WO2022080451A1 - 薄膜熱電対素子、測温素子及び薄膜熱電対素子の製造方法 - Google Patents

薄膜熱電対素子、測温素子及び薄膜熱電対素子の製造方法 Download PDF

Info

Publication number
WO2022080451A1
WO2022080451A1 PCT/JP2021/038060 JP2021038060W WO2022080451A1 WO 2022080451 A1 WO2022080451 A1 WO 2022080451A1 JP 2021038060 W JP2021038060 W JP 2021038060W WO 2022080451 A1 WO2022080451 A1 WO 2022080451A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
thermocouple
conductive thin
thermocouple element
temperature
Prior art date
Application number
PCT/JP2021/038060
Other languages
English (en)
French (fr)
Inventor
正平 宮武
Original Assignee
ジオマテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジオマテック株式会社 filed Critical ジオマテック株式会社
Publication of WO2022080451A1 publication Critical patent/WO2022080451A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples

Definitions

  • the present invention relates to a method for manufacturing a thin film thermocouple element, a temperature measuring element and a thin film thermocouple element, and in particular, manufacturing an interchangeable thin film thermocouple element, a temperature measuring element and a thin film thermocouple element using the thin film thermocouple element. Regarding the method.
  • thermocouple An element consisting of a combination of two types of metals made for temperature measurement is called a thermocouple, and is a technology that has been used for a long time as a temperature measurement element using the Zeebeck effect.
  • thermocouple There is a thin film thermocouple as a thin and flexible temperature sensor.
  • the thin-film thermocouple element is made of a heat-resistant film and a conductive thin film, and can measure the temperature in a small and narrowly complicated place.
  • Patent Document 1 describes a correction in which an external metal wire having the same constituent material as the thin film thermocouple and having the same length is connected in the vicinity of the connection portion of the external metal for signal extraction of the thin film thermocouple in the temperature measuring element.
  • Techniques with thermocouples are described. In this technique, an error in temperature measurement due to connecting a thin film thermocouple to a bulk material is reduced by performing a calculation using a predetermined calculation formula using a temperature measuring element.
  • thermocouple element with a connector is expensive, but if the thin-film thermocouple element coupled to the connector is damaged, it is difficult to replace it. Therefore, it has been desired to make only the thin film thermocouple element replaceable with respect to the connector.
  • thermocouple element In order to make a thin-film thermocouple element interchangeable, it is essential that the variation in temperature characteristics between each element is small, but in the conventional technology, the temperature characteristics between each element exceed the permissible range, and thin-film thermocouple elements are used. Every time the pair of elements was replaced, the temperature measuring instrument had to be calibrated.
  • the present invention has been made in view of the above problems, and an object of the present invention is a thin film thermocouple element which has a small difference in temperature characteristics and can be replaced with respect to a connector, and a temperature measurement using the thin film thermocouple element. It is an object of the present invention to provide a method for manufacturing an element and a thin film thermocouple element.
  • the subject is formed by a substrate and a first conductive thin film made of chromel and a second conductive thin film made of alumel on the substrate, and for temperature measurement on one end side.
  • a thermocouple having a contact and an external connection point of each thin film on the other end side is provided, and the arithmetic average height (Sa) of the surface of the first conductive thin film is 1.0 nm or less.
  • Sa arithmetic average height of the surface of the second conductive thin film being 2.0 nm or less.
  • a reinforcing member is provided on the other end side of the substrate on the side opposite to the external connection point.
  • the problem is that the thin-film thermocouple element, the pair of compensating wires connected to the external connection point of the thin-film thermocouple element, and the vicinity of the external connection point are separated from each other.
  • a second thermocouple consisting of a pair of metal wires having contacts is provided, and the pair of compensating leads and the pair of metal wires of the second thermocouple are made of the same combination of materials.
  • the material of the first conductive thin film and the second conductive thin film is solved by being made of a material having the same combination as a pair of metal wires connected to an external connection point of the thin film thermocouple element.
  • the connector that internally accommodates the external connection point and the pair of compensating conductors connected at the external connection point, and the contact point of the second thermocouple is each of the external connection points. It is preferable that they are integrally arranged in the connector so as to be separated on the same line connecting the two.
  • the subject is a step of preparing a substrate and a film formation of a first conductive thin film made of chromel and a second conductive thin film made of alumel on the substrate. Then, in the step of forming a thermocouple having a temperature measuring contact on one end side and having an external connection point of each thin film on the other end side, in the step of forming the thermocouple, the substrate is used. It is solved by heating at a temperature higher than 100 ° C. With the above configuration, it is possible to obtain a thin-film thermocouple element that has a small difference in temperature characteristics between different thin-film thermocouple elements and is interchangeable with respect to the connector.
  • the first conductive thin film is made of chromel and the first conductive thin film is made of alumel.
  • the arithmetic mean height (Sa) of the surface of the first conductive thin film is 1.0 nm or less
  • the arithmetic mean height (Sa) of the surface of the second conductive thin film is 2.0 nm or less. Is suitable.
  • thermocouple element According to the method for manufacturing a thin film thermocouple element, a temperature measuring element, and a thin film thermocouple element of the present invention, the difference in temperature characteristics between different thin film thermocouple elements is reduced, and the thin film thermocouple element interchangeable with respect to the connector. And a temperature measuring element using the thin film thermocouple element can be provided.
  • FIG. 1A is a cross-sectional view taken along the line AA of FIG. 1A. It is a schematic diagram of the temperature measuring element which concerns on embodiment of this invention. It is a schematic diagram of thermoelectromotive force and temperature difference in temperature measurement. 6 is an AFM image of the surface of each sample (Examples 1 to 4). 8 is an AFM image of the surface of each sample (Examples 5 to 8). It is a graph which shows the temperature characteristic value of each thin film thermocouple element with respect to the K type thermocouple element.
  • thermocouple element and the temperature measuring element according to the embodiment of the present invention (the present embodiment) will be described with reference to the drawings.
  • the materials, arrangements, configurations, etc. described below are not limited to the present invention, and can be variously modified within the scope of the gist of the present invention.
  • FIG. 1 is a schematic view of a thin film thermocouple element 1 according to an embodiment of the present invention.
  • the first conductive thin film 11 and the second conductive thin film 12 are different materials, and are joined by the temperature measuring contact 18 of the thin film thermocouple element 1.
  • the temperature measuring contact 18 of the thin film thermocouple element 1 is joined so that the first conductive thin film 11 and the second conductive thin film 12 overlap each other.
  • the thin film thermocouple element 1 is an interchangeable element and is configured to be removable from the connector 2.
  • the temperature measuring element H is configured by combining the thin film thermocouple element 1 with the connector 2 (FIG. 2).
  • the connector 2 to be combined with the thin-film thermocouple element 1 is not particularly limited as long as the thin-film thermocouple element 1 can be attached and detached, and the method of attaching the element is not particularly limited.
  • the first conductive thin film 11 and the second conductive thin film 12 are located at the external connection points 20 and 21 located at the connection end 10a on the opposite side of the temperature measuring contact 18. It is joined to the same metal wire as the first conductive thin film 11 and the second conductive thin film 12.
  • the thin film thermocouple element 1 has a first conductive thin film 11 and a second conductive thin film 12 on the substrate 10, and at one end thereof, a temperature measuring contact 18 for measuring the temperature of the object, and the like. External connection points 20 and 21 of each thin film pattern serving as open ends are provided at the ends.
  • the first compensating lead wire 13 and the second compensating lead wire 14 are connected at the external connection points 20 and 21 of the thin film thermocouple element 1.
  • thermocouple made of another thin metal wire in the vicinity of the external connection points 20 and 21, and the first compensating lead wire 13 and the second compensating lead wire 14 of the thin film thermocouple element 1 are corrected. It is made of the same material as the first metal wire 15 and the second metal wire 16 of the thermocouple, respectively. Further, in the temperature measuring element H, the materials of the first conductive thin film 11 and the second conductive thin film 12 of the thin film thermocouple element 1 are the same materials as the first compensating lead wire 13 and the second compensating lead wire 14, respectively, and are externally connected. It is preferable that the points 20 and 21 and the temperature measuring contact 19 of the correction thermocouple are arranged in the integrated connector 2 (FIG. 3).
  • each thermocouple is connected to the first compensating lead wire 13 and the second compensating lead wire 14, the first metal wire 15 and the second metal wire 16 by a calculation unit 17a provided with a CPU (calculation circuit) and a connection wire 17c. It is connected to the calculation result display unit 17b.
  • the substrate 10 on which the thin film thermocouple element 1 is formed glass, a film, a metal, or the like can be used.
  • the substrate 10 is made of a conductive material such as metal, it is necessary to form an insulating film such as SiO 2 or Al 2 O 3 on the metal surface in advance and then form a thin film thermocouple. Therefore, it is preferable to use a film.
  • a conductive substrate such as metal
  • glass and film do not require pretreatment, so that the operation is not complicated and is suitable.
  • the flexibility of the film can increase the strength of the temperature measuring element.
  • a polyimide film is used.
  • the polyimide film is a thin-film thermocouple substrate in that it can be bent and is not easily broken even if the substrate is several tens of microns thick, and it is relatively stable even at temperatures exceeding 200 ° C. It is a suitable material.
  • the thickness of the substrate 10 is preferably 1 ⁇ m or more and 150 ⁇ m or less, more preferably 1 ⁇ m or more and 50 ⁇ m or less, and particularly preferably 1 ⁇ m or more and 18 ⁇ m or less.
  • chromel-almel As a combination of dissimilar metals constituting the first conductive thin film 11 and the second conductive thin film 12 of the thin film thermocouple element 1, chromel-almel, PtRh-Pt, chromel-constantan, nycrosyl-nysyl, Cu-constantan, Fe. -Constantan, Ir-IrRh, W-Re, Au-Pt, Pt-Pd, Bi-Sb and the like can be used.
  • chromel and alumel which has a wide operating temperature range and a linear relationship between temperature and thermoelectromotive force (for example, the first conductive thin film 11 is chromel and the second conductive film).
  • the thin film 12 is alumel).
  • the thickness of the first conductive thin film 11 and the second conductive thin film 12 is preferably 10 nm or more and 1 ⁇ m or less, more preferably 100 nm or more and 700 nm or less, and more preferably 150 nm or more and 550 nm or less.
  • a vacuum film forming method such as a sputtering method, an electron beam vapor deposition method, a heat vapor deposition method, or a coating method can be used. It is preferable to use a vacuum film forming method capable of forming a thinner and more uniform thin film. More preferably, it is preferable to use a sputtering method in which the atomic composition does not deviate from the vapor-filmed material and the film can be formed uniformly.
  • the thin film thermocouple element 1 is covered with the protective film P.
  • the protective film P enhances the environmental resistance of the thin film thermocouple element 1 and also has the effect of preventing the occurrence of cracks, which is a concern when the thin film thermocouple element 1 is deformed by an external force.
  • the applicable protective film P is an insulating film obtained by forming SiO 2 , Al 2 O 3 , or the like by a vapor deposition method, a sputtering method, a dipping method, or the like, a polyimide film by a screen printing method, or the like. It is preferable to use a polyimide film having high heat resistance, chemical resistance, and high adhesiveness.
  • a reinforcing member G is provided on the opposite side of the external connection points 20 and 21 at the connection end portion 10a of the substrate 10.
  • the material of the reinforcing member G is not particularly limited, and for example, epoxy glass can be used. According to the reinforcing member G, the strength of the thin film thermocouple element 1 is improved, and the connectivity with the connector 2 is improved.
  • FIG. 3 is a schematic diagram of the thermoelectromotive force and the temperature difference of each thermocouple when the thin film thermocouple element 1 is used.
  • Va is an external connection point 20 and 21 of the first compensating lead wire 13 and the second compensating lead wire 14, the first conductive thin film 11 and the second conductive thin film 12, and the first conductive thin film 11 and the second conductive thin film.
  • It is the thermocouple of the thin film thermocouple element 1 generated with respect to the temperature difference ⁇ T a between the two points of the thin film thermocouple element 1 which is the external connection point of the 12 and the temperature measuring contact 18.
  • ⁇ T a between the two points of the thin film thermocouple element 1 which is the external connection point of the 12 and the temperature measuring contact 18.
  • the external connection points 20 and 21 are close to each other and that the temperature of the environment of the external connection points 20 and 21 is stable.
  • V b is a thermoelectromotive force generated for a temperature difference ⁇ T b between the temperature measuring contact 19 of the first metal wire 15 and the second metal wire 16 which is a correction thermocouple and the temperature indicator 17. ..
  • thermoelectromotive force generated for a certain temperature difference ⁇ To and the thermocouple formed of the metal wire of the same material as the thin-film thermocouple element 1 have a temperature difference. It is not equal to the thermoelectromotive force generated for ⁇ To . Therefore, even if the thermoelectromotive force V is measured using a temperature measuring instrument, the temperature T of the temperature measuring contact 18 of the thin film thermocouple element 1 cannot be uniquely determined from the obtained thermoelectromotive force.
  • the first compensating lead wire 13 and the second compensating lead wire 13 and the second compensating lead wire 13 and the second compensating lead wire 13 and the second compensating lead wire 13 are located near the external connection points 20 and 21 of the first conductive thin film 11 and the second conductive thin film 12, the first compensating lead wire 13 and the second compensating lead wire 14.
  • a temperature measuring contact 19 of a compensating thermocouple made of a metal wire made of the same material as the conducting wire 14 is installed, and the thermoelectromotive force of the compensating thermocouple is measured.
  • V b can be obtained, and by subtracting V b from the thermoelectromotive force V generated in the closed circuit on the thin film thermocouple element 1, it becomes possible to obtain the thermoelectromotive force Va generated in the conductive thin film. Become.
  • thermoelectromotive force V b cannot be evaluated correctly, and the temperature is accurate. Cannot be calculated.
  • the thin film thermocouple is used.
  • thermocouple element 1 a first conductive thin film made of chromel and a second conductive thin film made of alumel are formed on a substrate to form a thermocouple. It has been found that when the substrate is heated at a temperature higher than 100 ° C., specifically at 150 ° C., the variation in temperature characteristics between the different thin film thermocouple elements 1 becomes smaller.
  • the arithmetic mean height (Sa) of the surface of the first conductive thin film made of chromel is obtained for one parameter of the surface roughness (ISO 25178).
  • the arithmetic mean height (Sa) of the surface of the second conductive thin film made of alumel is 2.0 nm or less (preferably 0.9 nm or less). It was found to be 1.9 nm or less, more preferably 1.8 nm or less).
  • the arithmetic average height (Sa) is a three-dimensional extension of the arithmetic average roughness (Ra), which is a two-dimensional roughness parameter, and is a three-dimensional roughness parameter (three-dimensional height direction parameter).
  • the arithmetic mean height (Sa) represents the average of the absolute values of the height differences of each point in the measurement target area.
  • the arithmetic mean height (Sa) may be a value calculated as an average value of an observation region of 1 ⁇ m ⁇ 1 ⁇ m or 3 ⁇ m ⁇ 3 ⁇ m using, for example, an atomic force microscope (AFM).
  • AFM atomic force microscope
  • the method for manufacturing a thin film thermocouple element includes a step of preparing a substrate 10 (step S1) and forming a first conductive thin film 11 and a second conductive thin film 12 on the substrate 10 to form a film.
  • step S1 a step of preparing a substrate 10
  • step S2 a step of forming a thermocouple having the temperature measuring contact 18 on one end side and having the external connection points 20 and 21 of each thin film on the other end side
  • step S2 it is a method for manufacturing a thin film thermocouple element, which comprises heating a substrate 10 at a temperature higher than 100 ° C.
  • the step of forming the thermocouple is preferably performed by a sputtering method in which the atomic composition does not deviate from the vapor-filmed material and the film can be formed uniformly.
  • a polyimide film as the substrate, and heating is performed at a temperature higher than 100 ° C., preferably 120 ° C. or higher, more preferably 130 ° C. or higher, further preferably 140 ° C. or higher, and particularly preferably 150 ° C. or higher. good.
  • the upper limit of the heating temperature of the substrate depends on the material of the substrate and the film quality of the chromel thin film or the alumel thin film to be formed, but is 250 ° C. or lower, preferably 230 ° C. or lower, more preferably 210 ° C. or lower, still more preferable. Is preferably 200 ° C. or lower.
  • the arithmetic mean height (Sa) of the surface of the first conductive thin film (preferably made of chromel) of the obtained thin film thermocouple element is 1.0 nm or less.
  • the arithmetic mean height (Sa) of the surface of the second conductive thin film (preferably made of alumel) is 2.0 nm or less, preferably 1.95 nm or less, more preferably 0.9 nm or less. It is 9 nm or less, more preferably 1.8 nm or less.
  • the arithmetic mean height (Sa) of the surface of the conductive thin film was 1.0 nm or less in chromel (Examples 1 and 5), and in alumel (Examples 3 and 7). It was 2.0 nm or less. Further, for the sample (room temperature, 25 ° C.) in which the substrate was not heated, the arithmetic mean height (Sa) of the surface of the conductive thin film was 1.3 nm or more in chromel (Examples 2 and 6), and alumel (Example 2 and Example 6). In Example 4 and Example 8), it was 2.6 nm or more.
  • Chromel-Alumel is used as the material constituting the conductive thin film of the thin film thermocouple element, the substrate temperature is set to 100 ° C. or 150 ° C. (set value), and the polyimide film as a substrate is subjected to a sputtering method based on the above conditions. A thin film thermocouple was formed on top. Further, a polyimide film different from the substrate was adhered to the formed thin film thermocouple, and this was used as a protective film.
  • FIG. 6 shows a graph showing the temperature characteristic values of each thin-film thermocouple element based on a normal K-type thermocouple element.
  • the data shown in FIG. 6 are the results of measurement by preparing two sheets at heating temperatures of 100 ° C. and 150 ° C. of the base material, respectively. Since the electromotive force of the thin-film thermocouple element is 70 to 80% of the bulk thermocouple element, it needs to be corrected in order to obtain the correct temperature. The temperature of the temperature measuring contact of the thin film thermocouple element and the connector part (that is, the external connection point) is measured, and the true temperature is calculated from both measured values.
  • the temperature characteristics varied greatly among the elements when the substrate temperature was 100 ° C or lower.
  • the temperature of the base material is set to more than 100 ° C, specifically 150 ° C or higher, so that the temperature characteristics are substantially the same between the elements (vertical in FIG. 6). It was found to be within ⁇ 0.0075 on the axis and ⁇ 1 ° C in terms of temperature).
  • thermocouple element in the step of forming a first conductive thin film made of chromel and a second conductive thin film made of alumel on the substrate to form a thermocouple, the substrate is formed. It was found that when heated at a temperature higher than 100 ° C., specifically 150 ° C., the variation in temperature characteristics between different thin film thermocouple elements was reduced.
  • the arithmetic average height (Sa) of the surface of the first conductive thin film made of chromel is 1.0 nm or less
  • the arithmetic mean height of the surface of the second conductive thin film made of alumel is 1.0 nm or less.
  • (Sa) was 2.0 nm or less, suggesting that the film quality of the chromel thin film and the alumel thin film was stabilized and the variation in electromotive force was reduced.
  • the thin film thermocouple element can be exchanged.
  • the field of application of temperature measurement using a thin-film thermocouple element is not particularly limited, but it is possible to suitably measure the temperature of a very small portion, for example, a fuel cell, a heating roller, a hot press, and an electron. It is possible to measure the heat generation temperature, chemical reaction temperature, instantaneous heating temperature, etc. of circuit parts.
  • Temperature measuring element 1 Thin film thermocouple element P Protective film G Reinforcing member 2 Connector 10 Substrate 10a Connection end 11 1st conductive thin film 12 2nd conductive thin film 13 1st compensating lead wire 14 2nd compensating lead wire 15 1st metal wire 16 2nd metal wire 17a Calculation unit 17b Calculation result display unit 17c Connection line 18 Temperature measurement contact 19 Temperature measurement contact of thermocouple for correction 20 External connection point 21 External connection point 21 External connection point

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

温度特性の差が小さく、コネクタに対して交換可能な薄膜熱電対素子を提供する。 基板10と、該基板10の上にクロメルからなる第1導電性薄膜11及びアルメルからなる第2導電性薄膜12により形成され、一端側に測温用接点18を有し、他端側に各薄膜の外部接続点20,21を備えた熱電対と、を備え、第1導電性薄膜11の表面の算術平均高さ(Sa)が1.0nm以下であり、第2導電性薄膜12の表面の算術平均高さ(Sa)が2.0nm以下であることを特徴とする薄膜熱電対素子により解決される。

Description

薄膜熱電対素子、測温素子及び薄膜熱電対素子の製造方法
 本発明は薄膜熱電対素子、測温素子及び薄膜熱電対素子の製造方法に係り、特に、交換可能な薄膜熱電対素子、該薄膜熱電対素子を利用した測温素子及び薄膜熱電対素子の製造方法に関する。
 温度測定用に作られた二種類の金属の組み合わせからなる素子は熱電対と称され、ゼーベック効果を利用した温度測定素子として古くから利用されてきた技術である。薄型でフレキシブルな温度センサとして薄膜熱電対がある。薄膜熱電対素子は、耐熱フィルムと導電性薄膜で形成されており、小型で狭く入り組んだ場所の温度を測定することが可能である。
 特許文献1には、測温素子において、薄膜熱電対の信号取り出し用外部金属の接続部分の近傍に、薄膜熱電対と同じ構成材料により構成され、かつ同じ長さの外部金属線を接続した補正用熱電対を備える技術が記載されている。この技術では、測温素子を用い、所定の計算式で演算を行うことにより、薄膜熱電対をバルク材料と接続することに起因する温度測定時の誤差を軽減している。
特開2010-190735号公報
 一般的に、コネクタ付きの薄膜熱電対素子は高価であるが、コネクタと結合された薄膜熱電対素子が破損した場合には交換することが困難であった。そこで薄膜熱電対素子のみをコネクタに対して交換可能にすることが望まれていた。
 薄膜熱電対素子を交換型とするには、各素子間の温度特性のばらつきが小さいことが必須であるが、従来の技術では、各素子間の温度特性が許容範囲を超えており、薄膜熱電対素子を交換する毎に、温度計測器でキャリブレーションを行わなければならなかった。
 本発明は、上記課題に鑑みてなされたものであり、本発明の目的は、温度特性の差が小さく、コネクタに対して交換可能な薄膜熱電対素子、該薄膜熱電対素子を用いた測温素子及び薄膜熱電対素子の製造方法を提供することにある。
 前記課題は、本発明の薄膜熱電対素子によれば、基板と、該基板の上にクロメルからなる第1導電性薄膜及びアルメルからなる第2導電性薄膜により形成され、一端側に測温用接点を有し、他端側に各薄膜の外部接続点を備えた熱電対と、を備え、前記第1導電性薄膜の表面の算術平均高さ(Sa)が1.0nm以下であり、前記第2導電性薄膜の表面の算術平均高さ(Sa)が2.0nm以下であること、により解決される。
 上記構成により、異なる薄膜熱電対素子の間で温度特性の差が小さくなり、コネクタに対して交換可能な薄膜熱電対素子として利用することが可能となる。
 このとき、前記基板の他端側において、前記外部接続点とは反対側には、補強部材が設けられていると好適である。
 このように、補強部材を設けることで、薄膜熱電対素子の接続部の強度が向上し、コネクタとの接続性が向上する。
 前記課題は、本発明の測温素子によれば、上記の薄膜熱電対素子と、前記薄膜熱電対素子の外部接続点と接続された一対の補償導線と、前記外部接続点と離間した近傍に接点を有する、一対の金属線からなる第2の熱電対と、を備え、前記一対の補償導線と、前記第2の熱電対の一対の金属線は、同一組み合わせの材料により構成されており、前記第1導電性薄膜及び前記第2導電性薄膜の材料は、前記薄膜熱電対素子の外部接続点と接続された一対の金属線と同一組み合わせの材料からなること、により解決される。
 このとき、前記外部接続点と、前記外部接続点で接続される前記一対の補償導線と、を内部に収容するコネクタを有し、前記第2の熱電対の接点は、前記外部接続点のそれぞれを結ぶ同一線上に離間して、前記コネクタ内に一体に配設されていると好適である。
 前記課題は、本発明の薄膜熱電対素子の製造方法によれば、基板を用意する工程と、前記基板の上にクロメルからなる第1導電性薄膜及びアルメルからなる第2導電性薄膜を成膜して、一端側に測温用接点を有し、他端側に各薄膜の外部接続点を備えた熱電対を形成する工程と、を行い、前記熱電対を形成する工程では、前記基板を100℃よりも高い温度で加熱すること、により解決される。
 上記構成により、異なる薄膜熱電対素子の間で温度特性の差が小さく、コネクタに対して交換可能な薄膜熱電対素子を得ることが可能となる。
 このとき、前記第1導電性薄膜はクロメルからなり、前記第1導電性薄膜はアルメルからなると好適である。
 このとき、前記第1導電性薄膜の表面の算術平均高さ(Sa)が1.0nm以下であり、前記第2導電性薄膜の表面の算術平均高さ(Sa)が2.0nm以下であると好適である。
 本発明の薄膜熱電対素子、測温素子及び薄膜熱電対素子の製造方法によれば、異なる薄膜熱電対素子の間で温度特性の差が小さくなり、コネクタに対して交換可能な薄膜熱電対素子及び該薄膜熱電対素子を用いた測温素子を提供することができる。
本発明の一実施形態に係る薄膜熱電対素子を示す概略模式図である。 図1AのA-A断面図である。 本発明の実施形態に係る測温素子の概略図である。 温度計測における熱起電力と温度差の概略図である。 各サンプル(例1~4)の表面のAFM像である。 各サンプル(例5~8)の表面のAFM像である。 K型熱電対素子を基準とした各薄膜熱電対素子の温度特性値を示すグラフである。
 本発明の実施形態(本実施形態)に係る薄膜熱電対素子および測温素子を図面に基づいて説明する。なお、以下に説明する材料、配置、構成等は、本発明を限定するものでなく、本発明の趣旨の範囲内で種々改変することができるものである。
<薄膜熱電対素子1>
 図1は本発明の実施形態に係る薄膜熱電対素子1の概略図である。図1において第1導電性薄膜11及び第2導電性薄膜12はそれぞれ異種材料であり、薄膜熱電対素子1の測温接点18にて接合されている。薄膜熱電対素子1の測温接点18は、第1導電性薄膜11及び第2導電性薄膜12が重なるように接合されている。
 薄膜熱電対素子1は、交換型の素子であり、コネクタ2に対して着脱可能に構成されている。薄膜熱電対素子1をコネクタ2と組み合わせることで測温素子Hが構成されている(図2)。薄膜熱電対素子1と組み合わせるコネクタ2は、薄膜熱電対素子1を着脱可能なものであれば、素子の取付の方式等について、特に限定されるものではない。
 また、図3に示されるように、第1導電性薄膜11及び第2導電性薄膜12は、測温接点18とは反対側の接続端部10aに位置する外部接続点20及び21にて、第1導電性薄膜11及び第2導電性薄膜12と同一の金属線と接合される。そして、薄膜熱電対素子1においては、基板10上に第1導電性薄膜11及び第2導電性薄膜12を有し、その一端に被対象物の測温用である測温接点18、および他端に開放端となる各薄膜パターンの外部接続点20及び21が設けられている。薄膜熱電対素子1の外部接続点20及び21において、第1補償導線13及び第2補償導線14が接続される。
 さらに、外部接続点20及び21の近傍に他の金属細線からなる補正用熱電対の測温接点19があり、薄膜熱電対素子1のそれぞれの第1補償導線13及び第2補償導線14は補正用熱電対のそれぞれの第1金属線15及び第2金属線16と同一材料である。またこの測温素子Hにおいて、薄膜熱電対素子1の第1導電性薄膜11及び第2導電性薄膜12の材料は第1補償導線13及び第2補償導線14とそれぞれ同一材料であり、外部接続点20及び21と補正用熱電対の測温接点19が一体のコネクタ2内に配置されていると好ましい(図3)。この補正用熱電対の測温接点19を、薄膜熱電対素子1の外部接続点20及び21の近傍に設置することにより、単純な構成の測温素子となり、かつ正確な温度を測定することができる。このとき、各熱電対は第1補償導線13及び第2補償導線14、第1金属線15及び第2金属線16は、CPU(計算回路)を備えた演算部17a及び接続線17cにより接続された演算結果表示部17bに接続されている。
 薄膜熱電対素子1を形成する基板10として、ガラス、フィルム、金属などを用いることができる。但し、基板10を金属などの導電性のある材料とする場合には、予め金属表面にSiO、Al等の絶縁膜を形成した上で薄膜熱電対を形成する必要がある。
 したがって、好ましくはフィルムを用いるのが良い。ガラス、フィルムは金属などの導電性のある基板のように、前処理を必要とすることがないため、操作が煩雑になることが無く、好適である。また、フィルムはその可撓性により、測温素子の強度を高めることができる。さらに好ましくは、ポリイミドフィルムを用いるのが良い。ポリイミドフィルムは、折り曲げることが可能で基板を数十ミクロンの厚さにしても壊れにくく取り扱いが容易である点と、200℃を超える温度でも比較的安定している点において、薄膜熱電対の基板として適した材料である。
 基板10の厚さは、1μm以上150μm以下とすることが好ましく、より好ましくは1μm以上50μm以下、特に好ましくは1μm以上18μm以下であるとよい。
 薄膜熱電対素子1の第1導電性薄膜11及び第2導電性薄膜12を構成する異種金属の組み合わせとしては、クロメル-アルメル、PtRh-Pt、クロメル-コンスタンタン、ナイクロシル-ナイシル、Cu-コンスタンタン、Fe-コンスタンタン、Ir-IrRh、W-Re、Au-Pt、Pt-Pd、Bi-Sbなどを用いることができる。好ましくは、使用温度範囲が広く、温度と熱起電力の関係が直線的である、クロメル-アルメルの組み合わせを用いるのが良い(例えば、第1導電性薄膜11がクロメルであり、第2導電性薄膜12がアルメルである)。
 第1導電性薄膜11及び第2導電性薄膜12の厚さは、10nm以上1μm以下とすることが好ましく、より好ましくは100nm以上700nm以下、より好ましくは150nm以上550nm以下であるとよい。
 第1導電性薄膜11及び第2導電性薄膜12の形成方法としては、スパッタリング法、電子ビーム蒸着法、加熱蒸着法等の真空成膜法や、塗布法等を用いることができる。好ましくは、より薄く均一に薄膜を形成できる真空成膜法を用いるのが良い。さらに好ましくは、蒸着物質との原子組成のずれが少なく、均一に成膜ができるスパッタリング法を用いるのが良い。
 薄膜熱電対素子1は保護膜Pにより覆われていることが望ましい。保護膜Pは薄膜熱電対素子1の耐環境性を高めると共に、薄膜熱電対素子1が外力により変形した際に懸念されるクラックの発生を防ぐ効果もあるためである。適用可能な保護膜Pは、SiO、Alなどを蒸着法、スパッタリング法、ディッピング法等により形成した絶縁膜、スクリーン印刷法によるポリイミドフィルムなどである。好ましくは、耐熱性および耐薬品性が高く、接着性の高いポリイミドフィルムを用いるのがよい。
 なお、基板10の接続端部10aにおいて、外部接続点20及び21は反対側には、補強部材Gが設けられていると好ましい。補強部材Gの材質は、特に限定されるものではなく、例えば、エポキシガラスを用いることが可能である。補強部材Gによれば、薄膜熱電対素子1の強度が向上し、コネクタ2との接続性が向上する。
 図3は、薄膜熱電対素子1を用いる場合における各熱電対の熱起電力と温度差の概略図である。Vは、第1補償導線13及び第2補償導線14と第1導電性薄膜11及び第2導電性薄膜12の外部接続点20及び21と、第1導電性薄膜11及び第2導電性薄膜12の外部接続点である薄膜熱電対素子1の測温接点18との二点間の温度差ΔTに対して発生する薄膜熱電対素子1の熱起電力である。ここで、外部接続点20及び21は近接していることと、外部接続点20及び21の環境の温度は安定していることを前提とする。
 Vは、補正用熱電対である第1金属線15及び第2金属線16の測温接点19と、温度表示器17との間の温度差ΔTに対して発生する熱起電力である。
 薄膜熱電対素子1に接続されている第1補償導線13及び第2補償導線14において、薄膜熱電対素子1との外部接続点20及び21と温度表示器17との間にもΔTの温度差があるため、その第1補償導線13及び第2補償導線14では熱起電力Vが発生する。温度表示器17の温度をTとすると、薄膜熱電対素子1の測温接点18の温度Tは、T=ΔT+ΔT+Tとなる。また、この時に薄膜熱電対素子1の測温接点18から温度表示器17の閉回路で発生する熱起電力Vは、V=V+Vのようになる。
 ここで注意するべき点は、薄膜熱電対素子1において、ある温度差ΔTに対し発生する熱起電力と、薄膜熱電対素子1と同一の材料の金属線で形成される熱電対において温度差ΔTに対し発生する熱起電力とは等しくないということである。よって温度計測器を用いて熱起電力Vを測定しても、得られた熱起電力から薄膜熱電対素子1の測温接点18の温度Tを一意的に決めることはできない。
 本実施形態においては、第1導電性薄膜11及び第2導電性薄膜12と第1補償導線13及び第2補償導線14の外部接続点20及び21付近に、第1補償導線13及び第2補償導線14と同一の材料の金属線で構成される補正用熱電対の測温接点19を設置して、その補正用熱電対の熱起電力を測定する。そのことによりVが得られ、薄膜熱電対素子1側の閉回路で発生する熱起電力VからVを差し引くことにより、導電性薄膜で発生する熱起電力Vを得ることが可能になる。
 なお、第1金属線15及び第2金属線16で、第1補償導線13及び第2補償導線14と異なる材料の組み合わせを使用した場合、熱起電力Vを正しく評価できなくなり、正確な温度を算出することはできない。
 薄膜熱電対素子1の測温接点18の出力をV、補正用熱電対の測温接点19の出力をV、ゼロ点補償による計測器の温度をTとしたときに、薄膜熱電対素子1の測温接点18の温度Tは、T=aV+bV+T(但し、パラメータa,bは温度差と発生する熱起電力との関係から求められる近似曲線により算出される値である)。
 このとき、異なる薄膜熱電対素子1の間で温度特性のばらつきが大きい場合、補正係数であるパラメータa,bの個体差が大きくなってしまい代用することができないことが判明した。
 本願発明者らが鋭意検討を重ねた結果、薄膜熱電対素子1の製造方法において、基板の上にクロメルからなる第1導電性薄膜及びアルメルからなる第2導電性薄膜を成膜して熱電対を形成する工程において、基板を100℃よりも高い温度、具体的には150℃で加熱すると、異なる薄膜熱電対素子1の間で温度特性のばらつきが小さくなることを見出した。
 このとき、温度特性のばらつきが小さくなった薄膜熱電対素子1については、その面粗さ(ISO 25178)のパラメータ一について、クロメルからなる第1導電性薄膜の表面の算術平均高さ(Sa)が1.0nm以下(好ましくは0.95nm以下、より好ましくは0.9nm以下)であり、アルメルからなる第2導電性薄膜の表面の算術平均高さ(Sa)が2.0nm以下(好ましくは1.9nm以下、より好ましくは1.8nm以下)となっていることが分かった。
 算術平均高さ(Sa)は、2次元の粗さパラメータである算術平均粗さ(Ra)を3次元に拡張したものであり、3次元粗さパラメータ(3次元高さ方向パラメータ)である。算術平均高さ(Sa)は、測定対象領域において、各点の高さの差の絶対値の平均を表す。算術平均高さ(Sa)は、例えば、原子間力顕微鏡(AFM)を用いて、1μm×1μm又は3μm×3μmの観察領域の平均値として算出される値とすればよい。
<薄膜熱電対素子の製造方法>
 本実施形態に係る薄膜熱電対素子の製造方法は、基板10を用意する工程(ステップS1)と、基板10の上に第1導電性薄膜11及び第2導電性薄膜12を成膜して、一端側に測温接点18を有し、他端側に各薄膜の外部接続点20,21を備えた熱電対を形成する工程(ステップS2)と、を行い、熱電対を形成する工程では、基板10を100℃よりも高い温度で加熱することを特徴とする薄膜熱電対素子の製造方法である。
 熱電対を形成する工程(ステップS2)は、蒸着物質との原子組成のずれが少なく、均一に成膜ができるスパッタリング法で行われることが好ましい。このとき、基板としてポリイミドフィルムを用いると好適であり、100℃よりも高い温度、好ましくは120℃以上、より好ましくは130℃以上、更に好ましくは140℃以上、特に好ましくは150℃以上で加熱するとよい。なお、基板の加熱温度の上限値は、基板の材質、成膜されるクロメル薄膜やアルメル薄膜の膜質にもよるが、250℃以下、好ましくは230℃以下、より好ましくは210℃以下、更に好ましくは200℃以下であるとよい。
 本実施形態に係る薄膜熱電対素子の製造方法によれば、得られる薄膜熱電対素子の第1導電性薄膜(好ましくはクロメルからなる)の表面の算術平均高さ(Sa)が1.0nm以下、好ましくは0.95nm以下、より好ましくは0.9nm以下であり、第2導電性薄膜(好ましくはアルメルからなる)の表面の算術平均高さ(Sa)が2.0nm以下、好ましくは1.9nm以下、より好ましくは1.8nm以下となる。
 以下、本発明の薄膜熱電対素子及び薄膜熱電対素子の製造方法の具体的実施例について説明するが、本発明は、これに限定されるものではない。
<A.薄膜熱電対素子の作成>
 以下の条件で、基板としてのポリイミド基材の上に、クロメル-アルメルの組み合わせで導電性薄膜を積層した。
 スパッタ装置  :カルーセル型バッチ式スパッタ装置 
 ターゲット   :5インチ×25インチ、クロメル-アルメル
 スパッタ方式  :DCマグネトロンスパッタ
 排気装置    :ターボ分子ポンプ
 到達真空度   :2~5×10-4Pa
 基材温度    :25°C(室温)又は150℃(設定値)
 スパッタ電力  :7.5kW
 導電性薄膜の膜厚:300~500±10nm
 Ar流量    :250sccm
 使用基材    :ポリイミド(PI)フィルム基材(50μm厚)
<B.表面粗さの測定>
 作成した各薄膜熱電対素子における導電性薄膜の表面粗さについて評価を行った。
 具体的には、原子間力顕微鏡(AFM、Bruker AXS製、Innova)を用いて、各サンプル表面の面粗さ(ISO 25178)のパラメータ一として、算術平均高さ(Sa)、最大高さ(Sz)、クルトシス(尖り度、Sku)及びスキューネス(偏り度、Ssk)を以下の測定条件で測定した。結果を、図4、図5及び表1に示す。
 測定モード:Tapping
 Input Gain:×20
 Target Tapping Signal:2V
 Scan Rang e:3μm×3μm又は1μm×1μm
 Scan Rate:0.3 Hz
 Line:256
 Closed Loop:ON
Figure JPOXMLDOC01-appb-T000001
 基板を150℃で加熱したサンプルについて、導電性薄膜の表面の算術平均高さ(Sa)が、クロメル(例1及び例5)で1.0nm以下であり、アルメル(例3及び例7)で2.0nm以下であった。また、基板を加熱しなかったサンプル(室温、25℃)について、導電性薄膜の表面の算術平均高さ(Sa)が、クロメル(例2及び例6)で1.3nm以上であり、アルメル(例4及び例8)で2.6nm以上であった。
<C.温度特性の測定>
 薄膜熱電対素子の導電性薄膜を構成する材料として、クロメル-アルメルを用い、基材温度を100℃又は150℃(設定値)として、上記の条件に基づいてスパッタリング法により、基板としてのポリイミドフィルム上に薄膜熱電対を形成した。さらに、形成した薄膜熱電対に基板とは異なるポリイミドフィルムを接着し、それを保護膜とした。
 図6に、通常のK型熱電対素子を基準とした各薄膜熱電対素子の温度特性値を示すグラフを示す。図6に示すデータは、基材の加熱温100℃と150℃のそれぞれで2シート用意して測定をした結果である。薄膜熱電対素子の起電力は、バルクの熱電対素子7~8割であるため、正しい温度を求めるために補正が必要である。薄膜熱電対素子の測温接点と、コネクタ部(つまり、外部接続点)の温度を測定して、両測定値から真の温度を計算して求める。真の温度={T(薄膜)-T(コネクタ)}/a+T(コネクタ)としたときに、a=(薄膜熱電対の温度特性の傾き)/(K型熱電対の温度特性の傾き)である(温度特性の傾きは、起電力と温度の関係をプロットしたグラフから計算される傾きである)。図6の縦軸はこのaの値に相当する。
 クロメル-アルメルの導電性薄膜をポリイミド基板の上に成膜する際に、基材温度が100℃以下である場合には各素子の間でその温度特性が大きくばらついていた。これに対して、導電性薄膜を成膜する際に、基材温度を100℃超、具体的には150℃以上とすることで、各素子の間で温度特性が略一致(図6の縦軸で±0.0075、温度に換算して±1℃の範囲内)することがわかった。
<D.まとめ>
 以上の結果から、膜熱電対素子の製造方法に際し、基板の上にクロメルからなる第1導電性薄膜及びアルメルからなる第2導電性薄膜を成膜して熱電対を形成する工程において、基板を100℃よりも高い温度、具体的には150℃で加熱すると、異なる薄膜熱電対素子の間で温度特性のばらつきが小さくなることがわかった。
 このとき、薄膜熱電対素子において、クロメルからなる第1導電性薄膜の表面の算術平均高さ(Sa)が1.0nm以下であり、アルメルからなる第2導電性薄膜の表面の算術平均高さ(Sa)が2.0nm以下となっており、クロメル薄膜やアルメル薄膜の膜質が安定化し、起電力のばらつきが低減したことが示唆された。
 本発明の薄膜熱電対素子及び測温素子を用いることにより、薄膜熱電対素子を交換可能なものとすることができる。薄膜熱電対素子を用いた温度測定の利用分野は、特に限定されるものではないが、極小部の温度測定を好適に行うことが可能であり、例えば、燃料電池、加熱ローラー、熱プレス、電子回路部品発熱温度、化学反応温度、瞬間加熱温度などを測定することができる。
H 測温素子
1 薄膜熱電対素子
P 保護膜
G 補強部材
2 コネクタ
10 基板
 10a 接続端部
11 第1導電性薄膜
12 第2導電性薄膜
13 第1補償導線
14 第2補償導線
15 第1金属線
16 第2金属線
17a 演算部
17b 演算結果表示部
17c 接続線
18 測温接点
19 補正用熱電対の測温接点
20 外部接続点
21 外部接続点

Claims (7)

  1.  基板と、
     該基板の上にクロメルからなる第1導電性薄膜及びアルメルからなる第2導電性薄膜により形成され、一端側に測温用接点を有し、他端側に各薄膜の外部接続点を備えた熱電対と、を備え、
     前記第1導電性薄膜の表面の算術平均高さ(Sa)が1.0nm以下であり、
     前記第2導電性薄膜の表面の算術平均高さ(Sa)が2.0nm以下であることを特徴とする薄膜熱電対素子。
  2.  前記基板の他端側において、前記外部接続点とは反対側には、補強部材が設けられていることを特徴とする請求項1記載の薄膜熱電対素子。
  3.  請求項1又は2に記載の薄膜熱電対素子と、
     前記薄膜熱電対素子の外部接続点と接続された一対の補償導線と、
     前記外部接続点と離間した近傍に接点を有する、一対の金属線からなる第2の熱電対と、を備え、
     前記一対の補償導線と、前記第2の熱電対の一対の金属線は、同一組み合わせの材料により構成されており、
     前記第1導電性薄膜及び前記第2導電性薄膜の材料は、前記薄膜熱電対素子の外部接続点と接続された一対の金属線と同一組み合わせの材料からなることを特徴とする測温素子。
  4.  前記外部接続点と、
     前記外部接続点で接続される前記一対の補償導線と、を内部に収容するコネクタを有し、
     前記第2の熱電対の接点は、前記外部接続点のそれぞれを結ぶ同一線上に離間して、
     前記コネクタ内に一体に配設されていることを特徴とする請求項3記載の測温素子。
  5.  基板を用意する工程と、
     前記基板の上に第1導電性薄膜及び第2導電性薄膜を成膜して、一端側に測温用接点を有し、他端側に各薄膜の外部接続点を備えた熱電対を形成する工程と、を行い、
     前記熱電対を形成する工程では、前記基板を100℃よりも高い温度で加熱することを特徴とする薄膜熱電対素子の製造方法。
  6.  前記第1導電性薄膜はクロメルからなり、
     前記第2導電性薄膜はアルメルからなることを特徴とする請求項5に記載の薄膜熱電対素子の製造方法。
  7.  前記第1導電性薄膜の表面の算術平均高さ(Sa)が1.0nm以下であり、前記第2導電性薄膜の表面の算術平均高さ(Sa)が2.0nm以下であることを特徴とする請求項6に記載の薄膜熱電対素子の製造方法。
PCT/JP2021/038060 2020-10-15 2021-10-14 薄膜熱電対素子、測温素子及び薄膜熱電対素子の製造方法 WO2022080451A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-174093 2020-10-15
JP2020174093A JP2022065482A (ja) 2020-10-15 2020-10-15 薄膜熱電対素子、測温素子及び薄膜熱電対素子の製造方法

Publications (1)

Publication Number Publication Date
WO2022080451A1 true WO2022080451A1 (ja) 2022-04-21

Family

ID=81208103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038060 WO2022080451A1 (ja) 2020-10-15 2021-10-14 薄膜熱電対素子、測温素子及び薄膜熱電対素子の製造方法

Country Status (3)

Country Link
JP (1) JP2022065482A (ja)
TW (1) TW202217250A (ja)
WO (1) WO2022080451A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951285U (ja) * 1972-08-10 1974-05-07
JPH09105683A (ja) * 1995-10-10 1997-04-22 Technol Seven Co Ltd 温度検出装置
US20070227576A1 (en) * 2006-03-31 2007-10-04 Gambino Richard J Thermocouples
JP2010190735A (ja) * 2009-02-18 2010-09-02 Geomatec Co Ltd 測温素子及び温度計測器
WO2019146060A1 (ja) * 2018-01-26 2019-08-01 理化工業株式会社 クロメル/アルメル型熱電対の製造方法
WO2019203327A1 (ja) * 2018-04-19 2019-10-24 ジオマテック株式会社 温度校正装置及び温度計測装置
JP2020126033A (ja) * 2019-02-06 2020-08-20 日東電工株式会社 導電フィルム、導電フィルム巻回体およびその製造方法、ならびに温度センサフィルム
JP2020126034A (ja) * 2019-02-06 2020-08-20 日東電工株式会社 温度センサフィルム、導電フィルムおよびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951285U (ja) * 1972-08-10 1974-05-07
JPH09105683A (ja) * 1995-10-10 1997-04-22 Technol Seven Co Ltd 温度検出装置
US20070227576A1 (en) * 2006-03-31 2007-10-04 Gambino Richard J Thermocouples
JP2010190735A (ja) * 2009-02-18 2010-09-02 Geomatec Co Ltd 測温素子及び温度計測器
WO2019146060A1 (ja) * 2018-01-26 2019-08-01 理化工業株式会社 クロメル/アルメル型熱電対の製造方法
WO2019203327A1 (ja) * 2018-04-19 2019-10-24 ジオマテック株式会社 温度校正装置及び温度計測装置
JP2020126033A (ja) * 2019-02-06 2020-08-20 日東電工株式会社 導電フィルム、導電フィルム巻回体およびその製造方法、ならびに温度センサフィルム
JP2020126034A (ja) * 2019-02-06 2020-08-20 日東電工株式会社 温度センサフィルム、導電フィルムおよびその製造方法

Also Published As

Publication number Publication date
TW202217250A (zh) 2022-05-01
JP2022065482A (ja) 2022-04-27

Similar Documents

Publication Publication Date Title
JP5896160B2 (ja) 温度センサ
JP6022881B2 (ja) 歪ゲージ
JP5253222B2 (ja) 測温素子及び温度計測器
JP5776941B2 (ja) 温度センサ及びその製造方法
JP5399730B2 (ja) センサ付き基板およびセンサ付き基板の製造方法
WO2014038719A1 (ja) 温度センサ
US4805296A (en) Method of manufacturing platinum resistance thermometer
CN104823031B (zh) 温度传感器
JP5776942B2 (ja) 温度センサ
JP5871190B2 (ja) サーミスタ用金属窒化物膜及びその製造方法並びにフィルム型サーミスタセンサ
WO2014148186A1 (ja) 温度センサ
JP2014182086A (ja) 温度センサ
WO2022080451A1 (ja) 薄膜熱電対素子、測温素子及び薄膜熱電対素子の製造方法
JP4802013B2 (ja) 温度センサおよびその製造方法
JP5796720B2 (ja) 温度センサ及びその製造方法
JP3913526B2 (ja) 変位センサとその製造方法および位置決めステージ
JP2013205317A (ja) 温度センサ及びその製造方法
JP2023128512A (ja) 薄膜熱電対素子及び薄膜熱電対素子の製造方法
JP2013211180A (ja) 温度センサ付きフィルムヒータ
JP2014178137A (ja) 湿度センサ
JP6011285B2 (ja) 温度センサ
JP6011286B2 (ja) 温度センサ
JP2014190739A (ja) 非接触温度センサ
JP2014109504A (ja) 温度センサ
JP5939397B2 (ja) 温度センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880186

Country of ref document: EP

Kind code of ref document: A1