WO2024093100A1 - 电极极片、电极组件、电池单体、电池和用电设备 - Google Patents

电极极片、电极组件、电池单体、电池和用电设备 Download PDF

Info

Publication number
WO2024093100A1
WO2024093100A1 PCT/CN2023/083935 CN2023083935W WO2024093100A1 WO 2024093100 A1 WO2024093100 A1 WO 2024093100A1 CN 2023083935 W CN2023083935 W CN 2023083935W WO 2024093100 A1 WO2024093100 A1 WO 2024093100A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole ear
battery
welding area
ear portion
main body
Prior art date
Application number
PCT/CN2023/083935
Other languages
English (en)
French (fr)
Inventor
吴凯
张子格
薛庆瑞
李伟
章羽
赵正元
Original Assignee
江苏时代新能源科技有限公司
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏时代新能源科技有限公司, 宁德时代新能源科技股份有限公司 filed Critical 江苏时代新能源科技有限公司
Publication of WO2024093100A1 publication Critical patent/WO2024093100A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to an electrode plate, an electrode assembly, a battery cell, a battery and an electrical device.
  • the embodiments of the present application provide an electrode plate, an electrode assembly, a battery cell, a battery, and an electrical device, which can reduce the possibility of safety problems in the battery.
  • an electrode plate comprising: a current collector, the current collector comprising
  • the present invention comprises an insulating layer and a conductive layer arranged on the outer surface of the insulating layer, wherein the conductive layer comprises a main body portion and a pole ear portion arranged along a first direction; a conductive structure, wherein the conductive structure is welded to the pole ear portion to form a welding area, and the conductive structure extends in a direction away from the main body portion.
  • a dimension L1 of an end of the welding area close to the main body portion is greater than a preset threshold value, and the preset threshold value is negatively correlated with a thickness of the pole ear portion in a third direction, wherein the second direction is perpendicular to the first direction and parallel to the pole ear portion, and the third direction is perpendicular to the first direction and the second direction.
  • the electrode plate includes a current collector and a conductive structure
  • the current collector includes an insulating layer and a conductive layer arranged on the outer surface of the insulating layer
  • the conductive layer includes a main body and a pole ear portion arranged along a first direction.
  • the conductive structure is welded to the pole ear portion to form a welding area, and the dimension L1 of the end of the welding area close to the main body in the second direction is greater than a preset threshold, and the preset threshold is negatively correlated with the thickness of the pole ear portion in the third direction.
  • a conductive structure with sufficient current flow capacity is provided and welded to the pole ear portion, so that the current flows from the main body through the pole ear portion (the part close to the main body and not welded to the conductive structure) to the welding area, and then flows to the conductive structure, with sufficient current flow capacity.
  • one end of the welding area close to the main body is the starting end of the connection between the conductive structure and the pole ear portion, and the current flow capacity here is also affected by the current flow capacity of the pole ear portion, and this is the end of the welding area.
  • the dimension L1 of one end of the welding area close to the main body in the second direction is set to be greater than a preset threshold value, and the preset threshold value is negatively correlated with the thickness of the pole ear portion in the third direction, so as to reduce the possibility that the end of the welding area close to the main body is melted due to insufficient overcurrent capacity when a short circuit occurs in the battery, thereby reducing the possibility of sparks at the end of the welding area close to the main body, thereby reducing the possibility of safety problems in the battery.
  • the preset threshold is Wherein, H2 represents the thickness of the adapter connected to the conductive structure at the minimum current width, L2 represents the In the width direction of the adapter, the total width of the connection surface between the conductive structure and the adapter at the minimum current width, H1 represents the thickness of the pole ear portion in the third direction, C represents the number of the conductive structures connected to one adapter, and A is a constant not less than 1.
  • the dimension L1 of the end of the welding area close to the main body in the second direction is greater than the preset threshold That is, the total flow area of the end of the welding zone near the main body of the multiple conductive structures is larger than the flow area of the adapter plate correspondingly connected to the multiple conductive structures, so that the flow capacity of the pole ear structure formed by stacking multiple conductive structures at the end of the welding zone near the main body is greater than the flow capacity of the corresponding adapter plate, so as to reduce the possibility of the end of the welding zone near the main body being melted due to insufficient flow capacity when a short circuit occurs in the battery, thereby reducing the possibility of safety problems in the battery.
  • the constant A ⁇ 1 1 ⁇ A ⁇ 2.
  • the end size L1 of the welding zone should not be too large to avoid the lower plastic under the end cover squeezing the conductive structure. Therefore, the value of constant A should not be too large, and the value range of constant A is 1 to 2.
  • the pole ear portion includes a first pole ear portion and a second pole ear portion, in the first direction, the first pole ear portion is arranged between the main body portion and the second pole ear portion, and in the second direction, the size of the first pole ear portion is larger than the size of the second pole ear portion.
  • the size of the first pole ear portion is larger than that of the second pole ear portion, that is, the size of the first pole ear portion connected to the main body portion is larger in the second direction, which can increase the connection area between the main body portion and the pole ear portion, thereby increasing the connection strength between the two, and the size of the second pole ear portion is smaller, which can reduce the space occupied by the entire pole ear portion.
  • the welding area includes a first welding area and a second welding area, the first welding area is located at the first pole ear portion, and the second welding area is located at the first pole ear portion. In the diode ear portion, in the second direction, the size of the first welding area is greater than the size of the second welding area.
  • the second welding area is located at the second pole ear part with a larger size in the second direction, so that the size L1 of the end of the welding area close to the main body formed when the pole ear part is welded to the conductive structure in the second direction can be greater than the preset threshold value, so the flow area of the end of the welding area close to the main body is larger, so as to reduce the possibility of the end of the welding area close to the main body being melted due to insufficient flow capacity when the battery is short-circuited, thereby reducing the possibility of safety problems in the battery.
  • the welding area between the second welding area and the second pole ear part is large, which can improve the connection strength between the two.
  • a protective layer is provided on part of the outer surface of the pole ear portion.
  • the protective layer is provided between the conductive structure and the active material layer on the outer surface of the main body portion to provide support for the pole ear portion and prevent deformation of the pole ear portion from affecting the current carrying capacity of the pole piece.
  • the material of the protective layer is an insulating material to prevent the conductivity of the protective layer from affecting the current flow path in the electrode plate, thereby ensuring the safety of the electrical connection of the electrode plate.
  • an electrode assembly comprising: the electrode plate in the above-mentioned first aspect or any possible implementation of the first aspect.
  • a battery cell comprising: the electrode assembly according to the second aspect or any possible implementation of the second aspect; and a shell for accommodating the electrode assembly.
  • the housing has an opening
  • the battery cell further includes an end cover, and the end cover is used to close the opening.
  • a battery comprising: the battery cell in the third aspect or any possible implementation of the third aspect.
  • an electrical device comprising: the battery in the fourth aspect or any possible implementation of the fourth aspect, wherein the battery is used to provide electrical energy.
  • the electrode plate includes a current collector and a conductive structure
  • the current collector includes an insulating layer and a conductive layer arranged on the outer surface of the insulating layer
  • the conductive layer includes a main body and a pole ear portion arranged along a first direction.
  • the conductive structure is welded to the pole ear portion to form a welding area, and the dimension L1 of the end of the welding area close to the main body in the second direction is greater than a preset threshold, and the preset threshold is negatively correlated with the thickness of the pole ear portion in the third direction.
  • a conductive structure with sufficient current flow capacity is provided and welded to the pole ear portion, so that the current flows from the main body through the pole ear portion (the part close to the main body and not welded to the conductive structure) to the welding area, and then flows to the conductive structure, with sufficient current flow capacity.
  • one end of the welding area close to the main body is the starting end of the connection between the conductive structure and the pole ear portion, and the current flow capacity here is also affected by the current flow capacity of the pole ear portion, and this is the end of the welding area.
  • the dimension L1 of one end of the welding area close to the main body in the second direction is set to be greater than a preset threshold value, and the preset threshold value is negatively correlated with the thickness of the pole ear portion in the third direction, so as to reduce the possibility that the end of the welding area close to the main body is melted due to insufficient overcurrent capacity when a short circuit occurs in the battery, thereby reducing the possibility of sparks at the end of the welding area close to the main body, thereby reducing the possibility of safety problems in the battery.
  • FIG1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • FIG2 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application.
  • FIG3 is a schematic diagram of an exploded structure of a battery cell disclosed in an embodiment of the present application.
  • FIG4 is a schematic structural diagram of an electrode assembly disclosed in an embodiment of the present application.
  • FIG5 is a cross-sectional view of portion B in FIG4 ;
  • FIG6 is a cross-sectional view of an electrode sheet disclosed in an embodiment of the present application.
  • FIG. 7 is an enlarged view of portion A in FIG. 3 .
  • the reference numerals in the specific implementation manner are as follows: Vehicle 1; Battery 10, controller 30, motor 40; Box body 11, battery cell 20, upper box body 111, lower box body 112; Shell 21, electrode assembly 22, accommodating space 23, end cover 24, electrode terminal 241, positive electrode terminal 241a, negative electrode terminal 241b, connecting member 25, first electrode tab 221a, second electrode tab 222a; Electrode plate 221, current collector 2211, insulating layer 2211a, conductive layer 2211b, conductive structure 2212, main body 2213, pole ear 2214, welding area 2215, protective layer 2216, active material layer 2217, first pole ear 2214a, second pole ear 2214b, first welding area 2215a, second welding area 2215b.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries or magnesium-ion batteries, etc., which are not limited in the embodiments of the present application.
  • the battery cells may be cylindrical, flat, rectangular or other shapes, etc., which are not limited in the embodiments of the present application. Battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells and soft-pack battery cells, which are not limited in the embodiments of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in the present application may include a battery module or a battery pack.
  • the battery generally includes a box for encapsulating one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • a battery cell may include an electrode assembly and an electrolyte, wherein the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
  • a battery cell mainly works by the movement of metal ions between the positive electrode sheet and the negative electrode sheet.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, wherein the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the current collector not coated with the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer, and the current collector not coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector may be aluminum, and the positive electrode active material may be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganese oxide, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, wherein the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the current collector not coated with the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer, and the current collector not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be graphite, carbon or silicon, etc.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the diaphragm can be polypropylene (PP) or polyethylene (PE).
  • the electrode assembly can be a winding structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric cars, as well as military equipment and aerospace and other fields. With the continuous expansion of the application field of power batteries, the market demand is also constantly expanding.
  • a composite current collector is used, that is, the current collector includes an insulating material and a metal conductive layer coated on the surface of the insulating material.
  • the thickness of the metal conductive layer is also small, reducing the risk of burrs generated by the metal conductive layer piercing the diaphragm.
  • an embodiment of the present application provides an electrode plate, which includes a current collector and a conductive structure.
  • the current collector includes an insulating layer and a conductive layer arranged on the outer surface of the insulating layer, and the conductive layer includes a main body and a pole ear portion arranged along a first direction.
  • the conductive structure is welded to the pole ear portion to form a welding area, and the dimension L1 of the end of the welding area close to the main body in the second direction is greater than a preset threshold, and the preset threshold is negatively correlated with the thickness of the pole ear portion in the third direction.
  • a conductive structure with sufficient current flow capacity is provided and welded to the pole ear portion, so that the current flows from the main body through the pole ear portion (the portion close to the main body and not welded to the conductive structure) to the welding area, and then flows to the conductive structure.
  • the dimension L1 of one end of the welding area close to the main body in the second direction is set to be greater than the preset threshold, so as to reduce the end of the welding area close to the main body due to the current flow capacity when the battery is short-circuited. The possibility of insufficient melting is reduced, thereby reducing the possibility of sparking at the end of the welding area close to the main body, thereby reducing the possibility of safety problems in the battery.
  • FIG1 it is a schematic diagram of the structure of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a motor 40, a controller 30 and a battery 10 may be provided inside the vehicle 1.
  • the controller 30 is used to control the battery 10 to supply power to the motor 40.
  • a battery 10 may be provided at the bottom, front or rear of the vehicle 1.
  • the battery 10 may be used to supply power to the vehicle 1.
  • the battery 10 may be used as an operating power source for the vehicle 1, for the circuit system of the vehicle 1, for example, for the working power requirements during the start-up, navigation and operation of the vehicle 1.
  • the battery 10 may not only be used as an operating power source for the vehicle 1, but also as a driving power source for the vehicle 1, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1.
  • the battery 10 may include multiple battery cells.
  • FIG. 2 is a schematic diagram of the decomposed structure of a battery 10 according to an embodiment of the present application, and the battery 10 may include multiple battery cells 20.
  • the number of battery cells 20 can be set to any value. Multiple battery cells 20 can be connected in series, in parallel, or in mixed connection to achieve a larger capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, in order to facilitate installation, the battery cells 20 can be arranged in groups, and each group of battery cells 20 The number of battery cells 20 included in the battery module is not limited and can be set according to requirements.
  • the battery can include multiple battery modules, which can be connected in series, in parallel or in a mixed manner.
  • the battery 10 may also include other structures.
  • the battery 10 may also include a busbar, which is used to realize electrical connection between multiple battery cells 20, such as parallel connection, series connection, or mixed connection.
  • the busbar can realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20.
  • the busbar can be fixed to the electrode terminals of the battery cells 20 by welding.
  • the electrical energy of multiple battery cells 20 can be further led out through the box through the conductive mechanism.
  • the conductive mechanism may also belong to the busbar.
  • the battery 10 may further include a case 11 (or a cover), the interior of the case 11 being a hollow structure, and a plurality of battery cells 20 being accommodated in the case 11.
  • the case 11 may include two parts, which are respectively referred to as an upper case 111 and a lower case 112, and the upper case 111 and the lower case 112 are buckled together.
  • the shapes of the upper case 111 and the lower case 112 may be determined according to the shapes of the combination of the plurality of battery cells 20, and at least one of the upper case 111 and the lower case 112 may have an opening.
  • the upper case 111 and the lower case 112 included in the case 11 may be a hollow cuboid with an opening, and the other may be in the shape of a plate to cover the opening.
  • the lower box body 112 is a hollow rectangular parallelepiped with only one open face
  • the upper box body 111 is a plate-shaped example.
  • the upper box body 111 covers the opening of the lower box body 112 to form a box body 11 with a closed chamber, which can be used to accommodate multiple battery cells 20.
  • the upper box 111 and the lower box 112 included in the box 11 in the embodiment of the present application may also have other shapes, for example, the upper box 111 and the lower box 112 may both be hollow cuboids and each have only one open face, the opening of the upper box 111 and the opening of the lower box 112 are arranged opposite to each other, and the upper box 111 and the lower box 112 are buckled together to form a box 11 with a closed chamber.
  • a plurality of battery cells 20 are connected in parallel, in series, or in a mixed combination and are placed in the box formed by the buckling of the upper box 111 and the lower box 112.
  • FIG3 it is a schematic diagram of the structure of a battery cell 20 according to an embodiment of the present application, and the battery cell 20 includes one or more electrode assemblies 22, a shell 21 and an end cap 24.
  • the shell 21 and the end cap 24 form a shell or a battery box.
  • the wall of the shell 21 and the end cap 24 are both called the wall of the battery cell 20, wherein for a rectangular battery cell 20, the wall of the shell 21 includes a bottom wall and four side walls, and the bottom wall and the four side walls are connected to form a receiving space 23 for placing the electrode assembly 22.
  • the shell 21 is determined according to the shape of one or more electrode assemblies 22 after combination.
  • the shell 21 can be a hollow cuboid or cube or cylinder, and one of the faces of the shell 21 has an opening so that one or more electrode assemblies 22 can be placed in the shell 21.
  • one of the planes of the shell 21 is an open surface, that is, the plane does not have a wall body so that the inside and outside of the shell 21 are connected.
  • the end surface of the shell 21 is an open surface, that is, the end surface has no wall so that the inside and outside of the shell 21 are connected.
  • the end cover 24 covers the opening of the accommodating space 23 and is connected to the shell 21 to form a closed cavity for placing the electrode assembly 22.
  • the shell 21 is filled with an electrolyte, such as an electrolyte.
  • the battery cell 20 may also include two electrode terminals 241, which may be disposed on the end cap 24.
  • the end cap 24 is generally in the shape of a flat plate, and the two electrode terminals 241 are fixed on the flat surface of the end cap 24, and the two electrode terminals 241 are respectively a positive electrode terminal 241a and a negative electrode terminal 241b.
  • Each electrode terminal 241 is provided with a corresponding connection member 25, or may also be referred to as a current collecting member, which is located between the end cap 24 and the electrode assembly 22, and is used to electrically connect the electrode assembly 22 and the electrode terminal 241.
  • each electrode assembly 22 has a first pole ear 221a and a second pole ear 222a.
  • the polarities of the first pole ear 221a and the second pole ear 222a are opposite.
  • the first pole ear 221a is a positive pole ear
  • the second pole ear 222a is a negative pole ear.
  • the first pole ear 221a of one or more electrode assemblies 22 is connected to one electrode terminal through a connecting member 25, and the second pole ear 222a of one or more electrode assemblies 22 is connected to another electrode terminal through another connecting member 25.
  • the positive electrode terminal 241a is connected to the positive pole ear through a connecting member 25, and the negative electrode terminal 241a is connected to the positive pole ear through a connecting member 25.
  • the tab 241 b is connected to the negative electrode via another connecting member 25 .
  • the electrode assembly 22 can be provided as a single one or multiple ones according to actual use requirements. As shown in FIG. 3 , four independent electrode assemblies 22 are provided in the battery cell 20 .
  • the battery cell in the embodiment of the present application may also be a soft-pack battery, where one or more electrode assemblies are directly packaged in a packaging bag to form a soft-pack battery.
  • the packaging bag may be an aluminum-plastic film.
  • FIG4 shows a schematic diagram of the structure of an electrode assembly 22 according to an embodiment of the present application.
  • the electrode assembly 22 is formed by winding an electrode sheet 221 .
  • the electrode sheet 221 includes a current collector 2211 and a conductive structure 2212 .
  • the current collector 2211 includes an insulating layer 2211a and a conductive layer 2211b disposed on the outer surface of the insulating layer 2211a, the conductive layer 2211b includes a main body 2213 and a pole ear 2214 disposed along a first direction; the conductive structure 2212 is welded to the pole ear 2214 to form a welding area 2215, and the conductive structure 2212 extends in a direction away from the main body 2213.
  • the dimension L 1 (for example, L 1 as shown in FIG6 ) of one end of the welding area 2215 close to the main body 2213 is greater than a preset threshold value, and the preset threshold value is negatively correlated with the thickness of the pole ear 2214 in the third direction
  • the first direction is the extension direction of the current collector 2211, for example, the first direction is the x direction in FIG5
  • the second direction is perpendicular to the first direction and parallel to the pole ear 2214, for example, the second direction is the y direction in FIG6
  • the third direction is perpendicular to the first direction and the second direction, that is, perpendicular to the plane where the outer surface of the current collector is located, for example, the third direction is the z direction in FIG5 .
  • the current collector 2211 of the electrode plate 221 collects the current generated by the active material in the active material layer to form a larger current for external output. Therefore, the current collector 2211 should be in full contact with the active material, and the internal resistance should be as small as possible.
  • the main body 2213 of the conductive layer 2211b refers to a portion of the conductive layer 2211b that is away from the outer surface of the insulating layer 2211a and is provided with an active material layer 2217.
  • the active material layer 2217 performs an electrochemical reaction to realize the conversion of chemical energy into electrical energy.
  • the thickness of the conductive layer 2211b of the composite current collector is relatively small, so that the current carrying capacity of the pole ear is insufficient.
  • the conductive layer is widened.
  • the space it occupies becomes larger, and even affects the placement space of other components in the battery cell.
  • a conductive structure 2212 with sufficient current carrying capacity is provided and welded to the conductive layer 2211b, so that the current flows from the main body 2213 through the pole ear portion 2214 to the welding area 2215, and then flows to the conductive structure 2212, and the conductive structure 2212 is electrically connected to the electrode terminal 241 through the connecting member 25.
  • the conductive structure 2212 has sufficient current carrying capacity. After being welded with the pole ear portion 2214 to form the welding area 2215, the current carrying capacity of the portion of the welding area 2215 away from the main body portion 2213 is mainly the current carrying capacity of the conductive structure 2212. However, the end of the welding area 2215 close to the main body portion 2213 is the starting end of the connection between the conductive structure 2212 and the pole ear portion 2214. The current carrying capacity here is also affected by the current carrying capacity of the pole ear portion 2214. Moreover, this is the end of the welding area 2215. If the current carrying capacity is insufficient and a large amount of heat is generated, this welding end is prone to melt, and then overlapped and melted again... This repeated process will cause sparks inside the battery.
  • the electrode plate 221 includes a current collector 2211 and a conductive structure 2212.
  • the conductive structure 2212 is welded to the pole ear portion 2214 of the current collector 2211 to form a welding area 2215.
  • the dimension L1 of one end of the welding area 2215 close to the main body 2213 in the second direction is greater than a preset threshold value, and the preset threshold value is negatively correlated with the thickness of the pole ear portion 2214 in the third direction.
  • the preset threshold is wherein, H2 represents the thickness of the adapter connected to the conductive structure 2212 at the minimum current width, L2 represents the thickness of the adapter at the minimum current width.
  • H2 represents the thickness of the adapter connected to the conductive structure 2212 at the minimum current width
  • L2 represents the thickness of the adapter at the minimum current width.
  • H1 represents the thickness of the pole ear portion 2214 in the third direction
  • C represents the number of conductive structures 2212 connected to one adapter sheet
  • A is a constant not less than 1.
  • H 1 may be the thickness of the pole ear portion 2214 in the third direction z.
  • the adapter may be the connection member 25 in FIG3
  • H 2 may be the thickness of the connection member 25 in the first direction x at the minimum current width
  • L 2 may be the total width of the connection member 25 in the second direction y at the minimum current width, that is, the sum of the widths of the connection member 25 on both sides in FIG7 at the minimum current width in the second direction y, that is, 2L 2 '.
  • the total flow area of the end of the welding area 2215 of the plurality of conductive structures 2212 close to the main body 2213 is greater than the flow area of the adapter connected to the plurality of conductive structures 2212, so that the flow capacity of the terminal ear structure formed by stacking the plurality of conductive structures 2212 at the end of the welding area 2215 close to the main body 2213 is greater than the flow capacity of the corresponding adapter, thereby reducing the flow of the end of the welding area 2215 close to the main body 2213 in the battery 10.
  • the possibility of the battery 10 being blown due to insufficient overcurrent capacity during a short circuit is reduced, thereby reducing the possibility of the battery 10 having safety problems.
  • the thickness H2 of the adapter at the minimum flow width is 0.8 mm
  • the total width L2 of the connection surface between the adapter and the conductive structure 2212 at the minimum flow width is 10 mm
  • the flow area of the adapter is 8 mm2.
  • the thickness H1 of the pole ear portion 2214 in the third direction is 1 ⁇ m
  • the number C of the conductive structures 2212 connected to one adapter is 80
  • the dimension L1 of the end of the welding area 2215 close to the main body 2213 in the second direction needs to be greater than 100 mm, so as to ensure that the flow capacity of the pole ear structure at the end of the welding area 2215 close to the main body 2213 is greater than the flow capacity of the corresponding adapter.
  • the thickness H2 of the adapter at the minimum flow width is 0.8 mm
  • the total width L2 of the connection surface between the adapter and the conductive structure 2212 at the minimum flow width is 20 mm
  • the flow area of the adapter is 16 mm2.
  • the thickness H1 of the pole ear portion 2214 in the third direction is 1 ⁇ m
  • the number C of the conductive structures 2212 connected to one adapter is 120
  • the dimension L1 of the end of the welding area 2215 close to the main body 2213 in the second direction needs to be greater than 134 mm, so as to ensure that the flow capacity of the pole ear structure at the end of the welding area 2215 close to the main body 2213 is greater than the flow capacity of the corresponding adapter.
  • the constant A ⁇ 1 1 ⁇ A ⁇ 2.
  • the end dimension L1 of the welding area 2215 should not be too large to prevent the lower plastic under the end cover 24 from squeezing the conductive structure 2212. Therefore, the value of the constant A should not be too large, and the value range of the constant A is 1 to 2.
  • a protective layer 2216 is provided on a portion of the outer surface of the pole ear portion 2214.
  • the protective layer 2216 is provided on the conductive structure.
  • a supporting force is provided for the pole ear portion 2214 to prevent deformation of the pole ear portion 2214 from affecting the current flow capacity of the pole piece.
  • the material of the protective layer 2216 is an insulating material to prevent the conductivity of the protective layer 2216 from affecting the current flow path in the electrode plate 221 , thereby ensuring the safety of the electrical connection of the electrode plate 221 .
  • the insulating material may include at least one of aluminum oxide and aluminum oxyhydroxide.
  • the protective layer 2216 can be provided on the outer surface of the pole ear portion 2214 by a coating or plating process.
  • the pole ear portion 2214 includes a first pole ear portion 2214a and a second pole ear portion 2214b.
  • the first pole ear portion 2214a is arranged between the main body portion 2213 and the second pole ear portion 2214b.
  • the size of the first pole ear portion 2214a is larger than the size of the second pole ear portion 2214b.
  • the size of the first pole ear portion 2214a is larger than that of the second pole ear portion 2214b, that is, the size of the first pole ear portion 2214a connected to the main body portion 2213 in the second direction y is larger, which can increase the connection area between the main body portion 2213 and the pole ear portion 2214, thereby increasing the connection strength between the two, and the size of the second pole ear portion 2214b is smaller, which can reduce the space occupied by the pole ear portion 2214 as a whole.
  • the size of the pole ear portion 2214 in the second direction y may change continuously and smoothly.
  • the pole ear portion 2214 may be in a triangular structure, a trapezoidal structure, a stepped structure, etc.
  • FIG6 takes the pole ear portion 2214 in a stepped structure as an example for explanation.
  • the welding area 2215 includes a first welding area 2215a and a second welding area 2215b connected to the first welding area 2215a, the first welding area 2215a is located at the first pole ear portion 2214a, and the second welding area 2215b is located at the second pole ear portion 2214b, and in the second direction y, the size of the first welding area 2215a is larger than the size of the second welding area 2215b.
  • the second welding area 2215b is located at the second pole ear portion 2214b with a larger size in the second direction y, so as to ensure that the size L1 of the end of the welding area 2215 close to the main body 2213 formed when the pole ear portion 2214 is welded to the conductive structure 2212 in the second direction y can be greater than a preset threshold, so as to reduce the possibility that the end of the welding area 2215 close to the main body 2213 is melted due to insufficient overcurrent capacity when a short circuit occurs in the battery 10, thereby reducing the possibility of safety problems in the battery 10.
  • the welding area of the second welding area 2215b and the second pole ear portion 2214b is large, which can improve the connection strength between the two.
  • the embodiment of the present application further provides an electrode assembly 22 , which may include the electrode plate 221 in the aforementioned embodiments.
  • the embodiment of the present application further provides a battery cell 20 , which may include a shell and the electrode assembly 22 in the aforementioned embodiment, wherein the shell is used to accommodate the electrode assembly 22 .
  • the shell has an opening
  • the battery cell 20 further includes an end cover, which is used to close the opening.
  • the present application also provides a battery 10, which may include the battery cell 20 in the above embodiment.
  • the battery 10 may also include other structures such as a box body and a current converging component, which will not be described in detail here.
  • the embodiment of the present application further provides an electric device, which may include the battery 10 in the above embodiment.
  • the electric device may be a vehicle 1, a ship or a spacecraft, etc., but the embodiment of the present application is not limited to this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请实施例提供一种电极极片、电极组件、电池单体、电池和用电设备。该电极极片包括:集流体,集流体包括绝缘层和设置于绝缘层外表面的导电层,导电层包括沿第一方向设置的主体部和极耳部;导电结构,导电结构与极耳部焊接连接形成焊接区,导电结构沿背离主体部的方向延伸,在第二方向上,焊接区靠近主体部的一端的尺寸大于预设阈值,预设阈值与极耳部在第三方向上的厚度负相关,第二方向垂直于第一方向且平行于极耳部,第三方向垂直于第一方向和第二方向。本申请实施例的技术方案,能够提高电池的安全性。

Description

电极极片、电极组件、电池单体、电池和用电设备
相关申请的交叉引用
本申请要求享有于2022年11月4日提交的名称为“电极极片、电极组件、电池单体、电池和用电设备”的中国专利申请202211374725.8的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电极极片、电极组件、电池单体、电池和用电设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何降低电池产生安全问题的可能性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种电极极片、电极组件、电池单体、电池和用电设备,能够降低电池产生安全问题的可能性。
第一方面,提供了一种电极极片,包括:集流体,所述集流体包 括绝缘层和设置于所述绝缘层外表面的导电层,所述导电层包括沿第一方向设置的主体部和极耳部;导电结构,所述导电结构与所述极耳部焊接连接形成焊接区,所述导电结构沿背离所述主体部的方向延伸,在第二方向上,所述焊接区靠近所述主体部的一端的尺寸L1大于预设阈值,所述预设阈值与所述极耳部在第三方向上的厚度负相关,所述第二方向垂直于所述第一方向且平行于所述极耳部,所述第三方向垂直于所述第一方向和所述第二方向。
在本申请实施例中,电极极片包括集流体和导电结构,集流体包括绝缘层和设置于绝缘层外表面的导电层,导电层包括沿第一方向设置的主体部和极耳部。导电结构与极耳部焊接连接形成焊接区,该焊接区靠近主体部的一端在第二方向上的尺寸L1大于预设阈值,该预设阈值与极耳部在第三方向上的厚度负相关。本申请技术方案中,设置有足够过流能力的导电结构与极耳部焊接,这样电流从主体部经过极耳部(靠近主体部且未与导电结构焊接的部分)流向焊接区,再流向导电结构,具有足够的过流能力。但是焊接区靠近主体部的一端是导电结构与极耳部连接的起始端,此处的过流能力还受极耳部的过流能力的影响,且此处为焊接区的端部,若过流能力不足,产生大量热量,此焊接端部容易熔断,熔断后再搭接,再熔断…,如此反复会导致电池内部打火花。因此设置焊接区靠近主体部的一端在第二方向上的尺寸L1大于预设阈值,该预设阈值与极耳部在第三方向上的厚度负相关。以降低焊接区靠近主体部的端部在电池发生短路时因过流能力不足被熔断的可能性,从而降低焊接区靠近主体部的端部发生打火花的可能性,以降低电池产生安全问题的可能性。
在一种可能的实现方式中,所述预设阈值为其中,H2表示与所述导电结构连接的转接片的过流宽度最小处的厚度,L2表示在所 述转接片的宽度方向上,所述导电结构与所述转接片的连接面在过流宽度最小处的总宽度,H1表示所述极耳部在所述第三方向上的厚度,C表示与一个所述转接片连接的所述导电结构的个数,A为不小于1的常数。
焊接区靠近主体部的一端在第二方向上的尺寸L1大于预设阈值即多个导电结构的焊接区靠近主体部的端部的总过流面积大于与该多个导电结构对应连接的转接片的过流面积,以使多个导电结构层叠形成的极耳结构在焊接区靠近主体部的端部的过流能力大于对应的转接片的过流能力,以降低焊接区靠近主体部的端部在电池发生短路时因过流能力不足被熔断的可能性,进而降低电池产生安全问题的可能性。
在一种可能的实现方式中,1≤A≤2。为保证焊接区靠近主体部的端部的过流面积大于与导电结构电连接的转接片的过流面积,常数A≥1;同时,基于电池单体的端盖的结构设计,焊接区的端部尺寸L1不宜过大,避免端盖下方的下塑胶挤压导电结构。因此常数A的取值也不宜过大,常数A的取值范围为1~2。
在一种可能的实现方式中,所述极耳部包括第一极耳部和第二极耳部,在所述第一方向上,所述第一极耳部设置于所述主体部和所述第二极耳部之间,在所述第二方向上,所述第一极耳部的尺寸大于所述第二极耳部的尺寸。
在第二方向上,第一极耳部的尺寸大于第二极耳部的尺寸,也就是说,与主体部相连的第一极耳部在第二方向上的尺寸较大,这样可以增加主体部与极耳部的连接面积,从而增加二者的连接强度,且第二极耳部的尺寸较小,可以减小极耳部整体占用的空间。
在一种可能的实现方式中,所述焊接区包括第一焊接区和第二焊接区,所述第一焊接区位于所述第一极耳部,所述第二焊接区位于所述第 二极耳部,在所述第二方向上,所述第一焊接区的尺寸大于所述第二焊接区的尺寸。
第二焊接区位于在第二方向上尺寸较大的第二极耳部,以使极耳部与导电结构焊接时形成的焊接区靠近主体部的一端在第二方向上的尺寸L1能够大于预设阈值,因此焊接区靠近主体部的端部的过流面积较大,以降低焊接区靠近主体部的端部在电池发生短路时因过流能力不足被熔断的可能性,进而降低电池产生安全问题的可能性。且第二焊接区与第二极耳部的焊接面积较大,可以提高两者的连接强度。
在一种可能的实现方式中,所述极耳部的部分外表面设置有保护层,在所述第一方向上,所述保护层设置于所述导电结构与所述主体部外表面的活性物质层之间,以为极耳部提供支撑力,防止极耳部的变形影响极片的过流能力。
在一种可能的实现方式中,所述保护层的材料为绝缘材料,避免保护层导电影响电极极片中的电流流通路径,保证电极极片电连接的安全性。
第二方面,提供了一种电极组件,包括:上述第一方面或第一方面的任意可能的实现方式中的电极极片。
第三方面,提供了一种电池单体,包括:上述第二方面或第二方面的任意可能的实现方式中的电极组件;壳体,用于容纳所述电极组件。
在一种可能的实现方式中,所述壳体具有开口,所述电池单体还包括端盖,所述端盖用于封闭所述开口。
第四方面,提供了一种电池,包括:上述第三方面或第三方面的任意可能的实现方式中的电池单体。
第五方面,提供了一种用电设备,包括:上述第四方面或第四方面的任意可能的实现方式中的电池,所述电池用于提供电能。
在本申请实施例的技术方案中,电极极片包括集流体和导电结构,集流体包括绝缘层和设置于绝缘层外表面的导电层,导电层包括沿第一方向设置的主体部和极耳部。导电结构与极耳部焊接连接形成焊接区,该焊接区靠近主体部的一端在第二方向上的尺寸L1大于预设阈值,该预设阈值与极耳部在第三方向上的厚度负相关。本申请技术方案中,设置有足够过流能力的导电结构与极耳部焊接,这样电流从主体部经过极耳部(靠近主体部且未与导电结构焊接的部分)流向焊接区,再流向导电结构,具有足够的过流能力。但是焊接区靠近主体部的一端是导电结构与极耳部连接的起始端,此处的过流能力还受极耳部的过流能力的影响,且此处为焊接区的端部,若过流能力不足,产生大量热量,此焊接端部容易熔断,熔断后再搭接,再熔断…,如此反复会导致电池内部打火花。因此设置焊接区靠近主体部的一端在第二方向上的尺寸L1大于预设阈值,该预设阈值与极耳部在第三方向上的厚度负相关。以降低焊接区靠近主体部的端部在电池发生短路时因过流能力不足被熔断的可能性,从而降低焊接区靠近主体部的端部发生打火花的可能性,以降低电池产生安全性问题的可能性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的分解结构示意图;
图3是本申请一实施例公开的一种电池单体的分解结构示意图;
图4是本申请一实施例公开的一种电极组件的结构示意图;
图5是图4中的B部分的剖视图;
图6是本申请一实施例公开的一种电极极片的截面图;
图7是图3中A部分的放大图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式中的附图标号如下:
车辆1;
电池10,控制器30,马达40;
箱体11,电池单体20,上箱体111,下箱体112;
壳体21,电极组件22,容纳空间23,端盖24,电极端子241,正电
极端子241a,负电极端子241b,连接构件25,第一极耳221a,第二极耳222a;
电极极片221,集流体2211,绝缘层2211a,导电层2211b,导电结构
2212,主体部2213,极耳部2214,焊接区2215,保护层2216,活性物质层2217,第一极耳部2214a,第二极耳部2214b,第一焊接区2215a,第二焊接区2215b。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、 “第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请实施例中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体可以包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为石墨、碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
在电池技术的发展过程中,电池单体的组成构件之一电极极片出现了多种结构。比如,为避免电极极片的集流体金属导电层较厚产生的毛刺过大刺破隔膜,采用复合集流体,即集流体包括绝缘材料和涂覆于绝缘材料表面的金属导电层,这样,在保证集流体整体厚度的情况下,金属导电层的厚度也较小,降低了金属导电层产生的毛刺刺破隔膜的风险。然而,复合集流体的金属导电层厚度较小,会导致极耳过流能力不足的问题,从而影响电池的安全性能。因此,如何提高极耳的过流能力,进而降低电池产生安全问题的可能性,是目前亟待解决的问题。
鉴于此,本申请实施例提供了一种电极极片,该电极极片包括集流体和导电结构,集流体包括绝缘层和设置于绝缘层外表面的导电层,导电层包括沿第一方向设置的主体部和极耳部。导电结构与极耳部焊接连接形成焊接区,该焊接区靠近主体部的一端在第二方向上的尺寸L1大于预设阈值,该预设阈值与极耳部在第三方向上的厚度负相关。本申请技术方案中,设置有足够过流能力的导电结构与极耳部焊接,这样电流从主体部经过极耳部(靠近主体部且未与导电结构焊接的部分)流向焊接区,再流向导电结构。同时设置焊接区靠近主体部的一端在第二方向上的尺寸L1大于预设阈值,以降低焊接区靠近主体部的端部在电池发生短路时因过流能力 不足被熔断的可能性,从而降低焊接区靠近主体部的端部发生打火花的可能性,以降低电池产生安全性问题的可能性。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体。例如,图2为本申请一个实施例的一种电池10的分解结构示意图,电池10可以包括多个电池单体20。根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20 组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。电池可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方式进行连接。
可选地,电池10还可以包括其他结构。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属于汇流部件。
电池10还可以包括箱体11(或称罩体),箱体11内部为中空结构,多个电池单体20容纳于箱体11内。如图2所示,箱体11可以包括两部分,这里分别称为上箱体111和下箱体112,上箱体111和下箱体112扣合在一起。上箱体111和下箱体112的形状可以根据多个电池单体20组合的形状而定,上箱体111和下箱体112中至少一个部件具有一个开口。例如,箱体11包括的上箱体111和下箱体112中可以仅有一个为具有开口的中空长方体,而另一个为板状,以盖合开口。例如,如图2所示,这里以下箱体112为中空长方体且只有一个面为开口面,上箱体111为板状为例,上箱体111盖合在下箱体112的开口处以形成具有封闭腔室的箱体11,该腔室可以用于容纳多个电池单体20。
可选地,本申请实施例中的箱体11包括的上箱体111和下箱体112还可以具有其他形状,例如,上箱体111和下箱体112均可以为中空长方体且各自只有一个面为开口面,上箱体111的开口和下箱体112的开口相对设置,并且上箱体111和下箱体112相互扣合形成具有封闭腔室的箱体11。多个电池单体20相互并联或串联或混联组合后置于上箱体111和下箱体112扣合后形成的箱体内。
如图3所示,为本申请一个实施例的一种电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体21和端盖24。壳体21和端盖24形成外壳或电池盒。壳体21的壁以及端盖24均称为电池单体20的壁,其中对于长方体型电池单体20,壳体21的壁包括底壁和四个侧壁,底壁和四个侧壁连接形成放置电极组件22的容纳空间23。壳体21根据一个或多个电极组件22组合后的形状而定,例如,壳体21可以为中空的长方体或正方体或圆柱体,且壳体21的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体21内。例如,当壳体21为中空的长方体或正方体时,壳体21的其中一个平面为开口面,即该平面不具有壁体而使得壳体21内外相通。当壳体21可以为中空的圆柱体时,壳体21的端面为开口面,即该端面不具有壁体而使得壳体21内外相通。端盖24覆盖容纳空间23的开口并且与壳体21连接,以形成放置电极组件22的封闭的腔体。壳体21内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子241,两个电极端子241可以设置在端盖24上。端盖24通常是平板形状,两个电极端子241固定在端盖24的平板面上,两个电极端子241分别为正电极端子241a和负电极端子241b。每个电极端子241各对应设置一个连接构件25,或者也可以称为集流构件,其位于端盖24与电极组件22之间,用于将电极组件22和电极端子241实现电连接。
如图3所示,每个电极组件22具有第一极耳221a和第二极耳222a。第一极耳221a和第二极耳222a的极性相反。例如,当第一极耳221a为正极极耳时,第二极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个连接构件25与一个电极端子连接,一个或多个电极组件22的第二极耳222a通过另一个连接构件25与另一个电极端子连接。例如,正电极端子241a通过一个连接构件25与正极极耳连接,负电极端 子241b通过另一个连接构件25与负极极耳连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图3所示,电池单体20内设置有4个独立的电极组件22。
本申请实施例中的电池单体还可以为软包电池,一个或多个电极组件直接封装在包装袋内,形成软包电池。包装袋可以为铝塑膜。
图4示出了本申请一个实施例的电极组件22的结构示意图。如图4所示,电极组件22由电极极片221卷绕形成。电极极片221包括集流体2211和导电结构2212。
如图5所示,集流体2211包括绝缘层2211a和设置于绝缘层2211a外表面的导电层2211b,导电层2211b包括沿第一方向设置的主体部2213和极耳部2214;导电结构2212与极耳部2214焊接连接形成焊接区2215,导电结构2212沿背离主体部2213的方向延伸。在第二方向上,焊接区2215靠近主体部2213的一端的尺寸L1(比如,如图6所示的L1)大于预设阈值,该预设阈值与极耳部2214在第三方向上的厚度负相关,其中,第一方向为集流体2211的延伸方向,例如,第一方向为图5中的x方向,第二方向垂直于第一方向且平行于极耳部2214,例如,第二方向为图6中的y方向,第三方向垂直于第一方向和第二方向,即垂直于集流体外表面所在的平面,例如,第三方向为图5中的z方向。
电极极片221的集流体2211将活性物质层中的活性物质产生的电流汇集起来以便形成较大的电流对外输出,因此集流体2211应与活性物质充分接触,并且内阻应尽可能小为佳。
导电层2211b的主体部2213是指导电层2211b的远离绝缘层2211a的外表面设置有活性物质层2217的部分。电池10在充放电过程中活性物质层2217电化学反应实现化学能与电能的转换。
复合集流体的导电层2211b厚度较小,使得极耳过流能力不足,通常会将导电层加宽,然而导电层加宽后其占据的空间变大,甚至影响电池单体中其他组件的放置空间。且多个复合集流体的极耳与连接构件连接时,由于绝缘层的存在,多个极耳无法直接接触,导致导电性较差(甚至是相互绝缘的)。因此设置有足够过流能力的导电结构2212与导电层2211b焊接,这样电流从主体部2213经过极耳部2214流向焊接区2215,再流向导电结构2212,导电结构2212通过连接构件25与电极端子241电连接。
导电结构2212具有足够的过流能力,与极耳部2214焊接形成焊接区2215后,焊接区2215远离主体部2213的部分的过流能力主要为导电结构2212的过流能力,但是焊接区2215靠近主体部2213的一端是导电结构2212与极耳部2214连接的起始端,此处的过流能力还受极耳部2214的过流能力的影响,且此处为焊接区2215的端部,若过流能力不足,产生大量热量,此焊接端部容易熔断,熔断后再搭接,再熔断…,如此反复会导致电池内部打火花。
本申请实施例中,电极极片221包括集流体2211和导电结构2212,导电结构2212与集流体2211的极耳部2214焊接连接形成焊接区2215,该焊接区2215靠近主体部2213的一端在第二方向上的尺寸L1大于预设阈值,该预设阈值与极耳部2214在第三方向上的厚度负相关。以降低焊接区2215靠近主体部2213的端部在电池10发生短路时因过流能力不足被熔断的可能性,从而降低焊接区2215靠近主体部2213的端部发生打火花的可能性,以降低电池10产生安全问题的可能性。
可选地,在本申请实施例中,预设阈值为其中,H2表示与导电结构2212连接的转接片的过流宽度最小处的厚度,L2表示在转接 片的宽度方向上,导电结构2212与转接片的连接面在过流宽度最小处的总宽度,H1表示极耳部2214在第三方向上的厚度,C表示与一个转接片连接的导电结构2212的个数,A为不小于1的常数。
具体地,如图5所示,H1可以为极耳部2214在第三方向z上的厚度。转接片可以为上述图3中的连接构件25,如图7所示,H2可以为连接构件25的过流宽度最小处在第一方向x上的厚度,L2可以为连接构件25在过流宽度最小处在第二方向y上的总宽度,也就是图7中的连接构件25的两侧的过流宽度最小处在第二方向y上的宽度之和,即2L2’。应理解,在电池单体20组装过程中,多个导电结构2212会层叠在一起后与一个转接片连接,因此该公式中引入与一个转接片连接的导电结构2212的个数C。
本申请实施例中,为降低焊接区2215靠近主体部2213的端部在电池10发生短路时因过流能力不足被熔断的可能性,需要使焊接区2215靠近主体部2213的端部的过流面积大于与导电结构2212电连接的转接片的过流面积,即L1*H1*C>L2*H2,将该不等式变形即得由于电极极片221加工过程中存在一定加工误差,因此在不等式中引入不小于1的常数,为焊接区2215端部的尺寸L1的设置提供一定余量,得到也就是说,焊接区2215靠近主体部2213的一端在第二方向上的尺寸L1大于预设阈值即可实现多个导电结构2212的焊接区2215靠近主体部2213的端部的总过流面积大于与该多个导电结构2212对应连接的转接片的过流面积,以使多个导电结构2212层叠形成的极耳结构在焊接区2215靠近主体部2213的端部的过流能力大于对应的转接片的过流能力,降低焊接区2215靠近主体部2213的端部在电池10发生 短路时因过流能力不足被熔断的可能性,进而降低电池10产生安全性问题的可能性。
可选地,在本申请实施例中,当转接片的过流宽度最小处的厚度H2为0.8mm,转接片与导电结构2212的连接面在过流宽度最小处的总宽度L2为10mm,此时,转接片的过流面积为8mm2。若极耳部2214在第三方向上的厚度H1为1μm,与一个转接片连接的导电结构2212的个数C为80,则焊接区2215靠近主体部2213的一端在第二方向上的尺寸L1需大于100mm,以保证极耳结构在焊接区2215靠近主体部2213的端部的过流能力大于对应的转接片的过流能力。
再比如,当转接片的过流宽度最小处的厚度H2为0.8mm,转接片与导电结构2212的连接面在过流宽度最小处的总宽度L2为20mm,此时,转接片的过流面积为16mm2。若极耳部2214在第三方向上的厚度H1为1μm,与一个转接片连接的导电结构2212的个数C为120,则焊接区2215靠近主体部2213的一端在第二方向上的尺寸L1需大于134mm,以保证极耳结构在焊接区2215靠近主体部2213的端部的过流能力大于对应的转接片的过流能力。
应理解,以上具体参数设置仅为本申请实施例的示例性说明,不构成对本申请的限定。
可选地,在本申请实施例中,1≤A≤2。为保证焊接区2215的过流面积大于与其电连接的转接片的过流面积,常数A≥1;同时,基于电池单体20的端盖24的结构设计,焊接区2215的端部尺寸L1不宜过大,避免端盖24下方的下塑胶挤压导电结构2212。因此常数A的取值也不宜过大,常数A的取值范围为1~2。
可选地,在本申请实施例中,如图5所示,极耳部2214的部分外表面设置有保护层2216,在第一方向x上,保护层2216设置于导电结构 2212与活性物质层2217之间,以为极耳部2214提供支撑力,防止极耳部2214的变形影响极片的过流能力。
可选地,在本申请实施例中,保护层2216的材料为绝缘材料,避免保护层2216导电影响电极极片221中的电流流通路径,保证电极极片221电连接的安全性。
可选地,绝缘材料可以包括三氧化二铝和羟基氧化铝中的至少一种。
可选地,保护层2216可以通过涂布或者镀膜等工艺设置于极耳部2214的外表面。
可选地,在本申请实施例中,如图6所示,极耳部2214包括第一极耳部2214a和第二极耳部2214b,在第一方向x上,第一极耳部2214a设置于主体部2213和第二极耳部2214b之间,在第二方向y上,第一极耳部2214a的尺寸大于第二极耳部2214b的尺寸。
在第二方向y上,第一极耳部2214a的尺寸大于第二极耳部2214b的尺寸,也就是说,与主体部2213相连的第一极耳部2214a在第二方向y上的尺寸较大,这样可以增加主体部2213与极耳部2214的连接面积,从而增加二者的连接强度,且第二极耳部2214b的尺寸较小,可以减小极耳部2214整体占用的空间。
可选地,沿第一方向x,极耳部2214在第二方向y上的尺寸可以连续平滑变化。例如,极耳部2214可以呈三角形结构、梯形结构、阶梯结构等,图6以极耳部2214呈阶梯结构为例进行说明。
可选地,在本申请实施例中,如图6所示,焊接区2215包括第一焊接区2215a和连接于第一焊接区2215a的第二焊接区2215b,第一焊接区2215a位于第一极耳部2214a,第二焊接区2215b位于第二极耳部2214b,在第二方向y上,第一焊接区2215a的尺寸大于第二焊接区2215b的尺寸。
第二焊接区2215b位于在第二方向y上尺寸较大的第二极耳部2214b,以保证极耳部2214与导电结构2212焊接时形成的焊接区2215靠近主体部2213的一端在第二方向y上的尺寸L1能够大于预设阈值,以降低焊接区2215靠近主体部2213的端部在电池10发生短路时因过流能力不足被熔断的可能性,进而降低电池10产生安全性问题的可能性。且第二焊接区2215b与第二极耳部2214b的焊接面积较大,可以提高两者的连接强度。
本申请实施例还提供了一种电极组件22,该电极组件22可以包括前述各实施例中的电极极片221。
本申请实施例还提供了一种电池单体20,该电池单体20可以包括壳体以及前述实施例中的电极组件22,壳体用于容纳电极组件22。
可选地,在本申请实施例中,壳体具有开口,电池单体20还包括端盖,端盖用于封闭开口。
本申请实施例还提供了一种电池10,该电池10可以包括前述实施例中的电池单体20。在一些实施例中,该电池10还可以包括箱体、汇流部件等其他结构,在此不再一一赘述。
本申请实施例还提供了一种用电设备,该用电设备可以包括前述实施例中的电池10。可选地,该用电设备可以为车辆1、船舶或航天器等,但本申请实施例对此并不限定。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (12)

  1. 一种电极极片,其特征在于,包括:
    集流体(2211),所述集流体(2211)包括绝缘层(2211a)和设置于所述绝缘层(2211a)外表面的导电层(2211b),所述导电层(2211b)包括沿第一方向(x)设置的主体部(2213)和极耳部(2214);
    导电结构(2212),所述导电结构(2212)与所述极耳部(2214)焊接连接形成焊接区(2215),所述导电结构(2212)沿背离所述主体部(2213)的方向延伸,在第二方向(y)上,所述焊接区(2215)靠近所述主体部(2213)的一端的尺寸L1大于预设阈值,所述预设阈值与所述极耳部(2214)在第三方向(z)上的厚度负相关,所述第二方向(y)垂直于所述第一方向(x)且平行于所述极耳部(2214),所述第三方向(z)垂直于所述第一方向(x)和所述第二方向(y)。
  2. 根据权利要求1所述的电极极片,其特征在于,所述预设阈值为
    其中,H2表示与所述导电结构(2212)连接的转接片的过流宽度最小处的厚度,L2表示在所述转接片的宽度方向上,所述导电结构(2212)与所述转接片的连接面在过流宽度最小处的总宽度,H1表示所述极耳部(2214)在所述第三方向(z)上的厚度,C表示与一个所述转接片连接的所述导电结构(2212)的个数,A为不小于1的常数。
  3. 根据权利要求2所述的电极极片,其特征在于,1≤A≤2。
  4. 根据权利要求1至3中任一项所述的电极极片,其特征在于,所述极耳部(2214)包括第一极耳部(2214a)和第二极耳部(2214b),在所述第一方向(x)上,所述第一极耳部(2214a)设置于所述主体部(2213) 和所述第二极耳部(2214b)之间,在所述第二方向(y)上,所述第一极耳部(2214a)的尺寸大于所述第二极耳部(2214b)的尺寸。
  5. 根据权利要求4所述的电极极片,其特征在于,所述焊接区(2215)包括第一焊接区(2215a)和第二焊接区(2215b),所述第一焊接区(2215a)位于所述第一极耳部(2214a),所述第二焊接区(2215b)位于所述第二极耳部(2214b),在所述第二方向(y)上,所述第一焊接区(2215a)的尺寸大于所述第二焊接区(2215b)的尺寸。
  6. 根据权利要求1至5中任一项所述的电极极片,其特征在于,所述极耳部(2214)的部分外表面设置有保护层(2216),在所述第一方向(x)上,所述保护层(2216)设置于所述导电结构(2212)与所述主体部(2213)外表面的活性物质层(2217)之间。
  7. 根据权利要求6所述的电极极片,其特征在于,所述保护层(2216)的材料为绝缘材料。
  8. 一种电极组件,其特征在于,包括:根据权利要求1至7中任一项所述的电极极片。
  9. 一种电池单体,其特征在于,包括:
    根据权利要求8所述的电极组件;
    壳体,用于容纳所述电极组件。
  10. 根据权利要求9所述的电池单体,其特征在于,所述壳体具有开口,所述电池单体还包括端盖,所述端盖用于封闭所述开口。
  11. 一种电池,其特征在于,包括根据权利要求9或10所述的电池单体。
  12. 一种用电设备,其特征在于,包括根据权利要求11所述的电池,所述电池用于提供电能。
PCT/CN2023/083935 2022-11-04 2023-03-26 电极极片、电极组件、电池单体、电池和用电设备 WO2024093100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211374725.8A CN115425372B (zh) 2022-11-04 2022-11-04 电极极片、电极组件、电池单体、电池和用电设备
CN202211374725.8 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024093100A1 true WO2024093100A1 (zh) 2024-05-10

Family

ID=84207577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083935 WO2024093100A1 (zh) 2022-11-04 2023-03-26 电极极片、电极组件、电池单体、电池和用电设备

Country Status (2)

Country Link
CN (1) CN115425372B (zh)
WO (1) WO2024093100A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425372B (zh) * 2022-11-04 2023-04-14 江苏时代新能源科技有限公司 电极极片、电极组件、电池单体、电池和用电设备
CN117239058B (zh) * 2023-11-13 2024-03-01 珠海冠宇电池股份有限公司 极片、电芯以及电池
CN117691267B (zh) * 2024-02-04 2024-04-12 蜂巢能源科技股份有限公司 电池及电池包

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097662A (zh) * 2021-03-31 2021-07-09 珠海冠宇电池股份有限公司 电池极片及其制备方法、锂离子电池
CN215989130U (zh) * 2021-08-19 2022-03-08 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电装置
CN114566768A (zh) * 2022-02-10 2022-05-31 东莞新能安科技有限公司 一种极片、电化学装置以及电子设备
CN217589350U (zh) * 2022-06-28 2022-10-14 中创新航科技股份有限公司 电池
CN115425372A (zh) * 2022-11-04 2022-12-02 江苏时代新能源科技有限公司 电极极片、电极组件、电池单体、电池和用电设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992313B (zh) * 2016-01-20 2023-04-07 宁德新能源科技有限公司 二次电池
CN111883740B (zh) * 2018-06-22 2021-09-21 宁德时代新能源科技股份有限公司 一种极片及二次电池
CN209087968U (zh) * 2018-08-02 2019-07-09 宁德时代新能源科技股份有限公司 电极构件、电极组件及二次电池
CN209183628U (zh) * 2018-10-11 2019-07-30 宁德时代新能源科技股份有限公司 二次电池及其极片
CN209747632U (zh) * 2019-05-13 2019-12-06 宁德时代新能源科技股份有限公司 二次电池
CN114975864A (zh) * 2021-02-23 2022-08-30 北京小米移动软件有限公司 极片、电芯结构、锂电池以及电子设备
CN216354652U (zh) * 2021-11-30 2022-04-19 宁德时代新能源科技股份有限公司 电极组件及动力电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097662A (zh) * 2021-03-31 2021-07-09 珠海冠宇电池股份有限公司 电池极片及其制备方法、锂离子电池
CN215989130U (zh) * 2021-08-19 2022-03-08 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电装置
CN114566768A (zh) * 2022-02-10 2022-05-31 东莞新能安科技有限公司 一种极片、电化学装置以及电子设备
CN217589350U (zh) * 2022-06-28 2022-10-14 中创新航科技股份有限公司 电池
CN115425372A (zh) * 2022-11-04 2022-12-02 江苏时代新能源科技有限公司 电极极片、电极组件、电池单体、电池和用电设备

Also Published As

Publication number Publication date
CN115425372B (zh) 2023-04-14
CN115425372A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2024093100A1 (zh) 电极极片、电极组件、电池单体、电池和用电设备
WO2022088824A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2022199129A1 (zh) 电池单体、电池及用电设备
WO2023246134A1 (zh) 极片、电极组件、电池单体、电池及用电设备
WO2023065923A1 (zh) 电池单体、电池和用电设备
US20240088477A1 (en) Battery, power consumption device, and method and device for producing battery
WO2023221649A1 (zh) 电池和用电设备
WO2023160034A1 (zh) 电池箱体上盖、电池箱体、电池及用电设备
WO2024021293A1 (zh) 热管理部件、电池以及用电装置
WO2023025104A1 (zh) 电池单体、电池以及用电装置
WO2023226201A1 (zh) 箱体组件、电池和用电设备
WO2023155207A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023082155A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
KR20220119699A (ko) 전극 어셈블리, 전지 셀, 전지, 전력 소비 장치, 제조 방법 및 장비
WO2024087047A1 (zh) 电池单体、电池和用电设备
WO2023225903A1 (zh) 电池单体、电池以及用电装置
WO2022170493A1 (zh) 电池、用电装置、制备电池的方法和设备
WO2023159487A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024031353A1 (zh) 极片、电极组件、电池单体、电池及用电设备
WO2023065366A1 (zh) 电池、用电设备、制备电池单体的方法和设备
WO2024109411A1 (zh) 电池及用电设备
WO2024060093A1 (zh) 电池单体、电池及用电装置
WO2023092459A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2024040503A1 (zh) 电极组件、制备方法、电池单体、电池及用电装置
WO2024055311A1 (zh) 电池单体、电池及用电设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023844162

Country of ref document: EP

Effective date: 20240131