WO2022080143A1 - ナノ結晶含有組成物、インク組成物、光変換層および発光素子 - Google Patents

ナノ結晶含有組成物、インク組成物、光変換層および発光素子 Download PDF

Info

Publication number
WO2022080143A1
WO2022080143A1 PCT/JP2021/036032 JP2021036032W WO2022080143A1 WO 2022080143 A1 WO2022080143 A1 WO 2022080143A1 JP 2021036032 W JP2021036032 W JP 2021036032W WO 2022080143 A1 WO2022080143 A1 WO 2022080143A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
nanocrystal
ligand
acid
luminescent
Prior art date
Application number
PCT/JP2021/036032
Other languages
English (en)
French (fr)
Inventor
一輝 初阪
浩一 延藤
良夫 青木
祐貴 野中
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN202180067110.8A priority Critical patent/CN116390997A/zh
Priority to JP2021571713A priority patent/JP7151914B2/ja
Priority to KR1020237010599A priority patent/KR102547607B1/ko
Publication of WO2022080143A1 publication Critical patent/WO2022080143A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces

Definitions

  • the present invention relates to a nanocrystal-containing composition, an ink composition using the composition, a light conversion layer containing a cured product of the ink composition, and a light emitting device provided with the light conversion layer.
  • BT2020 which is required as a next-generation display device, is an extremely ambitious standard, and it is difficult to meet this even with current color filters and organic EL using pigments.
  • quantum dots are materials that emit fluorescence such as red, green, and blue, which have a narrow half-value width of emission wavelength, and are attracting attention as light emitting materials that can clear BT2020.
  • core-shell nanoparticles using CdSe or the like were used, but recently InP or the like has been used in order to avoid its harmfulness.
  • the emission wavelength of core-shell quantum dots is determined by the particle size, it is necessary to precisely control the dispersion of the particle diameter in order to obtain emission with a narrow half-value width, and its production requires it. There are many challenges.
  • PeQD is advantageous in terms of productivity as compared with conventional quantum dots because the emission wavelength can be controlled by the ratio of halogen elements and the particle size can be easily controlled as compared with InP quantum dots. be.
  • Non-Patent Document 1 reports an ink composition containing PeQD and poly (methyl methacrylate) (hereinafter, may be referred to as "PMMA").
  • PMMA poly (methyl methacrylate)
  • Patent Document 1 points out that the ink composition containing PeQD and PMMA does not always have sufficient solvent resistance of the coating film.
  • Patent Document 1 discloses an ink composition containing PeQD and a photopolymerizable monomer, which may further contain a solvent, and defines the ratio of carbon, oxygen, and nitrogen contained in the photopolymerizable monomer and the solvent. There is.
  • Patent Document 2 contains fluorescent particles containing a perovskite compound, a photopolymerizable monomer, and a photopolymerization initiator, and has a curable composition that defines a LogP value of the photopolymerizable monomer.
  • the nanocrystal-containing composition as a substance is disclosed. It is considered that the technical point of Patent Document 1 and Patent Document 2 is to pay attention to the polarity of the photopolymerizable monomer, and it is preferable that the polarity is low.
  • the problems to be solved by the present invention are a nanocrystal-containing composition having excellent dispersion stability and light emission characteristics, an ink composition containing the composition, a light conversion layer containing a cured product of the ink composition, and a light conversion layer.
  • An object of the present invention is to provide a light emitting element provided with the light conversion layer.
  • the present inventors provide a ligand on the surface of a luminescent nanocrystal made of metal halide and satisfy specific conditions as the ligand and a photopolymerizable monomer. It has been found that a nanocrystal-containing composition having excellent dispersion stability and light emission characteristics can be provided by using the same substance, and the present invention has been completed.
  • the present invention contains one or more kinds of monomers and luminescent fine particles having one or more kinds of ligands on the surface of luminescent nanocrystals made of metal halide, and any photopolymerization.
  • the content of the photopolymerizable monomer and each of the ligands are the luminescent nanocrystals.
  • a nanocrystal-containing composition characterized in that the weighted average value of
  • the three-dimensional parameter MR is given by the following equation (C).
  • n represents the refractive index
  • M represents the molecular weight
  • d represents the density.
  • the present invention provides an ink composition containing the above-mentioned nanocrystal-containing composition.
  • the present invention provides a light conversion layer comprising a cured product of the above-mentioned ink composition.
  • the present invention provides a light emitting device characterized by having the above-mentioned light conversion layer.
  • nanocrystal-containing composition the ink composition, the light conversion layer, and the light emitting device of the present invention, and the embodiments of the manufacturing method thereof will be described in detail.
  • Nanocrystal-containing composition The nanocrystal-containing composition of the embodiment of the present invention comprises one or more coordinations on the surface of a luminescent nanocrystal composed of one or more photopolymerizable monomers and a metal halide. Contains luminescent fine particles with children. The specific composition of the luminescent fine particles will be described later.
  • the nanocrystal-containing composition of the present invention has the following formula ( ⁇ MR
  • the steric parameter MR of each photopolymerizable monomer or each ligand is represented by the following formula (C).
  • n represents the refractive index
  • M represents the molecular weight
  • d represents the density.
  • the three-dimensional parameter MR is, for example, an index showing the three-dimensional size of the entire compound used for investigating the correlation between the molecular structure and the pharmacological activity, and is, for example, "Operations Research, (25) 394. -401, July issue, 1982 ”and“ Journal of the Agricultural Chemical Society of Japan, Experimental Technology Course Vol. 38, No. 2, 195-203 (2013) ”. Since the three-dimensional parameter MR is an index showing the overall size of the molecule, it is considered to be suitable as an index showing the difference in the three-dimensional structure of the compound.
  • this three-dimensional parameter MR is applied as an index showing the difference in the three-dimensional structure of the compound constituting the photopolymerizable monomer or the ligand.
  • ⁇ MR has a small value (for example, 10 or less).
  • the ligand coordinated to the luminescent nanocrystal is light.
  • the emission characteristics change due to the change in the energy level of the nanocrystals held by the ligand, and the dispersion stability also decreases. Becomes difficult to maintain.
  • is preferably 12 or more, more preferably 15 or more, and particularly preferably 20 or more.
  • is not particularly specified, but if the difference in the three-dimensional structure between the photopolymerizable monomer and the compound constituting the ligand becomes too large, the surface of the luminescent nanocrystal made of metal halide It is preferably 50 or less because the compatibility between the light emitting fine particles provided with the ligand and the photopolymerizable monomer is low.
  • the nanocrystal-containing composition of the present invention contains two or more kinds of photopolymerizable monomers and two or more kinds of ligands, in at least one combination of the photopolymerizable monomers and the ligands
  • Does not limit the use of photopolymerizable monomers and ligands that do not satisfy the above formula (A), and
  • the nanocrystal-containing composition uses two types of photopolymerizable monomers P and Q and two types of ligands Y and Z, and
  • the formula (A) is satisfied,
  • QZ in the combination of the monomer Q and the ligand Z may or may not satisfy the formula (A).
  • that the weighted average satisfies the above formula (B) is photopolymerizable in most of the combinations of the photopolymerizable monomer and the ligand contained in the nanocrystal-containing composition. It means that the compound constituting the monomer and the compound constituting the ligand have structures that are significantly different from each other.
  • the above-mentioned effect of suppressing the exchange between the ligand coordinating the luminescent nanocrystal and the photopolymerizable monomer can be surely obtained, so that excellent dispersion stability and excellent dispersion stability can be obtained. It is possible to realize both the light emission characteristics and the light emission characteristics.
  • the weighted average is calculated in consideration of the content of each photopolymerizable monomer contained in the nanocrystal-containing composition and the ratio of each ligand to be coordinated to the surface of the nanocrystal.
  • the nanocrystal-containing composition contains two types, a photopolymerizable monomer P (three-dimensional parameter MRP) in parts by mass of m P and a photopolymerizable monomer Q (three-dimensional parameter M R Q ) in parts by mass m Q.
  • MRP photopolymerizable monomer
  • M R Q three-dimensional parameter M R Q
  • two types of a cationic ligand Y (stereometric parameter MRY) and an anionic ligand Z (stereometric parameter M R Z ) are coordinated on the surface of the luminescent nanocrystal, the following is performed. Can be calculated. Even if the nanocrystal-containing composition contains one or more photopolymerizable monomers and one or three or more ligands, the
  • weighted average was obtained. calculate. If the coordination ratio between the cationic ligand and the anionic ligand is known, it is preferable to calculate according to the ratio. For example, when the ligand Y and the ligand Z are coordinated on the surface of the luminescent nanocrystal in a ratio of r Y : r Z , the calculation is performed as follows.
  • the photopolymerizable monomer and the ligand satisfying the formula (A) it is preferable that at least one of the photopolymerizable monomer or the ligand is a compound containing a cyclic structure.
  • the photopolymerizable monomer or the ligand is a compound containing a cyclic structure.
  • linear compounds such as oleylamine and oleic acid are often used as ligands on the surface of luminescent nanocrystals made of metal halides.
  • the ligand is a compound having such a linear molecular structure, it is particularly preferable to use a photopolymerizable monomer containing a cyclic structure.
  • Photopolymerizable monomers containing a cyclic structure with large steric hindrance are difficult to penetrate into a surface covered with a ligand having a linear molecular structure, so that the photopolymerizable monomer and the ligand are difficult to penetrate. Exchange with is less likely to occur.
  • a compound containing a cyclic structure is used as a ligand, it is energetically disadvantageous for a linear photopolymerizable monomer having a shape different from that of the ligand to enter the luminescent nanocrystal. Exchange between the photopolymerizable monomer and the ligand is less likely to occur.
  • the exchange between the photopolymerizable monomer and the ligand can be suppressed.
  • the surface of the luminescent nanocrystal made of metal halide can be stably covered with the ligand, and the energy level trapped in the luminescent nanocrystal is not generated, which is good.
  • the emission characteristics can be maintained.
  • the photopolymerizable monomer is a compound having a cyclic structure, or the ligand is a compound containing a cyclic structure.
  • the range of each preferable three-dimensional parameter is the range shown below.
  • the three-dimensional parameter of the photopolymerizable monomer is in the range of 40 to 90, and the three-dimensional parameter of the ligand having a linear molecular structure is in the range of 60 to 110. Is preferable for maintaining a state in which the surface of the luminescent nanocrystal is stably covered with the ligand. Furthermore, the three-dimensional parameters of the photopolymerizable monomer are in the range of 50 to 70, and the three-dimensional parameters of the ligand having a linear molecular structure are in the range of 80 to 90. It is particularly preferable for exhibiting the dispersion stability and light emission characteristics of the sex nanocrystals.
  • the steric parameter of the photopolymerizable monomer having a linear molecular structure is in the range of 60 to 100, and the steric parameter of the ligand is in the range of 40 to 80. It is preferable to have a state in which the surface of the luminescent nanocrystal is stably covered with the ligand. Furthermore, the three-dimensional parameters of the photopolymerizable monomer having a linear molecular structure are in the range of 75 to 85, and the three-dimensional parameters of the ligand are in the range of 55 to 65. It is particularly preferable for exhibiting the dispersion stability and light emission characteristics of the sex nanocrystals.
  • the cyclic structure of the compound containing the cyclic structure can be represented by the following formulas (1-2) to (1-24).
  • Each cyclic structure represented by the formulas (1-2) to (1-24) can be bonded to other structural sites at any carbon atom in the cyclic structure.
  • At least one of the photopolymerizable monomers or ligands is in formulas (1-3), (1-4), (1-6), (1-8), (1-10), (1-15) and When the compound has a cyclic structure represented by (1-19) to (1-24), it is preferable because it has excellent compatibility with luminescent fine particles and can improve dispersibility.
  • at least one of the photopolymerizable monomer or the ligand is a compound containing a cyclic structure represented by the formulas (1-3), (1-4) and (1-19) to (1-24).
  • R 1 is a functional group, as R 1 , a carboxyl group, a carboxylic acid anhydride group, an amino group, an ammonium group, a mercapto group, a phosphine group, a phosphine oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, Examples thereof include a sulfonic acid group, a boronic acid group, an amide group, and a thioamide group.
  • the ligand is a compound having a cyclic structure in which R 1 is a carboxyl group, an amino group, a mercapto group, an amide group, or a thioamide group
  • the ability to coordinate with luminescent fine particles can be enhanced. preferable.
  • the carbon number of R 1 is preferably 1 to 10 in order to improve the dispersibility with the luminescent fine particles, and the carbon number of R 1 is 1 to 5 in order to improve the dispersibility with the luminescent fine particles and increase the quantum yield. Especially preferable.
  • R 1 is an alkoxy group, it represents a branched or linear alkoxyl group having 1 to 20 carbon atoms.
  • -CH 3 at the end of the alkoxy group may be replaced with -NH 2 , -OH, -SH, -COOH, -CONH 2 , -CSNH 2 , and -CH 2- in the alkoxy group is -Si.
  • the carbon number of R 1 is preferably 1 to 10 in order to improve the dispersibility with the luminescent fine particles, and the carbon number of R 1 is 1 to 5 in order to improve the dispersibility with the luminescent fine particles and increase the quantum yield. Especially preferable.
  • P is independently represented by the following general formulas (P-1) to (P-16).
  • the black dots in the formula represent the bond. When there are a plurality of Ps, they may be the same or different.
  • (P-1), (P-2) and (P-3) are preferable, and (P-2) and (P-3) are preferable in that the decrease in the quantum yield of the luminescent fine particles can be suppressed.
  • (P-2) is preferable.
  • x and z in the following formula are preferably 0 to 5 independently, respectively, and y and zz. Is preferably 1 to 5 independently of each other.
  • the compounds represented by 22-4) and (1-23-5) to (1-23-8) are preferable, and x and z in the following formula are preferably 0 to 5 independently, respectively, and y and zz. Is preferably 1 to 5 independently of each other.
  • steric parameter from 65 as a cyclic structure, it has an adamantyl structure (1-19-1) to (1-19-8), or 1,2,2,6,6-pentamethyl-4. -(1-23-5) to (1-23-8) having a piperidine structure are particularly preferable, x and z in the following formula are preferably 0 to 5 independently, and y and zz are independent, respectively. It is particularly preferable that the value is 1 to 5.
  • the ligand having a linear molecular structure is a suitable combination of the ligands.
  • the steric parameter of the above is preferably in the range of 60 to 110, and more preferably, the steric parameter of the photopolymerizable monomer having a cyclic molecular structure is 50 to 70, and the steric parameter of the ligand having a linear molecular structure is 50 to 70. It is more preferable that the three-dimensional parameter is in the range of 80 to 90.
  • a ligand having a terminal functional group of a carboxylic acid or an amine is preferable. Further, it is preferable to use a ligand in which these terminal functional groups are carboxylic acids or amines in a ratio of 1: 1.
  • the following compounds are preferable as the ligand having a linear molecular structure in which the terminal functional group is a carboxylic acid, and (1) tridecanoic acid, 2-tridecenoic acid, myristic acid, pentadecanoic acid, cis-9-hexadecenoic acid, palmitic acid, 2-hexadecenoic acid, heptadecanoic acid, petroseric acid, linoleic acid, ⁇ -linolenic acid, stearate, linolenic acid, oleic acid, ellaic acid, lysinolic acid, cis-5,8, 11,14,17-Eikosapentaenoic acid, cis-8,11,14-Eikosatrienic acid, arachidonic acid, nonadecanoic acid, arachidic acid, heneicosanoic acid, cis-4,7,10,13,16,19-docosahexaene Acid
  • Acid 2-hexadecenoic acid, heptadecanoic acid, petroseric acid, linoleic acid, ⁇ -linolenic acid, stearic acid, linolenic acid, oleic acid, elladic acid, lysinolic acid, cis-5,8,11,14,17-eicosapentaene Acids, cis-8,11,14-eicosatorienic acid, arachidonic acid, nonadecanoic acid, arachidic acid, and heneicosanoic acid are preferred as coordinations with a steric parameter of the ligand of 70-100, and (3) particularly preferred.
  • ligand having a steric parameter of the ligand of 80 to 90 with heptadecanoic acid, petroseric acid, linoleic acid, ⁇ -linolenic acid, stearic acid, linolenic acid and oleic acid.
  • the following compounds are preferable as the ligand having a linear molecular structure in which the terminal functional group is an amine.
  • Dodecylamine, tetradecylamine, 1-aminotridecane, 1- Aminopentadecane, hexadecylamine, 1-aminoheptadecan, stearylamine, heptadecane-9-amine, oleylamine, 1-aminononadecan, 2-n-octyl-1-dodecylamine have 60 ligand steric parameters.
  • the coordination to be ⁇ 110 is preferable, and more preferably 1-aminopentadecane, hexadecylamine, 1-aminoheptadecan, stearylamine, heptadecane-9-amine, oleylamine, 1-aminononadecan, 2-.
  • n-octyl-1-dodecylamine is preferable as a coordination in which the steric parameter of the ligand is 70 to 100, and (3) hexadecylamine, 1-aminoheptadecan, stearylamine, and heptadecane-9 are particularly preferable.
  • -Amine and oleylamine are particularly preferable as the ligand having a steric parameter of the ligand of 80 to 90.
  • the compound containing the cyclic structure is used as a ligand to coordinate the surface of a luminescent nanocrystal made of metal halide
  • the compound containing the cyclic structure is used.
  • the steric parameter of the ligand to be in the range of 40 to 80, the compounds represented by the following (1-19-A) to (1-19-H) can be preferably used, and (1) The compounds represented by -19-A) to (1-19-F) are particularly preferable.
  • xx and yy in the following formula are independently 1 to 18, respectively, and in order for the steric parameter of the ligand to be in the range of 55 to 65, xx and yy in the following formula are independent of each other. 1 to 5 are more preferable.
  • the photopolymerizable monomer having a linear molecular structure which is a suitable combination, has a linear molecular structure.
  • the steric parameter of the photopolymerizable monomer is preferably in the range of 50 to 100, and more preferably, the steric parameter of the ligand having a cyclic molecular structure is 55 to 65, and the light has a linear molecular structure. It is more preferable that the steric parameter of the polymerizable monomer is in the range of 75 to 85. Specifically, it is preferable to use the compounds shown below.
  • the methacrylate compound is nonyl methacrylate, decyl methacrylate, undecyl methacrylate, dodecyl methacrylate, tridecyl methacrylate, tetradecyl methacrylate, pentadecyl methacrylate, and hexadecyl methacrylate, and the acrylate compound is acrylic acid.
  • Decyl, undecyl acrylate, dodecyl acrylate, tridecyl acrylate, tetradecyl acrylate, pentadecyl acrylate, hexadecyl acrylate, and heptadecyl acrylate have a linear molecular structure with steric parameters in the range of 60 to 100.
  • the polymerizable monomer is preferable, and the methacrylate compound is more preferably dodecyl methacrylate or tridecyl methacrylate, and the acrylate compound is decyl acrylate, undecyl acrylate, dodecyl acrylate, or tetradecyl acrylate. It is particularly preferable as a photopolymerizable monomer having a linear molecular structure having a parameter in the range of 75 to 85.
  • the following combination is preferable as the preferable combination of the photopolymerizable monomer and the ligand satisfying the above formula (A).
  • the steric parameter of the photopolymerizable monomer is in the range of 40 to 90, and the steric parameter of the ligand having a linear molecular structure is in the range of 60 to 110.
  • the formula (1-3) is used as a photopolymerizable monomer having a steric parameter of 40 to 90.
  • the steric parameter of the photopolymerizable monomer is in the range of 50 to 70, and the steric parameter of the ligand having a linear molecular structure is in the range of 80 to 90.
  • the photopolymerizable monomer having a steric parameter of 50 to 70 is represented by the formulas (1-3-1) to (1).
  • (1-24-4) are preferable, and among (1-24-3) and (1-24-4), QD while maintaining the dispersion stability of the QD dispersion or QD ink.
  • (1-24-4) is preferable in order to increase the PLQY retention rate of the dispersion and the photoconversion layer, and (1-24-4) has an adamantyl structure when the steric parameter is desired to be higher than 65 as a photopolymerizable monomer having a cyclic structure (1-24-4).
  • x and z in the formula are 0 to 5 independently, and y and zz are 1 to 5 independently, respectively, and the functionality of the terminal having a steric parameter of 80 to 90.
  • a ligand having a linear molecular structure in which the functional group at the terminal is an amine a ligand selected from hexadecylamine, 1-aminoheptadecan, stearylamine, heptadecane-9-amine, and oleylamine. It is preferable to combine the alkyl chains, especially as a ligand.
  • Petroselinic acid, linoleic acid, gamma-linolenic acid, linolenic acid, oleic acid, and oleic acid, which have double bonds in them exhibit ligand coating stability, luminescent nanocrystal dispersion stability, and luminescent properties. It is particularly preferable to do so.
  • the steric parameter of the photopolymerizable monomer having a linear molecular structure is in the range of 60 to 100, and the steric parameter of the ligand is in the range of 40 to 80. It is preferable to maintain a state in which the surface of the luminescent nanocrystal is stably covered with a ligand, and specifically, light having a linear molecular structure having a steric parameter of 60 to 100.
  • an acrylate compound having 6 to 17 carbon atoms or a methacrylate compound is preferable, and (1-19-A) to (1-19) as a ligand containing a cyclic structure having a steric parameter of 40 to 80.
  • the compound represented by ⁇ H) is preferable.
  • the photopolymerizable monomer having a linear molecular structure having a steric parameter of 75 to 85 an acrylate compound or a methacrylate compound having 11 to 13 carbon atoms is preferable, and the emission characteristics of the luminescent nanocrystals are improved.
  • a methacrylate compound is preferable to an acrylate compound
  • the steric parameter is in the range of 55 to 65
  • the ligand is represented by the formulas (1-19-A) to (1-19-F).
  • the compound is particularly preferable in exhibiting the coating stability of the ligand, the dispersion stability of the luminescent nanocrystal, and the luminescent property.
  • the luminescent fine particles 910 shown in FIG. 1 are provided with one or more kinds of ligands on the surface of the luminescent nanocrystals 911.
  • the ligand layer 912 is formed by a large number of ligands coordinated on the surface of the luminescent nanocrystal 911.
  • Luminous nanocrystals 911 (hereinafter, may be simply referred to as “nanocrystals 911") will be described.
  • Luminous nanocrystals are nano-sized semiconductor nanocrystals (nanocrystal particles) made of metal halides that absorb excitation light and emit fluorescence or phosphorescence.
  • a luminescent nanocrystal made of metal halide for example, a quantum dot having a perovskite-type crystal structure described later is widely known.
  • the luminescent nanocrystal is, for example, a crystal having a maximum particle size (which may be an average particle size) measured by a transmission electron microscope or a scanning electron microscope of 100 nm or less.
  • the luminescent nanocrystals can be excited by, for example, light energy or electrical energy of a predetermined wavelength to emit fluorescence or phosphorescence.
  • Luminous nanocrystals made of metal halides consist of compounds represented by the general formula: AaMMXx .
  • A is at least one of an organic cation and a metal cation.
  • the organic cation include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and examples of the metal cation include cations such as Cs, Rb, K, Na and Li.
  • M is at least one metal cation.
  • Metal cations are selected from Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Examples include cations.
  • X is at least one anion.
  • the anion include chloride ion, bromide ion, iodide ion, cyanide ion and the like, and include at least one halogen.
  • a is an integer of 1 to 7
  • m is an integer of 1 to 4, and
  • x is an integer of 3 to 16.
  • the compound represented by the general formula A a M M M X x is AMX, A 4 MX, AMX 2 , AMX 3 , A 2 MX 3 , AM 2 X 3 , A 2 MX 4 , A 2 MX. 5 , A 3 MX 5 , A 3 M 2 X 5 , A 3 MX 6 , A 4 MX 6 , AM 2 X 6 , A 2 MX 6 , A 4 M 2 X 6 , A 3 MX 8 , A 3 M 2 Compounds represented by X 9 , A 3 M 3 X 9 , A 2 M 2 X 10 , and A 7 M 3 X 16 are preferred.
  • A is at least one of an organic cation and a metal cation.
  • the organic cation include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and examples of the metal cation include cations such as Cs, Rb, K, Na and Li.
  • M is at least one metal cation. Specifically, one kind of metal cation (M 1 ), two kinds of metal cations (M 1 ⁇ M 2 ⁇ ), three kinds of metal cations (M 1 ⁇ M 2 ⁇ M 3 ⁇ ), and four kinds of metals.
  • Metal cations are selected from Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Examples include cations.
  • X is an anion containing at least one halogen.
  • halogen anion X 1
  • X 2 ⁇ halogen anion
  • the anion include chloride ion, bromide ion, iodide ion, cyanide ion and the like, and include at least one halogen.
  • the compound composed of a metal halide represented by the general formula A a M M X x is a compound to which metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb are added (doped) in order to improve the light emission characteristics. May be.
  • the compound having a perovskite type crystal structure is adjusted by adjusting its particle size, the type and abundance ratio of the metal cations constituting the M site. Further, the emission wavelength (emission color) can be controlled by adjusting the type and abundance ratio of the anions constituting the X-site, which is particularly preferable for use as a luminescent nanocrystal. Specifically, compounds represented by AMX 3 , A 3 MX 5 , A 3 MX 6 , A 4 MX 6 , and A 2 MX 6 are preferable. A, M and X in the formula are as described above. Further, the compound having a perovskite-type crystal structure may be one to which metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb are added (doped) as described above.
  • A is Cs, Rb, K, Na, Li
  • M is one kind of metal cation (M 1 ) or two kinds, in order to show better emission characteristics. It is a metal cation (M 1 ⁇ M 2 ⁇ ), and X is preferably a chloride ion, a bromide ion, or an iodide ion.
  • M may be selected from Ag, Au, Bi, Cu, Eu, Fe, Ge, K, In, Na, Mn, Pb, Pd, Sb, Si, Sn, Yb, Zn, and Zr. preferable.
  • luminescent nanocrystals using Pb as M such as CsPbBr 3 , CH 3 NH 3 PbBr 3 , CHN 2 H 4 PbBr 3 and the like are It is preferable because it has excellent light intensity and quantum efficiency. Further, luminescent nanocrystals using a metal cation other than Pb as M such as CsSnBr 3 , CsEuBr 3 and CsYbI 3 are preferable because they have low toxicity and have little influence on the environment.
  • the luminescent nanocrystal may be a red luminescent crystal that emits light having an emission peak in the wavelength range of 605 to 665 nm (red light), and may be a light having an emission peak in the wavelength range of 500 to 560 nm (green light). It may be a green light emitting crystal that emits light (blue light) having an emission peak in the wavelength range of 420 to 480 nm, and may be a blue light emitting crystal. Further, in one embodiment, a plurality of types of luminescent nanocrystals may be used in combination. The wavelength of the emission peak of the luminescent nanocrystal can be confirmed, for example, in the fluorescence spectrum or the phosphorescence spectrum measured by using an absolute PL quantum yield measuring device.
  • Red-emitting luminescent nanocrystals are 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm.
  • an emission peak in the wavelength range of 632 nm or less or 630 nm or less it is preferable to have an emission peak in the wavelength range of 628 nm or more, 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more or 605 nm or more.
  • 628 nm or more 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more or 605 nm or more.
  • Green luminescent nanocrystals emit light in the wavelength range of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less.
  • Blue luminescent nanocrystals emit light in the wavelength range of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less.
  • the shape of the luminescent nanocrystal is not particularly limited, and may be any geometric shape or any irregular shape.
  • Examples of the shape of the luminescent nanocrystals include a rectangular parallelepiped shape, a cubic shape, a spherical shape, a regular tetrahedron shape, an ellipsoidal shape, a pyramidal shape, a disc shape, a branch shape, a net shape, a rod shape and the like.
  • the shape of the luminescent nanocrystals is preferably rectangular parallelepiped, cubic or spherical.
  • the average particle size (volume average diameter) of the luminescent nanocrystals is preferably 40 nm or less, more preferably 30 nm or less, and further preferably 20 nm or less.
  • the average particle size of the luminescent nanocrystals is preferably 1 nm or more, more preferably 1.5 nm or more, and even more preferably 2 nm or more. Luminescent nanocrystals having such an average particle size are preferable because light having a desired wavelength can be easily obtained.
  • the average particle size of the luminescent nanocrystals can be obtained by measuring with a transmission electron microscope or a scanning electron microscope and calculating the volume average diameter. preferable.
  • Ligand A ligand is used to suppress crystal growth by coordinating on the surface of a luminescent nanocrystal formed when synthesizing a luminescent nanocrystal made of metal halide to obtain a nano-sized crystal. Is essential for.
  • the ligand can maintain a state in which the surface of the luminescent nanocrystal made of metal halide is stably covered, it is possible to prevent a trap level from being generated on the surface of the luminescent nanocrystal and to emit good light. The characteristics can be maintained.
  • the ligand also has the function of enhancing the compatibility with the photopolymerizable monomer and ensuring the dispersibility of the luminescent nanocrystals by coordinating with the surface of the luminescent nanocrystals made of an inorganic material. .. Therefore, the loss of the ligand from the surface of the luminescent nanocrystals leads to the aggregation of the luminescent nanocrystals and the deterioration of the luminescent properties and dispersibility, so that the ligand is exchanged with the photopolymerizable monomer. However, it is important to stably coordinate to the surface of luminescent nanocrystals.
  • the ligand coordinated to the surface of the luminescent nanocrystal one kind of ligand satisfying the above formula (A) when combined with any photopolymerizable monomer contained in the nanocrystal-containing composition. Although it is essential to use the above, a ligand that does not satisfy the above formula (A) may be used. Further, as the ligand, in addition to the compound containing the cyclic structure, a compound containing a linear structure without containing the cyclic structure can also be used.
  • a compound having a cation or a binding group bonded to an anion contained in the luminescent nanocrystal is preferable.
  • the binding group include a carboxyl group, a carboxylic acid anhydride group, an amino group, an ammonium group, a mercapto group, a phosphin group, a phosphin oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group and an amide. It is preferably at least one of a group, a thioamide group and a boronic acid group, and more preferably at least one of a carboxyl group and an amino group.
  • such a ligand include a carboxyl group or an amino group-containing compound, and one of these may be used alone, or two or more thereof may be used in combination.
  • carboxyl group-containing compound examples include linear or branched aliphatic carboxylic acids having 1 to 30 carbon atoms. Specific examples of such carboxyl group-containing compounds include arachidonic acid, crotonic acid, trans-2-decenoic acid, erucic acid, 3-decenoic acid, cis-4,7,10,13,16,19-docosahexaenoic acid.
  • amino group-containing compound examples include linear or branched aliphatic amines having 1 to 30 carbon atoms. Specific examples of such amino group-containing compounds include, for example, 1-aminoheptadecan, 1-aminononadecan, heptadecane-9-amine, stearylamine, oleylamine, 2-n-octyl-1-dodecylamine, allylamine, and amylamine.
  • the luminescent fine particles 910 are provided with one or more of the above-mentioned ligands on the surface of the luminescent nanocrystals 911, and are coordinated by a large number of ligands coordinated on the surface of the luminescent nanocrystals 911.
  • a ligand layer 912 is provided.
  • As a method for producing such luminescent fine particles 910 there are a method of heating and a method of not heating.
  • semiconductor raw material-containing solution two solutions (hereinafter, may be referred to as "semiconductor raw material-containing solution") containing a raw material compound capable of synthesizing a compound represented by the above-mentioned general formula A a M b X c are prepared.
  • semiconductor raw material-containing solutions one is a solution containing a compound containing A or a solution containing a compound containing A and X, and the other is a solution containing a compound containing M and X.
  • a compound capable of forming a ligand satisfying the above-mentioned formula (A) is added to at least one of the semiconductor raw material-containing solutions.
  • nanocrystals 911 have a ligand layer 912 formed of a ligand coordinated on the surface thereof.
  • a solution containing cesium carbonate, which is a semiconductor raw material, and oleic acid, which is a ligand, as an organic solvent is prepared.
  • the organic solvent 1-octadecene, dioctyl ether, diphenyl ether and the like can be used.
  • the obtained solution is dried under reduced pressure at 90 to 150 ° C. for 10 to 180 minutes, and then heated to 100 to 200 ° C. in an atmosphere of an inert gas such as argon or nitrogen to obtain a cesium-oleic acid solution.
  • a solution containing lead (II) bromide, which is a semiconductor raw material, and the same organic solvent as the above-mentioned one is prepared.
  • 20 to 100 mg of lead (II) bromide and 0.1 to 10 mL of oleylamine are added to 5 mL of the organic solvent.
  • the obtained solution is dried under reduced pressure at 90 to 150 ° C. for 10 to 180 minutes.
  • the above-mentioned cesium-oleic acid solution was added in a state where the solution containing lead (II) bromide was heated to 140 to 260 ° C., and the mixture was heated and stirred for 1 to 10 seconds to react, and then the obtained reaction was obtained. Cool the liquid in an ice bath. At this time, it is preferable to add 0.1 to 1 mL of the cesium-oleic acid solution to 5 mL of the solution containing lead (II) bromide. During stirring at ⁇ 20 to 30 ° C., nanocrystals 911 composed of lead cesium tribromide are precipitated, and oleic acid and oleylamine are coordinated on the surface of the nanocrystals 911.
  • a luminescent fine particle dispersion liquid in which luminescent fine particles 910 provided with 912 are dispersed in toluene can be obtained.
  • a solution containing a raw material compound capable of synthesizing semiconductor nanocrystals by a reaction is prepared.
  • a compound capable of forming a ligand satisfying the above formula (A) is added to the raw material compound-containing solution.
  • the obtained solution is added to a large amount of organic solvent which is a poor solvent for the nanocrystals to precipitate the nanocrystals in which the ligand is coordinated on the surface.
  • the amount of the organic solvent used is preferably 10 to 1000 times the amount of the semiconductor nanocrystals on a mass basis.
  • the semiconductor raw material-containing solution for example, a solution containing lead (II) bromide, cesium bromide, a compound forming a ligand satisfying the above formula (A), and an organic solvent.
  • the organic solvent may be a good solvent for nanocrystals, but dimethyl sulfoxide, N, N-dimethylformamide, N-methylformamide, and a mixed solvent thereof are preferable from the viewpoint of compatibility.
  • the solution containing lead (II) bromide and cesium bromide described above is added to a large amount of negative solvent with respect to 0.1 to 5 mL, stirred in the air for 5 to 180 seconds, and then the solid substance is centrifuged. To collect.
  • nanocrystals 911 are precipitated, and a compound forming a ligand satisfying the above formula (A) is coordinated on the surface of the nanocrystals 911.
  • the light-covered fine particles 910 provided with the ligand layer 912 made of a compound forming a ligand satisfying the above formula (A) on the surface of the nanocrystal 911.
  • a luminescent fine particle dispersion liquid dispersed in toluene can be obtained.
  • Photopolymerizable Monomer As the photopolymerizable monomer used in the present invention, in addition to the photopolymerizable monomer containing the cyclic structure, a general photoradical polymerizable monomer that polymerizes by irradiation with light can be used, and light can be used. It may be a polymerizable monomer or oligomer. These are used with photopolymerization initiators. One type of photopolymerizable monomer may be used alone, or two or more types may be used in combination.
  • Examples of the photoradical polymerizable monomer include (meth) acrylate compounds.
  • the (meth) acrylate compound may be a monofunctional (meth) acrylate having one (meth) acryloyl group, or may be a polyfunctional (meth) acrylate having a plurality of (meth) acryloyl groups.
  • the nanocrystal-containing composition is used as an ink composition, excellent in ejection stability, and from the viewpoint of suppressing deterioration of smoothness due to curing shrinkage during production of a luminescent fine particle coating film, it is simple. It is preferable to use a combination of a functional (meth) acrylate and a polyfunctional (meth) acrylate.
  • Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and octyl.
  • the polyfunctional (meth) acrylate may be a bifunctional (meth) acrylate, a trifunctional (meth) acrylate, a tetrafunctional (meth) acrylate, a pentafunctional (meth) acrylate, a hexafunctional (meth) acrylate, or the like, and may be, for example.
  • bifunctional (meth) acrylate examples include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,5-pentanediol di (meth) acrylate.
  • Di (meth) acrylate substituted with an oxy group Two hydroxyl groups of a diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of neopentyl glycol were substituted with a (meth) acryloyloxy group.
  • Di (meth) acrylate Di (meth) acrylate in which two hydroxyl groups of a diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A are replaced with a (meth) acryloyloxy group, 1 mol.
  • Di (meth) acrylate in which two hydroxyl groups of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to trimethylol propane is substituted with a (meth) acryloyloxy group, and 4 mol is added to 1 mol of bisphenol A.
  • Examples thereof include di (meth) acrylate in which the two hydroxyl groups of the above ethylene oxide or the diol obtained by adding the propylene oxide are substituted with a (meth) acryloyloxy group.
  • trifunctional (meth) acrylate examples include, for example, trimethylolpropane tri (meth) acrylate, glycerin triacrylate, pentaerythritol tri (meth) acrylate, and 1 mol of trimethylolpropane with 3 mol or more of ethylene oxide or propylene.
  • examples thereof include tri (meth) acrylate in which the three hydroxyl groups of triol obtained by adding an oxide are substituted with a (meth) acryloyloxy group.
  • tetrafunctional (meth) acrylate examples include pentaerythritol tetra (meth) acrylate and the like.
  • pentafunctional (meth) acrylate examples include dipentaerythritol penta (meth) acrylate and the like.
  • hexafunctional (meth) acrylate examples include dipentaerythritol hexa (meth) acrylate and the like.
  • the polyfunctional (meth) acrylate may be a poly (meth) acrylate in which a plurality of hydroxyl groups of dipentaerythritol such as dipentaerythritol hexa (meth) acrylate are substituted with a (meth) acryloyloxy group.
  • the (meth) acrylate compound may be an ethylene oxide-modified phosphoric acid (meth) acrylate, an ethylene oxide-modified alkyl phosphoric acid (meth) acrylate, or the like, which has a phosphoric acid group.
  • the photopolymerizable monomer as described above contains one polymerizable functional group. It is more preferable to use a bifunctional or higher polyfunctional photopolymerizable monomer having two or more in the molecule as an essential component because the durability (strength, heat resistance, etc.) of the cured product can be further enhanced.
  • the amount of the photopolymerizable monomer contained in the nanocrystal-containing composition is preferably 50 to 99% by mass, more preferably 60 to 99% by mass, still more preferably 70 to 99% by mass. ..
  • the amount of the photopolymerizable monomer contained in the nanocrystal-containing composition within the above range, the luminous efficiency of the luminescent nanoparticles can be increased. Further, in the light emitting layer (light conversion layer) obtained by curing the ink composition containing the nanocrystal-containing composition, the dispersed state of the light emitting fine particles is improved, and thus the external quantum efficiency can be further improved.
  • Luminous Fine Particles The nanocrystal-containing composition containing the luminescent fine particles 910 having one or more kinds of ligands on the surface of the luminescent nanocrystals 911 has been described above. Is not limited to that shown in FIG.
  • a ligand having a reactive group capable of forming a siloxane bond is coordinated to form a siloxane bond.
  • Luminescent fine particles with an inorganic coating layer containing Si formed by a ligand having a possible reactive group can be used.
  • the luminescent fine particles provided with this inorganic coating layer will be described.
  • the luminescent fine particles provided with the inorganic coated layer may be referred to as "inorganic coated luminescent fine particles”, and the luminescent fine particles not provided with the inorganic coated layer may be referred to as "uncoated luminescent fine particles”.
  • the luminescent fine particles 90 (inorganic coated luminescent fine particles) shown in FIG. 2 have at least a ligand satisfying the above formula (A) and a reactive group capable of forming a siloxane bond on the surface of the luminescent nanocrystals 911. It is preferable that the ligand having a ligand is coordinated and the molecular length of the ligand satisfying at least the above formula (A) is longer than that of the ligand having a reactive group capable of forming a siloxane bond.
  • the ligand having a reactive group capable of forming a siloxane bond forms a network structure consisting of a large number of siloxane bonds by forming a siloxane bond in the vicinity of the luminescent nanocrystal 911, and also contains Si.
  • the inorganic coating layer 91 is formed.
  • a ligand coordinated to the surface of the luminescent nanocrystal 911 and satisfying at least the above formula (A) forms the ligand layer 912 in a form exposed from between the network structures of the inorganic coating layer 91.
  • the ligand of the inorganic-coated luminescent fine particles 90 is exposed from the inorganic-coated layer 91, dispersibility can be ensured when mixed with the photopolymerizable monomer.
  • at least one of the ligands is a ligand satisfying the above-mentioned formula (A)
  • the inorganic coated luminescent fine particles 90 can protect the luminescent nanocrystals 911 from light, heat, moisture and the like by providing the inorganic coated layer 91 containing Si, the inorganic coated luminescent fine particles 90 can be compared with the uncoated luminescent fine particles 910. , Quantum yield retention rate and external quantum efficiency retention rate can be further improved.
  • the thickness of the inorganic coating layer 91 is preferably 0.5 to 50 nm, more preferably 1.0 to 30 nm. With the luminescent fine particles 90 having the inorganic coating layer 91 having such a thickness, the stability of the nanocrystals 911 against light, heat, moisture and the like can be sufficiently enhanced.
  • the thickness of the inorganic coating layer 91 can be changed by preparing the number of atoms (chain length) of the linking structure that connects the binding group of the ligand and the reactive group.
  • the reactive group is a silanol group or an alkoxysilyl group having 1 to 6 carbon atoms because a siloxane bond is easily formed.
  • Hydrolytic silyl group is preferable.
  • the ligand having a reactive group capable of forming the siloxane bond preferably has a binding group that binds to a cation or anion contained in the luminescent nanocrystal 911 made of metal halide.
  • the binding group examples include a carboxyl group, a carboxylic acid anhydride group, an amino group, an ammonium group, a mercapto group, a phosphine group, a phosphin oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group and a boron. Acid groups and the like can be mentioned. Among them, the binding group is preferably at least one of a carboxyl group and an amino group. These binding groups have higher affinity (reactivity) with cations or anions contained in luminescent nanocrystals having a perovskite-type crystal structure than reactive groups. Therefore, the binding group in the ligand is coordinated to the luminescent nanocrystals 911 constituting the inorganic coated luminescent fine particles 90 to more easily and surely form the inorganic coated layer 91 formed by the siloxane bond. Can be done.
  • examples of the ligand having a reactive group capable of forming the siloxane bond include a carboxyl group or an amino group-containing silicon compound, and one of these may be used alone or two or more thereof. Can be used together.
  • carboxyl group-containing silicon compound examples include, for example, trimethoxysilylpropyl acid, triethoxysilylpropyl acid, N- [3- (trimethoxysilyl) propyl] -N'-carboxymethylethylenediamine, N- [3- Examples thereof include (trimethoxysilyl) propyl] phthalamide, N- [3- (trimethoxysilyl) propyl] ethylenediamine-N, N', N'-triacetic acid and the like.
  • amino group-containing silicon compound examples include, for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, and N-.
  • mercapto group-containing silicon compound examples include, for example, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, and 2-mercaptoethyl.
  • the above-mentioned inorganic-coated luminescent fine particles 90 are a coordination satisfying the above-mentioned formula (A) with a solution containing a semiconductor raw material-containing solution and a ligand having a reactive group capable of forming an inorganic coating layer containing Si.
  • a method for producing the inorganic coated luminescent fine particles 90 there are a method of heating and a method of not heating.
  • the precipitated nanocrystal has a ligand coordinated on the surface of the nanocrystal 911, and an inorganic coating layer 91 having a siloxane bond is further formed. Then, by recovering the obtained particles by a conventional method such as centrifugation, silica-coated luminescent fine particles 91 can be obtained.
  • a solution containing cesium carbonate, oleic acid, and an organic solvent is prepared.
  • the organic solvent 1-octadecene, dioctyl ether, diphenyl ether and the like can be used.
  • the obtained solution is dried under reduced pressure at 90 to 150 ° C. for 10 to 180 minutes, and then heated to 100 to 200 ° C. in an atmosphere of an inert gas such as argon or nitrogen to obtain a cesium-oleic acid solution.
  • the above-mentioned cesium-oleic acid solution is added in a state where the solution containing lead (II) bromide and 3-aminopropyltriethoxysilane is heated to 140 to 260 ° C., and the reaction is carried out by heating and stirring for 1 to 10 seconds. After that, the obtained reaction solution is cooled in an ice bath. At this time, it is preferable to add 0.1 to 1 mL of the cesium-oleic acid solution to 5 mL of the solution containing lead (II) bromide and 3-aminopropyltriethoxysilane. During stirring at ⁇ 20 to 30 ° C., nanocrystals 911 are precipitated, and 3-aminopropyltriethoxysilane and oleic acid are coordinated on the surface of the nanocrystals 911.
  • reaction solution is stirred at room temperature (10 to 30 ° C., humidity 5 to 60%) for 5 to 300 minutes under the atmosphere, and then a suspension is prepared by adding 0.1 to 50 mL of ethanol. obtain.
  • the alkoxysilyl group of 3-aminopropyltriethoxysilane is condensed during stirring at room temperature in the air, and an inorganic coating layer 91 having a siloxane bond is formed on the surface of the nanocrystal 911 coordinated with oleic acid.
  • the obtained suspension was centrifuged to recover the solid material, and the solid material was added to toluene to provide an inorganic coating layer 91 having a siloxane bond on the surface of the nanocrystal 911, and the nanocrystal 911. It is possible to obtain a luminescent fine particle dispersion liquid in which silica-coated luminescent fine particles 90 are dispersed in toluene, in which oleic acid is also coordinated on the surface and exposed from between the inorganic coated particles to have a ligand layer 912.
  • silica-coated luminescent fine particles 90 without heating.
  • a solution containing the raw material compound of the semiconductor nanocrystal and a solution containing a compound containing Si and having a reactive group capable of forming a siloxane bond were mixed under the atmosphere, and then the obtained mixture was mixed with respect to the nanocrystal.
  • a method of precipitating nanocrystals by adding to a large amount of organic solvent which is a poor solvent can be mentioned.
  • the amount of the organic solvent used is preferably 10 to 1000 times the amount of the semiconductor nanocrystals on a mass basis.
  • the precipitated nanocrystals have an inorganic coating layer 91 having a siloxane bond formed on the surface of the nanocrystals 911.
  • Silica-coated luminescent fine particles 90 can be obtained by recovering the obtained particles by a conventional method such as centrifugation.
  • a solution containing a raw material compound for semiconductor nanocrystals for example, a solution containing lead (II) bromide and methylamine hydrobromide as an organic solvent is prepared.
  • the organic solvent may be a good solvent for nanocrystals, but dimethyl sulfoxide, N, N-dimethylformamide, N-methylformamide, and a mixed solvent thereof are preferable from the viewpoint of compatibility.
  • a solution containing a compound containing Si and having a reactive group capable of forming a siloxane bond for example, 3-aminopropyltriethoxysilane, oleic acid, and a poor solvent are prepared.
  • the poor solvent isopropyl alcohol, toluene, hexane and the like can be used. At this time, it is possible to adjust the addition amounts of 3-aminopropyltriethoxysilane to 0.01 to 0.5 mL and oleic acid to 0.01 to 0.5 mL with respect to 5 mL of the poor solvent. preferable.
  • the alkoxysilyl group of 3-aminopropyltriethoxysilane is condensed during stirring in the atmosphere, and a surface layer 91 having a siloxane bond is formed on the surface of the nanocrystal 911.
  • silica-coated luminescent fine particles 90 having a surface layer 91 having a siloxane bond on the surface of nanocrystals 911 made of methylammonium tribromide crystals are dispersed in toluene.
  • a fine particle dispersion can be obtained.
  • the nanocrystal-containing composition of the present invention preferably further contains a polymerization initiator.
  • the photopolymerization initiator is preferably at least one selected from the group consisting of alkylphenone-based compounds, acylphosphine oxide-based compounds and oxime ester-based compounds.
  • alkylphenone-based photopolymerization initiator examples include compounds represented by the formula (b-1).
  • R1a represents a group selected from the following formulas (R 1a -1) to (R 1a -6), and R 2a , R 2b and R 2c are independently described below. Represents a group selected from the formulas (R 2-1 ) to (R 2-7 ).
  • the compounds represented by the following formulas (b-1-1) to (b-1-6) are preferable, and the following formula (b-1) is preferable.
  • the compound represented by the formula (b-1-5) or the formula (b-1-6) is more preferable.
  • acylphosphine oxide-based photopolymerization initiator examples include compounds represented by the formula (b-2).
  • R 24 represents an alkyl group, an aryl group or a heterocyclic group
  • R 25 and R 26 each independently represent an alkyl group, an aryl group, a heterocyclic group or an alkanoyl group.
  • These groups may be substituted with an alkyl group, a hydroxyl group, a carboxyl group, a sulfone group, an aryl group, an alkoxy group or an arylthio group.
  • the compounds represented by the above formula (b-2) are preferable, and the following formula (b-2) is preferable.
  • a compound represented by -1) or the formula (b-2-5) is more preferable.
  • oxime ester-based photopolymerization initiator examples include compounds represented by the following formula (b-3-1) or formula (b-3-2).
  • R 27 to R 31 independently represent a hydrogen atom, a cyclic, linear or branched alkyl group having 1 to 12 carbon atoms, or a phenyl group, and each alkyl group and phenyl group are represented. May be substituted with a substituent selected from the group consisting of a halogen atom, an alkoxyl group having 1 to 6 carbon atoms and a phenyl group, where X1 represents an oxygen atom or a nitrogen atom and X2 is oxygen. It represents an atom or NR, and R represents an alkyl group having 1 to 6 carbon atoms.
  • the blending amount of the photopolymerization initiator is preferably 0.05 to 10% by mass, preferably 0.1 to 8% by mass, based on the total amount of the photopolymerizable monomers contained in the nanocrystal-containing composition. Is more preferable, and 1 to 6% by mass is further preferable.
  • the photopolymerization initiator may be used alone or in combination of two or more.
  • the nanocrystal-containing composition containing the photopolymerization initiator in such an amount sufficiently maintains the photosensitivity at the time of photocuring, and the crystals of the photopolymerization initiator are less likely to precipitate when the coating film is dried. Deterioration can be suppressed.
  • the photopolymerization initiator When the photopolymerization initiator is dissolved in the nanocrystal-containing composition, it is preferably dissolved in the photopolymerizable monomer in advance before use. In order to dissolve the photopolymerizable monomer, it is preferable to uniformly dissolve the photopolymerizable monomer by adding a photopolymerization initiator while stirring the photopolymerizable monomer so that the reaction due to heat is not started.
  • the dissolution temperature of the photopolymerization initiator may be appropriately adjusted in consideration of the solubility of the photopolymerization initiator used in the photopolymerizable monomer and the thermal polymerizable property of the photopolymerizable monomer, but the polymerization of the photopolymerizable monomer may be appropriately adjusted.
  • the temperature is preferably 10 to 60 ° C., more preferably 10 to 40 ° C., and even more preferably 10 to 30 ° C. from the viewpoint of not starting the polymerization.
  • the nanocrystal-containing composition of the present invention preferably further contains a light scattering agent. Since the light scattering agent is generally in the form of particles, it is hereinafter referred to as "light scattering particles".
  • the light-scattering particles are, for example, optically inert inorganic particles.
  • the light-scattering particles may scatter the light from the irradiated light source portion in the light emitting layer (light conversion layer) formed by curing the nanocrystal-containing composition or the ink composition containing the composition. can.
  • Materials that make up the light-scattering particles include, for example, single metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, and gold; silica, barium sulfate, barium carbonate, calcium carbonate.
  • Metal oxides such as talc, titanium oxide, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide; Metal carbonates such as magnesium, barium carbonate, bismuth hypocarbonate, calcium carbonate; metal hydroxides such as aluminum hydroxide; barium zirconate, calcium zirconate, calcium titanate, barium titanate, strontium titanate, etc. Examples thereof include composite oxides and metal salts such as bismuth subnitrate.
  • a material constituting the light-scattering particles at least one selected from the group consisting of titanium oxide, alumina, zirconium oxide, zinc oxide, calcium carbonate, barium sulfate and silica from the viewpoint of being more excellent in reducing light leakage. It preferably contains seeds, more preferably at least one selected from the group consisting of titanium oxide, barium sulfate and calcium carbonate.
  • the shape of the light-scattering particles may be spherical, filamentous, indefinite, or the like.
  • the light-scattering particles it is possible to use particles having less directionality as the particle shape (for example, particles having a spherical shape, a regular tetrahedron shape, etc.), so that the uniformity, fluidity, and light scattering property of the nanocrystal-containing composition can be used. It is preferable in that it can be further enhanced.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the nanocrystal-containing composition may be 0.05 ⁇ m or more, or 0.2 ⁇ m or more, from the viewpoint of being superior in the effect of reducing leakage light. It may be 0.3 ⁇ m or more.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the nanocrystal-containing composition may be 1.0 ⁇ m or less or 0.6 ⁇ m or less from the viewpoint of excellent ejection stability. , 0.4 ⁇ m or less.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the nanocrystal-containing composition is 0.05 to 1.0 ⁇ m, 0.05 to 0.6 ⁇ m, 0.05 to 0.4 ⁇ m, 0.2. It may be ⁇ 1.0 ⁇ m, 0.2 to 0.6 ⁇ m, 0.2 to 0.4 ⁇ m, 0.3 to 1.0 ⁇ m, 0.3 to 0.6 ⁇ m, or 0.3 to 0.4 ⁇ m. .. From the viewpoint that such an average particle diameter (volume average diameter) can be easily obtained, the average particle diameter (volume average diameter) of the light-scattering particles used may be 50 nm or more, and may be 1000 nm or less.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the nanocrystal-containing composition is obtained by measuring with a dynamic light-scattering nanotrack particle size distribution meter and calculating the volume average diameter. Further, the average particle diameter (volume average diameter) of the light-scattering particles to be used can be obtained by measuring the particle diameter of each particle with, for example, a transmission electron microscope or a scanning electron microscope, and calculating the volume average diameter.
  • the content of the light-scattering particles may be 0.1% by mass or more, and 1% by mass or more, based on the mass of the non-volatile content of the nanocrystal-containing composition, from the viewpoint of being more excellent in the effect of reducing leakage light. It may be 5% by mass or more, 7% by mass or more, 10% by mass or more, or 12% by mass or more.
  • the content of the light-scattering particles may be 60% by mass or less based on the mass of the non-volatile content of the nanocrystal-containing composition from the viewpoint of excellent effect of reducing leakage light and excellent ejection stability, and is 50.
  • the nanocrystal-containing composition contains a polymer dispersant, the light-scattering particles can be satisfactorily dispersed even when the content of the light-scattering particles is within the above range.
  • the mass ratio of the content of the light-scattering particles to the content of the light-emitting fine particles may be 0.1 or more from the viewpoint of being superior in the effect of reducing leaked light. It may be 2 or more, or 0.5 or more.
  • the mass ratio may be 5.0 or less, and may be 2.0 or less, from the viewpoint of excellent effect of reducing leakage light and excellent continuous ejection property during inkjet printing. It may be 1.5 or less.
  • the reduction of leaked light by the light-scattering particles is considered to be due to the following mechanism. That is, in the absence of light-scattering particles, the backlight light only travels almost straight through the pixel portion and is considered to have little chance of being absorbed by the luminescent fine particles.
  • the light-scattering particles are present in the same pixel portion as the light-emitting fine particles, the backlight light is scattered in all directions in the pixel portion, and the light-emitting fine particles can receive the same backlight. Even if it is used, it is considered that the amount of light absorption in the pixel portion increases. As a result, it is considered that such a mechanism makes it possible to prevent light leakage.
  • Dispersant The nanocrystal-containing composition of the present invention preferably further contains a dispersant.
  • the dispersant is not particularly limited as long as it is a compound capable of further improving the dispersion stability of the luminescent fine particles in the nanocrystal-containing composition.
  • Dispersants are classified into small molecule dispersants and high molecular dispersants.
  • small molecule means a molecule having a weight average molecular weight (Mw) of 5,000 or less
  • polymer means a molecule having a weight average molecular weight (Mw) of more than 5,000.
  • GPC gel permeation chromatography
  • Mw weight average molecular weight
  • Examples of the low molecular weight dispersant include oleic acid; triethyl phosphate, TOP (trioctylphosphin), TOPO (trioctylphosphin oxide), hexylphosphonic acid (HPA), tetradecylphosphonic acid (TDPA), and octylphosphine.
  • Phosphonate-containing compounds such as acid (OPA); nitrogen atom-containing compounds such as oleylamine, octylamine, trioctylamine, hexadecylamine; sulfur atoms such as 1-decanethiol, octanethiol, dodecanethiol, amylsulfide. Examples include contained compounds.
  • examples of the polymer dispersant include acrylic resin, polyester resin, polyurethane resin, polyamide resin, polyether resin, phenol resin, silicone resin, polyurea resin, amino resin, and polyamine resin.
  • resin polyethyleneimine, polyallylamine, etc.
  • epoxy resin polyimide resin
  • wood rosin gum rosin
  • natural rosin such as tall oil rosin
  • polymerized rosin disproportionate rosin
  • hydrogenated rosin oxide rosin
  • maleinized rosin maleinized rosin.
  • modified rosins examples thereof include modified rosins, rosin amines, lime rosins, rosin alkylene oxide adducts, rosin alkyd adducts, rosin derivatives such as rosin modified phenols, and the like.
  • polymer dispersants include, for example, DISPERBYK series manufactured by Big Chemie, TEGO Dispers series manufactured by Evonik, EFKA series manufactured by BASF, SOLSPECRSE series manufactured by Japan Lubrizol, and horse mackerel manufactured by Ajinomoto Fine Techno.
  • the Spar series, DISPARLON series manufactured by Kusumoto Kasei, Floren series manufactured by Kyoeisha Chemical Co., Ltd., etc. can be used.
  • the blending amount of the dispersant is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, with respect to 100 parts by mass of the luminescent fine particles 910 and 90, respectively.
  • the ejection stability from the inkjet nozzle may decrease due to aggregation of light emitting fine particles and light scattering particles. Further, it is conceivable to improve the ejection stability by refining the luminescent fine particles and the light scattering particles, reducing the content of the luminescent fine particles and the light scattering particles, and the like. In this case, the leakage light is reduced. The effect tends to decrease, and it is difficult to achieve both sufficient ejection stability and the effect of reducing light leakage.
  • the nanocrystal-containing composition of the present invention further containing a dispersant, leakage light can be further reduced while ensuring sufficient ejection stability.
  • the dispersant remarkably suppresses the aggregation of light emitting fine particles and light scattering particles (particularly, light scattering particles).
  • Examples of the functional group having an affinity for light-scattering particles include an acidic functional group, a basic functional group and a nonionic functional group.
  • the acidic functional group has a dissociative proton and may be neutralized by a base such as an amine or a hydroxide ion, and the basic functional group is neutralized by an acid such as an organic acid or an inorganic acid. May be.
  • Examples of the acidic functional group include a carboxyl group (-COOH), a sulfo group (-SO3H), a sulfate group (-OSO3H), a phosphonic acid group (-PO (OH) 3), and a phosphoric acid group (-OPO (OH) 3). , Phosphinic acid group (-PO (OH)-), mercapto group (-SH), and the like. It was
  • Examples of the basic functional group include primary, secondary and tertiary amino groups, ammonium groups, imino groups, and nitrogen-containing heterocyclic groups such as pyridine, pyrimidine, pyrazine, imidazole, and triazole.
  • Nonionic functional groups include hydroxy group, ether group, thioether group, sulfinyl group (-SO-), sulfonyl group (-SO2-), carbonyl group, formyl group, ester group, carbonate ester group, amide group and carbamoyl. Examples thereof include a group, a ureido group, a thioamide group, a thioureido group, a sulfamoyl group, a cyano group, an alkenyl group, an alkynyl group, a phosphin oxide group and a phosphin sulfide group.
  • a carboxyl group, a sulfo group, a phosphonic acid group and a phosphoric acid group are preferably used, and an amino group is preferably used as the basic functional group.
  • a carboxyl group, a phosphonic acid group and an amino group are more preferably used, and most preferably an amino group is used.
  • Dispersants with acidic functional groups have an acid value.
  • the acid value of the polymer dispersant having an acidic functional group is preferably 1 to 150 mgKOH / g in terms of solid content. When the acid value is 1 or more, sufficient dispersibility of the light-scattering particles can be easily obtained, and when the acid value is 150 or less, the storage stability of the pixel portion (cured product of the ink composition) is unlikely to decrease. ..
  • the dispersant having a basic functional group has an amine value.
  • the amine value of the dispersant having a basic functional group is preferably 1 to 200 mgKOH / g in terms of solid content.
  • the weight average molecular weight of the dispersant may be 750 or more, or 1000 or more, from the viewpoint of being able to satisfactorily disperse the light-scattering particles and further improving the effect of reducing leakage light. It may be 2000 or more, and may be 3000 or more.
  • the weight average molecular weight of the dispersant can satisfactorily disperse light-scattering particles, further improve the effect of reducing leakage light, and can eject the viscosity of the inkjet ink, which is suitable for stable ejection. From the viewpoint of viscosity, it may be 100,000 or less, 50,000 or less, or 30,000 or less.
  • the content of the dispersant may be 0.5 parts by mass or more and may be 2 parts by mass or more with respect to 100 parts by mass of the light-scattering particles. It may be 5 parts by mass or more.
  • the content of the polymer dispersion may be 50 parts by mass or less and 30 parts by mass or less with respect to 100 parts by mass of the light-scattering particles from the viewpoint of moist heat stability of the pixel portion (cured product of the ink composition). It may be 10 parts by mass or less.
  • the nanocrystal-containing composition used in the present invention contains components other than luminescent fine particles 910 and 90, a photopolymerizable monomer, a photopolymerization initiator, and light-scattering particles as long as the effects of the present invention are not impaired. It may be contained. Examples of such other components include polymerization inhibitors, antioxidants, leveling agents, chain transfer agents, dispersion aids, thermoplastic resins, sensitizers and the like.
  • Anti-polymerization agents examples include p-methoxyphenol, cresol, t-butylcatechol, 3,5-di-t-butyl-4-hydroxytoluene, and 2,2'-methylenebis (4-methyl-6).
  • antioxidants examples include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (“IRGANOX1010”) and thiodiethylenebis [3- (3,5).
  • IRGANOX1035" octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate
  • IRGANOX1076 octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate
  • IRGANOX1330 4,6-bis (octylthiomethyl) -o-cresol
  • the amount of the antioxidant added is preferably 0.01 to 2.0% by mass, preferably 0.02 to 1.0% by mass, based on the total amount of the photopolymerizable monomers contained in the nanocrystal-containing composition. Is more preferable.
  • Leveling agent is not particularly limited, but a compound capable of reducing film thickness unevenness when forming a thin film of luminescent fine particles 90 is preferable.
  • leveling agents include alkyl carboxylates, alkyl phosphates, alkyl sulfonates, fluoroalkyl carboxylates, fluoroalkyl phosphates, fluoroalkyl sulfonates, polyoxyethylene derivatives, and fluoroalkylethylene oxide derivatives. , Polyethylene glycol derivatives, alkylammonium salts, fluoroalkylammonium salts and the like.
  • leveling agent examples include, for example, "Mega Fuck F-114", “Mega Fuck F-251", “Mega Fuck F-281”, “Mega Fuck F-410", “Mega Fuck F-430”, etc. "Mega Fuck F-444”, “Mega Fuck F-472SF”, “Mega Fuck F-477”, “Mega Fuck F-510”, “Mega Fuck F-511”, “Mega Fuck F-552”, “Mega” “Fuck F-553”, “Mega Fuck F-554”, “Mega Fuck F-555”, “Mega Fuck F-556”, “Mega Fuck F-557”, “Mega Fuck F-558”, “Mega Fuck F” -559 “,” Mega Fuck F-560 “,” Mega Fuck F-561 “,” Mega Fuck F-562 “,” Mega Fuck F-563 “,” Mega Fuck F-565 “,” Mega Fuck F-567 “ , “Mega Fuck F-568”, “Mega Fuck F-569”, “Mega Fuck F
  • leveling agent examples include, for example, "Futtergent 100”, “Futtergent 100C”, “Futtergent 110", “Futtergent 150”, “Futtergent 150CH”, “Futtergent 100AK”, and the like.
  • leveling agent examples include, for example, "BYK-300”, “BYK-302”, “BYK-306”, “BYK-307”, “BYK-310", “BYK-315”, “BYK”. -320 “,” BYK-322 “,” BYK-323 “,” BYK-325 “,” BYK-330 “,” BYK-331 “,” BYK-333 “,” BYK-337 “,” BYK-340 “ , “BYK-344”, “BYK-370”, “BYK-375”, “BYK-377”, “BYK-350”, “BYK-352”, “BYK-354”, “BYK-355”, “BYK-356", “BYK-358N”, “BYK-361N”, “BYK-390”, “BYK-392”, “BYK-UV3500”, “BYK-UV3510", “BYK” -UV3570 “,” BYK
  • leveling agent examples include, for example, "TEGO Rad2100”, “TEGO Rad2011”, “TEGO Rad2200N”, “TEGO Rad2250”, “TEGO Rad2300”, “TEGO Rad2500”, “TEGO Rad2600”, “TEGOR”.
  • leveling agent examples include, for example, "FC-4430", “FC-4432” (above, manufactured by 3M Japan Ltd.), “Unidyne NS” (above, manufactured by Daikin Industries, Ltd.); “Surflon S”. -241 ",” Surflon S-242 “,” Surflon S-243 “,” Surflon S-420 “,” Surflon S-611 “,” Surflon S-651 “,” Surflon S-386 “(above, AGC Seimi) Chemical Co., Ltd.) and the like.
  • leveling agent examples include, for example, “DISPALLON OX-880EF”, “DISPALLON OX-881”, “DISPALLON OX-883", “DISPALLON OX-77EF”, “DISPALLON OX-710”, “DISPALLON 1922”.
  • leveling agent examples include, for example, "PF-151N”, “PF-636”, “PF-6320”, “PF-656”, “PF-6520”, “PF-652-NF”, “PF-3320” (all manufactured by OMNOVA SOLUTIONS); “Polyflow No.7”, “Polyflow No.50E”, “Polyflow No.50EHF”, “Polyflow No.54N”, “Polyflow No.75”, “Polyflow No.75” “Polyflow No.77”, “Polyflow No.85”, “Polyflow No.85HF”, “Polyflow No.90”, “Polyflow No.90D-50", “Polyflow No.95”, “Polyflow No.99C”, “Polyflow KL-400K”, “Polyflow KL-400HF”, “Polyflow KL-401", “Polyflow KL-402”, “Polyflow KL-403", “Polyflow KL-404", “Polyflow KL-100”, “Polyflow KL-100” Polyflow LE-604 ",”
  • leveling agent for example, "L-7001”, “L-7002”, “8032ADDITION”, “57ADDTIVE”, “L-7064”, “FZ-2110”, “FZ-2105”. , “67ADDTIVE”, “8616ADDTIVE” (all manufactured by Toray Dow Silicone Co., Ltd.) and the like.
  • the amount of the leveling agent added is preferably 0.005 to 2% by mass, preferably 0.01 to 0.5% by mass, based on the total amount of the photopolymerizable monomers contained in the nanocrystal-containing composition. Is more preferable.
  • Chain transfer agent is a component used for the purpose of further improving the adhesion of the ink composition to the substrate when the nanocrystal-containing composition is used as the ink composition.
  • Chain transfer agents include, for example, aromatic hydrocarbons; halogenated hydrocarbons such as chloroform, carbon tetrachloride, carbon tetrabromide, bromotrichloromethane; octyl mercaptans, n-butyl mercaptans, n-pentyl mercaptans, etc.
  • Mercaptan compounds such as n-hexadecyl mercaptan, n-tetradecylmel, n-dodecyl mercaptan, t-tetradecyl mercaptan, t-dodecyl mercaptan; hexanedithiol, decandithiol, 1,4-butanediol bisthiopropionate.
  • 1,4-Butanediol bisthioglycolate ethylene glycol bisthioglycolate, ethylene glycol bisthiopropionate, trimethylolpropanetristhioglycolate, trimethylolpropanetristhiopropionate, trimethylolpropanetris (3) -Mercaptobutyrate), pentaerythritol tetrakisthioglycolate, pentaerythritol tetraxthiopropionate, tristrimercaptopropionate (2-hydroxyethyl) isocyanurate, 1,4-dimethylmercaptobenzene, 2,4,6-tri Thiol compounds such as mercapto-s-triazine, 2- (N, N-dibutylamino) -4,6-dimercapto-s-triazine; dimethylxanthogen disulfide, diethylxantogen disulfide, diisopropyl
  • chain transfer agent for example, compounds represented by the following general formulas (9-1) to (9-12) are preferable.
  • R95 represents an alkyl group having 2 to 18 carbon atoms, and the alkyl group may be a straight chain or a branched chain, and one or more methylene groups in the alkyl group are oxygen atoms.
  • R 96 represents an alkylene group having 2 to 18 carbon atoms, and one or more methylene groups in the alkylene group are oxygen atom, sulfur atom, -CO- without direct bonding of oxygen atom and sulfur atom to each other.
  • the amount of the chain transfer agent added is preferably 0.1 to 10% by mass, preferably 1.0 to 5% by mass, based on the total amount of the photopolymerizable monomers contained in the nanocrystal-containing composition. More preferred.
  • Dispersion aids examples include organic pigment derivatives such as phthalimide methyl derivatives, phthalimide sulfonic acid derivatives, phthalimide N- (dialkylamino) methyl derivatives, and phthalimide N- (dialkylaminoalkyl) sulfonic acid amide derivatives. Can be mentioned. These dispersion aids may be used alone or in combination of two or more. 1-8-6.
  • Thermoplastic resin Examples of the thermoplastic resin include urethane resin, acrylic resin, polyamide resin, polyimide resin, styrene maleic acid resin, styrene anhydride maleic acid resin, polyester acrylate resin and the like. 1-8-7.
  • Sensitizer As the sensitizer, amines that do not cause an addition reaction with the photopolymerizable monomer can be used. Examples of such sensitizers include trimethylamine, methyldimethanolamine, triethanolamine, p-diethylaminoacetophenone, ethyl p-dimethylaminobenzoate, isoamyl p-dimethylaminobenzoate, N, N-dimethylbenzylamine, 4 , 4'-bis (diethylamino) benzophenone and the like.
  • Nanocrystal-Containing Composition as described above is prepared by dispersing the above-mentioned luminescent fine particles 910 and 90 in a solution in which a photopolymerizable monomer, a photopolymerization initiator and the like are mixed. Can be done. Dispersion of the luminescent fine particles 910 and 90 can be performed by using, for example, a ball mill, a sand mill, a bead mill, a three-roll mill, a paint conditioner, an attritor, a dispersion stirrer, a disperser such as an ultrasonic wave.
  • the content of the luminescent fine particles 910 and 91 in the nanocrystal-containing composition is preferably 1 to 50% by mass, more preferably 1 to 45% by mass, and further preferably 1 to 40% by mass. preferable.
  • the ink composition composed of the nanocrystal-containing monomer is ejected stably by the inkjet printing method.
  • the sex can be further improved.
  • the uncoated light emitting fine particles 910 or the inorganic coated light emitting fine particles 91 are less likely to aggregate with each other, and the external quantum efficiency of the obtained light emitting layer (light conversion layer) can be increased.
  • the nanocrystal-containing composition of the present invention can be obtained by forming a film on a substrate by various methods such as an inkjet printer, photolithography, and spin coater, and heating and curing the film to obtain a cured product. Above all, the nanocrystal-containing composition of the present invention is particularly suitable as an ink composition used in an inkjet printer.
  • the viscosity of the nanocrystal-containing composition as an ink composition is preferably in the range of 2 to 20 mPa ⁇ s, and more preferably in the range of 5 to 15 mPa ⁇ s, from the viewpoint of ejection stability during inkjet printing. It is preferably in the range of 7 to 12 mPa ⁇ s, and more preferably in the range of 7 to 12 mPa ⁇ s.
  • ink ejection control for example, control of ejection amount and ejection timing
  • ink can be smoothly ejected from the ink ejection holes.
  • the viscosity of the nanocrystal-containing composition can be measured by, for example, an E-type viscometer.
  • the surface tension of the nanocrystal-containing composition as the ink composition is preferably a surface tension suitable for the inkjet printing method.
  • the specific value of the surface tension is preferably in the range of 20 to 40 mN / m, and more preferably in the range of 25 to 35 mN / m.
  • the above-mentioned nanocrystal-containing composition forms a film on a substrate by various methods such as an inkjet printer, photolithography, and a spin coater, and heats the film. A cured product can be obtained by curing the product.
  • a nanocrystal-containing composition as an ink composition is used to form a color filter pixel portion of a light emitting element provided with a blue organic LED backlight will be described as an example.
  • FIG. 3 is a cross-sectional view showing an embodiment of the light emitting device of the present invention
  • FIGS. 4 and 5 are schematic views showing the configuration of an active matrix circuit, respectively.
  • FIG. 3 for convenience, the dimensions of each part and their ratios are exaggerated and may differ from the actual ones. Further, the materials, dimensions, etc. shown below are examples, and the present invention is not limited thereto, and can be appropriately changed without changing the gist thereof.
  • the upper side of FIG. 3 is referred to as “upper side” or “upper side”, and the upper side is referred to as “lower side” or “lower side”. Further, in FIG. 3, in order to avoid complicating the drawing, the description of the hatching showing the cross section is omitted.
  • the light emitting element 100 includes a lower substrate 1, an EL light source unit 200, a packed layer 10, a protective layer 11, and a light conversion layer 12 containing the above-mentioned light emitting fine particles and acting as a light emitting layer.
  • the upper substrate 13 is laminated in this order.
  • the light-emitting fine particles contained in the light conversion layer 12 may be uncoated light-emitting fine particles 910 having neither an inorganic coating layer nor a resin-coated layer, or may be inorganic-coated light-emitting fine particles 90.
  • the EL light source unit 200 includes an anode 2, an EL layer 14 composed of a plurality of layers, a cathode 8, a polarizing plate (not shown), and a sealing layer 9 in this order.
  • the EL layer 14 includes a hole injection layer 3 sequentially laminated from the anode 2 side, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, and an electron injection layer 7.
  • the light emitting element 100 is a photoluminescence element that absorbs and re-emits or transmits the light emitted from the EL light source unit 200 (EL layer 14) by the light conversion layer 12 and takes it out from the upper substrate 13 side to the outside. .. At this time, the light is converted into light of a predetermined color by the light emitting fine particles 910 or 90 contained in the light conversion layer 12.
  • each layer will be described in sequence.
  • Lower board 1 and upper board 13 The lower substrate 1 and the upper substrate 13 each have a function of supporting and / or protecting each layer constituting the light emitting element 100.
  • the upper substrate 13 is composed of a transparent substrate.
  • the lower substrate 1 is composed of a transparent substrate.
  • the transparent substrate means a substrate capable of transmitting light having a wavelength in the visible light region, and the transparency includes colorless transparent, colored transparent, and translucent.
  • the transparent substrate examples include quartz glass, Pyrex (registered trademark) glass, a transparent glass substrate such as a synthetic quartz plate, a quartz substrate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyether sulfone (PES).
  • a plastic substrate (resin substrate) made of polyimide (PI), polycarbonate (PC) or the like, a metal substrate made of iron, stainless steel, aluminum, copper or the like, a silicon substrate, a gallium arsenic substrate or the like can be used.
  • PI polyimide
  • PC polycarbonate
  • metal substrate made of iron, stainless steel, aluminum, copper or the like
  • silicon substrate a gallium arsenic substrate or the like
  • the lower substrate 1 and the upper substrate 13 have a plastic substrate (a substrate composed of a polymer material as a main material) and a relatively small thickness, respectively. A metal substrate is selected.
  • the thicknesses of the lower substrate 1 and the upper substrate 13 are not particularly limited, but are preferably in the range of 100 to 1,000 ⁇ m, and more preferably in the range of 300 to 800 ⁇ m. In addition, depending on the usage pattern of the light emitting element 100, either one or both of the lower substrate 1 and the upper substrate 13 may be omitted.
  • a signal line drive circuit C1 and a scan line drive circuit C2 for controlling the supply of current to the anode 2 constituting the pixel electrode PE represented by R, G, and B are provided.
  • a control circuit C3 for controlling the operation of these circuits, a plurality of signal lines 706 connected to the signal line drive circuit C1, and a plurality of scan lines 707 connected to the scan line drive circuit C2 are provided.
  • a capacitor 701, a drive transistor 702, and a switching transistor 708 are provided in the vicinity of the intersection of each signal line 706 and each scanning line 707.
  • one electrode is connected to the gate electrode of the drive transistor 702, and the other electrode is connected to the source electrode of the drive transistor 702.
  • the gate electrode is connected to one electrode of the capacitor 701
  • the source electrode is connected to the other electrode of the capacitor 701 and the power supply line 703 that supplies the drive current
  • the drain electrode is the anode 4 of the EL light source unit 200. It is connected to the.
  • the gate electrode is connected to the scanning line 707
  • the source electrode is connected to the signal line 706, and the drain electrode is connected to the gate electrode of the drive transistor 702.
  • the common electrode 705 constitutes the cathode 8 of the EL light source unit 200.
  • the drive transistor 702 and the switching transistor 708 can be configured by, for example, a thin film transistor or the like.
  • the scanning line drive circuit C2 supplies or cuts off the scanning voltage according to the scanning signal to the gate electrode of the switching transistor 708 via the scanning line 707, and turns the switching transistor 708 on or off. As a result, the scanning line driving circuit C2 adjusts the timing at which the signal line driving circuit C1 writes the signal voltage.
  • the signal line drive circuit C1 supplies or cuts off the signal voltage corresponding to the video signal to the gate electrode of the drive transistor 702 via the signal line 706 and the switching transistor 708, and supplies the signal current to the EL light source unit 200. Adjust the amount.
  • the scanning voltage is supplied from the scanning line drive circuit C2 to the gate electrode of the switching transistor 708, and when the switching transistor 708 is turned on, the signal voltage is supplied from the signal line driving circuit C1 to the gate electrode of the switching transistor 708.
  • the drain current corresponding to this signal voltage is supplied to the EL light source unit 200 as a signal current from the power supply line 703.
  • the EL light source unit 200 emits light according to the supplied signal current.
  • the anode 2 has a function of supplying holes from an external power source toward the light emitting layer 5.
  • the constituent material (anolyde material) of the anode 2 is not particularly limited, and for example, a metal such as gold (Au), a halogenated metal such as copper iodide (CuI), indium tin oxide (ITO), and oxidation. Examples thereof include metal oxides such as tin (SnO 2 ) and zinc oxide (ZnO). These may be used alone or in combination of two or more.
  • the thickness of the anode 2 is not particularly limited, but is preferably in the range of 10 to 1,000 nm, and more preferably in the range of 10 to 200 nm.
  • the anode 2 can be formed by, for example, a dry film forming method such as a vacuum vapor deposition method or a sputtering method. At this time, the anode 2 having a predetermined pattern may be formed by a photolithography method or a method using a mask.
  • the cathode 8 has a function of supplying electrons from an external power source toward the light emitting layer 5.
  • the constituent material (cathode material) of the cathode 8 is not particularly limited, and is, for example, lithium, sodium, magnesium, aluminum, silver, sodium-potassium alloy, magnesium / aluminum mixture, magnesium / silver mixture, magnesium / indium mixture, aluminum. / Aluminum oxide (Al 2 O 3 ) mixture, rare earth metals and the like can be mentioned. These may be used alone or in combination of two or more.
  • the thickness of the cathode 8 is not particularly limited, but is preferably in the range of 0.1 to 1,000 nm, and more preferably in the range of 1 to 200 nm.
  • the cathode 3 can be formed by, for example, a dry film forming method such as a vapor deposition method or a sputtering method.
  • Hole injection layer 3 The hole injection layer 3 has a function of receiving the holes supplied from the anode 2 and injecting them into the hole transport layer 4.
  • the hole injection layer 3 may be provided as needed and may be omitted.
  • the constituent material (hole injection material) of the hole injection layer 3 is not particularly limited, but is, for example, a phthalocyanine compound such as copper phthalocyanine; 4,4', 4''-tris [phenyl (m-tolyl) amino.
  • Triphenylamine derivatives such as triphenylamine; 1,4,5,8,9,12-hexazatriphenylene hexacarbonitrile, 2,3,5,6-tetrafluoro-7,7,8,8- Cyano compounds such as tetracyano-quinodimethane; vanadium oxide, metal oxides such as molybdenum oxide; amorphous carbon; polyaniline (emeraldine), poly (3,4-ethylenedioxythiophene) -poly (styrene sulfonic acid) (PEDOT) -PSS), polymers such as polypyrrole, and the like.
  • the hole injection material a polymer is preferable, and PEDOT-PSS is more preferable.
  • the above-mentioned hole injection material may be used alone or in combination of two or more.
  • the thickness of the hole injection layer 3 is not particularly limited, but is preferably in the range of 0.1 to 500 mm, more preferably in the range of 1 to 300 nm, and further preferably in the range of 2 to 200 nm. preferable.
  • the hole injection layer 3 may have a single-layer structure or a laminated structure in which two or more layers are laminated.
  • Such a hole injection layer 4 can be formed by a wet film forming method or a dry film forming method.
  • a wet film forming method an ink containing the hole injection material described above is usually applied by various coating methods, and the obtained coating film is dried.
  • the coating method is not particularly limited, and examples thereof include an inkjet printing method (droplet ejection method), a spin coat method, a casting method, an LB method, a letterpress printing method, a gravure printing method, a screen printing method, and a nozzle printing printing method. Can be mentioned.
  • a vacuum vapor deposition method, a sputtering method or the like can be preferably used.
  • the hole transport layer 4 has a function of receiving holes from the hole injection layer 3 and efficiently transporting them to the light emitting layer 6. Further, the hole transport layer 4 may have a function of preventing the transport of electrons. The hole transport layer 4 may be provided as needed and may be omitted.
  • the constituent material (hole transport material) of the hole transport layer 4 is not particularly limited, but for example, TPD (N, N'-diphenyl-N, N'-di (3-methylphenyl) -1,1'. -Biophenyl-4,4'diamine), ⁇ -NPD (4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), m-MTDATA (4, 4', 4''- Low molecular weight triphenylamine derivatives such as tris (3-methylphenylphenylamino) triphenylamine); polyvinylcarbazole; poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) -Benzidine] (poly-TPA), polyfluorene (PF), poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) -benzidine (Poly-
  • the hole transport material is preferably a triphenylamine derivative or a polymer compound obtained by polymerizing a triphenylamine derivative having a substituent introduced therein, and is preferably a triphenylamine having a substituent introduced therein. It is more preferable that it is a polymer compound obtained by polymerizing a phenylamine derivative. Further, the hole transporting material described above may be used alone or in combination of two or more.
  • the thickness of the hole transport layer 4 is not particularly limited, but is preferably in the range of 1 to 500 nm, more preferably in the range of 5 to 300 nm, and even more preferably in the range of 10 to 200 nm.
  • the hole transport layer 4 may have a single-layer structure or a laminated structure in which two or more layers are laminated.
  • Such a hole transport layer 4 can be formed by a wet film forming method or a dry film forming method.
  • a wet film forming method an ink containing the hole transport material described above is usually applied by various coating methods, and the obtained coating film is dried.
  • the coating method is not particularly limited, and examples thereof include an inkjet printing method (droplet ejection method), a spin coat method, a casting method, an LB method, a letterpress printing method, a gravure printing method, a screen printing method, and a nozzle printing printing method. Can be mentioned.
  • a vacuum vapor deposition method, a sputtering method or the like can be preferably used.
  • Electron injection layer 7 The electron injection layer 7 has a function of receiving electrons supplied from the cathode 8 and injecting them into the electron transport layer 6.
  • the electron injection layer 7 may be provided as needed and may be omitted.
  • the constituent material (electron injection material) of the electron injection layer 7 is not particularly limited, and for example, alkali metal chalcogenides such as Li 2O , LiO, Na 2S, Na 2 Se , and NaO; CaO, BaO, SrO, and the like.
  • Alkali earth metal chalcogenides such as BeO, BaS, MgO, CaSe
  • Alkali metal halides such as CsF, LiF, NaF, KF, LiCl, KCl, NaCl
  • Alkali such as 8-hydroxyquinolinolatrithium (Liq) Metal salts
  • examples include alkaline earth metal halides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 , BeF 2 .
  • alkali metal chalcogenides, alkaline earth metal halides, and alkali metal salts are preferable.
  • the above-mentioned electron injection material may be used alone or in combination of two or more.
  • the thickness of the electron injection layer 7 is not particularly limited, but is preferably in the range of 0.1 to 100 nm, more preferably in the range of 0.2 to 50 nm, and in the range of 0.5 to 10 nm. Is even more preferable.
  • the electron injection layer 7 may have a single-layer structure or a laminated structure in which two or more layers are laminated.
  • Such an electron injection layer 7 can be formed by a wet film forming method or a dry film forming method.
  • an ink containing the above-mentioned electron injection material is usually applied by various coating methods, and the obtained coating film is dried.
  • the coating method is not particularly limited, and examples thereof include an inkjet printing method (droplet ejection method), a spin coat method, a casting method, an LB method, a letterpress printing method, a gravure printing method, a screen printing method, and a nozzle printing printing method. Can be mentioned.
  • a vacuum vapor deposition method, a sputtering method or the like can be applied.
  • Electron transport layer 8 The electron transport layer 8 has a function of receiving electrons from the electron injection layer 7 and efficiently transporting them to the light emitting layer 5. Further, the electron transport layer 8 may have a function of preventing the transport of holes. The electron transport layer 8 may be provided as needed and may be omitted.
  • the constituent material (electron transport material) of the electron transport layer 8 is not particularly limited, and for example, tris (8-quinolinate) aluminum (Alq3), tris (4-methyl-8-quinolinolate) aluminum (Almq3), and bis ( 10-Hydroxybenzo [h] quinolinate) beryllium (BeBq2), bis (2-methyl-8-quinolinolate) (p-phenylphenolate) aluminum (BAlq), bis (8-quinolinolate) quinoline such as zinc (Znq) Metal derivatives with skeletal or benzoquinoline skeletal; bis [2- (2'-hydroxyphenyl) benzoxazolate] Metal complexes with benzoxazoline skeletal such as zinc (Zn (BOX) 2); bis [2- ( 2'-Hydroxyphenyl) benzothiazolate] A metal derivative having a benzothiazolin skeleton such as zinc (Zn (BTZ) 2); 2- (4-biphenylyl) -5-
  • the electron transport material is preferably an imidazole derivative, a pyridine derivative, a pyrimidine derivative, a triazine derivative, or a metal oxide (inorganic oxide).
  • the above-mentioned electron transport materials may be used alone or in combination of two or more.
  • the thickness of the electron transport layer 7 is not particularly limited, but is preferably in the range of 5 to 500 nm, and more preferably in the range of 5 to 200 nm.
  • the electron transport layer 6 may be a single layer or a stack of two or more.
  • Such an electron transport layer 7 can be formed by a wet film forming method or a dry film forming method.
  • an ink containing the above-mentioned electron transport material is usually applied by various coating methods, and the obtained coating film is dried.
  • the coating method is not particularly limited, and examples thereof include an inkjet printing method (droplet ejection method), a spin coat method, a casting method, an LB method, a letterpress printing method, a gravure printing method, a screen printing method, and a nozzle printing printing method. Can be mentioned.
  • a vacuum vapor deposition method, a sputtering method or the like can be applied.
  • the light emitting layer 5 has a function of generating light emission by utilizing the energy generated by the recombination of holes and electrons injected into the light emitting layer 5.
  • the light emitting layer 5 of the present embodiment emits blue light having a wavelength in the range of 400 to 500 nm, and more preferably in the range of 420 to 480 nm.
  • the light emitting layer 5 preferably contains a light emitting material (guest material or dopant material) and a host material.
  • a light emitting material guest material or dopant material
  • the mass ratio of the host material and the light emitting material is not particularly limited, but is preferably in the range of 10: 1 to 300: 1.
  • the light emitting material a compound capable of converting singlet excitation energy into light or a compound capable of converting triplet excitation energy into light can be used.
  • the light emitting material preferably contains at least one selected from the group consisting of an organic small molecule fluorescent material, an organic polymer fluorescent material and an organic phosphorescent material.
  • Examples of the compound capable of converting the single-term excitation energy into light include an organic low molecular weight fluorescent material or an organic high molecular weight fluorescent material that emits fluorescence.
  • a compound having an anthracene structure, a tetracene structure, a chrysene structure, a phenanthrene structure, a pyrene structure, a perylene structure, a stilbene structure, an acridone structure, a coumarin structure, a phenoxazine structure or a phenoxazine structure is preferable.
  • organic low molecular weight fluorescent material examples include, for example, 5,6-bis [4- (10-phenyl-9-anthryl) phenyl] -2,2'-bipyridine and 5,6-bis [4'-(. 10-Phenyl-9-anthril) biphenyl-4-yl] -2,2'-bipyridine (, N, N'-bis [4- (9H-carbazole-9-yl) phenyl] -N, N'-diphenyl Stilben-4,4'-diamine, 4- (9H-carbazole-9-yl) -4'-(10-phenyl-9-anthril) triphenylamine, 4- (9H-carbazole-9-yl) -4 '-(9,10-diphenyl-2-anthryl) triphenylamine, N, 9-diphenyl-N- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazol
  • organic polymer fluorescent material examples include homopolymers consisting of units based on fluorene derivatives, copolymers consisting of units based on fluorene derivatives and units based on tetraphenylphenylenediamine derivatives, and units based on tarphenyl derivatives. Homopolymers, homopolymers consisting of units based on diphenylbenzofluorene derivatives, and the like.
  • an organic phosphorescent material that emits phosphorescence is preferable.
  • the organic phosphorescent material include, for example, a metal containing at least one metal atom selected from the group consisting of iridium, rhodium, platinum, ruthenium, osmium, scandium, yttrium, gadolinium, palladium, silver, gold and aluminum. Examples include complexes.
  • a metal complex containing at least one metal atom selected from the group consisting of iridium, rhodium, platinum, ruthenium, osmium, scandium, yttrium, gadrinium and palladium is preferable, and iridium, rhodium and platinum are preferable.
  • a metal complex containing at least one metal atom selected from the group consisting of ruthenium and ruthenium is more preferable, and an iridium complex or a platinum complex is further preferable.
  • the host material it is preferable to use at least one compound having an energy gap larger than the energy gap of the light emitting material. Further, when the light emitting material is a phosphorescent material, it is possible to select a compound having a triplet excitation energy larger than the triplet excitation energy (energy difference between the ground state and the triplet excited state) of the light emitting material as the host material. preferable.
  • Examples of the host material include tris (8-quinolinolato) aluminum (III), tris (4-methyl-8-quinolinolato) aluminum (III), bis (10-hydroxybenzo [h] quinolinato) berylium (II), and bis.
  • the thickness of the light emitting layer 5 is not particularly limited, but is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 50 nm.
  • Such a light emitting layer 5 can be formed by a wet film forming method or a dry film forming method.
  • a wet film forming method an ink containing the above-mentioned light emitting material and host material is usually applied by various coating methods, and the obtained coating film is dried.
  • the coating method is not particularly limited, and examples thereof include an inkjet printing method (droplet ejection method), a spin coat method, a casting method, an LB method, a letterpress printing method, a gravure printing method, a screen printing method, and a nozzle printing printing method. Can be mentioned.
  • a dry film forming method a vacuum vapor deposition method, a sputtering method or the like can be applied.
  • the EL light source unit 200 may further have, for example, a bank (partition wall) for partitioning the hole injection layer 3, the hole transport layer 4, and the light emitting layer 5.
  • the height of the bank is not particularly limited, but is preferably in the range of 0.1 to 5 ⁇ m, more preferably in the range of 0.2 to 4 ⁇ m, and further preferably in the range of 0.2 to 3 ⁇ m. preferable.
  • the width of the opening of the bank is preferably in the range of 10 to 200 ⁇ m, more preferably in the range of 30 to 200 ⁇ m, and even more preferably in the range of 50 to 100 ⁇ m.
  • the length of the bank opening is preferably in the range of 10 to 400 ⁇ m, more preferably in the range of 20 to 200 ⁇ m, and even more preferably in the range of 50 to 200 ⁇ m.
  • the inclination angle of the bank is preferably in the range of 10 to 100 °, more preferably in the range of 10 to 90 °, and further preferably in the range of 10 to 80 °.
  • the light conversion layer 12 converts the light emitted from the EL light source unit 200 and re-emits it, or transmits the light emitted from the EL light source unit 200.
  • a first pixel unit 20a that converts light having a wavelength in the above range to emit red light
  • a second pixel unit 20a that converts light having a wavelength in the above range to emit green light
  • 20b and a third pixel portion 20c that transmits light having a wavelength in the above range.
  • a plurality of first pixel portions 20a, second pixel portions 20b, and third pixel portions 20c are arranged in a grid pattern so as to repeat in this order.
  • a light-shielding portion 30 that shields light is provided between the 20c and the first pixel portion 20a. In other words, these adjacent pixel portions are separated from each other by the light-shielding portion 30.
  • the first pixel portion 20a and the second pixel portion 20b may include a coloring material corresponding to each color.
  • the first pixel portion 20a and the second pixel portion 20b each include a cured product of the nanocrystal-containing composition of the above-described embodiment.
  • the cured product preferably contains luminescent fine particles 90 and a cured component as essential components, and further preferably contains light-scattering particles in order to scatter light and reliably take it out to the outside.
  • the curing component is a cured product of a thermosetting resin, for example, a cured product obtained by polymerizing a resin containing an epoxy group. That is, the first pixel portion 20a includes the first curing component 22a, the first light emitting fine particles 90a dispersed in the first curing component 22a, and the first light scattering particles 21a, respectively.
  • the second pixel portion 20b includes a second curing component 22b, a first light emitting fine particle 90b and a first light scattering particle 21b dispersed in the second curing component 22b, respectively.
  • the first curing component 22a and the second curing component 22b may be the same or different, and may be the same as or different from the first light scattering particles 22a. It may be the same as or different from the second light-scattering particle 22b.
  • the first light emitting fine particles 90a are red light emitting fine particles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having a light emitting peak wavelength in the range of 605 to 665 nm. That is, the first pixel portion 20a may be paraphrased as a red pixel portion for converting blue light into red light.
  • the second light emitting fine particles 90b are green light emitting fine particles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having a light emitting peak wavelength in the range of 500 to 560 nm. That is, the second pixel portion 20b may be paraphrased as a green pixel portion for converting blue light into green light.
  • the content of the luminescent fine particles 90 in the pixel portions 20a and 20b containing the cured product of the nanocrystal-containing composition is excellent from the viewpoint of improving the external quantum efficiency and from the viewpoint of obtaining excellent luminescence intensity, the nanocrystal-containing composition. It is preferably 1% by mass or more based on the total mass of the cured product. From the same viewpoint, the content of the luminescent fine particles 90 may be 5% by mass or more, 10% by mass or more, or 15% by mass, based on the total mass of the cured product of the nanocrystal-containing composition. It may be% or more.
  • the content of the luminescent fine particles 90 is preferably 40% by mass or less based on the total mass of the nanocrystal-containing composition from the viewpoint of excellent reliability of the pixel portions 20a and 20b and excellent luminescence intensity. .. From the same viewpoint, the content of the luminescent particles 90 may be 30% by mass or less, 25% by mass or less, or 20% by mass, based on the total mass of the cured product of the nanocrystal-containing composition. It may be mass% or more.
  • the content of the light-scattering particles 21a and 21b in the pixel portions 20a and 20b containing the cured product of the nanocrystal-containing composition is the total mass of the cured product of the nanocrystal-containing composition from the viewpoint of being more excellent in the effect of improving the external quantum efficiency. It may be 0.1% by mass or more, 1% by mass or more, 5% by mass or more, 7% by mass or more, or 10% by mass or more. It may be present, and may be 12% by mass or more.
  • the content of the light-scattering particles 21a and 21b is 60 mass based on the total mass of the cured product of the nanocrystal-containing composition from the viewpoint of excellent effect of improving external quantum efficiency and excellent reliability of the pixel portion 20. % Or less, 50% by mass or less, 40% by mass or less, 30% by mass or less, 25% by mass or less, 20% by mass or less. It may be less than or equal to 15% by mass or less.
  • the third pixel portion 20c has a transmittance of 30% or more with respect to light having a wavelength in the range of 420 to 480 nm. Therefore, the third pixel unit 20c functions as a blue pixel unit when a light source that emits light having a wavelength in the range of 420 to 480 nm is used.
  • the third pixel portion 20c contains, for example, a cured product of the composition containing the thermosetting resin described above.
  • the cured product contains 22 cc of a third cured component.
  • the third curing component 22c is a cured product of a thermosetting resin, and specifically, is a cured product obtained by polymerizing a resin containing an epoxy group. That is, the third pixel portion 20c contains the third curing component 22c.
  • the composition containing the thermosetting resin has the above-mentioned nano as long as the transmittance for light having a wavelength in the range of 420 to 480 nm is 30% or more.
  • the components contained in the crystal-containing composition components other than the thermosetting resin, the curing agent, and the solvent may be further contained.
  • the transmittance of the third pixel unit 20c can be measured by a microspectroscopy device.
  • the thickness of the pixel portion is not particularly limited, but may be, for example, 1 ⁇ m or more, or 2 ⁇ m or more. It may be 3 ⁇ m or more.
  • the thickness of the pixel portion (first pixel portion 20a, second pixel portion 20b, and third pixel portion 20c) may be, for example, 30 ⁇ m or less, 25 ⁇ m or less, or 20 ⁇ m or less. You may.
  • the optical conversion layer 12 provided with the above first to third pixel portions 20a to 20c can be formed by drying, heating and curing the coating film formed by the wet film forming method.
  • the first pixel portion 20a and the second pixel portion 20b can be formed by using the nanocrystal-containing composition of the present invention.
  • the third pixel portion 20c can be formed by using a resin composition that does not contain the luminescent fine particles 90 contained in the nanocrystal-containing composition.
  • the coating method for obtaining a coating film is not particularly limited, and is, for example, an inkjet printing method (piezo method or thermal method droplet ejection method), a spin coating method, a casting method, an LB method, a letterpress printing method, and a gravure printing method.
  • the method, screen printing method, nozzle printing printing method and the like can be mentioned.
  • the nozzle print printing method is a method of applying the ink composition from the nozzle holes as a liquid column in a striped shape.
  • an inkjet printing method (particularly, a piezo type droplet ejection method) is preferable.
  • the heat load when ejecting the ink composition can be reduced, and deterioration of the luminescent fine particles 90 due to heat can be prevented.
  • the ejection amount of the ink composition is not particularly limited, but is preferably 1 to 50 pL / time, more preferably 1 to 30 pL / time, and further preferably 1 to 20 pL / time.
  • the opening diameter of the nozzle hole is preferably in the range of 5 to 50 ⁇ m, and more preferably in the range of 10 to 30 ⁇ m. This makes it possible to improve the ejection accuracy of the ink composition while preventing clogging of the nozzle holes.
  • the temperature at which the coating film is formed is not particularly limited, but is preferably in the range of 10 to 50 ° C, more preferably in the range of 15 to 40 ° C, and preferably in the range of 15 to 30 ° C. More preferred. By ejecting the droplets at such a temperature, crystallization of various components contained in the ink composition can be suppressed.
  • the relative humidity at the time of forming the coating film is also not particularly limited, but is preferably in the range of 0.01 ppm to 80%, more preferably in the range of 0.05 ppm to 60%, and 0.1 ppm. It is more preferably in the range of ⁇ 15%, particularly preferably in the range of 1 ppm to 1%, and most preferably in the range of 5 to 100 ppm.
  • the relative humidity is at least the above lower limit value, it becomes easy to control the conditions when forming the coating film.
  • the relative humidity is not more than the above upper limit value, the amount of water adsorbed on the coating film which may adversely affect the obtained light conversion layer 12 can be reduced.
  • the obtained coating film may be dried at room temperature (25 ° C.) or by heating, but it is preferably performed by heating from the viewpoint of productivity.
  • the drying temperature is not particularly limited, but it is preferably a temperature in consideration of the boiling point and the vapor pressure of the organic solvent used in the ink composition.
  • the drying temperature is preferably 50 to 130 ° C., more preferably 60 to 120 ° C., and particularly preferably 70 to 110 ° C. as a prebaking step for removing the organic solvent in the coating film.
  • the drying temperature is 50 ° C. or lower, the organic solvent cannot be removed, while when the drying temperature is 130 ° C.
  • the organic solvent is removed and the coating film is cured at the same time, so that the appearance of the cured coating film is significantly deteriorated.
  • the drying is preferably performed under reduced pressure, and more preferably performed under reduced pressure of 0.001 to 100 Pa.
  • the drying time is preferably 1 to 30 minutes, more preferably 1 to 15 minutes, and particularly preferably 1 to 10 minutes.
  • the ink composition of the present invention can be completely cured by further heating after the prebaking step of the coating film.
  • the heating temperature for complete curing is preferably 150 to 260 ° C, more preferably 160 to 230 ° C, and particularly preferably 170 to 210 ° C.
  • the heating time for complete curing is preferably 1 to 30 minutes, more preferably 1 to 15 minutes, and particularly preferably 1 to 10 minutes.
  • the heating for complete curing can be carried out in the air or in an inert gas, but it is more preferable to carry out in the inert gas in order to suppress the oxidation of the coating film.
  • the inert gas include nitrogen, argon, carbon dioxide and the like.
  • the ink composition of the present invention may be cured by irradiating with active energy rays (for example, ultraviolet rays) in addition to curing by heating.
  • active energy rays for example, ultraviolet rays
  • the irradiation source for example, a mercury lamp, a metal halide lamp, a xenon lamp, an LED, or the like is used.
  • the wavelength of the light to be irradiated is preferably 200 nm or more, and more preferably 440 nm or less.
  • the light irradiation amount (exposure amount) is preferably 10 mJ / cm 2 or more, and more preferably 4000 mJ / cm 2 or less.
  • the nanocrystal-containing composition of the present invention has excellent heat stability, good light emission can be realized even in the pixel portion 20 which is a molded product after thermosetting. Furthermore, since the luminescent fine particle composition of the present invention has excellent dispersibility, it is possible to obtain a flat pixel portion 20 with excellent dispersibility of the luminescent fine particles 910 and 90.
  • the light emitting fine particles 90 contained in the first pixel portion 20a and the second pixel portion 20b contain semiconductor nanocrystals made of metal halide, the absorption in the wavelength region of 300 to 500 nm is large. Therefore, in the first pixel portion 20a and the second pixel portion 20b, the blue light incident on the first pixel portion 20a and the second pixel portion 20b is transmitted to the upper substrate 13 side, that is, the blue light is on the upper side. It is possible to prevent leakage to the substrate 13 side. Therefore, according to the first pixel portion 20a and the second pixel portion 20b of the present invention, it is possible to extract red light and green light having high color purity without mixing blue light.
  • the light-shielding portion 30 is a so-called black matrix provided for the purpose of separating adjacent pixel portions 20 to prevent color mixing and for the purpose of preventing light leakage from a light source.
  • the material constituting the light-shielding portion 30 is not particularly limited, and the curing of the resin composition containing light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments in the binder polymer in addition to a metal such as chromium. Objects and the like can be used.
  • the binder polymer used here includes one or a mixture of two or more resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein, and cellulose, photosensitive resin, and O / W.
  • An emulsion-type resin composition (for example, an emulsion of reactive silicone) or the like can be used.
  • the thickness of the light-shielding portion 30 may be, for example, 1 ⁇ m or more, and may be 15 ⁇ m or less.
  • the light emitting element 100 can be configured as a bottom emission type instead of the top emission type. Further, the light emitting element 100 may use another light source instead of the EL light source unit 200.
  • the nanocrystal-containing composition of the present invention, the ink composition and the method for producing the same, and the light emitting element provided with the light conversion layer manufactured by using the ink composition have been described above. It is not limited to the configuration of the form.
  • the luminescent fine particles, the luminescent fine particle dispersion, the nanocrystal-containing composition, the ink composition, and the luminescent element of the present invention each have any other optional configurations added to the configurations of the above-described embodiments. It may be replaced with any configuration that exhibits a similar function.
  • the method for producing luminescent fine particles of the present invention may have another arbitrary target step in the configuration of the above-described embodiment, or is replaced with an arbitrary step exhibiting the same effect. good.
  • the obtained luminescent fine particles A are provided with a ligand composed of oleylamine and oleic acid on the surface of a lead cesium tribromide crystal having a perovskite-type crystal structure and exhibiting light emission, and the above-mentioned uncoated luminescent fine particles 910. Corresponds to.
  • the average particle size of the luminescent fine particles A was 10 nm.
  • the average particle size of the luminescent fine particles A was measured by Nanotrac WaveII (manufactured by Microtrac), the average particle size was 10 nm.
  • the luminescent fine particles B are provided with a ligand made of N-1 (1-adamantyl) ethylenediamine on the surface of a lead cesium tribromide crystal having a perovskite-type crystal structure and exhibiting light emission, and have the above-mentioned uncoated luminescence. Corresponds to fine particles 910.
  • the average particle size of the luminescent fine particles B was 10 nm.
  • the cesium-oleic acid solution (1.3 ml) was added, and the mixture was reacted by heating and stirring for 5 seconds, and then cooled in an ice bath. ..
  • reaction solution was stirred under the atmosphere (23 ° C., humidity 45%) for 60 minutes, and then ethanol (20 ml) was added to obtain a suspension.
  • the obtained suspension was centrifuged (3,000 rpm, 5 minutes) to recover the solid matter.
  • the recovered solid was added to 16 ml of hexane to obtain a hexane dispersion of luminescent fine particles C.
  • the luminescent fine particles C are a ligand made of oleic acid on the surface of a lead cesium tribromide crystal having a perovskite-type crystal structure and exhibiting light emission, and a ligand made of 3-aminopropyltriethoxysilane having a reactive group.
  • the inorganic-coated luminescent fine crystals 90 which further comprises a silica-coated layer corresponding to the inorganic-coated layer 91 containing Si in FIG. 2 in which the reactive group reacts with the above-mentioned.
  • the average particle size of the luminescent fine particles C was 10 nm, and the thickness of the inorganic coating layer was 1 nm.
  • Luminescent fine particles A (0.015 parts by mass) were mixed with the monomer solution 1 (0.935 parts by mass), stirred at room temperature, and uniformly dispersed. The obtained dispersion was filtered through a filter having a pore size of 5 ⁇ m to obtain a QD dispersion 1 as a nanocrystal-containing composition.
  • Examples 2 to 8, 10, 40 In the method for preparing the QD dispersion 1, the QD dispersions 2 to 8 and the QD dispersion 10 are similarly used except that the monomer solutions 2 to 8, the monomer solution 10 and the monomer solution 12 are used instead of the monomer solution 1. , And the QD dispersion 13.
  • Example 9 In the method for preparing the QD dispersion 1, the monomer solution 9 was used instead of the monomer solution 1, and the light emitting fine particles B were used instead of the light emitting fine particles A. The QD dispersion 9 was obtained in the same manner.
  • Example 11 In the method for preparing the QD dispersion 1, the monomer solution 11 was used instead of the monomer solution 1, and the light emitting fine particles B were used instead of the light emitting fine particles A. The QD dispersion 11 was obtained in the same manner.
  • Example 12 In the method for preparing the QD dispersion 1, the monomer solution 4 was used instead of the monomer solution 1, and the light emitting fine particles C were used instead of the light emitting fine particles A.
  • the QD dispersion 12 was obtained in the same manner.
  • the table below shows the contents of the monomer solutions 1 to 11 and the luminescent fine particles A to C in the QD dispersions 1 to 12 of Examples 1 to 12 and the QD dispersion C1 of Comparative Example 1.
  • the unit of the numerical value is a mass part.
  • the table below shows the contents of the monomer solutions B1 to B12.
  • the unit of the numerical values in the table is the mass part.
  • QD dispersion B1 is obtained by mixing light emitting fine particles A (0.015 parts by mass) with a monomer solution B1 (0.985 parts by mass) containing a photopolymerization initiator and stirring at room temperature to uniformly disperse the particles. rice field.
  • QD dispersion B2 to QD dispersion B8 In the method for preparing the QD dispersion B1, QD dispersions B2 to B8 were obtained in the same manner except that the monomer solutions B2 to B8 containing the photopolymerization initiator were used instead of the monomer solution B1 containing the photopolymerization initiator. ..
  • QD dispersion B9 In the method for preparing the QD dispersion B1, the monomer solution B9 containing the photopolymerization initiator was used in place of the monomer solution B1 containing the photopolymerization initiator, and the light emitting fine particles B were used in place of the light emitting fine particles A. , QD dispersion B9 was obtained.
  • QD dispersion B10 In the method for preparing the QD dispersion B1, the QD dispersion B10 was obtained in the same manner except that the monomer solution B10 containing the photopolymerization initiator was used instead of the monomer solution B1 containing the photopolymerization initiator.
  • QD dispersion B11 In the method for preparing the QD dispersion B1, the monomer solution B11 containing the photopolymerization initiator was used in place of the monomer solution B1 containing the photopolymerization initiator, and the light emitting fine particles B were used in place of the light emitting fine particles A. , QD dispersion B11 was obtained.
  • QD dispersion B12 In the method for preparing the QD dispersion B1, the monomer solution B4 containing the photopolymerization initiator was used in place of the monomer solution B1 containing the photopolymerization initiator, and the light emitting fine particles C were used in place of the light emitting fine particles A. , QD dispersion B12 was obtained.
  • QD dispersion B13 In the method for preparing the QD dispersion B1, the QD dispersion B13 was obtained in the same manner except that the monomer solution B12 containing the photopolymerization initiator was used instead of the monomer solution B1 containing the photopolymerization initiator.
  • QD dispersion B14 In the method for preparing the QD dispersion B1, the QD dispersion B14 was obtained in the same manner except that the monomer solution B13 containing the photopolymerization initiator was used instead of the monomer solution B1 containing the photopolymerization initiator.
  • QD dispersion BC1 In the method for preparing the QD dispersion B9, the QD dispersion BC1 was obtained in the same manner except that the light emitting fine particles A were used instead of the light emitting fine particles B.
  • the table below shows the contents of QD dispersions B1 to B14 and QD dispersion BC1.
  • the unit of the numerical values in the table is the mass part.
  • Light scattering particle dispersion 1 (Light scattering particle dispersion 1) Titanium oxide particles (55 parts by mass, manufactured by Ishihara Sangyo Co., Ltd., "CR-60-2") and dicyclopentanyl methacrylate (45 parts by mass, manufactured by Tokyo Chemical Industry Co., Ltd.), which is a photopolymerizable monomer, Mixed.
  • the average particle diameter (volume average diameter) of the titanium oxide particles is 300 nm.
  • zirconia beads (diameter: 0.3 mm) were added to the obtained formulation, and then the mixture was shaken for 2 hours using a paint conditioner to disperse the formulation. As a result, a light-scattering particle dispersion 1 was obtained.
  • Light scattering particle dispersion 2 The method for preparing the light-scattering particle dispersion 1 is the same as the method for preparing the light-scattering particle dispersion 1 except that light ester L (manufactured by Kyoeisha Chemical Co., Ltd.) is used instead of dicyclopentanyl methacrylate. Then, a light-scattering particle dispersion 2 was obtained.
  • light ester L manufactured by Kyoeisha Chemical Co., Ltd.
  • Example 13 The light-scattering particle dispersion 1 (6 parts by mass) was mixed with the QD dispersion B1 (94 parts by mass) and stirred at room temperature to uniformly disperse the particles. The obtained dispersion was filtered through a filter having a pore size of 5 ⁇ m to obtain QD ink 1 as a nanocrystal-containing composition and an ink composition.
  • Example 14 In the method for preparing QD ink 1 of Example 13, the same method as the method for preparing QD ink 1 was used except that QD dispersions B2 to 12 and QD dispersion B14 were used instead of QD dispersion B1. QD inks 2 to 12 and QD ink 14 were obtained.
  • Example 25 In the method for preparing the QD ink 1 of Example 13, the QD ink 1 is used except that the QD dispersion B13 is used instead of the QD dispersion B1 and the light scattering dispersion 2 is used instead of the light scattering dispersion 1. QD ink 13 was obtained in the same manner as in the preparation method of.
  • the table below shows the contents of QD ink 1 of Example 13 to QD ink 13 of Example 25, QD ink 14 of Example 41, and QD ink C1 of Comparative Example 2.
  • the unit of the numerical values in the table is the mass part.
  • Example 26 ⁇ Preparation of optical conversion layer> (Example 26)
  • the obtained QD ink 1 of Example 13 was applied onto a glass substrate (“EagleXG” manufactured by Corning Inc.) with a spin coater so that the film thickness after drying was 10 ⁇ m.
  • the obtained coating film was irradiated with ultraviolet light having an LED lamp wavelength of 365 nm under a nitrogen atmosphere at an exposure amount of 2000 mJ / cm 2 .
  • the QD ink 1 of Example 13 was cured to form a layer made of a cured product of the ink composition on the glass substrate, which was used as the light conversion layer 1 of Example 26.
  • Examples 27 to 38, 42 In the method for producing the optical conversion layer 1 of Example 26, the QD ink 2 of Example 14 to the QD ink 13 of Example 25 and the QD ink 14 of Example 41 are used instead of the QD ink 1 of Example 13. In the same manner, the optical conversion layer 2 of Example 27 to the optical conversion layer 13 of Example 38 and the optical conversion layer 14 of Example 42 were produced.
  • Quantum yield (PLQY) retention rate The quantum yield (PLQY) of the QD dispersions 1 to 12 of Example 1, the QD dispersions 13 of Example 40, and the QD dispersion C1 of Comparative Example 1 is an absolute PL quantum. Measured with a yield measuring device ("Quantumus-QY" manufactured by Hamamatsu Photonics Co., Ltd.), and the quantum yield retention rate (quantum yield after standing in the air for 10 days after preparation is the quantum yield immediately after preparation). The value divided by) was calculated. The higher the quantum yield retention rate, the higher the stability of the luminescent fine particles to oxygen gas and water vapor.
  • a blue LED (peak emission wavelength 450 nm; manufactured by CCS Co., Ltd.) was used as a surface emission light source, and an optical conversion layer was installed on this light source with the glass substrate side facing down.
  • An integrating sphere was connected to a radiation spectrophotometer (“MCPD-9800” manufactured by Otsuka Electronics Co., Ltd.), and the integrating sphere was brought close to the optical conversion layer installed on the blue LED.
  • MCPD-9800 manufactured by Otsuka Electronics Co., Ltd.
  • the blue LED was turned on, the quantum numbers of the excitation light and the emission (fluorescence) of the light conversion layer were measured, and the external quantum efficiency was calculated.
  • the higher the retention rate of the external quantum efficiency the higher the stability of the optical conversion layer containing the luminescent fine particles to oxygen gas and water vapor.
  • the table below shows the structural formulas of the compounds used as the monomers used in the preparation of the above-mentioned QD dispersion and QD ink.
  • the steric parameter MR was calculated using the following formula (C).
  • n represents the refractive index
  • M represents the molecular weight
  • d represents the density.
  • the values of 20 ° C. or 25 ° C. were used for the density and the refractive index.
  • the calculated 3D parameter MR is shown in the table below.
  • weighted average was calculated. Further, the PLQY retention rate of the QD dispersion C1 of Comparative Example 1 was measured and found to be 53.0%.
  • a ligand made of oleic acid and a ligand made of 3-aminopropyltriethoxysilane are arranged on the surface of the luminescent nanocrystals made of lead cesium tribromide. It is ranked.
  • 3-Aminopropyltriethoxysilane is used as a ligand as described later because it coordinates on the surface of luminescent nanocrystals and then forms a siloxane bond to cover the surface of the luminescent nanocrystals in a mesh pattern. It is considered that the exchange of the oleic acid with the photopolymerizable monomer in the QD dispersion is suppressed.
  • Example 12 only oleic acid was coordinated on the surface of the luminescent nanocrystals, that is, the coordination ratio of oleic acid was 1, and the
  • the QD dispersions of Examples 1 to 12 and the QD dispersions of Example 40 have a maximum value of
  • the weighted average is 12 or more.
  • is much less than 12
  • weighted average is much less than 12. It can be seen that the QD dispersions of Examples 1 to 12 and the QD dispersion of Example 40 show a higher PLQY retention rate as compared with the QD dispersion of Comparative Example 1.
  • the QD dispersions of Examples 1 to 8 and 10 and Comparative Example 1 contain luminescent fine particles coordinated with cationic oleylamine and anionic oleic acid, whereas the QD dispersions of Examples 9 and 11 are contained. Contains luminescent fine particles coordinated with cationic N- (1-adamantyl) ethylenediamine and anionic oleic acid. Also in the cases of Examples 9 and 11 in which N- (1-adamantyl) ethylenediamine was used as the ligand instead of oleylamine and oleic acid, the PLQY retention rate of the QD dispersion was superior to that of Comparative Example 1. ..
  • the PLQY retention rate in the QD dispersion of Example 4 was 71.9, whereas the QD dispersion of Example 12 was 75.8, which was 3.9 higher. From this result, in the QD dispersion of Example 12, the luminescent nanocrystals were protected by forming an inorganic coating layer containing Si on the surface of the luminescent nanocrystals, and oleic acid and a photopolymerizable monomer were added. It is considered that the PLLQY retention rate increased as a result of the suppression of the exchange of
  • the QD inks of Examples 13 to 25 and the QD inks of Example 41 have a maximum value of
  • is 12 or more, but the
  • the optical conversion layer C1 of Comparative Example 3 has a low external quantum efficiency retention rate of 67.0%, whereas the optical conversion layers 1 to 13 of Examples 26 to 38 and Examples show.
  • the optical conversion layer 14 of 42 showed a higher value than the optical conversion layer C1 of Comparative Example 3.
  • the external quantum efficiency retention rate is excellent in comparison with the optical conversion layer containing the cured product of the nanocrystal-containing composition having a weighted average of less than 12. From this, it can be expected that the light emitting device provided with the optical conversion layer formed by the nanocrystal-containing composition of the present invention also has an excellent external quantum efficiency retention rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Luminescent Compositions (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本発明が解決しようとする課題は、分散安定性および発光特性に優れたナノ結晶含有組成物、当該組成物を含むインク組成物、当該インク組成物の硬化物を含む光変換層、並びにその光変換層を備えた発光素子を提供することにある。本発明のナノ結晶含有組成物は、1種以上の光重合性モノマーと、メタルハライドからなる発光性ナノ結晶の表面に1種以上の配位子を備えた発光微粒子とを含有し、任意の光重合性モノマーの立体パラメーターMRと任意の配位子の立体パラメーターMRの差の絶対値|ΔMR|が12以上である組み合わせが1以上存在し、且つ、前記ナノ結晶含有組成物中に含まれる各前記光重合性モノマー及び各前記配位子の全ての組み合わせにおける|ΔMR|の加重平均値|ΔMR|加重平均が12以上であることを特徴とする。

Description

ナノ結晶含有組成物、インク組成物、光変換層および発光素子
 本発明は、ナノ結晶含有組成物、当該組成物を用いたインク組成物、当該インク組成物の硬化物を含む光変換層、並びにその光変換層を備えた発光素子に関する。
 次世代表示デバイスとして要求されるBT2020は、極めて意欲的な基準であり、現在の顔料を用いたカラーフィルタや有機ELでも、これを満たすことは困難である。一方、量子ドットは、発光波長の半値幅が狭い赤、緑、青等の蛍光を発する材料であり、BT2020をクリアできる発光材料として注目を集めている。初期の量子ドットでは、CdSeなどを用いたコアシェル型ナノ粒子が用いられたが、その有害性を回避するため最近はInPなどが用いられている。しかしながら、コアシェル型量子ドットは、その粒子サイズにより発光波長が決まるため、半値幅の狭い発光を得るためには粒子径の分散度を精密に制御することが必要になっており、その生産には課題が多い。
 近年、メタルハライドからなる発光性ナノ結晶、特にペロブスカイト型結晶構造を有する量子ドットが見出され、注目を集めている。一般的なペロブスカイト量子ドット(以下、「PeQD」と記載することがある。)はCsPbX(X=Cl,Br,I)で表される構造のナノサイズ結晶粒子である。PeQDは、ハロゲン元素の割合によって発光波長を制御可能であること、InP量子ドットなどと比較して粒子サイズの制御が容易であることから、従来の量子ドットと比較して生産性面で有利である。
 非特許文献1には、PeQDとポリ(メチルメタクリレート)(以下、「PMMA」と記載することがある。)とを含むインク組成物が報告されている。これに対し、特許文献1には、PeQDとPMMAとを含むインク組成物は、塗膜の耐溶剤性が必ずしも十分でないという問題が指摘されている。特許文献1には、PeQDと光重合性モノマーとを含み、さらに溶媒を含んでもよく、光重合性モノマー及び溶媒中に含まれる炭素、酸素、窒素の割合を規定したインク組成物が開示されている。さらに、特許文献1に類似の技術として、特許文献2には、ペロブスカイト化合物を含む蛍光粒子と光重合性モノマーと光重合開始剤とを含み、光重合性モノマーのLogP値を規定した硬化性組成物としてのナノ結晶含有組成物が開示されている。特許文献1および特許文献2の技術的なポイントは、光重合性モノマーの極性に着目し、その極性が低いものが好ましいことにあると考えられる。しかし、これら公知文献に開示されたインク組成物又はナノ結晶含有組成物のように、光重合性モノマーの極性に着目するだけでは、PeQDの分散性および発光特性を両立するためには十分でないという不都合があった。
特許第6506488号 特開2020-70443
Nano Lett.2015,15,3692-3696
 そこで、本発明が解決しようとする課題は、分散安定性および発光特性に優れたナノ結晶含有組成物、当該組成物を含むインク組成物、当該インク組成物の硬化物を含む光変換層、並びにその光変換層を備えた発光素子を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、メタルハライドからなる発光性ナノ結晶の表面に配位子を設けると共に、当該配位子と光重合性モノマーとして特定の条件を満足するものを用いることにより、分散安定性及び発光特性に優れたナノ結晶含有組成物を提供できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、1種又は2種以上のモノマーと、メタルハライドからなる発光性ナノ結晶の表面に1種又は2種以上の配位子を備えた発光微粒子とを含有し、任意の光重合性モノマーの立体パラメーターMRと任意の立体パラメーターMRの差の絶対値|ΔMR|を算出したとき、下記式(A)を満足する光重合性モノマー及び配位子の組み合わせが1以上存在し、且つ、前記ナノ結晶含有組成物中に含まれる各前記光重合性モノマー及び各前記配位子の全ての組み合わせについて、各前記光重合性モノマーの含有量及び各前記配位子が前記発光性ナノ結晶の表面に配位する比率を考慮して算出した|ΔMR|の加重平均値|ΔMR|加重平均が下式(B)を満足することを特徴とするナノ結晶含有組成物を提供する。
   |ΔMR|=|(モノマーの立体パラメーターMR)-(配位子の立体パラメーターMR)|≧12   (A)
   |ΔMR|加重平均≧12  (B)
(但し、立体パラメーターMRは下式(C)
Figure JPOXMLDOC01-appb-C000005
で表され、式(C)中、nは屈折率を表し、Mは分子量を表し、dは密度を表す。)
 本発明は、上述のナノ結晶含有組成物を含むインク組成物を提供する。
 本発明は、上述のインク組成物の硬化物を含むことを特徴とする光変換層を提供する。
 本発明は、上述の光変換層を備えたことを特徴とする発光素子を提供する。
本発明に係る発光ナノ結晶含有組成物に含有される発光微粒子の一実施形態を示す断面図である。 本発明に係る発光ナノ結晶含有組成物に含有される発光微粒子の他の一実施形態を示す断面図である。 本発明に係る発光素子の一実施形態を示す断面図である。 アクティブマトリックス回路の構成を示す概略図である。 アクティブマトリックス回路の構成を示す概略図である。
 以下、本発明のナノ結晶含有組成物、インク組成物、光変換層及び発光素子と、それらの製造方法の実施の形態について、詳細について説明する。
1.ナノ結晶含有組成物
 本発明の実施形態のナノ結晶含有組成物は、1種又は2種以上の光重合性モノマーと、メタルハライドからなる発光性ナノ結晶の表面に1種又は2種以上の配位子を備えた発光微粒子とを含有する。発光微粒子の具体的構成については、後述する。
1-1.立体パラメーターに関する条件
 本発明のナノ結晶含有組成物は、任意の光重合性モノマーの立体パラメーターMRと任意の配位子の立体パラメーターMRの差の絶対値|ΔMR|を算出したとき、下記式(A)を満足する光重合性モノマー及び配位子の組み合わせが1以上存在し、且つ、前記ナノ結晶含有組成物中に含まれる各前記光重合性モノマー及び各前記配位子の全ての組み合わせについて、各前記光重合性モノマーの含有量及び各前記配位子が前記発光性ナノ結晶の表面に配位する比率を考慮して算出した|ΔMR|の加重平均値|ΔMR|加重平均が下式(B)を満足することを特徴とする。
   |ΔMR|=|(モノマーの立体パラメーターMR)-(配位子の立体パラメーターMR)|≧12   (A)
   |ΔMR|加重平均≧12  (B)
 各光重合性モノマー又は各配位子の立体パラメーターMRは、下式(C)で表される。式(C)中、nは屈折率を表し、Mは分子量を表し、dは密度を表す。
Figure JPOXMLDOC01-appb-C000006
 上記立体パラメーターMRは、例えば分子の構造と薬理活性との相関を調べるために利用されている化合物全体の3次元的な大きさを表す指標であり、例えば、「オペレーションズ・リサーチ,(25)394-401,7月号,1982年」や「日本農薬学会誌 実験技術講座Vol.38,No.2,195-203(2013)」に開示されている。立体パラメーターMRは、分子の全体的な大きさを表す指標であるため、化合物の立体的な構造の違いを表す指標として適していると考えられる。
 本発明においては、この立体パラメーターMRを、光重合性モノマー又は配位子を構成する化合物の立体的な構造の違いを表す指標として適用する。ナノ結晶含有組成物中に含まれる光重合性モノマーを構成する化合物と配位子を構成する化合物とが互いに似た構造を備える場合には、|ΔMR|は小さな値(例えば、10以下)となる。その場合、ナノ結晶含有組成物において、光重合性モノマーを構成する化合物と配位子を構成する化合物とが互いに似た構造であるために、発光性ナノ結晶に配位する配位子が光重合性モノマーと容易に交換しやすくなる結果、配位子によって保たれていたナノ結晶のエネルギー準位が変化することで発光特性が変化し、また分散安定性も低下するなど、優れた発光特性を維持するのが困難となる。
 これに対し、|ΔMR|が式(A)を満足する場合には、光重合性モノマーを構成する化合物と配位子を構成する化合物とが互いに大きく異なる構造を備えることを意味する。その場合、ナノ結晶含有組成物において、発光性ナノ結晶に配位する配位子と光重合性モノマーとの交換を抑制することができる。
 |ΔMR|は、12以上であることが好ましく、15以上であることがより好ましく、20以上であることが特に好ましい。また、|ΔMR|の上限値については特に規定はないが、光重合性モノマーと配位子を構成する化合物の立体的な構造の違いが大きくなり過ぎると、メタルハライドからなる発光性ナノ結晶の表面に配位子を備えた発光微粒子と光重合性モノマーとの相溶性が低くなることから50以下であることが好ましい。
 本発明のナノ結晶含有組成物は、2種以上の光重合性モノマーと2種以上の配位子とを含む場合に、光重合性モノマー及び配位子の少なくとも1つ以上の組み合わせにおいて|ΔMR|が上述の式(A)を満たせばよく、|ΔMR|が上述の式(A)を満足しない光重合性モノマー及び配位子の使用を制限するものではない。例えば、ナノ結晶含有組成物が光重合性モノマー2種P、Qと配位子2種Y、Zとを使用し、光重合性モノマーPと配位子Yとの組み合わせにおける|ΔMR|PYが式(A)を満足するとき、光重合性モノマーPと配位子Zとの組み合わせにおける|ΔMR|PZ、光重合性モノマーQと配位子Yとの組み合わせにおける|ΔMR|QY及び光重合性モノマーQと配位子Zとの組み合わせにおける|ΔMR|QZが式(A)を満たしてもよく、満たさなくてもよい。
 そして、本発明のナノ結晶含有組成物は、光重合性モノマー及び配位子の少なくとも1つの組み合わせにおける|ΔMR|が上述の式(A)を満たした上で、さらに、光重合性モノマー及び配位子の全ての組み合わせにおける|ΔMR|の加重平均|ΔMR|加重平均が下式(B)を満足する。但し、|ΔMR|加重平均は、ナノ結晶含有組成物に含まれる各光重合性モノマーの含有量及び各配位子がナノ結晶の表面に配位する比率を考慮して算出したものである。
   |ΔMR|加重平均≧12  (B)
 |ΔMR|の加重平均|ΔMR|加重平均が上述の式(B)を満足するとは、ナノ結晶含有組成物に含まれる光重合性モノマーと配位子との組み合わせの大部分において、光重合性モノマーを構成する化合物と配位子を構成する化合物とが互いに大きく異なる構造を備えることを意味する。ナノ結晶含有組成物において、発光性ナノ結晶に配位する配位子と光重合性モノマーとの交換を抑制するという上述の効果を確実に得ることができため、優れた分散安定性と優れた発光特性とを両立して実現することができる。
 一方、ナノ結晶含有組成物において、|ΔMR|の加重平均|ΔMR|加重平均が上述の式(B)を満足しない場合には、配位子と光重合性モノマーとの交換を抑制することができないため、良好な分散安定性及び発光特性を確保できない。
 |ΔMR|加重平均は、ナノ結晶含有組成物に含まれる各光重合性モノマーの含有量及び各配位子がナノ結晶の表面に配位する比率を考慮して算出する。例えば、ナノ結晶含有組成物が、m質量部の光重合性モノマーP(立体パラメーターMR)及びm質量部の光重合性モノマーQ(立体パラメーターがMR)の2種類を含有し、発光性ナノ結晶の表面にカチオン性の配位子Y(立体パラメーターMR)及びアニオン性の配位子Z(立体パラメーターMR)の2種類が配位している場合に、以下のようにして算出することができる。なお、ナノ結晶含有組成物に含まれる光重合性モノマーが1種類又は3種類以上であっても、また、配位子が1種類又は3種類以上であっても、|ΔMR|加重平均を同様に算出可能である。
 まず、光重合性モノマーと配位子との各組み合わせにおける立体パラメーターの差の絶対値|ΔMR|をそれぞれ算出する。
   |ΔMR|PY=|MR-MR
   |ΔMR|PZ=|MR-MR
   |ΔMR|QY=|MR-MR
   |ΔMR|QZ=|MR-MR
 次に、得られた|ΔMR|PY~|ΔMR|QZに対して光重合性モノマーの配合比(質量換算)及び配位子の配位比率によって重みづけすることにより、|ΔMR|加重平均を算出する。もし、カチオン性の配位子とアニオン性の配位子の配位する割合がわかる場合は、その比率に応じて計算することが好ましい。例えば、配位子Yと配位子Zとが発光性ナノ結晶の表面にr:rの割合で配位している場合には、以下のように算出する。
  |ΔMR|加重平均={(|ΔMR|PY×r+|ΔMR|PZ×r)×m+(|ΔMR|QY×r+|ΔMR|QZ×r)×m}/(m+m
 但し、配位子Yと配位子Zとの配位比率が明らかでない場合には、発光性ナノ結晶の表面に0.5:0.5の割合で配位していると仮定して、以下のように計算する。
   |ΔMR|加重平均={(|ΔMR|PY×0.5+|ΔMR|PZ×0.5)×m+(|ΔMR|QY×0.5+|ΔMR|QZ×0.5)×m}/(m+m
 前記式(A)を満足する光重合性モノマー及び配位子の組み合わせにおいて、当該光重合性モノマー又は当該配位子の少なくとも一方が環状構造を含む化合物であることが好ましい。特にメタルハライドからなる発光性ナノ結晶の表面には、オレイルアミンやオレイン酸のような直鎖状の化合物が配位子として利用されていることが多い。配位子がこのような直鎖状の分子構造を有する化合物である場合には、特に環状構造を含む光重合性モノマーを用いることが好ましい。立体障害の大きな環状構造を含む光重合性モノマーは、直鎖状の分子構造をもつ配位子に覆われた表面に対して、入り込むことが困難となるため、光重合性モノマーと配位子との交換が生じ難くなる。一方、環状構造を含む化合物を配位子として用いる場合には、配位子とは形状の異なる直鎖状の光重合性モノマーが発光性ナノ結晶に入り込むことはエネルギー的に不利となるため、光重合性モノマーと配位子との交換が生じ難くなる。このように、光重合性モノマー及び配位子の少なくとも一方に環状構造を含む化合物を用いることにより、光重合性モノマーと配位子の交換を抑制することができる。その結果、メタルハライドからなる発光性ナノ結晶の表面を配位子で安定して覆った状態を維持することができ、発光性ナノ結晶の中でトラップされるエネルギー準位が発生せず、良好な発光特性を維持することができる。
 前記式(A)を満足する光重合性モノマー及び配位子の組み合わせとなるためには、光重合性モノマーが環状構造を含む化合物である場合、あるいは配位子が環状構造の化合物を含む化合物である場合、それぞれ好ましい立体パラメーターの範囲は以下に示す範囲となることが好ましい。
 (1)光重合性モノマーが環状構造を含む化合物を用いる場合、光重合性モノマーの立体パラメーターが40~90、かつ直鎖状の分子構造をもつ配位子の立体パラメーターが60~110の範囲にあることが、発光性ナノ結晶の表面を配位子で安定して覆った状態を維持する上で好ましい。さらには、光重合性モノマーの立体パラメーターが50~70、かつ直鎖状の分子構造をもつ配位子の立体パラメーターが80~90の範囲になることが、配位子の被覆安定性、発光性ナノ結晶の分散安定性、および発光特性を発揮する上で特に好ましい。
 (2)配位子が環状構造を含む化合物を用いる場合、直鎖状の分子構造をもつ光重合性モノマーの立体パラメーターが60~100、かつ配位子の立体パラメーターが40~80の範囲にあることが、発光性ナノ結晶の表面を配位子で安定して覆った状態を維持する上で好ましい。さらには、直鎖状の分子構造をもつ光重合性モノマーの立体パラメーターが75~85、かつ配位子の立体パラメーターが55~65の範囲になることが、配位子の被覆安定性、発光性ナノ結晶の分散安定性、および発光特性を発揮する上で特に好ましい。
 環状構造を含む化合物の環状構造は、具体的には、下記式(1-2)~(1-24)で表すことができる。式(1-2)~(1-24)で表される各環状構造は、当該環状構造中の任意の炭素原子において他の構造部位と結合し得る。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 前記式(1-2)~(1-24)中の任意の-CH-は、-O-、-S-、-N=、又は-NH-に置換されていてもよい。光重合性モノマー又は配位子の少なくとも一方が、式(1-3)、(1-4)、(1-6)、(1-8)、(1-10)、(1-15)及び(1-19)~(1-24)で表される環状構造を含む化合物である場合には、発光微粒子との相溶性に優れ分散性を向上できるため好ましい。さらに、光重合性モノマー又は配位子の少なくとも一方が、式(1-3)、(1-4)及び(1-19)~(1-24)で表される環状構造を含む化合物である場合には、発光微粒子との分散性に加え、高い量子収率を確保することができるためより好ましい。特に、式(1-3)、(1-19)及び(1-21)で表される環状構造を含む化合物は、光重合性モノマー及び配位子の両方に利用できる点で一層好ましい。
 前記式(1-2)~(1-24)中の任意の水素原子はRに置換することができる。Rが官能基である場合、Rとして、カルボキシル基、カルボン酸無水物基、アミノ基、アンモニウム基、メルカプト基、ホスフィン基、ホスフィンオキシド基、リン酸基、ホスホン酸基、ホスフィン酸基、スルホン酸基、ボロン酸基、アミド基、及びチオアミド基を挙げることができる。特に、配位子が、Rがカルボキシル基、アミノ基、メルカプト基、アミド基、チオアミド基である環状構造を含む化合物である場合には、発光微粒子への配位能力を高めることができるため好ましい。
 Rがアルキル基である場合、炭素数1~20の分岐又は直鎖のアルキル基を表し、前記アルキル基の末端にある-CHが-NH、-OH、-SH、-COOH、-CONH、-CSNHに置換されてもよく、該アルキル基中の-CH-が-Si-、-NH-又は-O-に置換されてもよく、該アルキル基中の-(CH-が-(CH=CH)-に置換されてもよい。発光微粒子との分散性を高めるためにはRの炭素数は1~10が好ましく、発光微粒子との分散性を高め、量子収率も高めるためにはRの炭素数は1~5が特に好ましい。発光微粒子の量子収率保持率を高めるためには、Siを含む無機被覆層を形成しうるポリアルコキシシラン、ポリシラノール、ポリシラザン構造を含むことが好ましい。
 Rがアルコキシ基である場合、炭素数1~20の分岐又は直鎖のアルコキシル基を表す。前記アルコキシ基の末端にある-CHが-NH、-OH、-SH、-COOH、-CONH、-CSNHに置換されてもよく、該アルコキシ基中の-CH-が-Si-、-NH-又は-O-に置換されてもよく、該アルコキシ基中の-(CH-が-(CH=CH)-に置換されてもよい。発光微粒子との分散性を高めるためにはRの炭素数は1~10が好ましく、発光微粒子との分散性を高め、量子収率も高めるためにはRの炭素数は1~5が特に好ましい。発光微粒子の量子収率保持率を高めるためには、Siを含む無機被覆層を形成しうるポリアルコキシシラン、ポリシラノール、ポリシラザン構造を含むことが好ましい。
 前記式(1-2)~(1-24)中の任意の水素原子はPに置換することができる。Pは、それぞれ独立して下記一般式(P-1)~(P-16)で表される。式中の黒点は結合手を表す。Pが複数存在する場合、それらは同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000010
 より好ましくは(P-1)、(P-2)、(P-3)が好ましく、(P-2)、(P-3)が発光微粒子の量子収率の低下を抑制できる点で好ましく、特に(P-2)が好ましい。
 光重合性モノマーとして前記(1-2)~(1-24)で表される環状構造を含む化合物を用いる場合、より具体的には下記式(1-3-1)~(1-3-8)、(1-4-1)~(1-4-8)、(1-19-1)~(1-19-16)、(1-21-1)~(1-21-8)、(1-22-1)~(1-22-4)、(1-23-1)~(1-23-8)及び(1-24-1)~(1-24-4)で表される化合物を好適に用いることができる。下記式中のx及びzは、それぞれ独立して0~18が好ましく、y及びzzは、それぞれ独立して1~18が好ましい。さらに、これらの環状構造を含む化合物からなる光重合性モノマーの立体パラメーターが40~90となるためには、下記式中のx及びzは、それぞれ独立して0~5が好ましく、y及びzzは、それぞれ独立して1~5となることが好ましい。発光微粒子との分散性を維持しながら、立体パラメーターとが60~70となるためには下記式(1-3-1)~(1-3-6)、(1-4-1)~(1-4-8)、(1-19-1)~(1-19-8)、(1-21-1)~(1-21-4)、(1-22-1)~(1-22-4)、(1-23-5)~(1-23-8)で表される化合物が好ましく、下記式中のx及びzは、それぞれ独立して0~5が好ましく、y及びzzは、それぞれ独立して1~5となることが好ましい。さらに、環状構造として立体パラメーターを65より高めたい場合には、アダマンチル構造をもつ(1-19-1)~(1-19-8)、または1,2,2,6,6-ペンタメチル-4-ピペリジル構造をもつ(1-23-5)~(1-23-8)が特に好ましく、下記式中のx及びzは、それぞれ独立して0~5が好ましく、y及びzzは、それぞれ独立して1~5となることが特に好ましい。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 前述したように、環状の分子構造をもつ光重合性モノマーの立体パラメーターが40~90となる化合物を用いる場合、好適な組み合わせとなる配位子は、直鎖状の分子構造をもつ配位子の立体パラメーターが60~110の範囲にあることが好ましく、さらに好ましくは、環状の分子構造をもつ光重合性モノマーの立体パラメーターが50~70、かつ直鎖状の分子構造をもつ配位子の立体パラメーターが80~90の範囲になることより好ましい。このような条件を満たす配位子の化合物としては、末端の官能基がカルボン酸、あるいはアミンとなる配位子が好ましい。また、これらの末端官能基がカルボン酸、あるいはアミンとなる配位子は、1:1の比率で用いることが好ましい。
 末端の官能基がカルボン酸となる直鎖状の分子構造をもつ配位子としては、具体的には下記の化合物が好ましく、(1)トリデカン酸、2-トリデセン酸、ミリスチン酸、ペンタデカン酸、cis-9-ヘキサデセン酸、パルミチン酸、2-ヘキサデセン酸、ヘプタデカン酸、ペトロセリン酸、リノール酸、γ-リノレン酸、ステアリン酸、リノレン酸、オレイン酸、エライジン酸、リシノール酸、cis-5,8,11,14,17-エイコサペンタエン酸、cis-8,11,14-エイコサトリエン酸、アラキドン酸、ノナデカン酸、アラキジン酸、ヘンエイコサン酸、cis-4,7,10,13,16,19-ドコサヘキサエン酸、エルカ酸、ベヘン酸、リグノセリン酸、トリコサン酸が、配位子の立体パラメーターが60~110となる配位として好ましく、(2)より好ましくは、ペンタデカン酸、cis-9-ヘキサデセン酸、パルミチン酸、2-ヘキサデセン酸、ヘプタデカン酸、ペトロセリン酸、リノール酸、γ-リノレン酸、ステアリン酸、リノレン酸、オレイン酸、エライジン酸、リシノール酸、cis-5,8,11,14,17-エイコサペンタエン酸、cis-8,11,14-エイコサトリエン酸、アラキドン酸、ノナデカン酸、アラキジン酸、ヘンエイコサン酸が、配位子の立体パラメーターが70~100となる配位として好ましく、(3)特に好ましくは、ヘプタデカン酸、ペトロセリン酸、リノール酸、γ-リノレン酸、ステアリン酸、リノレン酸、オレイン酸が、配位子の立体パラメーターが80~90となる配位子として特に好ましい。
 末端の官能基がアミンとなる直鎖状の分子構造をもつ配位子としては、具体的には下記の化合物が好ましく、(1)ドデシルアミン、テトラデシルアミン、1-アミノトリデカン、1-アミノペンタデカン、ヘキサデシルアミン、1-アミノヘプタデカン、ステアリルアミン、ヘプタデカン-9-アミン、オレイルアミン、1-アミノノナデカン、2-n-オクチル-1-ドデシルアミンが、配位子の立体パラメーターが60~110となる配位として好ましく、(2)より好ましくは、1-アミノペンタデカン、ヘキサデシルアミン、1-アミノヘプタデカン、ステアリルアミン、ヘプタデカン-9-アミン、オレイルアミン、1-アミノノナデカン、2-n-オクチル-1-ドデシルアミンが、配位子の立体パラメーターが70~100となる配位として好ましく、(3)特に好ましくは、ヘキサデシルアミン、1-アミノヘプタデカン、ステアリルアミン、ヘプタデカン-9-アミン、オレイルアミンが、配位子の立体パラメーターが80~90となる配位子として特に好ましい。
 一方、メタルハライドからなる発光性ナノ結晶の表面に配位させる配位子として前記(1-2)~(1-24)で表される環状構造を含む化合物を用いる場合、環状構造を含む化合物からなる配位子の立体パラメーターが40~80の範囲となるためには、下記(1-19-A)~(1-19-H)で表される化合物を好適に用いることができ、(1-19-A)~(1-19-F)で表される化合物が特に好ましい。下記式中のxx、及びyyは、それぞれ独立して1~18が好ましく、配位子の立体パラメーターが55~65の範囲になるためには、下記式中のxx、およびyyは、それぞれ独立して1~5がより好ましい。
Figure JPOXMLDOC01-appb-C000022
 環状の分子構造をもつ配位子の立体パラメーターが40~80となる化合物を用いる場合、好適な組み合わせとなる直鎖状の分子構造をもつ光重合性モノマーは、直鎖状の分子構造をもつ光重合性モノマーの立体パラメーターが50~100の範囲にあることが好ましく、さらに好ましくは、環状の分子構造をもつ配位子の立体パラメーターが55~65、かつ直鎖状の分子構造をもつ光重合性モノマーの立体パラメーターが75~85の範囲になることより好ましい。具体的には、下記に示す化合物を用いることが好ましい。
 すなわち、(1)メタクリレート化合物としては、メタクリル酸ノニル、メタクリル酸デシル、メタクリル酸ウンデシル、メタクリル酸ドデシル、メタクリル酸トリデシル、メタクリル酸テトラデシル、メタクリル酸ペンタデシル、メタクリル酸ヘキサデシルが、アクリレート化合物としては、アクリル酸デシル、アクリル酸ウンデシル、アクリル酸ドデシル、アクリル酸トリデシル、アクリル酸テトラデシル、アクリル酸ペンタデシル、アクリル酸ヘキサデシル、アクリル酸ヘプタデシルが、立体パラメーターが60~100の範囲になる直鎖状の分子構造をもつ光重合性モノマーとして好ましく、(2)より好ましくは、メタクリレート化合物としては、メタクリル酸ドデシル、メタクリル酸トリデシルが、アクリレート化合物としては、アクリル酸デシル、アクリル酸ウンデシル、アクリル酸ドデシル、アクリル酸テトラデシルが、立体パラメーターが75~85の範囲になる直鎖状の分子構造をもつ光重合性モノマーとして特に好ましい。
 より具体的に、前記式(A)を満足する光重合性モノマー及び配位子の好ましい組み合わせは、次の組み合わせが好ましい。
 光重合性モノマーが環状構造を含む化合物を用いる場合、光重合性モノマーの立体パラメーターが40~90、かつ直鎖状の分子構造をもつ配位子の立体パラメーターが60~110の範囲にあることが、発光性ナノ結晶の表面を配位子で安定して覆った状態を維持する上で好ましいく、具体的には、立体パラメーターが40~90となる光重合性モノマーとして式(1-3-1)~(1-3-8)、(1-4-1)~(1-4-8)、(1-19-1)~(1-19-16)、(1-21-1)~(1-21-8)、(1-22-1)~(1-22-4)、(1-23-1)~(1-23-8)及び(1-24-1)~(1-24-4)で表される化合物であって、式中のx及びzは、それぞれ独立して0~5、y及びzzは、それぞれ独立して1~5である光重合性モノマーと、立体パラメーターが60~110となる末端の官能基がカルボン酸となる直鎖状の分子構造をもつ配位子としては、トリデカン酸、2-トリデセン酸、ミリスチン酸、ペンタデカン酸、cis-9-ヘキサデセン酸、パルミチン酸、2-ヘキサデセン酸、ヘプタデカン酸、ペトロセリン酸、リノール酸、γ-リノレン酸、ステアリン酸、リノレン酸、オレイン酸、エライジン酸、リシノール酸、cis-5,8,11,14,17-エイコサペンタエン酸、cis-8,11,14-エイコサトリエン酸、アラキドン酸、ノナデカン酸、アラキジン酸、ヘンエイコサン酸、cis-4,7,10,13,16,19-ドコサヘキサエン酸、エルカ酸、ベヘン酸、リグノセリン酸、トリコサン酸が、立体パラメーターが60~110となる末端の官能基がアミンとなる直鎖状の分子構造をもつ配位子としては、ドデシルアミン、テトラデシルアミン、1-アミノトリデカン、1-アミノペンタデカン、ヘキサデシルアミン、1-アミノヘプタデカン、ステアリルアミン、ヘプタデカン-9-アミン、オレイルアミン、1-アミノノナデカン、2-n-オクチル-1-ドデシルアミン、から選ばれる配位子を組み合わせることが好ましい。
 さらに好ましくは、光重合性モノマーの立体パラメーターが50~70、かつ直鎖状の分子構造をもつ配位子の立体パラメーターが80~90の範囲になることが、配位子の被覆安定性、発光性ナノ結晶の分散安定性、および発光特性を発揮する上で特に好ましく、具体的には、立体パラメーターが50~70となる光重合性モノマーとして、式(1-3-1)~(1-3-6)、(1-4-1)~(1-4-8)、(1-19-1)~(1-19-8)、(1-21-1)~(1-21-4)、(1-22-1)~(1-22-4)、(1-23-5)~(1-23-8)、(1-24-1)~(1-24-4)で表される化合物が好ましく、発光性ナノ結晶の発光特性を高めるためには、アクリレート化合物よりはメタクリレート化合物である、(1-3-5)、(1-3-6)、(1-4-5)~(1-4-8)、(1-19-3)~(1-19-8)、(1-21-3)、(1-21-4)、(1-22-3)、(1-22-4)、(1-23-3)、(1-23-4)、(1-23-7)、(1-23-8)、(1-24-3)、(1-24-4)で表される化合物が好ましく、(1-24-3)と(1-24-4)の中でも、QD分散体またはQDインクの分散安定性を維持しながら、QD分散体および光変換層のPLQY保持率を高めるためには(1-24-4)が好ましく、環状構造をもつ光重合性モノマーとして立体パラメーターを65より高めたい場合には、アダマンチル構造をもつ(1-19-1)~(1-19-8)、または1,2,2,6,6-ペンタメチル-4-ピペリジル構造をもつ(1-23-5)~(1-23-8)が特に好ましく、式中のx及びzは、それぞれ独立して0~5、y及びzzは、それぞれ独立して1~5である光重合性モノマーと、立体パラメーターが80~90となる末端の官能基がカルボン酸となる直鎖状の分子構造をもつ配位子としては、ヘプタデカン酸、ペトロセリン酸、リノール酸、γ-リノレン酸、ステアリン酸、リノレン酸、オレイン酸、立体パラメーターが80~90となる末端の官能基がアミンとなる直鎖状の分子構造をもつ配位子としては、ヘキサデシルアミン、1-アミノヘプタデカン、ステアリルアミン、ヘプタデカン-9-アミン、オレイルアミン、から選ばれる配位子を組み合わせることが好ましく、特に配位子としては、アルキル鎖中に二重結合をもつペトロセリン酸、リノール酸、γ-リノレン酸、リノレン酸、オレイン酸、およびオレイルアミンは、配位子の被覆安定性、発光性ナノ結晶の分散安定性、および発光特性を発揮する上で特に好ましい。
 (2)配位子として環状構造を含む化合物を用いる場合、直鎖状の分子構造をもつ光重合性モノマーの立体パラメーターが60~100、かつ配位子の立体パラメーターが40~80の範囲にあることが、発光性ナノ結晶の表面を配位子で安定して覆った状態を維持する上で好ましく、具体的には、立体パラメーターが60~100となる直鎖状の分子構造をもつ光重合性モノマーとして、炭素数6~17となるアクリレート化合物、またはメタクリレート化合物が好ましく、立体パラメーターが40~80となる環状構造を含む配位子として、(1-19-A)~(1-19-H)で表される化合物が好ましい。
 さらに好ましくは、立体パラメーターが75~85となる直鎖状の分子構造をもつ光重合性モノマーとして、炭素数11~13となるアクリレート化合物、またはメタクリレート化合物が好ましく、発光性ナノ結晶の発光特性を高めるためには、アクリレート化合物よりはメタクリレート化合物が好ましく、立体パラメーターが55~65の範囲となるかつ配位子としては、式(1-19-A)~(1-19-F)で表される化合物が、配位子の被覆安定性、発光性ナノ結晶の分散安定性、および発光特性を発揮する上で特に好ましい。
1-2.発光微粒子
 上述したナノ結晶含有組成物に含まれる発光微粒子について説明する。図1に示す発光微粒子910は、発光性ナノ結晶911の表面に1種又は2種以上の配位子を備えたものである。発光性ナノ結晶911の表面に配位した多数の配位子によって配位子層912が形成されている。
1-2-1.発光性ナノ結晶
 まず、発光性ナノ結晶911(以下、単に「ナノ結晶911」と記載することがある。)について説明する。発光性ナノ結晶は、メタルハライドからなり、励起光を吸収して蛍光または燐光を発光するナノサイズの半導体ナノ結晶(ナノ結晶粒子)である。
 メタルハライドからなる発光性ナノ結晶としては、例えば、後述のペロブスカイト型結晶構造を有する量子ドットが広く知られている。前記発光性ナノ結晶は、例えば、透過型電子顕微鏡または走査型電子顕微鏡によって測定される最大粒子径(平均粒子径であってもよい)が100nm以下である結晶体である。前記発光性ナノ結晶は、例えば、所定の波長の光エネルギーや電気エネルギーにより励起され、蛍光または燐光を発することができる。
 メタルハライドからなる発光性ナノ結晶は、一般式:Aで表される化合物からなる。
 式中、Aは、有機カチオンおよび金属カチオンのうちの少なくとも1種である。有機カチオンとしては、アンモニウム、ホルムアミジニウム、グアニジニウム、イミダゾリウム、ピリジニウム、ピロリジニウム、プロトン化チオウレア等が挙げられ、金属カチオンとしては、Cs、Rb、K、Na、Li等のカチオンが挙げられる。
 Mは、少なくとも1種の金属カチオンである。金属カチオンとしては、1族、2族、3族、4族、5族、6族、7族、8族、9族、10族、11族、13族、14族、15族から選ばれる金属カチオンが挙げられる。より好ましくは、Ag、Au、Bi、Ca、Ce、Co、Cr、Cu、Eu、Fe、Ga、Ge、Hf、In、Ir、Mg、Mn、Mo、Na、Nb、Nd、Ni、Os、Pb、Pd、Pt、Re、Rh、Ru、Sb、Sc、Sm、Sn、Sr、Ta、Te、Ti、V、W、Zn、Zr等のカチオンが挙げられる。
 Xは、少なくとも1種のアニオンである。アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、シアン化物イオン等が挙げられ、少なくとも1種のハロゲンを含む。
 aは、1~7の整数であり、mは、1~4の整数であり、xは、3~16の整数である。
 一般式Aで表される化合物は、具体的には、AMX、AMX、AMX、AMX、AMX、AM、AMX、AMX、AMX、A、AMX、AMX、AM、AMX、A、AMX、A、A、A10、A16で表される化合物が好ましい。
 式中、Aは、有機カチオンおよび金属カチオンのうちの少なくとも1種である。有機カチオンとしては、アンモニウム、ホルムアミジニウム、グアニジニウム、イミダゾリウム、ピリジニウム、ピロリジニウム、プロトン化チオウレア等が挙げられ、金属カチオンとしては、Cs、Rb、K、Na、Li等のカチオンが挙げられる。
 式中、Mは、少なくとも1種の金属カチオンである。具体的には、1種の金属カチオン(M)、2種の金属カチオン(M α β)、3種の金属カチオン(M α β γ)、4種の金属カチオン(M α β γ δ)などが挙げられる。ただし、α、β、γ、δは、それぞれ0~1の実数を表し、かつα+β+γ+δ=1を表す。金属カチオンとしては、1族、2族、3族、4族、5族、6族、7族、8族、9族、10族、11族、13族、14族、15族から選ばれる金属カチオンが挙げられる。より好ましくは、Ag、Au、Bi、Ca、Ce、Co、Cr、Cu、Eu、Fe、Ga、Ge、Hf、In、Ir、Mg、Mn、Mo、Na、Nb、Nd、Ni、Os、Pb、Pd、Pt、Re、Rh、Ru、Sb、Sc、Sm、Sn、Sr、Ta、Te、Ti、V、W、Zn、Zr等のカチオンが挙げられる。
 式中、Xは、少なくとも1種のハロゲンを含むアニオンである。具体的には、1種のハロゲンアニオン(X)、2種のハロゲンアニオン(X α β)などが挙げられる。アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、シアン化物イオン等が挙げられ、少なくとも1種のハロゲンを含む。
 上記一般式Aで表されるメタルハライドからなる化合物は、発光特性をよくするために、Bi、Mn、Ca、Eu、Sb、Ybなどの金属イオンが添加(ドープ)されたものであってもよい。
 上記一般式Aで表されるメタルハライドからなる化合物の中で、ペロブスカイト型結晶構造を有する化合物は、その粒子サイズ、Mサイトを構成する金属カチオンの種類および存在割合を調整し、さらにXサイトを構成するアニオンの種類および存在割合を調整することにより、発光波長(発光色)を制御することができる点で、発光性ナノ結晶として利用する上で特に好ましい。具体的には、AMX、AMX、AMX、AMX、AMXで表される化合物が好ましい。式中のA、M及びXは上記のとおりである。また、ペロブスカイト型結晶構造を有する化合物は、上述のように、Bi、Mn、Ca、Eu、Sb、Ybなどの金属イオンが添加(ドープ)されたものであってもよい。
 ペロブスカイト型結晶構造を示す化合物の中でも、さらに良好な発光特性を示すために、AはCs、Rb、K、Na、Liであり、Mは1種の金属カチオン(M)、または2種の金属カチオン(M α β)であり、Xは塩化物イオン、臭化物イオン、ヨウ化物イオンであることが好ましい。但し、αとβはそれぞれ0~1の実数を表し、α+β=1を表す。具体的には、Mは、Ag、Au、Bi、Cu、Eu、Fe、Ge、K、In、Na、Mn、Pb、Pd、Sb、Si、Sn、Yb、Zn、Zrから選ばれることが好ましい。
 ペロブスカイト型結晶構造を示すメタルハライドからなる発光性ナノ結晶の具体的な組成として、CsPbBr、CHNHPbBr、CHNPbBr等のMとしてPbを用いた発光性ナノ結晶は、光強度に優れると共に量子効率に優れることから、好ましい。また、CsSnBr、CsEuBrCsYbI等のMとしてPb以外の金属カチオンを用いた発光性ナノ結晶は、低毒性であって環境への影響が少ないことから、好ましい。
 発光性ナノ結晶は、605~665nmの波長範囲に発光ピークを有する光(赤色光)を発する赤色発光性の結晶であってよく、500~560nmの波長範囲に発光ピークを有する光(緑色光)を発する緑色発光性の結晶であってよく、420~480nmの波長範囲に発光ピークを有する光(青色光)を発する青色発光性の結晶であってもよい。また、一実施形態において、複数種の発光性ナノ結晶を組み合わせて用いてもよい。なお、発光性ナノ結晶の発光ピークの波長は、例えば、絶対PL量子収率測定装置を用いて測定される蛍光スペクトルまたは燐光スペクトルにおいて確認することができる。
 赤色発光性の発光性ナノ結晶は、665nm以下、663nm以下、660nm以下、658nm以下、655nm以下、653nm以下、651nm以下、650nm以下、647nm以下、645nm以下、643nm以下、640nm以下、637nm以下、635nm以下、632nm以下または630nm以下の波長範囲に発光ピークを有することが好ましく、628nm以上、625nm以上、623nm以上、620nm以上、615nm以上、610nm以上、607nm以上または605nm以上の波長範囲に発光ピークを有することが好ましい。これらの上限値および下限値は、任意に組み合わせることができる。なお、以下の同様の記載においても、個別に記載した上限値および下限値は任意に組み合わせ可能である。
 緑色発光性の発光性ナノ結晶は、560nm以下、557nm以下、555nm以下、550nm以下、547nm以下、545nm以下、543nm以下、540nm以下、537nm以下、535nm以下、532nm以下または530nm以下の波長範囲に発光ピークを有することが好ましく、528nm以上、525nm以上、523nm以上、520nm以上、515nm以上、510nm以上、507nm以上、505nm以上、503nm以上または500nm以上の波長範囲に発光ピークを有することが好ましい。
 青色発光性の発光性ナノ結晶は、480nm以下、477nm以下、475nm以下、470nm以下、467nm以下、465nm以下、463nm以下、460nm以下、457nm以下、455nm以下、452nm以下または450nm以下の波長範囲に発光ピークを有することが好ましく、450nm以上、445nm以上、440nm以上、435nm以上、430nm以上、428nm以上、425nm以上、422nm以上または420nm以上の波長範囲に発光ピークを有することが好ましい。
 発光性ナノ結晶の形状は、特に限定されず、任意の幾何学的形状であってもよく、任意の不規則な形状であってもよい。発光性ナノ結晶の形状としては、例えば、直方体状、立方体状、球状、正四面体状、楕円体状、角錐形状、ディスク状、枝状、網状、ロッド状等が挙げられる。なお、発光性ナノ結晶の形状としては、直方体状、立方体状または球状が好ましい。
 発光性ナノ結晶の平均粒子径(体積平均径)は、40nm以下であることが好ましく、30nm以下であることがより好ましく、20nm以下であることがさらに好ましい。また、発光性ナノ結晶の平均粒子径は、1nm以上であることが好ましく、1.5nm以上であることがより好ましく、2nm以上であることがさらに好ましい。かかる平均粒子径を有する発光性ナノ結晶は、所望の波長の光を容易に得ることができることから好ましい。なお、発光性ナノ結晶の平均粒子径は、透過型電子顕微鏡または走査型電子顕微鏡により測定し、体積平均径を算出することにより得られる。
好ましい。
1-2-2.配位子
 配位子は、メタルハライドからなる発光性ナノ結晶を合成する際に、形成された発光性ナノ結晶の表面に配位することによって結晶成長を抑制して、ナノサイズの結晶を得るために必須である。また、配位子は、メタルハライドからなる発光性ナノ結晶の表面を安定して覆った状態を維持することができるため、発光性ナノ結晶の表面にトラップ準位が生じることを防ぎ、良好な発光特性を維持することができる。さらに、配位子は、無機材料からなる発光性ナノ結晶の表面に配位することによって、光重合性モノマーとの相溶性を高め、発光性ナノ結晶の分散性を確保する機能も併せ持っている。したがって、発光ナノ結晶の表面から配位子が失われることは、発光ナノ結晶の凝集や、発光特性および分散性の低下を招くことになるので、配位子が光重合性モノマーと交換することなく、発光ナノ結晶表面に安定して配位することが重要となる。発光性ナノ結晶の表面に配位する配位子としては、ナノ結晶含有組成物に含まれる任意の光重合性モノマーと組み合わせたときに上述の式(A)を満足する配位子を1種以上用いることが必須であるが、さらに、上述の式(A)を満足しない配位子を使用してもよい。また、配位子として、上記環状構造を含む化合物の他に、環状構造を含まず直鎖構造を含む化合物を使用することもできる。
 かかる直鎖構造となる配位子としては、発光性ナノ結晶に含まれるカチオン、又はアニオンに結合する結合性基を有する化合物が好ましい。結合性基としては、例えば、カルボキシル基、カルボン酸無水物基、アミノ基、アンモニウム基、メルカプト基、ホスフィン基、ホスフィンオキシド基、リン酸基、ホスホン酸基、ホスフィン酸基、スルホン酸基、アミド基、チオアミド基およびボロン酸基のうちの少なくとも1種であることが好ましく、カルボキシル基およびアミノ基のうちの少なくとも1種であることがより好ましい。かかる配位子としては、カルボキシル基またはアミノ基含有化合物等が挙げられ、これらの1種を単独で使用してもよく、2種以上を併用することもできる。
 カルボキシル基含有化合物としては、例えば、炭素原子数1~30の直鎖状または分岐状の脂肪族カルボン酸が挙げられる。かかるカルボキシル基含有化合物の具体例としては、例えば、アラキドン酸、クロトン酸、trans-2-デセン酸、エルカ酸、3-デセン酸、cis-4,7,10,13,16,19-ドコサヘキサエン酸、4-デセン酸、all cis-5,8,11,14,17-エイコサペンタエン酸、all cis-8,11,14-エイコサトリエン酸、cis-9-ヘキサデセン酸、trans-3-ヘキセン酸、trans-2-ヘキセン酸、2-ヘプテン酸、3-ヘプテン酸、2-ヘキサデセン酸、リノレン酸、リノール酸、γ-リノレン酸、3-ノネン酸、2-ノネン酸、trans-2-オクテン酸、ペトロセリン酸、エライジン酸、オレイン酸、3-オクテン酸、trans-2-ペンテン酸、trans-3-ペンテン酸、リシノール酸、ソルビン酸、2-トリデセン酸、cis-15-テトラコセン酸、10-ウンデセン酸、2-ウンデセン酸、酢酸、酪酸、ベヘン酸、セロチン酸、デカン酸、アラキジン酸、ヘンエイコサン酸、ヘプタデカン酸、ヘプタン酸、ヘキサン酸、ヘプタコサン酸、ラウリン酸、ミリスチン酸、メリシン酸、オクタコサン酸、ノナデカン酸、ノナコサン酸、n-オクタン酸、パルミチン酸、ペンタデカン酸、プロピオン酸、ペンタコサン酸、ノナン酸、ステアリン酸、リグノセリン酸、トリコサン酸、トリデカン酸、ウンデカン酸、吉草酸等が挙げられる。
 アミノ基含有化合物としては、例えば、炭素原子数1~30の直鎖状または分岐状の脂肪族アミンが挙げられる。かかるアミノ基含有化合物の具体例としては、例えば、1-アミノヘプタデカン、1-アミノノナデカン、ヘプタデカン-9-アミン、ステアリルアミン、オレイルアミン、2-n-オクチル-1-ドデシルアミン、アリルアミン、アミルアミン、2-エトキシエチルアミン、3-エトキシプロピルアミン、イソブチルアミン、イソアミルアミン、3-メトキシプロピルアミン、2-メトキシエチルアミン、2-メチルブチルアミン、ネオペンチルアミン、プロピルアミン、メチルアミン、エチルアミン、ブチルアミン、ヘキシルアミン、ヘプチルアミン、n-オクチルアミン、1-アミノデカン、ノニルアミン、1-アミノウンデカン、ドデシルアミン、1-アミノペンタデカン、1-アミノトリデカン、ヘキサデシルアミン、テトラデシルアミン等が挙げられる。
1-2-3.発光微粒子の調製方法
 次に、図1に示す発光微粒子910の調製方法について説明する。発光微粒子910は、発光性ナノ結晶911の表面に1種又は2種以上の上述の配位子を備えたものであって、発光性ナノ結晶911の表面に配位した多数の配位子によって配位子層912を備える。このような発光微粒子910の製造方法としては、加熱を行う方法と加熱を行わない方法とがある。
 まず、加熱を行って発光微粒子910を製造する方法の一例について説明する。はじめに、上述の一般式Aで表される化合物を合成可能な原料化合物を含む溶液(以下、「半導体原料含有溶液」と記載することがある。)を2つ調製する。2種の半導体原料含有溶液のうち、一方は、Aを含む化合物を含有するか或いはA及びXを含む化合物を含有する溶液であり、他方はM及びXを含む化合物を含有する溶液である。この際、少なくともいずれか一方の半導体原料含有溶液に、上述の式(A)を満足する配位子を形成可能な化合物を添加しておく。
 次いで、これら2種の半導体原料含有溶液を不活性ガス雰囲気下で混合し、140~260℃の温度条件下に反応させる。次いで、-20~30℃に冷却し、攪拌することにより、ナノ結晶を析出させる。析出したナノ結晶911は、その表面に配位した配位子からなる配位子層912が形成されている。このナノ結晶911を、遠心分離等の定法によって回収することにより、発光微粒子910を得ることができる。
 具体的には、例えば、半導体原料である炭酸セシウムと配位子となるオレイン酸とを有機溶媒とを含む溶液を調製する。有機溶媒として、1-オクタデセン、ジオクチルエーテル、ジフェニルエーテル等を用いることができる。このとき、有機溶媒40mLに対して、炭酸セシウムが0.2~2g、オレイン酸が0.1~10mLとなるように、それぞれの添加量を調製することが好ましい。得られた溶液を90~150℃で10~180分間減圧乾燥した後、アルゴン、窒素等の不活性ガス雰囲気下で100~200℃に加熱することにより、セシウム-オレイン酸溶液を得る。
 一方、半導体原料である臭化鉛(II)と、前述のものと同一の有機溶媒とを含む溶液を調製する。このとき、有機溶媒5mLに対して臭化鉛(II)を20~100mg、オレイルアミンを0.1~10mLを添加する。得られた溶液を90~150℃で10~180分間減圧乾燥する。
 そして、臭化鉛(II)を含む溶液を140~260℃に加熱した状態で上述のセシウム-オレイン酸溶液を添加し、1~10秒間加熱撹拌させることにより反応させた後に、得られた反応液を氷浴で冷却する。このとき、臭化鉛(II)を含む溶液5mLに対して、セシウム-オレイン酸溶液を0.1~1mL添加することが好ましい。-20~30℃で撹拌中に、三臭化鉛セシウムからなるナノ結晶911が析出すると共に、ナノ結晶911の表面にオレイン酸及びオレイルアミンが配位する。
 得られた懸濁液を遠心分離することにより固形物を回収し、固形物をトルエンに添加することにより、オレイン酸が配位したナノ結晶911の表面にオレイン酸、及びオレイルアミンの配位子層912を備えた発光微粒子910がトルエンに分散した発光微粒子分散液を得ることができる。
 次に、加熱を行わずに発光微粒子910を製造する方法の一例について説明する。まず、半導体ナノ結晶を反応によって合成可能な原料化合物含有溶液を調製する。この際、上述の式(A)を満足する配位子を形成可能な化合物を前記原料化合物含有溶液に添加しておく。次いで、得られた溶液をナノ結晶に対して貧溶媒である多量の有機溶媒に加えることにより、配位子が表面に配位したナノ結晶を析出させる。このとき、有機溶媒の使用量は半導体ナノ結晶に対して質量基準で10~1000倍量であることが好ましい。
 具体的には、半導体原料含有溶液として、例えば、臭化鉛(II)と臭化セシウムと、上述の式(A)を満足する配位子を形成する化合物と、有機溶媒とを含む溶液を調製する。有機溶媒は、ナノ結晶の良溶媒であればよいが、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N-メチルホルムアミド、及びこれらの混合溶媒であることが相溶性の点から好ましい。このとき、有機溶媒10mLに対して、臭化鉛(II)が50~200mg、臭化セシウムが10~100mgとなるように、それぞれの添加量を調整することが好ましい。
 そして、上述の臭化鉛(II)及び臭化セシウムを含む溶液0.1~5mLに対して、大量の負溶媒に添加し、大気下で5~180秒間撹拌した後に、遠心分離によって固形物を回収する。混合物を大量の負溶媒に添加したときに、ナノ結晶911が析出すると共に、ナノ結晶911の表面に上述の式(A)を満足する配位子を形成する化合物が配位する。
 この回収された固形物をトルエンに添加することにより、ナノ結晶911の表面に上述の式(A)を満足する配位子を形成する化合物による配位子層912を備えた覆発光微粒子910がトルエンに分散した発光微粒子分散液を得ることができる。
1-3.光重合性モノマー
 本発明に使用する光重合性モノマーとしては、上記環状構造を含む光重合性モノマーの他に、光の照射によって重合する一般的な光ラジカル重合性モノマーを用いることができ、光重合性のモノマーまたはオリゴマーであってよい。これらは、光重合開始剤と共に用いられる。光重合性モノマーは1種を単独で用いてもよいし、2種以上を併用してもよい。
 かかる光ラジカル重合性モノマーとしては、(メタ)アクリレート化合物が挙げられる。(メタ)アクリレート化合物は、(メタ)アクリロイル基を1つ有する単官能(メタ)アクリレートであってよく、(メタ)アクリロイル基を複数有する多官能(メタ)アクリレートであってもよい。
 ナノ結晶含有組成物をインク組成物として用いる際に流動性に優れる観点、吐出安定性により優れる観点および発光微粒子塗膜製造時における硬化収縮に起因する平滑性の低下を抑制し得る観点から、単官能(メタ)アクリレートと多官能(メタ)アクリレートとを組み合わせて用いることが好ましい。
 単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、こはく酸モノ(2-アクリロイルオキシエチル)、N-[2-(アクリロイルオキシ)エチル]フタルイミド、N-[2-(アクリロイルオキシ)エチル]テトラヒドロフタルイミド等が挙げられる。
 多官能(メタ)アクリレートは、2官能(メタ)アクリレート、3官能(メタ)アクリレート、4官能(メタ)アクリレート、5官能(メタ)アクリレート、6官能(メタ)アクリレート等であってよく、例えば、ジオール化合物の2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、トリオール化合物の2つまたは3つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジまたはトリ(メタ)アクリレート等であってよい。
 2官能(メタ)アクリレートの具体例としては、例えば、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールヒドロキシピバリン酸エステルジアクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、1モルのネオペンチルグリコールに4モル以上のエチレンオキサイドまたはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、1モルのビスフェノールAに2モルのエチレンオキサイドまたはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、1モルのトリメチロールプロパンに3モル以上のエチレンオキサイドまたはプロピレンオキサイドを付加して得られるトリオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、1モルのビスフェノールAに4モル以上のエチレンオキサイドまたはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート等が挙げられる。
 3官能(メタ)アクリレートの具体例としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、1モルのトリメチロールプロパンに3モル以上のエチレンオキサイドまたはプロピレンオキサイドを付加して得られるトリオールの3つの水酸基が(メタ)アクリロイルオキシ基によって置換されたトリ(メタ)アクリレート等が挙げられる。
 4官能(メタ)アクリレートの具体例としては、例えば、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。
 5官能(メタ)アクリレートの具体例としては、例えば、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
 6官能(メタ)アクリレートの具体例としては、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
 多官能(メタ)アクリレートは、ジペンタエリスリトールヘキサ(メタ)アクリレート等のジペンタエリスリトールの複数の水酸基が(メタ)アクリロイルオキシ基によって置換されたポリ(メタ)アクリレートであってもよい。
 (メタ)アクリレート化合物は、リン酸基を有する、エチレンオキサイド変性リン酸(メタ)アクリレート、エチレンオキサイド変性アルキルリン酸(メタ)アクリレート等であってもよい。
 本発明のナノ結晶含有組成物中において、硬化可能成分を、光重合性モノマーのみまたはそれを主成分として構成する場合には、上記したような光重合性モノマーとしては、重合性官能基を1分子中に2以上有する2官能以上の多官能の光重合性モノマーを必須成分として用いることが、硬化物の耐久性(強度、耐熱性等)をより高めることができることからより好ましい。
 ナノ結晶含有組成物中に含まれる光重合性モノマー量は、50~99質量%であることが好ましく、60~99質量%であることがより好ましく、70~99質量%であることがさらに好ましい。ナノ結晶含有組成物中に含まれる光重合性モノマーの量を前記範囲に設定することにより、発光ナノ粒子の発光効率を高めることができる。さらに、ナノ結晶含有組成物を含むインク組成物を硬化して得られる発光層(光変換層)において、発光微粒子の分散状態が良好になり、よって外部量子効率をより高めることもできる。
1-4.発光微粒子の他の構成例
 以上、発光性ナノ結晶911の表面に1種又は2種以上の配位子を備えた発光微粒子910を含有するナノ結晶含有組成物について説明したが、発光微粒子の構成は図1に示すものに限定されない。例えば、発光性ナノ結晶911の表面に、上述の式(A)を満足する配位子に加えて、シロキサン結合を形成可能な反応性基を有する配位子が配位し、シロキサン結合を形成可能な反応性基を有する配位子によって形成されたSiを含む無機被覆層を備えた発光微粒子を用いることができる。次に、この無機被覆層を備えた発光微粒子について説明する。なお、無機被覆層を備えた発光微粒子を「無機被覆発光微粒子」と記載することがあり、無機被覆層を備えていない発光微粒子を「無被覆発光微粒子」と記載することがある。
 図2に示す発光微粒子90(無機被覆発光微粒子)は、発光性ナノ結晶911の表面に、少なくとも、上述の式(A)を満足する配位子と、シロキサン結合を形成可能な反応性基を有する配位子とが配位していて、少なくとも上述の式(A)を満足する配位子の分子長がシロキサン結合を形成可能な反応性基を有する配位子よりも長いことが好ましく、この場合、シロキサン結合を形成可能な反応性基を有する配位子は、発光性ナノ結晶911近傍でシロキサン結合を形成することによって、多数のシロキサン結合からなる網目構造を形成すると共に、Siを含む無機被覆層91を形成する。発光性ナノ結晶911の表面に配位した少なくとも上述の式(A)を満足する配位子は、無機被覆層91の網目構造の間から露出した形で配位子層912を形成する。
 無機被覆発光微粒子90は、配位子が無機被覆層91から露出しているため、光重合性モノマーと混合したときに分散性を確保することができる。このとき、配位子の少なくとも1つは、上述の式(A)を満足する配位子であるため、光重合性モノマーとの配位子交換を生じにくくすることができる。また、無機被覆発光微粒子90は、Siを含む無機被覆層91を備えることによって、発光性ナノ結晶911を光、熱、水分等から保護することができるため、無被覆発光微粒子910と比較して、量子収率保持率及び外部量子効率保持率がより向上することができる。
 無機被覆層層91の厚さは、0.5~50nmであることが好ましく、1.0~30nmであることがより好ましい。かかる厚さの無機被覆層91を有する発光微粒子90であれば、ナノ結晶911の光、熱、水分等に対する安定性を十分に高めることができる。なお、無機被覆層91の厚さは、配位子の結合基と反応性基とを連結する連結構造の原子数(鎖長)を調製することで変更することができる。
 前記シロキサン結合を形成可能な反応性基を有する配位子において、反応性基としては、シロキサン結合が容易に形成されることから、シラノール基、炭素原子数が1~6のアルコキシシリル基のような加水分解性シリル基が好ましい。
 また、前記シロキサン結合を形成可能な反応性基を有する配位子は、メタルハライドからなる発光性ナノ結晶911に含まれるカチオン、又はアニオンと結合する結合性基を有することが好ましい。
 結合性基としては、例えば、カルボキシル基、カルボン酸無水物基、アミノ基、アンモニウム基、メルカプト基、ホスフィン基、ホスフィンオキシド基、リン酸基、ホスホン酸基、ホスフィン酸基、スルホン酸基、ボロン酸基等が挙げられる。中でも、結合性基としては、カルボキシル基およびアミノ基のうちの少なくとも1種であることが好ましい。これらの結合性基は、反応性基よりもペロブスカイト型結晶構造を有する発光性ナノ結晶に含まれるカチオン、又はアニオンに対する親和性(反応性)が高い。このため、配位子にある結合性基は、無機被覆発光微粒子90を構成する発光性ナノ結晶911に配位し、シロキサン結合によって形成された無機被覆層91をより容易かつ確実に形成することができる。
 これらのことから、前記シロキサン結合を形成可能な反応性基を有する配位子としては、カルボキシル基またはアミノ基含有ケイ素化合物等が挙げられ、これらの1種を単独で使用し、または2種以上を併用することができる。
 カルボキシル基含有ケイ素化合物の具体例としては、例えば、トリメトキシシリルプロピル酸、トリエトキシシリルプロピル酸、N-[3-(トリメトキシシリル)プロピル]-N’-カルボキシメチルエチレンジアミン、N-[3-(トリメトキシシリル)プロピル]フタルアミド、N-[3-(トリメトキシシリル)プロピル]エチレンジアミン-N,N’,N’-三酢酸等が挙げられる。
 一方、アミノ基含有ケイ素化合物の具体例としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジイソプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリイソプロポキシシラン、N-(2-アミノエチル)-3-アミノイソブチルジメチルメトキシシラン、N-(2-アミノエチル)-3-アミノイソブチルメチルジメトキシシラン、N-(2-アミノエチル)-11-アミノウンデシルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルシラントリオール、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、(アミノエチルアミノエチル)フェニルトリメトキシシラン、(アミノエチルアミノエチル)フェニルトリエトキシシラン、(アミノエチルアミノエチル)フェニルトリプロポキシシラン、(アミノエチルアミノエチル)フェニルトリイソプロポキシシラン、(アミノエチルアミノメチル)フェニルトリメトキシシラン、(アミノエチルアミノメチル)フェニルトリエトキシシラン、(アミノエチルアミノメチル)フェニルトリプロポキシシラン、(アミノエチルアミノメチル)フェニルトリイソプロポキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルメチルジメトキシラン、N-β-(N-ビニルベンジルアミノエチル)-N-γ-(N-ビニルベンジル)-γ-アミノプロピルトリメトキシシラン、N-β-(N-ジ(ビニルベンジル)アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(N-ジ(ビニルベンジル)アミノエチル)-N-γ-(N-ビニルベンジル)-γ-アミノプロピルトリメトキシシラン、メチルベンジルアミノエチルアミノプロピルトリメトキシシラン、ジメチルベンジルアミノエチルアミノプロピルトリメトキシシラン、ベンジルアミノエチルアミノプロピルトリメトキシシラン、ベンジルアミノエチルアミノプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、(アミノエチルアミノエチル)フェネチルトリメトキシシラン、(アミノエチルアミノエチル)フェネチルトリエトキシシラン、(アミノエチルアミノエチル)フェネチルトリプロポキシシラン、(アミノエチルアミノエチル)フェネチルトリイソプロポキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、(アミノエチルアミノメチル)フェネチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリプロポキシシラン、(アミノエチルアミノメチル)フェネチルトリイソプロポキシシラン、N-[2-[3-(トリメトキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリエトキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリプロポキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリイソプロポキシシリル)プロピルアミノ]エチル]エチレンジアミン等が挙げられる。
 メルカプト基含有ケイ素化合物の具体例としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルメチルジメトキシシラン、2-メルカプトエチルメチルジエトキシシラン、3-[エトキシビス(3,6,9,12,15-ペンタオキサオクタコサン-1-イルオキシ)シリル]-1-プロパンチオール等が挙げられる。
 上述の無機被覆発光微粒子90は、半導体原料含有溶液と、Siを含む無機被覆層を形成し得る反応性基を有する配位子とを含む溶液と、上述の式(A)を満足する配位子を形成する化合物とを混合することにより、発光性を有するメタルハライドからなる半導体ナノ結晶を析出させると共に当該半導体ナノ結晶の表面に、無機被覆層を形成し得る反応性基を有する配位子、及び上述の式(A)を満足する配位子とを配位させ、その後、前記反応性基を有する無機被覆層91を形成する方法により製造することができる。無機被覆発光微粒子90の製造方法としては、加熱を行う方法と、加熱を行わない方法とがある。
 まず、加熱を行って無機被覆発光微粒子91を製造する方法について説明する。2種の原料化合物含有溶液をそれぞれ調製する。この際、2種の原料化合物含有溶液の何れか一方又は両方に、上述の式(A)を満足する配位子を形成する化合物と、Siを含有しシロキサン結合を形成し得る反応性基を有する化合物を加えておく。次いで、これらを不活性ガス雰囲気下で混合、140~260℃の温度条件下に反応させる。次いで、-20~30℃に冷却し、攪拌することにより、ナノ結晶を析出させる方法が挙げられる。析出したナノ結晶はナノ結晶911の表面に配位子が配位し、さらにシロキサン結合を有する無機被覆層91が形成されたものとなる。その後、得られた粒子を遠心分離等の定法によって回収することにより、シリカ被覆発光微粒子91を得ることができる。
 具体的には、例えば、炭酸セシウムとオレイン酸と有機溶媒とを含む溶液を調製する。有機溶媒として、1-オクタデセン、ジオクチルエーテル、ジフェニルエーテル等を用いることができる。このとき、有機溶媒40mLに対して、炭酸セシウムが0.2~2g、オレイン酸が0.1~10mLとなるように、それぞれの添加量を調製することが好ましい。得られた溶液を90~150℃で10~180分間減圧乾燥した後、アルゴン、窒素等の不活性ガス雰囲気下で100~200℃に加熱することにより、セシウム-オレイン酸溶液を得る。
 一方、臭化鉛(II)と前述のものと同一の有機溶媒とを含む溶液を調製する。このとき、有機溶媒5mLに対して臭化鉛(II)を20~100mg添加する。得られた溶液を90~150℃で10~180分間減圧乾燥した後、アルゴン、窒素等の不活性ガス雰囲気下で0.1~2mLの3-アミノプロピルトリエトキシシランを添加する。
 そして、臭化鉛(II)及び3-アミノプロピルトリエトキシシランを含む溶液を140~260℃に加熱した状態で上述のセシウム-オレイン酸溶液を添加し、1~10秒間加熱撹拌させることにより反応させた後に、得られた反応液を氷浴で冷却する。このとき、臭化鉛(II)及び3-アミノプロピルトリエトキシシランを含む溶液5mLに対して、セシウム-オレイン酸溶液を0.1~1mL添加することが好ましい。-20~30℃で撹拌中に、ナノ結晶911が析出すると共に、ナノ結晶911の表面に3-アミノプロピルトリエトキシシラン及びオレイン酸が配位する。
 その後、得られた反応液を、大気下、室温(10~30℃、湿度5~60%)で5~300分間撹拌した後、0.1~50mLのエタノールを添加することにより懸濁液を得る。大気下、室温での撹拌中に3-アミノプロピルトリエトキシシランのアルコキシシリル基が縮合し、オレイン酸が配位したナノ結晶911の表面にシロキサン結合を有する無機被覆層91が形成される。
 得られた懸濁液を遠心分離することにより固形物を回収し、固形物をトルエンに添加することにより、ナノ結晶911の表面にシロキサン結合を有する無機被覆層91を備え、及びナノ結晶911の表面にオレイン酸も配位し無機被覆粒子の間から露出して配位子層912を備えた、シリカ被覆発光微粒子90がトルエンに分散した発光微粒子分散液を得ることができる。
 次に、加熱を行わずにシリカ被覆発光微粒子90を製造する方法について説明する。半導体ナノ結晶の原料化合物を含む溶液と、Siを含有しシロキサン結合を形成し得る反応性基を有する化合物を含む溶液とを大気下に混合し、次いで、得られた混合物をナノ結晶に対して貧溶媒である多量の有機溶媒に加えることにより、ナノ結晶を析出させる方法が挙げられる。有機溶媒の使用量は半導体ナノ結晶に対して質量基準で10~1000倍量であることが好ましい。また、析出したナノ結晶はナノ結晶911の表面にシロキサン結合を有する無機被覆層91が形成されたものとなる。得られた粒子を遠心分離等の定法により回収することにより、シリカ被覆発光微粒子90を得ることができる。
 具体的には、半導体ナノ結晶の原料化合物を含む溶液として、例えば、臭化鉛(II)とメチルアミン臭化水素酸塩とを有機溶媒とを含む溶液を調製する。有機溶媒は、ナノ結晶の良溶媒であればよいが、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N-メチルホルムアミド、及びこれらの混合溶媒であることが相溶性の点から好ましい。このとき、有機溶媒10mLに対して、臭化鉛(II)が50~200mg、メチルアミン臭化水素酸塩が10~100mgとなるように、それぞれの添加量を調整することが好ましい。
 一方、Siを含有しシロキサン結合を形成し得る反応性基を有する化合物を含む溶液として、例えば、3-アミノプロピルトリエトキシシランと、オレイン酸と、貧溶媒とを調製する。貧溶媒としては、イソプロピルアルコール、トルエン、ヘキサン等を用いることができる。このとき、貧溶媒5mLに対して、3-アミノプロピルトリエトキシシランが0.01~0.5mL、オレイン酸が0.01~0.5mLとなるように、それぞれの添加量を調整することが好ましい。
 そして、上述の臭化鉛(II)及びメチルアミン臭化水素酸塩を含む溶液0.1~5mLに対して、上述の3-アミノプロピルトリエトキシシランを含む溶液5mLを、大気下、0~60℃で添加して混合物を得る。その直後に、得られた混合物を大量の負溶媒に添加し、大気下で5~180秒間撹拌した後に、遠心分離によって固形物を回収する。混合物を大量の負溶媒に添加したときに、ナノ結晶911が析出すると共に、ナノ結晶911の表面に3-アミノプロピルトリエトキシシラン及びオレイン酸が配位する。そして、大気下での撹拌中に3-アミノプロピルトリエトキシシランのアルコキシシリル基が縮合し、ナノ結晶911の表面にシロキサン結合を有する表面層91が形成される。
 この回収された固形物をトルエンに添加することにより、メチルアンモニウム三臭化鉛結晶からなるナノ結晶911の表面にシロキサン結合を有する表面層91を備えたシリカ被覆発光微粒子90がトルエンに分散した発光微粒子分散液を得ることができる。
1-5.光重合開始剤
 本発明のナノ結晶含有組成物は、さらに重合開始剤を含有することが好ましい。光重合開始剤は、アルキルフェノン系化合物、アシルホスフィンオキサイド系化合物およびオキシムエステル系化合物からなる群より選ばれる少なくとも1種であることが好ましい。
 アルキルフェノン系光重合開始剤としては、例えば、式(b-1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000023
 式(b-1)中、R1aは、下記式(R1a-1)~式(R1a-6)から選ばれる基を表し、R2a、R2bおよびR2cは、それぞれ独立して、下記式(R-1)~式(R-7)から選ばれる基を表す。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 上記式(b-1)で表される化合物の具体例としては、下記式(b-1-1)~式(b-1-6)で表される化合物が好ましく、下記式(b-1-1)、式(b-1-5)または式(b-1-6)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000026
 アシルホスフィンオキサイド系光重合開始剤としては、例えば、式(b-2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000027
 式(b-2)中、R24はアルキル基、アリール基または複素環基を表し、R25およびR26は、それぞれ独立して、アルキル基、アリール基、複素環基またはアルカノイル基を表すが、これらの基は、アルキル基、ヒドロキシル基、カルボキシル基、スルホン基、アリール基、アルコキシ基、アリールチオ基で置換されてもよい。
 上記式(b-2)で表される化合物の具体例としては、下記式(b-2-1)~式(b-2-5)で表される化合物が好ましく、下記式(b-2-1)または式(b-2-5)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000028
 オキシムエステル系光重合開始剤としては、例えば、下記式(b-3-1)または式(b-3-2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000029
 上記式中、R27~R31は、それぞれ独立して、水素原子、炭素原子数1~12の環状、直鎖状あるいは分岐状のアルキル基、またはフェニル基を表し、各アルキル基およびフェニル基は、ハロゲン原子、炭素原子数1~6のアルコキシル基およびフェニル基からなる群から選ばれる置換基で置換されていてもよく、Xは、酸素原子または窒素原子を表し、Xは、酸素原子またはNRを表し、Rは炭素原子数1~6のアルキル基を表す。
 上記式(b-3-1)および式(b-3-2)で表される化合物の具体例としては、下記式(b-3-1-1)~式(b-3-1-2)および下記式(b-3-2-1)~(b-3-2-2)で表される化合物が好ましく、下記式(b-3-1-1)、式(b-3-2-1)または式(b-3-2-2)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 光重合開始剤の配合量は、ナノ結晶含有組成物に含まれる光重合性モノマーの総量に対して、0.05~10質量%であることが好ましく、0.1~8質量%であることがより好ましく、1~6質量%であることがさらに好ましい。なお、光重合開始剤は、1種を単独で使用することもできるし、2種以上を混合して使用することもできる。かかる量で光重合開始剤を含むナノ結晶含有組成物は、光硬化時の感光度を十分に維持するとともに、塗膜の乾燥時に光重合開始剤の結晶が析出し難く、よって塗膜物性の劣化を抑制することができる。
 ナノ結晶含有組成物中に光重合開始剤を溶解する際には、予め光重合性モノマー中に溶解してから使用することが好ましい。
 光重合性モノマーに溶解させるには、熱による反応が開始されないように、光重合性モノマーを攪拌しながら光重合開始剤を添加することにより均一溶解させることが好ましい。
 光重合開始剤の溶解温度は、用いる光重合開始剤の光重合性モノマーに対する溶解性、および光重合性モノマーの熱による重合性を考慮して適宜調節すればよいが、光重合性モノマーの重合を開始させない観点から10~60℃であることが好ましく、10~40℃であることがより好ましく、10~30℃であることがさらに好ましい。
1-6.光散乱剤
 本発明のナノ結晶含有組成物は、さらに光散乱剤を含有することが好ましい。光散乱剤は、一般に粒子状であるので、以下「光散乱性粒子」と記載する。光散乱性粒子は、例えば、光学的に不活性な無機微粒子である。光散乱性粒子は、ナノ結晶含有組成物又は当該組成物を含有するインク組成物を硬化して形成された発光層(光変換層)において、照射された光源部からの光を散乱させることができる。
 光散乱性粒子を構成する材料としては、例えば、タングステン、ジルコニウム、チタン、白金、ビスマス、ロジウム、パラジウム、銀、スズ、プラチナ、金のような単体金属;シリカ、硫酸バリウム、炭酸バリウム、炭酸カルシウム、タルク、酸化チタン、クレー、カオリン、硫酸バリウム、炭酸バリウム、炭酸カルシウム、アルミナホワイト、酸化チタン、酸化マグネシウム、酸化バリウム、酸化アルミニウム、酸化ビスマス、酸化ジルコニウム、酸化亜鉛のような金属酸化物;炭酸マグネシウム、炭酸バリウム、次炭酸ビスマス、炭酸カルシウムのような金属炭酸塩;水酸化アルミニウムのような金属水酸化物;ジルコン酸バリウム、ジルコン酸カルシウム、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム等の複合酸化物、次硝酸ビスマスのような金属塩等が挙げられる。中でも、光散乱性粒子を構成する材料としては、漏れ光の低減効果により優れる観点から、酸化チタン、アルミナ、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、硫酸バリウムおよびシリカからなる群より選択される少なくとも1種を含むことが好ましく、酸化チタン、硫酸バリウムおよび炭酸カルシウムからなる群より選択される少なくとも一種を含むことがより好ましい。
 光散乱性粒子の形状は、球状、フィラメント状、不定形状等であってよい。しかしながら、光散乱性粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状等の粒子)を用いることが、ナノ結晶含有組成物の均一性、流動性及び光散乱性をより高められる点で好ましい。
 ナノ結晶含有組成物中での光散乱性粒子の平均粒子径(体積平均径)は、漏れ光の低減効果により優れる観点から、0.05μm以上であってよく、0.2μm以上であってもよく、0.3μm以上であってもよい。ナノ結晶含有組成物中での光散乱性粒子の平均粒子径(体積平均径)は、吐出安定性に優れる観点から、1.0μm以下であってもよく、0.6μm以下であってもよく、0.4μm以下であってもよい。ナノ結晶含有組成物中での光散乱性粒子の平均粒子径(体積平均径)は、0.05~1.0μm、0.05~0.6μm、0.05~0.4μm、0.2~1.0μm、0.2~0.6μm、0.2~0.4μm、0.3~1.0μm、0.3~0.6μm、又は0.3~0.4μmであってもよい。このような平均粒子径(体積平均径)が得られやすい観点から、使用する光散乱性粒子の平均粒子径(体積平均径)は、50nm以上であってよく、1000nm以下であってよい。ナノ結晶含有組成物中での光散乱性粒子の平均粒子径(体積平均径)は、動的光散乱式ナノトラック粒度分布計により測定し、体積平均径を算出することにより得られる。また、使用する光散乱性粒子の平均粒子径(体積平均径)は、例えば透過型電子顕微鏡又は走査型電子顕微鏡により各粒子の粒子径を測定し、体積平均径を算出することにより得られる。
 光散乱性粒子の含有量は、漏れ光の低減効果により優れる観点から、ナノ結晶含有組成物の不揮発分の質量を基準として、0.1質量%以上であってよく、1質量%以上であってもよく、5質量%以上であってもよく、7質量%以上であってもよく、10質量%以上であってもよく、12質量%以上であってもよい。光散乱性粒子の含有量は、漏れ光の低減効果により優れる観点及び吐出安定性に優れる観点から、ナノ結晶含有組成物の不揮発分の質量を基準として、60質量%以下であってよく、50質量%以下であってもよく、40質量%以下であってもよく、30質量%以下であってもよく、25質量%以下であってもよく、20質量%以下であってもよく、15質量%以下であってもよい。本実施形態では、ナノ結晶含有組成物が高分子分散剤を含むため、光散乱性粒子の含有量を上記範囲とした場合であっても光散乱性粒子の良好に分散させることができる。
 発光微粒子の含有量に対する光散乱性粒子の含有量の質量比(光散乱性粒子/発光性ナノ結晶)は、漏れ光の低減効果により優れる観点から、0.1以上であってよく、0.2以上であってもよく、0.5以上であってもよい。質量比(光散乱性粒子/発光性ナノ結晶)は、漏れ光の低減効果により優れ、インクジェット印刷時の連続吐出性に優れる観点から、5.0以下であってよく、2.0以下であってもよく、1.5以下であってもよい。なお、光散乱性粒子による漏れ光低減は、次のようなメカニズムによると考えられる。すなわち、光散乱性粒子が存在しない場合、バックライト光は画素部内をほぼ直進して通過するのみであり、発光微粒子に吸収される機会が少ないと考えられる。一方、光散乱性粒子を発光微粒子と同一の画素部内に存在させると、その画素部内でバックライト光が全方位に散乱され、それを発光微粒子が受光することができるため、同一のバックライトを用いていても、画素部における光吸収量が増大すると考えられる。結果的に、このようなメカニズムで漏れ光を防ぐことが可能になったと考えられる。
1-7.分散剤
 本発明のナノ結晶含有組成物は、さらに分散剤を含有することが好ましい。分散剤は、ナノ結晶含有組成物中での発光微粒子の分散安定性をさらに向上させ得る化合物であれば、特に限定されない。分散剤は、低分子分散剤と高分子分散剤とに分類される。本明細書中において、「低分子」とは、重量平均分子量(Mw)が5,000以下の分子を意味し、「高分子」とは、重量平均分子量(Mw)が5,000超の分子を意味する。なお、本明細書中において、「重量平均分子量(Mw)」は、ポリスチレンを標準物質としたゲル浸透クロマトグラフィ(GPC)を用いて測定された値を採用することができる。
 低分子分散剤としては、例えば、オレイン酸;リン酸トリエチル、TOP(トリオクチルフォスフィン)、TOPO(トリオクチルフォスフィンオキサイド)、ヘキシルホスホン酸(HPA)、テトラデシルホスホン酸(TDPA)、オクチルホスフィン酸(OPA)のようなリン原子含有化合物;オレイルアミン、オクチルアミン、トリオクチルアミン、ヘキサデシルアミンのような窒素原子含有化合物;1-デカンチオール、オクタンチオール、ドデカンチオール、アミルスルフィドのような硫黄原子含有化合物等が挙げられる。
 一方、高分子分散剤としては、例えば、アクリル系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂、フェノール系樹脂、シリコーン系樹脂、ポリウレア系樹脂、アミノ系樹脂、ポリアミン系樹脂(ポリエチレンイミン、ポリアリルアミン等)、エポキシ系樹脂、ポリイミド系樹脂、ウッドロジン、ガムロジン、トール油ロジンのような天然ロジン、重合ロジン、不均化ロジン、水添ロジン、酸化ロジン、マレイン化ロジンのような変性ロジン、ロジンアミン、ライムロジン、ロジンアルキレンオキシド付加物、ロジンアルキド付加物、ロジン変性フェノールのようなロジン誘導体等が挙げられる。
 高分子分散剤の市販品としては、例えば、ビックケミー社製のDISPERBYKシリーズ、エボニック社製のTEGO Dispersシリーズ、BASF社製のEFKAシリーズ、日本ルーブリゾール社製のSOLSPERSEシリーズ、味の素ファインテクノ社製のアジスパーシリーズ、楠本化成製のDISPARLONシリーズ、共栄社化学社製のフローレンシリーズ等を使用することができる。
 分散剤の配合量は、100質量部の発光微粒子910、90に対して、それぞれ0.05~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。
 ところで、従来のインク組成物を用いてインクジェット方式でカラーフィルタ画素部を形成する場合、発光微粒子及び光散乱性粒子の凝集等によりインクジェットノズルからの吐出安定性が低下する場合があった。また、発光微粒子及び光散乱性粒子を微細化すること、発光微粒子及び光散乱性粒子の含有量を減らすこと等により、吐出安定性を向上させることが考えられるが、この場合、漏れ光の低減効果が低下しやすく、充分な吐出安定性と漏れ光の低減効果とを両立することは困難であった。これに対し、分散剤を更に含有する本発明のナノ結晶含有組成物によれば、充分な吐出安定性を確保しつつ、漏れ光をより低減することができる。このような効果が得られる理由は、明らかではないが、分散剤によって、発光微粒子及び光散乱性粒子(特に、光散乱性粒子)の凝集が顕著に抑制されるためであると推察される。
 光散乱性粒子に対し親和性を有する官能基としては、酸性官能基、塩基性官能基及び非イオン性官能基が挙げられる。酸性官能基は解離性のプロトンを有しており、アミン、水酸化物イオン等の塩基により中和されていてもよく、塩基性官能基は有機酸、無機酸等の酸により中和されていてもよい。
 酸性官能基としては、カルボキシル基(-COOH)、スルホ基(-SO3H)、硫酸基(-OSO3H)、ホスホン酸基(-PO(OH)3)、リン酸基(-OPO(OH)3)、ホスフィン酸基(-PO(OH)-)、メルカプト基(-SH)、が挙げられる。 
 塩基性官能基としては、一級、二級及び三級アミノ基、アンモニウム基、イミノ基、並びに、ピリジン、ピリミジン、ピラジン、イミダゾール、トリアゾール等の含窒素ヘテロ環基等が挙げられる。
 非イオン性官能基としては、ヒドロキシ基、エーテル基、チオエーテル基、スルフィニル基(-SO-)、スルホニル基(-SO2-)、カルボニル基、ホルミル基、エステル基、炭酸エステル基、アミド基、カルバモイル基、ウレイド基、チオアミド基、チオウレイド基、スルファモイル基、シアノ基、アルケニル基、アルキニル基、ホスフィンオキシド基、ホスフィンスルフィド基が挙げられる。
 光散乱性粒子の分散安定性の観点、発光微粒子が沈降するという副作用を起こしにくい観点、高分子分散剤の合成の容易性の観点、及び官能基の安定性の観点から、酸性官能基としては、カルボキシル基、スルホ基、ホスホン酸基及びリン酸基が好ましく用いられ、塩基性官能基としては、アミノ基が好ましく用いられる。これらの中でも、カルボキシル基、ホスホン酸基及びアミノ基がより好ましく用いられ、最も好ましくはアミノ基が用いられる。
 酸性官能基を有する分散剤は酸価を有する。酸性官能基を有する高分子分散剤の酸価は、好ましくは、固形分換算で、1~150mgKOH/gである。酸価が1以上であると、光散乱性粒子の充分な分散性が得られやすく、酸価が150以下であると、画素部(インク組成物の硬化物)の保存安定性が低下しにくい。
 また、塩基性官能基を有する分散剤はアミン価を有する。塩基性官能基を有する分散剤のアミン価は、好ましくは、固形分換算で、1~200mgKOH/gである。アミン価が1以上であると、光散乱性粒子の充分な分散性が得られやすく、アミン価が200以下であると、画素部(インク組成物の硬化物)の保存安定性が低下しにくい。
 分散剤の重量平均分子量は、光散乱性粒子を良好に分散することができ、漏れ光の低減効果をより向上させることができる観点から、750以上であってよく、1000以上であってよく、2000以上であってよく、3000以上であってもよい。また、分散剤の重量平均分子量は、光散乱性粒子を良好に分散することができ、漏れ光の低減効果をより向上させることができ、また、インクジェットインクの粘度を吐出可能で安定吐出に適する粘度とする観点から、100000以下であってよく、50000以下であってもよく、30000以下であってもよい。
 分散剤の含有量は、光散乱性粒子の分散性の観点から、光散乱性粒子100質量部に対して、0.5質量部以上であってよく、2質量部以上であってもよく、5質量部以上であってもよい。高分子分散の含有量は、画素部(インク組成物の硬化物)の湿熱安定性の観点から、光散乱性粒子100質量部に対して、50質量部以下であってよく、30質量部以下であってもよく、10質量部以下であってもよい。
1-8.その他の成分
 本発明に用いるナノ結晶含有組成物は、本発明の効果を阻害しない範囲で、発光微粒子910、90、光重合性モノマー、光重合開始剤、光散乱性粒子以外の他の成分を含有してもよい。かかる他の成分としては、重合禁止剤、酸化防止剤、レベリング剤、連鎖移動剤、分散助剤、熱可塑性樹脂、増感剤等が挙げられる。
1-8-1.重合禁止剤
 重合禁止剤としては、例えば、p-メトキシフェノール、クレゾール、t-ブチルカテコール、3,5-ジ-t-ブチル-4-ヒドロキシトルエン、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4-メトキシ-1-ナフトール、4,4’-ジアルコキシ-2,2’-ビ-1-ナフトールのようなフェノール系化合物;ヒドロキノン、メチルヒドロキノン、tert-ブチルヒドロキノン、p-ベンゾキノン、メチル-p-ベンゾキノン、tert-ブチル-p-ベンゾキノン、2,5-ジフェニルベンゾキノン、2-ヒドロキシ-1,4-ナフトキノン、1,4-ナフトキノン、2,3-ジクロロ-1,4-ナフトキノン、アントラキノン、ジフェノキノンのようなキノン系化合物;p-フェニレンジアミン、4-アミノジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、N-i-プロピル-N’-フェニル-p-フェニレンジアミン、N-(1.3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン、ジフェニルアミン、N-フェニル-β-ナフチルアミン、4,4’-ジクミル-ジフェニルアミン、4,4’-ジオクチル-ジフェニルアミンのようなアミン系化合物;フェノチアジン、ジステアリルチオジプロピオネートのようなチオエーテル系化合物;2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル、2,2,6,6-テトラメチルピペリジン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカルのようなN-オキシル化合物;N-ニトロソジフェニルアミン、N-ニトロソフェニルナフチルアミン、N-ニトロソジナフチルアミン、p-ニトロソフェノール、ニトロソベンゼン、p-ニトロソジフェニルアミン、α-ニトロソ-β-ナフトール、N、N-ジメチル-p-ニトロソアニリン、p-ニトロソジフェニルアミン、p-ニトロンジメチルアミン、p-ニトロン-N,N-ジエチルアミン、N-ニトロソエタノールアミン、N-ニトロソ-ジ-n-ブチルアミン、N-ニトロソ-N-n-ブチル-4-ブタノールアミン、N-ニトロソ-ジイソプロパノールアミン、N-ニトロソ-N-エチル-4-ブタノールアミン、5-ニトロソ-8-ヒドロキシキノリン、N-ニトロソモルホリン、N-ニトロソ-N-フェニルヒドロキシルアミンアンモニウム塩(富士フィルム和光純薬株式会社製、「Q-1300」)、ニトロソベンゼン、2,4,6-トリ-tert-ブチルニトロンベンゼン、N-ニトロソ-N-メチル-p-トルエンスルホンアミド、N-ニトロソ-N-エチルウレタン、N-ニトロソ-N-n-プロピルウレタン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、1-ニトロソ-2-ナフトール-3,6-スルホン酸ナトリウム、2-ニトロソ-1-ナフトール-4-スルホン酸ナトリウム、2-ニトロソ-5-メチルアミノフェノール塩酸塩、2-ニトロソ-5-メチルアミノフェノール塩酸塩、Q-1301(富士フィルム和光純薬株式会社製)のようなニトロソ系化合物等が挙げられる。
 重合禁止剤の添加量は、ナノ結晶含有組成物に含まれる光重合性モノマーの総量に対して、0.01~1.0質量%であることが好ましく、0.02~0.5質量%であることがより好ましい。
1-8-2.酸化防止剤
 酸化防止剤としては、例えば、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート(「IRGANOX1010」)、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート(「IRGANOX1035」)、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート(「IRGANOX1076」)、「IRGANOX1135」、「IRGANOX1330」、4,6-ビス(オクチルチオメチル)-o-クレゾール(「IRGANOX1520L」)、「IRGANOX1726」、「IRGANOX245」、「IRGANOX259」、「IRGANOX3114」、「IRGANOX3790」、「IRGANOX5057」、「IRGANOX565」(以上、BASF株式会社製);「アデカスタブAO-20」、「アデカスタブAO-30」、「アデカスタブAO-40」、「アデカスタブAO-50」、「アデカスタブAO-60」、「アデカスタブAO-80」(以上、株式会社ADEKA製);「JP-360」、「JP-308E」、「JPE-10」(以上、城北化学工業株式会社製);「スミライザーBHT」、「スミライザーBBM-S」、「スミライザーGA-80」(以上、住友化学株式会社製)等が挙げられる。
 酸化防止剤の添加量は、ナノ結晶含有組成物に含まれる光重合性モノマーの総量に対して、0.01~2.0質量%であることが好ましく、0.02~1.0質量%であることがより好ましい。
1-8-3.レベリング剤
 レベリング剤としては、特に限定はないが、発光微粒子90の薄膜を形成する場合に、膜厚ムラを低減させ得る化合物が好ましい。
 かかるレベリング剤としては、例えば、アルキルカルボン酸塩、アルキルリン酸塩、アルキルスルホン酸塩、フルオロアルキルカルボン酸塩、フルオロアルキルリン酸塩、フルオロアルキルスルホン酸塩、ポリオキシエチレン誘導体、フルオロアルキルエチレンオキシド誘導体、ポリエチレングリコール誘導体、アルキルアンモニウム塩、フルオロアルキルアンモニウム塩類等が挙げられる。
 レベリング剤の具体例としては、例えば、「メガファックF-114」、「メガファックF-251」、「メガファックF-281」、「メガファックF-410」、「メガファックF-430」、「メガファックF-444」、「メガファックF-472SF」、「メガファックF-477」、「メガファックF-510」、「メガファックF-511」、「メガファックF-552」、「メガファックF-553」、「メガファックF-554」、「メガファックF-555」、「メガファックF-556」、「メガファックF-557」、「メガファックF-558」、「メガファックF-559」、「メガファックF-560」、「メガファックF-561」、「メガファックF-562」、「メガファックF-563」、「メガファックF-565」、「メガファックF-567」、「メガファックF-568」、「メガファックF-569」、「メガファックF-570」、「メガファックF-571」、「メガファックR-40」、「メガファックR-41」、「メガファックR-43」、「メガファックR-94」、「メガファックRS-72-K」、「メガファックRS-75」、「メガファックRS-76-E」、「メガファックRS-76-NS」、「メガファックRS-90」、「メガファックEXP.TF-1367」、「メガファックEXP.TF1437」、「メガファックEXP.TF1537」、「メガファックEXP.TF-2066」(以上、DIC株式会社製)等が挙げられる。
 レベリング剤の他の具体例としては、例えば、「フタージェント100」、「フタージェント100C」、「フタージェント110」、「フタージェント150」、「フタージェント150CH」、「フタージェント100A-K」、「フタージェント300」、「フタージェント310」、「フタージェント320」、「フタージェント400SW」、「フタージェント251」、「フタージェント215M」、「フタージェント212M」、「フタージェント215M」、「フタージェント250」、「フタージェント222F」、「フタージェント212D」、「FTX-218」、「フタージェント209F」、「フタージェント245F」、「フタージェント208G」、「フタージェント240G」、「フタージェント212P」、「フタージェント220P」、「フタージェント228P」、「DFX-18」、「フタージェント601AD」、「フタージェント602A」、「フタージェント650A」、「フタージェント750FM」、「FTX-730FM」、「フタージェント730FL」、「フタージェント710FS」、「フタージェント710FM」、「フタージェント710FL」、「フタージェント750LL」、「FTX-730LS」、「フタージェント730LM」、(以上、株式会社ネオス製)等が挙げられる。
 レベリング剤の他の具体例としては、例えば、「BYK-300」、「BYK-302」、「BYK-306」、「BYK-307」、「BYK-310」、「BYK-315」、「BYK-320」、「BYK-322」、「BYK-323」、「BYK-325」、「BYK-330」、「BYK-331」、「BYK-333」、「BYK-337」、「BYK-340」、「BYK-344」、「BYK-370」、「BYK-375」、「BYK-377」、「BYK-350」、「BYK-352」、「BYK-354」、「BYK-355」、「BYK-356」、「BYK-358N」、「BYK-361N」、「BYK-357」、「BYK-390」、「BYK-392」、「BYK-UV3500」、「BYK-UV3510」、「BYK-UV3570」、「BYK-Silclean3700」(以上、BYK株式会社製)等が挙げられる。
 レベリング剤の他の具体例としては、例えば、「TEGO Rad2100」、「TEGO Rad2011」、「TEGO Rad2200N」、「TEGO Rad2250」、「TEGO Rad2300」、「TEGO Rad2500」、「TEGO Rad2600」、「TEGO Rad2650」、「TEGO Rad2700」、「TEGO Flow300」、「TEGO Flow370」、「TEGO Flow425」、「TEGO Flow ATF2」、「TEGO Flow ZFS460」、「TEGO Glide100」、「TEGO Glide110」、「TEGO Glide130」、「TEGO Glide410」、「TEGO Glide411」、「TEGO Glide415」、「TEGO Glide432」、「TEGO Glide440」、「TEGO Glide450」、「TEGO Glide482」、「TEGO Glide A115」、「TEGO Glide B1484」、「TEGO Glide ZG400」、「TEGO Twin4000」、「TEGO Twin4100」、「TEGO Twin4200」、「TEGO Wet240」、「TEGO Wet250」、「TEGO Wet260」、「TEGO Wet265」、「TEGO Wet270」、「TEGO Wet280」、「TEGO Wet500」、「TEGO Wet505」、「TEGO Wet510」、「TEGO Wet520」、「TEGO Wet KL245」(以上、エボニック・インダストリーズ株式会社製)等が挙げられる。
 レベリング剤の他の具体例としては、例えば、「FC-4430」、「FC-4432」(以上、スリーエムジャパン株式会社製)、「ユニダインNS」(以上、ダイキン工業株式会社製);「サーフロンS-241」、「サーフロンS-242」、「サーフロンS-243」、「サーフロンS-420」、「サーフロンS-611」、「サーフロンS-651」、「サーフロンS-386」(以上、AGCセイミケミカル株式会社製)等が挙げられる。
 レベリング剤の他の具体例としては、例えば、「DISPARLON OX-880EF」、「DISPARLON OX-881」、「DISPARLON OX-883」、「DISPARLON OX-77EF」、「DISPARLON OX-710」、「DISPARLON 1922」、「DISPARLON 1927」、「DISPARLON 1958」、「DISPARLON P-410EF」、「DISPARLON P-420」、「DISPARLON P-425」、「DISPARLON PD-7」、「DISPARLON 1970」、「DISPARLON 230」、「DISPARLON LF-1980」、「DISPARLON LF-1982」、「DISPARLON LF-1983」、「DISPARLON LF-1084」、「DISPARLON LF-1985」、「DISPARLON LHP-90」、「DISPARLON LHP-91」、「DISPARLON LHP-95」、「DISPARLON LHP-96」、「DISPARLON OX-715」、「DISPARLON 1930N」、「DISPARLON 1931」、「DISPARLON 1933」、「DISPARLON 1934」、「DISPARLON 1711EF」、「DISPARLON 1751N」、「DISPARLON 1761」、「DISPARLON LS-009」、「DISPARLON LS-001」、「DISPARLON LS-050」(以上、楠本化成株式会社製)等が挙げられる。
 レベリング剤の他の具体例としては、例えば、「PF-151N」、「PF-636」、「PF-6320」、「PF-656」、「PF-6520」、「PF-652-NF」、「PF-3320」(以上、OMNOVA SOLUTIONS社製);「ポリフローNo.7」、「ポリフローNo.50E」、「ポリフローNo.50EHF」、「ポリフローNo.54N」、「ポリフローNo.75」、「ポリフローNo.77」、「ポリフローNo.85」、「ポリフローNo.85HF」、「ポリフローNo.90」、「ポリフローNo.90D-50」、「ポリフローNo.95」、「ポリフローNo.99C」、「ポリフローKL-400K」、「ポリフローKL-400HF」、「ポリフローKL-401」、「ポリフローKL-402」、「ポリフローKL-403」、「ポリフローKL-404」、「ポリフローKL-100」、「ポリフローLE-604」、「ポリフローKL-700」、「フローレンAC-300」、「フローレンAC-303」、「フローレンAC-324」、「フローレンAC-326F」、「フローレンAC-530」、「フローレンAC-903」、「フローレンAC-903HF」、「フローレンAC-1160」、「フローレンAC-1190」、「フローレンAC-2000」、「フローレンAC-2300C」、「フローレンAO-82」、「フローレンAO-98」、「フローレンAO-108」(以上、共栄社化学株式会社製)等が挙げられる。
 また、レベリング剤の他の具体例としては、例えば、「L-7001」、「L-7002」、「8032ADDITIVE」、「57ADDTIVE」、「L-7064」、「FZ-2110」、「FZ-2105」、「67ADDTIVE」、「8616ADDTIVE」(以上、東レ・ダウシリコーン株式会社製)等が挙げられる。
 レベリング剤の添加量は、ナノ結晶含有組成物に含まれる光重合性モノマーの総量に対して、0.005~2質量%であることが好ましく、0.01~0.5質量%であることがより好ましい。
1-8-4.連鎖移動剤
 連鎖移動剤は、ナノ結晶含有組成物をインク組成物として用いる際に、インク組成物の基材との密着性をより向上させること等を目的として使用される成分である。
 連鎖移動剤としては、例えば、芳香族炭化水素類;クロロホルム、四塩化炭素、四臭化炭素、ブロモトリクロロメタンのようなハロゲン化炭化水素類;オクチルメルカプタン、n-ブチルメルカプタン、n-ペンチルメルカプタン、n-ヘキサデシルメルカプタン、n-テトラデシルメル、n―ドデシルメルカプタン、t-テトラデシルメルカプタン、t-ドデシルメルカプタンのようなメルカプタン化合物;ヘキサンジチオール、デカンジチオール、1,4-ブタンジオールビスチオプロピオネート、1,4-ブタンジオールビスチオグリコレート、エチレングリコールビスチオグリコレート、エチレングリコールビスチオプロピオネート、トリメチロールプロパントリスチオグリコレート、トリメチロールプロパントリスチオプロピオネート、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ペンタエリスリトールテトラキスチオプロピオネート、トリメルカプトプロピオン酸トリス(2-ヒドロキシエチル)イソシアヌレート、1,4-ジメチルメルカプトベンゼン、2、4、6-トリメルカプト-s-トリアジン、2-(N,N-ジブチルアミノ)-4,6-ジメルカプト-s-トリアジンのようなチオール化合物;ジメチルキサントゲンジスルフィド、ジエチルキサントゲンジスルフィド、ジイソプロピルキサントゲンジスルフィド、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィドのようなスルフィド化合物;N,N-ジメチルアニリン、N,N-ジビニルアニリン、ペンタフェニルエタン、α-メチルスチレンダイマー、アクロレイン、アリルアルコール、ターピノーレン、α-テルピネン、γ-テルビネン、ジペンテン等が挙げられるが、2,4-ジフェニル-4-メチル-1-ペンテン、チオール化合物が好ましい。
 連鎖移動剤の具体例としては、例えば、下記一般式(9-1)~(9-12)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 式中、R95は炭素原子数2~18のアルキル基を表し、該アルキル基は直鎖であっても分岐鎖であってもよく、該アルキル基中の1つ以上のメチレン基は酸素原子および硫黄原子が相互に直接結合することなく、酸素原子、硫黄原子、-CO-、-OCO-、-COO-または-CH=CH-で置換されていてもよい。
 R96は炭素原子数2~18のアルキレン基を表し、該アルキレン基中の1つ以上のメチレン基は酸素原子および硫黄原子が相互に直接結合することなく、酸素原子、硫黄原子、-CO-、-OCO-、-COO-または-CH=CH-で置換されていてもよい。
 連鎖移動剤の添加量は、ナノ結晶含有組成物に含まれる光重合性モノマーの総量に対して、0.1~10質量%であることが好ましく、1.0~5質量%であることがより好ましい。
1-8-5.分散助剤
 分散助剤としては、例えば、フタルイミドメチル誘導体、フタルイミドスルホン酸誘導体、フタルイミドN-(ジアルキルアミノ)メチル誘導体、フタルイミドN-(ジアルキルアミノアルキル)スルホン酸アミド誘導体のような有機顔料誘導体等が挙げられる。これらの分散助剤は、1種を単独で使用しても、2種以上を併用してもよい。
1-8-6.熱可塑性樹脂
 熱可塑性樹脂としては、例えば、ウレタン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、スチレンマレイン酸系樹脂、スチレン無水マレイン酸系樹脂、ポリエステルアクリレート系樹脂等が挙げられる。
1-8-7.増感剤
 増感剤としては、光重合性モノマーと付加反応を起こさないアミン類を使用することができる。かかる増感剤としては、例えば、トリメチルアミン、メチルジメタノールアミン、トリエタノールアミン、p-ジエチルアミノアセトフェノン、p-ジメチルアミノ安息香酸エチル、p-ジメチルアミノ安息香酸イソアミル、N,N-ジメチルベンジルアミン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン等が挙げられる。
1-9.ナノ結晶含有組成物の調製方法
 以上のようなナノ結晶含有組成物は、上述の発光微粒子910、90を、光重合性モノマーおよび光重合開始剤等を混合した溶液中に分散させて調製することができる。発光微粒子910、90の分散には、例えば、ボールミル、サンドミル、ビーズミル、3本ロールミル、ペイントコンディショナー、アトライター、分散攪拌機、超音波等の分散機を使用することにより行うことができる。
 ナノ結晶含有組成物中の発光微粒子910、91の含有量は、1~50質量%であることが好ましく、1~45質量%であることがより好ましく、1~40質量%であることがさらに好ましい。ナノ結晶含有組成物中の発光微粒子910、90の含有量を前記範囲に設定することにより、当該ナノ結晶含有モノマーを用いて構成したインク組成物をインクジェット印刷法により吐出する場合に、その吐出安定性をより向上させることができる。また、無被覆発光微粒子910又は無機被覆発光微粒子91同士が凝集し難くなり、得られる発光層(光変換層)の外部量子効率を高めることもできる。
 本発明のナノ結晶含有組成物は、インクジェットプリンター、フォトリソグラフィー、スピンコーター等、種々の方法によって基板上に被膜を形成し、この被膜を加熱して硬化させることにより硬化物を得ることができる。中でも、本発明のナノ結晶含有組成物は、インクジェットプリンターで使用されるインク組成物として、特に好適である。
 インク組成物としてのナノ結晶含有組成物の粘度は、インクジェット印刷時の吐出安定性の観点から、2~20mPa・sの範囲であることが好ましく、5~15mPa・sの範囲であることがより好ましく、7~12mPa・sの範囲であることがさらに好ましい。この場合、吐出ヘッドのインク吐出孔におけるナノ結晶含有組成物のメニスカス形状が安定するため、インクの吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易となる。また、インク吐出孔からインクを円滑に吐出させることができる。なお、ナノ結晶含有組成物の粘度は、例えば、E型粘度計によって測定することができる。
 また、インク組成物としてのナノ結晶含有組成物の表面張力は、インクジェット印刷法に適した表面張力であることが好ましい。表面張力の具体的な値は、20~40mN/mの範囲であることが好ましく、25~35mN/mの範囲であることがより好ましい。表面張力を前記範囲に設定することにより、インクの液滴の飛行曲がりの発生を抑制することができる。なお、飛行曲がりとは、インクをインク吐出孔から吐出させたとき、インクの着弾位置が目標位置に対して30μm以上のズレることをいう。
2.ナノ結晶含有組成物を用いて形成した発光素子
 上述のナノ結晶含有組成物は、例えば、インクジェットプリンター、フォトリソグラフィー、スピンコーター等、種々の方法によって基板上に被膜を形成し、この被膜を加熱して硬化させることにより硬化物を得ることができる。以下、インク組成物としてのナノ結晶含有組成物を用いて、青色有機LEDバックライトを備えた発光素子のカラーフィルタ画素部を形成する場合を例に挙げて説明する。
 図3は、本発明の発光素子の一実施形態を示す断面図であり、図4および図5は、それぞれアクティブマトリックス回路の構成を示す概略図である。なお、図3では、便宜上、各部の寸法およびそれらの比率を誇張して示し、実際とは異なる場合がある。また、以下に示す材料、寸法等は一例であって、本発明は、それらに限定されず、その要旨を変更しない範囲で適宜変更することが可能である。以下では、説明の都合上、図3の上側を「上側」または「上方」と、上側を「下側」または「下方」と言う。また、図3では、図面が煩雑になることを避けるため、断面を示すハッチングの記載を省略している。
 図3に示すように、発光素子100は、下基板1と、EL光源部200と、充填層10と、保護層11と、上述の発光微粒子を含有し発光層として作用する光変換層12と、上基板13とをこの順に積層した構造を備える。光変換層12に含有される発光微粒子は、無機被覆層も樹脂被覆層も備えていない無被覆発光微粒子910であってもよく、無機被覆発光微粒子90であってもよい。EL光源部200は、陽極2と、複数の層からなるEL層14と、陰極8と、図示しない偏光板と、封止層9とを順に備える。EL層14は、陽極2側から順次積層された正孔注入層3と、正孔輸送層4と、発光層5と、電子輸送層6と、電子注入層7とを含む。
 かかる発光素子100は、EL光源部200(EL層14)から発せられた光を光変換層12によって吸収及び再放出するか或いは透過させ、上基板13側から外部に取り出すフォトルミネセンス素子である。このとき、光変換層12に含まれる発光微粒子910、又は90によって所定の色の光に変換される。以下、各層について順次説明する。
2-1.下基板1および上基板13
 下基板1および上基板13は、それぞれ発光素子100を構成する各層を支持および/または保護する機能を有する。発光素子100がトップエミッション型である場合、上基板13が透明基板で構成される。一方、発光素子100がボトムエミッション型である場合、下基板1が透明基板で構成される。ここで、透明基板とは、可視光領域の波長の光を透過可能な基板を意味し、透明には、無色透明、着色透明、半透明が含まれる。
 透明基板としては、例えば、石英ガラス、パイレックス(登録商標)ガラス、合成石英板等の透明なガラス基板、石英基板、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリイミド(PI)、ポリカーボネート(PC)等で構成されるプラスチック基板(樹脂基板)、鉄、ステンレス、アルミニウム、銅等で構成される金属基板、シリコン基板、ガリウム砒素基板等を用いることができる。これらの中でも、ガラス中にアルカリ成分を含まない無アルカリガラスからなるガラス基板を用いることが好ましい。具体的には、コーニング社製の「7059ガラス」、「1737ガラス」、「イーグル200」及び「イーグルXG」、旭硝子社製の「AN100」、日本電気硝子社製の「OA-10G」及び「OA-11」が好適である。これらは、熱膨脹率の小さい素材であり寸法安定性及び高温加熱処理における作業性に優れる。また、発光素子100に可撓性を付与する場合には、下基板1および上基板13には、それぞれ、プラスチック基板(高分子材料を主材料として構成された基板)、比較的厚さの小さい金属基板が選択される。
 下基板1および上基板13の厚さは、それぞれ特に限定されないが、100~1,000μmの範囲であることが好ましく、300~800μmの範囲であることがより好ましい。
 なお、発光素子100の使用形態に応じて、下基板1および上基板13のいずれか一方または双方を省略することもできる。
 図4に示すように、下基板1上には、R、G、Bで示される画素電極PEを構成する陽極2への電流の供給を制御する信号線駆動回路C1および走査線駆動回路C2と、これらの回路の作動を制御する制御回路C3と、信号線駆動回路C1に接続された複数の信号線706と、走査線駆動回路C2に接続された複数の走査線707とを備えている。また、各信号線706と各走査線707との交差部近傍には、図5に示すように、コンデンサ701と、駆動トランジスタ702と、スイッチングトランジスタ708とが設けられている。
 コンデンサ701は、一方の電極が駆動トランジスタ702のゲート電極に接続され、他方の電極が駆動トランジスタ702のソース電極に接続されている。駆動トランジスタ702は、ゲート電極がコンデンサ701の一方の電極に接続され、ソース電極がコンデンサ701の他方の電極および駆動電流を供給する電源線703に接続され、ドレイン電極がEL光源部200の陽極4に接続されている。
 スイッチングトランジスタ708は、ゲート電極が走査線707に接続され、ソース電極が信号線706に接続され、ドレイン電極が駆動トランジスタ702のゲート電極に接続されている。また、本実施形態において、共通電極705は、EL光源部200の陰極8を構成している。なお、駆動トランジスタ702およびスイッチングトランジスタ708は、例えば、薄膜トランジスタ等で構成することができる。
 走査線駆動回路C2は、走査線707を介して、スイッチングトランジスタ708のゲート電極に走査信号に応じた走査電圧を供給または遮断し、スイッチングトランジスタ708のオンまたはオフする。これにより、走査線駆動回路C2は、信号線駆動回路C1が信号電圧を書き込むタイミングを調整する。一方、信号線駆動回路C1は、信号線706およびスイッチングトランジスタ708を介して、駆動トランジスタ702のゲート電極に映像信号に応じた信号電圧を供給または遮断し、EL光源部200に供給する信号電流の量を調整する。
 したがって、走査線駆動回路C2から走査電圧がスイッチングトランジスタ708のゲート電極に供給され、スイッチングトランジスタ708がオンすると、信号線駆動回路C1から信号電圧がスイッチングトランジスタ708のゲート電極に供給される。このとき、この信号電圧に対応したドレイン電流が電源線703から信号電流としてEL光源部200に供給される。その結果、EL光源部200は、供給される信号電流に応じて発光する。
2-2.EL光源部200
2-2-1.陽極2
 陽極2は、外部電源から発光層5に向かって正孔を供給する機能を有する。陽極2の構成材料(陽極材料)としては、特に限定されないが、例えば、金(Au)のような金属、ヨウ化銅(CuI)のようなハロゲン化金属、インジウムスズ酸化物(ITO)、酸化スズ(SnO)、酸化亜鉛(ZnO)のような金属酸化物等が挙げられる。これらは、1種を単独で使用しても、2種以上を併用してもよい。
 陽極2の厚さは、特に制限されないが、10~1,000nmの範囲であることが好ましく、10~200nmの範囲であることがより好ましい。
 陽極2は、例えば、真空蒸着法やスパッタリング法のような乾式成膜法により形成することができる。この際、フォトリソグラフィー法やマスクを用いた方法により、所定のパターンを有する陽極2を形成してもよい。
2-2-2.陰極8
 陰極8は、外部電源から発光層5に向かって電子を供給する機能を有する。陰極8の構成材料(陰極材料)としては、特に限定されないが、例えば、リチウム、ナトリウム、マグネシウム、アルミニウム、銀、ナトリウム-カリウム合金、マグネシウム/アルミニウム混合物、マグネシウム/銀混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、希土類金属等が挙げられる。これらは、1種を単独で使用しても、2種以上を併用してもよい。
 陰極8の厚さは、特に限定されないが、0.1~1,000nmの範囲であることが好ましく、1~200nmの範囲であることがより好ましい。
 陰極3は、例えば、蒸着法やスパッタリング法のような乾式成膜法により形成することができる。
2-2-3.正孔注入層3
 正孔注入層3は、陽極2から供給された正孔を受け取り、正孔輸送層4に注入する機能を有する。なお、正孔注入層3は、必要に応じて設けるようにすればよく、省略することもできる。
 正孔注入層3の構成材料(正孔注入材料)としては、特に限定されないが、例えば、銅フタロシアニンのようなフタロシアニン化合物;4,4’,4’’-トリス[フェニル(m-トリル)アミノ]トリフェニルアミンのようなトリフェニルアミン誘導体;1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノ-キノジメタンのようなシアノ化合物;酸化バナジウム、酸化モリブデンのような金属酸化物;アモルファスカーボン;ポリアニリン(エメラルディン)、ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)(PEDOT-PSS)、ポリピロールのような高分子等が挙げられる。これらの中でも、正孔注入材料としては、高分子であることが好ましく、PEDOT-PSSであることがより好ましい。また、上述の正孔注入材料は、1種を単独で使用しても、2種以上を併用してもよい。
 正孔注入層3の厚さは、特に限定されないが、0.1~500mmの範囲であることが好ましく、1~300nmの範囲であることがより好ましく、2~200nmの範囲であることがさらに好ましい。正孔注入層3は、単層構成であっても、2層以上が積層された積層構成であってもよい。
 このような正孔注入層4は、湿式成膜法または乾式成膜法により形成することができる。正孔注入層3を湿式成膜法で形成する場合には、通常、上述の正孔注入材料を含有するインクを各種塗布法により塗布し、得られた塗膜を乾燥する。塗布法としては、特に限定されないが、例えば、インクジェット印刷法(液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。一方、正孔注入層3を乾式成膜法で形成する場合には、真空蒸着法、スパッタリング法等を好適に用いることができる。
2-2-4.正孔輸送層4
 正孔輸送層4は、正孔注入層3から正孔を受け取り、発光層6まで効率的に輸送する機能を有する。また、正孔輸送層4は、電子の輸送を防止する機能を有していてもよい。なお、正孔輸送層4は、必要に応じて設けるようにすればよく、省略することもできる。
 正孔輸送層4の構成材料(正孔輸送材料)としては、特に限定されないが、例えば、TPD(N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-1,1’-ビフェニル-4,4’ジアミン)、α-NPD(4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル)、m-MTDATA(4、4’,4’’-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン)のような低分子トリフェニルアミン誘導体;ポリビニルカルバゾール;ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン](poly-TPA)、ポリフルオレン(PF)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン(Poly-TPD)、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-コ-(4,4’-(N-(sec-ブチルフェニル)ジフェニルアミン))(TFB)、ポリフェニレンビニレン(PPV)のような共役系化合物重合体;およびこれらのモノマー単位を含む共重合体等が挙げられる。
 これらの中でも、正孔輸送材料としては、トリフェニルアミン誘導体、置換基が導入されたトリフェニルアミン誘導体を重合することにより得られた高分子化合物であることが好ましく、置換基が導入されたトリフェニルアミン誘導体を重合することにより得られた高分子化合物であることがより好ましい。また、上述の正孔輸送材料は、1種を単独で使用しても、2種以上を併用してもよい。
 正孔輸送層4の厚さは、特に限定されないが、1~500nmの範囲であることが好ましく、5~300nmの範囲であることがより好ましく、10~200nmの範囲であることがさらに好ましい。正孔輸送層4は、単層構成であっても、2層以上が積層された積層構成であってもよい。
 このような正孔輸送層4は、湿式成膜法または乾式成膜法により形成することができる。正孔輸送層4を湿式成膜法で形成する場合には、通常、上述の正孔輸送材料を含有するインクを各種塗布法により塗布し、得られた塗膜を乾燥する。塗布法としては、特に限定されないが、例えば、インクジェット印刷法(液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。一方、正孔輸送層4を乾式成膜法で形成する場合には、真空蒸着法、スパッタリング法等を好適に用いることができる。
2-2-5.電子注入層7
 電子注入層7は、陰極8から供給された電子を受け取り、電子輸送層6に注入する機能を有する。なお、電子注入層7は、必要に応じて設けるようにすればよく、省略することもできる。
 電子注入層7の構成材料(電子注入材料)としては、特に制限されないが、例えば、LiO、LiO、NaS、NaSe、NaOのようなアルカリ金属カルコゲナイド;CaO、BaO、SrO、BeO、BaS、MgO、CaSeのようなアルカリ土類金属カルコゲナイド;CsF、LiF、NaF、KF、LiCl、KCl、NaClのようなアルカリ金属ハライド;8-ヒドロキシキノリノラトリチウム(Liq)のようなアルカリ金属塩;CaF、BaF、SrF、MgF、BeFのようなアルカリ土類金属ハライド等が挙げられる。これらの中でも、アルカリ金属カルコゲナイド、アルカリ土類金属ハライド、アルカリ金属塩であることが好ましい。また、上述の電子注入材料は、1種を単独で使用しても、2種以上を併用してもよい。
 電子注入層7の厚さは、特に限定されないが、0.1~100nmの範囲であることが好ましく、0.2~50nmの範囲であることがより好ましく、0.5~10nmの範囲であることがさらに好ましい。電子注入層7は、単層構成であっても、2層以上が積層された積層構成であってもよい。
 このような電子注入層7は、湿式成膜法または乾式成膜法により形成することができる。電子注入層7を湿式成膜法で形成する場合には、通常、上述の電子注入材料を含有するインクを各種塗布法により塗布し、得られた塗膜を乾燥する。塗布法としては、特に限定されないが、例えば、インクジェット印刷法(液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。一方、電子注入層7を乾式成膜法で形成する場合には、真空蒸着法、スパッタリング法等が適用されうる。
2-2-6.電子輸送層8
 電子輸送層8は、電子注入層7から電子を受け取り、発光層5まで効率的に輸送する機能を有する。また、電子輸送層8は、正孔の輸送を防止する機能を有していてもよい。なお、電子輸送層8は、必要に応じて設けるようにすればよく、省略することもできる。
 電子輸送層8の構成材料(電子輸送材料)としては、特に制限されないが、例えば、トリス(8-キノリラート)アルミニウム(Alq3)、トリス(4-メチル-8-キノリノラート)アルミニウム(Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム(BeBq2)、ビス(2-メチル-8-キノリノラート)(p-フェニルフェノラート)アルミニウム(BAlq)、ビス(8-キノリノラート)亜鉛(Znq)のようなキノリン骨格またはベンゾキノリン骨格を有する金属錯体;ビス[2-(2’-ヒドロキシフェニル)ベンズオキサゾラート]亜鉛(Zn(BOX)2)のようなベンズオキサゾリン骨格を有する金属錯体;ビス[2-(2’-ヒドロキシフェニル)ベンゾチアゾラート]亜鉛(Zn(BTZ)2)のようなベンゾチアゾリン骨格を有する金属錯体;2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(PBD)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(TAZ)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(OXD-7)、9-[4-(5-フェニル-1,3,4-オキサジアゾール-2-イル)フェニル]カルバゾール(CO11)のようなトリまたはジアゾール誘導体;2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(TPBI)、2-[3-(ジベンゾチオフェン-4-イル)フェニル]-1-フェニル-1H-ベンゾイミダゾール(mDBTBIm-II)のようなイミダゾール誘導体;キノリン誘導体;ペリレン誘導体;4,7-ジフェニル-1,10-フェナントロリン(BPhen)のようなピリジン誘導体;ピリミジン誘導体;トリアジン誘導体;キノキサリン誘導体;ジフェニルキノン誘導体;ニトロ置換フルオレン誘導体;酸化亜鉛(ZnO)、酸化チタン(TiO)のような金属酸化物等が挙げられる。これらの中でも、電子輸送材料としては、イミダゾール誘導体、ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体、金属酸化物(無機酸化物)であることが好ましい。また、上述の電子輸送材料は、1種を単独で使用しても、2種以上を併用してもよい。
 電子輸送層7の厚さは、特に限定されないが、5~500nmの範囲であることが好ましく、5~200nmの範囲であることがより好ましい。電子輸送層6は、単層であっても、2以上が積層されたものであってもよい。
 このような電子輸送層7は、湿式成膜法または乾式成膜法により形成することができる。電子輸送層6を湿式成膜法で形成する場合には、通常、上述の電子輸送材料を含有するインクを各種塗布法により塗布し、得られた塗膜を乾燥する。塗布法としては、特に限定されないが、例えば、インクジェット印刷法(液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。一方、電子輸送層6を乾式成膜法で形成する場合には、真空蒸着法、スパッタリング法等が適用され得る。
2-2-7.発光層5
 発光層5は、発光層5に注入された正孔および電子の再結合により生じるエネルギーを利用して発光を生じさせる機能を有する。本実施形態の発光層5は、400~500nmの範囲の波長の青色光を発し、より好ましくは420~480nmの範囲である。
 発光層5は、発光材料(ゲスト材料またはドーパント材料)およびホスト材料を含むことが好ましい。この場合、ホスト材料と発光材料との質量比は、特に制限されないが、10:1~300:1の範囲であることが好ましい。発光材料には、一重項励起エネルギーを光に変換可能な化合物または三重項励起エネルギーを光に変換可能な化合物を使用することができる。また、発光材料としては、有機低分子蛍光材料、有機高分子蛍光材料および有機燐光材料からなる群から選択される少なくとも1種を含むことが好ましい。
 一重項励起エネルギーを光に変換可能な化合物としては、蛍光を発する有機低分子蛍光材料または有機高分子蛍光材料が挙げられる。
 有機低分子蛍光材料としては、アントラセン構造、テトラセン構造、クリセン構造、フェナントレン構造、ピレン構造、ペリレン構造、スチルベン構造、アクリドン構造、クマリン構造、フェノキサジン構造またはフェノチアジン構造を有する化合物が好ましい。
 有機低分子蛍光材料の具体例としては、例えば、5,6-ビス[4-(10-フェニル-9-アントリル)フェニル]-2,2’-ビピリジン、5,6-ビス[4’-(10-フェニル-9-アントリル)ビフェニル-4-イル]-2,2’-ビピリジン(、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン、4-(9H-カルバゾール-9-イル)-4’-(9,10-ジフェニル-2-アントリル)トリフェニルアミン、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン、4-[4-(10-フェニル-9-アントリル)フェニル]-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン、ペリレン、2,5,8,11-テトラ(tert-ブチル)ペリレン、N,N’-ジフェニル-N,N’-ビス[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]ピレン-1,6-ジアミン、N,N’-ビス(3-メチルフェニル)-N,N’-ビス[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]-ピレン-1,6-ジアミン、N,N’-ビス(ジベンゾフラン-2-イル)-N,N’-ジフェニルピレン-1,6-ジアミン、N,N’-ビス(ジベンゾチオフェン-2-イル)-N,N’-ジフェニルピレン-1,6-ジアミン、N,N’’-(2-tert-ブチルアントラセン-9,10-ジイルジ-4,1-フェニレン)ビス[N,N’,N’-トリフェニル-1,4-フェニレンジアミン]、N,9-ジフェニル-N-[4-(9,10-ジフェニル-2-アントリル)フェニル]-9H-カルバゾール-3-アミン、N-[4-(9,10-ジフェニル-2-アントリル)フェニル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン、N,N,N’,N’,N’’,N’’,N’’’,N’’’-オクタフェニルジベンゾ[g,p]クリセン-2,7,10,15-テトラアミン、クマリン30、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン、N-(9,10-ジフェニル-2-アントリル)-N,N’,N’-トリフェニル-1,4-フェニレンジアミン、N,N,9-トリフェニルアントラセン-9-アミン、クマリン6、クマリン545T、N,N’-ジフェニルキナクリドン、ルブレン、5,12-ビス(1,1’-ビフェニル-4-イル)-6,11-ジフェニルテトラセン、2-(2-{2-[4-(ジメチルアミノ)フェニル]エテニル}-6-メチル-4H-ピラン-4-イリデン)プロパンジニトリル、2-{2-メチル-6-[2-(2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル、N,N,N’,N’-テトラキス(4-メチルフェニル)テトラセン-5,11-ジアミン、7,14-ジフェニル-N,N,N’,N’-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3,10-ジアミン、2-{2-イソプロピル-6-[2-(1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル、2-{2-tert-ブチル-6-[2-(1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル、2-(2,6-ビス{2-[4-(ジメチルアミノ)フェニル]エテニル}-4H-ピラン-4-イリデン)プロパンジニトリル、2-{2,6-ビス[2-(8-メトキシ-1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル、5,10,15,20-テトラフェニルビスベンゾ[5,6]インデノ[1,2,3-cd:1’,2’,3’-lm]ペリレン等が挙げられる。
 有機高分子蛍光材料の具体例としては、例えば、フルオレン誘導体に基づく単位からなるホモポリマー、フルオレン誘導体に基づく単位とテトラフェニルフェニレンジアミン誘導体に基づく単位とからなるコポリマー、タ―フェニル誘導体に基づく単位からなるホモポリマー、ジフェニルベンゾフルオレン誘導体に基づく単位からなるホモポリマー等が挙げられる。
 三重項励起エネルギーを光に変換可能な化合物としては、燐光を発する有機燐光材料が好ましい。有機燐光材料の具体例としては、例えば、イリジウム、ロジウム、白金、ルテニウム、オスミウム、スカンジウム、イットリウム、ガドリニウム、パラジウム、銀、金、アルミニウムからなる群から選択される少なくとも1種の金属原子を含む金属錯体が挙げられる。中でも、有機燐光材料としては、イリジウム、ロジウム、白金、ルテニウム、オスミウム、スカンジウム、イットリウム、ガドリニウムおよびパラジウムからなる群から選択される少なくとも1種の金属原子を含む金属錯体が好ましく、イリジウム、ロジウム、白金およびルテニウムからなる群から選択される少なくとも1種の金属原子を含む金属錯体がより好ましく、イリジウム錯体または白金錯体がさらに好ましい。
 ホスト材料としては、発光材料のエネルギーギャップより大きいエネルギーギャップを有する化合物の少なくとも1種を使用することが好ましい。さらに、発光材料が燐光材料である場合、ホスト材料としては、発光材料の三重項励起エネルギー(基底状態と三重項励起状態とのエネルギー差)よりも三重項励起エネルギーの大きい化合物を選択することが好ましい。
 ホスト材料としては、例えば、トリス(8-キノリノラト)アルミニウム(III)、トリス(4-メチル-8-キノリノラト)アルミニウム(III)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)、ビス(8-キノリノラト)亜鉛(II)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)、バソフェナントロリン、バソキュプロイン、9-[4-(5-フェニル-1,3,4-オキサジアゾール-2-イル)フェニル]-9H-カルバゾール、9,10-ジフェニルアントラセン、N,N-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン、4-(10-フェニル-9-アントリル)トリフェニルアミン、N,9-ジフェニル-N-{4-[4-(10-フェニル-9-アントリル)フェニル]フェニル}-9H-カルバゾール-3-アミン、6,12-ジメトキシ-5,11-ジフェニルクリセン、9-[4-(10-フェニル-9-アントラセニル)フェニル]-9H-カルバゾール、3,6-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール、7-[4-(10-フェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール、6-[3-(9,10-ジフェニル-2-アントリル)フェニル]-ベンゾ[b]ナフト[1,2-d]フラン、9-フェニル-10-{4-(9-フェニル-9H-フルオレン-9-イル)ビフェニル-4’-イル}アントラセン、9,10-ビス(3,5-ジフェニルフェニル)アントラセン、9,10-ジ(2-ナフチル)アントラセン、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン、9,9’-ビアントリル、9,9’-(スチルベン-3,3’-ジイル)ジフェナントレン、9,9’-(スチルベン-4,4’-ジイル)ジフェナントレン、1,3,5-トリ(1-ピレニル)ベンゼン、5,12-ジフェニルテトラセンまたは5,12-ビス(ビフェニル-2-イル)テトラセン等が挙げられる。これらのホスト材料は、1種を単独で使用しても、2種以上を併用してもよい。
 発光層5の厚さは、特に限定されないが、1~100nmの範囲であることが好ましく、1~50nmの範囲であることがより好ましい。
 このような発光層5は、湿式成膜法または乾式成膜法により形成することができる。発光層5を湿式成膜法で形成する場合には、通常、上述の発光材料およびホスト材料を含有するインクを各種塗布法により塗布し、得られた塗膜を乾燥する。塗布法としては、特に限定されないが、例えば、インクジェット印刷法(液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。一方、発光層5を乾式成膜法で形成する場合には、真空蒸着法、スパッタリング法等が適用され得る。
 なお、EL光源部200は、さらに、例えば、正孔注入層3、正孔輸送層4および発光層5を区画するバンク(隔壁)を有していてもよい。バンクの高さは、特に限定されないが、0.1~5μmの範囲であることが好ましく、0.2~4μmの範囲であることがより好ましく、0.2~3μmの範囲であることがさらに好ましい。
 バンクの開口の幅は、10~200μmの範囲であることが好ましく、30~200μmの範囲であることがより好ましく、50~100μmの範囲であることがさらに好ましい。バンクの開口の長さは、10~400μmの範囲であることが好ましく、20~200μmの範囲であることがより好ましく、50~200μmの範囲であることがさらに好ましい。また、バンクの傾斜角度は、10~100°の範囲であることが好ましく、10~90°の範囲であることがより
好ましく、10~80°の範囲であることがさらに好ましい。
2-3.光変換層12
 光変換層12は、EL光源部200から発せられた光を変換して再発光するか、或いは、EL光源部200から発せられた光を透過する。図3に示すように、画素部20として、前記範囲の波長の光を変換して赤色光を発する第1の画素部20aと、前記範囲の波長の光を変換して緑色光を発する第2の画素部20bと、前記範囲の波長の光を透過する第3の画素部20cとを有している。複数の第1の画素部20a、第2の画素部20b及び第3の画素部20cが、この順に繰り返すように格子状に配列されている。そして、隣り合う画素部の間、すなわち、第1の画素部20aと第2の画素部20bとの間、第2の画素部20bと第3の画素部20cとの間、第3の画素部20cと第1の画素部20aとの間に、光を遮蔽する遮光部30が設けられている。言い換えれば、これらの隣り合う画素部同士は、遮光部30によって離間されている。なお、第1の画素部20aおよび第2の画素部20bは、それぞれの色に対応した色材を含んでもよい。
 第1の画素部20a及び第2の画素部20bは、それぞれ上述した実施形態のナノ結晶含有組成物の硬化物を含む。硬化物は、発光微粒子90と硬化成分とを必須として含有し、さらに、光を散乱させて外部へ確実に取り出すために光散乱粒子を含むことが好ましい。硬化成分は、熱硬化性樹脂の硬化物であり、例えばエポキシ基を含有する樹脂の重合によって得られる硬化物である。すなわち、第1の画素部20aは、第1の硬化成分22aと、第1の硬化成分22a中にそれぞれ分散された第1の発光微粒子90aおよび第1の光散乱粒子21aとを含む。同様に、第2の画素部20bは、第2の硬化成分22bと、第2の硬化成分22b中にそれぞれ分散された第1の発光微粒子90b及び第1の光散乱粒子21bとを含む。第1の画素部20a及び第2の画素部20bにおいて、第1の硬化成分22aと第2の硬化成分22bとは同一であっても異なっていてもよく、第1の光散乱性粒子22aと第2の光散乱性粒子22bとは同一であっても異なっていてもよい。
 第1の発光微粒子90aは、420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する、赤色発光微粒子である。すなわち、第1の画素部20aは、青色光を赤色光に変換するための赤色画素部と言い換えてよい。また、第2の発光微粒子90bは、420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する、緑色発光微粒子である。すなわち、第2の画素部20bは、青色光を緑色光に変換するための緑色画素部と言い換えてよい。
 ナノ結晶含有組成物の硬化物を含む画素部20a、20bにおける発光微粒子90の含有量は、外部量子効率の向上効果により優れる観点及び優れた発光強度が得られる観点から、ナノ結晶含有組成物の硬化物の全質量を基準として、好ましくは1質量%以上である。同様の観点から、発光微粒子90の含有量は、ナノ結晶含有組成物の硬化物の全質量を基準として、5質量%以上であってもよく、10質量%以上であってもよく、15質量%以上であってもよい。発光微粒子90の含有量は、画素部20a、20bの信頼性に優れる観点及び優れた発光強度が得られる観点から、ナノ結晶含有組成物の全質量を基準として、好ましくは40質量%以下である。同様の観点から、発光性粒子90の含有量は、ナノ結晶含有組成物の硬化物の全質量を基準として、30質量%以下であってもよく、25質量%以下であってもよく、20質量%以上であってもよい。
ナノ結晶含有組成物の硬化物を含む画素部20a、20bにおける光散乱性粒子21a、21bの含有量は、外部量子効率の向上効果により優れる観点から、ナノ結晶含有組成物の硬化物の全質量を基準として、0.1質量%以上であってよく、1質量%以上であってもよく、5質量%以上であってもよく、7質量%以上であってもよく、10質量%以上であってもよく、12質量%以上であってもよい。光散乱性粒子21a、21bの含有量は、外部量子効率の向上効果により優れる観点及び画素部20の信頼性に優れる観点から、ナノ結晶含有組成物の硬化物の全質量を基準として、60質量%以下であってよく、50質量%以下であってもよく、40質量%以下であってもよく、30質量%以下であってもよく、25質量%以下であってもよく、20質量%以下であってもよく、15質量%以下であってもよい。
 第3の画素部20cは、420~480nmの範囲の波長の光に対し30%以上の透過率を有する。そのため、第3の画素部20cは、420~480nmの範囲の波長の光を発する光源を用いる場合に、青色画素部として機能する。第3の画素部20cは、例えば、上述の熱硬化性樹脂を含有する組成物の硬化物を含む。硬化物は、第3の硬化成分22ccを含有する。第3の硬化成分22cは、熱硬化性樹脂の硬化物であり、具体的には、エポキシ基を含有する樹脂の重合によって得られる硬化物である。すなわち、第3の画素部20cは、第3の硬化成分22cを含む。第3の画素部20cが上述の硬化物を含む場合、熱硬化性樹脂を含有する組成物は、420~480nmの範囲の波長の光に対する透過率が30%以上となる限りにおいて、上述のナノ結晶含有組成物に含有される成分のうち、熱硬化性樹脂、硬化剤、溶剤以外の成分を更に含有していてもよい。なお、第3の画素部20cの透過率は、顕微分光装置により測定することができる。
 画素部(第1の画素部20a、第2の画素部20b及び第3の画素部20c)の厚さは、特に限定されないが、例えば、1μm以上であってよく、2μm以上であってもよく、3μm以上であってもよい。画素部(第1の画素部20a、第2の画素部20b及び第3の画素部20c)の厚さは、例えば、30μm以下であってよく、25μm以下であってもよく、20μm以下であってもよい。
 以上の第1~3の画素部20a~20cを備える光変換層12は、湿式成膜法により形成した塗膜を乾燥、加熱して硬化させることより形成することができる。第1の画素部20a及び第2の画素部20bは、本発明のナノ結晶含有組成物を用いて形成することができる。一方、第3の画素部20cは、当該ナノ結晶含有組成物に含まれる発光微粒子90を含まない樹脂組成物を用いて形成することができる。
 以下、本発明のナノ結晶含有組成物を用いたインク組成物を用いて、光変換層12としての塗膜を形成する方法について説明する。塗膜を得るための塗布法としては、特に限定されないが、例えば、インクジェット印刷法(ピエゾ方式またはサーマル方式の液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。ここで、ノズルプリント印刷法とは、インク組成物をノズル孔から液柱としてストライプ状に塗布する方法である。中でも、塗布法としては、インクジェット印刷法(特に、ピエゾ方式の液滴吐出法)が好ましい。これにより、インク組成物を吐出する際の熱負荷を小さくすることができ、発光微粒子90の熱による劣化を防ぐことができる。
 インクジェット印刷法の条件は、次のように設定することが好ましい。インク組成物の吐出量は、特に限定されないが、1~50pL/回であることが好ましく、1~30pL/回であることがより好ましく、1~20pL/回であることがさらに好ましい。
 また、ノズル孔の開口径は、5~50μmの範囲であることが好ましく、10~30μmの範囲であることがより好ましい。これにより、ノズル孔の目詰まりを防止しつつ、インク組成物の吐出精度を高めることができる。
 塗膜を形成する際の温度は、特に限定されないが、10~50℃の範囲であることが好ましく、15~40℃の範囲であることがより好ましく、15~30℃の範囲であることがさらに好ましい。かかる温度で液滴を吐出するようにすれば、インク組成物中に含まれる各種成分の結晶化を抑制することができる。
 また、塗膜を形成する際の相対湿度も、特に限定されないが、0.01ppm~80%の範囲であることが好ましく、0.05ppm~60%の範囲であることがより好ましく、0.1ppm~15%の範囲であることがさらに好ましく、1ppm~1%の範囲であることが特に好ましく、5~100ppmの範囲であることが最も好ましい。相対湿度が上記下限値以上であると、塗膜を形成する際の条件の制御が容易となる。一方、相対湿度が上記上限値以下であると、得られる光変換層12に悪影響を及ぼし得る塗膜に吸着する水分量を低減することができる。
 得られた塗膜の乾燥は、室温(25℃)で放置して行っても、加熱することにより行ってもよいが、生産性の観点から加熱することによって行うのが好ましい。乾燥を加熱により行う場合、乾燥温度は特に限定されないが、インク組成物に使用される有機溶剤の沸点及び蒸気圧を考慮した温度とすることが好ましい。乾燥温度は、塗膜中の有機溶剤を除去するプリベーク工程として、50~130℃であることが好ましく、60~120℃であることがより好ましく、70~110℃であることが特に好ましい。乾燥温度が50℃以下であると有機溶剤が除去できず、一方、130℃以上であると有機溶剤の除去および塗膜の硬化が同時に起こるため、硬化した塗膜の外観は著しく劣ることとなり、好ましくない。また、乾燥は、減圧下で行うことが好ましく、0.001~100Paの減圧下で行うことがより好ましい。さらに、乾燥時間は、1~30分間であることが好ましく、1~15分間であることがより好ましく、1~10分間であることが特に好ましい。このような乾燥条件で塗膜を乾燥することにより、有機溶剤が確実に塗膜中から除去され、得られる光変換層12の外部量子効率をより向上させることができる。
 本発明のインク組成物は、前記塗膜のプリベーク工程後にさらに加熱することにより完全に硬化させることができる。完全硬化させるための加熱温度は、150~260℃であることが好ましく、160~230℃であることがより好ましく、170~210℃であることが特に好ましい。
 また、完全硬化させるための加熱時間は、1~30分間であることが好ましく、1~15分間であることがより好ましく、1~10分間であることが特に好ましい。さらに、完全硬化させるための加熱は、空気中あるいは不活性ガス中で行うことができるが、塗膜の酸化を抑制するために、不活性ガス中で行うことがより好ましい。不活性ガスとしては、窒素、アルゴン、二酸化炭素等が挙げられる。このような加熱条件で塗膜を硬化させることにより、塗膜が完全に硬化できることから、得られる光変換層9の外部量子効率をより向上させることができる。
 本発明のインク組成物は、加熱による硬化の他に、活性エネルギー線(例えば、紫外線)の照射を併用することにより硬化させてもよい。照射源(光源)としては、例えば、水銀ランプ、メタルハライドランプ、キセノンランプ、LED等が使用される。
 照射する光の波長は、200nm以上であることが好ましく、440nm以下であることがより好ましい。また、光の照射量(露光量)は、10mJ/cm以上であることが好ましく、4000mJ/cm以下であることがより好ましい。
 上述したように、本発明のナノ結晶含有組成物は熱に対する安定性が優れることから、熱硬化後の成形体である画素部20においても、良好な発光を実現することができる。さらには、本発明の発光微粒子組成物は分散性に優れるため、発光微粒子910、90の分散性に優れ、且つ、平坦な画素部20を得ることができる。
 さらに、第1の画素部20a及び第2の画素部20bに含まれる発光微粒子90は、メタルハライドからなる半導体ナノ結晶を含むため、300~500nmの波長領域の吸収が大きい。そのため、第1の画素部20a及び第2の画素部20bにおいて、第1の画素部20a及び第2の画素部20bに入射した青色光が上基板13側へ透過する、すなわち、青色光が上基板13側へ漏れることを防ぐことができる。したがって、本発明の第1の画素部20a及び第2の画素部20bによれば、青色光が混色されることなく、色純度の高い赤色光及び緑色光を取り出すことができる。
 遮光部30は、隣り合う画素部20を離間して混色を防ぐ目的及び光源からの光漏れを防ぐ目的で設けられる、いわゆるブラックマトリックスである。遮光部30を構成する材料は、特に限定されず、クロム等の金属の他、バインダーポリマーにカーボン微粒子、金属酸化物、無機顔料、有機顔料等の遮光性粒子を含有させた樹脂組成物の硬化物等を用いることができる。ここで用いられるバインダーポリマーとしては、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ポリアクリルアミド、ポリビニルアルコール、ゼラチン、カゼイン、セルロース等の樹脂を1種又は2種以上混合したもの、感光性樹脂、O/Wエマルジョン型の樹脂組成物(例えば、反応性シリコーンをエマルジョン化したもの)などを用いることができる。遮光部30の厚さは、例えば、1μm以上であってよく、15μm以下であってよい。
 発光素子100は、トップエミッション型に代えて、ボトムエミッション型として構成することもできる。
 また、発光素子100は、EL光源部200に代えて、他の光源を使用することもできる。
 以上、本発明のナノ結晶含有組成物、インク組成物及びその製造方法、並びに、当該インク組成物を用いて製造した光変換層を備えた発光素子について説明したが、本発明は、上述した実施形態の構成に限定されるものではない。例えば、本発明の発光微粒子、発光微粒子分散体、ナノ結晶含有組成物、インク組成物および発光素子は、それぞれ、上述した実施形態の構成において、他の任意の構成を追加して有していてもよいし、同様の機能を発揮する任意の構成と置換されていてよい。また、本発明の発光微粒子の製造方法は、上述した実施形態の構成において、他の任意の目的の工程を有していてもよいし、同様の効果を発揮する任意の工程と置換されていてよい。
 以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例のみに限定されるものではない。実施例で用いた全ての材料は、アルゴンガスを導入して溶存酸素をアルゴンガスに置換したものである。酸化チタンは、混合前に、1mmHgの減圧下、2時間、120℃で加熱し、アルゴンガス雰囲気下で放冷したものである。実施例で用いた液状の材料は、混合前にあらかじめ、モレキュラーシーブス3Aで48時間以上脱水したものである。
<発光微粒子の調製>
(発光微粒子Aの調製)
 三口フラスコに炭酸セシウム(0.815g)、1-オクタデセン(40ml)、オレイン酸(2.5ml)を加え、真空下120℃で1時間乾燥させた後、150℃まで加熱してオレイン酸セシウムを調製した。
 別の三口フラスコに臭化鉛(II)(55mg)、1-オクタデセン(5ml)、オレイルアミン(0.5ml)、およびオレイン酸(0.5ml)を加え、真空下110℃で30分間加熱した後、アルゴン気流下180℃に昇温した。さらに、150℃で加熱中の上記オレイン酸セシウム溶液(0.8ml)をシリンジで加え、15秒反応させた後、氷浴で急冷した。
 得られた反応溶液に対して遠心分離(8000G×5分間)を行い、固形物を回収した。得られた固形物にトルエン(20ml)を添加して懸濁液を得た。この懸濁液に対して遠心分離(8000G×5分間)を行い、デカンテーションによって不純物を含む沈殿物を除き、上澄みのトルエン溶液を回収した。回収したトルエン溶液に酢酸エチル(20ml)を加え、固形物を再沈殿させることにより、発光微粒子Aを得た。得られた発光微粒子Aは、ペロブスカイト型結晶構造を有し発光を呈する三臭化鉛セシウム結晶の表面にオレイルアミン及びオレイン酸からなる配位子を備えたものであり、上述の無被覆発光微粒子910に相当する。発光微粒子Aの平均粒子径は10nmであった。発光微粒子Aの平均粒子径をNanotrac WaveII(Microtrac社製)によって測定したところ、平均10nmであった。
(発光微粒子Bの調製)
 N-1(1-アダマンチル)エチレンジアミン(東京化成工業株式会社製)のトルエン溶液(0.05M)を調製した。ナスフラスコに上記発光微粒子A、オレイン酸(50ml)、上記N-1(1-アダマンチル)エチレンジアミン溶液(2ml)を加え、1分間撹拌した。このとき、濃度が15mg/mLとなるように上記発光微粒子Aを加えた。得られた溶液に酢酸エチル(100ml)を加えた後、遠心分離(8000G×5分間)を行うことにより、発光微粒子Bを得た。発光微粒子Bは、ペロブスカイト型結晶構造を有し発光を呈する三臭化鉛セシウム結晶の表面にN-1(1-アダマンチル)エチレンジアミンからなる配位子を備えたものであり、上述の無被覆発光微粒子910に相当する。発光微粒子Bの平均粒子径は10nmであった。
(発光微粒子Cの調製)
 炭酸セシウム(0.81g)と、1-オクタデセン(40ml)と、オレイン酸(2.5ml)とを混合して混合液を得た。次に、この混合液を120℃で10分間、減圧乾燥した後、アルゴン雰囲気下に150℃で加熱した。これにより、セシウム-オレイン酸溶液を得た。
 一方、臭化鉛(II)(138.0mg)と1-オクタデセン(10mL)とを混合して混合液を得た。次に、この混合液を120℃で10分間、減圧乾燥した後、アルゴン雰囲気でこの混合液に3-アミノプロピルトリエトキシシラン(1ml)を添加して、混合液(1)を得た。
 その後、上記混合液(1)を140℃に昇温させた後、前記セシウム-オレイン酸溶液(1.3ml)を添加し、5秒間加熱撹拌することにより反応させた後、氷浴で冷却した。
 次いで、得られた反応液を大気下(23℃、湿度45%)で60分間撹拌した後、エタノール(20ml)を添加して懸濁液を得た。得られた懸濁液を遠心分離(3,000回転/分、5分間)して固形物を回収した。
 回収した固形物を16mlのヘキサンに添加することにより、発光微粒子Cのヘキサン分散液を得た。発光微粒子Cは、ペロブスカイト型結晶構造を有し発光を呈する三臭化鉛セシウム結晶の表面にオレイン酸からなる配位子、及び反応性基を有する3-アミノプロピルトリエトキシシランからなる配位子とを備え、さらにその反応性基が反応して図2のSiを含む無機被覆層91に相当するシリカ被覆層を備えた、上述の無機被覆発光微粒子90に相当する。発光微粒子Cの平均粒子径は10nmであり、無機被覆層の厚さは1nmであった。
<モノマー溶液の調製>
(モノマー溶液1)
 光重合性モノマーとしてのメタクリル酸1,2,2,6,6-ペンタメチル-4-ピペリジル(8.85質量部、東京化成工業株式会社製)を、ライトアクリレートDCP-A(0.5質量部、共栄社化学株式会社製)に混合し、室温で攪拌することにより均一溶解させ、モノマー溶液1を得た。
(モノマー溶液2)
 モノマー溶液1の調製方法において、光重合性モノマーであるメタクリル酸1,2,2,6,6-ペンタメチル-4-ピペリジルの代わりに、イソボニルメタクリレート(東京化成工業株式会社製)を用いた以外は、モノマー溶液1の調製方法と同様にして、モノマー溶液2を得た。
(モノマー溶液3)
 モノマー溶液1の調製方法において、光重合性モノマーであるメタクリル酸1,2,2,6,6-ペンタメチル-4-ピペリジルの代わりに、メタクリル酸ジシクロペンタニル(東京化成工業株式会社製)を用いた以外は、モノマー溶液1の調製方法と同様にして、モノマー溶液3を得た。
(モノマー溶液4)
 モノマー溶液1の調製方法において、光重合性モノマーであるメタクリル酸1,2,2,6,6-ペンタメチル-4-ピペリジルの代わりに、メタクリル酸1-アダマンチル(東京化成工業株式会社製)を用いた以外は、モノマー溶液1の調製方法と同様にして、モノマー溶液4を得た。
(モノマー溶液5)
 モノマー溶液1の調製方法において、光重合性モノマーであるメタクリル酸1,2,2,6,6-ペンタメチル-4-ピペリジルの代わりに、メタクリル酸2-メチル-2-アダマンチル(東京化成工業株式会社製)を用いた以外は、モノマー溶液1の調製方法と同様にして、モノマー溶液5を得た。
(モノマー溶液6)
 モノマー溶液1の調製方法において、光重合性モノマーであるメタクリル酸1,2,2,6,6-ペンタメチル-4-ピペリジルの代わりに、イソボニルメタクリレート(4.85質量部、東京化成工業株式会社製)、およびメタクリル酸1-アダマンチル(4.00質量部、東京化成工業株式会社製)を用いた以外は、モノマー溶液1の調製方法と同様にして、モノマー溶液6を得た。
(モノマー溶液7)
 モノマー溶液1の調製方法において、光重合性モノマーであるメタクリル酸1,2,2,6,6-ペンタメチル-4-ピペリジルの代わりに、ライトエステルL(0.30質量部、共栄社化学株式会社製)、およびメタクリル酸1-アダマンチル(8.55質量部、東京化成工業株式会社製)を用いた以外は、モノマー溶液1の調製方法と同様にして、モノマー溶液7を得た。
(モノマー溶液8)
 モノマー溶液1の調製方法において、光重合性モノマーであるメタクリル酸1,2,2,6,6-ペンタメチル-4-ピペリジルの代わりに、ライトエステルL(3.00質量部、共栄社化学株式会社製)、およびメタクリル酸1-アダマンチル(5.85質量部、東京化成工業株式会社製)を用いた以外は、モノマー溶液1の調製方法と同様にして、モノマー溶液8を得た。
(モノマー溶液9)
 モノマー溶液1の調製方法において、光重合性モノマーであるメタクリル酸1,2,2,6,6-ペンタメチル-4-ピペリジルの代わりに、ライトエステルL(8.85質量部、共栄社化学株式会社製)を用いた以外は、モノマー溶液1の調製方法と同様にして、モノマー溶液9を得た。
(モノマー溶液10)
 モノマー溶液1の調製方法において、光重合性モノマーであるメタクリル酸1,2,2,6,6-ペンタメチル-4-ピペリジルの代わりにイソボニルメタクリレート(8.85質量部、東京化成工業株式会社製)を用い、ライトアクリレートDCP-Aの代わりにTMPTA(0.5質量部、大阪有機化学工業株式会社製)を用いた以外は、モノマー溶液1の調製方法と同様にして、モノマー溶液10を得た。
(モノマー溶液11)
 モノマー溶液1の調製方法において、光重合性モノマーであるメタクリル酸1,2,2,6,6-ペンタメチル-4-ピペリジルの代わりにライトエステルL(8.85質量部、共栄社化学株式会社製)を用い、ライトアクリレートDCP-Aの代わりにTMPTA(0.5質量部、大阪有機化学工業株式会社製)を用いた以外は、モノマー溶液1の調製方法と同様にして、モノマー溶液11を得た。
(モノマー溶液12)
 モノマー溶液1の調製方法において、光重合性モノマーであるメタクリル酸1,2,2,6,6-ペンタメチル-4-ピペリジルの代わりにライトエステルPO-A(8.85質量部、共栄社化学株式会社製)を用いた以外は、モノマー溶液1の調製方法と同様にして、モノマー溶液12を得た。
<QD分散体の調製>
(実施例1)
 モノマー溶液1(0.935質量部)に、発光微粒子A(0.015質量部)を混合し、室温で撹拌して均一分散させた。得られた分散液を孔径5μmのフィルターでろ過することにより、ナノ結晶含有組成物としてのQD分散体1を得た。
(実施例2~8、10、40)
 QD分散体1の調製方法において、モノマー溶液1の代わりにモノマー溶液2~8、モノマー溶液10、及びモノマー溶液12をそれぞれ用いた以外は同様にして、QD分散体2~8、QD分散体10、及びQD分散体13を得た。
(実施例9)
 QD分散体1の調製方法において、モノマー溶液1の代わりにモノマー溶液9を用い、発光微粒子Aの代わりに発光微粒子Bを用いた以外は同様にして、QD分散体9を得た。
(実施例11)
 QD分散体1の調製方法において、モノマー溶液1の代わりにモノマー溶液11を用い、発光微粒子Aの代わりに発光微粒子Bを用いる以外は同様にして、QD分散体11を得た。
(実施例12)
 QD分散体1の調製方法において、モノマー溶液1の代わりにモノマー溶液4を用い、発光微粒子Aの代わりに発光微粒子Cを用いる以外は同様にして、QD分散体12を得た。
(比較例1)
 QD分散体1の調製方法において、モノマー溶液1の代わりにモノマー溶液9を用いた以外は同様にして、QD分散体C1を得た。
 下表に、実施例1~12のQD分散体1~12及び比較例1のQD分散体C1におけるモノマー溶液1~11及び発光微粒子A~Cの含有量を示す。なお、数値の単位は質量部である。
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
<開始剤を含むモノマー溶液の調製>
(モノマー溶液B1)
 モノマー溶液1の調製方法において、上述の光重合性モノマーに加えて、2種の光重合開始剤を添加した点と、室温に代えて60℃で撹拌した点以外は同様にして、光重合開始剤を含むモノマー溶液B1を得た。2種の光重合開始剤として、IGM Resin社製、「Omnirad TPO」を0.3質量部と、IGM Resin社製、「Omnirad 819」0.2質量部とを添加した。
(モノマー溶液B2~モノマー溶液B11、13)
 モノマー溶液B1の調製方法において、モノマー溶液1に代えてモノマー溶液2~モノマー溶液11を用いた以外は同様にして、光重合開始剤を含むモノマー溶液B2~モノマー溶液B11、及びモノマー溶液B13を得た。
(モノマー溶液B12)
 モノマー溶液B1の調製方法において、モノマー溶液1に代えてモノマー溶液2を用い、2種の光重合性開始剤に代えて、1種のみを添加した点以外は同様にして、光重合開始剤を含むモノマー溶液B12を得た。1種の光重合開始剤として、IGM Resin社製、「Omnirad TPO」を0.5質量部添加した。
 下表に、モノマー溶液B1~B12の含有量を示す。なお、表中の数値の単位は質量部である。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
<QD分散体Bの調製>
(QD分散体B1)
 光重合開始剤を含むモノマー溶液B1(0.985質量部)に、発光微粒子A(0.015質量部)を混合し、室温にて撹拌して均一分散させることにより、QD分散体B1を得た。
(QD分散体B2~QD分散体B8)
 QD分散体B1の調製方法において、光重合開始剤を含むモノマー溶液B1に代えて光重合開始剤を含むモノマー溶液B2~B8を用いた以外は同様にして、QD分散体B2~B8を得た。
(QD分散体B9)
 QD分散体B1の調製方法において、光重合開始剤を含むモノマー溶液B1に代えて光重合開始剤を含むモノマー溶液B9を用い、発光微粒子Aに代えて発光微粒子Bを用いた以外は同様にして、QD分散体B9を得た。
(QD分散体B10)
 QD分散体B1の調製方法において、光重合開始剤を含むモノマー溶液B1に代えて光重合開始剤を含むモノマー溶液B10を用いた以外は同様にして、QD分散体B10を得た。
(QD分散体B11)
 QD分散体B1の調製方法において、光重合開始剤を含むモノマー溶液B1に代えて光重合開始剤を含むモノマー溶液B11を用い、発光微粒子Aに代えて発光微粒子Bを用いた以外は同様にして、QD分散体B11を得た。
(QD分散体B12)
 QD分散体B1の調製方法において、光重合開始剤を含むモノマー溶液B1に代えて光重合開始剤を含むモノマー溶液B4を用い、発光微粒子Aに代えて発光微粒子Cを用いた以外は同様にして、QD分散体B12を得た。
(QD分散体B13)
 QD分散体B1の調製方法において、光重合開始剤を含むモノマー溶液B1に代えて光重合開始剤を含むモノマー溶液B12を用いた以外は同様にして、QD分散体B13を得た。
(QD分散体B14)
 QD分散体B1の調製方法において、光重合開始剤を含むモノマー溶液B1に代えて光重合開始剤を含むモノマー溶液B13を用いた以外は同様にして、QD分散体B14を得た。
(QD分散体BC1)
 QD分散体B9の調製方法において、発光微粒子Bに代えて発光微粒子Aを用いた以外は同様にして、QD分散体BC1を得た。
 下表に、QD分散体B1~B14、及びQD分散体BC1の含有量を示す。なお、表中の数値の単位は質量部である。
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
<光散乱性粒子分散体の調製>
(光散乱性粒子分散体1)
 酸化チタン粒子(55質量部、石原産業株式会社製、「CR-60-2」)と、光重合性モノマーであるメタクリル酸ジシクロペンタニル(45質量部、東京化成工業株式会社製)とを混合した。なお、酸化チタン粒子の平均粒子径(体積平均径)は300nmである。次に、得られた配合物にジルコニアビーズ(直径:0.3mm)を加えた後、ペイントコンディショナーを用いて2時間振とうさせることで配合物の分散処理を行った。これにより光散乱性粒子分散体1を得た。
(光散乱性粒子分散体2)
 光散乱性粒子分散体1の調製方法において、メタクリル酸ジシクロペンタニルの代わりに、ライトエステルL(共栄社化学株式会社製)を用いた以外は、光散乱性粒子分散体1の調製方法と同様にして、光散乱性粒子分散体2を得た。
<QDインクの調製>
(実施例13)
 QD分散体B1(94質量部)に、光散乱性粒子分散体1(6質量部)を混合し、室温にて撹拌して均一分散させた。得られた分散液を孔径5μmのフィルターでろ過することにより、ナノ結晶含有組成物及びインク組成物としてのQDインク1を得た。
(実施例14~24、41)
 実施例13のQDインク1の調製方法において、QD分散体B1に代えてにQD分散体B2~12、及びQD分散体B14をそれぞれ用いた以外は、QDインク1の調製方法と同様にして、QDインク2~12、及びQDインク14を得た。
(実施例25)
 実施例13のQDインク1の調製方法において、QD分散体B1の代わりにQD分散体B13、及び光散乱性分散体1の代わりに光散乱性分散体2をそれぞれ用いた以外は、QDインク1の調製方法と同様にして、QDインク13を得た。
(比較例2)
 実施例13のQDインク1の調製方法において、QD分散体B1の代わりにQD分散体CB1を用いた以外は、QDインク1の調製方法と同様にして、QDインクC1を得た。
 下表に、実施例13のQDインク1~実施例25のQDインク13、実施例41のQDインク14、及び比較例2のQDインクC1の含有量を示す。なお、表中の数値の単位は質量部である。
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
<光変換層の作製>
 (実施例26)
 得られた実施例13のQDインク1を、ガラス基板(コーニング社製、「EagleXG」)上に、乾燥後の膜厚が10μmとなるように、スピンコーターにて塗布した。
 得られた塗膜に窒素雰囲気下でLEDランプ波長365nmの紫外光を2000mJ/cmの露光量で照射した。これにより、実施例13のQDインク1を硬化させて、ガラス基板上にインク組成物の硬化物からなる層を形成し、これを実施例26の光変換層1とした。
(実施例27~38、42)
 実施例26の光変換層1の作製方法において、実施例13のQDインク1に代えて実施例14のQDインク2~実施例25のQDインク13、実施例41のQDインク14を用いた以外は同様にして、実施例27の光変換層2~実施例38の光変換層13、及び実施例42の光変換層14を作製した。
(比較例3)
 実施例26の光変換層1の作製方法において、実施例13のQDインク1に代えて比較例2のQDインクC1を用いた以外は同様にして、比較例3の光変換層C1を作製した。
<評価>
[量子収率(PLQY)保持率]
 実施例1のQD分散体1~実施例12のQD分散体1~12、実施例40のQD分散体13、及び比較例1のQD分散体C1の量子収率(PLQY)を、絶対PL量子収率測定装置(浜松ホトニクス株式会社製、「Quantaurus-QY」)で測定し、量子収率保持率(調製後大気下で10日静置した後の量子収率を、調製直後の量子収率で除した値)を算出した。量子収率保持率が高いほど、発光微粒子の酸素ガスおよび水蒸気に対する安定性が高いことを意味する。
[分散安定性]
 実施例13~25のQDインク1~13、実施例41のQDインク14、及び比較例2のQDインクC1を大気下で放置した後、沈殿物の有無を確認し、以下の基準に従って評価した。
〔評価基準〕
 A:10日後、沈殿物が生じていない。
 B:10日後、沈殿物がごくわずかに生じている。振とうすることにより沈殿物が溶解する。
 C:10日後、沈殿物がやや多く生じている。振とうしても沈殿物が残る。
[光変換層の外部量子効率保持率]
 実施例26~38の光変換層1~13、実施例42の光変換層14、及び比較例3の光変換層C1の外部量子効率を以下のようにして測定し、光変換層の外部量子効率保持率(光変換層の形成10日後の外部量子効率を、光変換層の形成直後の外部量子効率で除した値)を算出した。
 面発光光源として青色LED(ピーク発光波長450nm;シーシーエス株式会社製)を用い、この光源上にガラス基板側を下側にして光変換層を設置した。放射分光光度計(大塚電子株式会社製、「MCPD-9800」)に積分球を接続し、青色LED上に設置した光変換層上に積分球を近接させた。この状態で青色LEDを点灯させ、励起光および光変換層の発光(蛍光)の量子数を測定し、外部量子効率を算出した。外部量子効率保持率が高いほど、発光微粒子を含む光変換層の酸素ガスおよび水蒸気に対する安定性が高いことを意味する。
[立体パラメーター]
 下表に、上述の発光性ナノ結晶の表面に配位した配位子として用いた化合物の構造式を示す。
Figure JPOXMLDOC01-appb-T000046
 下表に、上述のQD分散体及びQDインクの調製に用いたモノマーとして用いた化合物の構造式を示す。
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
 上述の化合物について、下式(C)を用いて立体パラメーターMRを算出した。
Figure JPOXMLDOC01-appb-C000049
 式(C)中、nは屈折率を表し、Mは分子量を表し、dは密度を表す。密度、及び屈折率は20℃または25℃の値を用いた。算出した立体パラメーターMRを下表に示す。
Figure JPOXMLDOC01-appb-T000050
<QD分散体の評価>
 以下、実施例1~12のQD分散体1~12、実施例40のQD分散体13、及び比較例1のQD分散体C1について検討する。
 まず、比較例1のQD分散体C1について、以下のようにして、各モノマーの立体パラメーターMRと配位子の立体パラメーターMRとの差の絶対値|ΔMR|と、全ての|ΔMR|の加重平均|ΔMR|加重平均とを算出した。さらに、比較例1のQD分散体C1について、PLQY保持率を測定したところ、53.0%であった。

(1)ライトエステルLとオレイン酸の組み合わせにおける|ΔMR|PY
  =|(ライトエステルLのMR)-(オレイン酸のMR)|
  =|78.6-88.3|
  =9.7
(2)ライトエステルLとオレイルアミンの組み合わせにおける|ΔMR|PZ
  =|(ライトエステルLのMR)-(オレイルアミンのMR)|
  =|78.6-86.9|
  =8.3
(3)ライトアクリレートDCP-Aとオレイン酸の組み合わせにおける|ΔMR|QX
  =|(ライトアクリレートDCP-AのMR)-(オレイン酸のMR)|
  =|82.2-88.3|
  =6.1
(4)ライトアクリレートDCP-Aとオレイルアミンの組み合わせにおける|ΔMR|QZ
  =|(ライトアクリレートDCP-AのMR)-(オレイルアミンのMR)|
  =|82.2-86.9|
  =4.7
(5)|MR|の加重平均|ΔMR|加重平均
  ={(|ΔMR|PY×0.5+|ΔMR|PZ×0.5)×m+(|ΔMR|QY×0.5+|ΔMR|QZ×0.5)×m}/(m+m
  ={(9.7×0.5+8.3×0.5)×8.85+(6.1×0.5+4.7×0.5)×0.5}/(8.85+0.5)
  =8.8
 但し、発光性ナノ結晶の表面に配位したオレイン酸及びオレイルアミンの配位比率は0.5:0.5として、|ΔMR|加重平均を算出した。
 次に、実施例1~12のQD分散体1~12、及び実施例40のQD分散体13についても、比較例1と同様にして、それぞれの|ΔMR|及び|ΔMR|加重平均を算出し、PLQY保持率を測定した。各QD分散体1~12では、2種類の配位子を用いており、各配位子の配位比率を0.5:0.5としてΔMR|加重平均を算出した。但し、実施例12のQD分散体12では、三臭化鉛セシウム結晶からなる発光性ナノ結晶の表面にオレイン酸からなる配位子と3-アミノプロピルトリエトキシシランからなる配位子とが配位している。3-アミノプロピルトリエトキシシランは、発光性ナノ結晶の表面に配位した後、シロキサン結合を形成して発光性ナノ結晶の表面を網目状に覆うため、後述するように、配位子として用いたオレイン酸とQD分散体中の光重合性モノマーとの交換が抑制されると考えられる。このことから、実施例12については、発光性ナノ結晶の表面にはオレイン酸のみが配位している、すなわち、オレイン酸の配位比率が1として、|ΔMR|加重平均を算出した。結果を下表に示す。
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
 上記表のとおり、実施例1~12のQD分散体、及び実施例40のQD分散体は、|ΔMR|の最大値が12以上であり、且つ、全ての|ΔMR|の加重平均|ΔMR|加重平均が12以上である。これに対し、比較例1のQD分散体は|ΔMR|の最大値が12を大きく下回り、且つ、|ΔMR|加重平均が12を大きく下回っている。そして、実施例1~12のQD分散体、及び実施例40のQD分散体は、比較例1のQD分散体と比較して、高いPLQY保持率を示すことがわかる。
 実施例1~8、10及び比較例1のQD分散体は、カチオン性のオレイルアミン、及びアニオン性のオレイン酸が配位した発光微粒子を含有するのに対し、実施例9、11のQD分散体は、カチオン性のN-(1-アダマンチル)エチレンジアミン、およびアニオン性のオレイン酸が配位した発光微粒子を含有する。配位子として、オレイルアミン、オレイン酸に代えて、N-(1-アダマンチル)エチレンジアミンを用いた実施例9及び実施例11の場合も、QD分散体のPLQY保持率は、比較例1よりも優れる。このことから、配位子として環状構造を有していない化合物を用い、モノマーとして環状構造を有する化合物を用いた場合、及び、配位子として環状構造を有する化合物を用い、モノマーとして環状構造を有していない化合物を用いた場合のいずれにおいても、高いPLQY保持率を示すことが明らかである。また、実施例1~5と実施例40の結果から、環状構造が脂肪族と同様に芳香族であっても、高いPLQYを示すことがわかる。
 また、実施例1~12の結果から、|ΔMR|加重平均が大きいほどPLQY保持率を高くできる傾向にあることが明らかである。
 さらに、発光微粒子における無機被覆層の有無について検討する。実施例12のQD分散体は、発光性ナノ結晶の表面に、カチオン性の配位子としてオレイルアミンに代えて3-アミノプロピルトリエトキシシランが配位しさらにこの配位子がシロキサン結合を形成し、発光性ナノ結晶の表面にSiを含む無機被覆層を備える点を除いて、実施例4のQD分散体と同一である。実施例4のQD分散体における|ΔMR|加重平均が24.8であるのに対し、実施例12のQD分散体は24.1であって0.7小さい。ところが、実施例4のQD分散体におけるPLQY保持率は71.9であるのに対して、実施例12のQD分散体は75.8であって3.9高かった。この結果より、実施例12のQD分散体では、発光性ナノ結晶の表面にSiを含む無機被覆層を形成したことによって、発光性ナノ結晶が保護されると共に、オレイン酸と光重合性モノマーとの交換が抑制された結果、PLQY保持率が高くなったと考えられる。
<QDインクの評価>
 得られた実施例13~25、実施例41、及び比較例2のQDインクについて、QD分散体と同様にして、|ΔMR|の最大値及びΔMR|加重平均を算出した。|ΔMR|の最大値及びΔMR|加重平均は、光散乱性粒子分散体1~2の調製に用いたメタクリル酸ジシクロペンタニル及びライトエステルLの立体パラメーターMRも考慮して算出した。さらに、QDインクの分散安定性の評価を行った。結果を下表に示す。
Figure JPOXMLDOC01-appb-T000053
 上記表のとおり、実施例13~25のQDインク、及び実施例41のQDインクは、|ΔMR|の最大値が12以上であり、且つ、全ての|ΔMR|の加重平均|ΔMR|加重平均が12以上である。これに対し、比較例2のQDインクは|ΔMR|の最大値が12以上であるが、|ΔMR|加重平均が12を大きく下回っている。そして、実施例13~25のQDインクは、比較例2のQDインクと比較して、分散安定性に優れることがわかる。特に、|ΔMR|加重平均が20以上であるときには、いずれも「A」であって、優れた分散安定性を示すことが分かる。
<光変換層の評価>
 次に、上述した方法で光変換層を作製し評価した。結果を下表に示す。
Figure JPOXMLDOC01-appb-T000054
 上記表に示すように、比較例3の光変換層C1は、外部量子効率保持率が67.0%と低いのに対して、実施例26~38の光変換層1~13、及び実施例42の光変換層14は比較例3の光変換層C1よりも高い値を示した。
 以上の実施例1~12のQD分散体1~12、実施例40のQD分散体13、及び実施例13~25のQDインク1~13、実施例41のQDインク14の結果から、光重合性モノマーと、メタルハライドからなる発光性ナノ結晶の表面に配位子を備えた発光微粒子とを含有し、|ΔMR|加重平均が12以上であるナノ結晶含有組成物は、|ΔMR|加重平均が12未満であるものと比較して、PLQY保持率が優れるだけでなく、分散安定性も優れることが明らかである。
 さらに、実施例26~38の光変換層1~13、実施例42の光変換層14の結果から、|ΔMR|加重平均が12以上のナノ結晶含有組成物の硬化物を含む光変換層は、|ΔMR|加重平均が12未満のナノ結晶含有組成物の硬化物を含む光変換層を比較して、外部量子効率保持率が優れることが明らかである。このことから、本発明のナノ結晶含有組成物によって形成した光変換層を備えた発光素子もまた、優れた外部量子効率保持率を備えるものと期待できる。
 90  発光微粒子、無機被覆発光微粒子、シリカ被覆発光微粒子
 91  無機被覆層、シリカ被覆層
 910 発光微粒子、無被覆発光微粒子
 911 ナノ結晶
 912 配位子層
 100 発光素子
 200 EL光源部
 1   下基板
 2   陽極
 3   正孔注入層
 4   正孔輸送層
 5   発光層
 6   電子輸送層
 7   電子注入層
 8   陰極
 9   封止層
 10  充填層
 11  保護層
 12  光変換層
 13  上基板
 14  EL層
 20  画素部、
 20a 第1の画素部
 20b 第2の画素部
 20c 第3の画素部
 21a 第1の光散乱粒子
 21b 第2の光散乱粒子
 21c 第3の光散乱粒子
 22a 第1の硬化成分
 22b 第2の硬化成分
 22c 第3の硬化成分
 90a 第1の発光微粒子
 90b 第1の発光微粒子
 30  遮光部
 701 コンデンサ
 702 駆動トランジスタ
 705 共通電極
 706 信号線
 707 走査線
 708 スイッチングトランジスタ
 C1  信号線駆動回路
 C2  走査線駆動回路
 C3  制御回路
 PE,R,G,B  画素電極
 X   共重合体
 XA  会合体
 x1  脂肪族ポリアミン鎖
 x2  疎水性有機セグメント
 YA  コア-シェル型シリカナノ粒子
 Z   半導体ナノ結晶の原料化合物を含む溶液

Claims (8)

  1.  1種又は2種以上の光重合性モノマーと、メタルハライドからなる発光性ナノ結晶の表面に1種又は2種以上の配位子を備えた発光微粒子とを含有し、
     任意の光重合性モノマーの立体パラメーターMRと任意の配位子の立体パラメーターMRの差の絶対値|ΔMR|を算出したとき、下記式(A)を満足する光重合性モノマー及び配位子の組み合わせが1以上存在し、且つ、
     前記ナノ結晶含有組成物中に含まれる各前記光重合性モノマー及び各前記配位子の全ての組み合わせについて、各前記光重合性モノマーの含有量及び各前記配位子が前記発光性ナノ結晶の表面に配位する比率を考慮して算出した|ΔMR|の加重平均値|ΔMR|加重平均が下式(B)を満足することを特徴とするナノ結晶含有組成物。
       |ΔMR|=|(光重合性モノマーの立体パラメーターMR)-(配位子の立体パラメーターMR)|≧12   (A)
       |ΔMR|加重平均≧12  (B)
    (但し、立体パラメーターMRは下式(C)
    Figure JPOXMLDOC01-appb-C000001
    で表され、式(C)中、nは屈折率を表し、Mは分子量を表し、dは密度を表す。)
  2.  前記式(A)を満足する光重合性モノマー及び配位子の組み合わせにおいて、当該光重合性モノマー又は当該配位子の少なくとも一方が環状構造を含む化合物を含有する請求項1に記載のナノ結晶含有組成物。
  3.  前記環状構造を含む化合物は、下記式(1-2)~(1-24)で表される環状構造を含む請求項2記載のナノ結晶含有組成物。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  4.  前記発光微粒子が、前記発光性ナノ結晶の表面にシロキサン結合を形成可能な反応性基を有する配位子を備え、当該配位子によってSiを含む無機被覆層が形成されている請求項1~3のいずれか1項に記載のナノ結晶含有組成物。
  5.  さらに、光重合開始剤、光散乱剤及び分散剤のうちの少なくとも1つ以上を含有する請求項1~4のいずれか1項に記載のナノ結晶含有組成物。
  6.  請求項1~3のいずれか1項に記載のナノ結晶含有組成物を用いたことを特徴とするインク組成物。
  7.  請求項6項に記載のインク組成物の硬化物を含むことを特徴とする光変換層。
  8.  請求項7に記載の光変換層を備えたことを特徴とする発光素子。
PCT/JP2021/036032 2020-10-15 2021-09-30 ナノ結晶含有組成物、インク組成物、光変換層および発光素子 WO2022080143A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180067110.8A CN116390997A (zh) 2020-10-15 2021-09-30 含纳米结晶的组合物、油墨组合物、光转换层及发光元件
JP2021571713A JP7151914B2 (ja) 2020-10-15 2021-09-30 ナノ結晶含有組成物、インク組成物、光変換層および発光素子
KR1020237010599A KR102547607B1 (ko) 2020-10-15 2021-09-30 나노 결정 함유 조성물, 잉크 조성물, 광 변환층 및 발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-173811 2020-10-15
JP2020173811 2020-10-15

Publications (1)

Publication Number Publication Date
WO2022080143A1 true WO2022080143A1 (ja) 2022-04-21

Family

ID=81207946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036032 WO2022080143A1 (ja) 2020-10-15 2021-09-30 ナノ結晶含有組成物、インク組成物、光変換層および発光素子

Country Status (5)

Country Link
JP (1) JP7151914B2 (ja)
KR (1) KR102547607B1 (ja)
CN (1) CN116390997A (ja)
TW (1) TW202227589A (ja)
WO (1) WO2022080143A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080196A1 (ja) * 2022-10-12 2024-04-18 ソニーグループ株式会社 表示装置及び電子機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506488B1 (ja) * 2017-07-28 2019-04-24 住友化学株式会社 インク組成物、フィルム及びディスプレイ
JP2020070443A (ja) * 2018-10-31 2020-05-07 住友化学株式会社 硬化性組成物、膜、積層体及び表示装置
JP2020204756A (ja) * 2019-06-13 2020-12-24 昭栄化学工業株式会社 半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物および半導体ナノ粒子複合体硬化膜

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135817A (ja) * 1983-01-25 1984-08-04 タキロン株式会社 園芸用支柱の製造方法
US10626326B2 (en) * 2014-11-06 2020-04-21 Postech Academy-Industry Foundation Method for manufacturing perovskite nanocrystal particle light emitting body where organic ligand is substituted, nanocrystal particle light emitting body manufactured thereby, and light emitting device using same
EP3168278B2 (en) * 2015-10-28 2022-02-09 Samsung Electronics Co., Ltd. Quantum dots, production methods thereof, and electronic devices including the same
JP6948168B2 (ja) 2016-06-24 2021-10-13 住友化学株式会社 化合物、分散液組成物、樹脂組成物、膜、積層構造体及び発光装置
EP3660552B1 (en) 2017-07-28 2023-03-01 Sumitomo Chemical Company Limited Composition, film, layered structure, light-emitting device, and display
CN107446572B (zh) * 2017-09-01 2020-03-06 中国科学院长春光学精密机械与物理研究所 合成二氧化硅包覆有机-无机钙钛矿结构量子点的方法及其合成的量子点的应用
KR20200065007A (ko) * 2017-10-04 2020-06-08 디아이씨 가부시끼가이샤 입자, 잉크 및 발광 소자
JP6992424B2 (ja) * 2017-11-10 2022-01-13 Dic株式会社 インク組成物、光変換層及びカラーフィルタ
WO2019093140A1 (ja) * 2017-11-10 2019-05-16 Dic株式会社 インク組成物及びその製造方法、並びに光変換層及びカラーフィルタ
JP7166142B2 (ja) 2018-10-31 2022-11-07 住友化学株式会社 硬化性組成物、膜、積層体及び表示装置
KR20200074896A (ko) * 2018-12-17 2020-06-25 서울대학교산학협력단 금속 할라이드 페로브스카이트 발광소자 및 이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506488B1 (ja) * 2017-07-28 2019-04-24 住友化学株式会社 インク組成物、フィルム及びディスプレイ
JP2020070443A (ja) * 2018-10-31 2020-05-07 住友化学株式会社 硬化性組成物、膜、積層体及び表示装置
JP2020204756A (ja) * 2019-06-13 2020-12-24 昭栄化学工業株式会社 半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物および半導体ナノ粒子複合体硬化膜

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080196A1 (ja) * 2022-10-12 2024-04-18 ソニーグループ株式会社 表示装置及び電子機器

Also Published As

Publication number Publication date
KR20230051596A (ko) 2023-04-18
TW202227589A (zh) 2022-07-16
CN116390997A (zh) 2023-07-04
KR102547607B1 (ko) 2023-06-26
JPWO2022080143A1 (ja) 2022-04-21
JP7151914B2 (ja) 2022-10-12

Similar Documents

Publication Publication Date Title
JP6874922B2 (ja) 発光粒子の製造方法、発光粒子、発光粒子分散体、インク組成物および発光素子
JP6822625B1 (ja) 発光粒子の製造方法、発光粒子、発光粒子分散体、インク組成物および発光素子
WO2022080143A1 (ja) ナノ結晶含有組成物、インク組成物、光変換層および発光素子
JP7052936B1 (ja) 発光粒子含有インク組成物、光変換層および発光素子
WO2021230031A1 (ja) 発光粒子含有樹脂組成物、その製造方法、光変換層および発光素子
JP7052937B1 (ja) 発光粒子含有インク組成物、光変換層および発光素子
WO2022107598A1 (ja) インク組成物、光変換層およびカラーフィルタ
JP2024089487A (ja) 分散体、該分散体を含むインク組成物、及び光変換層
KR20230063860A (ko) 발광 입자, 발광 입자 함유 경화성 수지 조성물, 광변환층 및 발광 소자
KR20230096853A (ko) 발광 입자 함유 경화성 수지 조성물, 광변환층, 컬러 필터, 파장 변환 필름 및 발광 소자
JP2024089622A (ja) 発光粉体、発光粉体の製造方法、インク組成物、光変換層、カラーフィルター及び波長変換フィルム、並びに発光スペクトルのピーク波長の調整方法
JP2024089486A (ja) 分散体、該分散体を含む組成物、及び光変換層
JP2023094546A (ja) 発光粒子含有硬化性樹脂組成物、光変換層、カラーフィルター、波長変換フィルムおよび発光素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021571713

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237010599

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879884

Country of ref document: EP

Kind code of ref document: A1