WO2022082446A1 - 电极组件、电池单体、电池、用电装置、制造方法及设备 - Google Patents

电极组件、电池单体、电池、用电装置、制造方法及设备 Download PDF

Info

Publication number
WO2022082446A1
WO2022082446A1 PCT/CN2020/122245 CN2020122245W WO2022082446A1 WO 2022082446 A1 WO2022082446 A1 WO 2022082446A1 CN 2020122245 W CN2020122245 W CN 2020122245W WO 2022082446 A1 WO2022082446 A1 WO 2022082446A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
body portion
protruding
assembly according
active material
Prior art date
Application number
PCT/CN2020/122245
Other languages
English (en)
French (fr)
Inventor
陈文伟
王小娜
张子格
薛庆瑞
梁成都
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2022543114A priority Critical patent/JP7450731B2/ja
Priority to PCT/CN2020/122245 priority patent/WO2022082446A1/zh
Priority to KR1020227025642A priority patent/KR20220119699A/ko
Priority to CN202080095842.3A priority patent/CN115066803B/zh
Priority to EP20958029.9A priority patent/EP4084207A4/en
Publication of WO2022082446A1 publication Critical patent/WO2022082446A1/zh
Priority to US17/815,216 priority patent/US12021269B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • H01M10/0409Machines for assembling batteries for cells with wound electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to an electrode assembly, a battery cell, a battery, an electrical device, a manufacturing method and equipment.
  • Batteries include multiple battery cells connected in series or in parallel to achieve greater capacity or power.
  • the battery cell includes a case, an electrode assembly, an adapter member, and an electrode terminal.
  • the electrode assembly includes a body portion and tabs.
  • the tabs of the electrode assembly are connected to the electrode terminals through the transition parts. Electric current can be conducted into or out of the body portion through electrode terminals, transition parts, and tabs. Due to higher and higher requirements for the energy density of batteries, the size of battery cells is getting larger and larger, so that the size of the electrode assembly is getting larger and larger, and the size of the main body portion is also getting larger and larger. However, as the size of the main body becomes larger, the tabs may generate serious heat, which affects the safety of the battery.
  • Embodiments of the present application provide an electrode assembly, a battery cell, a battery, an electrical device, a manufacturing method, and an apparatus, which aim to solve the technical problem of serious heat generation in the tab.
  • an electrode assembly including:
  • the pole piece includes a main body part and at least one protruding part, the main body part includes a metal substrate and an active material layer coated on the surface of the metal substrate, the protruding part is connected to the metal substrate and protrudes along the length direction of the electrode assembly Metal base material; along the thickness direction of the electrode assembly, the size of at least a part of the protruding portion is larger than the size of the metal base material.
  • the protruding portion and the metal base material are made of the same material and are integrally arranged, which can improve the connection strength between the protruding portion and the metal base material, and can also improve the connection strength between the protruding portion and the metal base material. flow performance.
  • the protruding portion includes a body portion and a conductive member, and the body portion and the conductive member are stacked in a thickness direction.
  • the electrode assembly can realize the lead-out or introduction of current through the body part, the conductive part and the transfer part, which can effectively improve the electrical conductivity of the electrode assembly and improve the overall overcurrent capability of the electrode assembly.
  • the size of the body portion is equal to the size of the metal substrate, which facilitates reducing the processing difficulty of the body portion and the metal substrate.
  • the body portion, the metal substrate, and the conductive member are made of the same material.
  • the conductive member and the body portion are made of different materials, and the resistivity of the conductive member is smaller than that of the body portion.
  • the conductive member with low resistivity has high current-carrying capacity, which is beneficial to further reduce the resistance of the protruding portion and improve the current-carrying capacity of the protruding portion.
  • the conductive member is connected to the body portion, the end of the conductive member away from the active material layer is flush with the end of the body portion away from the active material layer, and the area where the conductive member and the body portion overlap in the thickness direction for external electrical connection.
  • the protruding part is electrically connected with the transfer part, the conductive part and the body part can be electrically connected with the transfer part at the same time.
  • the conductive member includes a first connecting portion and a second connecting portion, the first connecting portion is used to connect the body portion, the second connecting portion protrudes from the end of the body portion away from the active material layer, and the second connecting portion is used to connect the body portion.
  • the connection portion is used for electrical connection with the outside.
  • the electrode assembly of the embodiment of the present application includes a pole piece.
  • the pole piece includes a main body portion and a protruding portion.
  • the main body portion includes a metal base material and an active material layer.
  • the protruding portion protrudes from the metal substrate along the length direction of the electrode assembly.
  • the protruding part is connected with the metal substrate.
  • the size of at least a part of the protruding portion is larger than the size of the metal base material, so that the protruding portion has a larger cross-sectional area, so that the protruding portion itself has a low resistance and a large thermal capacity of the protruding portion, and further This makes the protruding part have a higher flow capacity.
  • the electrode assembly of the embodiments of the present application effectively solves the problem of insufficient overcurrent capability of the protruding portion of the elongated electrode assembly, and can be used during the charging or discharging process of the electrode assembly. It can alleviate the excessively rapid temperature rise of the bulge, and at the same time improve the heat dissipation performance of the bulge, thereby reducing the possibility of serious heat generation in the bulge, which can effectively improve the charging and discharging efficiency of the battery, and can reduce the battery during charging or discharging. There is a risk of overheating, increasing the safety of battery use.
  • the size of the second connection portion is greater than or equal to the size of the body portion.
  • the two conductive members are respectively connected to two surfaces of the body portion.
  • the cross-sectional area of the protruding part is further increased, which is beneficial to further reduce the resistance of the protruding part itself, so that the protruding part itself has a higher overcurrent capability.
  • the sum of the dimensions of the second connection portions of the two conductive members is greater than or equal to the dimension of the body portion.
  • the cross-sectional area of the second connecting parts of the two conductive parts used for electrical connection with the adapter part can be made larger than or equal to the cross-sectional area of the main body part, effectively ensuring the overcurrent of the second connecting parts of the two conductive parts ability.
  • the body portion is welded with the conductive member.
  • a protective layer is provided on the body portion close to the root of the active material layer, and a welding area between the conductive member and the body portion is provided at an interval from the protective layer.
  • the protective layer provided at the root of the body portion can play a protective role, reducing the possibility of the body portion being bent and pressed between two adjacent pole pieces.
  • the body portion has a fuse portion.
  • the fuse part set on the main body can be close to the heating area, which is beneficial to shorten the time for the temperature to transfer to the fuse part, to ensure that the fuse part can be blown in time, and to cut off the electrical connection between the protruding part and the adapter part, thus ensuring the safety of the battery.
  • the electrode assembly includes two or more pole pieces, and the two or more pole pieces are stacked in a thickness direction.
  • the dimension of the protruding portion along the width direction of the electrode assembly is L1
  • the dimension of the pole piece along the width direction of the main body portion is L2
  • L1 and L2 satisfy: 1/3L2 ⁇ L1 ⁇ 3/4L2 .
  • the dimension L1 of the protruding portion in the width direction is 15 mm to 60 mm.
  • the size of the pole piece along the length direction of the electrode assembly is L3
  • the size of the pole piece along the width direction of the electrode assembly is L2
  • L3 and L2 satisfy: the ratio of L3/L2 ranges from 4 to 20 .
  • the sum of the capacities of the active material layers on the two surfaces of the metal substrate is C greater than 3 Ah and less than 10 Ah.
  • Embodiments of the present application further provide a battery cell, including: the electrode assembly according to the above embodiments.
  • the embodiments of the present application also provide a battery, including the battery cells of the above-mentioned embodiments.
  • Embodiments of the present application also provide an electrical device, including the battery according to the above-mentioned embodiments, and the battery is used to provide electrical energy.
  • Embodiments of the present application also provide a method for manufacturing an electrode assembly, including:
  • coating step coating active material layer on the surface of the first part
  • the material removal step is to remove part of the material on the second sheet and the second part to form a pole piece including a main body part and at least one protruding part, and the main body part includes an active material layer and a metal substrate corresponding to the active material layer, and The thickness of at least a part of the protruding part connected to the metal base material is greater than the thickness of the metal base material, the protruding part includes a main body part and a conductive part connected to the main body part, the remaining part of the second part forms the main body part, and the remaining part of the second sheet material forms conductive parts;
  • the electrode assembly is formed by winding or stacking the pole piece, and the protruding portion protrudes from the metal substrate along the length direction of the electrode assembly.
  • the embodiment of the present application also provides a manufacturing equipment of an electrode assembly, including:
  • a first material handling device for providing a first sheet, the first sheet having a first portion and a second portion
  • a coating device for coating an active material layer on the surface of the first part
  • a second material handling device for providing a second sheet for connecting the second sheet to the second part
  • the material removal device removes the second sheet and part of the material on the second part to form a pole piece including a main body part and at least one protruding part, the main body part includes an active material layer and a metal substrate corresponding to the active material layer, and The thickness of at least a part of the protruding part connected to the metal base material is greater than the thickness of the metal base material, the protruding part includes a main body part and a conductive part connected to the main body part, the remaining part of the second part forms the main body part, and the remaining part of the second sheet material forms conductive parts;
  • the forming device is used for winding or stacking the pole piece to form the electrode assembly, and the protruding part protrudes from the metal base material along the length direction of the electrode assembly.
  • FIG. 1 is a schematic structural diagram of a vehicle according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an exploded structure of a battery pack according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a partial structure of a battery module according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an exploded structure of a battery cell according to an embodiment of the present application.
  • FIG. 5 is a schematic top-view structural diagram of an electrode assembly according to an embodiment of the present application.
  • FIG. 6 is a schematic side view of the structure of an electrode assembly according to an embodiment of the present application.
  • FIG. 7 is a partial side structural schematic diagram of an electrode assembly according to an embodiment of the present application.
  • FIG. 8 is a partial side structural schematic diagram of an electrode assembly according to another embodiment of the present application.
  • FIG. 9 is a partial side structural schematic diagram of an electrode assembly according to another embodiment of the present application.
  • FIG. 10 is a partial side structural schematic diagram of an electrode assembly according to another embodiment of the present application.
  • FIG. 11 is a partial side structural schematic diagram of an electrode assembly according to another embodiment of the present application.
  • FIG. 12 is a partial side structural schematic diagram of an electrode assembly according to still another embodiment of the present application.
  • FIG. 13 is a partial top-view structural schematic diagram of an electrode assembly according to an embodiment of the present application.
  • FIG. 14 is a partial top-view structural schematic diagram of an electrode assembly according to another embodiment of the present application.
  • 15 is a schematic diagram of a method for manufacturing an electrode assembly according to an embodiment of the present application.
  • 16 is a schematic diagram of a partial structure of a pole piece according to an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of an apparatus for manufacturing an electrode assembly according to an embodiment of the present application.
  • the structure of the battery cell is made into a long strip-shaped flat structure, so that the The length of the electrode main body of the electrode assembly becomes large and has an elongated flat structure.
  • the tabs extend from the end face of the electrode body.
  • the tabs extending from the end face of the electrode body have a problem of insufficient overcurrent capability, which leads to the problem of serious heating of the tabs.
  • the applicant improves the structure of the battery cell, and the embodiments of the present application are further described below.
  • the embodiment of the present application provides an electrical device using the battery 10 as a power source.
  • the electrical device can be, but not limited to, a vehicle, a ship, or an aircraft.
  • an embodiment of the present application provides a vehicle 1 .
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle. New energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles.
  • the vehicle 1 may include a motor 1 a , a controller 1 b and a battery 10 .
  • the controller 1b is used to control the battery 10 to supply power to the motor 1a.
  • the motor 1a is connected to the wheels through a transmission mechanism, thereby driving the vehicle 1 to travel.
  • the battery 10 can be used as a driving power source of the vehicle 1 to provide driving power for the vehicle 1 in place of or partially in place of fuel or natural gas.
  • the battery 10 may be provided at the bottom, front or rear of the vehicle 1 .
  • the battery 10 may be used to power the vehicle 1 .
  • the battery 10 may be used as the operating power source of the vehicle 1 for the electrical system of the vehicle 1 .
  • the battery 10 may be used for the operating power requirements of the vehicle 1 for starting, navigating, and operating.
  • the battery 10 may include more than two battery modules 20 .
  • the battery 10 further includes a case.
  • the battery module 20 is disposed in the box. Two or more battery modules 20 are arranged in the box.
  • the type of cabinet is not limited.
  • the case can be a frame-shaped case, a disc-shaped case, a box-shaped case, or the like.
  • the box body includes a first casing 11 for accommodating the battery module 20 and a second casing 12 covering with the first casing 11 .
  • the first casing 11 and the second casing 12 are closed to form an accommodating portion for accommodating the battery module 20 .
  • the battery module 20 may include one or more battery cells 30 .
  • a plurality of battery cells 30 can be connected in series, parallel or mixed to form a battery module, and then a plurality of battery modules 20 can be connected in series, parallel or mixed to form a battery.
  • Hybrid refers to a mix of series and parallel.
  • the battery may include a plurality of battery cells 30, wherein the plurality of battery cells 30 may be connected in series, in parallel or in a mixed connection.
  • the plurality of battery cells 30 may be directly disposed in the box. That is to say, the plurality of battery cells 30 may directly form the battery 10 , or may form the battery module 20 first, and then the battery module 20 may form the battery 10 .
  • the battery cell 30 includes, but is not limited to, a lithium-ion-containing secondary battery, a lithium-ion primary battery, a lithium-sulfur battery, a sodium-lithium-ion battery, or a magnesium-ion battery.
  • the width of the battery cell 30 is the same as the height of the vehicle 1 . Due to the space limitation in the height direction of the vehicle 1, the width of the battery cells 30 is also strictly limited, so when the capacity of the battery cells 30 needs to be increased, the width of the battery cells 30 cannot be increased infinitely, and the battery cells 30 can be enlarged.
  • the length of the monomer 30 is also strictly limited, so when the capacity of the battery cells 30 needs to be increased, the width of the battery cells 30 cannot be increased infinitely, and the battery cells 30 can be enlarged.
  • the battery cell 30 of the embodiment of the present application includes a casing 31 and an electrode assembly 32 disposed in the casing 31 .
  • the housing 31 in the embodiment of the present application has a square structure or other shapes.
  • the case 31 has an inner space that accommodates the electrode assembly 32 and the electrolyte, and an opening communicating with the inner space.
  • the housing 31 may be made of a material such as aluminum, aluminum alloy, or plastic.
  • the electrode assembly 32 is the core component of the battery cell 30 to realize the charging and discharging function.
  • the battery cell 30 of the embodiment of the present application further includes an end cap 33 , an electrode terminal 34 and a transition member 35 .
  • the end cap 33 is connected with the casing 31 and closes the opening of the casing 31 .
  • the end cap 33 and the housing 31 may be connected by welding.
  • the electrode terminal 34 is provided on the end cap 33 .
  • the outer shape of the electrode terminal 34 may be circular or square, which is not limited here.
  • the electrode terminal 34 is electrically connected to the electrode assembly 32 through the adapter member 35 .
  • Two or more battery cells 30 can be connected in series, in parallel or in mixed connection through their respective electrode terminals 34 .
  • the electrode assembly 32 of the embodiment of the present application includes an electrode body 32a.
  • the electrode assembly 32 has a predetermined length, width and thickness.
  • the length refers to the size of the electrode body 32a along its own length direction X
  • the width refers to the size of the electrode body 32a along its own width direction Y
  • the thickness refers to the size of the electrode body 32a along its own thickness direction Z.
  • the longitudinal direction X, the width direction Y, and the thickness direction Z are perpendicular to each other.
  • the electrode body 32 a of the embodiment of the present application may include a pole piece 321 .
  • the pole piece 321 may be a positive pole piece, and the electrode body 32a may include one or more positive pole pieces.
  • the pole piece 321 may also be a negative electrode piece, and the electrode body 32a may include one or more negative electrode pieces.
  • the electrode body 32a includes a positive electrode sheet and a negative electrode sheet, the positive electrode sheet and the negative electrode sheet can be stacked along the thickness direction Z, so that the formed electrode assembly 32 has a laminated structure, or the positive electrode sheet and the negative electrode sheet can also be wound to form an electrode assembly 32. Since two adjacent pole pieces 321 have opposite polarities, the two adjacent pole pieces 321 can be separated by a diaphragm 322 .
  • the diaphragm 322 is an insulator between two pole pieces 321 of opposite polarities.
  • the pole piece 321 in the embodiment of the present application includes a main body portion 3211 and at least one protruding portion 3212 .
  • the protruding portion 3212 protrudes from the main body portion 3211 in the longitudinal direction X of the electrode main body 32a.
  • each of the protruding parts 3212 with the same polarity may be arranged in layers along the thickness direction Z.
  • the respective main body portions 3211 are stacked in the thickness direction Z to form the electrode main body 32a.
  • the adapter member 35 is electrically connected to the protruding portion 3212 .
  • the adapter part 35 is welded with the protruding part 3212, such as laser welding or ultrasonic welding.
  • the main body portion 3211 includes a metal base material 3211a and an active material layer 3211b. At least a part of the surface of the metal substrate 3211a is coated with the active material layer 3211b, that is, the surface of the metal substrate 3211a may be completely or partially covered by the active material layer 3211b.
  • the active material layer 3211b may include a ternary material, lithium manganate or lithium iron phosphate.
  • the active material layer 3211b may include graphite or silicon.
  • the protruding portion 3212 is connected to the metal base material 3211a, and the protruding portion 3212 protrudes from the metal base material 3211a along the length direction X of the electrode body 32a.
  • the size of at least a part of the protruding portion 3212 is larger than the size of the metal substrate 3211a, so that the cross-sectional area of the protruding portion 3212 can be increased, which is beneficial to reduce the resistance of the protruding portion 3212, and also It is beneficial to increase the overall heat capacity of the protruding portion 3212 , thereby improving the overcurrent capability of the protruding portion 3212 .
  • Heat capacity refers to the amount of heat required to increase the temperature of a predetermined material by 1 degree Celsius.
  • the electrode assembly 32 in the embodiment of the present application includes at least one pole piece 321 .
  • the pole piece 321 includes a main body portion 3211 and a protruding portion 3212 .
  • the main body portion 3211 includes a metal base material 3211a and an active material layer 3211b.
  • the protruding portion 3212 protrudes from the metal substrate 3211 a along the length direction X of the electrode assembly 32 .
  • the protruding portion 3212 is connected to the metal substrate 3211a.
  • the size of at least a part of the protruding portion 3212 is larger than the size of the metal substrate 3211a, so that the protruding portion 3212 has a larger cross-sectional area, so that the protruding portion 3212 itself has low resistance and protrudes
  • the heat capacity of the portion 3212 is large, so that the protruding portion 3212 has a higher current capacity.
  • the electrode assembly 32 of the embodiment of the present application effectively solves the problem of insufficient overcurrent capability of the protrusion 3212 of the elongated electrode assembly 32, and can be During the charging or discharging process of the electrode assembly 32, the excessive temperature rise of the protruding part 3212 is relieved, and the heat dissipation performance of the protruding part 3212 is improved, thereby reducing the possibility of serious heating of the protruding part 3212, which can effectively improve the charging and discharging efficiency of the battery , and can reduce the risk of overheating of the battery during charging or discharging, and improve the safety of battery use.
  • active material layers 3211b may be provided on two opposite surfaces of the metal substrate 3211a.
  • the metal base material 3211a is a whole sheet, that is, the metal base material 3211a is an integrally formed structure.
  • the protruding portion 3212 includes a body portion 32121 and a conductive member 32122 .
  • the adapter member 35 may be electrically connected to the body portion 32121 of the protruding portion 3212 .
  • the main body portion 32121 and the metal base material 3211a are made of the same material and are integrally provided.
  • the material of the metal substrate 3211a and the material of the body portion 32121 are both aluminum or copper.
  • the main body 32121 and the metal base 3211a are made of the same material and are integrally provided, which can improve the connection strength between the main body 32121 and the metal base 3211a, and can also improve the overcurrent performance between the body 32121 and the metal base 3211a.
  • the size of at least a part of the body portion 32121 is larger than the size of the metal substrate 3211a, that is, the entire or partial size of the body portion 32121 is larger than that of the metal substrate 3211a
  • the size of the body portion 32121 enables the body portion 32121 to have a larger cross-sectional area, which is beneficial to reduce its own resistance, so that the body portion 32121 itself has a higher flow capacity.
  • the conductive member 32122 and the body portion 32121 are stacked and disposed.
  • at least part of the conductive member 32122 may be connected to the body portion 32121 by welding, for example, laser welding or ultrasonic welding.
  • the adapter part 35 may be electrically connected with the protruding part 3212 .
  • the electrode assembly 32 can lead or introduce current through the body portion 32121 , the conductive member 32122 and the adapter member 35 , effectively improving the electrical conductivity of the electrode assembly 32 and improving the overall overcurrent capability of the electrode assembly 32 .
  • the conductive member 32122 may be a sheet-like structure.
  • the sum of the dimensions of the conductive member 32122 and the body portion 32121 is larger than that of the metal substrate 3211a, so that the protruding portion 3212 has a larger cross-sectional area, It is beneficial to further reduce the resistance of the protruding portion 3212 itself, so that the protruding portion 3212 itself has a higher overcurrent capability.
  • the size of the body portion 32121 is equal to the size of the metal substrate 3211a, that is, the overall size of the body portion 32121 is equal to the size of the metal substrate 3211a.
  • the surface of the body portion 32121 may be kept flush with the surface of the metal base material 3211a. In the process of integrally molding the body portion 32121 and the metal base material 3211a, since the body portion 32121 and the metal base material 3211a have the same thickness, the processing difficulty of the body portion 32121 and the metal base material 3211a can be reduced, thereby reducing the processing cost.
  • the size of the conductive member 32122 is smaller than or equal to the size of the metal substrate 3211a, and the sum of the size of the conductive member 32122 and the body portion 32121 is larger than the size of the metal substrate 3211a.
  • the body portion 32121 , the metal substrate 3211 a and the conductive member 32122 are made of the same material.
  • the resistivity of each of the body portion 32121 , the metal base material 3211 a and the conductive member 32122 is equal.
  • the material of the body portion 32121, the metal base material 3211a, and the conductive member 32122 may be aluminum material or copper material.
  • the pole piece 321 is a positive pole piece
  • the material of the body portion 32121 , the metal substrate 3211 a and the conductive member 32122 can be made of aluminum.
  • the pole piece 321 is a negative pole piece
  • the material of the body portion 32121 , the metal substrate 3211 a and the conductive member 32122 can be made of copper.
  • the conductive member 32122 and the body portion 32121 are made of different materials, and the resistivity of the conductive member 32122 is smaller than that of the body portion 32121 .
  • Resistivity is a physical quantity used to express the resistance characteristics of various substances. The resistance of a conductor with a length of 1 meter and a cross-sectional area of 1 square meter made of a certain material is numerically equal to the resistivity of this material.
  • the conductive member 32122 with a small resistivity has a high overcurrent capability, thereby further reducing the resistance of the protruding portion 3212 and improving the overcurrent capability of the protruding portion 3212 .
  • the conductive member 32122 is made of copper, and the body portion 32121 is made of aluminum.
  • the conductive member 32122 is connected to the body portion 32121 .
  • the end of the conductive member 32122 away from the active material layer 3211b is flush with the end of the body portion 32121 away from the active material layer 3211b.
  • a region where the conductive member 32122 and the body portion 32121 overlap in the thickness direction Z is used for electrical connection with the outside.
  • the area where the conductive member 32122 and the body portion 32121 overlap along the thickness direction Z is used for electrical connection with the transition member 35 .
  • the protruding part 3212 is electrically connected to the transfer part 35
  • the conductive member 32122 and the body part 32121 can be electrically connected to the transfer part 35 at the same time.
  • the conductive member 32122 and the body portion 32121 are welded to the adapter member 35 at the same time.
  • the conductive member 32122 includes a first connection portion 32122a and a second connection portion 32122b.
  • the first connecting portion 32122a is used to connect the body portion 32121.
  • the first connection part 32122a and the body part 32121 are connected by welding.
  • the second connecting portion 32122b protrudes from the end of the main body portion 32121 away from the active material layer 3211b.
  • the second connection portion 32122b is used for electrical connection with the outside. In the embodiment of the present application, the second connection portion 32122b is used for electrical connection with the adapter member 35 .
  • the way in which the second connection portion 32122b is electrically connected to the adapter member 35 is beneficial to reduce the stacking thickness of the connection area between the second connection portion 32122b and the adapter member 35, so that the second connection portion 32122b and the adapter member 35 are connected by welding. It is beneficial to reduce the difficulty of welding, and reduce the possibility that the second connection portion 32122b and the adapter member 35 are soldered due to poor welding, thereby affecting the overcurrent capability between the second connection portion 32122b and the adapter member 35 .
  • the size of the second connection portion 32122b is greater than or equal to the size of the body portion 32121.
  • the sum of the dimensions of the second connection portion 32122b and the body portion 32121 is larger than that of the metal base material 3211a.
  • the two conductive members 32122 there are two conductive members 32122 .
  • the two conductive members 32122 are respectively connected to two surfaces of the body portion 32121.
  • One surface of the body portion 32121 is connected to a conductive member 32122.
  • the two conductive parts 32122 and the body part 32121 are provided, so that the cross-sectional area of the protruding part 3212 is further increased, which is beneficial to further reduce the resistance of the protruding part 3212 itself, so that the protruding part 3212 itself has a higher overcurrent capability. .
  • the end of each conductive member 32122 away from the active material layer 3211b is flush with the end of the body portion 32121 away from the active material layer 3211b.
  • a region where the two conductive members 32122 and the body portion 32121 overlap in the thickness direction Z is used for electrical connection with the outside.
  • the overlapping region of the two conductive members 32122 and the body portion 32121 along the thickness direction Z is used for electrical connection with the transition member 35 .
  • both conductive members 32122 include a first connection portion 32122a and a second connection portion 32122b.
  • the first connection portion 32122a of each conductive member 32122 is used to connect the main body portion 32121, and the second connection portion 32122b of each conductive member 32122 protrudes from the end portion of the main body portion 32121 away from the active material layer 3211b, and the second connection portion 32122 of each conductive member 32122
  • the connection portion 32122b is used for electrical connection with the outside.
  • the second connection portion 32122b of each conductive member 32122 is used for electrical connection with the transition member 35 .
  • the sum of the dimensions of the second connection portions 32122b of the two conductive members 32122 along the thickness direction Z is greater than or equal to the dimension of the body portion 32121 along the thickness direction Z, so that the size of the second connection portion 32122b along the thickness direction Z is greater than or equal to the dimension of the body portion 32121 along the thickness direction Z.
  • the cross-sectional area of the second connection portion 32122b of the two electrically connected conductive members 32122 is greater than or equal to the cross-sectional area of the body portion 32121, which effectively ensures the overcurrent capability of the second connection portion 32122b of the two conductive members 32122 and reduces the two It is possible that the second connecting portion 32122b of the conductive member 32122 becomes a weak portion of the current-carrying capacity, thereby ensuring that the protruding portion 3212 as a whole has a good current-carrying capacity.
  • the body portion 32121 is provided with a protective layer 323 near the root of the active material layer 3211b.
  • the conductive member 32122 and the body portion 32121 can be connected by welding.
  • the conductive member 32122 and the welding region of the main body portion 32121 are spaced apart from the protective layer 323 .
  • the body portion 32121 is easily bent and deformed under force and is pressed between two adjacent pole pieces 321, thereby causing a risk of short circuit.
  • the protective layer 323 provided at the root portion of the body portion 32121 can play a protective role, even if the body portion 32121 is bent and pressed into the space between the two adjacent pole pieces 321 During this time, the protective layer 323 can also effectively separate the two pole pieces 321, thereby reducing the risk of short circuit and improving the safety of the battery.
  • the material of the protective layer 323 may be an insulating material, such as aluminum oxide, magnesium oxide, titanium dioxide, zirconium oxide, silicon dioxide, silicon carbide, boron carbide, calcium carbonate, aluminum silicate, calcium silicate, potassium titanate , one or more of barium sulfate.
  • the protective layer 323 may be adhered to the main body portion 32121 using an adhesive.
  • the binder includes one or more of polyvinylidene fluoride, polyacrylonitrile, polyacrylic acid, polyacrylate, polyacrylic acid-acrylate, polyacrylonitrile-acrylic acid, and polyacrylonitrile-acrylate.
  • the protective layer 323 may be an active material layer 3211b. When the active material layer 3211b is coated on the metal substrate 3211a of the pole piece 321 , the active material layer 3211b may be coated on the root of the body portion 32121 at the same time to form the protective layer 323 .
  • the body portion 32121 has a fuse portion 32121a.
  • the conductive member 32122 is connected to the fuse portion 32121a of the main body portion 32121 by welding.
  • the fuse part 32121a provided on the main body part 32121 can be close to the heating area, which is beneficial to shorten the time for the temperature to be transmitted to the fuse part 32121a, ensure that the fuse part 32121a can be blown in time, and cut off the protruding part 3212 and the fuse part 32121a.
  • the electrical connection of the adapter part 35 is used to ensure the safety of the battery.
  • the end of the body portion 32121 away from the pole piece 321 has a separation groove 32121b.
  • the dividing groove 32121b divides the end portion of the main body portion 32121 so that a plurality of fuse portions 32121a are formed at the end portion.
  • the size of the end of the body portion 32121 away from the pole piece 321 is reduced to form a fuse portion 32121a.
  • the corners of the end of the body portion 32121 may be cut to reduce the size of the end of the body portion 32121 to form the fuse portion 32121a.
  • the dimension of the protruding portion 3212 along the width direction Y of the electrode body 32a is L1
  • the dimension of the pole piece 321 along the width direction Y of the electrode body 32a is L2
  • L1 and L2 satisfy: 1/3L2 ⁇ L1 ⁇ 3/4L2.
  • L1 may be 0.4L2, 0.5L2, 0.6L2, or 0.7L2, etc.
  • the dimension L1 of the protruding portion 3212 along the width direction Y is 15 millimeters (mm) to 60 millimeters.
  • the dimension of the pole piece 321 along the length direction X of the electrode body 32a is L3
  • the dimension of the pole piece 321 along the width direction Y of the electrode body 32a is L2
  • L3 and the width L2 satisfy: L3/L2
  • the ratio ranges from 4 to 20.
  • the ratio of L3/L2 is an integer from 4 to 20. Since the electrode assembly 32 of the embodiment of the present application includes the protruding portion 3212 with high current-carrying capacity, the length of the electrode piece 321 can be increased to a larger value, and a wider range of length and width ratio can be obtained, which is beneficial to improve the battery performance.
  • the energy density also enables the battery to be charged quickly and is less prone to overheating, improving the safety of the battery.
  • the sum of the capacities of the active material layers 3211b on the two surfaces of the metal substrate 3211a is C greater than 3Ah and less than 10Ah. Since the electrode assembly 32 of the embodiment of the present application includes the protruding portion 3212 with high overcurrent capability, the capacity of the electrode piece 321 can be increased to a larger value, which is beneficial to improve the energy density of the battery, and also enables the battery to achieve fast charging and It is less prone to overheating and improves charging efficiency.
  • an embodiment of the present application further provides a method for manufacturing an electrode assembly 32, including:
  • first sheet 40 having a first portion 41 and a second portion 42;
  • coating step coating the active material layer 3211b on the surface of the first part 41;
  • the material removal step is to remove part of the material on the second sheet 50 and the second part 42 to form a pole piece 321 including a main body part 3211 and at least one protruding part 3212, the main body part 3211 including the active material layer 3211b and the active material layer 3211b
  • the thickness of at least a part of the protrusion 3212 connected to the metal base 3211a is greater than the thickness of the metal base 3211a.
  • the remaining part of the second part 42 forms the body part 32121, and the remaining part of the second sheet 50 forms the conductive member 32122;
  • the electrode assembly 32 is formed by winding or stacking the pole piece 321 .
  • the pole piece 321 includes a protrusion 3212 .
  • the pole piece 321 includes more than two protruding portions 3212 . Two or more protruding parts 3212 are arranged at intervals.
  • the electrode assembly 32 manufactured by the manufacturing method of the embodiment of the present application has at least one pole piece 321 .
  • the pole piece 321 includes a main body portion 3211 and at least one protruding portion 3212 .
  • the protruding portion 3212 protrudes from the metal substrate 3211 a along the length direction X of the electrode assembly 32 .
  • the protruding portion 3212 is connected to the metal substrate 3211a.
  • the size of at least a part of the protruding portion 3212 is larger than the size of the metal substrate 3211a, so that the protruding portion 3212 has a larger cross-sectional area, so that the protruding portion 3212 has a small resistance and protrudes
  • the heat capacity of the portion 3212 is large, so that the protruding portion 3212 has a higher current capacity.
  • the excessive temperature rise of the protruding part 3212 is relieved, and the heat dissipation performance of the protruding part 3212 is improved, thereby reducing the possibility of serious heating of the protruding part 3212, which can effectively improve the charging and discharging efficiency of the battery , and can reduce the risk of overheating of the battery during charging or discharging, and improve the safety of battery use.
  • an embodiment of the present application further provides an apparatus 100 for manufacturing an electrode assembly 32 , including:
  • a first material processing device 101 for providing a first sheet 40, the first sheet 40 having a first part 41 and a second part 42;
  • the coating device 102 is used for coating the active material layer 3211b on the surface of the first part 41;
  • the second material processing device 103 is used for providing the second sheet material 50 and connecting the second sheet material 50 to the second part 42;
  • the material removal device 104 removes part of the material on the second sheet 50 and the second part 42 to form a pole piece 321 comprising a main body 3211 and at least one protruding part 3212, the main body 3211 comprising an active material layer 3211b and a
  • the metal substrate 3211a corresponding to the layer 3211b, the thickness of at least a part of the protruding portion 3212 connected to the metal substrate 3211a is greater than the thickness of the metal substrate 3211a, and the protruding portion 3212 includes a main body portion 32121 and a conductive member 32122 connected to the main body portion 32121 , the remaining part of the second part 42 forms the body part 32121, and the remaining part of the second sheet 50 forms the conductive member 32122;
  • the forming device 105 is used for winding or stacking the pole piece 321 to form the electrode assembly 32 , and the protruding portion 3212 protrudes from the metal substrate 3211 a along the length direction of the electrode assembly 32 .
  • the destocking device 104 includes a cutter.
  • the cutter cuts the second sheet 50 and the second portion 42 along a predetermined trajectory to remove a portion of the material on the second sheet 50 and the second portion 42 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请实施例提供一种电极组件、电池单体、电池、用电装置、制造方法及设备。电极组件包括:极片,包括主体部和至少一个凸出部,主体部包括金属基材和涂覆于金属基材表面的活性物质层,凸出部连接于金属基材,并沿电极组件的长度方向凸出金属基材;沿电极组件的厚度方向,凸出部至少一部分的尺寸大于金属基材的尺寸。本申请实施例的电极组件旨在解决极耳存在发热严重的技术问题。

Description

电极组件、电池单体、电池、用电装置、制造方法及设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电极组件、电池单体、电池、用电装置、制造方法及设备。
背景技术
随着社会和科学技术的发展,电池被广泛地应用于为高功率的装置提供动力,例如电动车辆等。电池包括串联或并联连接的多个电池单体,以实现较大的容量或功率。电池单体包括壳体、电极组件、转接部件以及电极端子。电极组件包括主体部和极耳。电极组件的极耳通过转接部件与电极端子连接。电流可以通过电极端子、转接部件、极耳导入或导出主体部。由于对电池的能量密度要求越来越高,因此电池单体的尺寸越来越大,从而使得电极组件的尺寸越来越大,进而使得主体部的尺寸越来越大。然而,随着主体部尺寸变大,极耳却存在发热严重的情况,影响电池使用安全性。
发明内容
本申请实施例提供一种电极组件、电池单体、电池、用电装置、制造方法及设备,旨在解决极耳存在发热严重的技术问题。
本申请实施例提供一种电极组件,包括:
极片,包括主体部和至少一个凸出部,主体部包括金属基材和涂覆于金属基材表面的活性物质层,凸出部连接于金属基材,并沿电极组件的长度方向凸出金属基材;沿电极组件的厚度方向,凸出部至少一部分的尺寸大于金属基材的尺寸。
在本申请的一个实施例中,凸出部与金属基材为相同材质且一体设置,可以提高凸出部与金属基材的连接强度,也可以提高凸出部与金属基材之间的过流性能。
在本申请的一个实施例中,凸出部包括本体部和导电件,本体部与导电件沿厚度方向层叠设置。电极组件可以通过本体部、导电件和转接部件实现电流导出或导 入,有效改善电极组件的导电性能,提高电极组件整体过流能力。
在本申请的一个实施例中,沿厚度方向,本体部的尺寸与金属基材的尺寸相等,便于降低本体部和金属基材加工难度。
在本申请的一个实施例中,本体部、金属基材和导电件为相同材质。
在本申请的一个实施例中,导电件与本体部为不同的材质,且导电件的电阻率小于本体部的电阻率。相对于本体部,电阻率小的导电件自身过流能力高,从而有利于进一步减小凸出部的电阻,提高凸出部的过流能力。
在本申请的一个实施例中,导电件连接于本体部,导电件远离活性物质层的端部与本体部远离活性物质层的端部齐平,导电件和本体部沿厚度方向重叠的区域用于与外部电连接。在凸出部与转接部件电连接时,导电件和本体部可以同时与转接部件电连接。
在本申请的一个实施例中,导电件包括第一连接部和第二连接部,第一连接部用于连接本体部,第二连接部凸出本体部远离活性物质层的端部,第二连接部用于与外部电连接。
本申请实施例的电极组件包括极片。极片包括主体部和凸出部。主体部包括金属基材和活性物质层。凸出部沿电极组件的长度方向凸出金属基材。凸出部和金属基材相连接。沿电极主体的厚度方向,凸出部至少一部分的尺寸大于金属基材的尺寸,使得凸出部具有较大的横截面面积,从而凸出部自身电阻小,并且凸出部热容大,进而使得凸出部具有较高的过流能力。这样,对于长度方向尺寸大于宽度方向尺寸的长条形电极组件,本申请实施例的电极组件有效解决长条形电极组件的凸出部过流能力不足的问题,可以在电极组件充电或放电过程中缓解凸出部温升过快情况,同时提高凸出部散热性能,从而降低凸出部出现发热严重情况的可能性,可以有效提高电池的充放电效率,且能够降低充电或放电过程中电池出现过热的风险,提高电池使用安全性。
在本申请的一个实施例中,沿厚度方向,第二连接部的尺寸大于或者等于本体部的尺寸。
在本申请的一个实施例中,导电件为两个,两个导电件分别连接于本体部的两个表面。
通过设置两个导电件和本体部,使得凸出部的横截面面积进一步增大,有利于 进一步减小凸出部自身电阻,从而使得凸出部自身具有较高的过流能力。
在本申请的一个实施例中,沿厚度方向,两个导电件的第二连接部的尺寸之和大于或者等于本体部的尺寸。
这样,可以使得用于与转接部件电连接的两个导电件的第二连接部的横截面面积大于或等于本体部的横截面面积,有效保证两个导电件的第二连接部的过流能力。
在本申请的一个实施例中,本体部与导电件焊接。
在本申请的一个实施例中,本体部靠近活性物质层的根部设置保护层,导电件与本体部的焊接区域与保护层间隔设置。
本体部的根部设置的保护层可以起到保护的作用,降低了本体部弯折压入相邻两个极片之间的可能性。
在本申请的一个实施例中,本体部具有熔断部。
本体部设置的熔断部可以靠近发热区域,有利于缩短温度传导至熔断部的时间,保证熔断部可以及时熔断,切断凸出部与转接部件的电连接,从而保证电池的安全性。
在本申请的一个实施例中,电极组件包括两个以上的极片,两个以上的极片沿厚度方向层叠设置。
在本申请的一个实施例中,凸出部沿电极组件的宽度方向的尺寸为L1,极片沿主体部的宽度方向的尺寸为L2,L1和L2满足:1/3L2≤L1≤3/4L2。
在本申请的一个实施例中,凸出部沿宽度方向的尺寸L1为15毫米至60毫米。
在本申请的一个实施例中,极片沿电极组件的长度方向的尺寸为L3,极片沿电极组件的宽度方向的尺寸为L2,L3和L2满足:L3/L2的比值范围为4至20。
在本申请的一个实施例中,金属基材的两个表面的活性物质层的容量之和为C大于3Ah,小于10Ah。
本申请实施例还提供一种电池单体,包括:如上述实施例的电极组件。
本申请实施例还提供一种电池,包括如上述实施例的电池单体。
本申请实施例还提供一种用电装置,包括如上述实施例的电池,电池用于提供电能。
本申请实施例还提供一种电极组件的制造方法,包括:
提供第一片材,第一片材具有第一部分和第二部分;
涂覆步骤,在第一部分表面上涂覆活性物质层;
提供第二片材,将第二片材连接于第二部分;
去料步骤,去除第二片材和第二部分上的部分材料,形成包括主体部和至少一个凸出部的极片,主体部包括活性物质层以及与活性物质层对应的金属基材,与金属基材连接的凸出部至少一部分的厚度大于金属基材的厚度,凸出部包括本体部和连接于本体部的导电件,第二部分剩余部分形成本体部,第二片材剩余部分形成导电件;
成型步骤,将极片卷绕或层叠形成电极组件,凸出部沿电极组件的长度方向凸出金属基材。
本申请实施例还提供一种电极组件的制造设备,包括:
第一物料处理装置,用于提供第一片材,第一片材具有第一部分和第二部分;
涂覆装置,用于在第一部分表面上涂覆活性物质层;
第二物料处理装置,用于提供第二片材,将第二片材连接于第二部分;
去料装置,去除第二片材和第二部分上的部分材料,形成包括主体部和至少一个凸出部的极片,主体部包括活性物质层以及与活性物质层对应的金属基材,与金属基材连接的凸出部至少一部分的厚度大于金属基材的厚度,凸出部包括本体部和连接于本体部的导电件,第二部分剩余部分形成本体部,第二片材剩余部分形成导电件;
成型装置,用于将极片卷绕或层叠形成电极组件,凸出部沿电极组件的长度方向凸出金属基材。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例的车辆的结构示意图;
图2是本申请一实施例的电池组的分解结构示意图;
图3是本申请一实施例的电池模组的局部结构示意图;
图4是本申请一实施例的电池单体的分解结构示意图;
图5是本申请一实施例的电极组件的俯视结构示意图;
图6是本申请一实施例的电极组件的侧视结构示意图;
图7是本申请一实施例的电极组件的局部侧视结构示意图;
图8是本申请另一实施例的电极组件的局部侧视结构示意图;
图9是本申请又一实施例的电极组件的局部侧视结构示意图;
图10是本申请又一实施例的电极组件的局部侧视结构示意图;
图11是本申请又一实施例的电极组件的局部侧视结构示意图;
图12是本申请再一实施例的电极组件的局部侧视结构示意图;
图13是本申请一实施例的电极组件的局部俯视结构示意图;
图14是本申请另一实施例的电极组件的局部俯视结构示意图;
图15是本申请一实施例的电极组件的制造方法示意图;
图16是本申请一实施例的极片的局部结构示意图;
图17是本申请一实施例的电极组件的制造设备的结构示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
1、车辆;1a、马达;1b、控制器;10、电池;11、第一外壳;12、第二外壳;20、电池模块;30、电池单体;31、壳体;32、电极组件;32a、电极主体;321、极片;3211、主体部;3211a、金属基材;3211b、活性物质层;3212、凸出部;32121、本体部;32121a、熔断部;32121b、分隔槽;32122、导电件;32122a、第一连接部;32122b、第二连接部;322、隔膜;323、保护层;33、端盖;34、电极端子;35、转接部件;40、第一片材;41、第一部分;42、第二部分;50、第二片材;100、制造设备;101、第一物料处理装置;102、涂覆装置;103、第二物料处理装置;104、去料装置;105、成型装置;X、长度方向;Y、宽度方向; Z、厚度方向。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
申请人发现极耳存在发热严重的问题之后,对电池单体进行了研究分析。申请人发现,由于随着对电池的能量密度要求越来越高,同时又考虑电池单体自身结构的空间占用率需要满足要求,因此将电池单体的结构制作成长条形扁平结构,从而使得电极组件的电极主体的长度变大并且呈长条形扁平结构。极耳从电极主体的端面上延伸出。然而,从电极主体的端面上延伸出的极耳却存在过流能力不足的问题,从而导致极耳存在发热严重的问题。
基于申请人发现的上述问题,申请人对电池单体的结构进行改进,下面对本申请实施例进行进一步描述。
为了更好地理解本申请,下面结合图1至图17对本申请实施例进 行描述。
本申请实施例提供一种使用电池10作为电源的用电装置。该用电装置可以但不仅限于为车辆、船舶或飞行器等。参见图1所示,本申请的一个实施例提供一种车辆1。车辆1可以为燃油汽车、燃气汽车或新能源汽车。新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。在本申请一实施例中,车辆1可以包括马达1a、控制器1b以及电池10。控制器1b用来控制电池10为马达1a供电。马达1a通过传动机构与车轮连接,从而驱动车辆1行进。电池10可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。在一个示例中,在车辆1的底部、车头或车尾可以设置电池10。电池10可以用于为车辆1供电。在一个示例中,电池10可以作为车辆1的操作电源,用于车辆1的电路系统。示例性地,电池10可以用于车辆1的启动、导航和运行时的工作用电需求。
参见图2所示,电池10可以包括两个以上的电池模块20。在一些可选的实施例中,电池10还包括箱体。电池模块20设置于箱体内。两个以上的电池模块20排列布置于箱体内。箱体的类型不受限制。箱体可为框状箱体、盘状箱体或盒状箱体等。示例性地,箱体包括用于容纳电池模块20的第一外壳11和与第一外壳11盖合的第二外壳12。第一外壳11和第二外壳12盖合后形成容纳电池模块20的容纳部。
为了满足不同的使用电力需求,电池模块20可以包括一个或多个电池单体30。参见图3所示,多个电池单体30可以先串联、并联或混联组成电池模块,多个电池模块20再串联、并联或混联组成电池。混联是指串联和并联的混合。示例性地,电池可以包括多个电池单体30,其中,多个电池单体30之间可以串联、并联或混联。多个电池单体30可以直接设置于箱体内。也就是说,多个电池单体30可以直接组成电池10,也可以先组成电池模块20,电池模块20再组成电池10。电池单体30包括含锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池或镁离子电池,但不局限于此。
本申请实施例的电池单体30应用于车辆1时,电池单体30的宽度 和车辆1的高度相同。受车辆1高度方向上的空间限制,电池单体30的宽度大小也有严格限制,从而在需要增大电池单体30的容量时,不可以无限增大电池单体30的宽度,可以增大电池单体30的长度。
参见图4所示,本申请实施例的电池单体30包括壳体31以及设置于壳体31内的电极组件32。本申请实施例的壳体31为方形结构或其他形状。壳体31具有容纳电极组件32和电解液的内部空间以及与内部空间相连通的开口。壳体31可以由例如铝、铝合金或塑料等材料制造。电极组件32是电池单体30实现充放电功能的核心构件。
本申请实施例的电池单体30还包括端盖33、电极端子34和转接部件35。端盖33与壳体31相连接并封闭壳体31的开口。示例性地,端盖33与壳体31可以焊接连接。电极端子34设置于端盖33上。电极端子34的外形可以是圆形,也可以是方形,这里不做限定。电极端子34通过转接部件35与电极组件32电连接。两个以上的电池单体30可以通过各自的电极端子34实现串联、并联或混联。
本申请实施例的电极组件32包括电极主体32a。电极组件32具有预定的长度、宽度以及厚度。这里,长度是指电极主体32a沿自身长度方向X的尺寸,宽度是指电极主体32a沿自身宽度方向Y的尺寸,厚度是指电极主体32a沿自身厚度方向Z的尺寸。长度方向X、宽度方向Y以及厚度方向Z相互垂直。
参见图4至图6所示,本申请实施例的电极主体32a可以包括极片321。示例性地,极片321可以是正极片,则电极主体32a可以包括一个或多个正极片。示例性地,极片321也可以是负极片,则电极主体32a可以包括一个或多个负极片。电极主体32a包括正极片和负极片时,正极片和负极片可以沿厚度方向Z层叠设置,使得成型后的电极组件32为叠片结构,或者,正极片和负极片也可以卷绕形成电极组件32。由于相邻两个极片321极性相反,因此相邻两个极片321之间可以通过隔膜322隔开。隔膜322是介于两个极性相反的极片321之间的绝缘体。
参见图6和图7所示,本申请实施例的极片321包括主体部3211和至少一个凸出部3212。凸出部3212沿电极主体32a的长度方向X凸出 主体部3211。在极片321层叠设置的实施例中,各个极性相同的凸出部3212可以沿厚度方向Z层叠设置。各个主体部3211沿厚度方向Z层叠形成电极主体32a。转接部件35与凸出部3212电连接。示例性地,转接部件35与凸出部3212焊接,例如可以采用激光焊接或超声波焊接。
主体部3211包括金属基材3211a和活性物质层3211b。金属基材3211a的表面至少一部分区域涂覆有活性物质层3211b,也即金属基材3211a的表面可以完全地或部分地被活性物质层3211b覆盖。示例性地,金属基材3211a为铝箔时,活性物质层3211b可以包括三元材料、锰酸锂或磷酸铁锂。金属基材3211a为铜箔时,活性物质层3211b可以包括石墨或硅。凸出部3212连接于金属基材3211a并且凸出部3212沿电极主体32a的长度方向X凸出金属基材3211a。沿电极主体32a的厚度方向Z,凸出部3212至少一部分的尺寸大于金属基材3211a的尺寸,从而可以增大凸出部3212的横截面面积,有利于降低凸出部3212的电阻,同时也有利于增大凸出部3212整体的热容,以此提高凸出部3212的过流能力。热容指的是将预定材料的温度增加1摄氏度所需的热量。
本申请实施例的电极组件32包括至少一个极片321。极片321包括主体部3211和凸出部3212。主体部3211包括金属基材3211a和活性物质层3211b。凸出部3212沿电极组件32的长度方向X凸出金属基材3211a。凸出部3212和金属基材3211a相连接。沿电极主体32a的厚度方向Z,凸出部3212至少一部分的尺寸大于金属基材3211a的尺寸,使得凸出部3212具有较大的横截面面积,从而凸出部3212自身电阻小,并且凸出部3212热容大,进而使得凸出部3212具有较高的过流能力。这样,对于长度方向X尺寸大于宽度方向Y尺寸的长条形电极组件32,本申请实施例的电极组件32有效解决长条形电极组件32的凸出部3212过流能力不足的问题,可以在电极组件32充电或放电过程中缓解凸出部3212温升过快情况,同时提高凸出部3212散热性能,从而降低凸出部3212出现发热严重情况的可能性,可以有效提高电池的充放电效率,且能够降低充电或放电过程中电池出现过热的风险,提高电池使用安全性。
在一些实施例中,沿电极主体32a的厚度方向Z,在金属基材 3211a相对的两个表面上可以设置活性物质层3211b。示例性地,金属基材3211a为整张片材,也即金属基材3211a为一体成型结构。
在一些实施例中,参见图8所示,凸出部3212包括本体部32121和导电件32122。转接部件35可以与凸出部3212的本体部32121电连接。本体部32121与金属基材3211a为相同材质且一体设置。示例性地,金属基材3211a的材质和本体部32121的材质均为铝或铜。本体部32121与金属基材3211a为相同材质且一体设置的方式,可以提高本体部32121与金属基材3211a的连接强度,也可以提高本体部32121与金属基材3211a之间的过流性能。
在一些可选的实施例中,沿电极主体32a的厚度方向Z,本体部32121至少一部分的尺寸大于金属基材3211a的尺寸,也即本体部32121整体的或部分的尺寸大于金属基材3211a的尺寸,使得本体部32121具有较大的横截面面积,有利于减小自身电阻,从而使得本体部32121自身具有较高的过流能力。
在一些实施例中,沿电极主体32a的厚度方向Z,导电件32122与本体部32121层叠设置。示例性地,至少部分导电件32122可以与本体部32121采用焊接方式连接,例如,采用激光焊接或超声波焊接。转接部件35可以与凸出部3212电连接。电极组件32可以通过本体部32121、导电件32122和转接部件35实现电流导出或导入,有效改善电极组件32的导电性能,提高电极组件32整体过流能力。示例性地,导电件32122可以是片状结构。
在一些可选的实施例中,沿电极主体32a的厚度方向Z,导电件32122与本体部32121的尺寸之和大于金属基材3211a的尺寸,使得凸出部3212具有较大的横截面面积,有利于进一步减小凸出部3212自身电阻,从而使得凸出部3212自身具有较高的过流能力。
在一些可选的实施例中,沿电极主体32a的厚度方向Z,本体部32121的尺寸等于金属基材3211a的尺寸,也即本体部32121整体的尺寸等于金属基材3211a的尺寸。沿电极主体32a的厚度方向Z,本体部32121的表面可以与金属基材3211a的表面保持齐平。在本体部32121和 金属基材3211a一体成型加工制造过程中,由于本体部32121和金属基材3211a厚度相同,因此可以降低本体部32121和金属基材3211a的加工难度,从而可以降低加工成本。示例性地,沿电极主体32a的厚度方向Z,导电件32122的尺寸小于或等于金属基材3211a的尺寸,而导电件32122与本体部32121的尺寸之和大于金属基材3211a的尺寸。
在一些实施例中,本体部32121、金属基材3211a和导电件32122为相同材质。本体部32121、金属基材3211a和导电件32122各自的电阻率相等。示例性地,本体部32121、金属基材3211a和导电件32122的材质可以采用铝材料或铜材料。在极片321为正极片时,本体部32121、金属基材3211a和导电件32122的材质可以采用铝材料。在极片321为负极片时,本体部32121、金属基材3211a和导电件32122的材质可以采用铜材料。
在一些实施例中,导电件32122与本体部32121为不同的材质,且导电件32122的电阻率小于本体部32121的电阻率。电阻率是用来表示各种物质电阻特性的物理量,某种材料制成的长为1米,横截面积为1平方米的导体的电阻,在数值上等于这种材料的电阻率。相对于本体部32121,电阻率小的导电件32122自身过流能力高,从而有利于进一步减小凸出部3212的电阻,提高凸出部3212的过流能力。示例性地,导电件32122的材质为铜材料,而本体部32121的材质为铝材料。
在一些实施例中,导电件32122连接于本体部32121。导电件32122远离活性物质层3211b的端部与本体部32121远离活性物质层3211b的端部齐平。导电件32122和本体部32121沿厚度方向Z重叠的区域用于与外部电连接。本申请实施例中,导电件32122和本体部32121沿厚度方向Z重叠的区域用于与转接部件35电连接。在凸出部3212与转接部件35电连接时,导电件32122和本体部32121可以同时与转接部件35电连接。示例性地,导电件32122和本体部32121同时与转接部件35焊接。
在一些实施例中,参见图9所示,导电件32122包括第一连接部32122a和第二连接部32122b。第一连接部32122a用于连接本体部 32121。示例性地,第一连接部32122a和本体部32121焊接连接。第二连接部32122b凸出本体部32121远离活性物质层3211b的端部。第二连接部32122b用于与外部电连接。本申请实施例中,第二连接部32122b用于与转接部件35电连接。第二连接部32122b与转接部件35电连接的方式,有利于减小第二连接部32122b与转接部件35的连接区层叠厚度,从而采用焊接方式连接第二连接部32122b与转接部件35时,有利于降低焊接难度,降低焊接不良而导致第二连接部32122b与转接部件35之间出现虚焊,进而影响第二连接部32122b和转接部件35之间过流能力的可能性。
在一些可选的实施例中,沿电极主体32a的厚度方向Z,第二连接部32122b的尺寸大于或者等于本体部32121的尺寸。示例性地,第二连接部32122b与本体部32121的尺寸之和大于金属基材3211a的尺寸。
在一些实施例中,参见图10所示,导电件32122为两个。沿电极主体32a的厚度方向Z,两个导电件32122分别连接于本体部32121的两个表面。本体部32121的一个表面连接一个导电件32122。设置两个导电件32122和本体部32121,使得凸出部3212的横截面面积进一步增大,有利于进一步减小凸出部3212自身电阻,从而使得凸出部3212自身具有较高的过流能力。
在一些可选的实施例中,参见图10所示,两个导电件32122中,各个导电件32122远离活性物质层3211b的端部与本体部32121远离活性物质层3211b的端部齐平。两个导电件32122和本体部32121沿厚度方向Z重叠的区域用于与外部电连接。本申请实施例中,两个导电件32122和本体部32121沿厚度方向Z重叠的区域用于与转接部件35电连接。在凸出部3212与转接部件35电连接时,两个导电件32122和本体部32121可以同时与转接部件35电连接。
在一些可选的实施例中,参见图11所示,两个导电件32122均包括第一连接部32122a和第二连接部32122b。各个导电件32122的第一连接部32122a用于连接本体部32121,而各个导电件32122的第二连接部32122b凸出本体部32121远离活性物质层3211b的端部,并且各个导电件 32122的第二连接部32122b用于与外部电连接。本申请实施例中,各个导电件32122的第二连接部32122b用于与转接部件35电连接。
在一些可选的实施例中,两个导电件32122的第二连接部32122b沿厚度方向Z的尺寸之和大于或者等于本体部32121沿厚度方向Z的尺寸,从而使得用于与转接部件35电连接的两个导电件32122的第二连接部32122b的横截面面积大于或等于本体部32121的横截面面积,有效保证两个导电件32122的第二连接部32122b的过流能力,降低两个导电件32122的第二连接部32122b成为过流能力薄弱部的可能性,进而保证凸出部3212整体具有良好过流能力。
在一些实施例中,参见图12所示,本体部32121靠近活性物质层3211b的根部设置保护层323。导电件32122与本体部32121可以采用焊接方式连接。导电件32122与本体部32121的焊接区域与保护层323间隔设置。在电池单体30装配过程中,由于本体部32121厚度较薄,因此本体部32121受力容易弯折变形并被压入到相邻两个极片321之间,从而引发短路风险。由于本体部32121的根部区域存在弯折变形的风险最高,因此在本体部32121的根部设置的保护层323可以起到保护的作用,即使本体部32121弯折压入相邻两个极片321之间,保护层323也可以有效地将两个极片321隔开,从而降低短路风险,提高电池的安全性。示例性地,保护层323的材料可以是绝缘材料,例如氧化铝、氧化镁、二氧化钛、氧化锆、二氧化硅、碳化硅、碳化硼、碳酸钙、硅酸铝、硅酸钙、钛酸钾、硫酸钡中的一种或几种。保护层323可以使用粘接剂粘接于本体部32121。粘结剂包括聚偏氟乙烯、聚丙烯腈、聚丙烯酸、聚丙烯酸酯、聚丙烯酸-丙烯酸酯、聚丙烯腈-丙烯酸、聚丙烯腈-丙烯酸酯中的一种或几种。保护层323也可以是活性物质层3211b。在极片321的金属基材3211a上涂覆活性物质层3211b时,可以同时在本体部32121的根部涂覆上活性物质层3211b以形成保护层323。
在一些实施例中,参见图13所示,本体部32121具有熔断部32121a。导电件32122与本体部32121的熔断部32121a焊接连接。转接部件35上设置熔断结构时,由于熔断结构远离发热区域,温度传导至熔 断结构具有延迟性,因此使得熔断结构不易及时熔断,从而影响电池的安全性。相对于转接部件35上设置熔断结构,本体部32121设置的熔断部32121a可以靠近发热区域,有利于缩短温度传导至熔断部32121a的时间,保证熔断部32121a可以及时熔断,切断凸出部3212与转接部件35的电连接,从而保证电池的安全性。
在一些可选的实施例中,参见图13所示,本体部32121远离极片321的端部具有分隔槽32121b。分隔槽32121b将本体部32121的端部进行分隔,使得端部形成多个熔断部32121a。相邻两个熔断部32121a之间具有一个分隔槽32121b。
在一些可选的实施例中,参见图14所示,沿电极主体32a的宽度方向Y,本体部32121远离极片321的端部的尺寸变小以形成熔断部32121a。示例性地,可以对本体部32121的端部的边角进行裁切,以使本体部32121的端部尺寸变小形成熔断部32121a。
在一些实施例中,参见图14所示,凸出部3212沿电极主体32a的宽度方向Y的尺寸为L1,极片321沿电极主体32a的宽度方向Y的尺寸为L2,L1和L2满足:1/3L2≤L1≤3/4L2。例如,L1可以为0.4L2、0.5L2、0.6L2或0.7L2等。
在一些可选的实施例中,凸出部3212沿宽度方向Y的尺寸L1为15毫米(mm)至60毫米。
在一些可选的实施例中,极片321沿电极主体32a的长度方向X的尺寸为L3,极片321沿电极主体32a的宽度方向Y的尺寸为L2,L3和宽度L2满足:L3/L2的比值范围为4至20。例如,L3/L2的比值为4至20内的整数。由于本申请实施例的电极组件32包括过流能力高的凸出部3212,因此可以使得极片321的长度增加至更大,并可以获得较宽泛的长度和宽度比值范围,有利于提高电池的能量密度,同时也使得电池能够实现快速充电并且不易发生过热情况,提高电池使用安全性。
在一些可选的实施例中,金属基材3211a的两个表面的活性物质层3211b的容量之和为C大于3Ah,小于10Ah。由于本申请实施例的电极组件32包括过流能力高的凸出部3212,因此可以使得极片321的容量提 升到更大,有利于提高电池的能量密度,同时也使得电池能够实现快速充电并且不易发生过热情况,提高充电效率。
参见图15所示,本申请实施例还提供一种电极组件32的制造方法,包括:
提供第一片材40,第一片材40具有第一部分41和第二部分42;
涂覆步骤,在第一部分41表面上涂覆活性物质层3211b;
提供第二片材50,将第二片材50连接于第二部分42;
去料步骤,去除第二片材50和第二部分42上的部分材料,形成包括主体部3211和至少一个凸出部3212的极片321,主体部3211包括活性物质层3211b以及与活性物质层3211b对应的金属基材3211a,与金属基材3211a连接的凸出部3212至少一部分的厚度大于金属基材3211a的厚度,凸出部3212包括本体部32121和连接于本体部32121的导电件32122,第二部分42剩余部分形成本体部32121,第二片材50剩余部分形成导电件32122;
成型步骤,将极片321卷绕或层叠形成电极组件32,凸出部3212沿电极组件32的长度方向凸出金属基材3211a。
在一个实施例中,极片321包括一个凸出部3212。或者,参见图16所示,极片321包括两个以上的凸出部3212。两个以上的凸出部3212间隔设置。
本申请实施例的制造方法制造的电极组件32具有至少一个极片321。极片321包括主体部3211和至少一个凸出部3212。凸出部3212沿电极组件32的长度方向X凸出金属基材3211a。凸出部3212和金属基材3211a相连接。沿电极主体32a的厚度方向Z,凸出部3212至少一部分的尺寸大于金属基材3211a的尺寸,使得凸出部3212具有较大的横截面面积,从而凸出部3212自身电阻小,并且凸出部3212热容大,进而使得凸出部3212具有较高的过流能力。这样,对于长度方向X尺寸大于宽度方向Y尺寸的长条形电极组件32,本申请实施例的电极组件32有效解决长条形电极组件32的凸出部3212过流能力不足的问题,可以在电极组件32充电或放电过程中缓解凸出部3212温升过快情况,同时提高凸出部3212 散热性能,从而降低凸出部3212出现发热严重情况的可能性,可以有效提高电池的充放电效率,且能够降低充电或放电过程中电池出现过热的风险,提高电池使用安全性。
参见图17所示,本申请实施例还提供一种电极组件32的制造设备100,包括:
第一物料处理装置101,用于提供第一片材40,第一片材40具有第一部分41和第二部分42;
涂覆装置102,用于在第一部分41表面上涂覆活性物质层3211b;
第二物料处理装置103,用于提供第二片材50,将第二片材50连接于第二部分42;
去料装置104,去除第二片材50和第二部分42上的部分材料,形成包括主体部3211和至少一个凸出部3212的极片321,主体部3211包括活性物质层3211b以及与活性物质层3211b对应的金属基材3211a,与金属基材3211a连接的凸出部3212至少一部分的厚度大于金属基材3211a的厚度,凸出部3212包括本体部32121和连接于本体部32121的导电件32122,第二部分42剩余部分形成本体部32121,第二片材50剩余部分形成导电件32122;
成型装置105,用于将极片321卷绕或层叠形成电极组件32,凸出部3212沿电极组件32的长度方向凸出金属基材3211a。
在一些实施例中,去料装置104包括切刀。切刀沿预定轨迹切割第二片材50和第二部分42,以去除第二片材50和第二部分42上的部分材料。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (24)

  1. 一种电极组件,包括:
    极片,包括主体部和至少一个凸出部,所述主体部包括金属基材和涂覆于所述金属基材表面的活性物质层,所述凸出部连接于所述金属基材,并沿所述电极组件的长度方向凸出所述金属基材;
    沿所述电极组件的厚度方向,所述凸出部至少一部分的尺寸大于所述金属基材的尺寸。
  2. 根据权利要求1所述的电极组件,其中,所述凸出部与所述金属基材为相同材质且一体设置。
  3. 根据权利要求1或2所述的电极组件,其中,所述凸出部包括本体部和导电件,所述本体部与所述导电件沿所述厚度方向层叠设置。
  4. 根据权利要求3所述的电极组件,其中,沿所述厚度方向,所述本体部的尺寸与所述金属基材的尺寸相等。
  5. 根据权利要求3或4所述的电极组件,其中,所述本体部、所述金属基材和所述导电件为相同材质。
  6. 根据权利要求3或4所述的电极组件,其中,所述导电件与所述本体部为不同的材质,且所述导电件的电阻率小于所述本体部的电阻率。
  7. 根据权利要求3至6任一项所述的电极组件,其中,所述导电件远离所述活性物质层的端部与所述本体部远离所述活性物质层的端部齐平,所述导电件和所述本体部沿所述厚度方向重叠的区域用于与外部电连接。
  8. 根据权利要求3至6任一项所述的电极组件,其中,所述导电件包括第一连接部和第二连接部,所述第一连接部用于连接所述本体部,所述第二连接部凸出所述本体部远离所述活性物质层的端部,所述第二连接部用于与外部电连接。
  9. 根据权利要求8所述的电极组件,其中,沿所述厚度方向,所述第二连接部的尺寸大于或者等于所述本体部的尺寸。
  10. 根据权利要求8所述的电极组件,其中,所述导电件为两个,两个所述导电件分别连接于所述本体部的两个表面。
  11. 根据权利要求10所述的电极组件,其中,沿所述厚度方向,两个所述导电件的所述第二连接部的尺寸之和大于或者等于所述本体部的尺寸。
  12. 根据权利要求3至11任一项所述的电极组件,其中,所述本体部与所述导电件焊接。
  13. 根据权利要求12所述的电极组件,其中,所述本体部靠近所述活性物质层的根部设置保护层,所述导电件与所述本体部的焊接区域与所述保护层间隔设置。
  14. 根据权利要求3至13任一项所述的电极组件,其中,所述本体部具有熔断部。
  15. 根据权利要求1至14任一项所述的电极组件,其中,所述电极组件包括两个以上的所述极片,两个以上的所述极片沿所述厚度方向层叠设置。
  16. 根据权利要求15所述的电极组件,其中,所述凸出部沿所述电极组件的宽度方向的尺寸为L1,所述极片沿所述宽度方向的尺寸为L2,L1和L2满足:1/3L2≤L1≤3/4L2。
  17. 根据权利要求16所述的电极组件,其中,所述凸出部沿所述宽度方向的尺寸L1为15毫米至60毫米。
  18. 根据权利要求15所述的电极组件,其中,所述极片沿所述电极组件的所述长度方向的尺寸为L3,所述极片沿所述电极组件的宽度方向的尺寸为L2,L3和L2满足:L3/L2的比值范围为4至20。
  19. 根据权利要求15至18任一项所述的电极组件,其中,所述金属基材的两个表面的所述活性物质层的容量之和为C大于3Ah,小于10Ah。
  20. 一种电池单体,包括:如权利要求1至19任一项所述的电极组件。
  21. 一种电池,包括如权利要求20所述的电池单体。
  22. 一种用电装置,包括如权利要求21所述的电池,所述电池用于提供电能。
  23. 一种电极组件的制造方法,包括:
    提供第一片材,所述第一片材具有第一部分和第二部分;
    涂覆步骤,在所述第一部分表面上涂覆活性物质层;
    提供第二片材,将所述第二片材连接于所述第二部分;
    去料步骤,去除所述第二片材和所述第二部分上的部分材料,形成包括主体部和至少一个凸出部的极片,所述主体部包括所述活性物质层与所述活性物质层对应的金属基材,与所述金属基材连接所述凸出部至少一部分的厚度大于所述金属基材的厚度,所述凸出部包括本体部和连接于所述本体部的导电件,所述第二部分剩余部分形 成所述本体部,所述第二片材剩余部分形成所述导电件;
    成型步骤,将所述极片卷绕或层叠形成电极组件,所述凸出部沿所述电极组件的长度方向凸出所述金属基材。
  24. 一种电极组件的制造设备,包括:
    第一物料处理装置,用于提供第一片材,所述第一片材具有第一部分和第二部分;
    涂覆装置,用于在所述第一部分表面上涂覆活性物质层;
    第二物料处理装置,用于提供第二片材,将所述第二片材连接于所述第二部分;
    去料装置,去除所述第二片材和所述第二部分上的部分材料,形成包括主体部和至少一个凸出部的极片,所述主体部包括所述活性物质层与所述活性物质层对应的金属基材,与所述金属基材连接所述凸出部至少一部分的厚度大于所述金属基材的厚度,所述凸出部包括本体部和连接于所述本体部的导电件,所述第二部分剩余部分形成所述本体部,所述第二片材剩余部分形成所述导电件;
    成型装置,用于将所述极片卷绕或层叠形成电极组件,所述凸出部沿所述电极组件的长度方向凸出所述金属基材。
PCT/CN2020/122245 2020-10-20 2020-10-20 电极组件、电池单体、电池、用电装置、制造方法及设备 WO2022082446A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022543114A JP7450731B2 (ja) 2020-10-20 2020-10-20 電極アセンブリ、電池セル、電池、電力消費装置、製造方法及びデバイス
PCT/CN2020/122245 WO2022082446A1 (zh) 2020-10-20 2020-10-20 电极组件、电池单体、电池、用电装置、制造方法及设备
KR1020227025642A KR20220119699A (ko) 2020-10-20 2020-10-20 전극 어셈블리, 전지 셀, 전지, 전력 소비 장치, 제조 방법 및 장비
CN202080095842.3A CN115066803B (zh) 2020-10-20 2020-10-20 电极组件、电池单体、电池、用电装置、制造方法及设备
EP20958029.9A EP4084207A4 (en) 2020-10-20 2020-10-20 ELECTRODE ASSEMBLY, BATTERY CELL, BATTERY, ELECTRICAL APPARATUS, AND METHOD AND DEVICE FOR MAKING
US17/815,216 US12021269B2 (en) 2020-10-20 2022-07-27 Electrode assembly, battery cell, battery, electrical apparatus, and manufacturing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122245 WO2022082446A1 (zh) 2020-10-20 2020-10-20 电极组件、电池单体、电池、用电装置、制造方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/815,216 Continuation US12021269B2 (en) 2020-10-20 2022-07-27 Electrode assembly, battery cell, battery, electrical apparatus, and manufacturing method and device

Publications (1)

Publication Number Publication Date
WO2022082446A1 true WO2022082446A1 (zh) 2022-04-28

Family

ID=81291317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122245 WO2022082446A1 (zh) 2020-10-20 2020-10-20 电极组件、电池单体、电池、用电装置、制造方法及设备

Country Status (6)

Country Link
US (1) US12021269B2 (zh)
EP (1) EP4084207A4 (zh)
JP (1) JP7450731B2 (zh)
KR (1) KR20220119699A (zh)
CN (1) CN115066803B (zh)
WO (1) WO2022082446A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016491A1 (zh) * 2022-07-21 2024-01-25 宁德时代新能源科技股份有限公司 极片、电极组件、电池单体、电池及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223880A (ja) * 2001-12-18 2003-08-08 Ngk Spark Plug Co Ltd 電池タブにリードを接続する方法
US20040161669A1 (en) * 2003-02-14 2004-08-19 Vladimir Zolotnik Battery electrode assembly and fabrication method therefor
JP2005339939A (ja) * 2004-05-26 2005-12-08 Toyota Motor Corp 蓄電装置
KR20180105995A (ko) * 2017-03-16 2018-10-01 주식회사 리베스트 전극 탭과 전극 리드 사이에 보강 탭 결합 구조를 갖는 플렉서블 전지
CN208507818U (zh) * 2018-06-29 2019-02-15 宁德时代新能源科技股份有限公司 二次电池及其极片
CN110495018A (zh) * 2017-12-07 2019-11-22 株式会社Lg化学 电极、制造该电极的方法、电极组件和二次电池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4658467B2 (ja) * 2003-11-12 2011-03-23 三菱重工業株式会社 リチウム二次電池用電極およびリチウム二次電池
JP5021961B2 (ja) * 2006-06-16 2012-09-12 Necエナジーデバイス株式会社 ラミネート電池およびその製造方法
CN201383529Y (zh) * 2009-04-15 2010-01-13 深圳市中凯兴能源科技有限公司 锂离子电池错位包尾结构
JP2012146852A (ja) * 2011-01-13 2012-08-02 Tokyo Electron Ltd 電極製造装置、電極製造方法、プログラム及びコンピュータ記憶媒体
CN202308207U (zh) 2011-10-27 2012-07-04 深圳市比克电池有限公司 多极片卷绕型电芯及方形、软包装锂电池
KR20150007741A (ko) * 2013-07-12 2015-01-21 삼성에스디아이 주식회사 이차전지
KR101709560B1 (ko) * 2013-09-27 2017-02-23 주식회사 엘지화학 낮은 저항의 전극 탭을 포함하는 이차전지
KR101978700B1 (ko) * 2017-12-12 2019-05-15 주식회사 아모라이프사이언스 피부미용용 발열패치 및 이를 포함하는 피부미용용 온열장치
CN108428849B (zh) 2017-11-22 2024-01-16 宁德时代新能源科技股份有限公司 电极构件、电极组件和充电电池
CN209087968U (zh) * 2018-08-02 2019-07-09 宁德时代新能源科技股份有限公司 电极构件、电极组件及二次电池
CN208955108U (zh) * 2018-10-11 2019-06-07 宁德时代新能源科技股份有限公司 二次电池及其电极构件
CN110660956A (zh) * 2018-10-17 2020-01-07 宁德时代新能源科技股份有限公司 二次电池及其电极构件
CN210926141U (zh) * 2019-11-26 2020-07-03 惠州锂威新能源科技有限公司 一种新型的极耳、电极片及锂离子电池
CN211182349U (zh) * 2019-12-11 2020-08-04 曙鹏科技(深圳)有限公司 一种极耳、锂离子电池及电子产品
CN111682156B (zh) * 2020-06-19 2023-06-30 珠海冠宇电池股份有限公司 电池及其制备方法以及电子产品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223880A (ja) * 2001-12-18 2003-08-08 Ngk Spark Plug Co Ltd 電池タブにリードを接続する方法
US20040161669A1 (en) * 2003-02-14 2004-08-19 Vladimir Zolotnik Battery electrode assembly and fabrication method therefor
JP2005339939A (ja) * 2004-05-26 2005-12-08 Toyota Motor Corp 蓄電装置
KR20180105995A (ko) * 2017-03-16 2018-10-01 주식회사 리베스트 전극 탭과 전극 리드 사이에 보강 탭 결합 구조를 갖는 플렉서블 전지
CN110495018A (zh) * 2017-12-07 2019-11-22 株式会社Lg化学 电极、制造该电极的方法、电极组件和二次电池
CN208507818U (zh) * 2018-06-29 2019-02-15 宁德时代新能源科技股份有限公司 二次电池及其极片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4084207A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016491A1 (zh) * 2022-07-21 2024-01-25 宁德时代新能源科技股份有限公司 极片、电极组件、电池单体、电池及用电装置

Also Published As

Publication number Publication date
US12021269B2 (en) 2024-06-25
CN115066803A (zh) 2022-09-16
US20220367985A1 (en) 2022-11-17
EP4084207A1 (en) 2022-11-02
EP4084207A4 (en) 2023-05-10
CN115066803B (zh) 2024-01-09
JP2023510580A (ja) 2023-03-14
JP7450731B2 (ja) 2024-03-15
KR20220119699A (ko) 2022-08-30

Similar Documents

Publication Publication Date Title
CA2583544C (en) Secondary battery pack having configuration of alternative orientation
EP3349269B1 (en) Battery module, and battery pack and vehicle comprising the same
KR102051109B1 (ko) 전지 모듈
WO2022088824A1 (zh) 电极组件、电池单体、电池以及用电装置
TW201304248A (zh) 組電池
WO2024093100A1 (zh) 电极极片、电极组件、电池单体、电池和用电设备
WO2023065923A1 (zh) 电池单体、电池和用电设备
WO2023000623A1 (zh) 端盖组件、电池单体、电池和使用电池的装置
WO2022170492A1 (zh) 电池、用电装置、制备电池的方法和设备
WO2024104140A1 (zh) 极片、电池单体、电极组件、电池及用电设备
WO2024016911A1 (zh) 电池单体、电池及用电装置
WO2022082446A1 (zh) 电极组件、电池单体、电池、用电装置、制造方法及设备
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023087217A1 (zh) 电池单体及其制造方法、制造设备、电池和用电装置
CN214957173U (zh) 电池包与用电装置
WO2023092849A1 (zh) 电池单体、电池及用电设备
WO2023004822A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
WO2022170493A1 (zh) 电池、用电装置、制备电池的方法和设备
JP6454424B2 (ja) バッテリセル、及び、バッテリシステム
WO2022126547A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
KR20170014476A (ko) 원형 전극을 포함하는 원통형 이차전지
WO2022047791A1 (zh) 电池单体、电池以及用电装置
WO2024016447A1 (zh) 集流体、极片、电池单体、热压模具、电池和用电装置
WO2022226965A1 (zh) 电池单体、电池、用电设备及电池的制造方法和设备
WO2024060093A1 (zh) 电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543114

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227025642

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020958029

Country of ref document: EP

Effective date: 20220729

NENP Non-entry into the national phase

Ref country code: DE