CN111056561B - 一种含有多级孔的小晶粒ssz-13分子筛及其合成方法 - Google Patents

一种含有多级孔的小晶粒ssz-13分子筛及其合成方法 Download PDF

Info

Publication number
CN111056561B
CN111056561B CN201911394368.XA CN201911394368A CN111056561B CN 111056561 B CN111056561 B CN 111056561B CN 201911394368 A CN201911394368 A CN 201911394368A CN 111056561 B CN111056561 B CN 111056561B
Authority
CN
China
Prior art keywords
molecular sieve
ssz
small
hierarchical pores
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911394368.XA
Other languages
English (en)
Other versions
CN111056561A (zh
Inventor
王义君
薛招腾
夏建超
文怀有
谈贇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuoyue Environmental Protection New Material Shanghai Co ltd
Original Assignee
Zhuoyue Environmental Protection New Material Shanghai Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuoyue Environmental Protection New Material Shanghai Co ltd filed Critical Zhuoyue Environmental Protection New Material Shanghai Co ltd
Priority to CN201911394368.XA priority Critical patent/CN111056561B/zh
Publication of CN111056561A publication Critical patent/CN111056561A/zh
Application granted granted Critical
Publication of CN111056561B publication Critical patent/CN111056561B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7015CHA-type, e.g. Chabazite, LZ-218
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Abstract

本发明公开一种含有多级孔的小晶粒SSZ‑13分子筛及其合成方法,包括以下步骤:(1)将铝源、硅源、结构导向剂、碱金属氢氧化物和水按照一定的比例混合,充分搅拌,得到浆液;(2)将一定量的氯化物助剂及晶种加入到步骤(1)的浆液中,充分搅拌,得到待晶化料;(3)将步骤(2)的待晶化料转入晶化釜中晶化4~48h,然后将晶化完成后的浆液洗涤、过滤、烘干、焙烧,得到SSZ‑13分子筛。本发明的合成方法合成时间短,SSZ‑13分子筛的结晶度高,具有小晶粒的特点,具有独特的多级孔结构,且比表面积大于>700m2/g,具有良好的水热稳定性和催化活性。

Description

一种含有多级孔的小晶粒SSZ-13分子筛及其合成方法
技术领域
本发明属于无机材料及催化剂材料制备领域,具体涉及一种含有多级孔的小晶粒SSZ-13分子筛及其合成方法。
背景技术
SSZ-13分子筛为CHA结构,其特殊的有序骨架组成使其具有较为发达的孔结构和良好的热稳定性,是优异的吸附剂或催化剂载体。近年来,随着分子筛材料研究的不断深入,SSZ-13分子筛的应用也越来越广泛,其在柴油发动机尾气氮氧化物的催化去除、甲醇制烯烃反应(MTO)、加氢裂化、烯烃和芳烃构造反应、小分子吸附分离(如CO2与甲烷分离)、环境工程(CO和低碳烃去除)及能量转换(分子弹簧)等领域的应用也越来越受重视。
研究发现,高的比表面积能够使SSZ-13分子筛在脱硝反应(NH3-SCR)中具有高的活性及在MTO反应中有高的甲醇转化率。同时,近年来研究者们对于多级孔的研究方兴未艾,在分子筛的骨架结构中引入多级孔,能够缩短分子的扩散距离、能够使反应产物快速的从活性位扩散到外表面,抑制结焦生成,阻止催化剂失活。然而,现有技术中,SSZ-13分子筛的比表面积均较低。如:CN106830007B公布了一种具有多级孔SSZ-13分子筛催化剂及其合成方法和应用,使用长链烷烃为助剂合成了具有多级孔结构SSZ-13分子筛,但其比表面积低,其实施例1制备的20个SSZ-13分子筛的比表面积仅在401~511m2/g。CN106629761A也公布了一种低成本的具有良好水热稳定性的SSZ-13合成方法,但是其合成的SSZ-13比表面积仍然不超过600m2/g。
另外,现有技术SSZ-13分子筛的合成时间较长,例如CN 201310645906.4公开了一种采用胆碱阳离子作为模板剂合成SSZ-13分子筛的方法。该方法使用较为廉价的氯化胆碱作为模板剂合成出SSZ-13分子筛,但合成时间至少在4天以上,导致合成成本增加,对SSZ-13分子筛的工业化生产带来了不小的阻碍。
综上可知,现有技术中,SSZ-13分子筛的合成存在比表面积小,导致催化剂的活性较低,选择性欠佳;合成时间长,导致生产成本增加,阻碍工业化生产等技术问题,急需解决。
发明内容
本发明的第一个方面在于提供一种含有多级孔的小晶粒SSZ-13分子筛的合成方法,以克服现有技术中的上述技术问题。
以下是本发明的技术方案:
一种含有多级孔的小晶粒SSZ-13分子筛的合成方法,,包括以下步骤:
(1)、将铝源、硅源、结构导向剂、碱金属氢氧化物和水按照一定的比例混合,充分搅拌,得到浆液;
(2)、将适量的氯化物助剂及晶种加入到步骤(1)的浆液中,充分搅拌,得到待晶化料;
(3)、步骤(2)的待晶化料在晶化釜中晶化4~48h,然后将晶化完成后的浆液洗涤、过滤、烘干、焙烧,得到SSZ-13分子筛;
所述步骤(1)中,以Al2O3计的铝源、以SiO2计的硅源、结构导向剂、碱金属氢氧化物和H2O的摩尔比为1:(5~50):(0.5~15):(1~20):(50~2400);
所述步骤(2)中,所述的氯化物助剂选自盐酸、有机氯化物中的一种或两种;所述氯化物助剂的加入质量为以Al2O3计的铝源质量的0.15~3倍。
优选地,所述有机氯化物选自正丁基氯化铵、六氯环己烷和氯苯中的一种或多种。
优选地,所述步骤(1)中,以Al2O3计的铝源、以SiO2计的硅源、结构导向剂、碱金属氢氧化物和H2O的摩尔比为1:(5~50):(0.68~13.0):(1~20):(50~1000)。
进一步优选地,所述步骤(1)中,以Al2O3计的铝源、以SiO2计的硅源、结构导向剂、碱金属氢氧化物和H2O的摩尔比为1:(7.13~50):(0.68~13.0):(1~20):(180~750)。
需要说明的是,所述步骤(3)中,所述晶化温度为本领域合成SSZ-13分子筛的常规温度,本领域技术人员可根据实际情况灵活选择。优选地,所述步骤(3)中,所述晶化温度为100~200℃。
进一步优选地,所述步骤(3)中,所述晶化温度为160~200℃,晶化时间为20~48h。在上述晶化温度和晶化时间条件下,得到的SSZ-13催化剂具有更大的比表面积和更好的催化活性。
需要说明的是,所述步骤(2)中,所述晶种的加入质量为本领域合成SSZ-13分子筛的通常加入质量。优选地,所述步骤(2)中,所述晶种的加入质量为以Al2O3计的铝源质量0.13~2倍。
根据本发明,所述晶种为CHA结构的分子筛,所述CHA结构的分子筛选自SSZ-13、SAPO-34,SAPO-44,SAPO-47,SSK-62。但并不限于上述几种,只要骨架结构为CHA结构的分子筛就能替换或混合使用。
需要说明的是,所述结构导向剂可以为合成CHA结构分子筛领域常用的结构导向剂。优选地,所述结构导向剂选自N,N,N-三甲基-1-金刚烷氢氧化铵、氯化胆碱和苄基三甲基氢氧化铵中的一种或几种的混合物。由于氯化胆碱价格相对便宜,用于本发明的技术方案中,在合成时间较短的条件下也能合成得到比表面积大于700m2/g,催化剂活性高的SSZ-13分子筛,因此,是较优的选择。
需要说明的是,所述硅源为合成分子筛领域常用的硅源。优选地,所述的硅源选自硅溶胶、白炭黑、硅胶、氧化硅、硅酸钠、硅酸甲酯、硅酸乙酯中的一种或多种;但不限于上述几种,可采用现有技术中常规的硅源,也可混合使用。
需要说明的是,所述铝源为合成分子筛领域常用的铝源。优选地,所述铝源选自拟薄水铝石、氧化铝、铝溶胶、异丙醇铝、偏铝酸钠、硝酸铝、硫酸铝和氯化铝中的一种或多种。但不限于上述几种,只要能够提供分子筛合成所需要的Al2O3就能替换或混合使用。
进一步优选地,所述铝源选自拟薄水铝石和硫酸铝中的一种或多种。
优选地,所述的碱金属氢氧化物为氢氧化钠、氢氧化钾中的一种或两种。但不限于上述两种,只要能够提供碱性氢氧根就能替换或混合使用。
本发明的第二个方面是提供含有多级孔的小晶粒SSZ-13分子筛,采用上述的含有多级孔的小晶粒SSZ-13分子筛的合成方法合成。
与现有技术相比,本发明具有如下有益技术效果:
(1)、本发明的含有多级孔的小晶粒SSZ-13分子筛的合成方法,通过在待晶化料中加入适量的氯化物助剂,得到的SSZ-13分子筛的结晶度高,晶粒尺寸<1μm,具有小晶粒的特点,且比表面积大于>700m2/g,同时具有独特的多级孔结构。
(2)、本发明的含有多级孔的小晶粒SSZ-13分子筛的合成方法,合成时间仅需4~48h,合成时间非常短,显著降低了生产成本。
(3)、本发明的含有多级孔的小晶粒SSZ-13分子筛的合成方法,在一定的范围内可以调控硅铝比和晶粒尺寸。
(4)、本发明的含有多级孔的小晶粒SSZ-13分子筛经800℃水热处理20h后,比表面积损失率不超过10%,因此具有良好的水热稳定性。在甲醇制烯烃反应中表现出良好的催化活性,甲醇转化能力明显提高,(乙烯+丙烯)选择性和收率均明显提高。因此本发明的含有多级孔的小晶粒SSZ-13分子筛在尾气脱硝、甲醇制烯烃反应等催化领域具有广阔的应用前景。
附图说明
图1为实施例1-7合成的7个样品的XRD谱图,横坐标表示2θ角度,纵坐标表示分子筛特征峰强度。
XRD谱图中,SSZ-13分子筛特征峰位置为:9.574°、12.439°、12.989°、14.024°、15.898°、16.190°、17.796°、20.785°、21.657°、22.094°、22.665°、23.266°、23.453°、24.921°、25.354°、26.110°、27.857°、28.126°、28.309°、30.916°。
图2为实施例1合成的样品1#的SEM图片。
图3为实施例2合成的样品2#的SEM图片。
图4为实施例3合成的样品3#的SEM图片。
图5为实施例4合成的样品4#的SEM图片。
图6为实施例5合成的样品5#的SEM图片。
图7为实施例6合成的样品6#的SEM图片。
图8为实施例7合成的样品7#的SEM图片。
图9为对比例合成的对比样品1#的SEM图片。
具体实施方式
以下结合具体实施例,对本发明作进一步说明。应理解,以下实施例仅用于说明本发明而非用于限定本发明的范围。
以下实施例中涉及的所有原料均为市售。以下实施例中涉及的百分比均为质量百分比。
拟薄水铝石,含有70%的氧化铝,30%的水。
实施例1、含有多级孔的小晶粒SSZ-13分子筛的制备
(1)将100.0g 30%硅溶胶、6.7g十八水硫酸铝、50.0g 25%N,N,N-三甲基-1-金刚烷氢氧化铵水溶液、0.6g固体NaOH和15.9g去离子水混合,充分搅拌,得到浆液。
(2)往步骤(1)的浆液中加入2g 36.5%盐酸和0.5g SSZ-13分子筛晶种,搅拌均匀得到待晶化料。
(3)将步骤(2)的待晶化料转入晶化釜中,控制在200℃温度下晶化20h,然后将晶化完成后的浆液洗涤、过滤、烘干、焙烧,得到样品1#。
对样品1#进行XRD分析及电镜扫描,XRD图如图1所示,SEM图如图2所示。
从图2中可以看到,合成的样品1#的晶粒尺寸约为500-700nm,小于1μm。且分子筛颗粒为由纳米晶体组成的团聚体结构,纳米晶体之间具有明显的大孔,即样品1#具有SSZ-13分子筛固有的微孔,还具有大孔结构。
本实施例中,步骤(1)中所述浆液中各物料的摩尔比为:以Al2O3计的铝源:以SiO2计的硅源:结构导向剂:NaOH:H2O=1.0:49.9:5.9:1.5:703.7。
本实施例中,氯化氢的添加量为以Al2O3计的铝源质量的0.7倍,晶种的添加量为以Al2O3计的铝源质量的0.5倍。
实施例2、含有多级孔的小晶粒SSZ-13分子筛的制备
(1)、将10.0g 30%硅溶胶、6.7g十八水硫酸铝、9.0g 25%N,N,N-三甲基-1-金刚烷氢氧化铵水溶液、8.0g固体NaOH和50.0g去离子水混合,充分搅拌,得到浆液。
(2)、往步骤(1)的浆液中加入3.0g正丁基氯化铵和2.0g SAPO-34分子筛晶种,搅拌均匀得到待晶化料。
(3)、将步骤(2)的待晶化料转入晶化釜中,控制在180℃温度下晶化24h,然后将晶化完成后的浆液洗涤、过滤、烘干、焙烧,得到样品2#。
对样品2#进行XRD分析及电镜扫描,XRD图如图1所示,SEM图如图3所示。
从图3中可以看到,合成的样品2#的晶粒尺寸约为200-400nm,小于1μm。且分子筛颗粒为由纳米晶体组成的团聚体结构,纳米晶体之间具有明显的大孔,即样品2#具有SSZ-13分子筛固有的微孔,还具有大孔结构。
本实施例中,步骤(1)中所述浆液中各物料的摩尔比为:以Al2O3计的铝源:以SiO2计的硅源:结构导向剂:NaOH:H2O=1.0:5.0:1.1:20.0:372.3。
本实施例中,正丁基氯化铵的添加量为以Al2O3计的铝源质量的3倍,晶种的添加量为以Al2O3计的铝源质量的2倍。
实施例3、含有多级孔的小晶粒SSZ-13分子筛的制备
(1)、将40.1g白炭黑、5.1g拟薄水铝石、200.2g 25%N,N,N-三甲基-1-金刚烷氢氧化铵水溶液、27.9g固体NaOH和300.0g去离子水混合,充分搅拌,得到浆液。
(2)、往步骤(1)的浆液中加入5g六氯环己烷和3g SAPO-34分子筛晶种,搅拌均匀得到待晶化料。
(3)、将步骤(2)的待晶化料转入晶化釜中,控制在160℃温度下晶化48h,然后将晶化完成后的浆液洗涤、过滤、烘干、焙烧,得到样品3#。
对样品3#进行XRD分析及电镜扫描,XRD图如图1所示,SEM图如图4所示。
从图4中可以看到,合成的样品3#的晶粒尺寸约为850-950nm,小于1μm。且分子筛颗粒为由纳米晶体组成的团聚体结构,纳米晶体之间具有明显的大孔,即样品3#具有SSZ-13分子筛固有的微孔,还具有大孔结构。
本实施例中,步骤(1)中所述浆液中各物料的摩尔比为:以Al2O3计的铝源:以SiO2计的硅源:结构导向剂:NaOH:H2O=1.0:19.1:6.8:19.9:740.5。
本实施例中,六氯环己烷的添加量为以Al2O3计的铝源质量的1.4倍,晶种的添加量为以Al2O3计的铝源质量的0.84倍。
实施例4、含有多级孔的小晶粒SSZ-13分子筛的制备
(1)、将50g 30%硅溶胶、1.2g拟薄水铝石、15g氯化胆碱、5g固体NaOH和15.85g去离子水混合,充分搅拌,得到浆液。
(2)、往步骤(1)的浆液中加入5.0g 36.5%盐酸和0.4g SSZ-13分子筛晶种,搅拌均匀得到待晶化料。
(3)、将步骤(2)的待晶化料转入晶化釜中,控制在180℃温度下晶化20h,然后将晶化完成后的浆液洗涤、过滤、烘干、焙烧,得到样品4#。
对样品4#进行XRD分析及电镜扫描,XRD图如图1所示,SEM图如图5所示。
从图5中可以看到,合成的样品4#的晶粒尺寸约为500-700nm,小于1μm。且分子筛颗粒为由纳米晶体组成的团聚体结构,纳米晶体之间具有明显的大孔,即样品4#具有SSZ-13分子筛固有的微孔,还具有大孔结构。
本实施例中,步骤(1)中所述浆液中各物料的摩尔比为:以Al2O3计的铝源:以SiO2计的硅源:结构导向剂:NaOH:H2O=1.0:30.3:13.0:15.2:345.3。
本实施例中,氯化氢的添加量为以Al2O3计的铝源质量的2.2倍,晶种的添加量为以Al2O3计的铝源质量的0.48倍。
实施例5、含有多级孔的小晶粒SSZ-13分子筛的制备
(1)、将20g C型硅胶、6.8g拟薄水铝石、27.0g 25%N,N,N-三甲基-1-金刚烷氢氧化铵水溶液、5.0g固体NaOH和20.0g去离子水混合,充分搅拌,得到浆液。
(2)、往步骤(1)的浆液中加入2g 36.5%盐酸和0.6g SSZ-13分子筛晶种,搅拌均匀得到待晶化料。
(3)、将步骤(2)的待晶化料转入晶化釜中,控制在180℃温度下晶化20h,然后将晶化完成后的浆液洗涤、过滤、烘干、焙烧,得到样品5#。
对样品5#进行XRD分析及电镜扫描,XRD图如图1所示,SEM图如图6所示。
从图6中可以看到,合成的样品5#的晶粒尺寸约为400-600nm,小于1μm。且分子筛颗粒为由纳米晶体组成的团聚体结构,纳米晶体之间具有明显的大孔,即样品5#具有SSZ-13分子筛固有的微孔,还具有大孔结构。
本实施例中,步骤(1)中所述浆液中各物料的摩尔比为:以Al2O3计的铝源:以SiO2计的硅源:结构导向剂:NaOH:H2O=1.0:7.13:0.68:2.67:50.3。
本实施例中,氯化氢的添加量为以Al2O3计的铝源质量的0.15倍,晶种的添加量为以Al2O3计的铝源质量的0.13倍。
实施例6、含有多级孔的小晶粒SSZ-13分子筛的制备
(1)、将20g 30%硅溶胶、6.7g十八水硫酸铝、20.0g 25%N,N,N-三甲基-1-金刚烷氢氧化铵水溶液、0.5g固体NaOH和2.0g去离子水混合,充分搅拌,得到浆液。
(2)、往步骤(1)的浆液中加入1.9g氯苯和0.4g SAPO-34分子筛晶种,搅拌均匀得到待晶化料。
(3)、将步骤(2)的待晶化料转入晶化釜中,控制在180℃温度下晶化20h,然后将晶化完成后的浆液洗涤、过滤、烘干、焙烧,得到样品6#。
对样品6#进行XRD分析及电镜扫描,得到XRD图如图1所示,SEM图如图7所示。
从图7中可以看到,合成的样品6#的晶粒尺寸约为200-400nm,小于1μm。且分子筛颗粒为由纳米晶体组成的团聚体结构,纳米晶体之间具有明显的大孔,即样品6#具有SSZ-13分子筛固有的微孔,还具有大孔结构。
本实施例中,步骤(1)中所述浆液中各物料的摩尔比为:以Al2O3计的铝源:以SiO2计的硅源:结构导向剂:NaOH:H2O=1.0:9.9:2.4:1.2:189.2。
本实施例中,氯苯的添加量为以Al2O3计的铝源质量的1.9倍,晶种的添加量为以Al2O3计的铝源质量的0.4倍。
实施例7、含有多级孔的小晶粒SSZ-13分子筛的制备
基本方法和参数与实施例1相同,区别在于:
所述步骤(2)中,采用24.7g 40%苄基三甲基氢氧化铵水溶液代替50g 25%N,N,N-三甲基-1-金刚烷氢氧化铵水溶液,0.84g固体KOH代替0.6g固体NaOH。
步骤(3)中,控制在200℃温度下晶化4h。最终,得到样品7#。
对样品7#进行XRD分析及电镜扫描,XRD图如图1所示,SEM图如图8所示。
从图8中可以看到,合成的样品7#的晶粒尺寸约为800-900nm,小于1μm。且分子筛颗粒为由纳米晶体组成的团聚体结构,纳米晶体之间具有明显的大孔,即样品7#具有SSZ-13分子筛固有的微孔,还具有大孔结构。
本实施例中,步骤(1)中所述浆液中各物料的摩尔比为:以Al2O3计的铝源:以SiO2计的硅源:结构导向剂:NaOH:H2O=1.0:49.9:5.9:1.5:577.7。
本实施例中,氯化氢的添加量为以Al2O3计的铝源质量的0.7倍,晶种的添加量为以Al2O3计的铝源质量的0.5倍。
对比例1、SSZ-13分子筛的制备
基本步骤与实施例1相同,区别在于:
所述步骤(2)制备待晶化料时,不加入2g 36.5%盐酸。步骤(3)中,控制在200℃温度下晶化60h。最终,得到对比样品1#。
图9是对比样品1#的SEM图,从图中可以看到合成的样品表面光滑,不含多级孔结构,晶粒尺寸>1μm。
实施例8、水热测试
水热测试前,分别检测样品1-7#及对比样品1#的XRD和比表面积,然后再将样品1-7#及对比样品1#分别放入管式炉中进行水热老化处理。水热老化处理条件为:800℃水热处理20h,水蒸气体积含量为10%,水蒸气和空气的混合流量为500ml/min。
水热前、后8个样品的相对结晶度和比表面积分别如表1所示。以对比样品1#的结晶度为100%。
表1水热前、后样品的相对结晶度和比表面积
Figure BDA0002345890720000091
由表1的数据可知,样品1-7#的相对结晶度均明显高于对比样品1#的相对结晶度。样品1#-7#水热处理前的比表面积都大于700m2/g,明显高于对比样品1#水热处理前的比表面积。经过水热处理后,样品1-7#的比表面积保留率均超过了90%,远高于对比样品1#的比表面积保留率84%,这表明与对比样品1#相比,本发明的样品1-7#均具有优异的水热稳定性。
图1为样品1-7#的XRD图谱,从图1中可以看到,本发明的7个样品均为纯净的SSZ-13分子筛结构,没有杂晶。综上所述,从XRD和水热试验结果可以看出,本发明中,在待晶化浆料中添加氯化物作为助剂后,合成的样品结晶度明显更高,比表面积明显增大,水热稳定性更好。
实施例9、孔结构测试
采用氮气物理吸附仪对对比样品1#和样品1-7#进行表征,结果如表2所示。
表2对比样品1#和样品1-7#的孔结构数据
样品编号 比表面积(m<sup>2</sup>/g) 微孔体积(ml/g) 介孔体积(ml/g)
对比例1# 657 0.23 0.02
样品1# 767 0.24 0.15
样品2# 744 0.25 0.21
样品3# 750 0.24 0.19
样品4# 755 0.23 0.18
样品5# 749 0.27 0.11
样品6# 753 0.29 0.22
样品7# 748 0.25 0.23
从表2中数据可以看出,样品1-7#除了含有较多的微孔外,均含有较多的介孔分布,说明在待晶化浆料中添加氯化物作为助剂后,合成的SSZ-13同时含有较多的微孔结构和介孔结构。对比样品1#的介孔体积非常少,几乎没有介孔结构。
综合SEM图片和物理吸附数据可以看出,实施例1-7制备的样品1-7#具有SSZ-13分子筛固有的微孔-纳米颗粒内部介孔-纳米颗粒堆积而成的大孔的多级孔结构。
实施例10、催化活性检测
按照HG/T 4862-2015的方法测试实施例1-7合成的7个样品及对比样品1#的甲醇制烯烃反应性能。其中,甲醇转化能力单位为g-甲醇/g-分子筛,结果如表3所示。
表3甲醇制烯烃反应性能评价结果
Figure BDA0002345890720000101
Figure BDA0002345890720000111
由表3中数据可知,与对比样品1#相比,本发明的七个样品的甲醇转化能力均更强,双烯选择性更高,这说明添加了氯化物为助剂合成的SSZ-13样品的甲醇处理能力更强,烯烃选择性更高。其中样品1#具有最高的比表面积,其甲醇转化能力也最高,(乙烯+丙烯)收率达到最高值86.0%,说明实施例1的条件最优。
以上对本发明的具体实施例进行了详细描述,但其只作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对该实用进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (8)

1.一种含有多级孔的小晶粒SSZ-13分子筛的合成方法,其特征在于,包括以下步骤:
(1)、将铝源、硅源、结构导向剂、碱金属氢氧化物和水按照一定的比例混合,充分搅拌,得到浆液;
(2)、将适量的氯化物助剂及晶种加入到步骤(1)的浆液中,充分搅拌,得到待晶化料;
(3)、步骤(2)的待晶化料在晶化釜中晶化4~48h,然后将晶化完成后的浆液洗涤、过滤、烘干、焙烧,得到SSZ-13分子筛;
所述步骤(1)中,以Al2O3计的铝源、以SiO2计的硅源、结构导向剂、碱金属氢氧化物和H2O的摩尔比为1:(5~50):(0.5~15):(1~20):(50~2400);
所述步骤(2)中,所述的氯化物助剂选自盐酸、有机氯化物中的一种或两种;所述氯化物助剂的加入质量为以Al2O3计的铝源质量的0.15~3倍;
所述有机氯化物选自正丁基氯化铵、六氯环己烷和氯苯中的一种或多种;
所述晶种为CHA结构的分子筛;
所述结构导向剂选自N,N,N-三甲基-1-金刚烷氢氧化铵、氯化胆碱和苄基三甲基氢氧化铵中的一种或几种的混合物。
2.根据权利要求1所述的含有多级孔的小晶粒SSZ-13分子筛的合成方法,其特征在于,所述步骤(1)中,以Al2O3计的铝源、以SiO2计的硅源、结构导向剂、碱金属氢氧化物和H2O的摩尔比为1:(5~50):(0.68~13.0):(1~20):(50~1000)。
3.根据权利要求1所述的含有多级孔的小晶粒SSZ-13分子筛的合成方法,其特征在于,所述步骤(3)中,晶化温度为100~200℃。
4.根据权利要求3所述的含有多级孔的小晶粒SSZ-13分子筛的合成方法,其特征在于,所述步骤(3)中,晶化温度为160~200℃,晶化时间为20~48h。
5.根据权利要求1所述的含有多级孔的小晶粒SSZ-13分子筛的合成方法,其特征在于,所述步骤(2)中,所述晶种的加入质量为以Al2O3计的铝源质量的0.13~2倍。
6.根据权利要求1-5中任一项所述的含有多级孔的小晶粒SSZ-13分子筛的合成方法,其特征在于,所述的硅源选自硅溶胶、白炭黑、硅胶、氧化硅、硅酸钠、硅酸甲酯、硅酸乙酯中的一种或多种;
所述的铝源选自拟薄水铝石、氧化铝、铝溶胶、异丙醇铝、偏铝酸钠、硝酸铝、硫酸铝和氯化铝中的一种或多种。
7.根据权利要求1-5中任一项所述的含有多级孔的小晶粒SSZ-13分子筛的合成方法,其特征在于,所述的碱金属氢氧化物为氢氧化钠、氢氧化钾中的一种或两种。
8.含有多级孔的小晶粒SSZ-13分子筛,其特征在于,采用权利要求1-7中任一项所述的含有多级孔的小晶粒SSZ-13分子筛的合成方法合成。
CN201911394368.XA 2019-12-30 2019-12-30 一种含有多级孔的小晶粒ssz-13分子筛及其合成方法 Active CN111056561B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911394368.XA CN111056561B (zh) 2019-12-30 2019-12-30 一种含有多级孔的小晶粒ssz-13分子筛及其合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911394368.XA CN111056561B (zh) 2019-12-30 2019-12-30 一种含有多级孔的小晶粒ssz-13分子筛及其合成方法

Publications (2)

Publication Number Publication Date
CN111056561A CN111056561A (zh) 2020-04-24
CN111056561B true CN111056561B (zh) 2021-09-07

Family

ID=70303113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911394368.XA Active CN111056561B (zh) 2019-12-30 2019-12-30 一种含有多级孔的小晶粒ssz-13分子筛及其合成方法

Country Status (1)

Country Link
CN (1) CN111056561B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114044524B (zh) * 2021-11-26 2023-07-04 中触媒新材料股份有限公司 一种复合模板剂制备的cha分子筛以及应用其制备scr催化剂的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717092A (zh) * 2008-10-10 2010-06-02 天津海赛纳米材料有限公司 一种纳米级高比表面Beta沸石制备方法
CN102530980A (zh) * 2012-01-13 2012-07-04 大连理工大学 一种多级孔道沸石及其制备和应用
CN104129800A (zh) * 2014-07-18 2014-11-05 天津众智科技有限公司 利用晶种和复合无机碱合成高硅铝比菱沸石型分子筛的方法及分子筛的应用
CN106629761A (zh) * 2016-12-20 2017-05-10 上海卓悦化工科技有限公司 一种ssz‑13分子筛的合成方法
CN106745035A (zh) * 2017-03-17 2017-05-31 中触媒新材料股份有限公司 一种多级孔ssz‑13分子筛及其合成方法和应用
CN108046288A (zh) * 2017-12-15 2018-05-18 神华集团有限责任公司 一种制备用于甲醇制丙烯的多级孔zsm-5分子筛的方法
CN110357121A (zh) * 2019-08-02 2019-10-22 太原理工大学 一种小晶粒纳米多级孔ssz-13分子筛的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9662640B2 (en) * 2013-12-27 2017-05-30 Rive Technology, Inc. Introducing mesoporosity into zeolite materials with a modified acid pre-treatment step

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717092A (zh) * 2008-10-10 2010-06-02 天津海赛纳米材料有限公司 一种纳米级高比表面Beta沸石制备方法
CN102530980A (zh) * 2012-01-13 2012-07-04 大连理工大学 一种多级孔道沸石及其制备和应用
CN104129800A (zh) * 2014-07-18 2014-11-05 天津众智科技有限公司 利用晶种和复合无机碱合成高硅铝比菱沸石型分子筛的方法及分子筛的应用
CN106629761A (zh) * 2016-12-20 2017-05-10 上海卓悦化工科技有限公司 一种ssz‑13分子筛的合成方法
CN106745035A (zh) * 2017-03-17 2017-05-31 中触媒新材料股份有限公司 一种多级孔ssz‑13分子筛及其合成方法和应用
CN108046288A (zh) * 2017-12-15 2018-05-18 神华集团有限责任公司 一种制备用于甲醇制丙烯的多级孔zsm-5分子筛的方法
CN110357121A (zh) * 2019-08-02 2019-10-22 太原理工大学 一种小晶粒纳米多级孔ssz-13分子筛的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAPO-34分子筛晶种辅助合成SSZ-13分子筛;王艳悦等;《天然气化工》;20161231;第41卷(第4期);第6页 *
Template-Free Synthesis of Hierarchical SSZ-13 Microspheres with High MTO Catalytic Activity;Bing, Liancheng et al.;《CHEMISTRY-A EUROPEAN JOURNAL 》;20180430;第24卷(第9期);第7432页 *

Also Published As

Publication number Publication date
CN111056561A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
CN106830007B (zh) 具有多级孔ssz-13分子筛催化剂及其合成方法和应用
CN108529642B (zh) 一种Cu-SSZ-13分子筛的制备方法
EP2837596B1 (en) Beta zeolite and method for producing same
CN109126861A (zh) 一种用于甲醇制丙烯纳米堆积zsm-5分子筛的制备方法
CN100528352C (zh) 催化剂、该催化剂的制备方法及使用该催化剂的低级烃的制造方法
CN111068760B (zh) Ssz-13沸石的快速可控制备方法及h-ssz-13沸石和甲醇制烯烃催化剂
CN106745035A (zh) 一种多级孔ssz‑13分子筛及其合成方法和应用
CN112794338B (zh) Zsm-5分子筛及其制备方法和应用
US20030170172A1 (en) Preparation of mfi type crystalline zeolitic aluminosilicate
CN109201109B (zh) 一种甲醇制烯烃催化剂及其制备方法
CN108975349A (zh) 一种大孔-微孔复合zsm-5分子筛及其合成和应用
CN111056561B (zh) 一种含有多级孔的小晶粒ssz-13分子筛及其合成方法
CN107020145B (zh) 一种介孔im-5分子筛及制备方法
CN115057453B (zh) 一种利用fcc废催化剂制备ssz-13分子筛的方法及其应用
CN115010146B (zh) 一种多级孔zsm-5纳米团聚体分子筛及其制备方法
CN113086989B (zh) 多级孔NaY分子筛的制备方法
CN108862316B (zh) 一种cha型磷酸硅铝分子筛的合成方法
CN105621439B (zh) 一种Beta沸石的合成方法
CN115072737A (zh) 一种多级孔mre分子筛的制备方法
CN111186846B (zh) 一种ith结构硅铝分子筛及其制备方法
CN108435245B (zh) 小晶粒等级孔sapo-34@高岭土微球催化剂及其制备和应用
CN114804141B (zh) 一种纳米团簇介孔zsm-5分子筛及其制备方法
CN111099602A (zh) 含铁复合孔分子筛
CN112456511A (zh) Sapo-34分子筛及其制备方法和应用
CN112239217A (zh) Sapo-34分子筛及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant