WO2022083564A1 - 包含具有拓扑孔道结构的分子筛的催化剂、制备方法及其应用 - Google Patents

包含具有拓扑孔道结构的分子筛的催化剂、制备方法及其应用 Download PDF

Info

Publication number
WO2022083564A1
WO2022083564A1 PCT/CN2021/124556 CN2021124556W WO2022083564A1 WO 2022083564 A1 WO2022083564 A1 WO 2022083564A1 CN 2021124556 W CN2021124556 W CN 2021124556W WO 2022083564 A1 WO2022083564 A1 WO 2022083564A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
catalyst
metal oxide
distributed
zsm
Prior art date
Application number
PCT/CN2021/124556
Other languages
English (en)
French (fr)
Inventor
刘畅
王仰东
谢在库
刘苏
周海波
苏俊杰
焦文千
张琳
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to EP21881980.3A priority Critical patent/EP4215272A4/en
Priority to MX2023004564A priority patent/MX2023004564A/es
Priority to CA3198954A priority patent/CA3198954A1/en
Priority to US18/249,718 priority patent/US20230405563A1/en
Publication of WO2022083564A1 publication Critical patent/WO2022083564A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/365Type ZSM-8; Type ZSM-11; ZSM 5/11 intermediate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • C01B39/40Type ZSM-5 using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/38Base treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a catalyst for producing aromatic hydrocarbons and/or light hydrocarbons by converting synthesis gas, a preparation method and use thereof.
  • the routes for preparing aromatic compounds from synthetic gas mainly include two types, which are based on the synthetic alcohol route and the Fischer-Tropsch synthesis route.
  • the alcohol synthesis route is an indirect synthesis route, and the existing mature technology can be used for reference, but its production route is long and equipment investment is high; the product distribution of Fischer-Tropsch synthesis is wide and limited by the Anderson-Schulz-Flory distribution, and the selectivity of aromatic hydrocarbon products is relatively high. Low.
  • the one-step process based on CO hydrogenation-intermediate conversion multifunctional catalyst not only has the advantages of fixed cost, but also provides the possibility to realize the efficient coupling between multi-step reactions and promote the shift of reaction equilibrium, which has both academic and application value.
  • CD Chang et al. Synthesis gas conversion to aromatic hydrocarbons. Journal of Catalysis, 1979, 56(2): 268-273 applied ZnO-Cr 2 O 3 and HZSM-5 to the synthesis gas to aromatic hydrocarbon system, and obtained nearly 70% of the Total aromatics selectivity.
  • CN201610965244.2 and CN201710603524.3 respectively disclose the application of zirconium-containing composite oxide-modified zeolite molecular sieve and modified cerium-zirconium solid solution-hierarchical porous silica-alumina solid acid material in the conversion of synthesis gas to light aromatic hydrocarbons.
  • the above multifunctional catalysts can achieve high aromatics selectivity, but the conversion rate is still low, and it is still very difficult to control the aromatics distribution on the basis of maintaining a high total aromatics yield.
  • Molecular sieve as one of the active components, usually needs to add a large amount of binder when the catalyst needs to be prepared and used to improve the mechanical strength of the catalyst to meet the requirements of industrial production.
  • the addition of the binder will reduce the proportion of active components and reduce the activity of the catalyst.
  • the researchers performed transcrystallization treatment on the binder in the molecular sieve catalyst formed by adding a binder, thereby reducing the components of the binder, and at the same time making the catalyst have higher mechanical strength (such as CN102371169B, CN102371170B , CN102039171B, CN102372277B).
  • the invention provides a catalyst comprising a molecular sieve with a topological pore structure, a preparation method thereof, and an application of the catalyst in the process of converting synthesis gas to produce aromatic hydrocarbons and/or light hydrocarbons.
  • the catalyst activity is obviously improved, and the aromatic hydrocarbon selectivity and aromatic hydrocarbon distribution effect are also better.
  • a “range” disclosed herein is given in the form of lower and upper limits, eg, one or more lower limits and one or more upper limits.
  • a given range can be defined by selecting a lower limit and an upper limit that define the boundaries of the given range. All ranges defined in this manner are inclusive and combinable, ie any lower limit can be combined with any upper limit to form a range.
  • ranges of 60-110 and 80-120 are listed for certain parameters, with the understanding that ranges of 60-120 and 80-110 are also contemplated.
  • the lower limits are listed as 1 and 2 and the upper limits are listed as 3, 4 and 5, the following ranges are contemplated and are within the scope of the present disclosure: 1-3, 1-4, 1 -5, 2-3, 2-4 and 2-5.
  • a catalyst refers to a catalyst with regular shape, certain particle size and strength, which contains both metal oxide and molecular sieve components.
  • the distance between the metal oxide and the surface of the molecular sieve grain refers to the vertical distance between the center of the metal oxide particle and the outer surface of the molecular sieve grain.
  • One aspect of the present invention provides a catalyst comprising a molecular sieve with a topological pore structure, the catalyst comprising a metal oxide and a molecular sieve in a crystal form with a topological pore structure, the metal oxide is concentrated on the surface of the molecular sieve; wherein, the The crystal grains of the molecular sieve expose at least 3 crystal face groups, and the 1 crystal face group with the relatively largest pore size in topology is occupied by the metal oxide not more than 30%, preferably not more than 20%, or not more than 30% 10%.
  • the mass of metal oxide distributed per unit area on the crystal plane with the relatively largest pore size in topology is 1, the mass of metal oxide distributed per unit area on the crystal plane with the relatively smallest pore size in topology More than 2, preferably more than 3; in other words, in terms of the mass of the metal oxide distributed per unit area on the crystal face (which can be simply referred to as the mass per unit area), the mass per unit area of the crystal face with the relatively smallest pore size in topology exceeds that in topology.
  • the pore size is 2 times, preferably more than 3 times, relative to the largest crystal plane.
  • concentrated distribution of the metal oxide on the surface of the molecular sieve means that a major portion of the metal oxide is distributed on the surface of the molecular sieve; eg, in an exemplary embodiment, at least 50% of the metal oxide is distributed on the surface of the molecular sieve Distributed on the surface of the molecular sieve, preferably at least 70% distributed on the surface of the molecular sieve.
  • the present invention thus provides a catalyst comprising a metal oxide and a molecular sieve, the metal oxide being substantially distributed on the surface of the molecular sieve.
  • At most 30% of the metal oxide is distributed over a distance of more than 200 nm from the surface of the molecular sieve grains; preferably at most 25% is distributed over a distance of more than 100 nm from the surface of the molecular sieve grains.
  • the molecular sieve is selected from ten-membered ring structure molecular sieves such as MFI, MEL, AEL, TON, and the like.
  • the molecular sieve is selected from MFI, MEL structural molecular sieves.
  • the molecular sieve is selected from ZSM-5, ZSM-11, Silicalite-1 and Silicalite-2. More preferably, the molecular screen is selected from ZSM-5 and ZSM-11.
  • the molar ratio of silicon to aluminum of the molecular sieve is 15- ⁇ , preferably 15-200, more preferably 20-100.
  • the molecular sieve has a grain size of 10 nm to 2000 nm, preferably 50 nm to 800 nm, more preferably 400 to 800 nm.
  • the molecular sieve is ZSM-5 molecular sieve.
  • the metal oxides are mainly distributed on the (100) crystal plane and the (101) crystal plane of the ZSM-5 molecular sieve.
  • the crystal planes of ZSM-5 molecular sieve mainly include (100) crystal plane, (101) crystal plane and (010) crystal plane, and metal oxides are distributed on the (100) crystal plane and (101) crystal plane of ZSM-5 molecular sieve.
  • the crystal planes are dominated (about 70% of the total metal oxides), while the (010) crystal planes are significantly less distributed.
  • the molecular sieve is ZSM-11 molecular sieve.
  • the metal oxides are mainly distributed on the (101) crystal plane of the ZSM-11 molecular sieve.
  • the metal oxides are mainly distributed on the (101) crystal plane of ZSM-11 molecular sieve (accounting for more than 50% of the total metal oxides), and are distributed on other crystal planes such as (100) and (010) significantly less.
  • the catalyst contains at most 5 wt% of amorphous silica and/or amorphous alumina phase, preferably at most 3 wt% of amorphous silica and/or amorphous alumina phase, preferably Contains up to 1 wt% amorphous silica and/or amorphous alumina phase, relative to the total weight of the catalyst.
  • the catalyst is free of amorphous silica and/or amorphous alumina phases, relative to the total weight of the catalyst.
  • the XRD pattern of the catalyst is substantially free of the characteristic diffraction peaks of amorphous silica and/or amorphous alumina.
  • said "substantially free of characteristic diffraction peaks” means the absence of characteristic diffraction peaks at the relevant positions sufficient to be recognized in the art as representing the presence of the corresponding structure.
  • the silica or alumina is a conventional binder in the art; thus, in other words, the catalyst of the present invention is substantially free of the amorphous binder component. Accordingly, such a catalyst of the present invention that is substantially free of amorphous binder and has a regular shape, certain particle size and strength can be referred to as a "monolithic" catalyst.
  • the precursor of the amorphous silica and/or amorphous alumina phase in the catalyst is a binder.
  • the mass ratio of metal oxide to molecular sieve is (0.2-5.0):1, preferably (0.4-2.5):1.
  • the metal component of the metal oxide is selected from the group consisting of rare earth metals, IVB, VIB, VIIB, VIII, IB, IIB and IIIA elements.
  • the metal component of the metal oxide is selected from the group consisting of Cr, Zr, Mn, Ce, La, In, Ga and Zn.
  • the metal component of the metal oxide is selected from the group consisting of Cr, Zr, Mn, In and Zn.
  • the metal component of the metal oxide is selected from the group consisting of Zn, Ce, Ga and La.
  • the metal oxides are Cr 2 O 3 , MnO, ZnMn 20 O x and CrMnO x .
  • the particle size of the catalyst particles is 0.1 mm to 10.0 mm, preferably 1.0 to 5.0 mm.
  • Another aspect of the present invention provides a method for preparing the catalyst of the present invention, which includes: after mixing and molding a metal oxide, a synthetic molecular sieve and a binder, a second crystallization treatment is performed in a steam atmosphere of a second template agent, and then The catalyst is obtained by calcination.
  • the as-synthesized molecular sieve is prepared by means of a first templating agent, which is the same as or different from the second templating agent, and is not calcined.
  • the molecular sieve is a synthetic molecular sieve, that is, a molecular sieve obtained from a crystallized product without calcination.
  • the preparation method of the molecular sieve includes the step of adding an ammonium auxiliary agent in the process of preparing the crystallization mother liquor.
  • adding an ammonium auxiliary agent which is a substance capable of providing ammonium ions, can make the auxiliary agent selectively adsorb on the specific crystal face of the molecular sieve through the ammonium ion, so that the catalyst can be prepared subsequently.
  • the metal oxides introduced during the process are selectively adsorbed on other specific crystal planes other than the above-mentioned specific crystal planes.
  • specific crystal planes other than the above-mentioned specific crystal planes.
  • metal oxides are selectively adsorbed on its (100) crystal plane and (101) crystal plane.
  • the ammonium adjuvant is ammonia, urea, ammonium carbonate, ammonium bicarbonate.
  • the molar ratio of the ammonium-based auxiliary agent to the silicon source calculated as SiO 2 in the molecular sieve is 0.2-5.0, preferably 0.5-3.0, for example, 0.5-2.0.
  • the preparation method of the molecular sieve includes: a silicon source, an aluminum source, a first template agent and an ammonium-containing auxiliary agent, selectively adding an alkali source and mixing to obtain a crystallization mother liquor, After the first crystallization, the synthetic molecular sieve is obtained by drying.
  • the silicon source is selected from silica sol, fumed silica, ethyl orthosilicate, and sodium silicate
  • the aluminum source is selected from aluminum isopropoxide, aluminum nitrate, aluminum hydroxide, aluminum sol, and sodium metaaluminate
  • the alkali source is selected from sodium hydroxide, sodium carbonate, and sodium bicarbonate
  • the template agent is selected from tetrapropylammonium bromide, tetrapropylammonium hydroxide
  • the ammonium additives are ammonia, urea, ammonium carbonate , Ammonium bicarbonate.
  • the silicon source is calculated as SiO 2
  • the aluminum source is calculated as Al 2 O 3
  • the alkali source is calculated as oxide
  • the molar ratio of template agent and ammonium auxiliary agent is 1:0 ⁇ 0.033:0 ⁇ 2.0:0.2 ⁇ 4.0 : 0.2 to 5.0.
  • the crystallization conditions are as follows: the crystallization temperature is 120-200° C., and the crystallization time is 12-180 hours.
  • the obtained ZSM-5 molecular sieve has a particle size of 10 nm to 2000 nm, preferably 50 nm to 800 nm, and more preferably 400 to 800 nm.
  • the preparation method of the molecular sieve includes: a silicon source, an aluminum source, a first template agent and an ammonium-containing auxiliary agent, selectively adding an alkali source and mixing to obtain a crystallization mother liquor, After the first crystallization, the synthetic molecular sieve is obtained by drying.
  • the silicon source is selected from silica sol, fumed silica, ethyl orthosilicate, and sodium silicate
  • the aluminum source is selected from aluminum isopropoxide, aluminum nitrate, aluminum hydroxide, aluminum sol, and sodium metaaluminate
  • the alkali source is selected from sodium hydroxide, sodium carbonate, and sodium bicarbonate
  • the template agent is selected from tetrabutylammonium bromide, tetrabutylammonium hydroxide
  • the ammonium additives are ammonia, urea, ammonium carbonate, carbonic acid Ammonium hydrogen.
  • the silicon source is calculated as SiO 2
  • the aluminum source is calculated as Al 2 O 3
  • the alkali source is calculated as oxide
  • the molar ratio of template agent and ammonium auxiliary agent is 1:0 ⁇ 0.033:0 ⁇ 2.0:0.2 ⁇ 4.0 : 0.2 to 5.0.
  • the crystallization conditions are as follows: the crystallization temperature is 120-200° C., and the crystallization time is 12-180 hours.
  • the obtained ZSM-11 molecular sieve has a particle size of 10 nm to 2000 nm, preferably 50 nm to 800 nm, and more preferably 400 to 800 nm.
  • the second templating agent is selected from ammonia, triethylamine, tetraethylammonium bromide, tetraethylammonium hydroxide, tetrapropylammonium bromide, tetrapropylammonium hydroxide, tetrabutylammonium ammonium bromide and tetrabutylammonium hydroxide.
  • the second crystallization conditions are as follows: the crystallization temperature is 100-180°C; the crystallization time is 12-100 hours, preferably, the crystallization temperature is 105-170°C; the crystallization time is 24 ⁇ 96 hours.
  • the roasting conditions are as follows: the roasting temperature is 500-700°C, and the roasting time is 2-10 hours; preferably, the roasting temperature is 520-580°C, and the roasting time is 5-8 hours.
  • the binder is selected from silica sol, fumed silica, aluminum nitrate, aluminum hydroxide, aluminum sol, silica alumina sol, molecular sieve mother liquor.
  • the mass ratio of metal oxide/molecular sieve/binder is in the range of (0.2-5.0):1:(0.2-0.6).
  • the mass ratio of metal oxide/molecular sieve/binder is in the range of (0.4-2.5):1:(0.3-0.5).
  • Another aspect of the present invention provides a method for converting synthesis gas to produce aromatic hydrocarbons and/or light hydrocarbons.
  • the method uses synthesis gas as a raw material, and the raw material is contacted and reacted with the catalyst of the present invention to obtain a stream containing aromatic hydrocarbons and/or light hydrocarbons. .
  • the H 2 /CO molar ratio in the raw syngas ranges from 0.3 to 4.0.
  • the molar ratio of H 2 /CO in the raw syngas ranges from 0.5 to 2.0.
  • the reaction conditions are: a reaction temperature of 350-480° C.; and/or a reaction pressure of 2.0-9.5 MPa; and/or, a volumetric space velocity of 900-18000 h ⁇ 1 .
  • the reaction conditions are: a reaction temperature of 350-450° C.; and/or a reaction pressure of 4.0-8.0 MPa; and/or, a volumetric space velocity of 1000-15000 h ⁇ 1 .
  • the present invention provides a novel process for producing aromatics and/or light hydrocarbons from synthesis gas, the products of which comprise BTX aromatics, C9 + aromatics and/or C1 -C5 + light hydrocarbons.
  • One-stage or multi-stage series reactors can be selected, and the reactor types can be selected from fixed bed, fluidized bed and moving bed.
  • the types of reactors at each stage can be the same or different.
  • Syngas from different sources can be treated with water gas shift/reverse water gas shift to adjust its H 2 /CO molar ratio. Part of the H 2 O and CO 2 required for the treatment comes from the separation and reflux of the reaction product, and part comes from the pipeline gas supply.
  • the reacted stream includes unconverted CO and H 2 , CO 2 and hydrocarbon products, and the hydrocarbon products are composed of aromatic hydrocarbons and/or C 1 -C 5+ hydrocarbons.
  • Aromatic hydrocarbons include C 6 to C 9+ aromatic hydrocarbons, and C 5+ hydrocarbons refer to aliphatic hydrocarbon compounds with a carbon number of 5 or more.
  • the selectivity of each product is defined as the proportion (mol%) of each product in the total carbon number of the organic product.
  • the specific calculation method is as follows:
  • Total carbon number of organic product ⁇ (the amount of substance in organic product i ⁇ number of carbon atoms in the molecule of organic product i)
  • Aromatic selectivity C 6 aromatic selectivity + C 7 aromatic selectivity + C 8 aromatic selectivity + C 9 + aromatic selectivity
  • C6 - C8 aromatics selectivity ( C6 aromatics selectivity + C7 aromatics selectivity + C8 aromatics selectivity)/aromatics selectivity x 100%.
  • aromatic hydrocarbon products benzene, toluene, and xylene are widely used as chemical raw materials, solvents, and gasoline additives, and are aromatic hydrocarbons with great industrial application value.
  • An important method to improve the yield of aromatic hydrocarbons is to increase the activity of the catalyst to convert more raw materials. product for the purpose.
  • adjusting the distribution of aromatic products and improving the selectivity of C 6 -C 8 light aromatics is an urgent problem to be solved in the synthesis gas-to-aromatic and/or light hydrocarbon system.
  • the catalyst of the present invention By screening and optimizing the active components of the catalyst, and adjusting the dispersion state of the metal oxide in the catalyst in the molecular sieve system, the efficient coupling and path regulation of the multi-step reaction are realized, which not only significantly improves the catalytic activity, but also improves the high efficiency.
  • the optimization of aromatics distribution is achieved within the aromatics selectivity range.
  • the total aromatics selectivity can reach more than 70%, but more prominently, the CO conversion rate can reach more than 35%.
  • (1), (2) and (3) in Figure 5 are the scanning photos of the catalyst obtained in Comparative Example 2, and the nano-CT photos of the (100) crystal plane and (010) crystal plane of ZSM-5 molecular sieve.
  • the tube pressure is 40kV
  • the tube flow is 50mA
  • the scanning range is 5-90 ° .
  • the invention relates to the instruments and conditions for SEM testing of the catalyst as follows: the morphology and structure of the catalyst are observed with a scanning electron microscope (Zeiss Merlin), and the acceleration voltage is 2.0 kV.
  • the invention adopts the "water window” band soft X-ray absorption contrast three-dimensional imaging (Nano-CT) of Hefei synchrotron radiation light source BL07W line station to characterize the distribution of metal oxides on the surface of the molecular sieve.
  • MnO was prepared by precipitation method: 50% manganese nitrate solution was used as manganese source, and ammonium carbonate was used as precipitant. Dilute 50.11 g of manganese nitrate solution with 50 mL of deionized water to a homogeneous solution; dissolve 19.22 g of ammonium carbonate in 100.0 mL of deionized water. The manganese nitrate solution and the ammonium carbonate solution were added dropwise to 20 mL of deionized water in a constant temperature water bath at 70 °C and vigorous stirring. After the precipitation was completed, the mother liquor was aged in a constant temperature water bath at 70 °C for 3 hours, and then filtered and washed with deionized water until neutral. The obtained filter cake was dried in an oven at 100 °C overnight, and then calcined at 500 °C for 1 h (heating rate 2 °C/ min) to obtain MnO.
  • the ZSM-5 molecular sieve (denoted as Z5(50)-450nm) with a Si/Al molar ratio of 50 and an average particle size of 450nm was synthesized by hydrothermal method, as follows:
  • Cr 2 O 3 is prepared by precipitation method: using chromium nitrate nonahydrate as chromium source and ammonium carbonate as precipitant. Dissolve 56.02 g of chromium nitrate in 75 mL of deionized water; dissolve 21.19 g of ammonium carbonate in 100.0 mL of deionized water. The chromium nitrate solution and the ammonium carbonate solution were added dropwise to 20 mL of deionized water in a constant temperature water bath at 70 °C and vigorous stirring. After the precipitation was completed, the mother liquor was aged in a constant temperature water bath at 70 °C for 3 hours, and then filtered and washed with deionized water until neutral. The obtained filter cake was dried in an oven at 100 °C overnight, and then calcined at 500 °C for 1 h (heating rate 2 °C/ min) to obtain Cr 2 O 3 .
  • CrMnO x was prepared by ball milling mixing-roasting method: chromium nitrate nonahydrate and 50% manganese nitrate solution were used as chromium source and manganese source respectively, and ammonium carbonate was used as precipitant. Dissolve 56.02 g of chromium nitrate in 75 mL of deionized water; dissolve 21.19 g of ammonium carbonate in 100.0 mL of deionized water. The chromium nitrate solution and the ammonium carbonate solution were added dropwise to 20 mL of deionized water in a constant temperature water bath at 70 °C and vigorous stirring.
  • the mother liquor is aged in a constant temperature water bath at 70°C for 3 hours, and then filtered and washed with deionized water until it becomes neutral.
  • the obtained filter cake is dried in an oven at 100°C overnight to obtain a chromium precursor.
  • the manganese nitrate solution and the ammonium carbonate solution were added dropwise to 20 mL of deionized water in a constant temperature water bath at 70 °C and vigorous stirring.
  • the mother liquor is aged in a constant temperature water bath at 70°C for 3 hours, and then filtered and washed with deionized water until it becomes neutral.
  • the obtained filter cake is dried in an oven at 100°C overnight to obtain a manganese precursor.
  • the chromium precursor and the manganese precursor are ball-milled and mixed, and the obtained mixture is calcined at 500° C. for 1 h (heating rate of 2° C. min ⁇ 1 ) to obtain CrMnO x .
  • the ZSM-11 molecular sieve (denoted as Z11(50)-450nm) with a Si/Al ratio of 50 and an average particle size of 450nm was synthesized by hydrothermal method, as follows:
  • the ZSM-5 molecular sieve (denoted as Z5(50)-200nm) with a Si/Al ratio of 50 and an average particle size of 200nm was synthesized by hydrothermal method, as follows:
  • the ZSM-5 molecular sieve (denoted as Z5(50)-300nm) with a Si/Al ratio of 50 and an average particle size of 300nm was synthesized by hydrothermal method, as follows:
  • the ZSM-5 molecular sieve (denoted as Z5(50)-700nm) with a Si/Al ratio of 50 and an average particle size of 700nm was synthesized by hydrothermal method, as follows:
  • the ZSM-5 molecular sieve (denoted as Z5(50)-700nm) with a Si/Al ratio of 50 and an average particle size of 700nm was synthesized by hydrothermal method, as follows:
  • the ZSM-5 molecular sieve (denoted as Z5(50)-700nm) with a Si/Al ratio of 50 and an average particle size of 700nm was synthesized by hydrothermal method, as follows:
  • Example a 10g of MnO prepared in Example a, 10g of Z5(50)-450nm prepared in Example b, and 10g of silica sol (containing SiO 2 in mass of 4g) were mechanically mixed, and then extruded and formed into tetrapropyl hydrogen. Crystallization in ammonium oxide vapor at 170°C for 48 hours. The crystallized catalyst was calcined at 550° C. for 5 hours to obtain catalyst SSL-1.
  • the CrMnO x 10g prepared in Example d, the Z5(50)-450nm 10g prepared in Example b, and the silica sol 10g (the mass of SiO contained in it is 4g) were mechanically mixed, and then extruded and formed into a tetrapropyl group. Crystallization in ammonium hydroxide vapor at 170°C for 48 hours. The crystallized catalyst was calcined at 550° C. for 5 hours to obtain catalyst SSL-3.
  • Example c 20 g of Cr 2 O 3 prepared in Example c, 10 g of Z5(50)-700nm prepared in Example h, and 10 g of silica sol (the mass of SiO 2 contained therein is 4 g) were mechanically mixed, and then extruded and formed in four Crystallization in propylammonium hydroxide vapor at 170°C for 48 hours.
  • the crystallized catalyst was calcined at 550° C. for 5 hours to obtain catalyst SSL-9.
  • Example c 10 g of Cr 2 O 3 prepared in Example c and 10 g of Z5(50)-700nm prepared in Example h were mechanically mixed.
  • the XRD pattern of the catalyst is shown in Figure 1. The catalyst is granulated and crushed to obtain catalyst particles of 20-40 meshes.
  • the XRD patterns of catalyst SSL-7, comparative example 2 and comparative example 1 are shown in (1), (2) and (3) in Fig. 1 respectively, all of which have obvious ZSM-5 characteristic peaks, among which catalyst SSL-7
  • the XRD spectrum of the XRD pattern does not contain the characteristic diffraction peaks of amorphous silicon oxide, while the XRD pattern of the catalyst of Comparative Example 2 can see obvious characteristic diffraction peaks of amorphous silicon oxide.
  • the ZSM-5 characteristic of the catalyst SSL-7 The peak intensity is higher than that of the catalysts of Comparative Example 2 and Comparative Example 1;
  • the scanning photo of the catalyst SSL-7 is shown in (1) in Fig. 4, wherein about 75% of the oxides are distributed on the surface of the molecular sieve. Less than 25% of the oxides are distributed in the range of more than 100 nm from the surface of the molecular sieve grains.
  • the nano-CT photographs of the (100) crystal plane and (010) crystal plane of the molecular sieve are shown in (2) and (3) in Figure 4, respectively.
  • the oxides are selectively mainly distributed on the (100) crystal plane and the adjacent (101) crystal plane of the molecular sieve, while it can be seen from Figure 4(3) that on the (010) crystal plane is less distributed; specifically, about 80% of the oxides are distributed in the (100) and (101) crystal planes, and about 20% are distributed in the (010) crystal plane. Taking the mass of the metal oxide distributed per unit area on the (010) crystal plane of the molecular sieve as 1, the mass of the metal oxide distributed per unit area on the (101) crystal plane is greater than 3.
  • the scanning photo of the catalyst of Comparative Example 2 is shown in (1) in Figure 5, wherein the nano-CT photos of the (100) crystal plane and (010) crystal plane are shown in (2) and (3) in Figure 5, respectively.
  • the distribution of the molecular sieve surface is not selective, nor is it distributed in a specific crystal plane.
  • the evaluation method of the catalyst is as follows: Weigh 1.5g of SSL1-SSL11 catalysts prepared in Examples 1-11 or 1.5g of catalysts prepared in Comparative Examples 1-3 respectively, crush them to 20-40 mesh, and load them in a reactor. The catalyst evaluation was carried out under the conditions of reaction temperature of 395° C., pressure of 6.0 MPa, raw material gas H 2 /CO ratio of 1.0, and volume space velocity of 2000 h -1 . The catalyst was pretreated with H2 at 395 °C for 2 h before the reaction.
  • the raw material gas is H 2 /CO/N 2
  • the product is analyzed online by gas chromatography, wherein N 2 is used as the internal standard to realize the quantitative analysis of the product.
  • the product is separated by three columns, one of which is a hayesep-Q packed column, and the separated product enters the thermal conductivity cell detector to detect hydrogen, nitrogen, carbon monoxide, carbon dioxide, methane, etc.
  • Aliphatic hydrocarbons and aromatic hydrocarbons are cut by two-dimensional heart cutting technology, and detected by two sets of hydrogen flame detectors, one is HP-PLOT Al 2 O 3 capillary column, and the products enter the hydrogen flame detector to detect methane and ethane , ethylene, propane, propylene, butane, butene and other aliphatic hydrocarbon products; the other is a DB-WAXetr capillary column, the product enters the hydrogen flame detector to detect benzene, toluene, xylene, C 9+ aromatics and other aromatic products.
  • the results of CO conversion, aromatics selectivity, and C6 -C8 aromatics selectivity are shown in Table 1 .
  • the catalyst evaluation method is as follows: Weigh 1.5 g of the SSL7 catalyst prepared in Example 7, crush it to 20-40 mesh, and load it into a reactor. Different reaction temperature, pressure, feed gas composition, volume space velocity were set, and catalyst evaluation was carried out under different conditions. The catalyst was pretreated with H2 at 395 °C for 2 h before the reaction. The reaction conditions and evaluation results (CO conversion, aromatics selectivity, C6 -C8 aromatics selectivity) are shown in Table 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种包含具有拓扑孔道结构的分子筛的催化剂,该催化剂包含金属氧化物和具有拓扑孔道结构的晶体形式的分子筛,所述金属氧化物集中分布在分子筛的表面;其中,所述分子筛的晶粒暴露出至少3个晶面族,且在拓扑学上孔道尺寸相对最大的1个晶面族被所述金属氧化物占据不超过30%,优选不超过20%,或不超过10%。

Description

包含具有拓扑孔道结构的分子筛的催化剂、制备方法及其应用 技术领域
本发明涉及一种用于合成气转化生产芳烃和/或轻烃的催化剂、制备方法及其用途。
背景技术
轻质芳烃是重要的化工基础原料,已被广泛用于合成树脂、人造纤维、合成橡胶等产品的制造。在当前石油资源日益减少的情况下,新型非石油路线生产芳烃技术得到研究和开发。其中,以合成气为原料制备芳烃类化合物的路线主要包括两类,分别基于合成醇路线和费托合成路线。合成醇路线是间接合成路线,可借鉴现有成熟工艺,但其生产路线较长,设备投资较高;费托合成的产物分布较宽且受Anderson-Schulz-Flory分布限制,芳烃产物选择性较低。
基于CO加氢-中间体转化多功能催化剂的一步法工艺除了具有固定成本方面的优势,更为实现多步反应之间的高效耦合、促进反应平衡移动提供了可能,兼具学术与应用价值。C.D.Chang等(Synthesis gas conversion to aromatic hydrocarbons.Journal of Catalysis,1979,56(2):268-273)将ZnO-Cr 2O 3与HZSM-5应用于合成气制芳烃体系,取得了近70%的总芳烃选择性。E.Javier等(Industrial&Engineering Chemistry Research,1998,37,1211-1219)将Cr 2O 3-ZnO与硅铝比Si/Al=154的HZSM-5分子筛进行机械混合,实现了合成气经甲醇直接制汽油。K.Cheng等(Chem.,2017,3,1-14)、J.Yang等(Chemical Communications,2017,53,11146-11149)、Z.Huang等(Chem.Cat.Chem.,2018,10,4519-4524)和W.Zhou等(Chem.Cat.Chem.,2019,11,1-9)分别将Zn-Zr氧化物、Zn-Cr氧化物、Ce-Zr氧化物、Mo-Zr氧化物与ZSM-5分子筛耦合,实现了合成气转化制芳烃。CN201610965244.2、CN201710603524.3分别公开了含锆复合氧化物-改性沸石分子筛、改性铈锆固溶体-多级孔硅铝固体酸材料在合成气转化制轻质芳烃的应用。总的来说,上述多功能催化剂可取得较高芳烃选择性,但转化率仍较低,并且在维持高总芳收率基础上的芳烃分布调控仍然十分困难。
分子筛作为活性组分之一,在需要制备成型的催化剂应用时,通 常需要加入大量的粘结剂,以提高催化剂机械强度来满足工业生产的要求。但粘结剂的添加又会导致活性组分比例减小而降低催化剂的活性。为此,研究者通过对添加粘结剂成型的分子筛催化剂中的粘结剂进行转晶处理,从而减少粘结剂的组分,同时又能使催化剂具有较高的机械强度(比如CN102371169B、CN102371170B、CN102039171B、CN102372277B)。
目前,又开发出合成气转化生产芳烃和/或轻烃的多功能成型催化剂,其中含有金属氧化物和分子筛,但对于多功能催化剂的开发仍处于研究阶段,两者耦合性能仍有待改进。
发明内容
本发明提供了一种包含具有拓扑孔道结构的分子筛的催化剂及其制备方法,以及该催化剂在合成气转化生产芳烃和/或轻烃工艺中的应用。该催化剂用于合成气转化生产芳烃和/或轻烃时,催化剂活性明显提高,而且芳烃选择性和芳烃分布效果也较好。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,本说明书所用的所有技术和科学术语都具有本发明所属领域内一般技术人员常理解的相同意思。在有冲突的情况下,包括定义在内,以本说明书为准。
此外,本说明书提到的各种范围均包括它们的端点在内,除非另有明确说明。此外,当对量、浓度或其它值或参数给出范围、一个或多个优选范围或很多优选上限值与优选下限值时,应把它理解为具体公开了由任意对任意范围上限值或优选值与任意范围下限值或优选值所形成的所有范围,不论是否一一公开了这些数值对。
在本发明中,当技术方案以“包含”、“包括”所列举的某些要素等开放式限定的形式给出时,本领域技术人员将理解的是,由这些要素构成、或者基本上由这些要素构成的实施方式显然能够用于实施所述技术方案。因此,本领域技术人员理解的是,本发明中以所述开放式限定给出的技术方案也涵盖由列举要素构成、或者基本上其构成的具体实施方式。
最后,在没有明确指明的情况下,本说明书内所提到的所有百分数、份数、比率等都是以重量/质量为基准的;但是以重量/质量为基准 时不符合本领域技术人员的常规认识时,由本领域技术人员的常规认识来确定其基准。
本文所公开的“范围”以下限和上限的形式,例如一个或多个下限与一个或多个上限的形式给出。给定范围可通过选择一个下限和一个上限来进行限定,选定的下限和上限限定了给定范围的边界。所有以这种方式限定的范围是包含和可组合的,即任何下限可与任何上限组合形成一个范围。例如,针对特定参数列出了60-110和80-120的范围,理解为60-120和80-110的范围也是可预料到的。此外,如果列出的下限为1和2而列出的上限为3,4和5,则下面的范围都是可预计并且属于本发明公开范围之内的:1-3、1-4、1-5、2-3、2-4和2-5。
对于本发明目的,催化剂是指具有规整形状、一定颗粒度和强度的催化剂,其中同时包含金属氧化物和分子筛两种组分。
对于本发明目的,金属氧化物与分子筛晶粒表面距离是指金属氧化物颗粒中心距分子筛晶粒外表面的垂直距离。
本发明一个方面提供了一种包含具有拓扑孔道结构的分子筛的催化剂,该催化剂包含金属氧化物和具有拓扑孔道结构的晶体形式的分子筛,所述金属氧化物集中分布在分子筛的表面;其中,所述分子筛的晶粒暴露出至少3个晶面族,且在拓扑学上孔道尺寸相对最大的1个晶面族被所述金属氧化物占据不超过30%,优选不超过20%,或不超过10%。
在一个例示实施方案中,所述金属氧化物的至少70%,优选至少80%,或至少90%,分布在拓扑学上孔道尺寸相对最小的2个晶面上。在一个例示实施方案中,以拓扑学上孔道尺寸相对最大的晶面上单位面积分布的金属氧化物质量为1计,拓扑学上孔道尺寸相对最小的晶面上单位面积分布的金属氧化物质量大于2,优选大于3;换言之,就晶面上单位面积分布的金属氧化物质量(可简称为单位面积质量)而言,拓扑学上孔道尺寸相对最小的晶面的单位面积质量超过拓扑学上孔道尺寸相对最大的晶面2倍,优选超过3倍。
对于本发明目的,所述金属氧化物“集中”分布在分子筛的表面是指主要部分的金属氧化物分布在分子筛的表面;例如,在一个例示实施方案中,所述金属氧化物的至少50%分布在所述分子筛的表面,优选至少70%分布在所述分子筛的表面。在一个例示实施方案中,本 发明由此提供了一种催化剂,该催化剂包含金属氧化物和分子筛,所述金属氧化物基本都分布在分子筛的表面。
在一个例示实施方案中,所述金属氧化物的最多30%分布在距分子筛晶粒表面距离超过200nm的范围中;优选最多25%分布在距分子筛晶粒表面距离超过100nm的范围中。
在一个实施方案中,分子筛选自MFI、MEL、AEL、TON等十元环结构分子筛。优选地,分子筛选自MFI、MEL结构分子筛。进一步优选地,分子筛选自ZSM-5、ZSM-11、Silicalite-1和Silicalite-2。更优选地,分子筛选自ZSM-5和ZSM-11。
在一个实施方案中,所述分子筛的硅铝摩尔比为15~∞,优选为15~200,进一步优选为20~100。
在一个实施方案中,所述分子筛的晶粒粒径为10nm~2000nm,优选为50nm~800nm,更优选400~800nm。
在一个实施方案中,优选地,所述分子筛为ZSM-5分子筛。所述的金属氧化物主要分布在ZSM-5分子筛的(100)晶面和(101)晶面。其中,ZSM-5分子筛的晶面主要有(100)晶面和(101)晶面以及(010)晶面,金属氧化物以分布在ZSM-5分子筛的(100)晶面和(101)晶面上为主(约占金属氧化物总量的70%以上),而(010)晶面上分布明显较少。
在一个实施方案中,优选地,所述分子筛为ZSM-11分子筛。所述的金属氧化物主要分布在ZSM-11分子筛的(101)晶面。其中,金属氧化物以分布在ZSM-11分子筛的(101)晶面上为主(约占金属氧化物总量的50%以上),而在(100)和(010)等其他晶面上分布明显较少。
在一个实施方案中,所述催化剂中至多含5wt%的无定形氧化硅和/或无定形氧化铝物相,优选至多含3wt%的无定形氧化硅和/或无定形氧化铝物相,优选至多含1wt%的无定形氧化硅和/或无定形氧化铝物相,相对于催化剂总重量计。优选地,所述催化剂中不含无定形氧化硅和/或无定形氧化铝物相,相对于催化剂总重量计。
相应地,在一个实施方案中,所述催化剂的XRD谱图中基本不含有无定形氧化硅和/或无定形氧化铝的特征衍射峰。对于本发明目的,所述“基本不含有……特征衍射峰”是指在相关位置不存在足以在本领域中被识别为代表对应结构存在的特征衍射峰。所述氧化硅或氧化铝是本领域常规的粘结剂;因此,换言之,本发明所述催化剂基本不 含所述无定形粘结剂成分。相应地,本发明这样的基本不含无定形粘结剂且具有规整形状、一定颗粒度和强度的催化剂能够称为“整体式”的催化剂。
在一个实施方案中,所述催化剂中的无定形氧化硅和/或无定形氧化铝物相的前驱体为粘结剂。
在一个实施方案中,所述催化剂中,金属氧化物与分子筛的质量比为(0.2~5.0):1,优选为(0.4~2.5):1。
在一个实施方案中,优选地,金属氧化物的金属组分选自稀土金属、IVB、VIB、VIIB、VIII、IB、IIB和IIIA族元素。
在一个实施方案中,更优选地,金属氧化物的金属组分选自Cr、Zr、Mn、Ce、La、In、Ga和Zn。
在一个实施方案中,更优选地,金属氧化物的金属组分选自Cr、Zr、Mn、In和Zn。
在一个实施方案中,更优选地,金属氧化物的金属组分选自Zn、Ce、Ga和La。
在一个实施方案中,更优选地,金属氧化物为Cr 2O 3、MnO、ZnMn 20O x和CrMnO x
在一个实施方案中,催化剂颗粒的粒径尺寸为0.1mm~10.0mm,优选为1.0~5.0mm。
本发明另一方面提供了本发明所述催化剂的制备方法,包括:将金属氧化物、合成态分子筛和粘结剂混合成型后,在第二模板剂蒸汽氛围中第二晶化处理,再经焙烧得到催化剂。优选地,在该方法中,所述合成态分子筛借助于与所述第二模板剂相同或不同的第一模板剂制备,且未经焙烧。
由此,在一个实施方案中,所述分子筛为合成态分子筛,即晶化产物未经焙烧得到的分子筛。所述分子筛的制备方法包括在制备晶化母液过程中添加铵类助剂的步骤。本发明中,通过在合成分子筛过程中,添加铵类助剂,其为能够提供铵根离子的物质,可以使助剂通过铵根离子选择性吸附于分子筛的特定晶面,以使后续制备催化剂时引入的金属氧化物选择性地吸附于除上述特定晶面以外的其他特定晶面,如对于ZSM-5,金属氧化物选择性地吸附于其(100)晶面和(101)晶面。通过发明人的上述发现,能够大幅度提高催化剂的活性,以提高合成 气中CO的转化率。
在一个实施方案中,所述铵类助剂为氨、尿素、碳酸铵、碳酸氢铵。所述铵类助剂与分子筛中以SiO 2计的硅源的摩尔比为0.2~5.0,优选为0.5~3.0,例如0.5~2.0。
在一个实施方案中,以ZSM-5分子筛为例,所述分子筛的制备方法包括:硅源、铝源和第一模板剂以及含铵助剂、选择性加入碱源混合得到晶化母液,经第一晶化后,经干燥得到合成态分子筛。所述硅源选自硅溶胶、气相二氧化硅、正硅酸乙酯、硅酸钠,所述铝源选自异丙醇铝、硝酸铝、氢氧化铝、铝溶胶、偏铝酸钠,所述碱源选自氢氧化钠、碳酸钠、碳酸氢钠,所述模板剂选自四丙基溴化铵、四丙基氢氧化铵,所述铵类助剂为氨、尿素、碳酸铵、碳酸氢铵。所述硅源以SiO 2计、铝源以Al 2O 3计、碱源以氧化物计和模板剂以及铵类助剂的摩尔配比为1:0~0.033:0~2.0:0.2~4.0:0.2~5.0。所述晶化条件如下:晶化温度为120~200℃,晶化时间为12~180小时。所得ZSM-5分子筛的粒径为10nm~2000nm,优选为50nm~800nm,进一步优选为400~800nm。
在一个实施方案中,以ZSM-11分子筛为例,所述分子筛的制备方法包括:硅源、铝源和第一模板剂以及含铵助剂、选择性加入碱源混合得到晶化母液,经第一晶化后,经干燥得到合成态分子筛。所述硅源选自硅溶胶、气相二氧化硅、正硅酸乙酯、硅酸钠,所述铝源选自异丙醇铝、硝酸铝、氢氧化铝、铝溶胶、偏铝酸钠,所述碱源选自氢氧化钠、碳酸钠、碳酸氢钠,所述模板剂选自四丁基溴化铵、四丁基氢氧化铵,所述铵类助剂为氨、尿素、碳酸铵、碳酸氢铵。所述硅源以SiO 2计、铝源以Al 2O 3计、碱源以氧化物计和模板剂以及铵类助剂的摩尔配比为1:0~0.033:0~2.0:0.2~4.0:0.2~5.0。所述晶化条件如下:晶化温度为120~200℃,晶化时间为12~180小时。所得ZSM-11分子筛的粒径为10nm~2000nm,优选为50nm~800nm,进一步优选为400~800nm。
在一个实施方案中,所述第二模板剂选自氨水、三乙胺、四乙基溴化铵、四乙基氢氧化铵、四丙基溴化铵、四丙基氢氧化铵、四丁基溴化铵和四丁基氢氧化铵。
在一个实施方案中,所述第二晶化条件如下:晶化温度为 100~180℃;晶化时间为12~100小时,优选地,晶化温度为105~170℃;晶化时间为24~96小时。
在一个实施方案中,所述焙烧条件如下:焙烧温度为500~700℃,焙烧时间为2~10小时;优选地,焙烧温度为520~580℃,焙烧时间为5~8小时。
在一个实施方案中,优选地,粘结剂选自硅溶胶、气相二氧化硅、硝酸铝、氢氧化铝、铝溶胶、硅铝溶胶、分子筛母液。
在一个实施方案中,优选地,金属氧化物/分子筛/粘结剂的质量比范围为(0.2~5.0):1:(0.2~0.6)。
在一个实施方案中,更优选地,金属氧化物/分子筛/粘结剂的质量比范围为(0.4~2.5):1:(0.3~0.5)。
本发明再一方面提供了一种合成气转化生产芳烃和/或轻烃的方法,其以合成气为原料,该原料与本发明所述催化剂接触反应,得到含芳烃和/或轻烃的物流。
在一个实施方案中,优选地,所述原料合成气中H 2/CO摩尔比范围为0.3~4.0。
在一个实施方案中,还优选地,所述原料合成气中H 2/CO摩尔比范围为0.5~2.0。
在一个实施方案中,优选地,反应条件为:反应温度350~480℃;和/或,反应压力2.0~9.5MPa;和/或,体积空速900~18000h -1
在一个实施方案中,更优选地,反应条件为:反应温度350~450℃;和/或,反应压力4.0~8.0MPa;和/或,体积空速1000~15000h -1
本发明提供由合成气制备芳烃和/或轻烃的新工艺,其产物包含BTX芳烃、C 9+芳烃和/或C 1-C 5+轻烃。可选用一级或多级串联反应器,反应器类型可选用固定床、流化床、移动床。对于多级串联反应器体系,各级反应器类型可以相同也可以不同。不同来源的合成气,可以采用水煤气变换处理/逆水煤气变换处理调节其H 2/CO摩尔比。处理所需的H 2O和CO 2部分来源于反应产物分离回流,部分来源于管道供气。
本发明中,反应后物流中包括未转化的CO和H 2、CO 2以及烃类产物,烃类产物由芳烃和/或C 1~C 5+烃类组成。芳烃包括C 6~C 9+芳烃,C 5+烃类指的是碳数在5以上的脂肪烃类化合物。各产物选择性定义为各产物在有机产物总碳数中的占比(mol%)。具体计算方法如下:
有机产物总碳数=Σ(有机产物i的物质的量×有机产物i分子中碳原子数)
有机产物j的选择性=有机产物j的物质的量×有机产物j分子中碳原子数/有机产物总碳数×100%
芳烃选择性=C 6芳烃选择性+C 7芳烃选择性+C 8芳烃选择性+C 9+芳烃选择性
C 6-C 8芳烃选择性=(C 6芳烃选择性+C 7芳烃选择性+C 8芳烃选择性)/芳烃选择性×100%。
在芳烃产物中,苯、甲苯、二甲苯广泛用作化工原料、溶剂、汽油添加剂,是非常具有工业应用价值的芳烃,而提高芳烃收率的重要方法是提高催化剂的活性使原料更多地转化为目的产物。另外,调节芳烃产物的分布,提高C 6-C 8轻质芳烃选择性,是合成气制芳烃和/或轻烃体系亟待解决的问题。
采用本发明催化剂,通过筛选优选催化剂活性组分,并调节催化剂中金属氧化物在分子筛体系中的分散状态,实现多步反应的高效耦合和路径调控,不仅明显提高了催化活性,还在高的芳烃选择性范围内实现了芳烃分布的优化。将本发明催化剂用于合成气制芳烃的反应中,不仅芳烃分布优良、总芳烃选择性达到70%以上,更突出的是,CO转化率可以达到35%以上。
附图说明
图1中(1)、(2)、(3)分别为实施例7、对比例2、对比例1所得催化剂的XRD图;
图2中(1)、(2)、(3)、(4)、(5)、(6)分别为实施例b、f、g、h、i、j中分子筛的XRD图;
图3中(1)、(2)分别为对比例2、实施例7所得催化剂的SEM照片;
图4中(1)、(2)、(3)分别为实施例7所得催化剂的扫描照片,以及其中ZSM-5分子筛的(100)晶面和(010)晶面的nano-CT照片;
图5中(1)、(2)、(3)分别为对比例2所得催化剂的扫描照片,以及其中ZSM-5分子筛的(100)晶面和(010)晶面的nano-CT照片。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
本发明涉及催化剂XRD测试的仪器和条件如下:在室温条件下,采用Bruker D8Advance型X射线衍射仪对所得催化剂进行物相分析,测试采用Cu-Kα1射线源(λ=0.15405nm)和石墨单色器,管压为40kV,管流为50mA,扫描范围为5~90 °
本发明涉及催化剂SEM测试的仪器和条件如下:采用扫描电子显微镜(Zeiss Merlin)观察催化剂的形貌及结构,加速电压为2.0kV。
本发明采用合肥同步辐射光源BL07W线站“水窗”波段软X射线吸收衬度三维成像(Nano-CT)表征金属氧化物在分子筛表面的分布。
下面通过实施例对本发明进一步作详细说明。
实施例a
MnO采用沉淀法制备:以50%硝酸锰溶液为锰源,以碳酸铵为沉淀剂。将50.11g硝酸锰溶液用50mL去离子水稀释为均匀溶液;将19.22g碳酸铵溶解于100.0mL去离子水中。在70℃恒温水浴和强烈搅拌下,将硝酸锰溶液与碳酸铵溶液并流滴加至20mL去离子水中。沉淀完成后,母液于70℃恒温水浴中老化3h,再经过滤-去离子水洗涤处理至中性,所得滤饼于100℃烘箱中干燥过夜,再于500℃焙烧1h(升温速率2℃/min),得到MnO。
实施例b
采用水热法合成Si/Al摩尔比为50、平均粒径为450nm的ZSM-5分子筛(记为Z5(50)-450nm),具体如下:
将0.41g异丙醇铝加入含24.67g四丙基氢氧化铵溶液(25wt%)与17.89g去离子水的混合溶液中。将混合物置于室温下搅拌12h,然后逐滴加入21.06g正硅酸乙酯。继续搅拌12h后,向混合体系中加入10.63g尿素,并继续搅拌1h。将母液转移至含聚四氟乙烯衬里的高压釜中,在180℃烘箱中水热处理48h。经离心分离、去离子水反复洗涤至上清液呈中性,干燥后得到的固体产物即为未经焙烧的ZSM-5样品,其XRD图参见图2。
实施例c
Cr 2O 3采用沉淀法制备:以九水合硝酸铬为铬源,以碳酸铵为沉淀剂。将56.02g硝酸铬溶解于75mL去离子水中;将21.19g碳酸铵溶解于100.0mL去离子水中。在70℃恒温水浴和强烈搅拌下,将硝酸铬溶液与碳酸铵溶液并流滴加至20mL去离子水中。沉淀完成后,母液于70℃恒温水浴中老化3h,再经过滤-去离子水洗涤处理至中性,所得滤饼于100℃烘箱中干燥过夜,再于500℃焙烧1h(升温速率2℃/min),得到Cr 2O 3
实施例d
CrMnO x采用球磨混合-焙烧法制备:分别以九水合硝酸铬、50%硝酸锰溶液为铬源、锰源,以碳酸铵为沉淀剂。将56.02g硝酸铬溶解于75mL去离子水中;将21.19g碳酸铵溶解于100.0mL去离子水中。在70℃恒温水浴和强烈搅拌下,将硝酸铬溶液与碳酸铵溶液并流滴加至20mL去离子水中。沉淀完成后,母液于70℃恒温水浴中老化3h,再经过滤-去离子水洗涤处理至中性,所得滤饼于100℃烘箱中干燥过夜,得到铬前驱体。将50.11g硝酸锰溶液用50mL去离子水稀释为均匀溶液;将19.22g碳酸铵溶解于100.0mL去离子水中。在70℃恒温水浴和强烈搅拌下,将硝酸锰溶液与碳酸铵溶液并流滴加至20mL去离子水中。沉淀完成后,母液于70℃恒温水浴中老化3h,再经过滤-去离子水洗涤处理至中性,所得滤饼于100℃烘箱中干燥过夜,得到锰前驱体。将铬前驱体、锰前驱体球磨混合,所得混合物再于500℃焙烧1h(升温速率2℃ min -1),得到CrMnO x
实施例e
采用水热法合成Si/Al比为50、平均粒径为450nm的ZSM-11分子筛(记为Z11(50)-450nm),具体如下:
将0.41g异丙醇铝加入含19.67g四丁基氢氧化铵(40wt%)与17.89g去离子水的混合溶液中。将混合物置于室温下搅拌12h,然后逐滴加入21.06g正硅酸乙酯。继续搅拌12h后,向混合体系中加入10.63g尿素,并继续搅拌1h。将母液转移至含聚四氟乙烯衬里的高压釜中,在180℃烘箱中水热处理48h。经离心分离、去离子水反复洗 涤至上清液呈中性,干燥后得到的固体产物即为未经焙烧的ZSM-11样品。
实施例f
采用水热法合成Si/Al比为50、平均粒径为200nm的ZSM-5分子筛(记为Z5(50)-200nm),具体如下:
将0.41g异丙醇铝加入含24.67g四丙基氢氧化铵溶液(25wt%)与17.89g去离子水的混合溶液中。将混合物置于室温下搅拌12h,然后逐滴加入21.06g正硅酸乙酯。继续搅拌12h后,向混合体系中加入3.04g尿素,并继续搅拌1h。将母液转移至含聚四氟乙烯衬里的高压釜中,在180℃烘箱中水热处理48h。经离心分离、去离子水反复洗涤至上清液呈中性,干燥后得到的固体产物即为未经焙烧的ZSM-5样品,其XRD图参见图2。
实施例g
采用水热法合成Si/Al比为50、平均粒径为300nm的ZSM-5分子筛(记为Z5(50)-300nm),具体如下:
将0.41g异丙醇铝加入含24.67g四丙基氢氧化铵溶液(25wt%)与17.89g去离子水的混合溶液中。将混合物置于室温下搅拌12h,然后逐滴加入21.06g正硅酸乙酯。继续搅拌12h后,向混合体系中加入7.59g尿素,并继续搅拌1h。将母液转移至含聚四氟乙烯衬里的高压釜中,在180℃烘箱中水热处理48h。经离心分离、去离子水反复洗涤至上清液呈中性,干燥后得到的固体产物即为未经焙烧的ZSM-5样品,其XRD图参见图2。
实施例h
采用水热法合成Si/Al比为50、平均粒径为700nm的ZSM-5分子筛(记为Z5(50)-700nm),具体如下:
将0.41g异丙醇铝加入含24.67g四丙基氢氧化铵溶液(25wt%)与17.89g去离子水的混合溶液中。将混合物置于室温下搅拌12h,然后逐滴加入21.06g正硅酸乙酯。继续搅拌12h后,向混合体系中加入15.18g尿素,并继续搅拌1h。将母液转移至含聚四氟乙烯衬里的高压 釜中,在180℃烘箱中水热处理48h。经离心分离、去离子水反复洗涤至上清液呈中性,干燥后得到的固体产物即为未经焙烧的ZSM-5样品,其XRD图参见图2。
实施例i
采用水热法合成Si/Al比为50、平均粒径为700nm的ZSM-5分子筛(记为Z5(50)-700nm),具体如下:
将0.41g异丙醇铝加入含24.67g四丙基氢氧化铵溶液(25wt%)与17.89g去离子水的混合溶液中。将混合物置于室温下搅拌12h,然后逐滴加入21.06g正硅酸乙酯。继续搅拌12h后,向混合体系中加入24.30g碳酸铵,并继续搅拌1h。将母液转移至含聚四氟乙烯衬里的高压釜中,在180℃烘箱中水热处理48h。经离心分离、去离子水反复洗涤至上清液呈中性,干燥后得到的固体产物即为未经焙烧的ZSM-5样品,其XRD图参见图2。
实施例j
采用水热法合成Si/Al比为50、平均粒径为700nm的ZSM-5分子筛(记为Z5(50)-700nm),具体如下:
将0.41g异丙醇铝加入含39.96g四丙基氢氧化铵溶液(25wt%)与17.89g去离子水的混合溶液中。将混合物置于室温下搅拌12h,然后逐滴加入21.06g正硅酸乙酯。继续搅拌12h后,向混合体系中加入27.99g碳酸氢铵,并继续搅拌1h。将母液转移至含聚四氟乙烯衬里的高压釜中,在180℃烘箱中水热处理48h。经离心分离、去离子水反复洗涤至上清液呈中性,干燥后得到的固体产物即为未经焙烧的ZSM-5样品,其XRD图参见图2。
【实施例1】
将实施例a制备的MnO 10g、实施例b制备的Z5(50)-450nm 10g、以及硅溶胶10g(其中所含SiO 2质量为4g)进行机械混合,挤条成型后再在四丙基氢氧化铵蒸汽中于170℃晶化48小时。晶化后的催化剂经550℃煅烧5小时后得到催化剂SSL-1。
【实施例2】
将实施例c制备的Cr 2O 310g、实施例b制备的Z5(50)-450nm 10g、以及硅溶胶10g(其中所含SiO 2质量为4g)进行机械混合,挤条成型后再在四丙基氢氧化铵蒸汽中于170℃晶化48小时。晶化后的催化剂经550℃煅烧5小时后得到催化剂SSL-2。
【实施例3】
将实施例d制备的CrMnO x 10g、实施例b制备的Z5(50)-450nm 10g、以及硅溶胶10g(其中所含SiO 2质量为4g)进行机械混合,挤条成型后再在四丙基氢氧化铵蒸汽中于170℃晶化48小时。晶化后的催化剂经550℃煅烧5小时后得到催化剂SSL-3。
【实施例4】
将实施例c制备的Cr 2O 310g、实施例e制备的Z11(50)-450nm 10g、以及硅溶胶10g(其中所含SiO 2质量为4g)进行机械混合,挤条成型后再在四丙基氢氧化铵蒸汽中于170℃晶化48小时。晶化后的催化剂经550℃煅烧5小时后得到催化剂SSL-4。
【实施例5】
将实施例c制备的Cr 2O 310g、实施例f制备的Z5(50)-200nm 10g、以及硅溶胶10g(其中所含SiO 2质量为4g)进行机械混合,挤条成型后再在四丙基氢氧化铵蒸汽中于170℃晶化48小时。晶化后的催化剂经550℃煅烧5小时后得到催化剂SSL-5。
【实施例6】
将实施例c制备的Cr 2O 310g、实施例g制备的Z5(50)-300nm 10g、以及硅溶胶10g(其中所含SiO 2质量为4g)进行机械混合,挤条成型后再在四丙基氢氧化铵蒸汽中于170℃晶化48小时。晶化后的催化剂经550℃煅烧5小时后得到催化剂SSL-6。
【实施例7】
将实施例c制备的Cr 2O 310g、实施例h制备的Z5(50)-700nm 10g、 以及硅溶胶10g(其中所含SiO 2质量为4g)进行机械混合,挤条成型后再在四丙基氢氧化铵蒸汽中于170℃晶化48小时。晶化后的催化剂经550℃煅烧5小时后得到催化剂SSL-7。催化剂SSL-7的XRD图谱参见图1,SEM照片参见图3,扫描照片参见图4。
【实施例8】
将实施例c制备的Cr 2O 310g、实施例h制备的Z5(50)-700nm 10g、以及硅溶胶和硝酸铝的混合物(以其中所含SiO 2、Al 2O 3等价总质量为4g,Si/Al比为100)进行机械混合,挤条成型后再在四丙基氢氧化铵蒸汽中于170℃晶化48小时。晶化后的催化剂经550℃煅烧5小时后得到催化剂SSL-8。
【实施例9】
将实施例c制备的Cr 2O 320g、实施例h制备的Z5(50)-700nm 10g、以及硅溶胶10g(其中所含SiO 2质量为4g)进行机械混合,挤条成型后再在四丙基氢氧化铵蒸汽中于170℃晶化48小时。晶化后的催化剂经550℃煅烧5小时后得到催化剂SSL-9。
【实施例10】
将实施例c制备的Cr 2O 310g、实施例i制备的Z5(50)-700nm 10g、以及硅溶胶10g(其中所含SiO 2质量为4g)进行机械混合,挤条成型后再在四丁基氢氧化铵蒸汽中于170℃晶化48小时。晶化后的催化剂经550℃煅烧5小时后得到催化剂SSL-10。
【实施例11】
将实施例c制备的Cr 2O 310g、实施例j制备的Z5(50)-700nm 10g、以及硅溶胶10g(其中所含SiO 2质量为4g)进行机械混合,挤条成型后再在氨蒸汽中于170℃晶化72小时。晶化后的催化剂经550℃煅烧5小时后得到催化剂SSL-11。
【对比例1】
将实施例c制备的Cr 2O 310g、实施例h制备的Z5(50)-700nm 10g 进行机械混合。催化剂的XRD谱图参见图1。催化剂经造粒、破碎得到20~40目的催化剂颗粒。
【对比例2】
将实施例c制备的Cr 2O 310g、实施例h制备的Z5(50)-700nm 10g、以及硅溶胶10g(其中所含SiO 2质量为4g)进行机械混合、挤条成型,制成催化剂。催化剂的XRD谱图和SEM照片分别参见图1、图3,可以观察到无定形氧化硅的存在。催化剂的扫描照片见图5。
【对比例3】
将实施例c制备的Cr 2O 310g、实施例h制备的Z5(50)-700nm 10g、以及硅溶胶10g(其中所含SiO 2质量为4g)进行机械混合,挤条成型后再在水蒸汽中于170℃晶化48小时。晶化后的催化剂经550℃煅烧5小时,制得催化剂。
【表征实施例】
对本发明的部分实施例和对比例的催化剂进行表征,其结果结合图1-图5说明如下:
催化剂SSL-7、对比例2和对比例1所得催化剂的XRD图,分别见图1中(1)、(2)、(3),均具有明显的ZSM-5特征峰,其中催化剂SSL-7的XRD谱图中基本不含有无定形氧化硅的特征衍射峰,而对比例2催化剂的XRD图看能够看出明显的无定形氧化硅的特征衍射峰,此外催化剂SSL-7的ZSM-5特征峰强度高于对比例2和对比例1催化剂;
实施例b、f、g、h、i、j所得分子筛的XRD图分别见图2中(1)、(2)、(3)、(4)、(5)、(6),均具有明显的ZSM-5特征峰;
对比例2催化剂、催化剂SSL-7的SEM照片分别见图3中(1)、(2),由图3可见,对比例2所得催化剂中分子筛晶粒表面分散有氧化物晶粒和更小的粘结剂颗粒,而催化剂SSL-7中分子筛表面的粘结剂颗粒消失,而是形成了分子筛;
催化剂SSL-7的扫描照片见图4中(1),其中,约75%的氧化物分布在分子筛的表面。不足25%的氧化物分布在距分子筛晶粒表面距离超过100nm范围。分子筛(100)晶面和(010)晶面的nano-CT照片分别见 图4中(2)、(3)。由图4(2)可见,氧化物选择性地主要分布在分子筛的(100)晶面以及相邻的(101)晶面上,而由图4(3)可见,在(010)晶面上的分布较少;具体地,氧化物的约80%分布在(100)和(101)晶面,约20%分布在(010)晶面。以分子筛(010)晶面上单位面积分布的金属氧化物质量为1计,(101)晶面上单位面积分布的金属氧化物质量大于3。
对比例2催化剂的扫描照片见图5中(1),其中,(100)晶面和(010)晶面的nano-CT照片分别见图5中(2)、(3),金属氧化物在分子筛表面的分布没有选择性,更没有分布于特定晶面的特征。
【催化剂性能评价A】
分别取实施例1~11以及对比例1~3的催化剂各1.5g进行性能评价。催化剂的评价方法如下:分别称取1.5g实施例1~11制备得到的SSL1~SSL11催化剂或1.5g对比例1~3制备得到的催化剂,破碎至20~40目装填于反应器中。在反应温度395℃、压力6.0MPa,原料气H 2/CO比例1.0,体积空速2000h -1的条件下进行催化剂评价。反应前催化剂于395℃温度下以H 2预处理2h。原料气H 2/CO/N 2,产物由气相色谱在线分析,其中以N 2为内标实现产物的定量分析。产物采用三柱分离,其中一根为hayesep-Q填充柱,分离产物进入热导池检测器检测氢气、氮气、一氧化碳、二氧化碳、甲烷等。采用二维中心切割技术对脂肪烃、芳香烃进行切割,并由两套氢火焰检测器分别检测,一根为HP-PLOT Al 2O 3毛细管柱,产物进入氢火焰检测器检测甲烷、乙烷、乙烯、丙烷、丙烯、丁烷、丁烯等脂肪烃产物;另一根为DB-WAXetr毛细管柱,产物进入氢火焰检测器检测苯、甲苯、二甲苯、C 9+芳烃等芳烃产物。CO转化率、芳烃选择性、C 6-C 8芳烃选择性结果如表1所示。
【催化剂性能评价B】
取实施例7的催化剂1.5g进行性能评价。催化剂评价方法如下:称取1.5g实施例7制备的SSL7催化剂,破碎至20~40目装填于反应器中。设定不同的反应温度、压力、原料气组成、体积空速,在不同条件下进行催化剂评价。反应前催化剂于395℃温度下以H 2预处理2h。反应条件和评价结果(CO转化率、芳烃选择性、C 6-C 8芳烃选择性) 见表2。
表1
Figure PCTCN2021124556-appb-000001
表2
Figure PCTCN2021124556-appb-000002
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (14)

  1. 一种包含具有拓扑孔道结构的分子筛的催化剂,该催化剂包含金属氧化物和具有拓扑孔道结构的晶体形式的分子筛,所述金属氧化物集中分布在分子筛的表面;其中,所述分子筛的晶粒暴露出至少3个晶面族,且在拓扑学上孔道尺寸相对最大的1个晶面族被所述金属氧化物占据不超过30%,优选不超过20%,或不超过10%。
  2. 按照权利要求1所述的催化剂,其特征在于:所述金属氧化物的至少70%,优选至少80%,或至少90%,分布在拓扑学上孔道尺寸相对最小的2个晶面上;或以拓扑学上孔道尺寸相对最大的晶面上单位面积分布的金属氧化物质量为1计,拓扑学上孔道尺寸相对最小的晶面上单位面积分布的金属氧化物质量大于2,优选大于3。
  3. 按照权利要求1所述的催化剂,其特征在于:所述金属氧化物的至少50%分布在所述分子筛的表面,优选至少70%分布在所述分子筛的表面。
  4. 按照权利要求1所述的催化剂,其特征在于:所述金属氧化物的最多30%分布在距分子筛晶粒表面距离超过200nm的范围中;优选最多25%分布在距分子筛晶粒表面距离超过100nm的范围中。
  5. 按照权利要求1所述的催化剂,其特征在于:分子筛选自MFI、MEL、AEL和TON分子筛;优选地,分子筛选自MFI和MEL结构分子筛;更优选地,分子筛选自ZSM-5、ZSM-11、Silicalite-1和Silicalite-2;和/或
    金属氧化物的金属组分选自稀土金属、IVB、VIB、VIIB、VIII、IB、IIB和IIIA族元素;优选地,金属氧化物的金属组分选自Cr、Zr、Mn、Ce、La、In、Ga和Zn;更优选地,金属氧化物为Cr 2O 3、MnO、ZnMn 20O x和CrMnO x;和/或
    所述催化剂中,金属氧化物与分子筛的质量比为(0.2~5.0):1,优选为(0.4~2.5):1。
  6. 按照权利要求1所述的催化剂,其特征在于:所述催化剂的XRD谱图中基本不含有无定形氧化硅和/或无定形氧化铝的特征衍射峰。
  7. 按照权利要求1所述的催化剂,其特征在于:催化剂颗粒的粒径尺寸为0.1mm~10.0mm,优选为1.0~5.0mm。
  8. 按照前述权利要求中任一所述的催化剂,其特征在于:所述分子筛为ZSM-5分子筛;所述的金属氧化物的至少70%,优选80%,分布在ZSM-5分子筛的(100)晶面和(101)晶面;
    或者,所述分子筛为ZSM-11分子筛,所述金属氧化物的至少50%,优选60%,分布在ZSM-11分子筛的(101)晶面。
  9. 制备前述权利要求中任一所述的催化剂的方法,包括:将金属氧化物、合成态分子筛和粘结剂混合成型后,在第二模板剂蒸汽氛围中第二晶化处理,再经焙烧得到催化剂;其中所述合成态分子筛借助于与所述第二模板剂相同或不同的第一模板剂制备,且未经焙烧。
  10. 按照权利要求9所述的方法,其特征在于:分子筛的制备包括制备晶化母液,并在该母液的制备过程中添加铵类助剂。
  11. 按照权利要求10所述的方法,其特征在于:所述铵类助剂为能够提供铵根离子的物质,优选选自氨、尿素、碳酸铵、和碳酸氢铵;所述铵类助剂与分子筛中以SiO 2计的硅源的摩尔比为0.2~5.0,优选为0.5~3.0。
  12. 按照权利要求9所述的方法,其特征在于:所述第二模板剂选自氨水、三乙胺、四乙基溴化铵、四乙基氢氧化铵、四丙基溴化铵、四丙基氢氧化铵、四丁基溴化铵、和四丁基氢氧化铵;
    和/或,所述第二晶化条件如下:晶化温度为100~180℃,晶化时间为12~100小时;优选地,晶化温度为105~170℃,晶化时间为24~96小时;
    和/或,所述焙烧条件如下:焙烧温度为500~700℃,焙烧时间为2~10小时;优选地,焙烧温度为520~580℃,焙烧时间为5~8小时。
  13. 按照权利要求9所述的方法,其特征在于:金属氧化物/分子筛/粘结剂的质量比为(0.2~5.0):1:(0.2~0.6),优选为(0.4~2.5):1:(0.3~0.5)。
  14. 一种合成气转化生产芳烃和/或轻烃的方法,其特征在于:合成气原料与权利要求1-8任一所述的催化剂或权利要求9-13任一所述的方法制备的催化剂接触进行反应,得到含芳烃和/或轻烃的物流。
PCT/CN2021/124556 2020-10-20 2021-10-19 包含具有拓扑孔道结构的分子筛的催化剂、制备方法及其应用 WO2022083564A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21881980.3A EP4215272A4 (en) 2020-10-20 2021-10-19 CATALYST COMPRISING A MOLECULAR SIEVE HAVING A TOPOLOGICAL PORE STRUCTURE, METHOD FOR PREPARING IT AND ITS USE
MX2023004564A MX2023004564A (es) 2020-10-20 2021-10-19 Catalizador que incluye un tamiz molecular con una estructura porosa topológica, método de preparación del mismo y uso del mismo.
CA3198954A CA3198954A1 (en) 2020-10-20 2021-10-19 Catalyst including molecular sieve having topological pore structure, preparation method therefor and use thereof
US18/249,718 US20230405563A1 (en) 2020-10-20 2021-10-19 Catalyst including molecular sieve having topological pore structure, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011126552.9 2020-10-20
CN202011126552.9A CN114433196B (zh) 2020-10-20 2020-10-20 整体式催化剂、制备方法及其在合成气转化反应中的应用

Publications (1)

Publication Number Publication Date
WO2022083564A1 true WO2022083564A1 (zh) 2022-04-28

Family

ID=81291533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124556 WO2022083564A1 (zh) 2020-10-20 2021-10-19 包含具有拓扑孔道结构的分子筛的催化剂、制备方法及其应用

Country Status (6)

Country Link
US (1) US20230405563A1 (zh)
EP (1) EP4215272A4 (zh)
CN (1) CN114433196B (zh)
CA (1) CA3198954A1 (zh)
MX (1) MX2023004564A (zh)
WO (1) WO2022083564A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039171A (zh) 2009-10-13 2011-05-04 中国石油化工股份有限公司 无粘结剂ZSM-5/β沸石共生分子筛催化剂的制备方法
CN102372277A (zh) 2010-08-23 2012-03-14 中国石油化工股份有限公司 无粘结剂ZSM-5/β共生分子筛的制备方法
CN102371170A (zh) 2010-08-23 2012-03-14 中国石油化工股份有限公司 无粘结剂沸石催化剂及其制备方法
CN102371169A (zh) 2010-08-23 2012-03-14 中国石油化工股份有限公司 无粘结剂分子筛催化剂及其制备方法
CN102372283A (zh) * 2010-08-23 2012-03-14 中国石油化工股份有限公司 Zsm-5分子筛及其制备方法
US20120088944A1 (en) * 2010-10-11 2012-04-12 Shell Oil Company Process for the preparation of hydrocarbons
CN107469857A (zh) * 2016-06-07 2017-12-15 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制芳烃的方法
CN108622913A (zh) * 2017-03-17 2018-10-09 清华大学 一种定向修饰的zsm-5分子筛、制备方法及使用方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101157057B (zh) * 2006-08-08 2010-12-01 中国科学院大连化学物理研究所 一种原位合成含氧化合物转化制烯烃微球催化剂的方法
RU2706241C2 (ru) * 2015-07-02 2019-11-15 Далянь Инститьют Оф Кемикал Физикс, Чайниз Академи Оф Сайенсез Катализатор и способ получения легких олефинов непосредственно из синтез-газа в результате осуществления одностадийного технологического процесса
CN106215973A (zh) * 2016-08-12 2016-12-14 清华大学 一种改性zsm‑5分子筛催化剂制备及使用方法
CN107840778B (zh) * 2016-09-19 2020-09-04 中国科学院大连化学物理研究所 一种二氧化碳加氢制取芳烃的方法
CN109772435B (zh) * 2017-11-15 2021-12-10 中国科学院大连化学物理研究所 一种由合成气直接制取芳烃并联产低碳烯烃的方法
CN111111752B (zh) * 2018-10-30 2022-09-06 中国石油化工股份有限公司 无粘结剂整体式催化剂、制备方法及其用途
CN111111757B (zh) * 2018-10-30 2023-04-07 中国石油化工股份有限公司 整体式催化剂、制备方法及其使用方法
CN111111751B (zh) * 2018-10-30 2022-08-12 中国石油化工股份有限公司 多组分催化剂、制备方法及其用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039171A (zh) 2009-10-13 2011-05-04 中国石油化工股份有限公司 无粘结剂ZSM-5/β沸石共生分子筛催化剂的制备方法
CN102372277A (zh) 2010-08-23 2012-03-14 中国石油化工股份有限公司 无粘结剂ZSM-5/β共生分子筛的制备方法
CN102371170A (zh) 2010-08-23 2012-03-14 中国石油化工股份有限公司 无粘结剂沸石催化剂及其制备方法
CN102371169A (zh) 2010-08-23 2012-03-14 中国石油化工股份有限公司 无粘结剂分子筛催化剂及其制备方法
CN102372283A (zh) * 2010-08-23 2012-03-14 中国石油化工股份有限公司 Zsm-5分子筛及其制备方法
US20120088944A1 (en) * 2010-10-11 2012-04-12 Shell Oil Company Process for the preparation of hydrocarbons
CN107469857A (zh) * 2016-06-07 2017-12-15 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制芳烃的方法
CN108622913A (zh) * 2017-03-17 2018-10-09 清华大学 一种定向修饰的zsm-5分子筛、制备方法及使用方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
C.D. CHANG ET AL.: "Synthesis gas conversion to aromatic hydrocarbons", JOURNAL OF CATALYSIS, vol. 56, no. 2, 1979, pages 268 - 273, XP055170404, DOI: 10.1016/0021-9517(79)90113-1
E.JAVIER ET AL., INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 37, 1998, pages 1211 - 1219
J. YANG ET AL., CHEMICAL COMMUNICATIONS, vol. 53, 2017, pages 11146 - 11149
K. CHENG ET AL., CHEM, vol. 3, 2017, pages 1 - 14
See also references of EP4215272A4
W. ZHOU ET AL., CHEMCATCHEM, vol. 11, 2019, pages 1 - 9
Z. HUANG ET AL., CHEMCATCHEM, vol. 10, 2018, pages 4519 - 4524

Also Published As

Publication number Publication date
CA3198954A1 (en) 2022-04-28
CN114433196A (zh) 2022-05-06
CN114433196B (zh) 2023-07-04
MX2023004564A (es) 2023-07-06
EP4215272A4 (en) 2024-03-20
EP4215272A1 (en) 2023-07-26
US20230405563A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
CN110422856A (zh) 硅铝型aei/cha共生分子筛催化剂制备方法及其在scr催化的应用
Álvaro-Muñoz et al. Microwave-assisted synthesis of plate-like SAPO-34 nanocrystals with increased catalyst lifetime in the methanol-to-olefin reaction
WO2014017181A1 (ja) ゼオライト触媒、ゼオライト触媒の製造方法および低級オレフィンの製造方法
Mohammadkhani et al. Altering C 2 H 4/C 3 H 6 yield in methanol to light olefins over HZSM-5, SAPO-34 and SAPO-34/HZSM-5 nanostructured catalysts: influence of Si/Al ratio and composite formation
CN109843803A (zh) 具有szr-类型晶体结构的jmz-5和jmz-6沸石及其制备方法和用途
WO2016086361A1 (zh) 一种纳米zsm-5分子筛的合成方法
CN112794338A (zh) Zsm-5分子筛及其制备方法和应用
CN105983440A (zh) 一种复合型纳米薄层分子筛及制备方法和应用
CN105731484B (zh) 一种中微孔sapo‑34分子筛的合成方法
CN106542546A (zh) 小晶粒多级孔ith结构硅铝分子筛及其制备方法与应用
CN111111757B (zh) 整体式催化剂、制备方法及其使用方法
WO2022083564A1 (zh) 包含具有拓扑孔道结构的分子筛的催化剂、制备方法及其应用
CN114433197B (zh) 一种用于烯烃异构化反应的负载金属催化剂及其制备方法
CN111285382A (zh) 一种用于制备金属改性的纳米晶粒sapo-34分子筛的方法及其产品和用途
CN101514007B (zh) β沸石/Y沸石共生分子筛及其合成方法
CN112047358A (zh) 含锌或/和镍的多级结构zsm-5分子筛及其制备方法和应用
CN115231587B (zh) 一种纳米zsm-5分子筛及其制备方法和应用
CN106542547B (zh) 一种高活性低硅含量的sapo-34分子筛的制备方法
CN111056561B (zh) 一种含有多级孔的小晶粒ssz-13分子筛及其合成方法
CN111111752B (zh) 无粘结剂整体式催化剂、制备方法及其用途
CN109675617B (zh) 一种甲醇芳构化催化剂及其制备与应用
CN101514008A (zh) 丝光沸石/y沸石共生分子筛及其合成方法
KR20090028018A (ko) 고활성 및 고수명을 갖는 경질 올레핀 제조용실리코알루미노포스페이트(sapo-34)분자체의제조방법 및 이를 이용한 경질 올레핀의 제조방법
WO2024067765A1 (zh) 一种mfi分子筛催化剂及其制备方法和应用
CN116351462B (zh) 一种甲醇制丙烯催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3198954

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021881980

Country of ref document: EP

Effective date: 20230421

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023007363

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023007363

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230419