C0 and C are the initial and tested concentrations of toluene in the experiment (tested every 15 min), respectively.
  • the platinum nanoparticles can be successfully loaded on the surface of the flower-shaped iron-cerium composite catalyst using the technical solution of the present invention, and the distribution is relatively uniform, and the catalytic activity for toluene is relatively good.
  • Using the iron-cerium complex as a carrier is beneficial to the stability of the catalyst, and at the same time, it also greatly reduces the production cost of the catalyst.
  • the ordered pore structure of the catalyst is also conducive to the adsorption and catalysis. The catalytic oxidation of p-toluene at low temperature has good application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

提供一种负载铂的花状铁铈复合材料,制备方法,及其在低温热催化处理甲苯中的应用。所述负载铂的花状铁铈复合材料的制备方法包括:将铁盐溶剂热反应后煅烧,得到花状多孔氧化铁;螯合剂存在下,将花状氧化铁在溶剂中与铈盐反应,得到花状铁铈复合材料;将花状铁铈复合材料与含有铂盐的溶液混合后去除溶剂,再经过低温煅烧得到负载铂的花状铁铈复合材料。所述负载铂的花状铁铈复合材料在低温热催化处理甲苯中的应用包括:将负载铂的花状铁铈复合材料置入含有甲苯的环境中,低温加热,完成甲苯的处理。其中,利用固定床反应器完成甲苯的处理;优选的,低温完全催化氧化甲苯气体的最佳温度为195℃。

Description

一种负载铂的花状铁铈复合材料及其制备方法与在低温热催化处理甲苯中的应用 技术领域
本发明属于纳米复合材料技术领域,具体涉及一种负载铂的花状铁铈复合材料及其制备方法与在低温热催化处理甲苯中的应用。
背景技术
随着经济社会的迅速发展,空气污染日益严重,给人类以及动植物带来了极大危害,而其中的挥发性有机化合物VOCs(如:甲醛、乙醛、苯、甲苯、二甲苯等)因种类繁多,浓度较低而难以彻底去除,而且能形成二次污染物,而成为空气治理的重中之重。甲苯是室内常见挥发性有机物之一,甲苯气体的排放主要来自建筑材料、室内装饰材料和生活及办公用品;家用燃料和烟叶的不完全燃烧等,对人体的危害十分严重,因此处理甲苯气体的污染对未来的发展十分重要。通常,贵金属型催化剂常被用于低温催化氧化处理甲苯,而在实际应用中,贵金属通常需要载体来支撑,以实现更好的分散以及更好的稳定性。常用的载体有CeO 2, MnO 2, Co 3O 4等。载体对于催化过程中电子的流动起了重要的作用,为了提升催化效果及经济性,双金属氧化物成为了一种很好的选择。它利用双金属之间的相互作用,可以更好的促进电子的转移,从而有效提升催化效果。
氧化铁是一类方便制备且价格低廉的载体,但是其低温热催化的活性还有待提高,而氧化铈作为我国储量丰富的稀土材料,具有良好的储存释放氧的能力。现有技术对于如何将两者的优点结合,并将金属纳米粒子均一负载其表面的制备方法都相对复杂,还有如何实现催化剂在低温下催化,这些都亟待解决。因此,针对现状,很有必要研发一种有效的方法和负载型催化剂。
技术问题
本发明的目的是提供一种负载铂的花状铁铈复合材料及其制备方法,采用浸渍法,将铂纳米粒子负载到花状铁铈复合材料上,以实现低温高效处理甲苯气体的目的。
技术解决方案
为了达到上述目的,本发明采用如下具体技术方案:一种负载铂的花状铁铈复合材料,其制备方法包括以下步骤:(1)将铁盐溶剂热反应后煅烧,得到花状多孔氧化铁;(2)螯合剂存在下,将花状氧化铁在溶剂中与铈盐反应,得到花状铁铈复合材料;(3)将花状铁铈复合材料与含有铂盐的溶液混合后去除溶剂,再经过低温煅烧得到负载铂的花状铁铈复合材料。
一种低温热催化处理甲苯的方法,包括以下步骤:(1)将铁盐溶剂热反应后煅烧,得到花状多孔氧化铁;(2)螯合剂存在下,将花状氧化铁在溶剂中与铈盐反应,得到花状铁铈复合材料;(3)将花状铁铈复合材料与含有铂盐的溶液混合后去除溶剂,再经过低温煅烧得到负载铂的花状铁铈复合材料;(4)将负载铂的花状铁铈复合材料置入含有甲苯的环境中,低温加热,完成甲苯的处理。
本发明中,铁盐为硫酸铁水合物;铈盐为六水合硝酸铈;铂盐为氯铂酸,含有铂盐的溶剂为水;螯合剂为六亚甲基四胺(HMT)。
本发明中,将铁盐在乙醇中混合,再进行溶剂热反应;优选的,硫酸铁水合物与乙醇混合的温度为50~60℃,时间为3~4小时,进一步优选的,硫酸铁水合物与乙醇混合的温度为50℃,时间为3小时;溶剂热反应的温度为140~160℃,时间为20~30小时,优选的,溶剂热反应的温度为150℃,时间为24小时;所得产物的煅烧在空气气氛中进行,温度为600~700℃,时间为10min,优选的,升温速率为10℃/min,温度为700℃,时间为10min。硫酸铁水合物与乙醇的用量比为(0.12~0.13g):(28~32mL),优选的,硫酸铁水合物与乙醇的用量比为0.12g : 30mL。
本发明中,溶剂为水和乙醇的混合溶液,水和乙醇的体积比为1 : 1;花状氧化铁与铈盐反应的温度为60~80℃,时间为3~4小时,优选的,反应的温度为70℃,时间为3小时。螯合剂以溶液形式加入,优选的,螯合剂溶液浓度为0.02g/mL;铁和铈元素的摩尔比为(1~6): 1。
本发明中,低温煅烧温度为200~250℃,时间为2~3小时,优选的,低温煅烧温度为200℃,升温速率为2℃/min,时间为2小时。铂元素所占铁铈复合物的质量分数为0.5~3 wt%。
本发明首先采用溶剂热,随后通过快速升温煅烧的方式制备出一种多孔花状氧化铁,具有均一的孔径大小、可控的结构,且重复性好,随后铁元素与铈元素的进一步复合促进了反应过程中元素间的电子转移,使其可以作为一种良好的载体负载铂纳米粒子。负载铂纳米粒子时采用简单的低温煅烧,直接将铂粒子负载到花状铁铈复合材料的表面,形成的铂纳米粒子粒径很小,且均一的负载到催化剂表面,有利于低温催化氧化甲苯。
本发明在低温煅烧处理后,将定量负载铂纳米粒子的花状铁铈复合材料放入具有一定浓度甲苯环境中去,利用固定床反应器对其进行加热催化,利用GC-MS测试找到完全催化氧化甲苯的温度,实现低温催化氧化甲苯。
本发明进一步公开了上述负载铂纳米粒子的花状铁铈复合材料在低温催化氧化甲苯中的应用。
本发明公开的低温热催化处理甲苯的方法中,将上述负载铂纳米粒子的花状铁铈复合材料置入含有甲苯的环境中,利用固定床反应器完成甲苯的处理,优选的,低温完全催化氧化甲苯气体的最佳温度为195 ℃。
有益效果
本发明的优点:1、本发明公开的负载铂纳米粒子的花状铁铈复合材料具有均一的孔径大小、可控的结构,且形成的铂纳米粒子粒径很小,均一的负载到催化剂表面,是一种良好的负载型催化剂材料。
2、本发明公开的负载铂纳米粒子的花状铁铈复合材料制备方法简便,同时成本低廉,原料易得,且催化性能优异,可以实现在较低温度下的催化氧化甲苯,具有更好的经济实用性。
附图说明
图1为花状Fe 2O 3的透射电镜图(TEM)。
图2为花状Fe 2O 3的扫描电镜图(SEM)。
图3为花状Fe 2O 3-CeO 2的透射电镜图(TEM)。
图4为花状Fe 2O 3-CeO 2的扫描电镜图(SEM)。
图5为Pt/ Fe 2O 3-CeO 2复合材料的透射电镜图(TEM)。
图6为Pt/ Fe 2O 3-CeO 2复合材料的扫描电镜图(SEM)。
图7 为花状铁铈复合材料对甲苯气体的热催化效果曲线图。
图8 为负载铂纳米粒子的花状铁铈复合材料对甲苯气体的热催化效果曲线图。
图9 为六边形Fe 2O 3的扫描电镜图(SEM)。
图10为花状Fe 2O 3和六边形Fe 2O 3对甲苯气体的热催化效果对比图。
本发明的实施方式
本发明一种负载铂纳米粒子的花状铁铈复合材料的制备方法如下:(1)将硫酸铁水合物加入到无水乙醇中,混合后进行溶剂热反应,随后将所得产物洗涤干燥后煅烧,得到花状多孔氧化铁;(2)将花状氧化铁分散在水和乙醇的混合溶液中,加入一定量的六水合硝酸铈和HMT溶液,在一定温度下充分搅拌反应,得到花状铁铈复合材料;(3)将花状铁铈复合材料浸泡在含有铂盐的溶液中,搅拌后去除溶剂,再经过低温煅烧得到负载铂的花状铁铈复合材料。
实施例一 花状多孔氧化铁的制备,具体步骤如下:将0.12g硫酸铁水合物「CAS号:15244-10-7」分散在30mL无水乙醇中,置于50℃的环境中,常规搅拌3h,随后将所得浅黄色分散液转移至50mL高压反应釜中,于150℃下反应24h,自然冷却至室温,将所得淡黄色粉末用乙醇洗涤两次,并置于60℃下干燥12h,随后将其转移至马弗炉中,以10℃/min的升温速率由室温升至700℃,保持10min,自然冷却至室温,即得到花状多孔氧化铁(花状Fe 2O 3)。附图1为花状Fe 2O 3的TEM图,附图2为花状Fe 2O 3的SEM图,从图中可以看出花状氧化铁较好的形貌以及均一的孔结构。
实施例二 花状铁铈复合材料的制备,具体步骤如下:将0.15g花状Fe 2O 3以及0.27g六水合硝酸铈(铁元素与铈元素的摩尔比为3 : 1)分散在15mL水和15mL乙醇的混合溶液中,常规超声分散15min,随后加入15mL 0.02g/mL的HMT水溶液,将混合溶液置于70℃的环境中反应3h,冷却至室温后分别用去离子水和乙醇洗涤三次,并置于60℃下干燥12h,即可得到花状铁铈复合材料。附图3为花状铁铈复合材料的TEM图,附图4为花状铁铈复合材料的SEM图,从图中可以看出氧化铁与氧化铈的成功复合。
更换铁元素与铈元素的摩尔比,可以得到其他花状铁铈复合材料。
实施例三 负载铂的花状铁铈复合材料的制备,具体步骤如下:将0.15g花状铁铈复合材料和氯铂酸的水溶液(铂元素所占铁铈复合物的质量分数为1 wt%)混合,常规超声分散2h,然后蒸发去除溶剂,温度为80 ℃;再将产物低温煅烧,在空气氛围中进行,煅烧时升温速率为2 ℃/min(室温升至200 ℃),温度为200 ℃,时间为2h,通过煅烧从而获得比表面积较大、纳米粒子分布较均一的负载铂的花状铁铈复合材料。
附图5为负载铂的花状铁铈复合材料的TEM图,附图6为负载铂的花状铁铈复合材料的SEM图。从图中可以看出铂粒子成功负载到了催化剂表面,且金属纳米粒子分布较均一。
更换铂元素所占铁铈复合物的质量分数,可以得到其他负载负载铂的花状铁铈复合材料。
实施例四 催化剂的性能测试,具体步骤如下:本实施例对甲苯气体的热催化条件是:甲苯浓度为50 ppm, 催化剂的量为 50毫克,将该催化剂通过U形管固定在固定床反应器上,通过气相色谱分析该复合材料在加热条件下对甲苯气体的催化效果。
附图7为花状铁铈复合材料对甲苯气体的热催化效果曲线图,附图8为负载铂的花状铁铈复合材料对甲苯气体的热催化效果曲线图。由附图7和8可知,本发明可应用于较低温度下甲苯的转化。空气中甲苯污染主要来源于建筑材料、室内装饰材料和生活及办公用品,室外的工业废气、汽车尾气、光化学烟雾等,具体的甲苯催化效果是通过气相色谱分析的,甲苯转化率的计算方法如方程(1):
Figure 406017dest_path_image001
C 0和C分别为实验中甲苯的初始浓度和测试浓度(每15分钟测试一次)。
将1.06gFeCl 3·6H 2O分散在2.8mL水和40mL乙醇的混合溶液中,搅拌均匀,随后加入3.2g醋酸钠,超声分散10min,将混合液置于100mL水热反应釜中,于180℃下反应12h,随后将沉淀水洗三次乙醇洗三次,并于60℃下干燥12h,即可得到六边形片状氧化铁。附图9为六边形氧化铁的扫描电镜图,附图10为六边形氧化铁和花状氧化物的催化氧化效果对比图(催化实验操作一样),由图10知花状氧化铁的催化氧化效果要明显好于六边形氧化铁。
通过以上分析,说明采用本发明的技术方案铂纳米粒子可以成功负载到花状铁铈复合催化剂的表面,且分布相对均一,对甲苯具有相对较好的催化活性。用铁铈复合物作为载体,有利于催化剂的稳定性,同时也极大降低了催化剂的生产成本,此外,催化剂有序的孔结构也有利于吸附和催化的进行,此发明还可以实现在较低温度下对甲苯的催化氧化,具有很好的应用前景。

Claims (10)

  1. 一种负载铂的花状铁铈复合材料,其特征在于,所述负载铂的花状铁铈复合材料的制备方法包括以下步骤:
    (1)将铁盐溶剂热反应后煅烧,得到花状氧化铁;
    (2)螯合剂存在下,将花状氧化铁在溶剂中与铈盐反应,得到花状铁铈复合材料;
    (3)将花状铁铈复合材料与含有铂盐的溶液混合后去除溶剂,再经过低温煅烧得到负载铂的花状铁铈复合材料。
  2. 根据权利要求1所述负载铂的花状铁铈复合材料,其特征在于,铁盐为硫酸铁水合物;铈盐为六水合硝酸铈;铂盐为氯铂酸;螯合剂为六亚甲基四胺。
  3. 根据权利要求1所述负载铂的花状铁铈复合材料,其特征在于,将铁盐在乙醇中混合,再进行溶剂热反应。
  4. 根据权利要求1所述负载铂的花状铁铈复合材料,其特征在于,步骤(1)中,溶剂热反应的温度为140~160℃,时间为20~30小时;煅烧在空气气氛中进行,温度为600~700℃。
  5. 根据权利要求1所述负载铂的花状铁铈复合材料,其特征在于,步骤(2)中,溶剂为水和乙醇的混合溶液;花状氧化铁与铈盐反应的温度为60~80℃,时间为3~4小时;铁和铈元素的摩尔比为(1~6): 1。
  6. 根据权利要求1所述负载铂的花状铁铈复合材料,其特征在于,低温煅烧温度为200~250℃,时间为2~3小时。
  7. 权利要求1所述负载铂纳米粒子的花状铁铈复合材料在低温催化氧化甲苯中的应用。
  8. 一种低温热催化处理甲苯的方法,其特征在于,包括以下步骤:
    (1)将铁盐溶剂热反应后煅烧,得到花状氧化铁;
    (2)螯合剂存在下,将花状氧化铁在溶剂中与铈盐反应,得到花状铁铈复合材料;
    (3)将花状铁铈复合材料与含有铂盐的溶液混合后去除溶剂,再经过低温煅烧得到负载铂的花状铁铈复合材料;
    (4)将负载铂的花状铁铈复合材料置入含有甲苯的环境中,低温加热,完成甲苯的处理。
  9. 根据权利要求8所述低温热催化处理甲苯的方法,其特征在于,步骤(3)中,铂元素占铁铈复合物的质量分数为0.5~3 wt%。
  10. 根据权利要求8所述低温热催化处理甲苯的方法,其特征在于,低温加热的温度为150~200℃。
PCT/CN2021/140638 2020-10-26 2021-12-22 一种负载铂的花状铁铈复合材料及其制备方法与在低温热催化处理甲苯中的应用 WO2022089668A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011160061.6 2020-10-26
CN202011160061.6A CN112452339B (zh) 2020-10-26 2020-10-26 一种负载铂的花状铁铈复合材料及其制备方法与在低温热催化处理甲苯中的应用

Publications (1)

Publication Number Publication Date
WO2022089668A1 true WO2022089668A1 (zh) 2022-05-05

Family

ID=74835444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140638 WO2022089668A1 (zh) 2020-10-26 2021-12-22 一种负载铂的花状铁铈复合材料及其制备方法与在低温热催化处理甲苯中的应用

Country Status (2)

Country Link
CN (1) CN112452339B (zh)
WO (1) WO2022089668A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112452339B (zh) * 2020-10-26 2022-06-03 苏州大学 一种负载铂的花状铁铈复合材料及其制备方法与在低温热催化处理甲苯中的应用
CN114289033A (zh) * 2021-12-13 2022-04-08 湖南大学 一种负载在花状铈铁氧化物上的铂催化剂及其在催化富氢气中一氧化碳优先氧化中的应用
CN116273007A (zh) * 2023-03-17 2023-06-23 华侨大学 一种Pt NPs/Fe2O3 hexagon催化剂的制备方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082908A (ja) * 2007-09-12 2009-04-23 Mitsubishi Chemicals Corp 金属担持炭素触媒および揮発性有機化合物の分解除去方法
CN104676610A (zh) * 2015-03-05 2015-06-03 南京大学 一种催化氧化去除甲苯的方法
CN105833878A (zh) * 2016-04-13 2016-08-10 广西大学 一种Fe2O3-CeO2纳米复合催化剂的制备方法
CN106093137A (zh) * 2016-06-20 2016-11-09 吉林大学 一种基于α‑Fe2O3多孔微米花敏感材料的丙酮气体传感器及其制备方法
CN108314089A (zh) * 2018-02-01 2018-07-24 济南大学 一种多孔花状α-Fe2O3 自组装纳米材料的合成方法
CN110813303A (zh) * 2019-11-22 2020-02-21 福州大学 一种具有多孔结构的花状铁掺杂二氧化铈的制备及其脱硫应用
CN111036201A (zh) * 2019-12-04 2020-04-21 北京氦舶科技有限责任公司 一种负载型单原子Pt催化剂及其制备方法和应用
CN112452339A (zh) * 2020-10-26 2021-03-09 苏州大学 一种负载铂的花状铁铈复合材料及其制备方法与在低温热催化处理甲苯中的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445207C (zh) * 2005-07-22 2008-12-24 中国科学院物理研究所 花状结构的纳米氧化铈基复合材料及其制备方法和用途
US8808653B2 (en) * 2009-03-06 2014-08-19 Umicore Shokubai Japan Co., Ltd. Catalyst for purifying exhaust gas
KR101805599B1 (ko) * 2009-11-25 2017-12-07 솔베이 스페셜켐 재팬 가부시키가이샤 복합 산화물, 그 제조법 및 배기가스 정화용 촉매
CN102240504A (zh) * 2010-05-13 2011-11-16 上海牛翼新能源科技有限公司 低温等离子催化去除空气中甲苯污染物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082908A (ja) * 2007-09-12 2009-04-23 Mitsubishi Chemicals Corp 金属担持炭素触媒および揮発性有機化合物の分解除去方法
CN104676610A (zh) * 2015-03-05 2015-06-03 南京大学 一种催化氧化去除甲苯的方法
CN105833878A (zh) * 2016-04-13 2016-08-10 广西大学 一种Fe2O3-CeO2纳米复合催化剂的制备方法
CN106093137A (zh) * 2016-06-20 2016-11-09 吉林大学 一种基于α‑Fe2O3多孔微米花敏感材料的丙酮气体传感器及其制备方法
CN108314089A (zh) * 2018-02-01 2018-07-24 济南大学 一种多孔花状α-Fe2O3 自组装纳米材料的合成方法
CN110813303A (zh) * 2019-11-22 2020-02-21 福州大学 一种具有多孔结构的花状铁掺杂二氧化铈的制备及其脱硫应用
CN111036201A (zh) * 2019-12-04 2020-04-21 北京氦舶科技有限责任公司 一种负载型单原子Pt催化剂及其制备方法和应用
CN112452339A (zh) * 2020-10-26 2021-03-09 苏州大学 一种负载铂的花状铁铈复合材料及其制备方法与在低温热催化处理甲苯中的应用

Also Published As

Publication number Publication date
CN112452339A (zh) 2021-03-09
CN112452339B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2022089668A1 (zh) 一种负载铂的花状铁铈复合材料及其制备方法与在低温热催化处理甲苯中的应用
CN112958137B (zh) 一种利用四氧化三钴十二面体/氮化碳纳米片复合物处理废气的方法
CN110280290B (zh) 一种具有高比表面积花状型氮掺杂碳-尖晶石型微球催化剂及其制备方法与应用
CN105642299A (zh) 一种镍掺杂的铁酸镧/粘土纳米结构复合材料及其制备方法和应用
Wang et al. Influence of cerium doping on Cu–Ni/activated carbon low-temperature CO-SCR denitration catalysts
WO2022089669A1 (zh) 锶掺杂有序介孔锰酸镧负载贵金属钯的复合材料及其制备方法与在催化氧化甲苯中的应用
CN109772463B (zh) 一种CO还原低温脱硝催化剂ZIF-67-Me/CuOx及其制备方法和应用
CN108620113B (zh) 一种氮掺杂的碳-铈复合纳米片的制备方法
CN113649022B (zh) 一种用于有机挥发性废气催化燃烧的催化剂及其制备方法
CN112076777B (zh) 一种用于co2还原的光催化剂及其制备方法
CN111151285B (zh) 一种氮掺杂多孔碳负载ZnS纳米复合材料及其制备方法和应用
CN113000046A (zh) 一种用于氮氧化物和挥发性有机物协同净化的改性锰基莫来石型催化剂、其制备方法和应用
CN111359650A (zh) 铁、镍、钯共掺杂石墨相氮化碳复合催化剂的制备方法、产品及应用
CN113117722A (zh) 一种用于常温nh3-scr脱硝的原子级活性位点催化剂的制备方法
CN110694662A (zh) 一种二维I掺杂BiOIO3/g-C3N4复合催化剂及其制备方法与应用
CN110694619A (zh) 负载铂和钌双金属的氧化锆纳米管复合材料及其制备方法与在低温热催化处理甲苯中的应用
CN111921522A (zh) 一种室温催化氧化甲醛的掺锑氧化锡-氧化锰复合催化剂及其制备方法
CN111215067B (zh) 一种镥钆改性δ-氧化锰复合物负载铂催化剂的制备方法和应用
WO2024146222A1 (zh) 一种以单原子分散铂为前体物制备高分散Pt/CeO 2的方法与应用
CN113663671A (zh) 一种三元金属催化剂及其制备方法与应用
CN114653356B (zh) 镧掺杂二氧化铈催化剂材料的制备方法和去甲醛复合物
CN111545199B (zh) 一种用于对二甲苯高效氧化净化的负载型铂锡双金属催化剂
CN113751006B (zh) 碳包覆氧化镍的纳米复合材料及其制备方法和应用
CN103599777B (zh) 用于室温一氧化碳脱除的金基催化剂及其制备方法
CN113398972A (zh) 碳纳米管负载过渡金属氧化物催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21885394

Country of ref document: EP

Kind code of ref document: A1