WO2022047791A1 - 电池单体、电池以及用电装置 - Google Patents

电池单体、电池以及用电装置 Download PDF

Info

Publication number
WO2022047791A1
WO2022047791A1 PCT/CN2020/113796 CN2020113796W WO2022047791A1 WO 2022047791 A1 WO2022047791 A1 WO 2022047791A1 CN 2020113796 W CN2020113796 W CN 2020113796W WO 2022047791 A1 WO2022047791 A1 WO 2022047791A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab
main body
dimension
along
battery cell
Prior art date
Application number
PCT/CN2020/113796
Other languages
English (en)
French (fr)
Inventor
金海族
武新战
李振华
游凯杰
陈文伟
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202080095950.0A priority Critical patent/CN115066802A/zh
Priority to BR112022014657A priority patent/BR112022014657A2/pt
Priority to EP20952033.7A priority patent/EP4080668A4/en
Priority to PCT/CN2020/113796 priority patent/WO2022047791A1/zh
Priority to AU2020466884A priority patent/AU2020466884B2/en
Publication of WO2022047791A1 publication Critical patent/WO2022047791A1/zh
Priority to US17/894,015 priority patent/US20220416375A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a battery cell, a battery and an electrical device.
  • Batteries include multiple battery cells connected in series or in parallel to achieve greater capacity or power.
  • the electrode assembly of the battery cell includes a main body portion and a tab.
  • the main body is used to generate or store electrical energy.
  • the tabs are used to electrically connect the body portion to external mechanical parts.
  • the capacity of the battery cells is bound to be higher and higher, so the size of the main body of the electrode assembly is correspondingly larger.
  • the tabs may generate serious heat, which affects the safety of battery cells.
  • the present application provides a battery cell, a battery and an electrical device, aiming at solving the technical problem of serious heat generation in the tabs.
  • the embodiment of the present application provides a battery cell, including:
  • the electrode assembly includes a body portion and a first tab.
  • the first dimension L1 of the main body part along its own length direction is larger than the second dimension L2 of the main body part along its own width direction.
  • the first tab is located at at least one end of the main body portion in the width direction.
  • the first tab has a third dimension L3 along the length.
  • the first size L1, the second size L2 and the third size L3 satisfy: 0.5L2 ⁇ L3 ⁇ L1.
  • the battery cells of the embodiments of the present application include electrode assemblies.
  • the electrode assembly includes a body portion and a first tab.
  • the first tab is located at at least one end of the main body portion in the width direction. Since the first dimension L1 of the main body part in the longitudinal direction is larger than the second dimension L2 of the main body part in the width direction, the size of the first tab disposed on the end surface of the main body part corresponding to the longitudinal direction is no longer affected by the width of the main body part.
  • the third dimension L3 of the first tab along the length direction can be set to be greater than or equal to one-half of the second dimension L2 of the main body along the width direction, which is beneficial to improve the first
  • the over-current capability of the pole ear reduces the possibility of serious heating of the first pole due to insufficient over-current capability.
  • the first size L1, the second size L2, and the third size L3 satisfy: L2 ⁇ L3 ⁇ L1.
  • the third dimension L3 of the first tab along the length direction may be greater than or equal to the second dimension L2 of the main body portion along the width direction, which is beneficial to further improve the current flow capacity of the first tab.
  • the first size L1 and the second size L2 satisfy: the ratio of L1/L2 ranges from 4 to 20.
  • the battery cell further includes: a case, in which the electrode assembly is located; a first end cap, located on one side of the electrode assembly along the length direction, and used to close the first opening of the case; An electrode terminal is arranged on the first end cover; and a first transfer part is used for connecting the first electrode terminal and the first tab.
  • the electrode assembly further includes a second tab with opposite polarity to the first tab, and the first tab and the second tab are respectively located at opposite ends of the main body portion along the width direction.
  • the first tab and the second tab are independently arranged, so that each can make full use of the area of the corresponding end face to select the size along the length direction, so that the size selection restriction of the first tab and the second tab along the length direction is more limited. Smaller, more choices.
  • the second tab has a fourth size L4 along the length direction, and the first size L1, the second size L2 and the fourth size L4 satisfy: 0.5L2 ⁇ L4 ⁇ L1. Since the first dimension L1 of the main body part along the length direction is larger than the second dimension L2 of the main body part along the width direction, the size of the second tab disposed on the end face is no longer limited by the second dimension L2 of the main body part along the width direction , so that the fourth dimension L4 of the second tab along the length direction can be set to be greater than or equal to one-half of the second dimension L2 of the main body along the width direction, thereby helping to improve the overcurrent capability of the second tab, so that The overcurrent capability of the second tab can meet the overcurrent requirement of the main body portion after the capacity of the main body portion is increased, thereby reducing the possibility of serious heat generation of the second tab due to insufficient overcurrent capability.
  • the electrode assembly further includes a second tab with opposite polarity to the first tab, the first tab and the second tab are located at the same end of the main body portion along the width direction, and both are located along the width direction. Length direction interval setting.
  • the first size L1, the second size L2 and the third size L3 satisfy: 0.5L2 ⁇ L3 ⁇ 0.5L1
  • the second tab has a fourth size L4 along the length direction
  • the first size L1 , the second size L2 and the fourth size L4 satisfy: 0.5L2 ⁇ L4 ⁇ 0.5L1.
  • the first tab and the second tab do not contact each other, which ensures that the first tab and the second tab do not short-circuit each other while satisfying the overcurrent capability.
  • the first adapter member includes a first adapter plate and a second adapter plate, the first adapter plate is used for connecting the first electrode terminal, and the second adapter plate is used for connecting the first adapter plate Pole ear.
  • the electrode assembly further includes a second tab with a polarity opposite to that of the first tab, the first tab includes two first sub-tabs, and the two first sub-tabs are respectively located on the main body Both ends of the main body portion along the width direction, the second pole tab includes two second sub-pole tabs, and the two second sub-pole tabs are respectively located at both ends of the main body portion along the width direction.
  • the first sub-tab tabs and the second sub-tab tabs at the same end of the main body portion are arranged at intervals along the length direction.
  • the method of dividing the first tab and the second tab into two first sub tabs and two second sub tabs, on the one hand, can effectively reduce the number of tab layers disposed at one end of the main body, thereby effectively reducing the The total number of layers of the first tab or the second tab disposed at one end of the main body is large, which results in a large thickness of the first tab and the second tab, respectively.
  • the first adapter component includes a first adapter plate and two second adapter plates, the first adapter plate is used to connect the first electrode terminals, and the two second adapter plates are respectively Used to connect two first sub-tabs.
  • both the two first sub-tabs and the two second sub-tabs are arranged in a staggered manner along the width direction.
  • the second adapter plate includes a body portion and a bent portion, the body portion is used to connect to the first adapter plate, and the bent portion is used to connect to the first tab.
  • the first tab and the bent portion can be connected and fixed first, and then the bent portion can be bent toward the body portion to a predetermined position. In this way, the possibility of difficulty in connecting the first tab and the second adaptor plate due to the closeness of the second adaptor plate to the main body portion can be reduced, and the convenience of connection between the first tab and the second adaptor plate can be improved.
  • the battery cell further includes: a second end cover, located on the other side of the electrode assembly along the length direction, and used to close the second opening of the case; a second electrode terminal, disposed on the second an end cap; a second adapter part, used for connecting the second electrode terminal and the second electrode lug.
  • the battery cell of the embodiment of the present application includes a case and an electrode assembly.
  • the electrode assembly is arranged in the casing.
  • a surface of the body portion of the electrode assembly that is parallel to the width direction faces the first opening of the case.
  • the end face of the main body part parallel to the longitudinal direction faces the side wall of the casing.
  • the first tab is arranged on the end face of the main body. The first tab is located between the end face of the main body portion and the housing.
  • the second size L2 and the third size L3 satisfy: 0.5L2 ⁇ L3 ⁇ L1
  • the size of the first tab is no longer affected by the body portion in the width direction
  • the limitation of the second size L2 of further helps to improve the overcurrent capability of the first tab, and reduces the possibility of serious self-heating of the first tab due to insufficient overcurrent capability.
  • the overall length of the electrode assembly is no longer limited by the overcurrent capability of the first tab, so that an electrode assembly with a longer length and a constant width can be manufactured, which effectively improves the energy density of the electrode assembly, and is also conducive to improving the The energy density of the battery cell does not increase the space occupancy rate of the entire battery cell in the width direction.
  • the embodiments of the present application further provide a battery, which includes the battery cells of the above-mentioned embodiments.
  • Embodiments of the present application further provide an electrical device, which includes the battery cells of the above-mentioned embodiments, and the battery cells are used to provide electrical energy.
  • FIG. 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic partial structure diagram of a battery module disclosed in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an exploded structure of a battery cell disclosed in an embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional structural diagram of the battery cell shown in the embodiment of FIG. 4;
  • FIG. 6 is a schematic diagram of an exploded structure of a battery cell disclosed in another embodiment of the present application.
  • FIG. 7 is a schematic diagram of an exploded structure of a battery cell disclosed in another embodiment of the present application.
  • FIG. 8 is a schematic cross-sectional structural diagram of the battery cell shown in the embodiment of FIG. 7;
  • FIG. 9 is an exploded structure of a battery cell disclosed in another embodiment of the present application.
  • FIG. 10 is an exploded structure of a battery cell disclosed in still another embodiment of the present application.
  • the tabs had serious heating problems, they conducted research and analysis on the battery cells.
  • the applicant has found that, as the energy density of the battery cell is getting higher and higher, and the space occupancy rate of the battery cell itself needs to meet the requirements, the structure of the battery cell is made into a long strip-shaped flat structure, As a result, the length of the main body of the electrode assembly is increased and the elongated flat structure is formed.
  • the tabs extend from the end face of the main body in the width direction.
  • the tabs extending from the end face corresponding to the width direction of the main body have the problem of insufficient overcurrent capability and cannot meet the fast charging requirement.
  • the applicant makes structural improvements to the tabs, such as increasing the size of the tabs. However, increasing the size of the tab in the width direction still has the problem of insufficient overcurrent capability of the tab.
  • the applicant improves the structure of the battery cell, and the embodiments of the present application are further described below.
  • the embodiment of the present application provides an electrical device using the battery 10 as a power source.
  • the electrical device can be, but not limited to, a vehicle, a ship, or an aircraft.
  • an embodiment of the present application provides a vehicle 1 .
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle. New energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles.
  • the vehicle 1 may include a motor 1 a , a controller 1 b and a battery 10 .
  • the controller 1b is used to control the battery 10 to supply power to the motor 1a.
  • the motor 1a is connected to the wheels through a transmission mechanism, thereby driving the vehicle 1 to travel.
  • the battery 10 can be used as a driving power source of the vehicle 1 to provide driving power for the vehicle 1 in place of or partially in place of fuel or natural gas.
  • the battery 10 may be provided at the bottom, front or rear of the vehicle 1 .
  • the battery 10 may be used to power the vehicle 1 .
  • the battery 10 may be used as the operating power source of the vehicle 1 for the electrical system of the vehicle 1 .
  • the battery 10 can be used for the operating power requirements of the vehicle 1 for starting, navigating and running.
  • the battery 10 may include more than two battery modules 20 .
  • the battery 10 also includes a case.
  • the battery module 20 is disposed in the box. Two or more battery modules 20 are arranged in the box.
  • the type of cabinet is not limited.
  • the case can be a frame-shaped case, a disc-shaped case, a box-shaped case, or the like.
  • the box body includes a first casing 11 for accommodating the battery module 20 and a second casing 12 covering with the first casing 11 .
  • the first casing 11 and the second casing 12 are closed to form an accommodating portion for accommodating the battery module 20 .
  • the battery module 20 may include one or more battery cells.
  • a plurality of battery cells 30 can be connected in series or in parallel or mixed to form a battery module, and then a plurality of battery modules 20 can be connected in series or in parallel or mixed to form a battery.
  • the battery may include a plurality of battery cells 30, wherein the plurality of battery cells 30 may be connected in series or in parallel or in a mixed connection, and a mixed connection refers to a mixture of series and parallel connection.
  • the plurality of battery cells 30 may be directly disposed in the box.
  • a plurality of battery cells can directly form a battery, or a battery module can be formed first, and then the battery module can be formed into a battery.
  • the battery cell 30 includes, but is not limited to, a lithium-ion-containing secondary battery, a lithium-ion primary battery, a lithium-sulfur battery, a sodium-lithium-ion battery, or a magnesium-ion battery.
  • the battery cell 30 of the embodiment of the present application includes a casing 31 and an electrode assembly 32 disposed in the casing 31 .
  • the housing 31 in the embodiment of the present application has a square structure or other shapes.
  • the case 31 has an inner space for accommodating the electrode assembly 32 and the electrolyte, and a first opening 311 communicating with the inner space.
  • the housing 31 may be made of a material such as aluminum, aluminum alloy, or plastic.
  • the electrode assembly 32 of the embodiment of the present application may be formed by stacking or winding the first pole piece, the second pole piece and the separator between the first pole piece and the second pole piece, wherein the separator is interposed between the first pole piece and the second pole piece. an insulator between the pole piece and the second pole piece.
  • Both the first pole piece and the second pole piece include coated and uncoated regions.
  • the active material is coated on the coated area of the first pole piece and on the coated area of the second pole piece. On the coated area, the active material is coated on the current collector formed of the metal sheet, while the active material is not coated on the uncoated area.
  • the electrode assembly 32 includes a main body portion 321 and a first tab 322 . After being stacked, the coating area of the first pole piece, the coating area of the second pole piece, and the diaphragm are laminated to form the main body portion 321. The uncoated regions of the first pole pieces are stacked to form first tabs 322 . The uncoated regions of the second pole pieces are stacked to form the second pole tabs 323 .
  • the polarities of the first tab 322 and the second tab 323 are opposite. For example, when the first tab 322 is the positive tab, the second tab 323 is the negative tab. When the first tab 322 is a negative tab, the second tab 323 is a positive tab.
  • the main body portion 321 has a predetermined length, width and thickness.
  • the length refers to the dimension of the main body 321 along its own longitudinal direction X
  • the width refers to the dimension of the main body 321 along its own width direction Y
  • the thickness refers to the dimension of the main body 321 along its own thickness direction Z.
  • the first dimension of the main body portion 321 along its own longitudinal direction X is L1
  • the second dimension along its own width direction Y is L2.
  • the longitudinal direction X, the width direction Y, and the thickness direction Z are perpendicular to each other.
  • the first dimension L1 of the main body portion 321 is larger than the second dimension L2 of the main body portion 321 .
  • the main body portion 321 has opposite ends disposed along its own width direction Y, and each end has an end surface 321a. After the electrode assembly 32 is installed in the case 31 , the end surface 321 a of the main body portion 321 faces the case 31 .
  • the first tab 322 extends from one end surface 321 a of the main body portion 321 .
  • the third dimension of the first tab 322 along the length direction X is L3.
  • the first size L1, the second size L2 and the third size L3 satisfy: 0.5L2 ⁇ L3 ⁇ L1.
  • the third size L3 may be 0.5L2, 0.6L2, 0.7L2, 0.8L2, 0.9L2, L2, 0.1L1, 0.2L1, 0.3L1, 0.4L1, 0.5L1, 0.6L1, 0.7L1, 0.8L1, 0.9 L1 or L1 etc.
  • the battery cell 30 in the embodiment of the present application includes a casing 31 and an electrode assembly 32 .
  • the electrode assembly 32 is disposed in the casing 31 .
  • a surface of the main body portion 321 of the electrode assembly 32 that is parallel to the width direction Y faces the first opening 311 of the case 31 .
  • An end surface 321 a of the main body portion 321 parallel to the longitudinal direction X faces the side wall of the casing 31 .
  • the first tab 322 is disposed on the end surface 321 a of the main body portion 321 .
  • the first tab 322 is located between the end surface 321 a of the main body portion 321 and the housing 31 .
  • the second size L2 and the third size L3 satisfy: 0.5L2 ⁇ L3 ⁇ L1
  • the size of the first tab 322 is no longer affected by the body portion
  • the limitation of the second dimension L2 of 321 along the width direction Y is further beneficial to improve the overcurrent capability of the first tab 322 and reduce the possibility of serious self-heating of the first tab 322 due to insufficient overcurrent capability.
  • the overall length of the electrode assembly 32 is no longer limited by the overcurrent capability of the first tab 322, so that the electrode assembly 32 with a longer length and a constant width can be manufactured, which effectively improves the energy density of the electrode assembly 32, and also It is beneficial to improve the energy density of the battery cells 30 without increasing the space occupancy rate of the battery cells 30 in the width direction Y as a whole.
  • the width direction Y of the battery cells 30 is the same as the height direction of the vehicle 1 . Due to the space limitation in the height direction of the vehicle 1, the width of the battery cells 30 is also strictly limited, so when the capacity of the battery cells 30 needs to be increased, the width of the battery cells 30 cannot be increased infinitely, and the battery cells 30 can be enlarged.
  • the length of the monomer 30 is also strictly limited, so when the capacity of the battery cells 30 needs to be increased, the width of the battery cells 30 cannot be increased infinitely, and the battery cells 30 can be enlarged.
  • the first dimension L1 of the main body portion 321 along the length direction X and the second dimension L2 of the main body portion 321 satisfy: the ratio of L1 / L2 ranges from 4 to 20.
  • the value of the first dimension L1 is 35 centimeters (cm) to 100 centimeters (cm).
  • the first size L1, the second size L2 and the third size L3 satisfy: L2 ⁇ L3 ⁇ L1.
  • the third size L3 may be L2, 2L2, 3L2, 4L2, 5L2, or the like.
  • the third dimension L3 of the first tab 322 along the length direction X may be greater than or equal to the second dimension L2 of the main body portion 321 along the width direction Y, which is beneficial to further improve the current flow capacity of the first tab 322 .
  • the battery cell 30 of the embodiment of the present application further includes a first end cover 33 , a first electrode terminal 34 and a first transition part 35 .
  • the first end cap 33 is connected to the casing 31 and closes the first opening 311 of the casing 31 .
  • the first end cap 33 and the housing 31 may be welded.
  • the first end cap 33 is located on one side of the electrode assembly 32 along the length direction X. As shown in FIG. Along the length direction X, the surfaces of the first end cap 33 and the main body portion 321 parallel to the width direction Y are disposed opposite to each other.
  • the first electrode terminal 34 is disposed on the first end cap 33 .
  • the outer shape of the first electrode terminal 34 may be circular or square, which is not limited here.
  • the first electrode terminal 34 is electrically connected to the first tab 322 of the electrode assembly 32 through the first transition member 35.
  • the third dimension L3 of the first tab 322 along the length direction X is smaller than the first dimension L1 of the main body portion 321 along the length direction X, the first tab 322 is disposed in the area of the main body portion 321 close to the first end cap 33 , so that the It is beneficial to shorten the connection path of the first adapter part 35 .
  • the first adapter member 35 includes a first adapter plate 351 and a second adapter plate 352 .
  • the first adapter plate 351 and the second adapter plate 352 are L-shaped, and the first adapter plate 351 is used to connect the first electrode terminal 34 .
  • the second adapter plate 352 is used for connecting to the first tab 322 .
  • the second adapter plate 352 is connected to the first tab 322 by welding.
  • the first tab 322 and the second tab 323 are located at opposite ends of the main body portion 321 along the width direction Y, respectively.
  • the first tab 322 and the second tab 323 are provided independently, so that each can make full use of the area of the end face 321a to select the size along the length direction X, thereby preventing the first tab 322 and the second tab 323 from being in the length direction X interference occurs.
  • the second tab 323 has a fourth dimension L4 along the length direction X.
  • the first size L1, the second size L2 and the fourth size L4 satisfy: 0.5L2 ⁇ L4 ⁇ L1.
  • the fourth dimension L4 may be 0.5L2, 0.6L2, 0.7L2, 0.8L2, 0.9L2, L2, 0.1L1, 0.2L1, 0.3L1, 0.4L1, 0.5L1, 0.6L1, 0.7L1, 0.8L1, 0.9 L1 or L1 etc.
  • the second tab 323 is disposed on the end surface 321 a of the main body portion 321 .
  • the second tab 323 is located between the end surface 321 a of the main body portion 321 and the housing 31 . Therefore, by disposing the second tab 323 on the end face 321a, the first dimension L1, the second dimension L2 and the fourth dimension L4 satisfy: 0.5L2 ⁇ L4 ⁇ L1.
  • the size of the second tab 323 is no longer restricted by the second dimension L2 of the main body portion 321 along the width direction Y, which is beneficial to improve the overcurrent capability of the second tab 323 and reduce the insufficient overcurrent capability of the second tab 323 The possibility of serious self-heating.
  • the overall length of the electrode assembly 32 is no longer limited by the overcurrent capability of the second tab 323, so that the electrode assembly 32 with a longer length and a constant width can be manufactured, which effectively improves the energy density of the electrode assembly 32, and also It is beneficial to improve the energy density of the battery cells 30 without increasing the space occupancy rate of the battery cells 30 in the width direction Y as a whole.
  • the third dimension L3 of the first tab 322 along the length direction X is equal to the fourth dimension L4 of the second tab 323 along the length direction X.
  • the battery cell 30 further includes a second end cap 36 , a second electrode terminal 37 and a second transfer part 38 .
  • the housing 31 also includes a second opening 312 .
  • the second end cap 36 is connected to the casing 31 and closes the second opening 312 of the casing 31 .
  • the second end cap 36 and the housing 31 may be welded together.
  • the second end cap 36 is located on the other side of the electrode assembly 32 along the length direction X. As shown in FIG. Along the length direction X, the first end cap 33 and the second end cap 36 are disposed opposite to each other.
  • the second electrode terminal 37 is disposed on the second end cap 36 .
  • the outer shape of the second electrode terminal 37 may be circular or square, which is not limited here.
  • the second electrode terminal 37 is electrically connected to the second tab 323 of the electrode assembly 32 through the second adapter member 38 .
  • the fourth dimension L4 of the second tab 323 along the length direction X is smaller than the first dimension L1 of the main body 321 along the length X, the second tab 323 is disposed in the area of the main body 321 close to the second end cap 36 , so that It may be advantageous to shorten the connection path of the second transition part 38 .
  • the second adapter member 38 includes a third adapter plate 381 and a fourth adapter plate 382 .
  • the third adapter plate 381 is used to connect the second electrode terminal 37 .
  • the fourth adapter plate 382 is used for connecting the second tabs 323 .
  • the first adapter member 35 and the second adapter member 38 have the same structure, that is, the first adapter plate 351 and the third adapter plate 381 have the same structure, while the second adapter plate 352 and the third adapter plate 381 have the same structure.
  • the structures of the four adapter plates 382 are the same.
  • the fourth adapter plate 382 is connected to the second tab 323 by welding.
  • the second adapter plate 352 of the first adapter member 35 includes a body portion 3521 and a bent portion 3522 .
  • the body portion 3521 is used for connecting the first adapter plate 351 .
  • the bent portion 3522 is used for connecting the first tab 322 .
  • the first tab 322 can be connected and fixed to the bent portion 3522 first, and then the bent portion 3522 can be bent toward the body portion 3521 to a predetermined position. In this way, the space occupied by the second adapter plate 352 in the width direction Y can be reduced, and the energy density can be improved.
  • the housing 31 has a first opening 311 .
  • the electrode assembly 32 is disposed in the casing 31 .
  • the first end cap 33 is connected to the casing 31 and closes the first opening 311 .
  • the first electrode terminal 34 and the second electrode terminal 37 are both disposed on the first end cap 33 .
  • the first tab 322 and the second tab 323 are located at two ends of the main body portion 321 along the width direction Y, respectively.
  • the first transfer member 35 and the second transfer member 38 are connected to the first electrode terminal 34 and the second electrode terminal 37, respectively.
  • the first tab 322 and the second tab 323 are located at the same end of the main body portion 321 along the width direction Y, that is, the first tab 322 and the second tab 323 are located at the same end end face 321a.
  • the first tabs 322 and the second tabs 323 are arranged at intervals along the length direction X.
  • the first tabs 322 and the second tabs 323 are mutually displaced, that is, along the length direction X, the projections of the first tabs 322 and the projections of the second tabs 323 do not overlap.
  • the first dimension L1 of the body portion 321 along the length direction X, the second dimension L2 of the body portion 321 along the width direction Y, and the third dimension L3 of the first tab 322 along the length direction X satisfy: 0.5L2 ⁇ L3 ⁇ 0.5L1
  • the first dimension L1 of the main body portion 321 along the length direction X, the second dimension L2 of the main body portion 321 along the width direction Y, and the fourth dimension L4 of the second tab 323 along the length direction X satisfy: 0.5L2 ⁇ L4 ⁇ 0.5L1.
  • the first tab 322 and the second tab 323 do not contact each other, which ensures that the first tab 322 and the second tab 323 will not short-circuit each other while satisfying the overcurrent capability.
  • the folding directions of the first tab 322 and the second tab 323 are opposite, so that the This is beneficial to reduce the possibility of short circuit caused by contact between the first tab 322 and the second tab 323 .
  • the first tab 322 includes two first sub tabs 3221.
  • the two first sub-tabs 3221 are located at both ends of the main body portion 321 along the width direction Y, respectively.
  • the two first sub-tab ears 3221 extend from the two end surfaces 321 a of the main body portion 321 , respectively.
  • the second tab 323 includes two second sub tabs 3231 .
  • the two second sub-tabs 3231 are located at both ends of the main body portion 321 along the width direction Y, respectively.
  • the two second sub-pole tabs 3231 extend from the two end surfaces 321 a of the main body portion 321 , respectively.
  • the number of layers of the first tab 322 and the second tab 323 is relatively large to meet the overcurrent requirement.
  • the number of tab layers disposed at one end of the main body portion 321 can be effectively reduced , so as to effectively reduce the thickness of the first tab 322 or the second tab 323 disposed at one end of the main body portion 321 due to the large number of total layers, thereby causing the first tab 322 and the second tab 323 to be respectively
  • the heat dissipation efficiency of the first tab 322 and the second tab 323 can be effectively improved, and the Or, the total number of layers of the second tab 323 is large, which leads to poor heat dissipation, which in turn leads to the possibility of serious heat generation of the first tab
  • the first sub-tab 3221 and the second sub-tab 3231 at the same end of the main body portion 321 are arranged at intervals along the length direction X. In this way, in the length direction X, the first sub-tab 3221 and the second sub-tab 3231 do not contact each other, so as to ensure that the first sub-tab 3221 and the second sub-tab 3231 do not occur with each other while satisfying the overcurrent capability. short circuit.
  • the first sub-tab 3221 and the second sub-tab 3231 are respectively connected to the first adapting part 35 and the second adapting part 38, the folding directions of the first sub-tab 3221 and the second sub-tab 3231 are opposite.
  • the two first sub-tabs 3221 are staggered along the width direction Y, that is, along the width direction Y, the respective orthographic projections of the two first sub-tabs 3221 do not overlap.
  • the two second sub-tabs 3231 are staggered along the width direction Y, that is, along the width direction Y, the respective projections of the two second sub-tabs 3231 do not overlap.
  • the first pole piece, the second pole piece, and the separator are stacked to form electrode assembly 32 . One half of the total number of layers of the first pole piece forms one first sub-tab 3221 , and the other half forms another first sub-tab 3221 .
  • the total number of layers of the first pole piece is 100 layers, of which 50 layers form a first sub-tab 3221 , and the other 50 layers form a first sub-tab 3221 .
  • the first sub-pole tabs 3221 are formed by adjacent first pole pieces.
  • half of the total number of layers of the second pole piece forms one second sub-tab 3231 , and the other half forms another second sub-tab 3231 .
  • the total number of layers of the second pole piece is 100 layers, of which 50 layers form a second sub-pole tab 3231 , and the other 50 layers form a second sub-pole tab 3231 .
  • the second sub-pole tabs 3231 are formed by adjacent second pole pieces.
  • the first adapter member 35 includes a first adapter plate 351 and two second adapter plates 352 .
  • the first adapter plate 351 is used to connect the first electrode terminal 34 .
  • the two second adapter plates 352 are respectively used to connect the two first sub-pole tabs 3221 .
  • the two second adapter plates 352 are located on the same side of the first adapter plate 351 , so that the first adapter member 35 has a U-shaped structure.
  • the first adapter plate 351 and the two second adapter plates 352 are integrally formed.
  • the second adapter member 38 includes a third adapter plate 381 and two fourth adapter plates 382 .
  • the third adapter plate 381 is used to connect the second electrode terminal 37 .
  • the two fourth adapter plates 382 are respectively used for connecting the two second sub-pole tabs 3231 .
  • the two fourth adapter plates 382 are located on the same side of the third adapter plate 381 , so that the second adapter member 38 has a U-shaped structure.
  • the third adapter plate 381 and the two fourth adapter plates 382 are integrally formed.
  • the battery cell 30 of the embodiment of the present application includes a case 31 and an electrode assembly 32 .
  • the electrode assembly 32 includes a main body portion 321 and a first tab 322 .
  • the main body portion 321 has a predetermined length, width and thickness. The length of the main body portion 321 is greater than the width, and the width is greater than the thickness.
  • the width direction Y of the main body portion 321 is opposite to the opening of the casing 31. As shown in FIG.
  • the main body portion 321 has two opposite end surfaces 321a along its own width direction Y. As shown in FIG.
  • the end surface 321 a is parallel to the longitudinal direction X of the main body portion 321 .
  • the end surface 321 a of the main body portion 321 faces the side wall of the casing 31 .
  • the first tab 322 protrudes from the end surface 321a. Therefore, by disposing the first tab 322 on the end face 321a, and the first size L1, the second size L2 and the third size L3 satisfy: 0.5L2 ⁇ L3 ⁇ L1, the size of the first tab 322 is no longer affected by the body portion
  • the limitation of the second dimension L2 of 321 along the width direction Y is further beneficial to improve the overcurrent capability of the first tab 322 and reduce the possibility of serious self-heating of the first tab 322 due to insufficient overcurrent capability.
  • the overall length of the electrode assembly 32 is no longer limited by the overcurrent capability of the first tab 322, so that the electrode assembly 32 with a longer length and a constant width can be manufactured, which effectively improves the energy density of the electrode assembly 32, and also It is beneficial to improve the energy density of the battery cells 30 without increasing the space occupancy rate of the battery cells 30 in the width direction Y as a whole.

Abstract

本申请提供一种电池单体、电池以及用电装置。电池单体包括:电极组件包括主体部和第一极耳。主体部沿自身的长度方向的第一尺寸L1大于主体部沿自身的宽度方向的第二尺寸L2。第一极耳位于主体部沿宽度方向的至少一端。第一极耳沿长度方向具有第三尺寸L3。第一尺寸L1、第二尺寸L2和第三尺寸L3满足:0.5L2≤L3≤L1。本申请实施例的电池单体旨在解决极耳存在发热严重的技术问题。

Description

电池单体、电池以及用电装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池以及用电装置。
背景技术
随着社会和科学技术的发展,电池被广泛地应用于为高功率的装置提供动力,例如电动车辆等。电池包括串联或并联连接的多个电池单体,以实现较大的容量或功率。电池单体的电极组件包括主体部和极耳。主体部用于产生或储存电能。极耳用于将主体部与外部机械件电连接。随着用户对电动车辆的续航能力的要求逐渐提升,势必对电池单体的容量要求越来越高,因此电极组件的主体部的尺寸也相应变大。然而,随着主体部尺寸变大,极耳却存在发热严重的情况,影响电池单体的使用安全性。
发明内容
本申请提供一种电池单体、电池以及用电装置,旨在解决极耳存在发热严重的技术问题。
本申请实施例提供一种电池单体,包括:
电极组件包括主体部和第一极耳。主体部沿自身长度方向的第一尺寸L1大于主体部沿自身宽度方向的第二尺寸L2。第一极耳位于主体部沿宽度方向的至少一端。第一极耳沿长度方向具有第三尺寸L3。第一尺寸L1、第二尺寸L2和第三尺寸L3满足:0.5L2≤L3≤L1。
本申请实施例的电池单体包括电极组件。电极组件包括主体部和第一极耳。第一极耳位于主体部沿宽度方向的至少一端。由于主体部沿长度方向的第一尺寸L1大于主体部沿宽度方向的第二尺寸L2,因此设置于主体部上与长度方向所对应端面上的第一极耳的尺寸不再受到主体部沿宽度方向的第二尺寸L2的限制,从而第一极耳沿长度方向的第三尺寸L3可以设置为大于或等于主体部沿宽度方向的第二尺寸L2的二分之一,进而有利于提高第一极耳的过流能力,降低第一极耳因过流能力不足而导致发热严重的可能性。
在本申请的一个实施例中,第一尺寸L1、第二尺寸L2和第三尺寸L3满足:L2≤L3≤L1。这样,第一极耳沿长度方向的第三尺寸L3可以大于等于主体部沿宽度方向的第二尺寸L2,从而有利于进一步提高第一极耳的过流能力。
在本申请的一个实施例中,第一尺寸L1与第二尺寸L2满足:L1/L2的取比值范围为4至20。
在本申请的一个实施例中,电池单体还包括:壳体,电极组件位于壳体内;第一端盖,位于电极组件沿长度方向的一侧,并用于封闭壳体的第一开口;第一电极端子,设置于第一端盖;第一转接部件,用于连接第一电极端子和第一极耳。
在本申请的一个实施例中,电极组件还包括与第一极耳极性相反的第二极耳,第一极耳和第二极耳分别位于主体部沿宽度方向的两端。第一极耳和第二极耳各自独立设置,从而各自可以充分利用所对应的端面的区域来选择沿长度方向的尺寸,使得第一极耳和第二极耳沿长度方向的尺寸选择限制更小,选择范围更大。
在本申请的一个实施例中,第二极耳沿长度方向具有第四尺寸L4, 第一尺寸L1、第二尺寸L2和第四尺寸L4满足:0.5L2≤L4≤L1。由于主体部沿长度方向的第一尺寸L1大于主体部沿宽度方向的第二尺寸L2,因此设置于端面上的第二极耳的尺寸不再受到主体部沿宽度方向的第二尺寸L2的限制,从而第二极耳沿长度方向的第四尺寸L4可以设置为大于或等于主体部沿宽度方向的第二尺寸L2的二分之一,进而有利于提高第二极耳的过流能力,使得第二极耳的过流能力能够满足主体部容量增大后的主体部的过流要求,降低第二极耳因过流能力不足而导致发热严重的可能性。
在本申请的一个实施例中,电极组件还包括与第一极耳极性相反的第二极耳,第一极耳和第二极耳位于主体部沿宽度方向的同一端,并且两者沿长度方向间隔设置。
在本申请的一个实施例中,第一尺寸L1、第二尺寸L2和第三尺寸L3满足:0.5L2≤L3<0.5L1,第二极耳沿长度方向具有第四尺寸L4,第一尺寸L1、第二尺寸L2和第四尺寸L4满足:0.5L2≤L4<0.5L1。这样,在长度方向上,第一极耳和第二极耳彼此不接触,保证第一极耳和第二极耳在满足过流能力的同时彼此不会发生短路。
在本申请的一个实施例中,第一转接部件包括第一转接板和第二转接板,第一转接板用于连接第一电极端子,第二转接板用于连接第一极耳。
在本申请的一个实施例中,电极组件还包括与第一极耳极性相反的第二极耳,第一极耳包括两个第一子极耳,两个第一子极耳分别位于主体部沿宽度方向的两端,第二极耳包括包括两个第二子极耳,两个第二子极耳分别位于主体部沿宽度方向的两端。
在本申请的一个实施例中,主体部同一端的第一子极耳和第二子极 耳沿长度方向间隔设置。将第一极耳和第二极耳分成两个第一子极耳和两个第二子极耳的方式,一方面,可以有效减少设置于主体部一端的极耳层数,从而有效降低因设置于主体部一端的第一极耳或第二极耳总层数较多而导致自身厚度较大,进而导致第一极耳和第二极耳分别与第一转接部件和第二转接部件连接时存在连接困难的可能性;另一方面,可以有效提高第一极耳和第二极耳散热效率,降低因第一极耳或第二极耳总层数较多而导致自身散热性差,进而导致第一极耳或第二极耳出现发热严重现象的可能性。
在本申请的一个实施例中,第一转接部件包括第一转接板和两个第二转接板,第一转接板用于连接第一电极端子,两个第二转接板分别用于连接两个第一子极耳。
在本申请的一个实施例中,两个第一子极耳和两个第二子极耳均沿宽度方向错位设置。
在本申请的一个实施例中,第二转接板包括本体部和折弯部,本体部用于连接第一转接板,折弯部用于连接第一极耳。在折弯部未折弯之前,可以先将第一极耳与折弯部连接固定,然后再将折弯部朝本体部折弯至预定位置。这样,可以降低因第二转接板距离主体部较近而导致第一极耳与第二转接板连接困难的可能性,提高第一极耳和第二转接板实现连接的便利性。
在本申请的一个实施例中,电池单体还包括:第二端盖,位于电极组件沿长度方向的另一侧,并用于封闭壳体的第二开口;第二电极端子,设置于第二端盖;第二转接部件,用于连接第二电极端子和第二极耳。
本申请实施例的电池单体包括壳体以及电极组件。电极组件设置于壳体内。电极组件的主体部上平行于宽度方向的表面朝向壳体的第一开 口。主体部上平行于长度方向的端面朝向壳体的侧壁。第一极耳设置于主体部的端面。第一极耳位于主体部的端面和壳体之间。因此,通过将第一极耳设置于端面,并且第一尺寸L1、第二尺寸L2和第三尺寸L3满足:0.5L2≤L3≤L1,第一极耳的尺寸不再受到主体部沿宽度方向的第二尺寸L2的限制,进而有利于提高第一极耳的过流能力,降低第一极耳因过流能力不足而导致自身发热严重的可能性。这样,电极组件的整体长度不再受到第一极耳过流能力的限制,从而可以加工制造出长度更长而宽度不变的电极组件,这样有效提高电极组件的能量密度,也有利于在提高电池单体的能量密度的同时不增大电池单体整体在宽度方向上的空间占用率。
本申请实施例还提供一种电池,其中,包括如上述实施例的电池单体。
本申请实施例还提供一种用电装置,其中,包括如上述实施例的电池单体,电池单体用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的分解结构示意图;
图3是本申请一实施例公开的一种电池模块的局部结构示意图;
图4是本申请一实施例公开的一种电池单体的分解结构示意图;
图5是图4实施例示出的电池单体的剖视结构示意图;
图6是本申请另一实施例公开的一种电池单体的分解结构示意图;
图7是本申请又一实施例公开的一种电池单体的分解结构示意图;
图8是图7实施例示出的电池单体的剖视结构示意图;
图9是本申请又一实施例公开的一种电池单体的分解结构;
图10是本申请再一实施例公开的一种电池单体的分解结构。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
申请人发现极耳存在发热严重的问题之后,对电池单体进行了研究 分析。申请人发现,由于随着对电池单体的能量密度要求越来越高,同时又考虑电池单体自身结构的空间占用率需要满足要求,因此将电池单体的结构制作成长条形扁平结构,从而使得电极组件的主体部的长度变大并且呈长条形扁平结构。通常情况下,电极组件装入壳体后,极耳从主体部沿宽度方向的端面上延伸出。然而,从主体部沿宽度方向所对应的端面上延伸出的极耳却存在过流能力不足的问题,无法满足快充需求。申请人对极耳进行结构改进,例如增大极耳的尺寸。然而,在宽度方向上增大极耳的尺寸,极耳仍然存在过流能力不足的问题。
基于申请人发现的上述问题,申请人对电池单体的结构进行改进,下面对本申请实施例进行进一步描述。
为了更好地理解本申请,下面结合图1至图10对本申请实施例进行描述。
本申请实施例提供一种使用电池10作为电源的用电装置。该用电装置可以但不仅限于为车辆、船舶或飞行器等。参见图1所示,本申请的一个实施例提供一种车辆1。车辆1可以为燃油汽车、燃气汽车或新能源汽车。新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。在本申请一实施例中,车辆1可以包括马达1a、控制器1b以及电池10。控制器1b用来控制电池10为马达1a供电。马达1a通过传动机构与车轮连接,从而驱动车辆1行进。电池10可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。在一个示例中,在车辆1的底部、车头或车尾可以设置电池10。电池10可以用于为车辆1供电。在一个示例中,电池10可以作为车辆1的操作电源,用于车辆1的电路系统。可选地,电池10可以用于车辆1的启动、导航和运行时的工作用电需求。
参见图2所示,电池10可以包括两个以上的电池模块20。在一些 可选的实施例中,电池10还包括箱体。电池模块20设置于箱体内。两个以上的电池模块20排列布置于箱体内。箱体的类型不受限制。箱体可为框状箱体、盘状箱体或盒状箱体等。可选地,箱体包括用于容纳电池模块20的第一外壳11和与第一外壳11盖合的第二外壳12。第一外壳11和第二外壳12盖合后形成容纳电池模块20的容纳部。
为了满足不同的使用电力需求,电池模块20可以包括一个或多个电池单体。参见图3所示,多个电池单体30可以先串联或并联或混联组成电池模块,多个电池模块20再串联或并联或混联组成电池。可选地,电池可以包括多个电池单体30,其中,多个电池单体30之间可以串联或并联或混联,混联是指串联和并联的混合。多个电池单体30可以直接设置于箱体内。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。电池单体30包括含锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池或镁离子电池,但不局限于此。
参见图4和图5所示,本申请实施例的电池单体30包括壳体31以及设置于壳体31内的电极组件32。本申请实施例的壳体31为方形结构或其他形状。壳体31具有容纳电极组件32和电解液的内部空间以及与内部空间相连通的第一开口311。壳体31可以由例如铝、铝合金或塑料等材料制造。本申请实施例的电极组件32可通过将第一极片、第二极片以及位于第一极片和第二极片之间的隔膜一同堆叠或卷绕形成,其中,隔膜是介于第一极片和第二极片之间的绝缘体。第一极片和第二极片均包括涂覆区和未涂覆区。在第一极片的涂覆区上和第二极片的涂覆区上涂覆活性物质。在涂覆区上,活性物质被涂覆在由金属薄板形成的集流体上,而在未涂覆区上没有涂覆活性物质。电极组件32包括主体部321和第一极耳322。经过堆叠之后,第一极片的涂覆区、第二极片的涂覆区以及隔膜层 叠形成主体部321。第一极片的未涂覆区层叠形成第一极耳322。第二极片的未涂覆区层叠形成第二极耳323。第一极耳322与第二极耳323的极性相反。例如,第一极耳322为正极耳时,第二极耳323为负极耳。第一极耳322为负极耳时,第二极耳323为正极耳。
本申请实施例以电极组件32为叠片结构进行说明,但并不能限定本申请的保护范围。参见图4所示,主体部321具有预定的长度、宽度以及厚度。这里,长度是指主体部321沿自身长度方向X的尺寸,宽度是指主体部321沿自身宽度方向Y的尺寸,厚度是指主体部321沿自身厚度方向Z的尺寸。主体部321沿自身的长度方向X的第一尺寸为L1,沿自身宽度方向Y的第二尺寸为L2。长度方向X、宽度方向Y以及厚度方向Z相互垂直。主体部321的第一尺寸L1大于主体部321的第二尺寸L2。主体部321具有沿自身宽度方向Y相对设置的两端,并且每一端具有一端面321a。电极组件32装入壳体31后,主体部321的端面321a朝向壳体31。第一极耳322从主体部321的一个端面321a上延伸出。第一极耳322沿长度方向X的第三尺寸为L3。第一尺寸L1、第二尺寸L2和第三尺寸L3满足:0.5L2≤L3≤L1。例如,第三尺寸L3可以为0.5L2、0.6L2、0.7L2、0.8L2、0.9L2、L2、0.1L1、0.2L1、0.3L1、0.4L1、0.5L1、0.6L1、0.7L1、0.8L1、0.9L1或L1等。
本申请实施例的电池单体30包括壳体31以及电极组件32。电极组件32设置于壳体31内。电极组件32的主体部321上平行于宽度方向Y的表面朝向壳体31的第一开口311。主体部321上平行于长度方向X的端面321a朝向壳体31的侧壁。第一极耳322设置于主体部321的端面321a。第一极耳322位于主体部321的端面321a和壳体31之间。因此,通过将第一极耳322设置于端面321a,并且第一尺寸L1、第二尺寸L2和第三尺寸L3满足:0.5L2≤L3≤L1,第一极耳322的尺寸不再受到主体部 321沿宽度方向Y的第二尺寸L2的限制,进而有利于提高第一极耳322的过流能力,降低第一极耳322因过流能力不足而导致自身发热严重的可能性。这样,电极组件32的整体长度不再受到第一极耳322过流能力的限制,从而可以加工制造出长度更长而宽度不变的电极组件32,这样有效提高电极组件32的能量密度,也有利于在提高电池单体30的能量密度的同时不增大电池单体30整体在宽度方向Y上的空间占用率。
本申请实施例的电池单体30应用于车辆1时,电池单体30的宽度方向Y和车辆1的高度方向相同。受车辆1高度方向上的空间限制,电池单体30的宽度大小也有严格限制,从而在需要增大电池单体30的容量时,不可以无限增大电池单体30的宽度,可以增大电池单体30的长度。
在一些实施例中,主体部321沿长度方向X的第一尺寸L1与主体部321的第二尺寸为L2满足:L1/L2的比值范围为4至20。第一尺寸L1的取值为35厘米(cm)至100厘米(cm)。
在一些实施例中,第一尺寸L1、第二尺寸L2和第三尺寸L3满足:L2≤L3≤L1。例如,第三尺寸L3可以为L2、2L2、3L2、4L2或5L2等。这样,第一极耳322沿长度方向X的第三尺寸L3可以大于等于主体部321沿宽度方向Y的第二尺寸L2,从而有利于进一步提高第一极耳322的过流能力。
参见图4所示,本申请实施例的电池单体30还包括第一端盖33、第一电极端子34和第一转接部件35。第一端盖33与壳体31相连接并封闭壳体31的第一开口311。示例性地,第一端盖33与壳体31可以焊接连接。第一端盖33位于电极组件32沿长度方向X的一侧。沿长度方向X,第一端盖33和主体部321上平行于宽度方向Y的表面相对设置。第一电极端子34设置于第一端盖33上。第一电极端子34的外形可以是圆形,也可以是方形,这里不做限定。第一电极端子34通过第一转接部件35与 电极组件32的第一极耳322电连接。在第一极耳322沿长度方向X的第三尺寸L3小于主体部321沿长度方向X的第一尺寸L1时,第一极耳322设置于主体部321靠近第一端盖33区域,从而可以有利于缩短第一转接部件35的连接路径。
在一些实施例中,参见图4所示,第一转接部件35包括第一转接板351和第二转接板352。第一转接板351和第二转接板352呈L型,第一转接板351用于连接第一电极端子34。第二转接板352用于连接第一极耳322。在一个示例中,第二转接板352与第一极耳322焊接连接。
在一些实施例中,参见图5所示,第一极耳322和第二极耳323分别位于主体部321沿宽度方向Y的两端。第一极耳322和第二极耳323各自独立设置,从而各自可以充分利用端面321a的区域来选择沿长度方向X的尺寸,从而防止第一极耳322和第二极耳323在长度方向X上发生干涉。
在一些实施例中,参见图5所示,第二极耳323沿长度方向X具有第四尺寸L4。第一尺寸L1、第二尺寸L2和第四尺寸L4满足:0.5L2≤L4≤L1。例如,第四尺寸L4可以为0.5L2、0.6L2、0.7L2、0.8L2、0.9L2、L2、0.1L1、0.2L1、0.3L1、0.4L1、0.5L1、0.6L1、0.7L1、0.8L1、0.9L1或L1等。
第二极耳323设置于主体部321的端面321a。第二极耳323位于主体部321的端面321a和壳体31之间。因此,通过将第二极耳323设置于端面321a,并且第一尺寸L1、第二尺寸L2和第四尺寸L4满足:0.5L2≤L4≤L1。第二极耳323的尺寸不再受到主体部321沿宽度方向Y的第二尺寸L2的限制,进而有利于提高第二极耳323的过流能力,降低第二极耳323因过流能力不足而导致自身发热严重的可能性。这样,电极组件32的整体长度不再受到第二极耳323过流能力的限制,从而可以加工制造出长 度更长而宽度不变的电极组件32,这样有效提高电极组件32的能量密度,也有利于在提高电池单体30的能量密度的同时不增大电池单体30整体在宽度方向Y上的空间占用率。在一些示例中,第一极耳322沿长度方向X的第三尺寸L3等于第二极耳323沿长度方向X的第四尺寸L4。
在一些实施例中,参见图4和图5所示,电池单体30还包括第二端盖36、第二电极端子37和第二转接部件38。壳体31还包括第二开口312。沿长度方向X,第一开口311和第二开口312相对设置。第二端盖36与壳体31相连接并封闭壳体31的第二开口312。示例性地,第二端盖36与壳体31可以焊接连接。第二端盖36位于电极组件32沿长度方向X的另一侧。沿长度方向X,第一端盖33和第二端盖36相对设置。沿长度方向X,第二端盖36和主体部321上平行于宽度方向Y的表面相对设置。第二电极端子37设置于第二端盖36上。第二电极端子37的外形可以是圆形,也可以是方形,这里不做限定。第二电极端子37通过第二转接部件38与电极组件32的第二极耳323电连接。在第二极耳323沿长度方向X的第四尺寸L4小于主体部321沿长度方向X的第一尺寸L1时,第二极耳323设置于主体部321靠近第二端盖36的区域,从而可以有利于缩短第二转接部件38的连接路径。在一个示例中,第二转接部件38包括第三转接板381和第四转接板382。第三转接板381用于连接第二电极端子37。第四转接板382用于连接第二极耳323。在一个示例中,第一转接部件35和第二转接部件38的结构相同,也即第一转接板351和第三转接板381的结构相同,而第二转接板352和第四转接板382的结构相同。在一个示例中,第四转接板382与第二极耳323焊接连接。
在一些实施例中,参见图6所示,第一转接部件35的第二转接板352包括本体部3521和折弯部3522。本体部3521用于连接第一转接板351。折弯部3522用于连接第一极耳322。在折弯部3522未折弯之前,可 以先将第一极耳322与折弯部3522连接固定,然后再将折弯部3522朝本体部3521折弯至预定位置。这样,可以降低因第二转接板352在宽度方向Y的占用空间,提高能量密度。
在一些实施例中,参见图7和图8所示,壳体31具有第一开口311。电极组件32设置于壳体31内。第一端盖33连接于壳体31并封闭第一开口311。第一电极端子34和第二电极端子37均设置于第一端盖33。第一极耳322和第二极耳323分别位于主体部321沿宽度方向Y的两端。第一转接部件35和第二转接部件38分别与第一电极端子34和第二电极端子37连接。
在一些实施例中,参见图9所示,第一极耳322和第二极耳323位于主体部321沿宽度方向Y的同一端,也即第一极耳322和第二极耳323位于同一端面321a。第一极耳322和第二极耳323沿长度方向X间隔设置。沿长度方向X,第一极耳322和第二极耳323相互错位设置,也即沿长度方向X,第一极耳322的投影和第二极耳323的投影不出现重叠。在一些示例中,主体部321沿长度方向X的第一尺寸L1、主体部321沿宽度方向Y的第二尺寸L2和第一极耳322沿长度方向X的第三尺寸L3满足:0.5L2≤L3<0.5L1,而主体部321沿长度方向X的第一尺寸L1、主体部321沿宽度方向Y的第二尺寸L2和第二极耳323沿长度方向X的第四尺寸L4满足:0.5L2≤L4<0.5L1。这样,在长度方向X上,第一极耳322和第二极耳323彼此不接触,保证第一极耳322和第二极耳323在满足过流能力的同时彼此不会发生短路。第一极耳322和第二极耳323分别与第一转接部件35和第二转接部件38相连接时,第一极耳322和第二极耳323的翻折方向相反,从而也可以有利于降低第一极耳322和第二极耳323发生接触造成短路的可能性。
在一些实施例中,参见图10所示,第一极耳322包括两个第一子 极耳3221。两个第一子极耳3221分别位于主体部321沿宽度方向Y的两端。两个第一子极耳3221分别从主体部321的两个端面321a延伸出。第二极耳323包括两个第二子极耳3231。两个第二子极耳3231分别位于主体部321沿宽度方向Y的两端。两个第二子极耳3231分别从主体部321的两个端面321a延伸出。在电极组件32的容量较大时,第一极耳322和第二极耳323的层数较多,才能满足过流需求。将第一极耳322和第二极耳323分成两个第一子极耳3221和两个第二子极耳3231的方式,一方面,可以有效减少设置于主体部321一端的极耳层数,从而有效降低因设置于主体部321一端的第一极耳322或第二极耳323总层数较多而导致自身厚度较大,进而导致第一极耳322和第二极耳323分别与第一转接部件35和第二转接部件38连接时存在连接困难的可能性;另一方面,可以有效提高第一极耳322和第二极耳323散热效率,降低因第一极耳322或第二极耳323总层数较多而导致自身散热性差,进而导致第一极耳322或第二极耳323出现发热严重现象的可能性。
在一些实施例中,参见图10所示,主体部321同一端的第一子极耳3221和第二子极耳3231沿长度方向X间隔设置。这样,在长度方向X上,第一子极耳3221和第二子极耳3231彼此不接触,保证第一子极耳3221和第二子极耳3231在满足过流能力的同时彼此不会发生短路。第一子极耳3221和第二子极耳3231分别与第一转接部件35和第二转接部件38相连接时,第一子极耳3221和第二子极耳3231的翻折方向相反,从而也可以有利于减少第一子极耳3221和第二子极耳3231沿长度方向X相重叠的部分,进而降低第一子极耳3221和第二子极耳3231发生接触造成短路的可能性。
在一些实施例中,参见图10所示,两个第一子极耳3221沿宽度方向Y错位设置,也即沿宽度方向Y,两个第一子极耳3221各自的正投影不 出现重叠。两个第二子极耳3231沿宽度方向Y错位设置,也即沿宽度方向Y,两个第二子极耳3231各自的投影不出现重叠。在一个示例中,第一极片、第二极片和隔膜层叠形成电极组件32。第一极片的总层数的二分之一形成一个第一子极耳3221,另外二分之一形成另一个第一子极耳3221。例如,第一极片的总层数为100层,其中50层形成一个第一子极耳3221,另外50层形成一个第一子极耳3221。进一步地,第一子极耳3221由相邻的第一极片形成。同样地,第二极片的总层数的二分之一形成一个第二子极耳3231,另外二分之一形成另一个第二子极耳3231。例如,第二极片的总层数为100层,其中50层形成一个第二子极耳3231,另外50层形成一个第二子极耳3231。进一步地,第二子极耳3231由相邻的第二极片形成。
在一些实施例中,参见图10所示,第一转接部件35包括第一转接板351和两个第二转接板352。第一转接板351用于连接第一电极端子34。两个第二转接板352分别用于连接两个第一子极耳3221。两个第二转接板352位于第一转接板351的同一侧,使得第一转接部件35呈U形结构。在一个示例中,第一转接板351和两个第二转接板352为一体成型结构。
在一些实施例中,第二转接部件38包括第三转接板381和两个第四转接板382。第三转接板381用于连接第二电极端子37。两个第四转接板382分别用于连接两个第二子极耳3231。两个第四转接板382位于第三转接板381的同一侧,使得第二转接部件38呈U形结构。在一个示例中,第三转接板381和两个第四转接板382为一体成型结构。
本申请实施例的电池单体30包括壳体31和电极组件32。电极组件32包括主体部321和第一极耳322。主体部321具有预定的长度、宽度和厚度。主体部321的长度大于宽度,而宽度大于厚度。主体部321的宽度 方向Y与壳体31的开口相对。主体部321沿自身宽度方向Y具有相对的两个端面321a。端面321a平行于主体部321的长度方向X。电极组件32置于壳体31内时,主体部321的端面321a朝向壳体31的侧壁。第一极耳322从端面321a上伸出。因此,通过将第一极耳322设置于端面321a,并且第一尺寸L1、第二尺寸L2和第三尺寸L3满足:0.5L2≤L3≤L1,第一极耳322的尺寸不再受到主体部321沿宽度方向Y的第二尺寸L2的限制,进而有利于提高第一极耳322的过流能力,降低第一极耳322因过流能力不足而导致自身发热严重的可能性。这样,电极组件32的整体长度不再受到第一极耳322过流能力的限制,从而可以加工制造出长度更长而宽度不变的电极组件32,这样有效提高电极组件32的能量密度,也有利于在提高电池单体30的能量密度的同时不增大电池单体30整体在宽度方向Y上的空间占用率。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件,尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种电池单体,包括:
    电极组件,包括主体部和第一极耳,所述主体部沿自身长度方向的第一尺寸L1大于所述主体部沿自身宽度方向的第二尺寸L2;
    所述第一极耳位于所述主体部沿所述宽度方向的至少一端,所述第一极耳沿所述长度方向具有第三尺寸L3,所述第一尺寸L1、所述第二尺寸L2和所述第三尺寸L3满足:0.5L2≤L3≤L1。
  2. 根据权利要求1所述的电池单体,其中,所述第一尺寸L1、所述第二尺寸L2和所述第三尺寸L3满足:L2≤L3≤L1。
  3. 根据权利要求1或2所述的电池单体,其中,所述第一尺寸L1与所述第二尺寸L2满足:L1/L2的比值范围为4至20。
  4. 根据权利要求1至3任一项所述的电池单体,其中,所述电池单体还包括:
    壳体,所述电极组件位于所述壳体内;
    第一端盖,位于所述电极组件沿所述长度方向的一侧,并用于封闭所述壳体的第一开口;
    第一电极端子,设置于所述第一端盖;
    第一转接部件,用于连接所述第一电极端子和所述第一极耳。
  5. 根据权利要求4所述的二次电池,其中,所述电极组件还包括与所述第一极耳极性相反的第二极耳,所述第一极耳和所述第二极耳分别位于所述主体部沿所述宽度方向的两端。
  6. 根据权利要求5所述的二次电池,其中,所述第二极耳沿所述长度方向具有第四尺寸L4,所述第一尺寸L1、所述第二尺寸L2和所述第四尺 寸L4满足:0.5L2≤L4≤L1。
  7. 根据权利要求4所述的二次电池,其中,所述电极组件还包括与所述第一极耳极性相反的第二极耳,所述第一极耳和所述第二极耳位于所述主体部沿所述宽度方向的同一端,并且两者沿所述长度方向间隔设置。
  8. 根据权利要求7所述的二次电池,其中,所述第一尺寸L1、所述第二尺寸L2和所述第三尺寸L3满足:0.5L2≤L3<0.5L1,所述第二极耳沿所述长度方向具有第四尺寸L4,所述第一尺寸L1、所述第二尺寸L2和所述第四尺寸L4满足:0.5L2≤L4<0.5L1。
  9. 根据权利要求5至8任一项所述的电池单体,其中,所述第一转接部件包括第一转接板和第二转接板,所述第一转接板用于连接所述第一电极端子,所述第二转接板用于连接所述第一极耳。
  10. 根据权利要求4所述的电池单体,其中,所述电极组件还包括与所述第一极耳极性相反的第二极耳,所述第一极耳包括两个第一子极耳,两个所述第一子极耳分别位于所述主体部沿所述宽度方向的两端,所述第二极耳包括包括两个第二子极耳,两个所述第二子极耳分别位于所述主体部沿所述宽度方向的两端。
  11. 根据权利要求10所述的电池单体,其中,所述主体部同一端的所述第一子极耳和所述第二子极耳沿所述长度方向间隔设置。
  12. 根据权利要求10或11所述的电池单体,其中,所述第一转接部件包括第一转接板和两个第二转接板,所述第一转接板用于连接所述第一电极端子,两个所述第二转接板分别用于连接两个所述第一子极耳。
  13. 根据权利要求10至12任一项所述的电池单体,其中,两个所述第一子极耳和两个所述第二子极耳均沿所述宽度方向错位设置。
  14. 根据权利要求9或12所述的电池单体,其中,所述第二转接板包括本体部和折弯部,所述本体部用于连接所述第一转接板,所述折弯部用 于连接所述第一极耳。
  15. 根据权利要求5至14任一项所述的电池单体,其中,所述电池单体还包括:
    第二端盖,位于所述电极组件沿所述长度方向的另一侧,并用于封闭所述壳体的第二开口;
    第二电极端子,设置于所述第二端盖;
    第二转接部件,用于连接所述第二电极端子和所述第二极耳。
  16. 一种电池,其中,包括如权利要求1至15任一项所述的电池单体。
  17. 一种用电装置,其中,包括如权利要求16所述的电池,所述电池用于提供电能。
PCT/CN2020/113796 2020-09-07 2020-09-07 电池单体、电池以及用电装置 WO2022047791A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080095950.0A CN115066802A (zh) 2020-09-07 2020-09-07 电池单体、电池以及用电装置
BR112022014657A BR112022014657A2 (pt) 2020-09-07 2020-09-07 Célula de bateria, bateria e aparelho elétrico
EP20952033.7A EP4080668A4 (en) 2020-09-07 2020-09-07 BATTERY CELL, BATTERY AND POWER CONSUMING DEVICE
PCT/CN2020/113796 WO2022047791A1 (zh) 2020-09-07 2020-09-07 电池单体、电池以及用电装置
AU2020466884A AU2020466884B2 (en) 2020-09-07 2020-09-07 Battery cell, battery, and power consuming device
US17/894,015 US20220416375A1 (en) 2020-09-07 2022-08-23 Battery cell, battery, and electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113796 WO2022047791A1 (zh) 2020-09-07 2020-09-07 电池单体、电池以及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/894,015 Continuation US20220416375A1 (en) 2020-09-07 2022-08-23 Battery cell, battery, and electric apparatus

Publications (1)

Publication Number Publication Date
WO2022047791A1 true WO2022047791A1 (zh) 2022-03-10

Family

ID=80492108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113796 WO2022047791A1 (zh) 2020-09-07 2020-09-07 电池单体、电池以及用电装置

Country Status (6)

Country Link
US (1) US20220416375A1 (zh)
EP (1) EP4080668A4 (zh)
CN (1) CN115066802A (zh)
AU (1) AU2020466884B2 (zh)
BR (1) BR112022014657A2 (zh)
WO (1) WO2022047791A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040038124A1 (en) * 2002-08-22 2004-02-26 Nissan Motor Co., Ltd Laminate cell, assembled battery, battery module and electric vehicle
CN101088192A (zh) * 2004-12-22 2007-12-12 Sk株式会社 高功率锂单体电池以及具有该锂单体电池的高功率锂电池组
JP2010080325A (ja) * 2008-09-26 2010-04-08 Asahi Kasei Corp 非水系リチウム型蓄電素子及びその製造方法
CN205211833U (zh) * 2015-12-14 2016-05-04 天津中聚新能源科技有限公司 连接片及使用该连接片的电池
CN108011069A (zh) * 2017-12-01 2018-05-08 衢州职业技术学院 动力电池以及动力电池的热管理系统
CN109273757A (zh) * 2017-07-17 2019-01-25 通用汽车环球科技运作有限责任公司 极耳区域增加的电池单元及其制造方法和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060040176A1 (en) * 2003-11-03 2006-02-23 Ling Pui Tsang P Prismatic battery cells, batteries with prismatic battery cells and methods of making same
DE102009011524A1 (de) * 2009-03-03 2010-09-09 Li-Tec Battery Gmbh Elektroenergie-Speicherzelle und Zellblock, Elektroenergie-Speichervorrichtung und Fahrzeug damit
JP6780071B1 (ja) * 2019-07-12 2020-11-04 古河電池株式会社 非水電解質二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040038124A1 (en) * 2002-08-22 2004-02-26 Nissan Motor Co., Ltd Laminate cell, assembled battery, battery module and electric vehicle
CN101088192A (zh) * 2004-12-22 2007-12-12 Sk株式会社 高功率锂单体电池以及具有该锂单体电池的高功率锂电池组
JP2010080325A (ja) * 2008-09-26 2010-04-08 Asahi Kasei Corp 非水系リチウム型蓄電素子及びその製造方法
CN205211833U (zh) * 2015-12-14 2016-05-04 天津中聚新能源科技有限公司 连接片及使用该连接片的电池
CN109273757A (zh) * 2017-07-17 2019-01-25 通用汽车环球科技运作有限责任公司 极耳区域增加的电池单元及其制造方法和设备
CN108011069A (zh) * 2017-12-01 2018-05-08 衢州职业技术学院 动力电池以及动力电池的热管理系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4080668A4 *

Also Published As

Publication number Publication date
AU2020466884A1 (en) 2022-08-11
US20220416375A1 (en) 2022-12-29
EP4080668A1 (en) 2022-10-26
AU2020466884B2 (en) 2023-08-24
EP4080668A4 (en) 2024-02-28
BR112022014657A2 (pt) 2022-09-13
CN115066802A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
EP2549561A2 (en) Pouch type case and battery pack including same
CN110168769A (zh) 电池组
WO2023070677A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
CN216872134U (zh) 电池和用电设备
US20230049457A1 (en) Battery cell, battery, and electric apparatus
WO2023065923A1 (zh) 电池单体、电池和用电设备
US20220367985A1 (en) Electrode assembly, battery cell, battery, electrical apparatus, and manufacturing method and device
CN113113692A (zh) 电池、电池模组、电池包及电动车
WO2022047791A1 (zh) 电池单体、电池以及用电装置
JP2015531534A (ja) 2次電池電極組立体用分離膜及びこれを含む2次電池
WO2023087217A1 (zh) 电池单体及其制造方法、制造设备、电池和用电装置
CN214957173U (zh) 电池包与用电装置
WO2022246839A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2022104546A1 (zh) 电池、使用电池的装置、电池的制备方法和制备设备
KR20140058058A (ko) 배터리 모듈
JP2001256942A (ja) 電池モジュール及び扁平形状電池
EP4354618A1 (en) Battery, electrical device, and method and device for fabricating battery
WO2023092459A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2022226965A1 (zh) 电池单体、电池、用电设备及电池的制造方法和设备
CN210838003U (zh) 一种高容量大功率铅酸蓄电池
WO2023231457A1 (zh) 电极组件、电池单体、电池及用电装置
WO2023133749A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023082192A1 (zh) 电池单体、电池、用电装置、制备电池的方法和装置
WO2023004832A1 (zh) 电池单体、电池、装置、以及电池单体的制造方法和制造设备
WO2023225903A1 (zh) 电池单体、电池以及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020952033

Country of ref document: EP

Effective date: 20220718

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022014657

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020466884

Country of ref document: AU

Date of ref document: 20200907

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022014657

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220725

NENP Non-entry into the national phase

Ref country code: DE