WO2022088824A1 - 电极组件、电池单体、电池以及用电装置 - Google Patents

电极组件、电池单体、电池以及用电装置 Download PDF

Info

Publication number
WO2022088824A1
WO2022088824A1 PCT/CN2021/110976 CN2021110976W WO2022088824A1 WO 2022088824 A1 WO2022088824 A1 WO 2022088824A1 CN 2021110976 W CN2021110976 W CN 2021110976W WO 2022088824 A1 WO2022088824 A1 WO 2022088824A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
bending
layer
current collector
active material
Prior art date
Application number
PCT/CN2021/110976
Other languages
English (en)
French (fr)
Inventor
林明峰
史松君
张海明
喻鸿钢
来佑磊
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180042489.7A priority Critical patent/CN115943513A/zh
Priority to KR1020227031425A priority patent/KR20220139383A/ko
Priority to JP2022554387A priority patent/JP2023517924A/ja
Publication of WO2022088824A1 publication Critical patent/WO2022088824A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of batteries, and in particular, to an electrode assembly, a battery cell, a battery, and an electrical device.
  • a rechargeable battery which can be called a secondary battery, refers to a battery that can continue to be used by activating the active material by charging after the battery is discharged.
  • Rechargeable batteries are widely used in electronic devices such as cell phones, laptops, battery cars, electric cars, electric planes, electric boats, electric toy cars, electric toy boats, electric toy planes, and power tools, among others.
  • Rechargeable batteries may include nickel-cadmium batteries, nickel-hydrogen batteries, lithium-ion batteries, secondary alkaline zinc-manganese batteries, and the like.
  • lithium-ion batteries are generally used in automobiles.
  • As a rechargeable battery lithium-ion batteries have the advantages of small size, high energy density, high power density, many cycles and long storage time.
  • the rechargeable battery includes an electrode assembly and an electrolyte solution.
  • the electrode assembly includes a positive electrode sheet, a negative electrode sheet, and a separator between the positive electrode sheet and the negative electrode sheet.
  • the positive pole piece can also be called a cathode pole piece. Both surfaces of the positive pole piece have positive active material layers.
  • the positive active material of the positive active material layer can be lithium manganate, lithium cobaltate, lithium iron phosphate or nickel. Lithium cobalt manganate; the negative pole piece can also be called an anode pole piece, and both surfaces of the negative pole piece have a negative electrode active material layer, for example, the negative electrode active material of the negative electrode active material layer can be graphite or silicon.
  • Lithium precipitation is a common abnormal phenomenon in lithium ion batteries, which will affect the charging efficiency and energy density of lithium ions. When lithium precipitation is serious, lithium crystals can also be formed, and lithium crystals can pierce the isolation film and cause thermal runaway of internal short circuits. Endanger the safety of the battery.
  • the present application provides an electrode assembly, a battery cell, a battery and an electrical device, which can reduce the risk of lithium precipitation and improve safety performance.
  • a first aspect of the present application provides an electrode assembly comprising a positive electrode sheet and a negative electrode sheet, the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer disposed on both surfaces of the positive electrode current collector, and the negative electrode electrode sheet includes a negative electrode current collector Fluid and negative electrode active material layers disposed on both surfaces of the negative electrode current collector.
  • the positive pole piece and the negative pole piece are wound to form a bending area, the positive pole piece includes a first positive bending layer located in the bending area, and the negative pole piece includes a first negative electrode bending layer located in the bending area.
  • the positive electrode bending layer is located on the outer side of the first negative electrode bending layer and is arranged adjacent to the first negative electrode bending layer.
  • the negative electrode active material layer on the inner side of the negative electrode current collector of the first negative electrode bent layer can provide a lithium insertion space for the positive electrode active material layer of the first positive electrode bent layer, and reduce the negative electrode on the outer side of the negative electrode current collector of the first negative electrode bent layer.
  • the risk of chromatographic lithium by active material improves the safety performance and service life of the electrode assembly.
  • the openings penetrate through the anode current collector and the anode active material layer inside the anode current collector. In other embodiments, the openings penetrate through the negative electrode current collector and the negative electrode active material layer outside the negative electrode current collector. In still other embodiments, the openings penetrate through the negative electrode current collector, the negative electrode active material layer outside the negative electrode current collector, and the negative electrode active material layer on the inner side of the negative electrode current collector.
  • the negative electrode active material layer of the first negative electrode bending layer includes a first part, a second part and a third part, the first part is arranged on the inner side of the negative electrode current collector, and the second part is arranged on the outer side of the negative electrode current collector,
  • the third part is disposed in the opening and connects the first part and the second part.
  • the third portion disposed in the opening can also provide space for lithium ions to intercalate, thereby reducing the risk of lithium precipitation.
  • the negative electrode pole piece includes a plurality of negative electrode bending layers located in the bending region, and the innermost negative electrode bending layer in the bending region is the first negative electrode bending layer.
  • the innermost negative electrode bending layer in the bending region has the highest risk of lithium precipitation. Therefore, this setting can effectively reduce the risk of lithium precipitation.
  • only the innermost anode bending layer in the bending region is the first anode bending layer. In this way, the number of openings can be reduced, and the preparation process of the negative pole piece can be simplified.
  • all the negative electrode bending layers in the bending region are the first negative electrode bending layers.
  • the electrode assembly has a straight region, two bending regions are respectively connected to two ends of the flat region, and both of the two bending regions include a first negative electrode bending layer.
  • a second aspect of the present application provides a battery cell, which includes: a case, a cover plate, and at least one electrode assembly of the above-mentioned embodiments.
  • the housing has an accommodating cavity and an opening, and the electrode assembly is accommodated in the accommodating cavity.
  • the cover plate is used to close the opening of the housing.
  • a third aspect of the present application provides a battery, which includes a case and at least one battery cell of the above-mentioned embodiment, and the battery cell is accommodated in the case.
  • a fourth aspect of the present application provides an electrical device configured to receive electrical energy provided from the battery of the above-described embodiments.
  • FIG. 1 is a schematic structural diagram of an electrical device according to an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a battery according to an embodiment of the application.
  • FIG. 3 is a schematic diagram of a battery module according to an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a battery cell according to an embodiment of the application.
  • FIG. 5 is a schematic three-dimensional structural diagram of an electrode assembly according to an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a cross-section of the electrode assembly of FIG. 5 along a direction perpendicular to the winding axis;
  • FIG. 7 is a schematic structural diagram of a bending region of the electrode assembly of FIG. 6;
  • FIG. 8 is an enlarged schematic view of the bending area of FIG. 7 in the circular frame part A;
  • FIG. 9 is a schematic structural diagram of a negative pole piece of an electrode assembly according to an embodiment of the application after being flattened;
  • FIG. 11 is a schematic structural diagram of a negative pole piece of an electrode assembly according to another embodiment of the present application after being flattened;
  • FIG. 12 is a schematic structural diagram of a negative pole piece of an electrode assembly according to yet another embodiment of the application after being flattened;
  • FIG. 13 is a schematic structural diagram of a cross-section of an electrode assembly in a direction perpendicular to the winding axis according to another embodiment of the application;
  • FIG. 14 is an enlarged schematic view of the electrode assembly of FIG. 13 in block part B;
  • 15 is a schematic structural diagram of a cross-section of an electrode assembly in a direction perpendicular to the winding axis according to another embodiment of the application;
  • FIG. 16 is an enlarged schematic view of the electrode assembly of FIG. 15 in block section C;
  • 17 is a schematic structural diagram of a cross-section of an electrode assembly in a direction perpendicular to the winding axis according to another embodiment of the application;
  • FIG. 18 is an enlarged schematic view of the electrode assembly of FIG. 17 in block section D;
  • FIG. 19 is a schematic structural diagram of a cross-section of an electrode assembly in a direction perpendicular to the winding axis according to another embodiment of the application;
  • FIG. 20 is an enlarged schematic view of the electrode assembly of FIG. 19 at block portion E.
  • FIG. 20 is an enlarged schematic view of the electrode assembly of FIG. 19 at block portion E.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • the battery cells and batteries described in the embodiments of the present application are both applicable to electrical devices, and the battery cells and batteries provide electrical energy to the electrical devices.
  • the electrical device can be a mobile phone, a portable device, a notebook computer, a battery car, an electric car, a ship, a spacecraft, an electric toy, an electric tool, etc.
  • Electric toys include stationary or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric aircraft toys, etc.
  • Power tools include metal cutting power tools, grinding power tools, assembling power tools and railway power tools Tools such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, electric impact drills, concrete vibrators and electric planers.
  • the battery cells and batteries described in the embodiments of the present application are not only applicable to the above-described electrical devices, but can also be applied to all devices using batteries. However, for the sake of brevity, the following embodiments take an electric vehicle as an example. illustrate.
  • the electrical device may be a vehicle 1
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle
  • the new energy vehicle may It is a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the interior of the vehicle 1 may be provided with a battery 2 , a controller 3 and a motor 4 , and the controller 3 is used to control the battery 2 to supply power to the motor 4 .
  • the battery 2 may be provided at the bottom of the vehicle 1 or at the front or rear of the vehicle.
  • the battery 2 can be used for power supply of the vehicle 1 , for example, the battery 2 can be used as the operating power source of the vehicle 1 , for the circuit system of the vehicle 1 , for example, for the starting, navigating and running of the vehicle 1 .
  • the battery 2 can not only be used as the operating power source of the vehicle 1, but also can be used as the driving power source of the vehicle 1 to provide driving power for the vehicle 1 in place of or partially in place of fuel or natural gas.
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series or in parallel or in a mixed connection, and a mixed connection refers to a mixture of series and parallel connections.
  • a plurality of battery cells can be connected in series or in parallel or mixed to form a battery module, and then a plurality of battery modules can be connected in series or in parallel or mixed to form a battery. That is to say, a plurality of battery cells can directly form a battery, or a battery module can be formed first, and then the battery module can be formed into a battery.
  • the battery 2 includes one or more battery modules 21 , for example, the battery 2 includes a plurality of battery modules 21.
  • a plurality of battery modules 21 can be connected in series or in parallel or in a mixed connection, and a mixed connection refers to a mixture of series and parallel connection.
  • the battery 2 may also include a box body 22 (or a cover body).
  • the box body 22 has a hollow structure inside, and a plurality of battery modules 21 are accommodated in the box body 22 . As shown in FIG.
  • the box body 22 includes two parts, which are referred to here as a first part 23 and a second part 24 respectively, and the first part 23 and the second part 24 are fastened together.
  • the shapes of the first part 23 and the second part 24 may be determined according to the combined shape of the plurality of battery modules 21 , and each of the first part 23 and the second part 24 may have an opening.
  • both the first part 23 and the second part 24 can be hollow rectangular parallelepipeds and each has only one surface that is an open surface, the opening of the first part 23 and the opening of the second part 24 are arranged opposite to each other, and the first part 23 and the second part 24 are interlocked with each other.
  • a box 22 with a closed chamber is formed.
  • a plurality of battery modules 21 are placed in a box 22 formed after the first part 23 and the second part 24 are buckled together after being combined in parallel or in series or in a mixed connection.
  • the battery 2 may also include other structures, which will not be repeated here.
  • the battery 2 may further include a bus component, which is used to realize electrical connection between a plurality of battery cells, such as parallel or series or mixed connection.
  • the bus member may realize electrical connection between the battery cells by connecting the electrode terminals of the battery cells.
  • the bus members may be fixed to the electrode terminals of the battery cells by welding. The electrical energy of the plurality of battery cells can be further drawn out through the box body 22 through the conductive mechanism.
  • the conducting means may also belong to the bussing member.
  • the battery module 21 may include one or more battery cells. As shown in FIG. 3 , the battery module 21 includes a plurality of battery cells 25 , and the plurality of battery cells 25 can be connected in series, in parallel, or in combination. connected to achieve greater capacity or power. Optionally, the battery module 21 further includes a bussing component 26, and the bussing component 26 is used to realize electrical connection between the plurality of battery cells 25, for example, in parallel or in series or in a mixed connection.
  • the battery cell includes a lithium-ion-containing secondary battery, a lithium-ion primary battery, a lithium-sulfur battery, a sodium-lithium-ion battery, or a magnesium-ion battery, but is not limited thereto.
  • the battery cells may be cylindrical, flat, square, or other shapes. For example, as shown in FIG. 3 , the battery cell has a square structure.
  • FIG. 4 it is a schematic structural diagram of a battery cell according to an embodiment of the present application.
  • the battery cell includes a casing 101 and one or more electrode assemblies 100 accommodated in the casing 101.
  • the casing 101 includes a casing 102 and a cover plate 103.
  • the casing 102 has an accommodating cavity, and the casing 102 has an opening, that is, the plane There is no casing wall so that the casing 102 communicates inside and outside, so that the electrode assembly 100 can be accommodated in the accommodating cavity of the casing 102.
  • the cover plate 103 and the casing 102 are combined with the opening of the casing 102 to form a hollow cavity.
  • the electrode assembly After 100 is accommodated in the casing 101, the casing 101 is filled with electrolyte and sealed.
  • the casing 102 is determined according to the combined shape of one or more electrode assemblies 100.
  • the casing 102 may be a hollow cuboid, a hollow cube, or a hollow cylinder.
  • one of the planes of the casing 102 is an open surface, that is, the plane does not have a casing wall so that the casing 102 communicates with the inside and the outside; when the casing 102 is a hollow cylinder
  • one of the circular side surfaces of the casing 102 is an open surface, that is, the circular side surface does not have a casing wall, so that the casing 102 communicates with the inside and the outside.
  • the housing 102 may be made of a conductive metal material or plastic, and alternatively, the housing 102 may be made of aluminum or an aluminum alloy.
  • FIG. 5 is a schematic three-dimensional structural diagram of an electrode assembly according to an embodiment of the application
  • FIG. 6 is a schematic structural diagram of a cross-section of the electrode assembly in FIG. 5 along a direction perpendicular to the winding axis.
  • the electrode assembly 100 of the embodiment of the present application includes a positive electrode piece 110 , a negative electrode piece 120 and a separator 130 , wherein the positive electrode piece 110 , the negative electrode piece 120 and the separator 130 are stacked and then wound around
  • the axis K is wound to form a winding structure
  • the separator 130 is an insulating film for separating the negative pole piece 120 and the positive pole piece 110 to prevent short circuit between the negative pole piece 120 and the positive pole piece 110 .
  • the winding structure of the electrode assembly 100 is in the shape of a flat body, and a schematic structural diagram of a cross-section of the electrode assembly 100 along a direction perpendicular to the winding axis K can be shown in FIG. 6 .
  • the electrode assembly 100 includes a bending area 140 and a straight area 150 , and the bending areas 140 are two and are respectively connected to two ends of the straight area 150 .
  • the flat region 150 refers to a region with a parallel structure in the winding structure, that is, the negative electrode piece 120, the positive electrode piece 110 and the separator 130 in the flat region 150 are substantially parallel to each other, that is, the electrode assembly is in the flat region.
  • the surfaces of each layer of negative pole piece 120 , positive pole piece 110 and separator 130 of 150 are all flat surfaces.
  • the bending area 140 refers to an area with a bending structure in the winding structure, that is, the negative electrode piece 120 , the positive electrode piece 110 and the separator 130 in the bending area 140 are all bent, that is, the electrode assembly is bent.
  • the surfaces of each layer of the negative pole piece 120, the positive pole piece 110 and the separator 130 in the area 140 are all curved surfaces, and the bending area 140 has a bending direction L, which can be understood as the direction of the electrode assembly along the bending area.
  • the surface points in the direction of the flat region, eg, the bending direction L in the bending region 140 is along the winding direction of the winding structure.
  • FIG. 7 is a schematic structural diagram of the bending region of the electrode assembly of FIG. 6 .
  • the positive electrode plate 110 includes a positive electrode current collector 111 and a positive electrode active material layer 112 disposed on both surfaces of the positive electrode current collector 111
  • the negative electrode electrode plate 120 includes a negative electrode current collector 121 and is disposed on the negative electrode current collector. 121
  • the positive electrode active material layer 112 includes a positive electrode active material, for example, the positive electrode active material may be lithium manganate, lithium cobaltate, lithium iron phosphate, or lithium nickel cobalt manganate.
  • the isolation film 130 has a large number of through-holes, which can ensure the free passage of electrolyte ions and have good permeability to lithium ions. Therefore, the isolation film 130 basically cannot block the passage of lithium ions.
  • the isolation film 130 includes a membrane base layer and a functional layer on the surface of the membrane base layer.
  • the membrane base layer can be at least one of polypropylene, polyethylene, ethylene-propylene copolymer, polybutylene terephthalate, etc.
  • the functional layer It can be a mixture layer of ceramic oxide and binder.
  • the positive pole piece 110 includes a positive electrode bending layer 113 located in the bending area 140
  • the negative electrode pole piece 120 includes a negative electrode bending layer 123 located in the bending area 140 .
  • the separator 130 separates the adjacent positive electrode bent layers 113 and the negative electrode bent layers 123 from each other.
  • lithium ions are deintercalated from the positive electrode and embedded in the negative electrode, but some abnormal conditions may occur, such as insufficient space for lithium insertion in the negative electrode, too much resistance for lithium ions to be inserted into the negative electrode, or lithium ions.
  • the ions are deintercalated from the positive pole piece too quickly, and the deintercalated lithium ions cannot be embedded in the negative active material layer of the negative pole piece in the same amount.
  • the golden metallic lithium element which is the phenomenon of lithium precipitation. Lithium precipitation not only reduces the performance of lithium-ion batteries and greatly shortens the cycle life, but also limits the fast charge capacity of lithium-ion batteries.
  • the precipitated lithium metal is very active, and can react with the electrolyte at a lower temperature, resulting in a decrease in the starting temperature (Tonset) of the battery's self-generated heat and self-generated heat. The heat rate increases, which seriously endangers the safety of the battery.
  • the deintercalated lithium ions can form lithium crystals on the surface of the negative electrode, and the lithium crystals easily pierce the separator, resulting in the risk of short circuit between the adjacent positive and negative electrodes.
  • the present application provides an electrode assembly 100 , the electrode assembly 100 includes a positive electrode plate 110 and a negative electrode electrode plate 120 , and the positive electrode electrode plate 110 includes a positive electrode current collector 111 and a positive electrode active electrode disposed on both surfaces of the positive electrode current collector 111 .
  • the material layer 112 and the negative electrode piece 120 include a negative electrode current collector 121 and a negative electrode active material layer 122 disposed on both surfaces of the negative electrode current collector 121 .
  • the positive pole piece 110 and the negative pole piece 120 are wound to form a bending region 140 .
  • FIG. 8 is an enlarged schematic view of the bending area in the circle frame portion A of FIG. 7 .
  • the positive electrode piece 110 includes a first positive electrode bending layer 113a located in the bending region 140
  • the negative electrode electrode piece 120 includes a first negative electrode bending layer 123a located in the bending region 140
  • the first positive electrode bending layer 113a is located in the bending region 140.
  • the outer side of the first negative electrode bending layer 123a is disposed adjacent to the first negative electrode bending layer 123a.
  • the separator 130 separates the first positive electrode bent layer 113a and the first negative electrode bent layer 123a.
  • the first bent anode layer 123a has openings H1 penetrating the anode current collector 121, and the openings H1 are configured such that a part of ions extracted from the cathode active material layer 112 of the first bent anode layer 113a can pass through the openings H1 and pass through the openings H1.
  • the negative electrode active material layer 122 provided on the inner side of the negative electrode current collector 121 of the first negative electrode bent layer 123a is embedded.
  • the opening H1 is an ion channel opened on the anode current collector 121 of the first anode bending layer 123a.
  • the radius of the first bent negative electrode layer 123a is larger than the radius of the bent positive electrode layer inside it. Therefore, even if a part of the ions extracted from the positive electrode active material layer 112 of the first bent positive electrode layer 113a is inserted into the first negative electrode
  • the negative electrode active material layer 122 on the inner side of the negative electrode current collector 121 of the bent layer 123a the negative electrode active material layer 122 on the inner side of the negative electrode current collector 121 of the first negative electrode bent layer 123a can still be the inner side of the first negative electrode bent layer 123a
  • the ions deintercalated by the positive electrode active material layer 112 of the positive electrode bending layer provide a space for lithium intercalation to avoid the risk of lithium deposition in the negative electrode active material layer 122 inside the negative electrode current collector 121 of the first negative electrode bending layer 123a.
  • the negative electrode active material layer 122 of the first negative electrode bending layer 123a includes a first part 1221 and a second part 1222, the first part 1221 is arranged on the inner side of the negative electrode current collector 121, and the second part 1222 is arranged on the outer side of the negative electrode current collector 121, with openings H1 penetrates through the second part 1222 and the negative electrode current collector 121 .
  • the first portion 1221 covers the opening H1 from the inside.
  • the innermost anode bending layer 123 of the bending region 140 is the first anode bending layer 123a.
  • the innermost pole piece in the bending region 140 is the most bent, and the radius difference between the innermost negative electrode bending layer and the positive electrode bending layer outside the negative electrode bending layer is larger, that is to say, the bending region 140
  • the innermost negative electrode bending layer 123 has the highest risk of lithium precipitation. Therefore, at least one anode bending layer 123 at the innermost side of the bending region 140 is the first anode bending layer 123a provided with the opening H1.
  • only the innermost anode bending layer 123 in the bending region 140 is the first anode bending layer 123a. In this way, the number of the openings H1 can be reduced, and the preparation process of the negative pole piece 120 can be simplified.
  • FIG. 9 is a schematic structural diagram of a negative pole piece of an electrode assembly according to an embodiment of the present application after being flattened.
  • the negative electrode current collector 121 includes a negative electrode body portion 1211 and a negative electrode tab portion 1212 extending from the negative electrode body portion 1211 , and the negative electrode active material layer 122 is at least partially coated on the surface of the negative electrode body portion 1211 .
  • the negative electrode pole piece 120 includes a plurality of negative electrode bent layers 123 and a plurality of negative electrode straight layers 124 , and along the length direction X of the negative electrode pole piece 120 , the plurality of negative electrode straight layers 124 and the plurality of negative negative electrode are bent The layers 123 are alternately arranged.
  • a plurality of negative electrode flat layers 124 are located in the flat region 150 of the electrode assembly 100
  • a plurality of negative electrode bent layers 123 are located in the bent region 140 of the electrode assembly 100 .
  • both bending regions 140 include the first anode bending layer 123a.
  • the two adjacent negative electrode bending layers 123 of the negative electrode pole piece 120 are formed with openings H1.
  • the two adjacent negative electrode bending layers 123 are two The first anode bending layers 123a are respectively located in the two bending regions 140 .
  • the two adjacent anode bending layers 123 are the innermost anode bending layers 123 of the two bending regions 140 , respectively.
  • the number of openings H1 of the first anode bending layer 123a is one.
  • the opening H1 is a strip-shaped hole extending along the width direction Y of the negative pole piece.
  • the width direction Y is parallel to the winding axis K and perpendicular to the bending direction L.
  • the ratio of the size d1 of the opening H1 to the size d2 of the first negative electrode bending layer 123a is 0.05-1.00. If the ratio is less than 0.05, the size of the opening H1 is too small, and the ion channel formed by the opening H1 is small, which affects the efficiency of ion passage.
  • FIG. 10 is a schematic structural diagram of a positive pole piece of an electrode assembly according to an embodiment of the present application after being flattened.
  • the positive electrode current collector 111 includes a positive electrode body portion 1111 and a positive electrode tab portion 1112 extending from the positive electrode body portion 1111 , and the positive electrode active material layer 112 is at least partially coated on the surface of the positive electrode body portion 1111 .
  • the positive electrode sheet 110 includes a plurality of positive electrode bent layers 113 and a plurality of positive electrode straight layers 114 , and along the length direction X of the positive electrode electrode sheet 110 , a plurality of positive electrode straight layers 114 and a plurality of positive electrode bent layers 114 The layers 113 are alternately arranged.
  • a plurality of positive electrode flat layers 114 are located in the flat region 150 of the electrode assembly 100
  • a plurality of positive electrode bent layers 113 are located in the bent region 140 of the electrode assembly 100 .
  • FIG. 11 is a schematic structural diagram of a negative pole piece of an electrode assembly according to another embodiment of the present application after being flattened.
  • the plurality of openings H1 are discontinuous, and the plurality of openings H1 are distributed at intervals along the bending direction L of the bending region 140 .
  • the plurality of openings H1 can make the distribution of ion channels more uniform, and improve the efficiency of ions passing through the negative electrode current collector 121 .
  • each opening H1 is a strip-shaped hole extending along the width direction Y. In the direction perpendicular to the bending direction L, the ratio of the size of each opening H1 to the size of the first negative electrode bending layer 123a is 0.05-1.00.
  • FIG. 12 is a schematic structural diagram of a negative pole piece of an electrode assembly according to another embodiment of the present application after being flattened.
  • a plurality of openings H1 are distributed at intervals along a direction perpendicular to the bending direction L.
  • the plurality of openings H1 can make the distribution of ion channels more uniform, and improve the efficiency of ions passing through the negative electrode current collector 121 .
  • each opening H1 is a bar-shaped hole extending along the length direction X.
  • the ratio of the size of each opening H1 to the size of the first negative electrode bending layer 123a is 0.05-0.2.
  • FIG. 13 is a schematic structural diagram of a cross-section of an electrode assembly in a direction perpendicular to the winding axis according to another embodiment of the application.
  • FIG. 14 is an enlarged schematic view of the electrode assembly of FIG. 13 at block portion B.
  • an embodiment of the present application further provides an electrode assembly 200 , the electrode assembly 200 includes a positive electrode plate 210 and a negative electrode plate 220 , and the positive electrode plate 210 includes a positive electrode current collector 211 and is disposed on the positive electrode current collector 211 .
  • the positive electrode active material layers 212 on both surfaces and the negative electrode sheet 220 include a negative electrode current collector 221 and negative electrode active material layers disposed on both surfaces of the negative electrode current collector 221 .
  • the positive pole piece 210 and the negative pole piece 220 are wound to form a bent area 240 and a straight area 250 .
  • the first bent anode layer 223a has an opening H2 penetrating the anode current collector 221, and the opening H2 is configured such that a part of ions extracted from the cathode active material layer 212 of the first bent anode layer 213a can pass through the opening H2 and The negative electrode active material layer provided on the inner side of the negative electrode current collector 221 of the first negative electrode bent layer 223a is embedded.
  • the opening H2 is an ion channel opened on the anode current collector 221 of the first anode bending layer 223a.
  • the openings H2 penetrate through the anode current collector 121 and the anode active material layer inside the anode current collector 121 .
  • the negative electrode active material layer of the first negative electrode bending layer 223a includes a first part 2221 and a second part 2222, the first part 2221 is arranged on the inner side of the negative electrode current collector 221, the second part 2222 is arranged on the outer side of the negative electrode current collector 221, and the opening H2
  • the first part 2221 and the negative electrode current collector 221 are penetrated.
  • the second portion 2222 covers the opening H2 from the outside. It is supplemented here that ions can move in the negative electrode active material layer, and the second portion 2222 does not block ions from passing through the opening H2.
  • FIG. 15 is a schematic structural diagram of a cross-section of an electrode assembly in a direction perpendicular to the winding axis of another embodiment of the application.
  • FIG. 16 is an enlarged schematic view of the electrode assembly in block C of FIG. 15 .
  • an embodiment of the present application further provides an electrode assembly 300 .
  • the electrode assembly 300 includes a positive electrode plate 310 and a negative electrode plate 320
  • the positive electrode plate 310 includes a positive electrode current collector 311 and a positive electrode current collector 311 .
  • the positive electrode active material layers 312 on both surfaces and the negative electrode sheet 320 include a negative electrode current collector 321 and a negative electrode active material layer disposed on both surfaces of the negative electrode current collector 321 .
  • the positive pole piece 310 and the negative pole piece 320 are wound to form a bent area 340 and a straight area 350 .
  • the positive pole piece 310 includes a first positive bending layer 313a located in the bending area 340
  • the negative pole piece 320 includes a first negative bending layer 323a located in the bending area 340
  • the first positive bending layer 313a is located in the first negative bending.
  • the outer side of the folded layer 323a is disposed adjacent to the first negative electrode folded layer 323a.
  • the separator 330 separates the first positive electrode bent layer 313a and the first negative electrode bent layer 323a.
  • the first bent anode layer 323a has openings H3 penetrating the anode current collector 321, and the openings H3 are configured such that a part of ions extracted from the cathode active material layer 312 of the first bent anode layer 313a can pass through the openings H3 and pass through the openings H3.
  • the negative electrode active material layer provided on the inner side of the negative electrode current collector 321 of the first negative electrode bent layer 323a is embedded.
  • the opening H3 is an ion channel opened on the anode current collector 321 of the first anode bending layer 323a.
  • the openings H3 penetrate through the anode current collector 321 , the anode active material layer outside the anode current collector 321 , and the anode active material layer inside the anode current collector 321 .
  • the negative electrode active material layer of the first negative electrode bending layer 323a includes a first part 3221 and a second part 3222, the first part 3221 is arranged on the inner side of the negative electrode current collector 321, the second part 3222 is arranged on the outer side of the negative electrode current collector 321, and the opening H3 The first part 3221 , the negative electrode current collector 321 and the second part 3222 are penetrated.
  • the opening H3 can be formed by punching, which simplifies the forming process of the negative pole piece 320 .
  • FIG. 17 is a schematic structural diagram of a cross-section of an electrode assembly in a direction perpendicular to the winding axis according to another embodiment of the present application.
  • FIG. 18 is an enlarged schematic view of the electrode assembly of FIG. 17 at block section D.
  • an embodiment of the present application further provides an electrode assembly 400 .
  • the electrode assembly 400 includes a positive electrode plate 410 and a negative electrode plate 420
  • the positive electrode plate 410 includes a positive electrode current collector 411 and a positive electrode current collector 411 disposed on the positive electrode current collector 411 .
  • the positive electrode active material layers 412 on both surfaces and the negative electrode sheet 420 include a negative electrode current collector 421 and a negative electrode active material layer disposed on both surfaces of the negative electrode current collector 421 .
  • the positive pole piece 410 and the negative pole piece 420 are wound to form a bent area 440 and a straight area 450 .
  • the positive electrode pole piece 410 includes a first positive electrode bending layer 413a located in the bending area 440
  • the negative electrode pole piece 420 includes a first negative electrode bending layer 423a located in the bending area 440
  • the first positive electrode bending layer 413a is located in the first negative electrode bending layer 413a.
  • the outer side of the folded layer 423a is disposed adjacent to the first negative electrode folded layer 423a.
  • the separator 430 separates the first positive electrode bent layer 413a and the first negative electrode bent layer 423a.
  • the first bent anode layer 423a has an opening H4 penetrating the anode current collector 421, and the opening H4 is configured such that a part of the ions extracted from the cathode active material layer 412 of the first bent anode layer 413a can pass through the opening H4 and pass through the opening H4.
  • the negative electrode active material layer provided on the inner side of the negative electrode current collector 421 of the first negative electrode bent layer 423a is embedded.
  • the opening H4 is an ion channel opened on the anode current collector 421 of the first anode bending layer 423a.
  • the negative electrode active material layer of the first negative electrode bending layer 423a includes a first part 4221 , a second part 4222 and a third part 4223 .
  • the third part 4223 is disposed in the opening H4 and connects the first part 4221 and the second part 4222 .
  • the third portion 4223 disposed in the opening H4 can also provide a lithium intercalation space for lithium ions, thereby reducing the risk of lithium precipitation.
  • FIG. 19 is a schematic structural diagram of a cross-section of an electrode assembly in a direction perpendicular to the winding axis according to another embodiment of the application.
  • FIG. 20 is an enlarged schematic view of the electrode assembly of FIG. 19 at block portion E.
  • FIG. 19 is a schematic structural diagram of a cross-section of an electrode assembly in a direction perpendicular to the winding axis according to another embodiment of the application.
  • FIG. 20 is an enlarged schematic view of the electrode assembly of FIG. 19 at block portion E.
  • an embodiment of the present application further provides an electrode assembly 500 , the electrode assembly 500 includes a positive electrode plate 510 and a negative electrode plate 520 , and the positive electrode plate 510 includes a positive electrode current collector 511 and a positive electrode current collector 511 .
  • the positive electrode active material layers 512 on both surfaces and the negative electrode sheet 520 include a negative electrode current collector 521 and a negative electrode active material layer disposed on both surfaces of the negative electrode current collector 521 .
  • the positive pole piece 510 and the negative pole piece 520 are wound to form a bent area 540 and a straight area 550 .
  • the positive electrode pole piece 510 includes a plurality of positive electrode bending layers 513 located in the bending region 540
  • the negative electrode pole piece 520 includes a plurality of negative electrode bending layers located in the bending region 540 .
  • a plurality of positive electrode bent layers 513 and a plurality of negative electrode bent layers are alternately arranged. All the negative electrode bending layers in the bending region 540 are the first negative electrode bending layers 523 a, wherein each first negative electrode bending layer 523 a has an opening H5 penetrating the negative electrode current collector 521 .
  • the opening H5 is an ion channel opened on the anode current collector 521 of the first anode bending layer 523a.
  • the negative electrode active material layer of each first negative electrode bending layer 523a includes a first part 5221, a second part 5222 and a third part 5223, the first part 5221 is provided inside the negative electrode current collector 521, and the second part 5222 is provided on the negative electrode current collector 521 Outside, the third part 5223 is disposed in the opening H5 and connects the first part 5221 and the second part 5222.
  • the third portion 5223 disposed in the opening H5 can also provide a lithium intercalation space for lithium ions, thereby reducing the risk of lithium precipitation.
  • some bent anode layers are the first bent anode layers 523a with openings H5, and other bent layers of anodes are second bent layers of anodes without openings H5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请公开了一种电极组件、电池单体、电池以及用电装置。本申请实施例的电极组件包括正极极片和负极极片,正极极片包括正极集流体和设置于正极集流体两个表面的正极活性物质层,负极极片包括负极集流体和设置于负极集流体两个表面的负极活性物质层。正极极片和负极极片经过卷绕后形成弯折区,正极极片包括位于弯折区的第一正极弯折层,负极极片包括位于弯折区的第一负极弯折层,第一正极弯折层位于第一负极弯折层的外侧并与第一负极弯折层相邻设置。第一负极弯折层具有贯穿负极集流体的开孔。

Description

电极组件、电池单体、电池以及用电装置
相关申请的交叉引用
本申请要求享有于2020年10月27日提交的名称为“电极组件、电池单体、电池以及用电装置”的中国专利申请202022421832.4的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池领域,特别是涉及一种电极组件、电池单体、电池以及用电装置。
背景技术
可再充电电池,可以称为二次电池,是指在电池放电后可通过充电的方式使活性物质激活而继续使用的电池。可再充电电池广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。
可再充电电池可以包括镉镍电池、氢镍电池、锂离子电池和二次碱性锌锰电池等。
目前,汽车使用较多的电池一般是锂离子电池,锂离子电池作为一种可再充电电池,具有体积小、能量密度高、功率密度高、循环使用次数多和存储时间长等优点。
可再充电电池包括电极组件和电解质溶液,电极组件包括正极极片、负极极片和位于正极极片和负极极片之间的隔离膜。正极极片也可以称为阴极极片,正极极片的两个表面均具有正极活性物质层,例如,正极活性物质层的正极活性物质可为锰酸锂、钴酸锂、磷酸铁锂或者镍钴锰酸锂;负极极片也可以称为阳极极片,负极极片的两个表面均具有负极活性物质层,例如,负极活性物质层的负极活性物质可以是石墨或硅。
析锂是锂离子电池一种常见的异常现象,会影响锂离子的充电效率以及能量密度,析锂严重时还可以形成锂结晶,而锂结晶可以刺穿隔离膜从而导致内短路热失控,严重危害电池的安全。
因此,如何降低或避免析锂,提高电池安全,成为业内的一个难题。
发明内容
本申请提供一种电极组件、电池单体、电池以及用电装置,其能降低析锂风险, 提高安全性能。
本申请的第一方面提供一种电极组件,其包括正极极片和负极极片,正极极片包括正极集流体和设置于正极集流体两个表面的正极活性物质层,负极极片包括负极集流体和设置于负极集流体两个表面的负极活性物质层。正极极片和负极极片经过卷绕后形成弯折区,正极极片包括位于弯折区的第一正极弯折层,负极极片包括位于弯折区的第一负极弯折层,第一正极弯折层位于第一负极弯折层的外侧并与第一负极弯折层相邻设置。第一负极弯折层具有贯穿负极集流体的开孔,开孔被配置为:从第一正极弯折层的正极活性物质层脱出的一部分离子能够穿过开孔并嵌入到设置于第一负极弯折层的负极集流体的内侧的负极活性物质层。
第一负极弯折层的负极集流体的内侧的负极活性物质层能够为第一正极弯折层的正极活性物质层提供嵌锂空间,降低第一负极弯折层的负极集流体的外侧的负极活性物质层析锂的风险,提高电极组件的安全性能和使用寿命。
在一些实施例中,开孔贯穿负极集流体和负极集流体内侧的负极活性物质层。在另一些实施例中,开孔贯穿负极集流体和负极集流体外侧的负极活性物质层。在又一些实施例中,开孔贯穿负极集流体、负极集流体外侧的负极活性物质层和负极集流体内侧的负极活性物质层。
在一些实施例中,第一负极弯折层的负极活性物质层包括第一部分、第二部分和第三部分,第一部分设置于负极集流体的内侧,第二部分设置于负极集流体的外侧,第三部分设置于开孔内并连接第一部分和第二部分。设置在开孔内的第三部分也能够为锂离子提供嵌锂空间,从而降低析锂风险。
在一些实施例中,负极极片包括位于弯折区的多个负极弯折层,弯折区的最内侧的一个负极弯折层为第一负极弯折层。弯折区的最内侧的一个负极弯折层出现析锂的风险最高,因此,这样设置能够有效地降低析锂风险。
在一些实施例中,弯折区仅最内侧的一个负极弯折层为第一负极弯折层。这样可以减少开孔的数量,简化负极极片的制备工艺。
在一些实施例中,弯折区的所有的负极弯折层均为第一负极弯折层。
在一些实施例中,开孔为一个。在另一些实施例中,开孔为非连续的多个,多个开孔沿弯折区的弯折方向间隔分布。在又一些实施例中,多个开孔沿垂直于弯折方向的方向间隔分布。多个开孔可以使离子通道分布的更为均匀,提高离子穿过负极集流体的效率。
在一些实施例中,沿垂直于弯折方向的方向,开孔的尺寸与第一负极弯折层的尺寸之比为0.05-1.00。
在一些实施例中,电极组件具有平直区,弯折区为两个且分别连接于平直区的两端,两个弯折区均包括第一负极弯折层。
本申请的第二方面提供一种电池单体,其包括:壳体、盖板和至少一个上述实施例的电极组件。壳体具有容纳腔和开口,电极组件容纳于容纳腔中。盖板用于封闭壳体的开口。
本申请的第三方面提供一种电池,其包括箱体和至少一个上述实施例的电池单 体,电池单体收容于箱体内。
本申请的第四方面提供一种用电装置,用电装置被配置为接收从上述实施例的电池提供的电能。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1为本申请一实施例的一种用电装置的结构示意图;
图2为本申请一实施例的一种电池的结构示意图;
图3为本申请一实施例的一种电池模块的示意图;
图4为本申请一实施例的一种电池单体的结构示意图;
图5为本申请一实施例的一种电极组件的立体结构示意图;
图6为图5的电极组件沿垂直于卷绕轴线的方向的横截面的结构示意图;
图7为图6的电极组件的弯折区的结构示意图;
图8为图7的弯折区在圆框部分A的放大示意图;
图9为本申请一实施例的电极组件的负极极片在展平之后的结构示意图;
图10为本申请一实施例的电极组件的正极极片在展平之后的结构示意图;
图11为本申请另一实施例的电极组件的负极极片在展平之后的结构示意图;
图12为本申请又一实施例的电极组件的负极极片在展平之后的结构示意图;
图13为本申请另一实施例的电极组件沿垂直于卷绕轴线的方向的横截面的结构示意图;
图14为图13的电极组件在方框部分B的放大示意图;
图15为本申请另一实施例的电极组件沿垂直于卷绕轴线的方向的横截面的结构示意图;
图16为图15的电极组件在方框部分C的放大示意图;
图17为本申请另一实施例的电极组件沿垂直于卷绕轴线的方向的横截面的结构示意图;
图18为图17的电极组件在方框部分D的放大示意图;
图19为本申请另一实施例的电极组件沿垂直于卷绕轴线的方向的横截面的结构示意图;
图20为图19的电极组件在方框部分E的放大示意图。
在附图中,附图未必按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申 请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排它的包含。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序,可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请实施例描述的电池单体和电池均适用于用电装置,电池单体和电池向用电装置提供电能。例如,用电装置可以是手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
本申请实施例描述的电池单体和电池不仅仅局限适用于上述所描述的用电装置,还可以适用于所有使用电池的装置,但为描述简洁,下述实施例均以电动汽车为例进行说明。
例如,如图1所示,为本申请一实施例的一种用电装置的结构示意图,用电装置可以为车辆1,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置电池2、控制器3和马达4,控制器3用来控制电池2为马达4的供电。例如,在车辆1的底部或车头或车尾可以设置电池2。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
在本申请的另一实施例中,如图2所示,为本申请一实施例的一种电池的结构示意图,电池2包括一个或者多个电池模块21,例如,电池2包括多个电池模块21,多个电池模块21可以串联或并联或混联,混联是指串联和并联的混合。电池2还可以包括箱体22(或称罩体),箱体22内部为中空结构,多个电池模块21容纳于箱体22内。如图2所示,箱体22包括两部分,这里分别称为第一部分23和第二部分24,第一部分23和第二部分24扣合在一起。第一部分23和第二部分24的形状可以根据多个电池模块21组合的形状而定,第一部分23和第二部分24可以均具有一个开口。例如,第一部分23和第二部分24均可以为中空长方体且各自只有一个面为开口面,第一部分23的开口和第二部分24的开口相对设置,并且第一部分23和第二部分24相互扣合形成具有封闭腔室的箱体22。多个电池模块21相互并联或串联或混联组合后置于第一部分23和第二部分24扣合后形成的箱体22内。
可选地,电池2还可以包括其他结构,在此不再一一赘述。例如,该电池2还可以包括汇流部件,汇流部件用于实现多个电池单体之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体的电极端子实现电池单体之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体的电极端子。多个电池单体的电能可进一步通过导电机构穿过箱体22而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池模块21可以包括一个或多个电池单体,如图3所示,电池模块21包括多个电池单体25,多个电池单体25可通过串联、并联或混联的方式连接以实现较大的容量或功率。可选地,电池模块21还包括汇流部件26,汇流部件26用于实现多个电池单体25之间的电连接,例如并联或串联或混联。例如,电池单体包括含锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池或镁离子电池,但不局限于此。电池单体可呈圆柱体、扁平体、方形或其它形状等。例如,如图3所示,电池单体为方形结构。
如图4所示,为本申请一实施例的一种电池单体的结构示意图。电池单体包括外壳101和容置于外壳101内的一个或多个电极组件100,外壳101包括壳体102和盖 板103,壳体102具有容纳腔,且壳体102具有开口,即该平面不具有壳体壁而使得壳体102内外相通,以便电极组件100可以收容于壳体102的容纳腔内,盖板103与壳体102结合于壳体102的开口处以形成中空腔体,电极组件100容置于外壳101内后,外壳101内充有电解液并密封。
壳体102根据一个或多个电极组件100组合后的形状而定,例如,壳体102可以为中空长方体或中空正方体或中空圆柱体。例如,当壳体102为中空的长方体或正方体时,壳体102的其中一个平面为开口面,即该平面不具有壳体壁而使得壳体102内外相通;当壳体102为中空的圆柱体时,壳体102的其中一个圆形侧面为开口面,即该圆形侧面不具有壳体壁而使得壳体102内外相通。壳体102可由导电金属的材料或塑料制成,可选地,壳体102由铝或铝合金制成。
图5为本申请一实施例的一种电极组件的立体结构示意图;图6为图5的电极组件沿垂直于卷绕轴线的方向的横截面的结构示意图。参照图5和图6,本申请实施例的电极组件100包括正极极片110、负极极片120以及隔离膜130,其中,正极极片110、负极极片120和隔离膜130层叠后绕卷绕轴线K卷绕形成卷绕结构,隔离膜130为一种绝缘膜,用于隔开负极极片120和正极极片110,防止负极极片120和正极极片110短路。该电极组件100的卷绕结构为扁平体形状,该电极组件100沿垂直于卷绕轴线K的方向的横截面的结构示意图可以如图6所示。
结合图5和图6,该电极组件100包括弯折区140和平直区150,弯折区140为两个且分别连接于平直区150的两端。平直区150是指该卷绕结构中具有平行结构的区域,即在该平直区150内的负极极片120、正极极片110和隔离膜130相互基本平行,即电极组件在平直区150的每层负极极片120、正极极片110和隔离膜130的表面均为平面。弯折区140是指该卷绕结构中具有弯折结构的区域,即在该弯折区140内的负极极片120、正极极片110和隔离膜130均弯折,即电极组件在弯折区140的每层负极极片120、正极极片110和隔离膜130的表面均为曲面,该弯折区140具有弯折方向L,该弯折方向L可以理解为沿弯折区电极组件的表面指向平直区的方向,例如,该弯折方向L在该弯折区140沿该卷绕结构的卷绕方向。
图7为图6的电极组件的弯折区的结构示意图。参照图7,在一些示例中,正极极片110包括正极集流体111和设置于正极集流体111两个表面的正极活性物质层112,负极极片120包括负极集流体121和设置于负极集流体121两个表面的负极活性物质层122。正极活性物质层112包括正极活性物质,例如,正极活性物质可为锰酸锂、钴酸锂、磷酸铁锂或者镍钴锰酸锂。负极活性物质层122包括负极活性物质,负极活性物质可以是石墨或硅。在一些示例中,正极集流体111和负极集流体121为金属箔材,例如,正极集流体111为铝箔,负极集流体121为铜箔。
隔离膜130具有大量贯通的微孔,能够保证电解质离子自由通过,对锂离子有很好的透过性,所以,隔离膜130基本上不能阻挡锂离子通过。例如,隔离膜130包括隔膜基层和位于隔膜基层表面的功能层,隔膜基层可以是聚丙烯、聚乙烯、乙烯—丙烯共聚物、聚对苯二甲酸丁二醇酯等的至少一种,功能层可以是陶瓷氧化物和粘结剂的混合物层。
正极极片110包括位于弯折区140的正极弯折层113,负极极片120包括位于弯折区140的负极弯折层123。在一些示例中,正极弯折层113为多个,负极弯折层123为多个,多个正极弯折层113和多个负极弯折层123交替层叠。隔离膜130将相邻的正极弯折层113和负极弯折层123隔开。
锂离子电池在充电时,锂离子从正极极片脱嵌并嵌入负极极片,但是可能会发生一些异常情况,例如,负极极片嵌锂空间不足、锂离子嵌入负极极片阻力太大或锂离子过快的从正极极片脱嵌,脱嵌的锂离子无法等量的嵌入负极极片的负极活性物质层,无法嵌入负极极片的锂离子只能在负极极片表面得电子,从而形成金色的金属锂单质,这就是析锂现象。析锂不仅使锂离子电池性能下降,循环寿命大幅缩短,还限制了锂离子电池的快充容量。除此之外,锂离子电池发生析锂时,析出来的锂金属非常活泼,在较低的温度下便可以与电解液发生反应,造成电池自产热起始温度(Tonset)降低和自产热速率增大,严重危害电池的安全。再者,析锂严重时,脱嵌的锂离子可以在负极极片表面形成锂结晶,而锂结晶容易刺破隔离膜,造成相邻的正极极片和负极极片具有短路的风险。
发明人在研发过程中发现电极组件在其弯折区经常发生析锂现象,经过进一步研究发现,发明人找到了造成该析锂现象的原因是:在弯折区140,正极弯折层113的半径大于其内侧的负极弯折层123的半径,所以正极弯折层113的正极集流体111的内表面上的正极活性物质层112的弧长大于负极弯折层123的负极集流体121的外表面上的负极活性物质层122的弧长,正极弯折层113的正极集流体111的内表面上的正极活性物质层112脱嵌的锂离子嵌入其内侧的负极弯折层123的负极活性物质层122时,负极活性物质层122的嵌锂空间不足,因此,锂离子电池在充电时,容易发生析锂现象。
有鉴于此,本申请提供一种电极组件100,该电极组件100包括正极极片110和负极极片120,正极极片110包括正极集流体111和设置于正极集流体111两个表面的正极活性物质层112,负极极片120包括负极集流体121和设置于负极集流体121两个表面的负极活性物质层122。正极极片110和负极极片120经过卷绕后形成弯折区140。
图8为图7的弯折区在圆框部分A的放大示意图。参照图8,正极极片110包括位于弯折区140的第一正极弯折层113a,负极极片120包括位于弯折区140的第一负极弯折层123a,第一正极弯折层113a位于第一负极弯折层123a的外侧并与第一负极弯折层123a相邻设置。隔离膜130将第一正极弯折层113a和第一负极弯折层123a隔开。
第一负极弯折层123a具有贯穿负极集流体121的开孔H1,开孔H1被配置为:从第一正极弯折层113a的正极活性物质层112脱出的一部分离子能够穿过开孔H1并嵌入到设置于第一负极弯折层123a的负极集流体121的内侧的负极活性物质层122。开孔H1为开设在第一负极弯折层123a的负极集流体121上的离子通道。
第一负极弯折层123a的负极集流体121的内侧的负极活性物质层122能够为第一正极弯折层113a的正极活性物质层112提供嵌锂空间,降低第一负极弯折层123a的负极集流体121的外侧的负极活性物质层122析锂的风险,提高电极组件100的安全性 能和使用寿命。
另外,第一负极弯折层123a的半径大于其内侧的正极弯折层的半径,因此,即使从第一正极弯折层113a的正极活性物质层112脱出的一部分离子嵌入到设置于第一负极弯折层123a的负极集流体121的内侧的负极活性物质层122,第一负极弯折层123a的负极集流体121的内侧的负极活性物质层122仍然能够为第一负极弯折层123a的内侧的正极弯折层的正极活性物质层112所脱嵌的离子提供嵌锂空间,避免第一负极弯折层123a的负极集流体121的内侧的负极活性物质层122析锂的风险。
在本申请的另一些实施例中,参照图8,开孔H1贯穿负极集流体121和负极集流体121外侧的负极活性物质层122。开孔H1为开口面向第一正极弯折层113a的凹槽。
第一负极弯折层123a的负极活性物质层122包括第一部分1221和第二部分1222,第一部分1221设置于负极集流体121的内侧,第二部分1222设置于负极集流体121的外侧,开孔H1贯通第二部分1222和负极集流体121。第一部分1221从内侧覆盖开孔H1。
在本申请的另一些实施例中,弯折区140的最内侧的一个负极弯折层123为第一负极弯折层123a。弯折区140最内侧的极片弯折程度最大,最内侧的一个负极弯折层以及位于该负极弯折层外侧的正极弯折层的半径差值较大,也就是说,弯折区140的最内侧的一个负极弯折层123出现析锂的风险最高。因此,至少弯折区140的最内侧的一个负极弯折层123为设有开孔H1的第一负极弯折层123a。
在本申请的另一些实施例中,弯折区140仅最内侧的一个负极弯折层123为第一负极弯折层123a。这样可以减少开孔H1的数量,简化负极极片120的制备工艺。
图9为本申请一实施例的电极组件的负极极片在展平之后的结构示意图。参照图9,负极集流体121包括负极主体部1211和从负极主体部1211延伸的负极极耳部1212,负极活性物质层122至少部分涂覆于负极主体部1211的表面。在一些示例中,负极极耳部1212为多个;当负极极片120处于卷绕状态时,多个负极极耳部1212层叠在一起。
在展平状态下,负极极片120包括多个负极弯折层123和多个负极平直层124,沿负极极片120的长度方向X,多个负极平直层124和多个负极弯折层123交替布置。在卷绕成型的电极组件100中,多个负极平直层124位于电极组件100的平直区150,多个负极弯折层123位于电极组件100的弯折区140。
在一些实施例中,两个弯折区140均包括第一负极弯折层123a。例如,参照图9,负极极片120的两个相邻的负极弯折层123形成有开孔H1,负极极片120卷绕成型后,这两个相邻的负极弯折层123即为两个第一负极弯折层123a且分别位于两个弯折区140。在一些示例中,这两个相邻的负极弯折层123分别为两个弯折区140的最内侧的负极弯折层123。
在一些实施例中,第一负极弯折层123a的开孔H1为一个。参照图9,开口H1为沿负极极片的宽度方向Y延伸的条形孔。在卷绕成型的电极组件100中,宽度方向Y平行于卷绕轴线K且垂直于弯折方向L。
沿垂直于弯折方向L的方向,开孔H1的尺寸d1与第一负极弯折层123a的尺寸d2之比为0.05-1.00。如果该比值小于0.05,那么开孔H1的尺寸偏小,开口H1形成的离子通道较小,影响离子通过的效率。
图10为本申请一实施例的电极组件的正极极片在展平之后的结构示意图。参照图10,正极集流体111包括正极主体部1111和从正极主体部1111延伸的正极极耳部1112,正极活性物质层112至少部分涂覆于正极主体部1111的表面。在一些示例中,正极极耳部1112为多个;当正极极片110处于卷绕状态时,多个正极极耳部1112层叠在一起。
在展平状态下,正极极片110包括多个正极弯折层113和多个正极平直层114,沿正极极片110的长度方向X,多个正极平直层114和多个正极弯折层113交替布置。在卷绕成型的电极组件100中,多个正极平直层114位于电极组件100的平直区150,多个正极弯折层113位于电极组件100的弯折区140。
图11为本申请另一实施例的电极组件的负极极片在展平之后的结构示意图。参照图11,开孔H1为非连续的多个,多个开孔H1沿弯折区140的弯折方向L间隔分布。多个开孔H1可以使离子通道分布的更为均匀,提高离子穿过负极集流体121的效率。在一些示例中,各开口H1为沿宽度方向Y延伸的条形孔。沿垂直于弯折方向L的方向,各开孔H1的尺寸与第一负极弯折层123a的尺寸之比为0.05-1.00。
图12为本申请又一实施例的电极组件的负极极片在展平之后的结构示意图。参照图12,多个开孔H1沿垂直于弯折方向L的方向间隔分布。多个开孔H1可以使离子通道分布的更为均匀,提高离子穿过负极集流体121的效率。在一些示例中,各开口H1为沿长度方向X延伸的条形孔。沿垂直于弯折方向L的方向,各开孔H1的尺寸与第一负极弯折层123a的尺寸之比为0.05-0.2。
图13为本申请另一实施例的电极组件沿垂直于卷绕轴线的方向的横截面的结构示意图。图14为图13的电极组件在方框部分B的放大示意图。
参照图13和14,本申请实施例还提供了一种电极组件200,该电极组件200包括正极极片210和负极极片220,正极极片210包括正极集流体211和设置于正极集流体211两个表面的正极活性物质层212,负极极片220包括负极集流体221和设置于负极集流体221两个表面的负极活性物质层。正极极片210和负极极片220经过卷绕后形成弯折区240和平直区250。
正极极片210包括位于弯折区240的第一正极弯折层213a,负极极片220包括位于弯折区240的第一负极弯折层223a,第一正极弯折层213a位于第一负极弯折层223a的外侧并与第一负极弯折层223a相邻设置。隔离膜230将第一正极弯折层213a和第一负极弯折层223a隔开。
第一负极弯折层223a具有贯穿负极集流体221的开孔H2,开孔H2被配置为:从第一正极弯折层213a的正极活性物质层212脱出的一部分离子能够穿过开孔H2并嵌入到设置于第一负极弯折层223a的负极集流体221的内侧的负极活性物质层。开孔H2为开设在第一负极弯折层223a的负极集流体221上的离子通道。
开孔H2贯穿负极集流体121和负极集流体121内侧的负极活性物质层。第一负 极弯折层223a的负极活性物质层包括第一部分2221和第二部分2222,第一部分2221设置于负极集流体221的内侧,第二部分2222设置于负极集流体221的外侧,开孔H2贯通第一部分2221和负极集流体221。第二部分2222从外侧覆盖开孔H2。在此补充的是,离子能够在负极活性物质层中移动,第二部分2222不会阻挡离子穿过开孔H2。
图15为本申请另一实施例的电极组件沿垂直于卷绕轴线的方向的横截面的结构示意图。图16为图15的电极组件在方框部分C的放大示意图。
参照图15和16,本申请实施例还提供了一种电极组件300,该电极组件300包括正极极片310和负极极片320,正极极片310包括正极集流体311和设置于正极集流体311两个表面的正极活性物质层312,负极极片320包括负极集流体321和设置于负极集流体321两个表面的负极活性物质层。正极极片310和负极极片320经过卷绕后形成弯折区340和平直区350。
正极极片310包括位于弯折区340的第一正极弯折层313a,负极极片320包括位于弯折区340的第一负极弯折层323a,第一正极弯折层313a位于第一负极弯折层323a的外侧并与第一负极弯折层323a相邻设置。隔离膜330将第一正极弯折层313a和第一负极弯折层323a隔开。
第一负极弯折层323a具有贯穿负极集流体321的开孔H3,开孔H3被配置为:从第一正极弯折层313a的正极活性物质层312脱出的一部分离子能够穿过开孔H3并嵌入到设置于第一负极弯折层323a的负极集流体321的内侧的负极活性物质层。开孔H3为开设在第一负极弯折层323a的负极集流体321上的离子通道。
开孔H3贯穿负极集流体321、负极集流体321外侧的负极活性物质层和负极集流体321内侧的负极活性物质层。第一负极弯折层323a的负极活性物质层包括第一部分3221和第二部分3222,第一部分3221设置于负极集流体321的内侧,第二部分3222设置于负极集流体321的外侧,开孔H3贯通第一部分3221、负极集流体321和第二部分3222。开孔H3可通过冲切形成,简化负极极片320成型工艺。
图17为本申请另一实施例的电极组件沿垂直于卷绕轴线的方向的横截面的结构示意图。图18为图17的电极组件在方框部分D的放大示意图。
参照图17和18,本申请实施例还提供了一种电极组件400,该电极组件400包括正极极片410和负极极片420,正极极片410包括正极集流体411和设置于正极集流体411两个表面的正极活性物质层412,负极极片420包括负极集流体421和设置于负极集流体421两个表面的负极活性物质层。正极极片410和负极极片420经过卷绕后形成弯折区440和平直区450。
正极极片410包括位于弯折区440的第一正极弯折层413a,负极极片420包括位于弯折区440的第一负极弯折层423a,第一正极弯折层413a位于第一负极弯折层423a的外侧并与第一负极弯折层423a相邻设置。隔离膜430将第一正极弯折层413a和第一负极弯折层423a隔开。
第一负极弯折层423a具有贯穿负极集流体421的开孔H4,开孔H4被配置为:从第一正极弯折层413a的正极活性物质层412脱出的一部分离子能够穿过开孔H4并嵌入到设置于第一负极弯折层423a的负极集流体421的内侧的负极活性物质层。开孔H4 为开设在第一负极弯折层423a的负极集流体421上的离子通道。
第一负极弯折层423a的负极活性物质层包括第一部分4221、第二部分4222和第三部分4223,第一部分4221设置于负极集流体421的内侧,第二部分4222设置于负极集流体421的外侧,第三部分4223设置于开孔H4内并连接第一部分4221和第二部分4222。设置在开孔H4内的第三部分4223也能够为锂离子提供嵌锂空间,从而降低析锂风险。
图19为本申请另一实施例的电极组件沿垂直于卷绕轴线的方向的横截面的结构示意图。图20为图19的电极组件在方框部分E的放大示意图。
参照图19和20,本申请实施例还提供了一种电极组件500,该电极组件500包括正极极片510和负极极片520,正极极片510包括正极集流体511和设置于正极集流体511两个表面的正极活性物质层512,负极极片520包括负极集流体521和设置于负极集流体521两个表面的负极活性物质层。正极极片510和负极极片520经过卷绕后形成弯折区540和平直区550。
正极极片510包括位于弯折区540的多个正极弯折层513,负极极片520包括位于弯折区540的多个负极弯折层。多个正极弯折层513和多个负极弯折层交替设置。弯折区540的所有的负极弯折层均为第一负极弯折层523a,其中,各第一负极弯折层523a具有贯穿负极集流体521的开孔H5。开孔H5为开设在第一负极弯折层523a的负极集流体521上的离子通道。
各第一负极弯折层523a的负极活性物质层包括第一部分5221、第二部分5222和第三部分5223,第一部分5221设置于负极集流体521的内侧,第二部分5222设置于负极集流体521的外侧,第三部分5223设置于开孔H5内并连接第一部分5221和第二部分5222。设置在开孔H5内的第三部分5223也能够为锂离子提供嵌锂空间,从而降低析锂风险。
在另一些实施例中,一些负极弯折层为具有开孔H5的第一负极弯折层523a,另一些负极弯折层为不设置开孔H5的第二负极弯折层。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件,尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (12)

  1. 一种电极组件,包括正极极片和负极极片,所述正极极片包括正极集流体和设置于所述正极集流体两个表面的正极活性物质层,所述负极极片包括负极集流体和设置于所述负极集流体两个表面的负极活性物质层;
    所述正极极片和所述负极极片经过卷绕后形成弯折区,所述正极极片包括位于所述弯折区的第一正极弯折层,所述负极极片包括位于所述弯折区的第一负极弯折层,所述第一正极弯折层位于所述第一负极弯折层的外侧并与所述第一负极弯折层相邻设置;
    所述第一负极弯折层具有贯穿所述负极集流体的开孔,所述开孔被配置为:从所述第一正极弯折层的所述正极活性物质层脱出的一部分离子能够穿过所述开孔并嵌入到设置于所述第一负极弯折层的所述负极集流体的内侧的所述负极活性物质层。
  2. 根据权利要求1所述的电极组件,其中,
    所述开孔贯穿所述负极集流体和所述负极集流体内侧的所述负极活性物质层;或
    所述开孔贯穿所述负极集流体和所述负极集流体外侧的所述负极活性物质层;或
    所述开孔贯穿所述负极集流体、所述负极集流体外侧的所述负极活性物质层和所述负极集流体内侧的所述负极活性物质层。
  3. 根据权利要求1所述的电极组件,其中,所述第一负极弯折层的所述负极活性物质层包括第一部分、第二部分和第三部分,所述第一部分设置于所述负极集流体的内侧,所述第二部分设置于所述负极集流体的外侧,所述第三部分设置于所述开孔内并连接所述第一部分和所述第二部分。
  4. 根据权利要求1-3中任一项所述的电极组件,其中,所述负极极片包括位于所述弯折区的多个负极弯折层,所述弯折区的最内侧的一个所述负极弯折层为所述第一负极弯折层。
  5. 根据权利要求4所述的电极组件,其中,所述弯折区仅最内侧的一个所述负极弯折层为所述第一负极弯折层。
  6. 根据权利要求4所述的电极组件,其中,所述弯折区的所有的所述负极弯折层均为所述第一负极弯折层。
  7. 根据权利要求1-6中任一项所述的电极组件,其中,
    所述开孔为一个;或者
    所述开孔为非连续的多个,多个所述开孔沿所述弯折区的弯折方向间隔分布;或者
    多个所述开孔沿垂直于所述弯折方向的方向间隔分布。
  8. 根据权利要求7所述的电极组件,其中,沿垂直于所述弯折方向的方向,所述开孔的尺寸与所述第一负极弯折层的尺寸之比为0.05-1.00。
  9. 根据权利要求1-8中任一项所述的电极组件,其中,所述电极组件具有平直区,所述弯折区为两个且分别连接于所述平直区的两端,两个所述弯折区均包括所述第一 负极弯折层。
  10. 一种电池单体,包括:壳体、盖板和至少一个如权利要求1-9任一项所述的电极组件;
    所述壳体具有容纳腔和开口,所述电极组件容纳于所述容纳腔中;
    所述盖板用于封闭所述壳体的开口。
  11. 一种电池,包括箱体和至少一个如权利要求10所述的电池单体,所述电池单体收容于所述箱体内。
  12. 一种用电装置,所述用电装置被配置为接收从权利要求11所述的电池提供的电能。
PCT/CN2021/110976 2020-10-27 2021-08-05 电极组件、电池单体、电池以及用电装置 WO2022088824A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180042489.7A CN115943513A (zh) 2020-10-27 2021-08-05 电极组件、电池单体、电池以及用电装置
KR1020227031425A KR20220139383A (ko) 2020-10-27 2021-08-05 전극 어셈블리, 전지 셀, 전지 및 전력 소비 장치
JP2022554387A JP2023517924A (ja) 2020-10-27 2021-08-05 電極組立体、電池セル、電池及び電力消費装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022421832.4U CN213692108U (zh) 2020-10-27 2020-10-27 电极组件、电池单体、电池以及用电装置
CN202022421832.4 2020-10-27

Publications (1)

Publication Number Publication Date
WO2022088824A1 true WO2022088824A1 (zh) 2022-05-05

Family

ID=76761753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110976 WO2022088824A1 (zh) 2020-10-27 2021-08-05 电极组件、电池单体、电池以及用电装置

Country Status (4)

Country Link
JP (1) JP2023517924A (zh)
KR (1) KR20220139383A (zh)
CN (2) CN213692108U (zh)
WO (1) WO2022088824A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116565128A (zh) * 2023-07-07 2023-08-08 宁德新能源科技有限公司 电化学装置和用电设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213692108U (zh) * 2020-10-27 2021-07-13 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电装置
CA3198762A1 (en) * 2021-08-05 2022-02-09 Shengwu Zhang Electrode assembly and processing method and device therefor, battery cell, battery and power consuming device
CN116964803A (zh) * 2021-12-30 2023-10-27 宁德时代新能源科技股份有限公司 电极组件、二次电池、电池模块、电池包及用电装置
CN114759270A (zh) * 2022-03-01 2022-07-15 无锡先导智能装备股份有限公司 电芯成型设备、电芯成型工艺及电芯
CN114744147B (zh) * 2022-06-13 2022-10-11 宁德时代新能源科技股份有限公司 正极极片、电极组件、电池单体、电池及用电设备
WO2024087200A1 (zh) * 2022-10-28 2024-05-02 宁德时代新能源科技股份有限公司 集流体、极片及其制备方法、电极组件及二次电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058888A1 (en) * 2003-09-12 2005-03-17 Aamodt Paul B. Lithium-limited anode subassembly
CN101253588A (zh) * 2005-08-30 2008-08-27 富士重工业株式会社 锂离子电容器
CN103022408A (zh) * 2011-09-27 2013-04-03 三菱自动车工业株式会社 二次电池
CN103563158A (zh) * 2011-07-22 2014-02-05 松下电器产业株式会社 非水电解质二次电池
CN208127332U (zh) * 2018-03-19 2018-11-20 宁德时代新能源科技股份有限公司 电极组件和二次电池
WO2019017257A1 (ja) * 2017-07-18 2019-01-24 Jsr株式会社 蓄電デバイス
CN110970653A (zh) * 2018-09-28 2020-04-07 三洋电机株式会社 非水电解质二次电池
CN213692108U (zh) * 2020-10-27 2021-07-13 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058888A1 (en) * 2003-09-12 2005-03-17 Aamodt Paul B. Lithium-limited anode subassembly
CN101253588A (zh) * 2005-08-30 2008-08-27 富士重工业株式会社 锂离子电容器
CN103563158A (zh) * 2011-07-22 2014-02-05 松下电器产业株式会社 非水电解质二次电池
CN103022408A (zh) * 2011-09-27 2013-04-03 三菱自动车工业株式会社 二次电池
WO2019017257A1 (ja) * 2017-07-18 2019-01-24 Jsr株式会社 蓄電デバイス
CN208127332U (zh) * 2018-03-19 2018-11-20 宁德时代新能源科技股份有限公司 电极组件和二次电池
CN110970653A (zh) * 2018-09-28 2020-04-07 三洋电机株式会社 非水电解质二次电池
CN213692108U (zh) * 2020-10-27 2021-07-13 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116565128A (zh) * 2023-07-07 2023-08-08 宁德新能源科技有限公司 电化学装置和用电设备
CN116565128B (zh) * 2023-07-07 2023-11-03 宁德新能源科技有限公司 电化学装置和用电设备

Also Published As

Publication number Publication date
CN115943513A (zh) 2023-04-07
KR20220139383A (ko) 2022-10-14
JP2023517924A (ja) 2023-04-27
CN213692108U (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2022088824A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2022142693A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
US11757161B2 (en) Battery cell, battery and electricity consuming device
WO2023246134A1 (zh) 极片、电极组件、电池单体、电池及用电设备
CN115425372B (zh) 电极极片、电极组件、电池单体、电池和用电设备
CN217334332U (zh) 电极组件、电池单体、电池及用电装置
US20230238540A1 (en) Electrode assembly, battery cell, battery, and method and device for manufacturing electrode assembly
WO2023273390A1 (zh) 集流构件、电池单体、电池以及用电装置
WO2022127403A1 (zh) 电极组件、电池单体、电池以及用电装置
US20220311056A1 (en) Electrode assembly, battery cell, battery, manufacturing method and device for electrode assembly
US20240088449A1 (en) Winding type electrode assembly, battery cell, battery and power consumption device
WO2024045692A1 (zh) 电池模组、电池以及用电装置
WO2023155555A1 (zh) 电池单体、电池和用电设备
US20220367985A1 (en) Electrode assembly, battery cell, battery, electrical apparatus, and manufacturing method and device
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023060517A1 (zh) 一种极片、电极组件、电池单体、电池以及用电设备
WO2022170492A1 (zh) 电池、用电装置、制备电池的方法和设备
WO2022126547A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022126634A1 (zh) 电极组件及其制造方法和制造系统、电池单体、电池及用电装置
WO2022170493A1 (zh) 电池、用电装置、制备电池的方法和设备
CN216720084U (zh) 电池单体、电池及用电设备
CN117199644B (zh) 电池单体、电池以及用电装置
WO2023092300A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2024040503A1 (zh) 电极组件、制备方法、电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022554387

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20227031425

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884559

Country of ref document: EP

Kind code of ref document: A1