WO2022089459A1 - 一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用 - Google Patents

一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用 Download PDF

Info

Publication number
WO2022089459A1
WO2022089459A1 PCT/CN2021/126576 CN2021126576W WO2022089459A1 WO 2022089459 A1 WO2022089459 A1 WO 2022089459A1 CN 2021126576 W CN2021126576 W CN 2021126576W WO 2022089459 A1 WO2022089459 A1 WO 2022089459A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
substituted
phosphorus
unsubstituted
weight
Prior art date
Application number
PCT/CN2021/126576
Other languages
English (en)
French (fr)
Inventor
潘庆崇
Original Assignee
广东广山新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东广山新材料股份有限公司 filed Critical 广东广山新材料股份有限公司
Publication of WO2022089459A1 publication Critical patent/WO2022089459A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/65502Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a three-membered ring
    • C07F9/65505Phosphonic acids containing oxirane groups; esters thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/095Compounds containing the structure P(=O)-O-acyl, P(=O)-O-heteroatom, P(=O)-O-CN
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/11Esters of phosphoric acids with hydroxyalkyl compounds without further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4071Esters thereof the ester moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/409Compounds containing the structure P(=X)-X-acyl, P(=X) -X-heteroatom, P(=X)-X-CN (X = O, S, Se)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6568Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms
    • C07F9/65685Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms the ring phosphorus atom being part of a phosphine oxide or thioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • C08F220/24Esters containing halogen containing perhaloalkyl radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/30Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen phosphorus-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/395Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present application relates to the field of flame retardants, such as a reactive phospho-silicon synergistic flame retardant, a polymeric phospho-silicon synergistic flame retardant, and a preparation method and application thereof.
  • flame retardants such as a reactive phospho-silicon synergistic flame retardant, a polymeric phospho-silicon synergistic flame retardant, and a preparation method and application thereof.
  • Traditional flame retardant technology is generally divided into halogen flame retardant and halogen-free flame retardant.
  • halogen flame retardant methods are generally made by reacting molecules containing halogen and reactive groups with other materials to obtain halogen flame retardant materials, or using decabromodiphenyl ethane without reactive groups.
  • the halogen flame retardant is directly added to the material to achieve the purpose of flame retardant.
  • antimony trioxide and other combustion aids that are harmful to organisms and unfriendly to the environment in the flame retardant system.
  • Halogen-containing flame retardant substances will produce non-degradable or refractory dioxin-like organic halogen chemicals and accumulate when they are decomposed or burned by heat, polluting the environment, affecting the growth and development of organisms and human health.
  • the traditional halogen-free flame retardant method is generally to add a large amount of salt flame retardants such as ammonium polyphosphate, melamine cyanurate, piperazine pyrophosphate or 2-ethyl aluminum hypophosphite into the material system, and such as triphosphate.
  • salt flame retardants such as ammonium polyphosphate, melamine cyanurate, piperazine pyrophosphate or 2-ethyl aluminum hypophosphite
  • Phosphate compounds such as methyl ester or triphenyl phosphate, and metal hydroxides containing crystal water such as aluminum hydroxide or magnesium hydroxide are used to achieve the purpose of flame retardancy.
  • the present application provides a reactive phosphorus-silicon synergistic flame retardant, a polymerized phosphorus-silicon synergistic flame retardant, and a preparation method and application thereof.
  • the reactive phosphorus-silicon synergistic flame retardant can react with the reactive groups in the added system to obtain the desired flame retardant component product; it can also be obtained by self-polymerization or copolymerization of the reactive phosphorus-silicon synergistic flame retardant
  • Polymeric flame retardants directly provide excellent flame retardant additives for polymer materials; the phosphorus and silicon synergistic flame retardants provided in this application have high content of phosphorus and silicon elements, and exert the flame retardant properties of the two elements at the same time.
  • Synergistic flame retardant can achieve the effect of no dripping and extremely low smoke generation when the added system is burned, and only a small amount of addition can achieve excellent flame retardant performance; the preparation process of the phosphorus-silicon synergistic flame retardant provided in this application Simple, resource saving and green.
  • the embodiments of the present application provide a reactive phosphorus-silicon synergistic flame retardant, and the structure of the flame retardant is shown in formula 1:
  • R 1 to R 6 are any group satisfying its chemical environment
  • at least one of said R 1 to R 6 and X and Y is a group containing phosphorus element
  • at least one of said R 1 to R 6 contains a phosphorus element Reactive groups
  • X and Y are any groups that satisfy their chemical environment, and n ⁇ 0.
  • n can be 1, 5, 10, 20, 50, 80, 100, 150, 200 or 500, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the reactive phosphorus-silicon synergistic flame retardant provided can directly react with other reactive groups in the added system through the reactive group, and directly introduce the flame retardant molecule into the system molecule, increasing the resistance.
  • the compatibility of the flame retardant and the added system, the precipitation and migration of the flame retardant will not occur for a long time, and the flame retardant effect is stable; at the same time, the reactive phosphorus-silicon synergistic flame retardant has high phosphorus and silicon elements, only It needs to be added in a small amount to have excellent flame retardant properties, not only that, but also the reactive phospho-silicon synergistic flame retardant can exert the flame retardant properties of the two elements, which can achieve no dripping and extremely high smoke generation when the added system burns.
  • the synergistic flame retardant effect of the two elements further improves the flame retardant performance; the flame retardant can also modify the added system to improve the mechanical properties of the added system.
  • the R 1 to R 6 each independently preferably include substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted Any one or at least two of the heteroaryl, substituted or unsubstituted alkoxy, substituted or unsubstituted cycloalkoxy, substituted or unsubstituted aryloxy or substituted or unsubstituted heteroaryloxy combination of species.
  • the R 1 to R 6 independently preferably include C1-C12 substituted or unsubstituted alkyl, C3-C12 substituted or unsubstituted cycloalkyl, C6-C12 substituted or unsubstituted Substituted aryl, C5-C12 substituted or unsubstituted heteroaryl, C1-C12 substituted or unsubstituted alkoxy, C3-C12 substituted or unsubstituted cycloalkoxy, C6-C12 substituted or unsubstituted Any one or a combination of at least two of aryloxy or C5-C12 substituted or unsubstituted heteroaryloxy.
  • the substituted or unsubstituted alkyl group is preferably a C1-C12 substituted or unsubstituted alkyl group, such as C2, C3, C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted the alkyl group;
  • the substituted or unsubstituted cycloalkyl is preferably a C3-C12 cycloalkyl, such as a C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted cycloalkyl;
  • the substituted or unsubstituted aryl group is preferably a C5-C12 aryl group, such as a substituted or unsubstituted aryl group of C6, C7, C8, C9, C10 or C11;
  • the substituted or unsubstituted heteroaryl is preferably a C5-C12 heteroaryl, such as a substituted or unsubstituted heteroaryl of C6, C7, C8, C9, C10 or C11;
  • the substituted or unsubstituted alkoxy groups are preferably C1-C12 substituted or unsubstituted alkoxy groups, such as C2, C3, C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted alkoxy;
  • the substituted or unsubstituted cycloalkoxy is preferably a C3-C12 cycloalkoxy, such as a C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted cycloalkoxy;
  • the substituted or unsubstituted aryloxy group is preferably a C6-C12 aryloxy group, such as a C7, C8, C9, C10 or C11 substituted or unsubstituted aryloxy group;
  • the substituted or unsubstituted heteroaryloxy group is preferably a C5-C12 heteroaryloxy group, such as a C6, C7, C8, C9, C10 or C11 substituted or unsubstituted heteroaryloxy group.
  • the group containing phosphorus element includes a group containing phosphoric acid or phosphate ester structure or a group containing DOPO structure and its derivatives.
  • the reactive group preferably includes any one or at least one of hydroxyl, amine, unsaturated group, carboxyl, epoxy, ester, acid anhydride, isocyanate or cyano. combination of the two.
  • the X and Y independently preferably include a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, an imino group, O, S, an amide group or an ester group any of the .
  • the substituted or unsubstituted alkylene is preferably a C1-C12 substituted or unsubstituted alkylene, such as C2, C3, C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted alkylene;
  • the substituted or unsubstituted arylene group is preferably a C6-C12 substituted or unsubstituted arylene group, such as a C7, C8, C9, C10 or C11 substituted or unsubstituted arylene group.
  • An embodiment of the present application provides a method for preparing the above-mentioned phosphorus-silicon synergistic flame retardant, the method comprising: preparing a compound containing silicon element and a phosphorus-containing compound through chemical reaction.
  • the chemical reaction may be a substitution reaction or an addition reaction or the like.
  • the compound containing silicon element includes any one or a combination of at least two of substituted or unsubstituted silane, polysilane or polysiloxane.
  • the polysilane includes a polymer obtained by self-polymerization of silane or copolymerization of silane and a chain extender;
  • the polysiloxane comprises a polymer obtained by the self-polymerization of siloxane or the copolymerization of siloxane and a chain extender.
  • the silane is preferably C1-C12 substituted or unsubstituted alkylsilane, C3-C12 substituted or unsubstituted cycloalkylsilane, C6-C12 substituted or unsubstituted arylsilane, or C5-C12 substituted or unsubstituted arylsilane Substituted heteroarylsilane, C1-C12 substituted or unsubstituted alkoxy, C3-C12 substituted or unsubstituted cycloalkoxy, C6-C12 substituted or unsubstituted aryloxy or C5-C12 substituted or unsubstituted Substituted heteroaryloxy.
  • C1 ⁇ C12 substituted or unsubstituted alkylsilane can be C2, C3, C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted alkylsilane;
  • C3-C12 substituted or unsubstituted cycloalkylsilane can be C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted cycloalkylsilane;
  • C6-C12 substituted or unsubstituted aryl silane can be C7, C8, C9, C10 or C11 substituted or unsubstituted aryl silane;
  • C5-C12 substituted or unsubstituted heteroaryl silane can be C6, C7, C8, C9, C10 or C11 substituted or unsubstituted heteroaryl silane;
  • C1-C12 substituted or unsubstituted alkoxysilanes such as C2, C3, C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted alkoxysilanes;
  • C3-C12 cycloalkoxysilane such as C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted cycloalkoxysilane;
  • C6-C12 aryloxysilanes such as C7, C8, C9, C10 or C11 substituted or unsubstituted aryloxysilanes;
  • C5-C12 heteroaryloxysilanes for example, can be substituted or unsubstituted heteroaryloxysilanes of C6, C7, C8, C9, C10 or C11.
  • the phosphorus-containing compounds include phosphoric acid compounds and their derivatives, phosphorous acid compounds and their derivatives, hypophosphorous acid compounds and their derivatives, phosphate compounds and their derivatives, Phosphate compounds and their derivatives, hypophosphite compounds and their derivatives, phosphate compounds and their derivatives, phosphite compounds and their derivatives, hypophosphite compounds and their derivatives, and DOPO compounds Any one or a combination of at least two of the compounds and their derivatives.
  • the metal elements in phosphate compounds and their derivatives, phosphite compounds and their derivatives, hypophosphite compounds and their derivatives can be alkaline earth metal elements, transition metal elements, group IIIA metal elements, IVA Any one or a combination of at least two of Group Metal Elements, Group VA Metal Elements, or Group VIA Metal Elements.
  • the alkaline earth metal element can be Be, Mg, Ca, Sr, Ba or Ra;
  • Transition metal elements can be Sc, Ti, V, Cr, Mg, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re , Os, Ir, Pt, Au, Hg, lanthanide or actinide, etc.;
  • Group IIIA metal elements can be Al, Ga, In or Tl;
  • Group IVA metal elements can be Ge, Sn or Pb;
  • Group VA metal element can be Sb or Bi
  • the group VIA metal element may be Po.
  • the embodiment of the present application provides a polymeric phosphor-silicon synergistic flame retardant, which is prepared from the above-mentioned reactive phosphor-silicon synergistic flame retardant through self-polymerization or copolymerization.
  • the polymeric flame retardant is prepared by copolymerizing any of the above reactive phosphor-silicon synergistic flame retardants with a compound containing a reactive group.
  • the reactive group-containing compound is preferably a reactive group-containing flame retardant or a reactive group-containing chain extender.
  • the embodiment of the present application provides an application of the above-mentioned phosphorus-silicon synergistic flame retardant, and the application field of the phosphorus-silicon synergistic flame retardant includes any one or at least one of thermoplastic resins, thermosetting resins or photocurable resins combination of the two.
  • the embodiment of this application discloses a reactive phosphorus-silicon synergistic flame retardant, and the reactive phosphorus-silicon synergistic flame retardant can chemically react with a reactive group in the added system to obtain a flame retardant group. to provide excellent flame retardant properties for the added system;
  • the examples of the present application disclose a reactive phosphorus-silicon synergistic flame retardant and a polymerized phosphorus-silicon synergistic flame retardant.
  • the phosphorus-silicon synergistic flame retardant has high content of phosphorus and silicon elements, and only needs a small amount of addition.
  • the reactive phosphorus-silicon synergistic flame retardant can exert the flame retardant properties of the two elements, and can achieve the effects of no dripping and extremely low smoke generation when the added system is burned;
  • the embodiment of this application discloses a reactive phosphor-silicon synergistic flame retardant.
  • the reactive phosphor-silicon synergistic flame retardant has a wide range of applications and is suitable for use as various thermosetting resins, photocurable resins and thermoplastic resins ;
  • the embodiment of the present application discloses a reactive phosphor-silicon synergistic flame retardant, which can be applied to thermosetting resins, light-curing resins and thermoplastic resins to obtain no migration, no precipitation, Does not pollute the use environment, permanent flame retardant effect;
  • the examples of this application disclose a reactive phospho-silicon synergistic flame retardant.
  • the reactive phospho-silicon is synergistically added to thermosetting resins, light-curing resins and thermoplastic resins, and the prepared resin composition has excellent mechanical properties, resistance to Thermal properties, electrical properties and flame retardant properties, flame retardant properties (UL-94) up to V-0 level;
  • the embodiment of this application discloses a polymeric phosphor-silicon synergistic flame retardant.
  • the polymeric phosphor-silicon synergistic flame retardant can be obtained by self-polymerization or copolymerization and is used in thermosetting resins, light-curing resins, etc. In resins and thermoplastic resins, it has the effect of no migration, no precipitation, no pollution to the use environment, and permanent flame retardant effect.
  • This embodiment provides a reactive phosphorus-silicon synergistic flame retardant, the structure of which is shown in formula 2:
  • the preparation method of the compound shown in formula 2 is as follows: disperse 1 mol of trimethyl phosphate in 100 mL of NMP, add 2 mol of diphenyldihydroxysilane and 0.01 mol of dibutyltin oxide, react at 120 ° C for 3 h, and separate the solvent by distillation. , adding 500 mL MIBK to the obtained product, then adding 2.2 mol of epichlorohydrin, 2 mol of potassium hydroxide and 0.01 mol of dibutyl tin oxide, and reacted at 80 ° C for 2 h. After the reaction, the unreacted epoxy resin was removed by physical methods. Chloropropane, the generated by-product potassium chloride and solvent are used to purify the product to obtain the compound represented by formula 2.
  • This embodiment provides a phosphorus-silicon synergistic flame retardant, the structure of which is shown in formula 3:
  • the preparation method of the compound shown in formula 3 is as follows: disperse 1 mol of trimethyl phosphate in 100 mL of DMSO, add 2.2 mol of ethylene glycol and 0.01 mol of dibutyltin oxide, react at 135° C. for 3.5 h, and after separating the solvent by distillation, After dispersing the obtained product in 500mL MIBK, add 2.2mol vinyldimethylchlorosilane, 2mol potassium hydroxide and 0.01mol dibutyltin oxide, stir the reaction at 85°C for 180min, use distillation to separate the solvent, use physical The method is to purify the product to obtain the compound represented by formula 3.
  • This embodiment provides a phosphorus-silicon synergistic flame retardant, the structure of which is shown in formula 4:
  • the preparation method of the compound shown in formula 4 is as follows: disperse 1 mol of vinylmethyldichlorosilane in 100 mL of toluene, add 2 mol of chloromethyldimethoxysilane and 0.01 mol of dibutyltin oxide, and react at 90° C. for 3 h , after the solvent was separated by distillation, the product was dispersed in tetrahydrofuran, 1.1 mol DOPO and 0.01 mol azobisisobutyronitrile were added, and the reaction was refluxed at 80 °C for 8 h under the protection of argon, and the product was purified by physical methods to obtain formula 4. compound shown.
  • This embodiment provides a phosphorus-silicon synergistic flame retardant, the structure of which is shown in formula 5:
  • the preparation method of the compound shown in formula 5 is as follows: disperse 1 mol of aluminum dihydrogen tripolyphosphate in 100 mL of cyclohexanone, add 2 mol of dihydroxydiphenylsilane and 0.01 mol of dibutyltin oxide, and react at 135 ° C for 3 h, After the solvent was separated by distillation, the obtained product was dispersed in toluene with 2.2 mol of epichlorohydrin, 2 mol of potassium hydroxide and 0.01 mol of dibutyl tin oxide for a stirring reaction at 90° C. for 240 min. After the reaction was completed, it was removed by physical methods. The unreacted epichlorohydrin, the generated by-product potassium chloride and the solvent are used to acidify the product, wash with water until neutral, and purify the product to obtain the compound shown in formula 6.
  • This embodiment provides a phosphorus-silicon synergistic flame retardant, the structure of which is shown in formula 7:
  • the preparation method of the compound shown in formula 6 is as follows: disperse 1 mol of diethyl phosphite in 100 mL of NMP, add 1 mol of polymethylphenylsiloxane (polymerization degree 200) and 0.01 mol of dibutyltin oxide, and at 180° C. After the reaction was carried out for 12 h, the solvent was separated by distillation, the product was mixed with 1 mol of chloroacetic acid, and the reaction was carried out at 60° C. for 3 h, and the product was purified to obtain the compound shown in formula 7.
  • the hydrogen nuclear magnetic resonance spectrum test shows that the compound prepared by the above preparation method has a COO-H peak between 11.23 and 11.17, and a C-H peak of a methoxy group at 3.71 to 3.73.
  • the number-average molecular weight measured by gel chromatography is about 28,000, which proves that methylphenylsiloxane does not polymerize but reacts with dimethyl phosphite.
  • the performance of the above epoxy resin cured products a-c is tested.
  • the test method of flexural strength adopts GB/T 9341-2008
  • the test method of impact strength adopts GB/T 1843-2008
  • the breakdown voltage adopts GB/T 1408.1-2006.
  • the flame retardancy test method is UL-94
  • the anti-drip test method is GB/T 20284-2006
  • the smoke density test method is GB/T 8627-2007.
  • Table 1 The test results are shown in Table 1.
  • the reactive phosphorus-silicon synergistic flame retardant provided in Example 1 of the present application is pre-mixed with epoxy resin, and then the flame retardant molecules can be connected to the epoxy resin through curing reaction.
  • phosphorus and silicon synergistically flame retardant which makes the epoxy resin have the characteristics of no dripping and low smoke when burning, which not only improves the flame retardant performance of the epoxy resin, but also improves the mechanical properties of the epoxy resin.
  • MCA and APP cannot react with epoxy resin molecules, so they do not contribute to the mechanical properties of epoxy resin, and their added amount is large, but the flame retardant effect is limited.
  • the properties of the silicone resins a-c obtained above are tested.
  • the tensile strength and elongation test methods are GB/T 1701-2001
  • the shear strength test method is GB/T 1700-2001
  • the flame retardancy test method is UL- 94.
  • the anti-drip test method is GB/T 20284-2006, and the test condition for water resistance is immersion in boiling water for 2 hours. The test results are shown in Table 2.
  • the reactive phospho-silicon synergistic flame retardant provided in Example 4 of the present application has a similar structure to trimethylethoxysiloxane and tetraethoxysiloxane, which are in After the curing reaction, it can be inserted into the silicone resin molecule, which provides excellent flame retardant properties for the silicone resin, so that the silicone resin has the characteristics of no dripping and low smoke when burning, and it can also improve the mechanical properties of the silicone resin.
  • the reactive phosphor-silicon synergistic flame retardant provided in Example 4 is not added, and APP is used as the flame retardant, the flame retardant properties and mechanical properties similar to those in Example 7 cannot be achieved.
  • 26.8 parts by weight of the flame retardant prepared in Example 2 was mixed with 15 parts by weight of methyl methacrylate, 15 parts by weight of butyl methacrylate, 11 parts by weight of ethyl acrylate, and 1 part by weight of methacrylic acid. , 13 parts by weight of hydroxypropyl acrylate, 45 parts by weight of trifluoroethyl methacrylate, 2 parts by weight of benzoyl peroxide, 70 parts by weight of xylene, 20 parts by weight of methyl ethyl ketone and 10 parts by weight of cyclohexanone to prepare the cross Linked acrylic resin composition a.
  • the compressive strength, tensile strength, water resistance and flame retardancy of the acrylic resin compositions a-e prepared above were tested, and the results are shown in Table 3.
  • the compression test method adopts GB/T 20467-2008
  • the tensile strength test method adopts GB/T 6344-2008
  • the flame retardancy test method is UL-94
  • the dripping resistance test method is GB/T 20284-2006.
  • the smoke density test method is ASTM E1354-94.
  • the water resistance is that after the acrylic resin composition after the compressive strength test is soaked in boiling water for 2 hours, the compressive strength test is performed again.
  • the reactive phosphor-silicon synergistic flame retardant provided in Example 2 of the present application can polymerize with the unsaturated groups on the acrylic resin monomer after being added to the acrylic resin composition system. reaction, so that the reactive phosphorus-silicon synergistic flame retardant provided in Example 2 can be connected to the acrylic resin molecule, improve the flame retardant performance of the acrylic resin, and make the acrylic resin have the characteristics of no dripping and low smoke when burning, At the same time, the mechanical properties of acrylic resin are also improved. Compared with the existing flame retardant with the same addition amount, the prepared acrylic resin composition has more excellent flame retardant properties and mechanical properties.
  • APP 30 parts by weight of APP are combined with 81 parts by weight of nylon 610, 23 parts by weight of nylon 66, 0.7 parts by weight of vinyltriethoxysilane, 12 parts by weight of magnesium hydroxide, and 0.6 parts by weight of antioxidant 1010 , 34 parts by weight of glass fiber and 0.8 part by weight of bis-stearic acid amide, and mixed to prepare nylon composite material b.
  • 30 parts by weight of decabromodiphenylethane is mixed with 81 parts by weight of nylon 610, 23 parts by weight of nylon 66, 0.7 parts by weight of vinyltriethoxysilane, 12 parts by weight of magnesium hydroxide, antioxidant 0.6 parts by weight of agent 1010, 34 parts by weight of glass fiber and 0.8 parts by weight of bis-stearic acid amide, mixed to prepare nylon composite material d.
  • the flame retardancy test method is UL- 94.
  • the anti-drip test method is GB/T 20284-2006, and the smoke density test method is ASTM E1354-94. The results are shown in Table 4.
  • Example 1 and Example 4 were dispersed in DMSO, reacted at 180 °C for 2 hours, 190 °C for 2 hours and 200 °C for 2 hours. After separating the solvent by distillation, the product was purified to obtain a polymeric flame retardant.
  • Agent I The compounds provided in Example 1 and Example 4 were dispersed in DMSO, reacted at 180 °C for 2 hours, 190 °C for 2 hours and 200 °C for 2 hours. After separating the solvent by distillation, the product was purified to obtain a polymeric flame retardant.
  • Agent I Agent I.
  • polymeric flame retardant I 100 parts by weight of 2,2'-bis(4-hydroxyphenyl)propane polycarbonate, 0.5 parts by weight of polytetrafluoroethylene (anti-drip agent), and light stabilizer 944 0.5 parts by weight, mixed to prepare polycarbonate plastic a.
  • Example 10 The tensile properties, Izod impact strength and flame retardant properties of polycarbonate plastics a-c provided in Example 10 and Comparative Examples 9 and 10 were tested.
  • GB/T1843-2008 is tested, the flame retardancy test method is UL-94, the anti-drip test method is GB/T 20284-2006, and the smoke density test method is GB/T 8627-2007.
  • the results are shown in Table 5.
  • the polymeric flame retardant provided in Example 10 of the present application because of its good compatibility with polycarbonate plastics, can not only provide good flame retardant properties for polycarbonate plastics It can improve the mechanical properties of polycarbonate plastics with no dripping and low smoke when burning.
  • the conventional additive flame retardants MCA and APP are not only added in higher amounts than the polymeric flame retardants provided in Example 10, but also have limited flame retardant effect due to poor compatibility and are not beneficial to the mechanical properties of polycarbonate plastics. Influence.
  • Example 4 1 mol of each of the reactive phosphorus-silicon synergistic flame retardants provided in Example 4 and Example 5 was dispersed in cyclohexanone, 0.01 mol of dibutyltin oxide was added, and the reaction was carried out at 160 °C for 3 hours and 180 °C in turn. The reaction was carried out at 200° C. for 3 hours and 3 hours, and after separating the solvent by distillation, the product was purified to obtain the polymerized flame retardant II.
  • PPS plastic a 17.5 parts by weight of polymeric flame retardant II, 100 parts by weight of PPS, 10 parts by weight of talc, 8 parts by weight of polyvinyl acetate, and 5 parts by weight of zirconia were mixed to prepare PPS plastic a.
  • the PPS used is linear PPS with a molecular weight of about 50,000 and a melt index of 30 g/min.
  • PPS plastic b 20 parts by weight of APP flame retardant, 100 parts by weight of PPS, 10 parts by weight of talc, 8 parts by weight of polyvinyl acetate, and 5 parts by weight of zirconia were mixed to prepare PPS plastic b.
  • the PPS used is linear PPS with a molecular weight of about 50,000 and a melt index of 30 g/min.
  • PPS plastic c 20 parts by weight of MCA flame retardant, 100 parts by weight of PPS, 10 parts by weight of talc, 8 parts by weight of polyvinyl acetate, and 5 parts by weight of zirconia were mixed to prepare PPS plastic c.
  • the PPS used is linear PPS with a molecular weight of about 50,000 and a melt index of 30 g/min.
  • the tensile properties, Izod impact strength and flame retardant properties of the PPS plastics a-c provided in Example 11 and Comparative Examples 11 and 12 were tested, the tensile properties were tested according to GB/T14884-2008, and the Izod impact strength was tested according to GB/ T1843-2008 for testing, the flame retardancy test method is UL-94, the anti-drip test method is GB/T 20284-2006, and the smoke density test method is GB/T 8627-2007.
  • Table 6 The results are shown in Table 6.
  • the flame retardant provided in Example 11 of the present application has good compatibility with PPS, which can not only improve the flame retardant performance of PPS plastic, but also make PPS plastic have no dripping and low temperature when burning.
  • the characteristics of smoking can also improve the mechanical properties of PPS plastics.
  • PPA and MCA which are additive flame retardants, have poor compatibility with PPS. Not only are they added in large amounts, but their flame retardant properties are average, and they have no beneficial effect on the mechanical properties of PPS plastics.
  • the tensile properties, Izod impact strength and flame retardant properties of PBT plastics a-c provided in Example 12 and Comparative Examples 13 and 14 were tested.
  • the tensile properties were tested according to GB/T14884-2008, and the Izod impact strength was tested according to GB/ T1843-2008 for testing, the flame retardancy test method is UL-94, the anti-drip test method is GB/T 20284-2006, and the smoke density test method is GB/T 8627-2007.
  • the results are shown in Table 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

本文公布一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用,所述反应型磷硅协同阻燃剂可以与被添加体系中的反应性基团反应得到所需的阻燃组分产物;还可以通过所述反应型磷硅协同阻燃剂自聚或共聚得到聚合型阻燃剂直接为高分子材料提供优异的阻燃添加剂;本申请提供的反应型磷硅协同阻燃剂以及聚合型磷硅协同阻燃剂在体系中的添加量低,阻燃性能好,使被添加体系燃烧无滴落、发烟量低。本申请提供的阻燃剂制备工艺简单,节约资源且绿色环保。

Description

一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用 技术领域
本申请涉及阻燃剂领域,例如一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用。
背景技术
传统的阻燃技术一般分为卤素阻燃和无卤素阻燃。
现有技术中,卤素阻燃的方式一般为将含有卤素和反应性基团的分子与其它材料一起反应制得有卤阻燃材料,或使用如十溴二苯乙烷等不含反应基团的卤素阻燃剂直接添加到材料中,达到阻燃的目的。同时,为了提高阻燃效果,还经常需要在阻燃体系中添加三氧化二锑等对生物体有害、对环境不友好的助燃助剂。含卤阻燃物质在受热分解或燃烧时会产生无降解性或难降解的高毒性二噁英类有机卤素化学物质并积累,污染环境、影响生物体的生长发育以及人类的健康。
传统的无卤阻燃方式一般为向材料体系中大量添加如聚磷酸铵、三聚氰胺氰尿酸盐、焦磷酸哌嗪或2-乙基次磷酸铝类的盐类阻燃剂,和如磷酸三甲酯或磷酸三苯酯类的磷酸酯类化合物,以及如氢氧化铝或氢氧化镁类的含结晶水的金属氢氧化物的方式来达到阻燃的目的。向阻燃材料体系中需大量添加上述阻燃剂,不仅造成严重的资源浪费,降低或者损害材料的力学性能、耐水性能、耐热性能以及电性能,同时因上述阻燃成分的迁移、析出,会对使用环境和自然环境造成污染,还会对材料的阻燃性能、力学性能以及耐热性能造成进一步损害。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用。所述反应型磷硅协同阻燃剂可以与被添加体系中的反应性基团反应得到所需的阻燃组分产物;还可以通过所述反应型磷硅协同阻燃剂自聚或共聚得到聚合型阻燃剂直接为高分子材料提供优异的阻燃添加剂;本申请提供的磷硅协同阻燃剂的磷元素和硅元素含量高,同时发挥两种元素的阻燃性能,两种元素的协同阻燃,可以达到被添加体系在燃烧时无滴落以及发烟量极低的效果,且仅需少量添加即可达到优异的阻燃性能;本申请提供的磷硅协同阻燃剂制备工艺简单,节约资源且绿色环保。
本申请实施例提供一种反应型磷硅协同阻燃剂,所述阻燃剂的结构如式1所示:
Figure PCTCN2021126576-appb-000001
其中,R 1~R 6为满足其化学环境的任意基团,所述R 1~R 6以及X和Y中至少一个为含有磷元素的基团,所述R 1~R 6中至少一个含有反应性基团,X和Y为满足其化学环境的任意基团,n≥0。
其中,n可以是1、5、10、20、50、80、100、150、200或500等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,提供的反应型磷硅协同阻燃剂,可以通过反应基团直接与被添加体系中的其他反应性基团进行反应,将阻燃剂分子直接引入到体系分子中, 增加了阻燃剂与被添加体系的相容性,长期使用不会出现阻燃剂的析出以及迁移问题,阻燃效果稳定;同时所述反应型磷硅协同阻燃剂磷元素和硅元素含量高,仅需少量添加具备优异的阻燃性能,不仅如此,同时所述反应型磷硅协同阻燃剂可以发挥两种元素的阻燃性能,可以达到被添加体系在燃烧时无滴落以及发烟量极低的效果,两种元素的协同阻燃作用使得阻燃性能进一步提高;所述阻燃剂还可以对被添加体系进行改性,提高被添加体系的机械性能。
作为本申请优选的技术方案,所述R 1~R 6分别独立地优选的包括取代或未取代的烷基、取代或未取代的环烷基、取代或未取代的芳香基、取代或未取代的杂芳基、取代或未取代的烷氧基、取代或未取代的环烷氧基、取代或未取代的芳香氧基或取代或未取代的杂芳氧基中的任意一种或至少两种的组合。
作为本申请优选的技术方案,所述R 1~R 6分别独立地优选的包括C1~C12取代或未取代的烷基、C3~C12取代或未取代的环烷基、C6~C12取代或未取代的芳香基、C5~C12取代或未取代的杂芳基、C1~C12取代或未取代的烷氧基、C3~C12取代或未取代的环烷氧基、C6~C12取代或未取代的芳香氧基或C5~C12取代或未取代的杂芳氧基中的任意一种或至少两种的组合。
其中,取代或未取代的烷基优选为C1~C12的取代或未取代的烷基,例如可以是C2、C3、C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的烷基;
取代或未取代的环烷基优选为C3~C12的环烷基,例如可以是C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的环烷基;
取代或未取代的芳香基优选为C5~C12芳香基,例如可以是C6、C7、C8、C9、C10或C11的取代或未取代的芳香基;
取代或未取代的杂芳基优选为C5~C12杂芳基,例如可以是C6、C7、C8、C9、C10或C11的取代或未取代的杂芳基;
取代或未取代的烷氧基优选为C1~C12的取代或未取代的烷氧基,例如可以是C2、C3、C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的烷氧基;
取代或未取代的环烷氧基优选为C3~C12的环烷氧基,例如可以是C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的环烷氧基;
取代或未取代的芳香氧基优选为C6~C12芳香氧基,例如可以是C7、C8、C9、C10或C11的取代或未取代的芳香氧基;
取代或未取代的杂芳氧基优选为C5~C12杂芳氧基,例如可以是C6、C7、C8、C9、C10或C11的取代或未取代的杂芳氧基。
作为本申请优选的技术方案,所述含有磷元素的基团包括含有磷酸或磷酸酯结构的基团或者含有DOPO结构及其衍生物的基团。
作为本申请优选的技术方案,所述反应性基团优选的包括羟基、胺基、不饱和基团、羧基、环氧基、酯基、酸酐、异氰酸酯基或氰基中的任意一种或至少两种的组合。
作为本申请优选的技术方案,所述X和Y分别独立地优选的包括取代或未取代的亚烷基、取代或未取代的亚芳基、亚胺基、O、S、酰胺基或者酯基中的任意一种。
其中,取代或未取代的亚烷基优选为C1~C12的取代或未取代的亚烷基,例如可以是C2、C3、C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的亚烷基;
取代或未取代的亚芳基优选为C6~C12的取代或未取代的亚芳基,例如可以是C7、C8、C9、C10或C11的取代或未取代的亚芳基。
本申请实施例提供一种上述磷硅协同阻燃剂的制备方法,所述方法包括:含有硅元素的化合物与含磷化合物通过化学反应制备得到。
本申请中,所述化学反应可以是取代反应或加成反应等。
作为本申请优选的技术方案,所述含有硅元素的化合物包括取代或未取代的硅烷、聚硅烷或聚硅氧烷中的任意一种或至少两种组合。
优选地,所述聚硅烷包括硅烷自聚或硅烷与扩链剂共聚所得到的聚合物;
优选地,所述聚硅氧烷包括硅氧烷自聚或硅氧烷与扩链剂共聚所得到的聚合物。
其中,所述硅烷优选为C1~C12取代或未取代的烷基硅烷、C3~C12取代或未取代的环烷基硅烷、C6~C12取代或未取代的芳香基硅烷或C5~C12取代或未取代的杂芳基硅烷、C1~C12取代或未取代的烷氧基、C3~C12取代或未取代的环烷氧基、C6~C12取代或未取代的芳香氧基或C5~C12取代或未取代的杂芳氧基。
其中,C1~C12取代或未取代的烷基硅烷可以是C2、C3、C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的烷基硅烷;
C3~C12取代或未取代的环烷基硅烷可以是C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的环烷基硅烷;
C6~C12取代或未取代的芳香基硅烷可以是C7、C8、C9、C10或C11的取代或未取代的芳香基硅烷;
C5~C12取代或未取代的杂芳基硅烷可以是C6、C7、C8、C9、C10或C11的取代或未取代的杂芳基硅烷;
C1~C12的取代或未取代的烷氧基硅烷,例如可以是C2、C3、C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的烷氧基硅烷;
C3~C12的环烷氧基硅烷,例如可以是C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的环烷氧基硅烷;
C6~C12芳香氧基硅烷,例如可以是C7、C8、C9、C10或C11的取代或未取代的芳香氧基硅烷;
C5~C12杂芳氧基硅烷,例如可以是C6、C7、C8、C9、C10或C11的取代或未取代的杂芳氧基硅烷。
作为本申请优选的技术方案,所述含磷化合物包括磷酸类化合物及其衍生物、亚磷酸类化合物及其衍生物、次磷酸类化合物及其衍生物、磷酸盐类化合物及其衍生物、亚磷酸盐类化合物及其衍生物、次磷酸盐类化合物及其衍生物、磷酸酯类化合物及其衍生物、亚磷酸酯类化合物及其衍生物、次磷酸酯类化合物及其衍生物以及DOPO类化合物及其衍生物中的任意一种或至少两种的组合。
其中,磷酸盐类化合物及其衍生物、亚磷酸盐类化合物及其衍生物、次磷酸盐类化合物及其衍生物中的金属元素可以是碱土金属元素、过渡金属元素、IIIA族金属元素、IVA族金属元素、VA族金属元素或VIA族金属元素中的任意一种或至少两种的组合。
其中,碱土金属元素可以是Be、Mg、Ca、Sr、Ba或Ra;
过渡金属元素可以是Sc、Ti、V、Cr、Mg、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、镧系元素或锕系元素等;
IIIA族金属元素可以是Al、Ga、In或Tl;
IVA族金属元素可以是Ge、Sn或Pb;
VA族金属元素可以是Sb或Bi;
VIA族金属元素可以是Po。
本申请实施例提供一种聚合型磷硅协同阻燃剂,所述聚合型磷硅阻燃剂由 上述的反应型磷硅协同阻燃剂通过自聚或共聚反应制备得到。
作为本申请优选的技术方案,所述聚合型阻燃剂由上述任一种反应型磷硅协同阻燃剂与含有反应基的化合物通过共聚反应制备得到。
其中,所述含有反应基的化合物优选为含有反应基的阻燃剂或含有反应基的扩链剂。
本申请实施例提供一种上述磷硅协同阻燃剂的应用,所述磷硅协同阻燃剂的应用领域包括热塑型树脂、热固型树脂或光固型树脂中的任意一种或至少两种的组合。
与相关技术相比,本申请实施例至少具有以下有益效果:
(1)本申请实施例公开一种反应型磷硅协同阻燃剂,所述反应型磷硅协同阻燃剂可以通过化学反应与被添加体系中的反应性基团发生化学反应得到阻燃组分,为被添加体系提供优异的阻燃性能;
(2)本申请实施例公开一种反应型磷硅协同阻燃剂以及聚合型磷硅协同阻燃剂,所述磷硅协同阻燃剂磷元素和硅元素含量高,仅需少量添加具备优异的阻燃性能,同时所述反应型磷硅协同阻燃剂可以发挥两种元素的阻燃性能,可以达到被添加体系在燃烧时无滴落以及发烟量极低的效果;
(3)本申请实施例公开一种反应型磷硅协同阻燃剂,所述反应型磷硅协同阻燃剂应用范围广,适合于用作各种热固性树脂、光固化树脂和热塑型树脂;
(4)本申请实施例公开一种反应型磷硅协同阻燃剂,所述反应型磷硅协同阻燃剂可应用于热固性树脂、光固化树脂和热塑性树脂中,得到不迁移、不析出、不污染使用环境,永久阻燃的效果;
(5)本申请实施例公开一种反应型磷硅协同阻燃剂,反应型磷硅协同添加于热固性树脂、光固化树脂和热塑性树脂中,制备得到的树脂组合物具有优异 的机械性能、耐热性能、电性能和阻燃性能,阻燃性能(UL-94)达V-0级别;
(6)本申请实施例公开一种聚合型磷硅协同阻燃剂,所述聚合型磷硅协同阻燃剂通过自聚或共聚等反应可以得到聚合型阻燃剂应用于热固性树脂、光固化树脂和热塑性树脂中,得到不迁移、不析出、不污染使用环境,永久阻燃的效果。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
为便于理解本申请,本申请列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供一种反应型磷硅协同阻燃剂,其结构如式2所示:
Figure PCTCN2021126576-appb-000002
式2所示化合物的制备方法为:将1mol磷酸三甲酯分散于100mL NMP,加入2mol二苯基二羟基硅烷以及0.01mol二丁基氧化锡,在120℃下反应3h,采用蒸馏分离溶剂后,将得到的产物加入500mL MIBK后再加入2.2mol环氧氯丙烷和2mol的氢氧化钾以及0.01mol二丁基氧化锡,80℃下反应2h,反应结束 后用物理方法去除未反应的环氧氯丙烷、生成的副产物氯化钾和溶剂,对产物进行提纯得到式2所示化合物。
1H NMR(CDCl 3,500MHz):δ7.61~7.53(m,4H,Ar-H),7.48~7.41(m,8H,Ar-H),7.36~7.29(m,8H,Ar-H),4.10~4.02(d,2H,CH 2),3.78~3.71(d,2H,CH 2),3.66~3.58(s,3H,CH 3),2.68~2.60(m,2H,CH 2),2.68~2.60(m,2H,CH),2.36~2.58(m,2H,CH 2)。
实施例2
本实施例提供一种磷硅协同阻燃剂,其结构如式3所示:
Figure PCTCN2021126576-appb-000003
式3所示化合物的制备方法为:将1mol磷酸三甲酯分散于100mL DMSO,加入2.2mol乙二醇以及0.01mol二丁基氧化锡,在135℃下反应3.5h,采用蒸馏分离溶剂后,将得到的产物分散于500mL MIBK后再加入2.2mol乙烯基二甲基氯硅烷和2mol的氢氧化钾以及0.01mol二丁基氧化锡,在85℃搅拌反应180min,采用蒸馏分离溶剂后,使用物理方法对产物进行提纯得到式3所示化合物。
1H NMR(CDCl 3,500MHz):δ5.43~5.35(t,2H,CH=C H 2),5.31~5.23(t,2H,C H=CH 2),5.19~5.11(t,2H,CH=C H 2),4.26~4.19(t,4H,CH 2),4.15~4.07(t,4H,CH 2),3.77~3.70(s,3H,CH 3),0.22~0.15(s,12H,CH 3)。
实施例3
本实施例提供一种磷硅协同阻燃剂,其结构如式4所示:
Figure PCTCN2021126576-appb-000004
式4所示化合物的制备方法为:将1mol乙烯基甲基二氯硅烷分散于100mL甲苯,加入2mol氯代甲基二甲氧基硅烷以及0.01mol二丁基氧化锡,在90℃下反应3h,采用蒸馏分离溶剂后,将产物分散于四氢呋喃中,加入1.1mol DOPO以及0.01mol偶氮二异丁腈,在氩气保护下80℃回流反应8h,使用物理方法对产物进行提纯得到式4所示化合物。
1H NMR(CDCl 3,500MHz):δ7.95~7.88(m,H,Ar-H),7.85~7.77(m,H,Ar-H),7.71~7.63(m,H,Ar-H),7.58~7.51(m,H,Ar-H),7.48~7.41(m,H,Ar-H),7.33~7.24(m,3H,Ar-H),5.15~5.07(t,6H,NH 2),4.07~4.00(t,6H,CH 2),3.13~3.05(s,6H,CH 2),2.67~2.59(s,H,CH 2),1.83~1.76(s,2H,CH 2)。
实施例4
本实施例提供一种磷硅协同阻燃剂,其结构如式5所示:
Figure PCTCN2021126576-appb-000005
式5所示化合物的制备方法为:将1mol三聚磷酸二氢铝分散于100mL环己酮,加入2mol二羟基二苯基硅烷以及0.01mol二丁基氧化锡,在135℃条件下反应3h,采用蒸馏分离溶剂后,将得到的产物分散于甲苯中与2.2mol环氧氯丙烷、2mol的氢氧化钾以及0.01mol二丁基氧化锡在90℃下搅拌反应240min,反应结束后用物理方法去除未反应的环氧氯丙烷、生成的副产物氯化钾和溶剂,对产物进行酸化,水洗至中性对产物进行提纯得到式6所示化合物。
1H NMR(CDCl 3,500MHz):δ7.57~7.50(m,4H,Ar-H),7.47~7.39(m,8H,Ar-H),7.38~7.30(m,8H,Ar-H),3.79~3.71(t,4H,CH 2),3.66~3.58(t,2H,OH),3.51~3.43(t,4H,CH 2),1.81~1.73(m,4H,CH 2)。
实施例5
本实施例提供一种磷硅协同阻燃剂,其结构如式7所示:
Figure PCTCN2021126576-appb-000006
式6所示化合物的制备方法为:将1mol亚磷酸二乙酯分散于100mL NMP、加入1mol聚甲基苯基硅氧烷(聚合度200)以及0.01mol二丁基氧化锡,在180℃下反应12h,采用蒸馏分离溶剂后,将产物与1mol氯代乙酸混合,60℃下反应3h,对产物进行提纯得到式7所示化合物。
核磁共振氢谱测试表明,上述制备方法制备得到的化合物在11.23~11.17之间出现COO-H峰,而在3.71~3.73出现甲氧基的C-H峰。
采用凝胶色谱测得其数均分子量为采用凝胶色谱测得其数均分子量为28000左右,证明甲基苯基硅氧烷没有发生聚合而是与亚磷酸二甲酯进行了反应。
环氧树脂中的应用
实施例6
本实施例中,将环氧当量为360/eq的双酚A型环氧树脂100重量份与实施例1所示的反应型磷硅协同阻燃剂23重量份混合,再与双腈胺6重量份,2-甲基咪唑0.2重量份,在180℃下固化2h,得到环氧树脂固化物a。
对比例1
本对比例中,将环氧当量为360/eq的环氧树脂100重量份,加入6重量份双腈胺,再加入30重量份APP,在180℃下固化2h,得到环氧树脂固化物b。
对比例2
本对比例中,将环氧当量为360/eq的环氧树脂100重量份,加入6重量份双腈胺,再加入30重量份MCA,在180℃下固化2h,得到环氧树脂固化物c。
对上述环氧树脂固化物a-c的性能进行测试,弯曲强度的测试方法采用GB/T 9341-2008,抗冲击强度测试方法采用GB/T 1843-2008,击穿电压采用GB/T 1408.1-2006,阻燃性测试方法为UL-94,抗滴落测试方法为GB/T 20284-2006, 烟密度测试方法为GB/T 8627-2007。测试结果表1所示。
表1
Figure PCTCN2021126576-appb-000007
从表1的测试结果可以看出,本申请实施例1提供的反应型磷硅协同阻燃剂,其与环氧树脂预先混合,再通过固化反应即可将阻燃剂分子接入环氧树脂分子中,磷硅协同阻燃,使得环氧树脂在燃烧时具备无滴落以及低发烟的特性,在提高环氧树脂阻燃性能的同时,还提高了环氧树脂的机械性能。而MCA以及APP作为添加型阻燃剂不能与环氧树脂分子发生反应,因此对环氧树脂的机械性能没有贡献,且其添加量大,而起到的阻燃效果有限。
硅树脂的应用:
实施例7
本实施例中,将114重量份三甲基乙氧基硅氧烷、186重量份四乙氧基硅氧烷以及50重量份九水硅酸钠,与53.7重量份实施例4制备得到的反应型磷硅协同阻燃剂混合,并在20℃下固化5h,制备得到硅树脂a。
对比例3
本对比例中,将114重量份三甲基乙氧基硅氧烷、186重量份四乙氧基硅氧烷以及50重量份九水硅酸钠混合,并在20℃下固化5h,制备得到硅树脂b。
对比例4
本对比例中,将114重量份三甲基乙氧基硅氧烷、186重量份四乙氧基硅氧烷、50重量份九水硅酸钠以及60重量份APP混合,并在20℃下固化5h,制备得到硅树脂c。
对上述得到的硅树脂a-c的性能进行测试,拉伸强度和伸长率的测试方法采用GB/T 1701-2001,剪切强度测试方法采用GB/T 1700-2001,阻燃性测试方法为UL-94,抗滴落测试方法为GB/T 20284-2006,耐水性能的测试条件为沸水中浸泡2h。测试结果如表2所示。
表2
Figure PCTCN2021126576-appb-000008
Figure PCTCN2021126576-appb-000009
根据表2的测试结果可以看出,本申请实施例4提供的反应型磷硅协同阻燃剂与三甲基乙氧基硅氧烷以及四乙氧基硅氧烷具有相似的结构,其在固化反应后可以接入硅树脂分子中,为硅树脂提供优异的阻燃性能,使得硅树脂在燃烧时具备无滴落以及低发烟的特性,同时还可以提高硅树脂的机械性能。而在不添加实施例4提供的反应型磷硅协同阻燃剂,以及使用APP作为阻燃剂时,均不能达到与实施例7相近的阻燃性能和机械性能。
不饱和树脂中的应用:
实施例8
本实施例中,将实施例2制备的阻燃剂26.8重量份,与甲基丙烯酸甲酯15重量份、甲基丙烯酸丁酯15重量份、丙烯酸乙酯11重量份、甲基丙烯酸1重量份、丙烯酸羟丙酯13重量份、甲基丙烯酸三氟乙酯45重量份、过氧化苯甲 酰2重量份、二甲苯70重量份、丁酮20重量份以及环己酮10重量份混合制备交联型丙烯酸树脂组合物a。
对比例5
本对比例中,将APP 30重量份,与甲基丙烯酸甲酯15重量份、甲基丙烯酸丁酯15重量份、丙烯酸乙酯11重量份、甲基丙烯酸1重量份、丙烯酸羟丙酯13重量份、甲基丙烯酸三氟乙酯45重量份、过氧化苯甲酰2重量份、二甲苯70重量份、丁酮20重量份以及环己酮10重量份混合制备交联型丙烯酸树脂组合物b。
对比例6
本对比例中,将MCA 30重量份,与甲基丙烯酸甲酯15重量份、甲基丙烯酸丁酯15重量份、丙烯酸乙酯11重量份、甲基丙烯酸1重量份、丙烯酸羟丙酯13重量份、甲基丙烯酸三氟乙酯45重量份、过氧化苯甲酰2重量份、二甲苯70重量份、丁酮20重量份以及环己酮10重量份混合制备交联型丙烯酸树脂组合物c。
对比例7
本对比例中,将十溴二苯乙烷30重量份,与甲基丙烯酸甲酯15重量份、甲基丙烯酸丁酯15重量份、丙烯酸乙酯11重量份、甲基丙烯酸1重量份、丙烯酸羟丙酯13重量份、甲基丙烯酸三氟乙酯45重量份、过氧化苯甲酰2重量份、二甲苯70重量份、丁酮20重量份以及环己酮10重量份混合制备交联型丙烯酸树脂组合物d。
对比例8
本对比例中,将四溴双酚A 30重量份,与甲基丙烯酸甲酯15重量份、甲基丙烯酸丁酯15重量份、丙烯酸乙酯11重量份、甲基丙烯酸1重量份、丙烯酸 羟丙酯13重量份、甲基丙烯酸三氟乙酯45重量份、过氧化苯甲酰2重量份、二甲苯70重量份、丁酮20重量份以及环己酮10重量份混合制备交联型丙烯酸树脂组合物e。
对上述制备得到的丙烯酸树脂组合物a-e的抗压强度、抗拉强度、耐水性能以及阻燃性能进行测试,结果如表3所示。其中抗压的测试方法采用GB/T 20467-2008,抗拉强度测试方法采用GB/T 6344-2008,阻燃性测试方法为UL-94,抗滴落测试方法为GB/T 20284-2006,烟密度测试方法为ASTM E1354-94。耐水性能为将抗压强度测试后的丙烯酸树脂组合物在沸水中浸泡2h后,再次进行抗压强度测试。
表3
Figure PCTCN2021126576-appb-000010
Figure PCTCN2021126576-appb-000011
根据表3的测试结果可以看出,本申请实施例2提供的反应型磷硅协同阻燃剂在添加入丙烯酸树脂组合物体系后,可以通过与丙烯酸树脂单体上的不饱和基团发生聚合反应,从而使得实施例2提供的反应型磷硅协同阻燃剂可以连接于丙烯酸树脂分子中,提高丙烯酸树脂的阻燃性能,使得丙烯酸树脂在燃烧时具备无滴落以及低发烟的特性,同时还提高了丙烯酸树脂机械性能。与同样添加量的现有阻燃剂相比,制备得到的丙烯酸树脂组合物的阻燃性能以及机械性能更为优异。
尼龙复合材料中的应用:
实施例9
在本实施例中,将实施例2制备得到的阻燃剂15重量份,偶氮二异丁腈0.05重量份,与尼龙610 81重量份、尼龙66 23重量份、乙烯基三乙氧基硅烷0.7重量份、氢氧化镁12重量份、抗氧剂1010 0.6重量份、玻璃纤维55重量份以及双硬脂酸酰胺0.8重量份,混合制备得到尼龙复合材料a。
对比例9
在本实施例中,将APP 30重量份,与尼龙610 81重量份、尼龙66 23重量份、乙烯基三乙氧基硅烷0.7重量份、氢氧化镁12重量份、抗氧剂1010 0.6重量份、玻璃纤维34重量份以及双硬脂酸酰胺0.8重量份,混合制备得到尼龙复合材料b。
对比例10
在本实施例中,将MCA 30重量份,与尼龙610 81重量份、尼龙66 23重量份、乙烯基三乙氧基硅烷0.7重量份、氢氧化镁12重量份、抗氧剂1010 0.6重量份、玻璃纤维34重量份以及双硬脂酸酰胺0.8重量份,混合制备得到尼龙复合材料c。
对比例11
在本实施例中,将十溴二苯乙烷30重量份,与尼龙610 81重量份、尼龙66 23重量份、乙烯基三乙氧基硅烷0.7重量份、氢氧化镁12重量份、抗氧剂1010 0.6重量份、玻璃纤维34重量份以及双硬脂酸酰胺0.8重量份,混合制备得到尼龙复合材料d。
对比例12
在本实施例中,将四溴双酚A 30重量份,与尼龙610 81重量份、尼龙66 23重量份、乙烯基三乙氧基硅烷0.7重量份、氢氧化镁12重量份、抗氧剂1010 0.6重量份、玻璃纤维34重量份以及双硬脂酸酰胺0.8重量份,混合制备得到尼龙复合材料e。
对实施例9以及对比例7-10制备得到的尼龙复合材料a-e的抗压强度(GB/T15231-2008)、抗拉强度(ASTM C1557-2003(2008)),阻燃性测试方法为UL-94,抗滴落测试方法为GB/T 20284-2006,烟密度测试方法为ASTM E1354-94。结果如表4所示。
表4
Figure PCTCN2021126576-appb-000012
Figure PCTCN2021126576-appb-000013
根据表4的测试结果可以看出,本申请提供的反应型磷硅协同阻燃剂在添加入尼龙复合材料体系后,对于添加量更多的现有阻燃剂而言MCA和APP,制备得到的尼龙复合材料的阻燃性能以及机械性能更为优异,使得尼龙复合材料在燃烧时具备无滴落以及低发烟的特性。
聚碳酸酯塑料中的应用
实施例10
将实施例1和实施例4提供的化合物分散于DMSO中,依次在180℃下反应2h,190℃反应2h以及200℃下反应2h,采用蒸馏分离溶剂后,对产物进行提纯得到聚合型阻燃剂I。
将聚合型阻燃剂I 17.8重量份,与2,2'-双(4-羟基苯基)丙烷聚碳酸酯100重量份,聚四氟乙烯(抗滴落剂)0.5重量份,光稳定剂944 0.5重量份,混合制备聚碳酸酯塑料a。
对比例13
在本对比例中,将APP阻燃剂20重量份,与2,2'-双(4-羟基苯基)丙烷聚碳酸酯100重量份,聚四氟乙烯(抗滴落剂)0.5重量份,光稳定剂944 0.5重量份,混合制备聚碳酸酯塑料c。
对比例14
在本对比例中,将MCA阻燃剂20重量份,与2,2'-双(4-羟基苯基)丙烷聚碳酸酯100重量份,聚四氟乙烯(抗滴落剂)0.5重量份,光稳定剂944 0.5重量份,混合制备聚碳酸酯塑料d。
对实施例10以及对比例9和10提供的聚碳酸酯塑料a-c的拉伸性能、悬臂梁冲击强度以及阻燃性能进行测试,拉伸性能根据GB/T14884-2008进行测试,悬臂梁冲击强度根据GB/T1843-2008进行测试,阻燃性测试方法为UL-94,抗滴落测试方法为GB/T 20284-2006,烟密度测试方法为GB/T 8627-2007。其结果如表5所示。
表5
Figure PCTCN2021126576-appb-000014
从表5的测试结果可以看出,本申请实施例10提供的聚合型阻燃剂,由于其与聚碳酸酯塑料具有良好的相容性,其不仅可以为聚碳酸酯塑料提供良好的阻燃性能,使得聚碳酸酯塑料在燃烧时具备无滴落以及低发烟的特性,还可以提高聚碳酸酯塑料的机械性能。而常规的添加型阻燃剂MCA和APP不仅添加量高于实施例10提供的聚合型阻燃剂,由于相容性差,导致其阻燃效果有限,且对聚碳酸酯塑料的机械性能没有有益影响。
PPS塑料中的应用
实施例11
本实施例中将实施例4和实施例5提供的反应型磷硅协同阻燃剂各1mol分散于环己酮,加0.01mol二丁基氧化锡,依次在160℃下反应3h,180℃反应3h以及200℃下反应3h,采用蒸馏分离溶剂后,对产物进行提纯得到聚合型阻燃剂II。
将聚合型阻燃剂II 17.5重量份,PPS 100重量份,滑石粉10重量份,聚醋酸乙烯8重量份,氧化锆5重量份,混合制备得到PPS塑料a。使用的PPS为分子量为5万左右的线性PPS,熔融指数为30g/min。
对比例15
在本对比例中,将APP阻燃剂20重量份,PPS 100重量份,滑石粉10重量份,聚醋酸乙烯8重量份,氧化锆5重量份,混合制备得到PPS塑料b。使用的PPS为分子量为5万左右的线性PPS,熔融指数为30g/min。
对比例16
在本对比例中,将MCA阻燃剂20重量份,PPS 100重量份,滑石粉10重量份,聚醋酸乙烯8重量份,氧化锆5重量份,混合制备得到PPS塑料c。使用的PPS为分子量为5万左右的线性PPS,熔融指数为30g/min。
对实施例11以及对比例11和12提供的PPS塑料a-c的拉伸性能、悬臂梁冲击强度以及阻燃性能进行测试,拉伸性能根据GB/T14884-2008进行测试,悬臂梁冲击强度根据GB/T1843-2008进行测试,阻燃性测试方法为UL-94,抗滴落测试方法为GB/T 20284-2006,烟密度测试方法为GB/T 8627-2007。其结果如表6所示。
表6
Figure PCTCN2021126576-appb-000015
从表6的测试结果看出,本申请实施例11提供的阻燃剂与PPS具有良好的相容性,不仅可以提高PPS塑料的阻燃性能,使得PPS塑料在燃烧时具备无滴落以及低发烟的特性,还可以提高PPS塑料的机械性能。与之相比,作为添加型阻燃剂的PPA以及MCA与PPS的相容性差,不仅添加量较大,且阻燃性能一般,对PPS塑料的机械性能也没有有益影响。
PBT塑料中的应用
实施例12
将实施例2提供的反应型磷硅协同阻燃剂15.4重量份,偶氮二异丁腈0.05重量份,PBT 100重量份,POE 5重量份,碳酸钙2重量份,单硬脂酸甘油酯5重量份,玻璃纤维10重量份,混合熔炼制备得到PBT塑料a。
对比例17
在本对比例中,将APP阻燃剂20重量份,PBT 100重量份,POE 5重量份,碳酸钙2重量份,单硬脂酸甘油酯5重量份,玻璃纤维10重量份,混合制备得到PBT塑料b。
对比例18
在本对比例中,将MCA阻燃剂20重量份,PBT 100重量份,POE 5重量份,碳酸钙2重量份,单硬脂酸甘油酯5重量份,玻璃纤维10重量份,混合制备得到PBT塑料c。
对实施例12以及对比例13和14提供的PBT塑料a-c的拉伸性能、悬臂梁冲击强度以及阻燃性能进行测试,拉伸性能根据GB/T14884-2008进行测试,悬臂梁冲击强度根据GB/T1843-2008进行测试,阻燃性测试方法为UL-94,抗滴落测试方法为GB/T 20284-2006,烟密度测试方法为GB/T 8627-2007。其结果如表7所示。
表7
Figure PCTCN2021126576-appb-000016
从表7的测试结果看出,本申请实施例2提供的反应型磷硅协同阻燃剂直接添加进入PBT塑料体系中,在塑料炼胶过程中,在加入的少量引发剂的作用,所述反应型磷硅协同阻燃剂可以自聚,从而均与分散于PBT塑料中,不仅可以提高PBT塑料的阻燃性能,使得PBT塑料在燃烧时具备无滴落以及低发烟的特 性,还可以提高PBT塑料的机械性能。与之相比,作为添加型阻燃剂的PPA以及MCA与PBT的相容性差,不仅添加量较大,且阻燃性能一般,对PBT塑料的机械性能也没有有益影响。
申请人声明,本申请通过上述实施例来说明本申请的详细工艺设备和工艺流程,但本申请并不局限于上述详细工艺设备和工艺流程,即不意味着本申请必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (14)

  1. 一种反应型磷硅协同阻燃剂,其中,所述阻燃剂的结构如式1所示:
    Figure PCTCN2021126576-appb-100001
    其中,R 1~R 6为满足其化学环境的任意基团,所述R 1~R 6以及X和Y中至少一个为含有磷元素的基团,所述R 1~R 6中至少一个含有反应性基团,X和Y为满足其化学环境的任意基团,n≥0。
  2. 根据权利要求1所述的磷硅协同阻燃剂,其中,所述R 1~R 6分别独立地包括取代或未取代的烷基、取代或未取代的环烷基、取代或未取代的芳香基、取代或未取代的杂芳基、取代或未取代的烷氧基、取代或未取代的环烷氧基、取代或未取代的芳香氧基或取代或未取代的杂芳氧基中的任意一种或至少两种的组合。
  3. 根据权利要求2所述的磷硅协同阻燃剂,其中,所述R 1~R 6分别独立地包括C1~C12取代或未取代的烷基、C3~C12取代或未取代的环烷基、C6~C12取代或未取代的芳香基、C5~C12取代或未取代的杂芳基、C1~C12取代或未取代的烷氧基、C3~C12取代或未取代的环烷氧基、C6~C12取代或未取代的芳香氧基或C5~C12取代或未取代的杂芳氧基中的任意一种或至少两种的组合。
  4. 根据权利要求1-3任一项所述的磷硅协同阻燃剂,其中,所述含有磷元素的基团包括含有磷酸、磷酸酯、亚磷酸酯结构的基团或者含有DOPO结构及其衍生物的基团。
  5. 根据权利要求1-4任一项所述的磷硅协同阻燃剂,其中,所述反应性基团包括羟基、胺基、不饱和基团、羧基、环氧基、酯基、酸酐、甲氧基、异氰 酸酯基或氰基中的任意一种或至少两种的组合。
  6. 根据权利要求1-5任一项所述的磷硅协同阻燃剂,其中,所述X和Y分别独立地包括取代或未取代的亚烷基、取代或未取代的亚芳基、-NH-、-O-、-S-、
    Figure PCTCN2021126576-appb-100002
    中的任意一种或至少两种的组合,其中R 7为不存在或满足其化学环境的任意基团。
  7. 一种权利要求1-6任一项所述的磷硅协同阻燃剂的制备方法,其包括:含有硅元素的化合物与含磷化合物通过化学反应制备得到。
  8. 根据权利要求7所述的制备方法,其中,所述含有硅元素的化合物包括取代或未取代的硅烷、聚硅烷或聚硅氧烷中的任意一种或至少两种组合。
  9. 根据权利要求8所述的制备方法,其中,所述聚硅烷包括硅烷自聚或硅烷与扩链剂共聚所得到的聚合物。
  10. 根据权利要求8所述的制备方法,其中,所述聚硅氧烷包括硅氧烷自聚或硅氧烷与扩链剂共聚所得到的聚合物。
  11. 根据权利要求7-10任一项所述的制备方法,其中,所述含磷化合物包括磷酸类化合物及其衍生物、亚磷酸类化合物及其衍生物、次磷酸类化合物及其衍生物、磷酸盐类化合物及其衍生物、亚磷酸盐类化合物及其衍生物、次磷酸盐类化合物及其衍生物、磷酸酯类化合物及其衍生物、亚磷酸酯类化合物及其衍生物、次磷酸酯类化合物及其衍生物以及DOPO类化合物及其衍生物中的任意一种或至少两种的组合。
  12. 一种聚合型磷硅协同阻燃剂,其中,所述聚合型磷硅协同阻燃剂由权利要求1-6任一项所述的反应型磷硅协同阻燃剂通过自聚或共聚反应制备得到。
  13. 一种聚合型磷硅协同阻燃剂,其中,所述聚合型磷硅协同阻燃剂由权 利要求1-6任一项所述的反应型磷硅协同阻燃剂与含有反应基的化合物通过共聚制备得到。
  14. 一种权利要求1-6、12或13所述的磷硅协同阻燃剂的应用,其中,所述磷硅协同阻燃剂的应用领域包括热塑型树脂、热固型树脂或光固型树脂中的任意一种或至少两种的组合。
PCT/CN2021/126576 2020-10-29 2021-10-27 一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用 WO2022089459A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011179966.8 2020-10-29
CN202011179966 2020-10-29
CN202110172697.0A CN112876508A (zh) 2020-10-29 2021-02-08 一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用
CN202110172697.0 2021-02-08

Publications (1)

Publication Number Publication Date
WO2022089459A1 true WO2022089459A1 (zh) 2022-05-05

Family

ID=76056085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126576 WO2022089459A1 (zh) 2020-10-29 2021-10-27 一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN112876508A (zh)
WO (1) WO2022089459A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160833A (zh) * 2022-07-15 2022-10-11 苏州世名科技股份有限公司 一种炭黑阻燃颜料的改性方法及改性炭黑阻燃颜料和应用
CN115850641A (zh) * 2022-11-30 2023-03-28 合肥徽润涂料有限公司 一种阻燃改性聚氨酯材料及其合成方法
CN116217803A (zh) * 2022-09-29 2023-06-06 复旦大学 一种交联型磷硅协效阻燃剂及阻燃型聚苯乙烯树脂
CN116554482A (zh) * 2023-05-17 2023-08-08 重庆科聚孚新材料有限责任公司 一种高耐温和耐析出的化学封端的聚焦磷酸哌嗪改性聚磷酸铵及其制备方法和装置和应用
CN116694072A (zh) * 2023-07-13 2023-09-05 苏州优利金新材料有限公司 一种高阻燃尼龙复合材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112876508A (zh) * 2020-10-29 2021-06-01 广东广山新材料股份有限公司 一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用
CN112961184A (zh) * 2020-10-29 2021-06-15 广东广山新材料股份有限公司 一种反应型阻燃剂、聚合型阻燃剂及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3699188A (en) * 1969-05-19 1972-10-17 Toyama Chemical Co Ltd Fire resistant polymers
CN1944446A (zh) * 2006-11-02 2007-04-11 上海交通大学 一种含磷有机硅化合物及其制备方法
CN104211880A (zh) * 2014-09-23 2014-12-17 厦门大学 一种含磷硅阻燃嵌段共聚物及其制备方法
CN105178006A (zh) * 2015-10-14 2015-12-23 江南大学 一种含磷氮硅的反应性阻燃剂及其制备方法及应用
CN105198926A (zh) * 2015-09-29 2015-12-30 上海应用技术学院 一种无卤反应型磷/硅协同阻燃剂及其制备方法
CN106749414A (zh) * 2017-01-13 2017-05-31 山东船舶技术研究院 一种反应型含磷含硅阻燃剂及其制备方法
CN110511354A (zh) * 2019-08-30 2019-11-29 苏州科技大学 一种含有环氧基团的磷硅协同阻燃剂及其制备方法
CN111253437A (zh) * 2020-03-10 2020-06-09 福建师范大学泉港石化研究院 一种含P/N/Si多元素反应型环氧树脂阻燃剂及其制备方法
CN111363339A (zh) * 2018-12-26 2020-07-03 广东生益科技股份有限公司 含磷硅阻燃剂、其制备方法、阻燃树脂组合物、预浸料和覆金属箔层压板
CN112876508A (zh) * 2020-10-29 2021-06-01 广东广山新材料股份有限公司 一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112961184A (zh) * 2020-10-29 2021-06-15 广东广山新材料股份有限公司 一种反应型阻燃剂、聚合型阻燃剂及其制备方法和应用
CN112961363A (zh) * 2020-10-29 2021-06-15 广东广山新材料股份有限公司 一种聚合型磷硅协同阻燃剂及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3699188A (en) * 1969-05-19 1972-10-17 Toyama Chemical Co Ltd Fire resistant polymers
CN1944446A (zh) * 2006-11-02 2007-04-11 上海交通大学 一种含磷有机硅化合物及其制备方法
CN104211880A (zh) * 2014-09-23 2014-12-17 厦门大学 一种含磷硅阻燃嵌段共聚物及其制备方法
CN105198926A (zh) * 2015-09-29 2015-12-30 上海应用技术学院 一种无卤反应型磷/硅协同阻燃剂及其制备方法
CN105178006A (zh) * 2015-10-14 2015-12-23 江南大学 一种含磷氮硅的反应性阻燃剂及其制备方法及应用
CN106749414A (zh) * 2017-01-13 2017-05-31 山东船舶技术研究院 一种反应型含磷含硅阻燃剂及其制备方法
CN111363339A (zh) * 2018-12-26 2020-07-03 广东生益科技股份有限公司 含磷硅阻燃剂、其制备方法、阻燃树脂组合物、预浸料和覆金属箔层压板
CN110511354A (zh) * 2019-08-30 2019-11-29 苏州科技大学 一种含有环氧基团的磷硅协同阻燃剂及其制备方法
CN111253437A (zh) * 2020-03-10 2020-06-09 福建师范大学泉港石化研究院 一种含P/N/Si多元素反应型环氧树脂阻燃剂及其制备方法
CN112876508A (zh) * 2020-10-29 2021-06-01 广东广山新材料股份有限公司 一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160833A (zh) * 2022-07-15 2022-10-11 苏州世名科技股份有限公司 一种炭黑阻燃颜料的改性方法及改性炭黑阻燃颜料和应用
CN116217803A (zh) * 2022-09-29 2023-06-06 复旦大学 一种交联型磷硅协效阻燃剂及阻燃型聚苯乙烯树脂
CN115850641A (zh) * 2022-11-30 2023-03-28 合肥徽润涂料有限公司 一种阻燃改性聚氨酯材料及其合成方法
CN116554482A (zh) * 2023-05-17 2023-08-08 重庆科聚孚新材料有限责任公司 一种高耐温和耐析出的化学封端的聚焦磷酸哌嗪改性聚磷酸铵及其制备方法和装置和应用
CN116554482B (zh) * 2023-05-17 2024-06-11 重庆科聚孚新材料有限责任公司 一种高耐温和耐析出的化学封端的聚焦磷酸哌嗪改性聚磷酸铵及其制备方法和装置和应用
CN116694072A (zh) * 2023-07-13 2023-09-05 苏州优利金新材料有限公司 一种高阻燃尼龙复合材料及其制备方法
CN116694072B (zh) * 2023-07-13 2023-11-28 苏州优利金新材料有限公司 一种高阻燃尼龙复合材料及其制备方法

Also Published As

Publication number Publication date
CN112876508A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2022089459A1 (zh) 一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用
WO2022089469A1 (zh) 一种聚合型磷硅协同阻燃剂及其制备方法和应用
JP3574803B2 (ja) リン及びシリコン変性の難燃性エポキシ樹脂
WO2022089461A1 (zh) 反应型阻燃剂、聚合型阻燃剂及其制备方法和应用
CN114292368B (zh) 一种有机硅-含磷丙烯酸酯核壳增韧阻燃剂及其制备方法
EP0700968A1 (en) Flameproof thermoplastic resin compositions
JPH07505916A (ja) 単純二成分無ハロゲン難燃剤
WO2022089468A1 (zh) 聚合型阻燃剂及其制备方法和应用
DE3887079T2 (de) Blockcopolymer aus aromatischem Polyester und Polyorganosiloxan.
JP5695866B2 (ja) 難燃性樹脂組成物
CN109233238A (zh) 一种笼形低聚硅倍半氧烷阻燃聚碳酸酯及其制备方法和应用
JP2013532205A (ja) 難燃性ポリエステル樹脂組成物およびその成形品
JP5716666B2 (ja) 難燃剤、その製造方法、及びそれを含有する難燃性熱可塑性樹脂組成物
CN112646510B (zh) 一种阻燃剂的制备及其在阻燃型胶粘剂中的应用
JP3508360B2 (ja) 難燃剤および難燃性樹脂組成物
JP5266598B2 (ja) 縮環構造含有フェノキシ樹脂
JP4290250B2 (ja) 難燃性ポリカーボネート組成物
KR101611002B1 (ko) 난연성 폴리아미드계 수지 조성물 및 이를 포함하는 성형품
CN112442081A (zh) 一种反应型阻燃剂及其制备方法和应用
JP3484803B2 (ja) 難燃性樹脂組成物
JP3725065B2 (ja) 難燃性エポキシ樹脂組成物
JPS62218446A (ja) ポリアリ−レンスルフイド樹脂組成物
JP3484804B2 (ja) 難燃性樹脂組成物
KR20170030226A (ko) 열가소성 난연 수지 조성물 및 이의 제조방법
CN118271258A (zh) 一种具有超强机械性能的阻燃环氧树脂材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21885186

Country of ref document: EP

Kind code of ref document: A1