WO2022077704A1 - 背光模组及其制作方法 - Google Patents

背光模组及其制作方法 Download PDF

Info

Publication number
WO2022077704A1
WO2022077704A1 PCT/CN2020/130443 CN2020130443W WO2022077704A1 WO 2022077704 A1 WO2022077704 A1 WO 2022077704A1 CN 2020130443 W CN2020130443 W CN 2020130443W WO 2022077704 A1 WO2022077704 A1 WO 2022077704A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoresist
electrode
region
backlight module
conductive layer
Prior art date
Application number
PCT/CN2020/130443
Other languages
English (en)
French (fr)
Inventor
刘俊领
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/251,288 priority Critical patent/US20220302181A1/en
Publication of WO2022077704A1 publication Critical patent/WO2022077704A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays

Definitions

  • the present application relates to the field of display, and in particular, to a backlight module and a manufacturing method thereof.
  • the backlight module of the existing light-emitting diode display device usually includes a driving circuit board and light-emitting diodes located on the driving circuit board, such as Micro LED or Mini LED. Therefore, the structural design of the backlight module is particularly important for high-resolution products.
  • Metal oxide has the advantages of high mobility, adaptability to low temperature process, excellent uniformity and surface flatness, so this material is often used in the production of backplanes.
  • the traditional back-channel etching structure it usually requires four photomask processes and two metal layers that form the bonding terminals by bridging indium tin oxide.
  • the existing driving circuit board process usually requires multiple masks and multiple It can only be formed by wet and dry etching, and the excessive number of etchings increases the difficulty of the driving circuit board process, resulting in an increase in cost.
  • the present application provides a backlight module and a manufacturing method thereof, so as to solve the technical problem of complicated manufacturing process of the existing light-emitting diode display device.
  • the present application proposes a method for manufacturing a backlight module, which includes:
  • a fourth conductive layer is formed on the second insulating layer, and is patterned to form a third electrode of the first terminal.
  • the first conductive layer is formed on the substrate, and the steps of patterning to form the first electrode of the first terminal of the backlight module include:
  • the first conductive layer is patterned by a first mask and a first etching process, so that the first conductive layer forms the gate of the backlight module and the first electrode of the first terminal of the backlight module .
  • a multi-segment mask is used to pattern the first insulating layer and the active material layer, so as to expose part of the first conductive layer and make
  • the step of forming the active member from the active material layer includes:
  • the photoresist material layer is patterned by a second mask, so that the photoresist material layer forms a first photoresist region and a second photoresist region separated from each other, and the first photoresist region and the second photoresist region are formed in the photoresist material layer. a first opening area between the second photoresist areas;
  • a second etching process is used to remove the parts of the first insulating layer and the first conductive layer that are not covered by the first photoresist region and the second photoresist region to form a first via hole to expose the first electrode corresponding to the first opening area;
  • a third etching process is used to remove the active material layer that is not covered by a portion of the photoresist material in the second photoresist region to form the active member.
  • the second photoresist region includes a first photoresist subregion, a second photoresist subregion and a third photoresist subregion that are connected to each other, and the first photoresist subregion
  • the thickness of the sub-region is smaller than the thickness of the second photo-resist sub-region and the third photo-resist sub-region, and the thickness of the first photo-resist sub-region is equal to the thickness of the first photo-resist region.
  • the photoresist material in the first photoresist area and the second photoresist area is ashed, and a part of the photoresist material in the second photoresist area is retained.
  • the multi-segment mask plate includes a first mask area, a second mask area and a third mask area;
  • the first mask region corresponds to the first opening region
  • the second mask region corresponds to the first photoresist region and the first photoresist sub-region
  • the third mask region corresponds to the second mask region
  • the photoresist sub-region corresponds to the third photo-resist sub-region
  • the light transmittances of the first mask region, the second mask region and the third mask region gradually increase or decrease.
  • a third conductive layer is formed on the active member to form the source and drain of the backlight module, the second electrode of the first terminal and the backlight.
  • the step of binding the first electrode of the second terminal of the module includes:
  • the third conductive layer is patterned using a third mask and a fourth etching process, so that the third conductive layer forms the source and drain of the backlight module, the second electrode of the first terminal, and the the first binding electrode of the second terminal;
  • the source and drain are located on the active member, and the second electrode is electrically connected to the first electrode through the first via hole.
  • the step of forming the second insulating layer on the remaining third conductive layer includes:
  • the second insulating layer is patterned by a fourth mask process and a fifth etching process, so that the second insulating layer is formed with a second via on the second electrode and on the first bonding A second opening on the electrode.
  • a fourth conductive layer is formed on the second insulating layer, and the step of patterning to form the third electrode of the first terminal includes:
  • the fourth conductive layer is patterned by a fifth mask process, so that the fourth conductive layer forms a third electrode of the first terminal, and the third electrode is connected to the first terminal through the second via hole.
  • the second electrode is electrically connected; or,
  • the fourth conductive layer is patterned by a fifth photomask process, so that the fourth conductive layer forms the third electrode of the first terminal and the second bonding electrode of the second terminal.
  • the third electrode is electrically connected to the second electrode through the second via hole, and the second binding electrode is electrically connected to the first binding electrode through the second opening.
  • the application also provides a backlight module, the backlight module includes a light-emitting area and a first binding area away from the light-emitting area;
  • a plurality of light-emitting units are arranged in the light-emitting region, and any one of the light-emitting units includes a substrate, a gate on the substrate, a first insulating layer on the gate, and a first insulating layer on the first insulating layer.
  • a light-emitting device on a terminal, the second terminal includes a first binding electrode disposed in the same layer as the active member and formed in the same process as the source and drain;
  • At least one first terminal is disposed in the first binding area, and the first terminal includes a first electrode, a second electrode and a third electrode which are located on the substrate and are electrically connected, and the first electrode, The second electrode and the third electrode are arranged in a stacked layer, the first electrode and the gate are arranged in the same layer, the second electrode is arranged in the same layer as the active member, and the source and drain electrodes are arranged in the same layer. Formed in the same process, the third electrode is located on the second insulating layer.
  • the present application uses a multi-segment mask to simultaneously form the active member and the opening of the first electrode of the binding terminal of the flexible circuit board, so that the third conductive layer can simultaneously form the source and drain, and the binding terminal of the flexible circuit board.
  • the second electrode and the binding end of the light-emitting element reduce the etching times of the manufacturing process, simplify the process difficulty of the backlight module, and improve the process efficiency.
  • Fig. 1 is the step diagram of the manufacturing method of the backlight module of the present application
  • FIG. 2 is a top view of the structure of the backlight module of the present application.
  • 3A is a first process flow chart of the manufacturing method of the backlight module of the present application.
  • 3B is a second process flow chart of the manufacturing method of the backlight module of the present application.
  • 3C is a third process flow diagram of the manufacturing method of the backlight module of the present application.
  • 3D is a fourth process flow chart of the manufacturing method of the backlight module of the present application.
  • 3E is a fifth process flow chart of the manufacturing method of the backlight module of the present application.
  • 3F is the sixth process flow chart of the manufacturing method of the backlight module of the present application.
  • 3G is a seventh process flow chart of the manufacturing method of the backlight module of the present application.
  • 3H is an eighth process flow diagram of the manufacturing method of the backlight module of the present application.
  • Fig. 3I is the ninth process flow chart of the manufacturing method of the backlight module of the application.
  • 3J is a tenth process flow chart of the manufacturing method of the backlight module of the present application.
  • 3K is an eleventh process flow chart of the manufacturing method of the backlight module of the present application.
  • FIG. 3L is a twelfth process flow chart of the manufacturing method of the backlight module of the present application.
  • the manufacturing process of the existing backlight module usually requires multiple masks and multiple wet and dry etchings to form, and the excessive etching times increase the difficulty of the backlight module process, resulting in an increase in cost.
  • the present application proposes a method for manufacturing a backlight module 100, which includes:
  • a multi-segment mask 80 is used to form the active member 401 and the opening of the first electrode 202 of the binding terminal of the flexible circuit board at the same time, so that the third conductive layer 50 can simultaneously form the source and drain electrodes of the flexible circuit board.
  • the second electrode 502 of the binding terminal and the binding end of the light emitting device reduce the etching times of the manufacturing process, simplify the manufacturing difficulty of the backlight module 100, and improve the manufacturing efficiency.
  • the backlight module 100 includes a plurality of light-emitting units and a binding area located at the edge of the backlight module.
  • a plurality of first terminals 200 are arranged in the binding area, and any one of the light-emitting units is located in the binding area.
  • the backlight module 100 includes a driving circuit layer on the substrate 10 , and the driving circuit layer may include a plurality of thin film transistors.
  • the thin film transistor may be of an etch stop type, a back channel etch type, or a top gate thin film transistor type, which is not specifically limited.
  • the conventional back-channel etching type is used as an example for description.
  • FIGS. 3A to 3L are partial cross-sectional views with AA as the cross-section in FIG. 2.
  • Step S10 may specifically include:
  • the material of the substrate 10 may be determined according to the rigidity and flexibility of the product, for example, rigid materials such as glass, quartz, or flexible materials such as polyimide.
  • the first conductive layer 20 can be made of molybdenum, aluminum, aluminum-nickel alloy, molybdenum-tungsten alloy, chromium, or copper, or a combination of the above-mentioned metal materials. thing. Since the first conductive layer 20 is used to form the gate 201 of the backlight module 100 , the material of the first conductive layer 20 may be molybdenum.
  • a layer of photoresist material is coated on the first conductive layer 20, and the photoresist material layer is exposed by a predetermined mask, and the photoresist material layer is patterned after developing, and The first conductive layer 20 is etched by the first etching process, so that the first conductive layer 20 forms the gate 201 of the backlight module 100 and the first terminal 200 of the backlight module 100 the first electrode 202 .
  • the first etching process may be a wet etching process.
  • step S30 may specifically include:
  • the active material layer 40 may be a semiconductor oxide, such as indium gallium zinc oxide.
  • the second photoresist region 92 includes a first photoresist subregion 921 , a second photoresist subregion 922 and a third photoresist subregion 923 that are connected to each other.
  • the thickness of the photoresist subregion 921 is equal to the thickness of the third photoresist subregion 923
  • the thickness of the first photoresist subregion 921 is equal to the thickness of the first photoresist region 91 .
  • the multi-segment mask 80 includes a first mask region 801, a second mask region 802 and a third mask region 803; the first mask region 801 and the first opening region 93 corresponds to, the second mask region 802 corresponds to the first photoresist region 91 and the first photoresist sub-region 921, the third mask region 803 corresponds to the second photoresist sub-region 922 and the first photoresist sub-region 921 The three photoresist sub-regions 923 correspond to each other; the light transmittances of the first mask region 801 , the second mask region 802 and the third mask region 803 gradually increase or decrease.
  • the light transmittance of the first mask area 801 may be 100%, and the light transmittance of the second mask area 802 may be 50% , the light transmittance of the third mask region 803 may be zero.
  • the light transmittances of the first mask area 801 , the second mask area 802 and the third mask area 803 gradually decrease. After development, the light corresponding to the first mask area 801 The resist material is all removed, the thickness of the photoresist material corresponding to the second mask area 802 becomes half of the original thickness, and the photoresist material corresponding to the third mask area 803 is all retained.
  • the photoresist material when the photoresist material is a negative photoresist, the light transmittance of the first mask region 801 may be 0, and the light transmittance of the second mask region 802 may be 50%.
  • the light transmittance of the third mask region 803 may be 100%.
  • the light transmittances of the first mask region 801 , the second mask region 802 and the third mask region 803 gradually increase.
  • the photoresist corresponding to the first mask region 801 The material remains, the thickness of the photoresist material corresponding to the second mask area 802 becomes half of the original thickness, and the photoresist material corresponding to the third mask area 803 is completely removed.
  • the above embodiment is only one of the cases, and the specific light transmittances of the first mask region 801 , the second mask region 802 and the third mask region 803 may be limited according to actual conditions.
  • the second etching process includes a first wet etching and a first dry etching, and the first wet etching is used to remove the active material corresponding to the first opening region 93 layer 40 , the first dry etching is used to remove the first insulating layer 30 corresponding to the first opening region 93 to form the first via hole 301 , thereby exposing part of the first electrode 202 .
  • an ashing process is mainly used to remove the photoresist material in the first photoresist sub-region 921 in the first photoresist region 91 and the second photoresist region 92 , and reduce the second photoresist
  • the thickness of the second photoresist sub-region 922 in the region 92 forms part of the second photoresist region 92 .
  • the ashing process generally uses plasma gas to remove the photoresist material, and the plasma gas may be, but not limited to, oxygen, nitrogen, and the like.
  • the steps of the ashing process may be omitted, that is, the active material layer 40 corresponding to the first opening region 93 is removed by the first wet etching described above, and the first Secondary dry etching to remove the first insulating layer 30 corresponding to the first opening region 93 , and to remove the first photoresist subregion 921 and the third photoresist subregion in the first photoresist region 91 and the second photoresist region 92
  • the photoresist material in 923 and the thickness of the second photoresist sub-region 922 in the second photoresist region 92 are reduced to form part of the second photoresist region 92, that is, the ashing process is replaced by the above dry etching process, which simplifies Process.
  • the active material layer 40 is patterned mainly through a third etching process to form the active member 401 of the backlight module 100 .
  • step S40 may specifically include:
  • the metal material of the third conductive layer 50 generally needs a material with high bending performance and electrical conductivity, and also has the function of anti-oxidation.
  • the metal material of the third conductive layer 50 may be Titanium-aluminum alloy, which forms a sandwich structure of titanium-aluminum-titanium.
  • the source and drain electrodes 501 are located on the active member 401, and the active member 401 serves as a switch corresponding to a thin film transistor.
  • the second electrode 502 of the first terminal 200 is electrically connected to the first electrode 202 through the first via hole 301 .
  • the number of the first via holes 301 is not limited to the above one, and may be multiple.
  • the second terminal 300 and the first terminal 200 are located on two sides of the backlight module 100 to avoid increasing the distance between the lower frame or the upper frame by arranging the two connection terminals on the same side.
  • the first terminal 200 is a terminal connected to a flexible circuit board
  • the second terminal 300 is a terminal connected to a light-emitting device, such as Micro LED or Mini LED, etc.
  • the second electrode 502 of the first terminal 200 and the first bonding electrode 503 of the second terminal 300 may be formed by the same process as the active material layer 40 , that is, after forming the Before the source member 401, the first via hole 301 is etched; secondly, when the active material layer 40 is formed, the active material layer 40 is patterned in the same mask process to form the first terminal 200
  • the second electrode 502 of the second terminal 300 , the first binding electrode 503 of the second terminal 300 , and the active member 401 may be formed by the same process as the active material layer 40 , that is, after forming the Before the source member 401, the first via hole 301 is etched; secondly, when the active material layer 40 is formed, the active material layer 40 is patterned in the same mask process to form the first terminal 200
  • the second electrode 502 of the second terminal 300 , the first binding electrode 503 of the second terminal 300 , and the active member 401 may be formed by the same process as the active material layer 40 , that is, after forming the Before the source
  • the active member 401 and the first binding electrode 503 of the second terminal 300 are formed through the active material layer 40 , and the second electrode 502 of the first terminal 200 passes through the The third conductive layer 50 is formed.
  • the fourth etching process may be wet etching.
  • the source and drain 501 after forming the source and drain 501, it further includes:
  • the second insulating layer 60 may be made of the same material as the first insulating layer 30 , such as inorganic compounds such as silicon oxide compounds, carbon silicon compounds, and the like.
  • the structure of the first terminal 200 needs to protrude from the backlight module 100 , that is, the second electrode 502 is formed on the second electrode 502 .
  • Two via holes 601 are used for the third electrode 701 on the second insulating layer 60, and the third electrode 701 is electrically connected to the second electrode 502 through the second via hole 601; secondly, the light emitting device structure can be embedded in the backlight module 100, so it can form the second opening 602 with a larger diameter.
  • the fifth etching process may be a dry etching process.
  • the second insulating layer 60 after forming the second insulating layer 60, it further includes:
  • the material of the fourth conductive layer 70 is mainly pixel electrodes, such as but not limited to indium tin oxide, or other metal materials with good conductivity.
  • the preparation of the pixel electrode is mainly used to form the third electrode 701 of the first terminal 200 .
  • the third electrode 701 is electrically connected to the second electrode 502 through the second via hole 601 .
  • the electrode 701 is mainly used for electrical connection with the port corresponding to the flexible circuit board.
  • the fourth conductive layer 70 is patterned by a fifth photomask process, so that the fourth conductive layer 70 forms the third electrode 701 of the first terminal 200 and the second bond of the second terminal 300 Fixed electrode, the third electrode 701 is electrically connected to the second electrode 502 through the second via 601 , and the second binding electrode 702 is connected to the first binding electrode through the second opening 602 503 Electrical connection.
  • This step is similar to the structure in FIG. 3G , which mainly uses the fourth conductive layer 70 to simultaneously form the third electrode 701 of the first terminal 200 and the second bonding electrode of the second terminal 300 .
  • the newly added second binding electrode is built into the second opening 602, and the size of the corresponding light-emitting device is not limited to the size of the opening. It can be arranged on the backlight module 100 like the flexible circuit board. .
  • the step of forming the first conductive layer 20 and the first insulating layer 30 on the substrate 10 may include: forming a first conductive layer 20 on the substrate 10 ; and, The first conductive layer 20 is patterned by a first mask and a first etching process, so that the first conductive layer 20 forms the gate 201 of the backlight module 100 and the first conductive layer 201 of the backlight module 100
  • the first electrode 202 of the terminal 200 and the third bonding electrode 203 of the second terminal 300 ; and the first insulating layer 30 is formed on the patterned first conductive layer 20 .
  • the second terminal 300 of the present application further includes a third binding electrode located on the substrate 10, and the three-layer binding electrodes of the present application can be electrically connected in pairs , the arrangement of the multi-layer binding electrodes can increase the stability of the connection between the internal electrodes. For example, when a certain layer of electrodes is disconnected, it can also transmit signals through the other two layers of electrodes.
  • the three-layer electrodes in the first terminal 200 may also be electrically connected between two-layer electrodes, which will not be described in detail here.
  • the present application also provides a backlight module 100 , the backlight module 100 includes a light-emitting area 520 and a first binding area 510 away from the light-emitting area 520 ;
  • a plurality of light-emitting units 400 are disposed in the light-emitting region 520 , and any light-emitting unit 400 includes a substrate 10 , a gate electrode 201 located on the substrate 10 , and a first insulating layer located on the gate electrode 201 .
  • At least one first terminal 200 is disposed in the first bonding region 510 , and the first terminal 200 includes a first electrode 202 , a second electrode 502 and a third electrode 701 located on the substrate 10 and electrically connected , the first electrode 202, the second electrode 502 and the third electrode 701 are arranged in layers, the first electrode 202 and the gate 201 are arranged in the same layer, and the second electrode 502 and the
  • the active member 401 is disposed in the same layer and formed in the same process as the source and drain electrodes 501 , and the third electrode 701 is located on the second insulating layer 60 .
  • the related structure of the backlight module can refer to the structure defined by the above-mentioned manufacturing method of the backlight module.
  • the present application provides a method for manufacturing a backlight module, including: forming a first conductive layer and a first insulating layer on a substrate; forming an active material layer on the first insulating layer; using a multi-stage mask
  • the membrane plate is patterned on the first insulating layer and the active material layer to expose part of the first conductive layer and form an active member from the active material layer; on the active member
  • a third conductive layer is formed to form the source and drain of the backlight module.
  • the present application uses a multi-segment mask to simultaneously form the active member and the opening of the first electrode of the binding terminal of the flexible circuit board, so that the third conductive layer can simultaneously form the source and drain, and the binding terminal of the flexible circuit board.
  • the second electrode and the binding end of the light-emitting element reduce the etching times of the manufacturing process, simplify the process difficulty of the backlight module, and improve the process efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种背光模组(100)的制作方法,包括:在衬底(10)上形成第一导电层(20)以及第一绝缘层(30);在第一绝缘层(30)上形成有源材料层(40);利用一多段式掩膜板对第一绝缘层(30)及有源材料层(40)图案化处理,以露出部分第一导电层(20),以及使有源材料层(40)形成有源构件(401);在有源构件上(401)形成第三导电层(50),以形成背光模组(100)的源漏极(501)。

Description

背光模组及其制作方法 技术领域
本申请涉及显示领域,特别涉及一种背光模组及其制作方法。
背景技术
现有的发光二极管显示器件的背光模组通常包括驱动电路板及位于驱动电路板上的发光二极管,例如Micro LED或Mini LED,因此背光模组的结构设计在高分辨率产品尤为重要。
金属氧化物具有较高的迁移率、适应低温工艺、优良均匀性和表面平坦性等优点,因此该材料常常被应用于背板的制作。而对于传统的背沟道蚀刻结构,其通常需要4道光罩工艺,以及通过氧化铟锡桥接构成绑定端子的两层金属层。而由于氧化铟锡电阻大且易老化,导致显示不均及LED点亮过程中出现死灯情况,严重影响良率;其次,该现有的驱动电路板的制程通常需要多道光罩及多次湿法及干法蚀刻才能形成,而蚀刻次数过多增加了驱动电路板的工艺难度,导致成本的增加。
因此,亟需一种背光模组及其制作方法以解决上述技术问题。
技术问题
本申请提供一种背光模组及其制作方法,以解决现有发光二极管显示器件制程工艺复杂的技术问题。
技术解决方案
本申请提出了一种背光模组的制作方法,其包括:
在衬底上形成第一导电层,经图案化处理以形成所述背光模组的第一端子的第一电极;
在所述第一导电层上形成第一绝缘层及有源材料层;
利用一多段式掩膜板对所述第一绝缘层及所述有源材料层图案化处理,以露出部分所述第一导电层,以及使所述有源材料层形成有源构件;
在所述有源构件上形成第三导电层,以形成所述背光模组的源漏极以及所述第一端子的第二电极和所述背光模组第二端子的第一绑定电极;
在保留的所述第三导电层上形成第二绝缘层;
在所述第二绝缘层上形成第四导电层,经图案化处理以形成所述第一端子的第三电极。
在本申请的背光模组的制作方法中,在衬底上形成第一导电层,经图案化处理以形成所述背光模组的第一端子的第一电极的步骤包括:
在所述衬底上形成一第一导电层;
利用第一光罩及第一蚀刻工艺对所述第一导电层图案化处理,使所述第一导电层形成所述背光模组的栅极以及所述背光模组第一端子的第一电极。
在本申请的背光模组的制作方法中,利用一多段式掩膜板对所述第一绝缘层及所述有源材料层图案化处理,以露出部分所述第一导电层、以及使所述有源材料层形成有源构件的步骤包括:
在所述有源材料层上形成一光阻材料层;
利用第二光罩对所述光阻材料层图案化处理,使所述光阻材料层形成相互分离的第一光阻区及第二光阻区,以及位于所述第一光阻区与所述第二光阻区之间的第一开口区;
利用第二蚀刻工艺移除所述第一绝缘层及所述第一导电层中未被所述第一光阻区和所述第二光阻区覆盖的部分,形成第一过孔,以露出所述第一开口区对应的所述第一电极;
对所述第一光阻区和所述第二光阻区中的光阻材料进行灰化处理,保留部分第二光阻区中的光阻材料;
利用第三蚀刻工艺移除未被部分第二光阻区中的光阻材料覆盖的有源材料层,形成所述有源构件。
在本申请的背光模组的制作方法中,所述第二光阻区包括相互连接的第一光阻子区、第二光阻子区和第三光阻子区,所述第一光阻子区的厚度小于所述第二光阻子区及所述第三光阻子区的厚度,所述第一光阻子区的厚度与所述第一光阻区的厚度相等。
在本申请的背光模组的制作方法中,对所述第一光阻区和所述第二光阻区中的光阻材料进行灰化处理,保留部分第二光阻区中的光阻材料的步骤包括:
去除第一光阻区及第二光阻区中第一光阻子区中的光阻材料、以及减小第二光阻区中第二光阻子区和第三光阻子区的厚度,形成部分第二光阻区。
在本申请的背光模组的制作方法中,所述多段式掩膜板包括第一掩膜区、第二掩膜区及第三掩膜区;
所述第一掩膜区与所述第一开口区对应,所述第二掩膜区与第一光阻区及第一光阻子区对应,所述第三掩膜区与所述第二光阻子区和所述第三光阻子区对应;
所述第一掩膜区、所述第二掩膜区及所述第三掩膜区的光透过率逐渐增加或逐渐减小。
在本申请的背光模组的制作方法中,在所述有源构件上形成第三导电层,以形成所述背光模组的源漏极以及所述第一端子的第二电极和所述背光模组第二端子的第一绑定电极的步骤包括:
在所述有源构件上形成一第三导电层;
利用第三光罩以及第四蚀刻工艺对所述第三导电层图案化处理,使所述第三导电层形成所述背光模组的源漏极、所述第一端子的第二电极、以及所述第二端子的第一绑定电极;
其中,所述源漏极位于所述有源构件上,所述第二电极通过所述第一过孔与所述第一电极电连接。
在本申请的背光模组的制作方法中,在保留的所述第三导电层上形成第二绝缘层的步骤包括:
利用第四光罩工艺以及第五蚀刻工艺对所述第二绝缘层图案化处理,使所述第二绝缘层形成位于所述第二电极上的第二过孔及位于所述第一绑定电极上的第二开口。
在本申请的背光模组的制作方法中,在所述第二绝缘层上形成第四导电层,经图案化处理以形成所述第一端子的第三电极的步骤包括:
在所述第二绝缘层上形成第四导电层;
利用第五光罩工艺对所述第四导电层图案化处理,使所述第四导电层形成所述第一端子的第三电极,所述第三电极通过所述第二过孔与所述第二电极电连接;或者,
利用第五光罩工艺对所述第四导电层图案化处理,使所述第四导电层形成所述第一端子的第三电极、以及所述第二端子的第二绑定电极,所述第三电极通过所述第二过孔与所述第二电极电连接,所述第二绑定电极通过所述第二开口与所述第一绑定电极电连接。
本申请还提出了一种背光模组,所述背光模组包括发光区和远离所述发光区的第一绑定区;
所述发光区内设置有多个发光单元,任一所述发光单元包括衬底、位于所述衬底上的栅极、位于所述栅极上的第一绝缘层、位于所述第一绝缘层上的有源构件、位于所述有源构件上的源漏极、位于所述源漏极上的第二绝缘层以及位于所述第二绝缘层内的第二端子及位于所述第二端子上的发光器件,所述第二端子包括与所述有源构件同层设置以及与所述源漏极在同一道工艺中形成的第一绑定电极;
所述第一绑定区内设置有至少一个第一端子,所述第一端子包括位于所述衬底上以及电连接的第一电极、第二电极以及第三电极,所述第一电极、所述第二电极以及所述第三电极叠层设置,所述第一电极与所述栅极同层设置,所述第二电极与所述有源构件同层设置以及与所述源漏极在同一道工艺中形成,所述第三电极位于所述第二绝缘层上。
有益效果
本申请利用一多段式掩膜板同时形成有源构件以及柔性电路板的绑定端子的第一电极的开口,使得第三导电层能够同时形成源漏极、柔性电路板的绑定端子的第二电极、及发光元件的绑定端,减小了制程工艺的蚀刻次数,简化了背光模组的工艺难度,提高了制程效率。
附图说明
图1为本申请背光模组的制作方法的步骤图;
图2为本申请背光模组的俯视结构图;
图3A为本申请背光模组的制作方法的第一种工艺流程图;
图3B为本申请背光模组的制作方法的第二种工艺流程图;
图3C为本申请背光模组的制作方法的第三种工艺流程图;
图3D为本申请背光模组的制作方法的第四种工艺流程图;
图3E为本申请背光模组的制作方法的第五种工艺流程图;
图3F为本申请背光模组的制作方法的第六种工艺流程图;
图3G为本申请背光模组的制作方法的第七种工艺流程图;
图3H为本申请背光模组的制作方法的第八种工艺流程图;
图3I为本申请背光模组的制作方法的第九种工艺流程图;
图3J为本申请背光模组的制作方法的第十种工艺流程图;
图3K为本申请背光模组的制作方法的第十一种工艺流程图;
图3L为本申请背光模组的制作方法的第十二种工艺流程图。
本发明的实施方式
为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
现有的背光模组的制程通常需要多道光罩及多次湿法及干法蚀刻才能形成,而蚀刻次数过多增加了背光模组的工艺难度,导致成本的增加。
请参阅图1,本申请提出了一种背光模组100的制作方法,其包括:
S10、在衬底10上形成第一导电层20,经图案化处理以形成所述背光模组100的第一端子200的第一电极202;
S20、在所述第一导电层20上形成第一绝缘层30及有源材料层40;
S30、利用一多段式掩膜板80对所述第一绝缘层30及所述有源材料层40图案化处理,以露出部分所述第一导电层20,以及使所述有源材料层40形成有源构件401;
S40、在所述有源构件401上形成第三导电层50,以形成所述背光模组100的源漏极以及所述第一端子200的第二电极502和所述背光模组100第二端子300的第一绑定电极503;
S50、在保留的所述第三导电层50上形成第二绝缘层60;
S60、在所述第二绝缘层60上形成第四导电层70,经图案化处理以形成所述第一端子200的第三电极701。
本申请利用一多段式掩膜板80同时形成有源构件401以及柔性电路板的绑定端子的第一电极202的开口,使得第三导电层50能够同时形成源漏极、柔性电路板的绑定端子的第二电极502、及发光器件的绑定端,减小了制程工艺的蚀刻次数,简化了背光模组100的工艺难度,提高了制程效率。
现结合具体实施例对本申请的技术方案进行描述。
请参阅图2,所述背光模组100包括多个发光单元和位于所述背光模组边缘的绑定区,该绑定区内设置有多个第一端子200,任一所述发光单元内的设置有薄膜晶体管和用于与发光器件连接的第二端子300。
在本实施例中,所述背光模组100包括位于所述衬底10上的驱动电路层,该驱动电路层可以包括多个薄膜晶体管。所述薄膜晶体管可以为蚀刻阻挡型、背沟道蚀刻型或顶栅薄膜晶体管型等结构,具体没有限制。本申请以传统的背沟道蚀刻型为例进行说明。
在本实施例中,请参阅图3A~图3L,图3A~图3L均为图2中以AA为截面的部分剖面图,步骤S10具体可以包括:
S101、在所述衬底10上形成一第一导电层20;
在本步骤中,所述衬底10的材料可以根据产品的刚性及柔性确定,例如玻璃、石英的刚性材料或者聚酰亚胺的柔性材料等。
在本步骤中,请参阅图3A和图3B所述第一导电层20可以采用钼、铝、铝镍合金、钼钨合金、铬、或铜等金属,也可以使用上述几种金属材料的组合物。由于所述第一导电层20用于形成所述背光模组100的栅极201,因此所述第一导电层20的材料可以为钼。
S102、利用第一光罩及第一蚀刻工艺对所述第一导电层20图案化处理,使所述第一导电层20形成所述背光模组100的栅极201、以及所述背光模组100第一端子200的第一电极202;
在本步骤中,在所述第一导电层20上涂覆一层光阻材料层,以及利用预定掩膜板对该光阻材料层曝光,经显影后使得该光阻材料层图案化,以及利用所述第一蚀刻工艺对所述第一导电层20进行蚀刻处理,使所述第一导电层20形成所述背光模组100的栅极201、以及所述背光模组100第一端子200的第一电极202。
在本步骤中,所述第一蚀刻工艺可以为湿法蚀刻工艺。
S103、在图案化后的所述第一导电层20上形成所述第一绝缘层30。
在本实施例中,请参阅图3C,步骤S30具体可以包括:
S301、在所述有源材料层40上形成一光阻材料层;
在本步骤中,所述有源材料层40可以为半导体氧化物,例如铟镓锌氧化物。
S302、利用第二光罩对所述光阻材料层图案化处理,使所述光阻材料层形成相互分离的第一光阻区91及第二光阻区92,以及位于所述第一光阻区91与所述第二光阻区92之间的第一开口区93;
在本步骤中,所述第二光阻区92包括相互连接的第一光阻子区921、第二光阻子区922和第三光阻子区923,所述第一光阻子区921和第三光阻子区923在所述第二光阻子区922的两侧,所述第一光阻子区921的厚度小于所述第二光阻子区922的厚度,所述第一光阻子区921的厚度与所述第三光阻子区923的厚度相等,所述第一光阻子区921的厚度与所述第一光阻区91的厚度相等。
在本步骤中,所述多段式掩膜板80包括第一掩膜区801、第二掩膜区802及第三掩膜区803;所述第一掩膜区801与所述第一开口区93对应,所述第二掩膜区802与第一光阻区91及第一光阻子区921对应,所述第三掩膜区803与所述第二光阻子区922及所述第三光阻子区923对应;所述第一掩膜区801、所述第二掩膜区802及所述第三掩膜区803的光透过率逐渐增加或逐渐减小。
例如,当所述光阻材料为正性光阻时,所述第一掩膜区801的光透过率可以为100%,所述第二掩膜区802的光透过率可以为50%,所述第三掩膜区803的光透过率可以为0。所述第一掩膜区801、所述第二掩膜区802及所述第三掩膜区803的光透过率逐渐减小,经显影后,所述第一掩膜区801对应的光阻材料全部去除,所述第二掩膜区802对应的光阻材料厚度变为原来的一半,所述第三掩膜区803对应的光阻材料全部保留。
例如,当所述光阻材料为负性光阻时,所述第一掩膜区801的光透过率可以为0,所述第二掩膜区802的光透过率可以为50%,所述第三掩膜区803的光透过率可以为100%。所述第一掩膜区801、所述第二掩膜区802及所述第三掩膜区803的光透过率逐渐增加,经显影后,所述第一掩膜区801对应的光阻材料保留,所述第二掩膜区802对应的光阻材料厚度变为原来的一半,所述第三掩膜区803对应的光阻材料全部去除。
上述实施例只是其中一种情况,所述第一掩膜区801、所述第二掩膜区802及所述第三掩膜区803的具体光透过率可以根据实际情况限定。
S303、利用第二蚀刻工艺移除所述第一绝缘层30及所述第一导电层20中未被所述第一光阻区91和所述第二光阻区92覆盖的部分,形成第一过孔301,以露出所述第一开口区93对应的所述第一电极202;
在本实施例中,所述第二蚀刻工艺包括第一次湿法蚀刻和第一次干法蚀刻,所述第一次湿法蚀刻用于去除所述第一开口区93对应的有源材料层40,所述第一次干法蚀刻用于去除所述第一开口区93对应的第一绝缘层30,以形成所述第一过孔301,从而使部分所述第一电极202裸露。
S304、对所述第一光阻区91和所述第二光阻区92中的光阻材料进行灰化处理,保留部分第二光阻区92中的光阻材料;
请参阅图3D,在本步骤中,主要利用灰化工艺去除第一光阻区91及第二光阻区92中第一光阻子区921中的光阻材料、以及减小第二光阻区92中第二光阻子区922的厚度,形成部分第二光阻区92。
在本实施例中,该灰化处理一般利用等离子气体去除光阻材料,等离子气体可以为但不限于氧气、氮气等。
或者,从图3D至图3E的工艺中,可以省去灰化工艺的步骤,即通过上述第一次湿法蚀刻去除所述第一开口区93对应的有源材料层40,以及利用第一次干法蚀刻去除所述第一开口区93对应的第一绝缘层30,以及去除第一光阻区91及第二光阻区92中第一光阻子区921和第三光阻子区923中的光阻材料、以及减小第二光阻区92中第二光阻子区922的厚度,形成部分第二光阻区92,即利用上述干法蚀刻工艺代替了灰化处理,简化制程。
S305、利用第三蚀刻工艺移除未被部分第二光阻区92中的光阻材料覆盖的有源材料层40,形成所述有源构件401。
请参阅图3E,在本步骤中,其主要通过第三蚀刻工艺对所述有源材料层40图案化处理,以形成所述背光模组100的有源构件401。
在本实施例中,请参阅图3F~3G,步骤S40具体可以包括:
S401、在所述有源构件401上形成一第三导电层50;
S402、利用第三光罩以及第四蚀刻工艺对所述第三导电层50图案化处理,使所述第三导电层50形成所述背光模组100的源漏极501、所述第一端子200的第二电极502、以及所述第二端子300的第一绑定电极503;
在本实施例中,所述第三导电层50的金属材料一般需要弯折性能及导电性能较高的材料,以及同时兼顾防氧化的功能,例如所述第三导电层50的金属材料可以为钛铝合金,即形成钛铝钛的三明治结构。
在本实施例中,所述源漏极501位于所述有源构件401上,所述有源构件401作为对应薄膜晶体管的开关。
在本实施例中,所述第一端子200的第二电极502通过所述第一过孔301与所述第一电极202电连接。所述第一过孔301的数量不限于上述一个,可以为多个。
在本实施例中,所述第二端子300与所述第一端子200位于所述背光模组100的两侧,避免将两个连接端子设置在同一侧而增加下边框或上边框的间距。
在本实施例中,所述第一端子200为与柔性电路板连接的端子,所述第二端子300为与发光器件连接的端子,例如Micro LED或Mini LED等。
在本实施例中,所述第一端子200的第二电极502及所述第二端子300的第一绑定电极503可以为与所述有源材料层40同一道工艺形成,即在形成有源构件401之前,先将所述第一过孔301蚀刻完成;其次在形成有源材料层40时,使其在同一道光罩工艺中将有源材料层40图案化形成所述第一端子200的第二电极502、所述第二端子300的第一绑定电极503、及所述有源构件401。
或者,在上述实施例的基础上,通过有源材料层40形成所述有源构件401以及所述第二端子300的第一绑定电极503,所述第一端子200的第二电极502通过第三导电层50形成。
在本实施例中,所述第四蚀刻工艺可以为湿法蚀刻。
在本实施例中,在形成所述源漏极501后,还包括:
S50、在保留的第三导电层50上形成第二绝缘层60;以及,利用第四光罩工艺以及第五蚀刻工艺对所述第二绝缘层60图案化处理,使所述第二绝缘层60形成位于所述第二电极502上的第二过孔601及位于所述第一绑定电极503上的第二开口602。
请参阅图3H,所述第二绝缘层60可以与所述第一绝缘层30的材料相同,例如硅氧化合物、碳硅化合物等无机化合物。
在本步骤中,由于所述柔性电路板的绑定端为与贴合端,因此所述第一端子200的结构需要凸出于所述背光模组100,即在第二电极502上形成第二过孔601以便在第二绝缘层60上第三电极701,以及使第三电极701通过第二过孔601与第二电极502电连接;其次,由于发光器件结构可以内嵌于背光模组100内,因此其可以形成较大口径的所述第二开口602。
在本实施例中,所述第五蚀刻工艺可以为干法蚀刻工艺。
在本实施例中,在形成所述第二绝缘层60后,还包括:
S60、在所述钝化层上形成第四导电层70;以及,利用第五光罩工艺对所述第四导电层70图案化处理,使所述第四导电层70形成所述第一端子200的第三电极701,所述第三电极701通过所述第二过孔601与所述第二电极502电连接;
请参阅图3I~3J,所述第四导电层70的材料主要为像素电极,例如其可以为但不限于氧化铟锡,或者其他导电性良好的金属材料等。所述像素电极的制备主要用于形成所述第一端子200的第三电极701,所述第三电极701通过所述第二过孔601与所述第二电极502电连接,所述第三电极701主要用于与柔性电路板对应的端口电连接。
在本实施例中,请参阅图3K,上述步骤还可以为:
利用第五光罩工艺对所述第四导电层70图案化处理,使所述第四导电层70形成所述第一端子200的第三电极701、以及所述第二端子300的第二绑定电极,所述第三电极701通过所述第二过孔601与所述第二电极502电连接,所述第二绑定电极702通过所述第二开口602与所述第一绑定电极503电连接。
本步骤与图3G中的结构类似,其主要是利用第四导电层70同时形成了第一端子200的第三电极701以及第二端子300的第二绑定电极。新增加的所述第二绑定电极内置与所述第二开口602内,对应的发光器件的大小不限定于开口的大小,其可以与柔性电路板一样,设置在所述背光模组100上。
在本实施例中,请参阅图3L,在衬底10上形成第一导电层20以及第一绝缘层30的步骤可以包括:在所述衬底10上形成一第一导电层20;以及,利用第一光罩及第一蚀刻工艺对所述第一导电层20图案化处理,使所述第一导电层20形成所述背光模组100的栅极201、所述背光模组100第一端子200的第一电极202、以及所述第二端子300的第三绑定电极203;以及,在图案化后的所述第一导电层20上形成所述第一绝缘层30。
在本步骤中,与图3J或图3K相比,本申请的所述第二端子300还包括位于衬底10上的第三绑定电极,本申请的三层绑定电极可以两两电连接,多层绑定电极的设置可以增加内部电极之间连接的稳定性,例如当某一层电极断路时,其还可以通过另外两层电极传输信号。
在本实施例中,所述第一端子200中的三层电极也可以两两层电极之间电连接,此处不再详细赘述。
本申请根据上述公开的结构,在完成有源构件401及第三导电层50的图案化工艺中,只需要上述第二蚀刻工艺、第三蚀刻工艺、及第四蚀刻工艺即可完成,相当于三次湿法蚀刻及一次干法蚀刻,与现有技术相比减少了蚀刻次数,简化了工艺,提高了产品制程效率。
请参阅图2和图3J~图3L,本申请还提出了一种背光模组100,所述背光模组100包括发光区520和远离所述发光区520的第一绑定区510;
所述发光区520内设置有多个发光单元400,任一所述发光单元400包括衬底10、位于所述衬底10上的栅极201、位于所述栅极201上的第一绝缘层30、位于所述第一绝缘层30上的有源构件401、位于所述有源构件401上的源漏极501、位于所述源漏极501上的第二绝缘层60以及位于所述第二绝缘层60内的第二端子300及位于所述第二端子300上的发光器件,所述第二端子300包括与所述有源构件401同层设置以及与所述源漏极501在同一道工艺中形成的第一绑定电极503;
所述第一绑定区510内设置有至少一个第一端子200,所述第一端子200包括位于所述衬底10上以及电连接的第一电极202、第二电极502以及第三电极701,所述第一电极202、所述第二电极502以及所述第三电极701叠层设置,所述第一电极202与所述栅极201同层设置,所述第二电极502与所述有源构件401同层设置以及与所述源漏极501在同一道工艺中形成,所述第三电极701位于所述第二绝缘层60上。
所述背光模组的相关结构可以参照上述背光模组的制作方法所限定的结构,其工作原理及工艺与上述相同或相似,此处不再赘述。
本申请提出了一种背光模组的制作方法,包括:在衬底上形成第一导电层以及第一绝缘层;在所述第一绝缘层上形成有源材料层;利用一多段式掩膜板对所述第一绝缘层及所述有源材料层图案化处理,以露出部分所述第一导电层、以及使所述有源材料层形成有源构件;在所述有源构件上形成第三导电层,以形成所述背光模组的源漏极。本申请利用一多段式掩膜板同时形成有源构件以及柔性电路板的绑定端子的第一电极的开口,使得第三导电层能够同时形成源漏极、柔性电路板的绑定端子的第二电极、及发光元件的绑定端,减小了制程工艺的蚀刻次数,简化了背光模组的工艺难度,提高了制程效率。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (20)

  1. 一种背光模组的制作方法,其中,包括:
    在衬底上形成第一导电层,经图案化处理以形成所述背光模组的第一端子的第一电极;
    在所述第一导电层上形成第一绝缘层及有源材料层;
    利用一多段式掩膜板对所述第一绝缘层及所述有源材料层图案化处理,以露出部分所述第一导电层,以及使所述有源材料层形成有源构件;
    在所述有源构件上形成第三导电层,以形成所述背光模组的源漏极以及所述第一端子的第二电极和所述背光模组第二端子的第一绑定电极;
    在保留的所述第三导电层上形成第二绝缘层;
    在所述第二绝缘层上形成第四导电层,经图案化处理以形成所述第一端子的第三电极。
  2. 根据权利要求1所述的背光模组的制作方法,其中,在衬底上形成第一导电层,经图案化处理以形成所述背光模组的第一端子的第一电极的步骤包括:
    在所述衬底上形成一第一导电层;
    利用第一光罩及第一蚀刻工艺对所述第一导电层图案化处理,使所述第一导电层形成所述背光模组的栅极以及所述背光模组第一端子的第一电极。
  3. 根据权利要求2所述的背光模组的制作方法,其中,利用一多段式掩膜板对所述第一绝缘层及所述有源材料层图案化处理,以露出部分所述第一导电层、以及使所述有源材料层形成有源构件的步骤包括:
    在所述有源材料层上形成一光阻材料层;
    利用第二光罩对所述光阻材料层图案化处理,使所述光阻材料层形成相互分离的第一光阻区及第二光阻区,以及位于所述第一光阻区与所述第二光阻区之间的第一开口区;
    利用第二蚀刻工艺移除所述第一绝缘层及所述第一导电层中未被所述第一光阻区和所述第二光阻区覆盖的部分,形成第一过孔,以露出所述第一开口区对应的所述第一电极;
    对所述第一光阻区和所述第二光阻区中的光阻材料进行灰化处理,保留部分第二光阻区中的光阻材料;
    利用第三蚀刻工艺移除未被部分第二光阻区中的光阻材料覆盖的有源材料层,形成所述有源构件。
  4. 根据权利要求3所述的背光模组的制作方法,其中,所述第二光阻区包括相互连接的第一光阻子区、第二光阻子区和第三光阻子区,所述第一光阻子区的厚度小于所述第二光阻子区及所述第三光阻子区的厚度,所述第一光阻子区的厚度与所述第一光阻区的厚度相等。
  5. 根据权利要求4所述的背光模组的制作方法,其中,对所述第一光阻区和所述第二光阻区中的光阻材料进行灰化处理,保留部分第二光阻区中的光阻材料的步骤包括:
    去除第一光阻区及第二光阻区中第一光阻子区中的光阻材料、以及减小第二光阻区中第二光阻子区和第三光阻子区的厚度,形成部分第二光阻区。
  6. 根据权利要求4所述的背光模组的制作方法,其中,所述多段式掩膜板包括第一掩膜区、第二掩膜区及第三掩膜区;
    所述第一掩膜区与所述第一开口区对应,所述第二掩膜区与第一光阻区及第一光阻子区对应,所述第三掩膜区与所述第二光阻子区和所述第三光阻子区对应;
    所述第一掩膜区、所述第二掩膜区及所述第三掩膜区的光透过率逐渐增加或逐渐减小。
  7. 根据权利要求4所述的背光模组的制作方法,其中,在所述有源构件上形成第三导电层,以形成所述背光模组的源漏极以及所述第一端子的第二电极和所述背光模组第二端子的第一绑定电极的步骤包括:
    在所述有源构件上形成一第三导电层;
    利用第三光罩以及第四蚀刻工艺对所述第三导电层图案化处理,使所述第三导电层形成所述背光模组的源漏极、所述第一端子的第二电极、以及所述第二端子的第一绑定电极;
    其中,所述源漏极位于所述有源构件上,所述第二电极通过所述第一过孔与所述第一电极电连接。
  8. 根据权利要求7所述的背光模组的制作方法,其中,在保留的所述第三导电层上形成第二绝缘层的步骤包括:
    利用第四光罩工艺以及第五蚀刻工艺对所述第二绝缘层图案化处理,使所述第二绝缘层形成位于所述第二电极上的第二过孔及位于所述第一绑定电极上的第二开口。
  9. 根据权利要求8所述的背光模组的制作方法,其中,在所述第二绝缘层上形成第四导电层,经图案化处理以形成所述第一端子的第三电极的步骤包括:
    在所述第二绝缘层上形成第四导电层;
    利用第五光罩工艺对所述第四导电层图案化处理,使所述第四导电层形成所述第一端子的第三电极,所述第三电极通过所述第二过孔与所述第二电极电连接;或者,
    利用第五光罩工艺对所述第四导电层图案化处理,使所述第四导电层形成所述第一端子的第三电极、以及所述第二端子的第二绑定电极,所述第三电极通过所述第二过孔与所述第二电极电连接,所述第二绑定电极通过所述第二开口与所述第一绑定电极电连接。
  10. 一种背光模组,其中,所述背光模组包括发光区和远离所述发光区的第一绑定区;
    所述发光区内设置有多个发光单元,任一所述发光单元包括衬底、位于所述衬底上的栅极、位于所述栅极上的第一绝缘层、位于所述第一绝缘层上的有源构件、位于所述有源构件上的源漏极、位于所述源漏极上的第二绝缘层以及位于所述第二绝缘层内的第二端子及位于所述第二端子上的发光器件,所述第二端子包括与所述有源构件同层设置以及与所述源漏极在同一道工艺中形成的第一绑定电极;
    所述第一绑定区内设置有至少一个第一端子,所述第一端子包括位于所述衬底上以及电连接的第一电极、第二电极以及第三电极,所述第一电极、所述第二电极以及所述第三电极叠层设置,所述第一电极与所述栅极同层设置,所述第二电极与所述有源构件同层设置以及与所述源漏极在同一道工艺中形成,所述第三电极位于所述第二绝缘层上。
  11. 一种背光模组的制作方法,其中,包括:
    在衬底上形成第一导电层,经图案化处理以形成所述背光模组的第一端子的第一电极及所述背光模组的第二端子的第三绑定电极;
    在所述第一导电层上形成第一绝缘层及有源材料层;
    利用一多段式掩膜板对所述第一绝缘层及所述有源材料层图案化处理,以露出部分所述第一导电层,以及使所述有源材料层形成有源构件;
    在所述有源构件上形成第三导电层,以形成所述背光模组的源漏极以及所述第一端子的第二电极和所述背光模组的第二端子的第一绑定电极;
    在保留的所述第三导电层上形成第二绝缘层;
    在所述第二绝缘层上形成第四导电层,经图案化处理以形成所述第一端子的第三电极。
  12. 根据权利要求11所述的背光模组的制作方法,其中,在衬底上形成第一导电层,经图案化处理以形成所述背光模组的第一端子的第一电极的步骤包括:
    在所述衬底上形成一第一导电层;
    利用第一光罩及第一蚀刻工艺对所述第一导电层图案化处理,使所述第一导电层形成所述背光模组的栅极以及所述背光模组第一端子的第一电极。
  13. 根据权利要求12所述的背光模组的制作方法,其中,利用一多段式掩膜板对所述第一绝缘层及所述有源材料层图案化处理,以露出部分所述第一导电层、以及使所述有源材料层形成有源构件的步骤包括:
    在所述有源材料层上形成一光阻材料层;
    利用第二光罩对所述光阻材料层图案化处理,使所述光阻材料层形成相互分离的第一光阻区及第二光阻区,以及位于所述第一光阻区与所述第二光阻区之间的第一开口区;
    利用第二蚀刻工艺移除所述第一绝缘层及所述第一导电层中未被所述第一光阻区和所述第二光阻区覆盖的部分,形成第一过孔,以露出所述第一开口区对应的所述第一电极;
    对所述第一光阻区和所述第二光阻区中的光阻材料进行灰化处理,保留部分第二光阻区中的光阻材料;
    利用第三蚀刻工艺移除未被部分第二光阻区中的光阻材料覆盖的有源材料层,形成所述有源构件。
  14. 根据权利要求13所述的背光模组的制作方法,其中,所述第二光阻区包括相互连接的第一光阻子区、第二光阻子区和第三光阻子区,所述第一光阻子区的厚度小于所述第二光阻子区及所述第三光阻子区的厚度,所述第一光阻子区的厚度与所述第一光阻区的厚度相等。
  15. 根据权利要求14所述的背光模组的制作方法,其中,对所述第一光阻区和所述第二光阻区中的光阻材料进行灰化处理,保留部分第二光阻区中的光阻材料的步骤包括:
    去除第一光阻区及第二光阻区中第一光阻子区中的光阻材料、以及减小第二光阻区中第二光阻子区和第三光阻子区的厚度,形成部分第二光阻区。
  16. 根据权利要求14所述的背光模组的制作方法,其中,所述多段式掩膜板包括第一掩膜区、第二掩膜区及第三掩膜区;
    所述第一掩膜区与所述第一开口区对应,所述第二掩膜区与第一光阻区及第一光阻子区对应,所述第三掩膜区与所述第二光阻子区和所述第三光阻子区对应;
    所述第一掩膜区、所述第二掩膜区及所述第三掩膜区的光透过率逐渐增加或逐渐减小。
  17. 根据权利要求14所述的背光模组的制作方法,其中,在所述有源构件上形成第三导电层,以形成所述背光模组的源漏极以及所述第一端子的第二电极和所述背光模组第二端子的第一绑定电极的步骤包括:
    在所述有源构件上形成一第三导电层;
    利用第三光罩以及第四蚀刻工艺对所述第三导电层图案化处理,使所述第三导电层形成所述背光模组的源漏极、所述第一端子的第二电极、以及所述第二端子的第一绑定电极;
    其中,所述源漏极位于所述有源构件上,所述第二电极通过所述第一过孔与所述第一电极电连接。
  18. 根据权利要求17所述的背光模组的制作方法,其中,在保留的所述第三导电层上形成第二绝缘层的步骤包括:
    利用第四光罩工艺以及第五蚀刻工艺对所述第二绝缘层图案化处理,使所述第二绝缘层形成位于所述第二电极上的第二过孔及位于所述第一绑定电极上的第二开口。
  19. 根据权利要求18所述的背光模组的制作方法,其中,在所述第二绝缘层上形成第四导电层,经图案化处理以形成所述第一端子的第三电极的步骤包括:
    在所述第二绝缘层上形成第四导电层;
    利用第五光罩工艺对所述第四导电层图案化处理,使所述第四导电层形成所述第一端子的第三电极,所述第三电极通过所述第二过孔与所述第二电极电连接;或者,
    利用第五光罩工艺对所述第四导电层图案化处理,使所述第四导电层形成所述第一端子的第三电极、以及所述第二端子的第二绑定电极,所述第三电极通过所述第二过孔与所述第二电极电连接,所述第二绑定电极通过所述第二开口与所述第一绑定电极电连接。
  20. 根据权利要求11所述的背光模组的制作方法,其中,所述第四导电层由氧化铟锡构成。
PCT/CN2020/130443 2020-10-16 2020-11-20 背光模组及其制作方法 WO2022077704A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/251,288 US20220302181A1 (en) 2020-10-16 2020-11-20 Backlight module and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011108559.8A CN112309967B (zh) 2020-10-16 2020-10-16 背光模组及其制作方法
CN202011108559.8 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022077704A1 true WO2022077704A1 (zh) 2022-04-21

Family

ID=74327804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130443 WO2022077704A1 (zh) 2020-10-16 2020-11-20 背光模组及其制作方法

Country Status (3)

Country Link
US (1) US20220302181A1 (zh)
CN (1) CN112309967B (zh)
WO (1) WO2022077704A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023115402A1 (zh) * 2021-12-22 2023-06-29 京东方科技集团股份有限公司 驱动背板及其制备方法、显示装置及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109741684A (zh) * 2019-01-07 2019-05-10 京东方科技集团股份有限公司 一种电路基板、显示面板及制作方法
KR20190116178A (ko) * 2018-04-04 2019-10-14 한국광기술원 미세 led 패키지 및 그의 생산방법
CN110471219A (zh) * 2019-07-31 2019-11-19 厦门天马微电子有限公司 Led基板及显示装置
CN110931620A (zh) * 2019-12-26 2020-03-27 厦门乾照光电股份有限公司 一种Mini LED芯片及其制作方法
CN111477638A (zh) * 2020-04-28 2020-07-31 Tcl华星光电技术有限公司 阵列基板及其制造方法、显示装置
CN111584512A (zh) * 2020-05-14 2020-08-25 Tcl华星光电技术有限公司 阵列基板及其制造方法、显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI330407B (en) * 2007-08-13 2010-09-11 Au Optronics Corp Method of manufacturing thin film transistor and display device applied with the same
CN103500730B (zh) * 2013-10-17 2016-08-17 北京京东方光电科技有限公司 一种阵列基板及其制作方法、显示装置
CN211265505U (zh) * 2019-12-26 2020-08-14 厦门乾照光电股份有限公司 一种Mini LED芯片
KR20210095277A (ko) * 2020-01-22 2021-08-02 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190116178A (ko) * 2018-04-04 2019-10-14 한국광기술원 미세 led 패키지 및 그의 생산방법
CN109741684A (zh) * 2019-01-07 2019-05-10 京东方科技集团股份有限公司 一种电路基板、显示面板及制作方法
CN110471219A (zh) * 2019-07-31 2019-11-19 厦门天马微电子有限公司 Led基板及显示装置
CN110931620A (zh) * 2019-12-26 2020-03-27 厦门乾照光电股份有限公司 一种Mini LED芯片及其制作方法
CN111477638A (zh) * 2020-04-28 2020-07-31 Tcl华星光电技术有限公司 阵列基板及其制造方法、显示装置
CN111584512A (zh) * 2020-05-14 2020-08-25 Tcl华星光电技术有限公司 阵列基板及其制造方法、显示装置

Also Published As

Publication number Publication date
US20220302181A1 (en) 2022-09-22
CN112309967B (zh) 2022-03-08
CN112309967A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN109671726B (zh) 阵列基板及其制造方法、显示面板、显示装置
US9356052B2 (en) Thin film transistor with integrated connecting portion
KR100865451B1 (ko) 박막 트랜지스터 lcd 화소 유닛 및 그 제조방법
US8860898B2 (en) Array substrate and liquid crystal display
US11087985B2 (en) Manufacturing method of TFT array substrate
TW202002240A (zh) 陣列基板的製造方法
WO2022000699A1 (zh) Oled显示面板及其制备方法
KR101212554B1 (ko) Tft-lcd 어레이 기판 및 그 제조 방법
WO2021031374A1 (zh) 阵列基板的制备方法及阵列基板
WO2022077704A1 (zh) 背光模组及其制作方法
WO2023039934A1 (zh) 显示面板及显示面板的制造方法、显示终端
TWI459477B (zh) 畫素結構及其製作方法
CN107910351B (zh) Tft基板的制作方法
JP3706043B2 (ja) 液晶用マトリクス基板の製造方法
CN111627933B (zh) 主动元件基板及其制造方法
WO2019210602A1 (zh) 阵列基板及其制造方法、显示面板
CN109256397B (zh) 显示基板及其制备方法、显示装置
WO2021097995A1 (zh) 一种阵列基板及其制备方法
WO2022257186A1 (zh) 阵列基板及其制备方法、显示面板
CN109742102B (zh) 显示面板及其制作方法
JP2004318076A (ja) 横方向電場駆動液晶ディスプレイの製造方法
CN111900129B (zh) 一种显示面板、阵列基板及其制备方法
TW201342628A (zh) 主動元件及其製造方法
CN110718467B (zh) 一种tft阵列基板的制作方法
CN112543997B (zh) 阵列基板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957478

Country of ref document: EP

Kind code of ref document: A1