WO2022075191A1 - 樹脂成形材料、成形体および当該成形体の製造方法 - Google Patents

樹脂成形材料、成形体および当該成形体の製造方法 Download PDF

Info

Publication number
WO2022075191A1
WO2022075191A1 PCT/JP2021/036235 JP2021036235W WO2022075191A1 WO 2022075191 A1 WO2022075191 A1 WO 2022075191A1 JP 2021036235 W JP2021036235 W JP 2021036235W WO 2022075191 A1 WO2022075191 A1 WO 2022075191A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
molding material
resin
resin molding
material according
Prior art date
Application number
PCT/JP2021/036235
Other languages
English (en)
French (fr)
Inventor
勝志 山下
賢祐 野津
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to EP21877492.5A priority Critical patent/EP4227341A1/en
Priority to US18/028,647 priority patent/US20230331981A1/en
Priority to JP2022555425A priority patent/JPWO2022075191A1/ja
Priority to CN202180068331.7A priority patent/CN116348516A/zh
Publication of WO2022075191A1 publication Critical patent/WO2022075191A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/687Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a resin molding material, a molded body, and a method for manufacturing the molded body.
  • coils equipped with magnetic cores / exterior members are being actively studied.
  • a moldable magnetic material for producing a magnetic core or an exterior member of such a coil is also being actively studied.
  • Patent Document 1 describes a magnetic material powder containing first particles showing soft magnetism and an iron content of 85% by mass or more, and the magnetic material powder showing non-magnetism, having an average particle size of 3 ⁇ m or less and having an average particle size of 3 ⁇ m or less. Molding materials with smaller non-magnetic powders are disclosed.
  • the volume fraction of the magnetic powder is 50 to 90% by volume of the molding material 1 (paragraph 0107, etc.), and the volume fraction of the non-magnetic powder containing silica is 3 to 25 volumes of the magnetic powder. It is stated that it is stated that it is% (paragraph 0124, etc.).
  • Patent Document 2 describes a magnetic core in which the content of the thermosetting resin, the magnetic material powder, and the magnetic material powder is 50% by mass or more with respect to the total solid content of the resin composition for forming the magnetic core.
  • the forming resin composition is disclosed.
  • the volume fraction of the magnetic powder is 35 to 90% by volume of the molding material 1 (paragraph 0107, etc.), and the volume fraction of the non-magnetic powder containing silica is 3 to 25 volumes of the magnetic powder. It is stated that it is% (paragraph 0124, etc.).
  • JP-A-2019-182950 Japanese Unexamined Patent Publication No. 2019-080058
  • the magnetic material obtained from the resin molding material (composition) it is necessary to increase the filling of the soft magnetic particles in order to improve the magnetic properties such as the magnetic permeability.
  • the filling amount of the soft magnetic particles is increased, the viscosity of the resin molding material becomes high, and the filling property into the mold at the time of molding such as compression molding is lowered. That is, there was a trade-off relationship between increasing the magnetic permeability of the magnetic material and improving the filling property in the mold.
  • Patent Documents 1 and 2 do not aim to solve the above-mentioned problems because the filling amount of magnetic particles is small, and there is room for improvement in high magnetic permeability of the magnetic material and filling property in the mold. was there.
  • the content of the soft magnetic particles (A) is 96% by mass or more, and the content is 96% by mass or more.
  • a resin molding material having a fine silica (B) content of 1.5% by mass or less is provided.
  • a molded body obtained by curing the resin molding material is provided.
  • the process of injecting the melt of the resin molding material into the mold using a transfer molding device, and The step of curing the melt and A method for manufacturing a molded product is provided.
  • a method for manufacturing a molded product which comprises a step of compression molding the resin molding material.
  • the present invention it is possible to obtain a magnetic material having a high magnetic permeability and to provide a resin molding material having excellent filling property in a mold.
  • the resin molding material of this embodiment is It contains (A) soft magnetic particles, (B) fine silica powder having an average particle size of 0.1 ⁇ m or more and 2.0 ⁇ m or less, and (C) a thermosetting resin.
  • the content of the soft magnetic particles (A) is 96% by mass or more, and the content of the fine silica (B) is 1.5% by mass or less.
  • Soft magnetism refers to ferromagnetism having a small coercive force, and generally, ferromagnetism having a coercive force of 800 A / m or less is called soft magnetism.
  • Examples of the constituent material of the soft magnetic particles (A) include a metal-containing material having an iron content of 85% by mass or more as a constituent element.
  • a metal material having a high iron content as a constituent element exhibits soft magnetism having relatively good magnetic properties such as magnetic permeability and magnetic flux density. Therefore, for example, a resin molding material that can exhibit good magnetic properties when molded into a magnetic core or the like can be obtained.
  • Examples of the form of the above metal-containing material include simple substances, solid solutions, eutectics, alloys such as intermetallic compounds, and the like.
  • By using the particles made of such a metal material it is possible to obtain a resin molding material having excellent magnetic properties derived from iron, that is, magnetic properties such as high magnetic permeability and high magnetic flux density.
  • the above metal-containing material may contain an element other than iron as a constituent element.
  • elements other than iron include B, C, N, O, Al, Si, P, S, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, and Cd. , In, Sn and the like, and one or a combination of two or more of these is used.
  • one or more kinds of elements selected from Fe, Ni, Si and Co can be contained as a main element.
  • the above metal-containing materials include, for example, pure iron, silicon steel, iron-cobalt alloy, iron-nickel alloy, iron-chromium alloy, iron-aluminum alloy, carbonyl iron, stainless steel, or any of these. Examples thereof include composite materials containing one type or two or more types. Silicon steel and carbonyl iron can be preferably used from the viewpoint of availability.
  • the soft magnetic particles may be other particles. For example, it may be a magnetic particle containing Ni-based soft magnetic particles, Co-based soft magnetic particles, and the like.
  • the median diameter D 50 of the soft magnetic particles (A) on a volume basis is preferably 0.5 to 75 ⁇ m, more preferably 0.75 to 65 ⁇ m, and even more preferably 1 to 60 ⁇ m.
  • the D 50 can be obtained by, for example, a laser diffraction / scattering type particle size distribution measuring device. Specifically, the particle size distribution curve is obtained by measuring the soft magnetic particles (A) in a dry manner with the particle size distribution measuring device "LA-950" manufactured by HORIBA, and D is analyzed by analyzing this distribution curve. 50 can be calculated.
  • the resin molding material of the present embodiment contains the soft magnetic particles (A) in an amount of 96% by mass or more.
  • the upper limit is 98% by mass or less. This makes it possible to obtain a magnetic material having a high magnetic permeability.
  • the resin molding material of the present embodiment contains the soft magnetic particles (A) in an amount of 82% by volume or more, preferably 84% by volume or more.
  • the upper limit is 90% by volume or less.
  • the resin molding material of this embodiment contains fine silica (B).
  • the fine powder silica (B) has an average particle size of 0.1 ⁇ m or more and 2.0 ⁇ m or less, preferably 0.1 ⁇ m or more and 1.8 ⁇ m or less, more preferably 0.1 ⁇ m or more and 1.6 ⁇ m or less, and further preferably 0.1 ⁇ m or more. It is 1.0 ⁇ m or less.
  • the fine silica (B) is uniformly dispersed in the resin molding material to improve the fluidity and improve the filling property and the moldability, so that a molded product with few molding defects can be obtained, and further, the molded product can be obtained. Especially good magnetic properties can be obtained.
  • Fine silica (B) has a high affinity with a thermosetting resin and a high insulating property, and is therefore useful as a constituent material of a non-magnetic material powder used as a resin molding material.
  • the true specific gravity of the fine silica (B) is preferably 1.0 to 6.0, more preferably 1.2 to 5.0, and even more preferably 1.5 to 4.5. .. Since such fine silica (B) has a small specific gravity, it easily flows together with the melt of the thermosetting resin. Therefore, when the melt of the thermosetting resin flows toward the gap of the molding mold at the time of molding, the fine silica (B) easily flows together with the melt.
  • the fine silica (B) is preferably spherical silica.
  • the sphericity of the fine silica (B) is not particularly limited, but is preferably 0.50 to 1.00, and more preferably 0.75 to 1.00. When the sphericity of the fine silica (B) is within the above range, the fluidity of the resin molding material can be ensured by utilizing the rolling of the fine silica (B) itself.
  • the resin molding material of the present embodiment can contain fine silica (B) in an amount of 1.5% by mass or less, preferably 1.2% by mass or less, and more preferably 1.0% by mass or less.
  • the lower limit is 0.05% by mass or more, preferably 0.1% by mass or more from the viewpoint of the effect of the present invention.
  • the resin molding material of the present embodiment can obtain a magnetic material having a high magnetic permeability and is sufficient. A resin molding material having fluidity can be obtained, and the filling property into the mold is excellent.
  • the volume fraction of fine silica (B) is 4% by volume or less, preferably 3% by volume or less, and more preferably 2% by volume or less.
  • the lower limit is 0.14% by volume or more, preferably 0.5% by volume or more.
  • the average particle size of the magnetic particles (A) and the fine powder silica (B) means a volume average particle size (for example, D50), and can be measured using a laser diffraction type particle size distribution measuring device.
  • the sphericality of particles such as fine powder silica is determined by the equivalent area circle / circumscribing circle when a perfect circle equal to the area is defined as an equal area circle in the scanning electron microscope (SEM) image of each particle. It can be calculated by the diameter. Then, the equivalent area circle equivalent diameter / circumscribed circle diameter is calculated for 10 or more arbitrarily selected particles, and the average value thereof is defined as the "sphericity of the particles".
  • thermosetting resin (C) is, for example, an epoxy resin, a phenol resin, a polyimide resin, a bismaleimide resin, a urea (urea) resin, a melamine resin, a polyurethane resin, a cyanate ester resin, a silicone resin, an oxetane resin (oxetan compound), and the like.
  • examples thereof include (meth) acrylate resin, unsaturated polyester resin, diallyl phthalate resin, and benzoxazine resin. These may be used alone or in combination of two or more.
  • the thermosetting resin (C) preferably contains, for example, an epoxy resin.
  • the epoxy resin a known compound can be used without particular limitation as long as the effect of the present invention can be exhibited.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethyl bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, and bisphenol P type epoxy.
  • Resin bisphenol type epoxy resin such as bisphenol Z type epoxy resin; novolak type epoxy resin such as phenol novolac type epoxy resin, cresol novolac type epoxy resin; biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, arylalkylene type epoxy resin, naphthalene Examples thereof include type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantan type epoxy resin, fluorene type epoxy resin, trisphenylmethane type epoxy resin and the like.
  • the resin molding material of the present embodiment may contain only one type of epoxy resin, or may contain two or more types of epoxy resin. Further, even if the epoxy resin of the same type is used, those having different molecular weights may be used in combination.
  • the epoxy resin of the present embodiment is at least one selected from an epoxy resin containing a triphenylmethane structure, an epoxy resin containing a biphenyl structure, and a bisphenol A type or F type epoxy resin from the viewpoint of the effect of the present invention. Is preferable,
  • an epoxy resin containing a triphenylmethane structure it is more preferable to use a combination of an epoxy resin containing a triphenylmethane structure and a bisphenol A type or F type epoxy resin, or an epoxy resin containing a biphenyl structure.
  • the epoxy resin containing a triphenylmethane structure is specifically an epoxy resin containing a partial structure in which three of the four hydrogen atoms of methane (CH 4 ) are substituted with a benzene ring.
  • the benzene ring may be unsubstituted or substituted with a substituent. Examples of the substituent include a hydroxy group and a glycidyloxy group.
  • the epoxy resin containing a triphenylmethane structure contains a structural unit represented by the following general formula (a1).
  • a triphenylmethane skeleton is formed by connecting two or more of these structural units.
  • R 11 is a monovalent organic group, a halogen atom, a hydroxy group or a cyano group independently when there are a plurality of them.
  • R 12 is a monovalent organic group, a halogen atom, a hydroxy group or a cyano group independently when there are a plurality of them.
  • i is an integer from 0 to 3 and j is an integer from 0 to 4.
  • Examples of monovalent organic groups of R 11 and R 12 include those listed as monovalent organic groups of Ra and R b in the general formula (BP ) described later.
  • i and j are independently, preferably 0 to 2, and more preferably 0-1.
  • both i and j are 0. That is, as one aspect, all of the benzene rings in the general formula (a1) have no substituent other than the specified glycidyloxy group as the monovalent substituent.
  • the epoxy resin containing a biphenyl structure is specifically an epoxy resin containing a structure in which two benzene rings are connected by a single bond.
  • the benzene ring here may or may not have a substituent.
  • the epoxy resin containing a biphenyl structure has a partial structure represented by the following general formula (BP).
  • R a and R b are monovalent organic groups, hydroxyl groups or halogen atoms independently of each other when there are a plurality of them. r and s are independently 0-4, respectively. * Indicates that it is connected to another atomic group.
  • R a and R b include an alkyl group, an alkenyl group, an alkynyl group, an alkylidene group, an aryl group, an aralkyl group, an alkalil group, a cycloalkyl group, an alkoxy group, a heterocyclic group and a carboxyl group.
  • the group can be mentioned.
  • Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group and a heptyl group. Examples thereof include an octyl group, a nonyl group and a decyl group.
  • Examples of the alkenyl group include an allyl group, a pentenyl group, a vinyl group and the like.
  • Examples of the alkynyl group include an ethynyl group.
  • Examples of the alkylidene group include a methylidene group and an ethylidene group.
  • Examples of the aryl group include a tolyl group, a xylyl group, a phenyl group, a naphthyl group, and an anthrasenyl group.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the alkaline group include a tolyl group and a xylyl group.
  • Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group and the like.
  • alkoxy group examples include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an s-butoxy group, an isobutoxy group, a t-butoxy group, an n-pentyloxy group and a neopentyloxy group. , N-hexyloxy group and the like.
  • heterocyclic group examples include an epoxy group and an oxetanyl group.
  • the total carbon number of the monovalent organic groups of R a and R b is, for example, 1 to 30, preferably 1 to 20, more preferably 1 to 10, and particularly preferably 1 to 6, respectively.
  • r and s are independently, preferably 0 to 2, and more preferably 0-1. In one aspect, both r and s are zero.
  • the epoxy resin containing a biphenyl structure is preferably a biphenyl aralkyl type epoxy resin having a structural unit represented by the following general formula (BP1).
  • R a and R b are the same as those of the general formula (BP).
  • the definitions and preferred ranges of r and s are similar to the general formula (BP).
  • R c is a monovalent organic group, a hydroxyl group or a halogen atom independently of each other when there are a plurality of them.
  • t is an integer of 0 to 3.
  • Specific examples of the monovalent organic group of R c include the same as those given as specific examples of Ra and R b .
  • t is preferably 0 to 2, and more preferably 0 to 1.
  • bisphenol A or F type epoxy resin an epoxy resin produced by a condensation reaction between bisphenol A or bisphenol F and epichlorohydrin
  • EP an epoxy resin represented by the following general formula (EP).
  • Each of the plurality of Rs is independently a hydrogen atom or a methyl group, preferably a methyl group.
  • R a , R b , R c and R d are monovalent organic groups, hydroxyl groups or halogen atoms, respectively, independently of each other when a plurality thereof are present.
  • p, q, r and s are independently 0 to 4, preferably 0 to 2, respectively.
  • n is an integer of 0 or more, and is usually 0 to 10, preferably 0 to 5.
  • R a , R b , R c and R d are the same as those given as specific examples of the monovalent organic groups of R a and R b in the general formula (BP). I can mention things.
  • the amount of the epoxy resin in the resin molding material of the present embodiment is, for example, 0.1 to 20% by mass, preferably 0.5 to 10% by mass.
  • the amount of the epoxy resin in the resin molding material of the present embodiment is, for example, 0.5 to 60% by volume, preferably 3 to 40% by volume.
  • the phenol resin is not particularly limited, and examples thereof include novolak-type phenol resins such as phenol novolac resin, cresol novolak resin, and bisphenol A novolak resin, and resol-type phenol resins. One of these may be used alone, or two or more thereof may be used in combination. Among the phenolic resins, phenol novolac resin is preferable.
  • the urea resin is not particularly limited, and examples thereof include a resin obtained by condensation of urea and formaldehyde.
  • the unsaturated polyester resin is not particularly limited, and includes, for example, the most common orthotype using phthalic anhydride as a raw material, an isotype using isophthalic acid, and a paratype using terephthalic acid. , These prepolymers are also included. One of these can be used alone or two or more can be used in combination.
  • the polyimide resin is not particularly limited, but is synthesized, for example, by copolymerizing diamine, dianhydride and anhydride to synthesize a polyamic acid which is a precursor of polyimide, and then imidizing the polyamic acid. To.
  • the resin molding material of the present embodiment can further contain a phenolic curing agent (D). This can be expected to further improve the durability of the obtained molded product.
  • Phenolic curing agents typically have two or more hydroxy groups per molecule.
  • the phenolic curing agent preferably comprises any skeleton selected from the group consisting of a novolak skeleton and a biphenyl skeleton.
  • a novolak skeleton preferably comprises any skeleton selected from the group consisting of a novolak skeleton and a biphenyl skeleton.
  • the "biphenyl skeleton” is a structure in which two benzene rings are connected by a single bond as in the general formula (BP) in the above-mentioned description of the epoxy resin.
  • phenolic curing agent having a biphenyl skeleton examples include those having a structure in which the glycidyl group is replaced with a hydrogen atom in the general formula (BP1) in the above-mentioned description of the epoxy resin.
  • phenolic curing agent having a novolak skeleton examples include those having a structural unit represented by the following general formula (N).
  • R 4 represents a monovalent substituent and represents u is an integer from 0 to 3.
  • Specific examples of the monovalent substituent of R 4 include the same as those described as the monovalent substituent of Ra and R b in the general formula (BP ) .
  • u is preferably 0 to 2, more preferably 0 to 1, and even more preferably 0.
  • the phenolic curing agent (D) is preferably at least one selected from the novolak type phenol resin and the biphenyl aralkyl type phenol resin.
  • the number average molecular weight (standard polystyrene conversion value measured by GPC) of the phenolic curing agent (D) is, for example, about 200 to 800.
  • the content of the phenolic curing agent (D) in the resin molding material is, for example, 0.1 to 20% by mass, preferably 0.5 to 10% by mass.
  • the content of the phenolic curing agent (D) in the resin molding material is, for example, 0.5 to 60% by volume, preferably 3 to 40% by volume.
  • the resin molding material of the present embodiment can further contain a curing accelerator (E).
  • the curing accelerator (E) is not particularly limited as long as it accelerates the curing reaction of the epoxy resin, and a known epoxy curing accelerator can be used.
  • phosphorus atom-containing compounds such as organic phosphine, tetra-substituted phosphonium compound, phosphobetaine compound, adduct of phosphine compound and quinone compound, adduct of phosphonium compound and silane compound; 2-methylimidazole, 2- Imidazoles such as phenylimidazole (imidazole-based curing accelerators); 1,8-diazabicyclo [5.4.0] undecene-7, benzyldimethylamine and the like are exemplified by amidine and tertiary amines, and amidine and amine quaternary. Examples include nitrogen atom-containing compounds such as salts.
  • Tetra-substituted phosphonium compounds, phosphobetaine compounds, phosphin compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds are preferred.
  • the curing accelerator (E) only one kind may be used, or two or more kinds may be used.
  • the curing accelerator (E) When the curing accelerator (E) is used, its content is preferably 0.01 to 1% by mass, more preferably 0.04 to 0.8% by mass, based on the entire resin molding material.
  • the volume fraction is preferably 0.05 to 5% by volume, more preferably 0.10 to 0.4% by volume.
  • the resin molding material of the present embodiment can further contain the silicone compound (F).
  • the fluidity of the resin molding material is further enhanced, the filling property into the mold is excellent, the wettability is improved, and the generation of voids and the like is suppressed.
  • silicone compound (F) a known silicone compound can be used as long as the effect of the present invention is exhibited, but a silicone compound represented by the following general formula (1) can be preferably used.
  • R independently represents a substituted or unsubstituted monovalent organic group having 1 to 10 carbon atoms, and at least one of R is an amino group-substituted organic group or an epoxy group-substituted organic group.
  • n represents an integer from 1 to 100.
  • the remaining R is preferably an alkyl group having 1 to 10 carbon atoms or an alkoxy group, more preferably an alkyl group having 1 to 10 carbon atoms, and having 1 to 5 carbon atoms. Alkyl groups are more preferred.
  • at least one of R is an epoxy group-substituted organic group.
  • the silicone compound (F) is preferably liquid at room temperature (25 ° C.).
  • the functional group equivalent of the silicone compound (F) is preferably 200 to 30,000, more preferably 300 to 20,000, from the viewpoint of the effect of the present invention.
  • the weight average molecular weight of the silicone compound (F) is preferably 200 to 10,000, more preferably 500 to 8,000.
  • silicone compound (F) it is preferable to use the silicone compound represented by the following general formula (1a).
  • Q is an epoxy group-substituted organic group or a polyoxyalkylene group-containing organic group, and a plurality of existing Qs may be the same or different.
  • Q preferably contains an epoxy group-substituted organic group.
  • a indicates an integer of 1 to 50
  • b indicates an integer of 1 to 50.
  • the epoxy group-substituted organic group can be represented by the following general formula (a).
  • X 1 represents an alkylene group having 1 to 10 carbon atoms or an oxyalkylene group having 1 to 10 carbon atoms, and the alkylene group may contain an ether group. * Indicates a bond.
  • the polyoxyalkylene group-containing organic group can be represented by the following general formula (b).
  • X 2 represents an alkylene group having 1 to 10 carbon atoms or an oxyalkylene group having 1 to 10 carbon atoms
  • R 1 represents a hydrogen atom and an alkylene group having 1 to 3 carbon atoms
  • c indicates an integer of 1 to 20
  • d indicates an integer of 1 to 20. * Indicates a bond.
  • silicone compound (F) examples include SF8421EG, FZ-3730, BY16-869, BY16-870, X-22-4741, X-22-178SX, X-22-178DX (all manufactured by Toray Dow Corning Co., Ltd.). ), KF-1002, X-22-343 (all manufactured by Shin-Etsu Chemical Co., Ltd.) and the like.
  • the resin molding material of the present embodiment can contain the silicone compound (F) in an amount of 0.5% by mass or less, preferably 0.4% by mass or less, and more preferably 0.3% by mass or less.
  • the lower limit is 0.01% by mass or more, preferably 0.05% by mass or more.
  • the silicone compound (F) is not added for the purpose of improving the molding shrinkage rate, and the addition amount is preferably in the above range.
  • the resin molding material of the present embodiment can further contain a carboxylic acid-based dispersant.
  • a carboxylic acid-based dispersant By including the carboxylic acid-based dispersant, the filling property of the resin molding material into the mold can be further improved.
  • the carboxylic acid-based dispersant a conventionally known compound can be used without particular limitation as long as the effect of the present invention can be exhibited.
  • the carboxylic acid-based dispersant contains at least one compound represented by the following general formula (i).
  • R has a carboxyl group, a hydroxyl group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkylcarboxyl group having 1 to 5 carbon atoms, and 1 to 5 carbon atoms.
  • An alkoxycarboxyl group, an alkyl alcohol group having 1 to 5 carbon atoms, and an alkoxy alcohol group having 1 to 5 carbon atoms are shown, and a plurality of Rs may be the same or different.
  • R is preferably a carboxyl group, a hydroxyl group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an alkylcarboxyl group having 1 to 5 carbon atoms.
  • X is an oxygen atom, an alkylene group having 1 to 30 carbon atoms, a divalent chain hydrocarbon group having 1 to 30 carbon atoms having 1 or more double bonds, and 1 to 30 carbon atoms having 1 or more triple bonds. It indicates a chain hydrocarbon group having a valence, and a plurality of Xs may be the same or different.
  • Examples of the divalent chain hydrocarbon group include an alkylene group and the like.
  • X is preferably an oxygen atom, an alkylene group having 1 to 20 carbon atoms, and a divalent chain hydrocarbon group having 1 or more double bonds and having 1 to 20 carbon atoms, and an oxygen atom and 1 to 20 carbon atoms.
  • the alkylene group of the above preferably an alkylene group having 1 to 20 carbon atoms having one double bond.
  • n is an integer of 0 to 20, and m is an integer of 1 to 5.
  • the compound represented by the general formula (i) is preferably a compound represented by the following general formula (ia) or general formula (ib).
  • the carboxylic acid-based dispersant can contain at least one selected from these.
  • R, m, and n are synonymous with the general formula (i).
  • Q represents an alkylene group having 1 to 5 carbon atoms, and is preferably an alkylene group having 1 to 3 carbon atoms.
  • X is synonymous with the general formula (i).
  • the acid value of the carboxylic acid-based dispersant is 5 to 500 mgKOH / g, preferably 10 to 350 mgKOH / g, and more preferably 15 to 100 mgKOH / g.
  • the carboxylic acid-based dispersant is preferably in the form of a solid or a wax.
  • the content of the carboxylic acid-based dispersant is 0.01% by mass or more and 2% by mass or less, preferably 0.05% by mass or more and 1% by mass with respect to 100% by mass of the resin molding material. It is as follows.
  • Examples of the compound represented by the general formula (i) contained in the carboxylic acid-based dispersant include Hypermer KD-4 (mass average molecular weight: 1700, acid value: 33 mgKOH / g), Hypermer KD-9 (Mass average molecular weight: 1700, acid value: 33 mgKOH / g) manufactured by CRODA. Mass average molecular weight: 760, acid value: 74 mgKOH / g), Hypermer KD-12 (mass average molecular weight: 490, acid value: 111 mgKOH / g), Hypermer KD-16 (mass average molecular weight: 370, acid value: 299 mgKOH / g) ) Etc. can be mentioned.
  • the resin molding material of the present embodiment may contain components other than the above-mentioned components.
  • it may contain one or more of a low stress agent, a coupling agent, an adhesion aid, a mold release agent, a colorant, an antioxidant, a corrosion resistant agent, a dye, a pigment, a flame retardant and the like.
  • the above-mentioned coupling agent used for surface treatment of magnetic particles can be used.
  • a silane-based coupling agent, a titanium-based coupling agent, a zirconia-based coupling agent, an aluminum-based coupling agent, and the like can be mentioned.
  • a coupling agent only one type may be used, or two or more types may be used in combination.
  • the resin molding material of the present embodiment first mixes each component using (1) a mixer, and then (2) uses a roll at around 120 ° C. for 5 minutes or more, preferably. It can be produced by kneading for about 10 minutes to obtain a kneaded product, (3) cooling the obtained kneaded product, and (4) further pulverizing the obtained kneaded product. From the above, a powdery resin molding material can be obtained. Since the powdery resin molding material of the present embodiment is suppressed from agglomeration and consolidation, it is excellent in fluidity and handling property is improved.
  • the resin molding material of the present embodiment is preferably in the form of tablets or granules at 23 ° C., and more preferably in the form of tablets.
  • the powdery resin molding material can be locked and formed into a tablet shape. Since the resin molding material is in the form of tablets or granules, it is easy to distribute and store the resin molding material, and it is easy to apply it to transfer molding and compression molding.
  • the powdery resin molding material of the present embodiment is suppressed from agglomeration and consolidation, and can be a tablet-like or granular composition having a uniform composition.
  • the resin molding material of the present embodiment contains fine silica (B) in a predetermined amount, the fluidity of the resin molding material at the time of melting can be improved, and the filling property and moldability can be improved. ..
  • the filling property of the resin molding material the filling property and the moldability of the resin molding material at the time of melting can be confirmed with high accuracy by the following "spreadability test". That is, by using the spreadability test, when stress is continuously applied to the entire molten resin molding material, the characteristics of the molten material melting and spreading can be confirmed, and gold can be confirmed under conditions close to the actual manufacturing process. It is possible to confirm the fillability and moldability in the mold more accurately. Due to the excellent properties of the resin molding material, it is possible to accurately confirm the fillability and moldability in the details inside the mold in injection molding, and especially in compression molding, it is heated and pressed in the mold. At that time, it is possible to accurately confirm the moldability as well as the filling property into the mold.
  • the flow length measured by the spiral flow test at a temperature of 175 ° C. can be 30 cm or more, preferably 40 cm or more, and more preferably 45 cm or more.
  • a low-pressure transfer molding machine (“KTS-15” manufactured by Kotaki Seiki Co., Ltd.) is used to inject the mold at a mold temperature of 175 ° C. into a mold for measuring spiral flow according to EMMI-1-66. It can be carried out by injecting a resin molding material under the conditions of a pressure of 6.9 MPa and a holding time of 180 seconds and measuring the flow length.
  • the resin molding material of the present embodiment has an elevated viscosity of 30 Pa ⁇ s or more and 300 Pa ⁇ s or less, preferably 300 Pa ⁇ s or less, measured under the conditions of a measurement temperature of 175 ° C. and a load of 40 kgf using a high-grade viscosity measuring device. It can be 50 Pa ⁇ s or more and 250 Pa ⁇ s or less, more preferably 60 Pa ⁇ s or more and 200 Pa ⁇ s or less.
  • the glass transition temperature of the cured product obtained by melting and molding the resin molding material of the present embodiment at 175 ° C. and curing it in the air at 175 ° C. for 4 hours is preferably 150 to 220 ° C., more preferably. Is 160-200 ° C.
  • the resin molding material so that the glass transition temperature is 150 ° C. or higher, it is easy to clear the heat resistance required for in-vehicle use, for example.
  • the resin molding material so that the glass transition temperature is 220 ° C. or lower, molding can be performed at a relatively low temperature. This is preferable in terms of suppressing shrinkage of the molded product due to low temperature processing.
  • the molded product of the present embodiment can be obtained by curing the above-mentioned resin molding material.
  • the powdery resin molding material of the present embodiment is highly filled with the soft magnetic particles (A), it is excellent in filling property and moldability. Therefore, the composition of the obtained molded body (magnetic material) is uniform and the magnetic permeability is high. Alternatively, desired characteristics can be exhibited in terms of magnetic characteristics such as saturation magnetic flux density and mechanical strength.
  • the molded product of the present embodiment has a relative magnetic permeability of 40 or more, preferably 42 or more, and more preferably 45 or more.
  • the molded product of the present embodiment has a uniform composition as described above and is composed of a composite material having a high saturation magnetic flux density, a high saturation magnetic flux density can be realized, and 1.0 T or more. It can be preferably 1.2T or more, more preferably 1.3T or more.
  • the method for manufacturing the molded product is not particularly limited, and examples thereof include a transfer molding method and a compression molding method.
  • the method for manufacturing a molded product by the transfer molding method includes a step of injecting a melt of the above-mentioned resin molding material into a mold using a transfer molding apparatus, a step of curing the melt, and a step of curing the melt from the mold. Including the step of removing the mold.
  • the transfer molding can be performed by appropriately using a known transfer molding apparatus. Specifically, first, the preheated resin molding material is placed in a heating chamber, which is also called a transfer chamber, and melted to obtain a melt. Then, the melt is poured into a mold with a plunger and held as it is to cure the melt. Thereby, a desired molded product can be obtained. Transfer molding is preferable in terms of controllability of the dimensions of the molded body and improvement of the degree of freedom in shape.
  • the preheating temperature is 60 to 100 ° C
  • the heating temperature for melting is 100 to 250 ° C
  • the mold temperature is 100 to 200 ° C
  • the pressure for injecting the melt of the resin molding material into the mold is 1 to 1. It can be appropriately adjusted between 20 MPa. By not raising the mold temperature too high, shrinkage of the molded product can be suppressed.
  • compression molding method A method for producing a molded product by a compression molding method (compression molding method) includes a step of compression molding the resin molding material. Specifically, it includes a step of compression molding the resin molding material of the present embodiment in a mold and a step of separating the molded product from the mold.
  • the compression molding can be performed by appropriately using a known compression molding apparatus. Specifically, the resin molding material is placed in the concave portion of the concave fixed mold that opens upward. The resin molding material can be preheated. As a result, the molded product can be uniformly cured and the molding pressure can be reduced.
  • the convex mold is moved to the concave fixed mold, and the resin molding material is compressed in the cavity formed by the convex portion and the concave portion.
  • the resin molding material is sufficiently softened and flowed at a low pressure, then the mold is closed and pressed again to cure for a predetermined time.
  • the preheating temperature is 60 to 100 ° C
  • the heating temperature for melting is 100 to 250 ° C
  • the mold temperature is 100 to 200 ° C
  • the pressure for compressing the resin molding material with the mold is 1 to 20 MPa
  • curing The time can be adjusted appropriately between 60 and 300 seconds. By not raising the mold temperature too high, shrinkage of the molded product can be suppressed.
  • the resin molding material of the present embodiment can obtain a magnetic material having a high magnetic permeability
  • the molded body obtained by curing the resin molding material seals the magnetic core, the magnetic core, and the coil in the inductor. It can be used for exterior members.
  • FIG. 1A shows an outline of the structure as seen from the upper surface of the structure 100.
  • FIG. 1B shows a cross-sectional view taken along the line AA'in FIG. 1A.
  • the structure 100 of the present embodiment can include a coil 10 and a magnetic core 20.
  • the magnetic core 20 is filled inside the coil 10 which is an air-core coil.
  • the coil 10 and the magnetic core 20 are sealed with an exterior member 30 (sealing member).
  • the magnetic core 20 and the exterior member 30 can be made of a cured product of the resin molding material of the present embodiment.
  • the magnetic core 20 and the exterior member 30 may be formed as a seamless integral member.
  • the coil 10 is placed in a mold, and the resin molding material of the present embodiment is used to mold the resin molding material such as transfer molding. Can be cured to integrally form the magnetic core 20 filled in the coil 10 and the exterior member 30 around them. At this time, the coil 10 may have a drawer portion (not shown) in which the end portion of the winding is pulled out to the outside of the exterior member 30.
  • the coil 10 is usually configured by winding a winding having an insulating coating on the surface of a metal wire.
  • the metal wire preferably has high conductivity, and copper and copper alloys can be preferably used.
  • the insulating coating a coating such as enamel can be used. Examples of the cross-sectional shape of the winding include a circle, a rectangle, and a hexagon.
  • the cross-sectional shape of the magnetic core 20 is not particularly limited, but can be, for example, a circular shape or a polygonal shape such as a quadrangle or a hexagon in the cross-sectional view. Since the magnetic core 20 is composed of a transfer molded product of the resin molding material of the present embodiment, it is possible to have a desired shape.
  • the magnetic core 20 and the exterior member 30 having excellent magnetic properties such as moldability and high magnetic permeability can be realized, so that the structure 100 (integrated inductor) having these can be realized. Is expected to have low magnetic loss. Further, since the exterior member 30 having excellent mechanical properties can be realized, it is possible to improve the durability, reliability, and manufacturing stability of the structure 100. Therefore, the structure 100 of the present embodiment can be used as an inductor for a booster circuit or a large current.
  • each component shown in Table 1 was prepared at the ratio described, and while the soft magnetic particles were first mixed, other components were added thereto and mixed uniformly to obtain a mixture. Then, the obtained mixture was kneaded at 120 ° C. for 10 minutes. After the kneading was completed, the obtained kneaded product was cooled to room temperature to be solidified, and then pulverized and tableted. From the above, a tablet-shaped resin molding material was obtained. The raw material components listed in Table 1 are shown below. The evaluation results of the resin molding material and the molded product in Table 1 are shown.
  • the content rate (volume%) of the soft magnetic particles shown in Table 1 is the content rate (that is, the filling rate) when the resin molding material containing the soft magnetic particles is 100% by volume.
  • Iron-based particles 1 Amorphous magnetic powder (manufactured by Epson Atmix Co., Ltd., KUAMET6B2, median diameter D 50 : 50 ⁇ m)
  • Iron-based particles 2 Amorphous magnetic powder (manufactured by Epson Atmix Co., Ltd., AW2-08, median diameter D 50 : 4 ⁇ m)
  • Epoxy resin 1 Epoxy resin 1: jER1032H60: Epoxy resin containing a triphenylmethane structure manufactured by Mitsubishi Chemical Co., Ltd., solid at 23 ° C., containing structural units represented by the above general formula (a1)
  • Epoxy resin 2 YL-6810: Mitsubishi Chemical Bisphenol A type epoxy resin manufactured by Nippon Kayaku Co., Ltd., solid at 23 ° C, structure-containing epoxy resin represented by the above general formula (EP) 3: NC3000L: Biphenyl aralkyl type epoxy resin manufactured by Nippon Kayaku Co., Ltd., at 23 ° C Solid, containing structural units represented by the above-mentioned general formula (BP1))
  • Curing agent 1 PR-HF-3: Novolac type phenol resin manufactured by Sumitomo Bakelite Co., Ltd., solid at 23 ° C.
  • Curing agent 2 MEH-7851SS: Biphenylene skeleton-containing phenol aralkyl resin manufactured by Meiwa Kasei Co., Ltd., solid at 23 ° C.
  • Adhesion aid 1 CDA-1M (heavy metal deactivating agent, manufactured by ADEKA)
  • Release agent 1 WE-4 (wax, manufactured by Clariant Chemicals Co., Ltd.)
  • Catalyst 1 Compound represented by the following chemical formula 3. Add 37.5 g (0.15 mol) of 4,4'-bisphenol S and 100 ml of methanol to a separable flask equipped with a stirrer, dissolve by stirring at room temperature, and add sodium hydroxide to 50 ml of methanol in advance with stirring. A solution in which 0 g (0.1 mol) was dissolved was added. Then, a solution prepared by dissolving 41.9 g (0.1 mol) of tetraphenylphosphonium bromide in 150 ml of methanol was added in advance.
  • Catalyst 2 Compound represented by the following chemical formula To a flask containing 1800 g of methanol, 249.5 g of phenyltrimethoxysilane and 384.0 g of 2,3-dihydroxynaphthalene were added and dissolved, and then 231.5 g of a 28% sodium methoxide-methanol solution was added dropwise under room temperature stirring. Further, a solution prepared in advance in which 503.0 g of tetraphenylphosphonium bromide was dissolved in 600 g of methanol was added dropwise to the solution under stirring at room temperature to precipitate crystals. The precipitated crystals were filtered, washed with water and vacuum dried to obtain a pink-white crystal catalyst 2.
  • Coupling agent -Coupling agent 1: CF-4083 (Phenylaminopropyltrimethoxysilane, manufactured by Toray Dow Corning Co., Ltd.)
  • Silicone oil Silicone oil represented by the following chemical formula (liquid at room temperature (25 ° C), FZ-3730, manufactured by Toray Dow Corning)
  • the resin molding material was injection-molded using a low-pressure transfer molding machine (“KTS-30” manufactured by Kotaki Seiki Co., Ltd.) at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds. A 3 mm disc-shaped molded product was obtained. Then, the obtained molded product was post-cured at 175 ° C. for 4 hours. After that, it was processed into a toroidal shape having an outer diameter of 27 mm ⁇ and an inner diameter of 15 mm ⁇ by a router processing machine to prepare a test piece for evaluating relative permeability.
  • KTS-30 low-pressure transfer molding machine
  • a 42-turn primary coil and a 42-turn secondary coil are wound around the obtained toroidal-shaped molded product, and AC measurement is performed using a DC AC magnetization characteristic test device (“MTR-1488” manufactured by Metron Giken Co., Ltd.). rice field. The value at a frequency of 50 KHz and a magnetic flux density of 50 mT was taken as the relative permeability.
  • the present invention is used.
  • the resin molding material of the embodiment according to the invention has a large diameter and is excellent in melting and spreading property when stress is continuously applied to the entire melted resin molding material. It was presumed that it was excellent in properties and moldability. Further, since the soft magnetic particles can be highly filled, a magnetic material having a high magnetic permeability was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本発明の樹脂成形材料は、(A)軟磁性粒子と、(B)平均粒径が0.1μm以上2.0μm以下の微粉シリカと、(C)熱硬化性樹脂と、を含み、軟磁性粒子(A)の含有量が96質量%以上であり、微粉シリカ(B)の含有量が1.5質量%以下である。

Description

樹脂成形材料、成形体および当該成形体の製造方法
 本発明は、樹脂成形材料、成形体および当該成形体の製造方法に関する。
 各種の電気・電子製品の部品として、磁性コア/外装部材を備えるコイル(応用分野によっては「リアクトル」「インダクタ」などとも呼ばれる)が盛んに検討されている。また、そのようなコイルの磁性コアや外装部材を作製するための、成形性のある磁性材料も盛んに検討されている。
 例えば、特許文献1には、軟磁性を示し鉄の含有率が85質量%以上である第1粒子を含む磁性体粉末と、非磁性を示し、平均粒径が3μm以下でかつ前記磁性体粉末より小さい非磁性体粉末と、を有する成形材料が開示されている。当該文献には、磁性体粉末の体積分率が成形材料1の50~90体積%であり(0107段落等)、シリカを含む非磁性体粉末の体積分率が磁性体粉末の3~25体積%であると記載されている(0124段落等)。
 特許文献2には、熱硬化性樹脂と、磁性体粉末と、前記磁性体粉末の含有量が、当該磁性コア形成用樹脂組成物の固形分全体に対して、50質量%以上含む、磁性コア形成用樹脂組成物が開示されている。当該文献には、磁性体粉末の体積分率が成形材料1の35~90体積%であり(0107段落等)、シリカを含む非磁性体粉末の体積分率が磁性体粉末の3~25体積%であると記載されている(0124段落等)。
特開2019-182950号公報 特開2019-080058号公報
 ここで、樹脂成形材料(組成物)から得られる磁性材料において、透磁率等の磁気特性を向上させるには軟磁性粒子の高充填化が必要である。しかしながら、軟磁性粒子の充填量を増加させると樹脂成形材料の粘度が高くなり、圧縮成形等の成形時において金型内への充填性が低下する。すなわち、磁性材料の高透磁率化と、金型内への充填性向上とはトレードオフの関係にあった。
 特許文献1および2においては、磁性粒子の充填量が少なく、上記のような課題を解決することを目的としておらず、磁性材料の高透磁率化および金型内への充填性に改善の余地があった。
 本発明者らは、鋭意検討の結果、以下に提供される発明を完成させ、上記課題を解決した。すなわち、本発明は、以下に示すことができる。
 本発明によれば、
 (A)軟磁性粒子と、
 (B)平均粒径が0.1μm以上2.0μm以下の微粉シリカと、
 (C)熱硬化性樹脂と、
を含み、
 軟磁性粒子(A)の含有量が96質量%以上であり、
 微粉シリカ(B)の含有量が1.5質量%以下である樹脂成形材料が提供される。
 本発明によれば、
 前記樹脂成形材料を硬化してなる成形体が提供される。
 本発明によれば、
 トランスファー成形装置を用いて、前記樹脂成形材料の溶融物を金型に注入する工程と、
 前記溶融物を硬化する工程と、
を含む、成形体の製造方法が提供される。
 本発明によれば、
 前記樹脂成形材料を圧縮成形する工程を含む、成形体の製造方法が提供される。
 本発明によれば、高透磁率である磁性材料が得られるとともに、金型内への充填性に優れた樹脂成形材料を提供することができる。
本実施形態に係る構造体の構成を示す断面図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、「~」は特に断りがなければ「以上」から「以下」を表す。
 本実施形態の樹脂成形材料は、
(A)軟磁性粒子と、(B)平均粒径が0.1μm以上2.0μm以下の微粉シリカと、(C)熱硬化性樹脂と、を含む。
 そして、軟磁性粒子(A)の含有量が96質量%以上であり、微粉シリカ(B)の含有量が1.5質量%以下である。
 これにより、高透磁率である磁性材料が得られるとともに、金型内への充填性に優れた樹脂成形材料を提供することができる。
 以下、各成分について説明する。
[軟磁性粒子(A)]
 軟磁性とは、保磁力が小さい強磁性のことを指し、一般的には、保磁力が800A/m以下である強磁性のことを軟磁性という。
 軟磁性粒子(A)の構成材料としては、構成元素としての鉄の含有率が85質量%以上である金属含有材料が挙げられる。このように構成元素としての鉄の含有率が高い金属材料は、透磁率や磁束密度等の磁気特性が比較的良好な軟磁性を示す。このため、例えば磁性コア等に成形されたとき、良好な磁気特性を示し得る樹脂成形材料が得られる。
 上記の金属含有材料の形態としては、例えば、単体の他、固溶体、共晶、金属間化合物のような合金等が挙げられる。このような金属材料で構成された粒子を用いることにより、鉄に由来する優れた磁気特性、すなわち、高透磁率や高磁束密度等の磁気特性を有する樹脂成形材料を得ることができる。
 また、上記の金属含有材料は、構成元素として鉄以外の元素を含んでいてもよい。鉄以外の元素としては、例えば、B、C、N、O、Al、Si、P、S、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Cd、In、Sn等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いられる。本実施形態においては、Fe、Ni、Si及びCoから選ばれる1種類以上の元素を主要元素として含むことができる。
 上記の金属含有材料の具体例としては、例えば、純鉄、ケイ素鋼、鉄-コバルト合金、鉄-ニッケル合金、鉄-クロム合金、鉄-アルミニウム合金、カルボニル鉄、ステンレス鋼、またはこれらのうちの1種もしくは2種以上を含む複合材料等が挙げられる。入手性などの観点からケイ素鋼やカルボニル鉄を好ましく用いることができる。
 軟磁性粒子(Fe基軟磁性粒子)はそれ以外の粒子であってもよい。例えば、Ni基軟磁性粒子、Co基軟磁性粒子等を含む磁性体粒子であってもよい。
 軟磁性粒子(A)の、体積基準におけるメジアン径D50は、好ましくは0.5~75μm、より好ましくは0.75~65μm、さらに好ましくは1~60μmである。粒径(メジアン径)を適切に調整することで、成形時の流動性を更に良好にしたり、磁性性能を向上させたりすることができる。
 なお、D50は、例えば、レーザ回折/散乱式粒子径分布測定装置により得ることができる。具体的には、HORIBA社製の粒子径分布測定装置「LA-950」により、軟磁性粒子(A)を乾式で測定することで粒子径分布曲線を得、この分布曲線を解析することでD50を求めることができる。
 本実施形態の樹脂成形材料は、軟磁性粒子(A)を96質量%以上の量で含む。上限値は98質量%以下である。これにより高透磁率の磁性材料を得ることができる。
 また、本実施形態の樹脂成形材料は、軟磁性粒子(A)を82体積%以上、好ましくは84体積%以上の量で含む。上限値は90体積%以下である。
[微粉シリカ(B)]
 本実施形態の樹脂成形材料は、微粉シリカ(B)を含む。
 微粉シリカ(B)は、平均粒子径が0.1μm以上2.0μm以下、好ましくは0.1μm以上1.8μm以下、より好ましくは0.1μm以上1.6μm以下、さらに好ましくは0.1μm以上1.0μm以下である。これにより、微粉シリカ(B)が樹脂成形材料中に均一に分散されて流動性が改善され、充填性や成形性を高めることができるので、成形不良の少ない成形体が得られ、さらに成形体においてとりわけ良好な磁気特性が得られる。
 微粉シリカ(B)は、熱硬化性樹脂との親和性が高く、絶縁性が高いため、樹脂成形材料に用いられる非磁性体粉末の構成材料として有用である。
 微粉シリカ(B)の真比重は、1.0~6.0であるのが好ましく、1.2~5.0であるのがより好ましく、1.5~4.5であるのがさらに好ましい。このような微粉シリカ(B)は、比重が小さいため、熱硬化性樹脂の溶融物とともに流動し易い。このため、成形時において熱硬化性樹脂の溶融物が成形型の隙間等に向かって流動するとき、その溶融物とともに微粉シリカ(B)が流れ易くなる。
 微粉シリカ(B)は球状シリカであることが好ましい。
 微粉シリカ(B)の球形度は、特に限定されないが、0.50~1.00であるのが好ましく、0.75~1.00であるのがより好ましい。微粉シリカ(B)の球形度が前記範囲内であることにより、微粉シリカ(B)自体の転がりを活かして樹脂成形材料の流動性を確保することができる。
 本実施形態の樹脂成形材料は、微粉シリカ(B)を1.5質量%以下、好ましくは1.2質量%以下、さらに好ましくは1.0質量%以下の量で含むことができる。下限値は、本発明の効果の観点から、0.05質量%以上、好ましくは0.1質量%以上である。
 本実施形態の樹脂成形材料は、上述の量で含まれる軟磁性粒子(A)とともに微粉シリカ(B)を上記の量で含むことにより、高透磁率である磁性材料が得られるとともに、十分な流動性を有する樹脂成形材料が得られ金型内への充填性に優れる。
 また、微粉シリカ(B)の体積分率は、4体積%以下、好ましくは3体積%以下、さらに好ましくは2体積%以下である。下限値は、0.14体積%以上、好ましくは0.5体積%以上である。
 なお、磁性粒子(A)、微粉シリカ(B)の平均粒子径は、体積平均粒子径(例えば、D50)を意味し、レーザー回折式粒度分布測定装置を用いて測定することができる。
 なお、微粉シリカ(B)等の粒子の球形度は、各粒子の走査型電子顕微鏡(SEM)像において、その面積に等しい真円を等面積円とするとき、等面積円相当径/外接円径で求めることができる。そして、任意に選択された10個以上の粒子について等面積円相当径/外接円径を算出し、その平均値を「粒子の球形度」とする。
[熱硬化性樹脂(C)]
 熱硬化性樹脂(C)は、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ユリア(尿素)樹脂、メラミン樹脂、ポリウレタン樹脂、シアネートエステル樹脂、シリコーン樹脂、オキセタン樹脂(オキセタン化合物)、(メタ)アクリレート樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ベンゾオキサジン樹脂等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。耐熱性の観点から、熱硬化性樹脂(C)は、例えば、エポキシ樹脂を含むことが好ましい。
 前記エポキシ樹脂としては、本発明の効果を発揮し得るのであれば特に限定されず公知の化合物を用いることができる。
(エポキシ樹脂)
 前記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂、トリスフェニルメタン型エポキシ樹脂等を挙げることができる。
 本実施形態の樹脂成形材料は、エポキシ樹脂を1種のみ含んでもよいし、2種類以上含んでもよい。また、同種のエポキシ樹脂であっても異なる分子量のものを併用してもよい。
 本実施形態のエポキシ樹脂は、本発明の効果の観点から、トリフェニルメタン構造を含むエポキシ樹脂、ビフェニル構造を含むエポキシ樹脂、およびビスフェノールA型またはF型エポキシ樹脂から選択される少なくても1種であることが好ましく、
 本実施形態においては、トリフェニルメタン構造を含むエポキシ樹脂と、ビスフェノールA型またはF型エポキシ樹脂との組み合わせ、またはビフェニル構造を含むエポキシ樹脂を用いることがより好ましい。
 トリフェニルメタン構造を含むエポキシ樹脂とは、具体的には、メタン(CH)の4つの水素原子のうちの3つがベンゼン環で置換された部分構造を含むエポキシ樹脂である。ベンゼン環は、無置換であっても置換基で置換されていてもよい。置換基としては、ヒドロキシ基やグリシジルオキシ基などを挙げることができる。
 具体的には、トリフェニルメタン構造を含むエポキシ樹脂は、以下一般式(a1)で表される構造単位を含む。この構造単位が2つ以上連なることで、トリフェニルメタン骨格が構成される。
Figure JPOXMLDOC01-appb-C000002
 一般式(a1)において、
 R11は、複数ある場合はそれぞれ独立に、1価の有機基、ハロゲン原子、ヒドロキシ基またはシアノ基であり、
 R12は、複数ある場合はそれぞれ独立に、1価の有機基、ハロゲン原子、ヒドロキシ基またはシアノ基であり、
 iは、0~3の整数であり、
 jは、0~4の整数である。
 R11およびR12の1価の有機基の例としては、後述の一般式(BP)におけるRおよびRの1価の有機基として列挙されているものを挙げることができる。
 iおよびjは、それぞれ独立に、好ましくは0~2であり、より好ましくは0~1である。
 一態様として、iおよびjはともに0である。つまり、一態様として、一般式(a1)中のベンゼン環の全ては、1価の置換基としては、明示されたグリシジルオキシ基以外の置換基を有しない。
 ビフェニル構造を含むエポキシ樹脂とは、具体的には、2つのベンゼン環が単結合で連結している構造を含むエポキシ樹脂のことである。ここでのベンゼン環は、置換基を有していてもいなくてもよい。
 具体的には、ビフェニル構造を含むエポキシ樹脂は、以下一般式(BP)で表される部分構造を有する。
Figure JPOXMLDOC01-appb-C000003
 一般式(BP)において、
 RおよびRは、複数ある場合はそれぞれ独立に、1価の有機基、ヒドロキシル基またはハロゲン原子であり、
 rおよびsは、それぞれ独立に、0~4であり、
 *は、他の原子団と連結していることを表す。
 RおよびRの1価の有機基の具体例としては、アルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基、アルコキシ基、ヘテロ環基、カルボキシル基などを挙げることができる。
 アルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などが挙げられる。
 アルケニル基としては、例えばアリル基、ペンテニル基、ビニル基などが挙げられる。
 アルキニル基としては、例えばエチニル基などが挙げられる。
 アルキリデン基としては、例えばメチリデン基、エチリデン基などが挙げられる。
 アリール基としては、例えばトリル基、キシリル基、フェニル基、ナフチル基、アントラセニル基が挙げられる。
 アラルキル基としては、例えばベンジル基、フェネチル基などが挙げられる。
 アルカリル基としては、例えばトリル基、キシリル基などが挙げられる。
 シクロアルキル基としては、例えばアダマンチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基などが挙げられる。
 アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基などが挙げられる。
 ヘテロ環基としては、例えばエポキシ基、オキセタニル基などが挙げられる。
 RおよびRの1価の有機基の総炭素数は、それぞれ、例えば1~30、好ましくは1~20、より好ましくは1~10、特に好ましくは1~6である。
 rおよびsは、それぞれ独立に、好ましくは0~2であり、より好ましくは0~1である。一態様として、rおよびsはともに0である。
 より具体的には、ビフェニル構造を含むエポキシ樹脂は、以下一般式(BP1)で表される構造単位を有するビフェニルアラルキル型エポキシ樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 一般式(BP1)において、
 RおよびRの定義および具体的態様は、一般式(BP)と同様であり、
 rおよびsの定義および好ましい範囲は、一般式(BP)と同様であり、
 Rは、複数ある場合はそれぞれ独立に、1価の有機基、ヒドロキシル基またはハロゲン原子であり、
 tは、0~3の整数である。
 Rの1価の有機基の具体例としては、RおよびRの具体例として挙げたものと同様のものを挙げることができる。
 tは、好ましくは0~2であり、より好ましくは0~1である。
 ビスフェノールA型またはF型エポキシ樹脂(ビスフェノールAまたはビスフェノールFと、エピクロルヒドリンとの縮合反応により製造されるエポキシ樹脂)として具体的には、以下一般式(EP)で表されるエポキシ樹脂を挙げることができる。
Figure JPOXMLDOC01-appb-C000005
 一般式(EP)中、
 複数のRは、各々独立に、水素原子またはメチル基、好ましくはメチル基であり、
 R、R、RおよびRは、それぞれ、複数存在する場合は各々独立に、1価の有機基、ヒドロキシル基またはハロゲン原子であり、
 p、q、rおよびsは、それぞれ独立に、0~4であり、好ましくは0~2であり、
 nは0以上の整数であり、通常0~10、好ましくは0~5である。
 R、R、RおよびRの1価の有機基の具体例としては、一般式(BP)におけるRおよびRの1価の有機基の具体例として挙げたものと同様のものを挙げることができる。
 本実施形態においては、Rがメチル基であるビスフェノールA型エポキシ樹脂を用いることが好ましい。
 本実施形態の樹脂成形材料中のエポキシ樹脂の量は、例えば0.1~20質量%、好ましくは0.5~10質量%である。
 本実施形態の樹脂成形材料中のエポキシ樹脂の量は、例えば0.5~60体積%、好ましくは3~40体積%である。
(フェノール樹脂)
 フェノール樹脂としては、特に限定されないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂等のノボラック型フェノール樹脂、およびレゾール型フェノール樹脂等が挙げられる。これらの中の1種類を単独で用いてもよいし、2種類以上を併用してもよい。
 フェノール樹脂の中でも、フェノールノボラック樹脂であることが好ましい。
(ユリア樹脂)
 ユリア樹脂としては、特に限定されないが、例えば、尿素とホルムアルデヒドとの縮合によって得られる樹脂が挙げられる。
(メラミン樹脂)
 メラミン樹脂としては、特に限定されないが、例えば、メラミンとホルムアルデヒドを中性または弱アルカリ下において反応させて得られるものを用いることができる。
 また、メラミン樹脂としては、住友化学(株)製のメラミン樹脂等、市販のものを用いることもできる。
(不飽和ポリエステル樹脂)
 不飽和ポリエステル樹脂としては、特に限定されないが、例えば、原料に無水フタル酸を用いた最も一般的なオルソタイプ、イソフタル酸を用いたイソタイプ、また、テレフタル酸を用いたパラタイプのものがあり、また、これらのプレポリマーも含まれる。これらの1種を単独で使用または2種以上を併用することができる。
(ポリイミド樹脂)
 ポリイミド樹脂としては、特に限定されないが、例えば、ジアミン、二無水物および無水物を共重合して、ポリイミドの前駆体であるポリアミド酸を合成し、次いで、ポリアミド酸をイミド化することにより合成される。
[フェノール系硬化剤(D)]
 本実施形態の樹脂成形材料は、さらにフェノール系硬化剤(D)を含むことができる。
 これにより、得られる成形体の耐久性の一層の向上などが期待できる。フェノール系硬化剤は、典型的には、1分子あたり2以上のヒドロキシ基を有する。
 フェノール系硬化剤は、好ましくは、ノボラック骨格およびビフェニル骨格からなる群より選ばれるいずれかの骨格を含む。フェノール系硬化剤がこれらの骨格のいずれかを含むことで、特に成形体の耐久性を高めることができる。
 「ビフェニル骨格」とは、具体的には、前述のエポキシ樹脂の説明における一般式(BP)のように、2つのベンゼン環が単結合で連結している構造である。
 ビフェニル骨格を有するフェノール系硬化剤として具体的には、前述のエポキシ樹脂の説明における一般式(BP1)において、グリシジル基を水素原子に置き換えた構造のものなどを挙げることができる。
 ノボラック骨格を有するフェノール系硬化剤として、具体的には以下一般式(N)で表される構造単位を有するものを挙げることができる。
Figure JPOXMLDOC01-appb-C000006
 一般式(N)において、
 Rは、1価の置換基を表し、
 uは、0~3の整数である。
 Rの1価の置換基の具体例としては、一般式(BP)におけるRおよびRの1価の置換基として説明したものと同様のものを挙げることができる。
 uは、好ましくは0~2であり、より好ましくは0~1であり、更に好ましくは0である。
 本実施形態においては、フェノール系硬化剤(D)は、ノボラック型フェノール樹脂、およびビフェニルアラルキル型フェノール樹脂から選択される少なくても1種であることが好ましい。
 フェノール系硬化剤(D)が高分子またはオリゴマーである場合、フェノール系硬化剤(D)の数平均分子量(GPC測定による標準ポリスチレン換算値)は、例えば200~800程度である。
 樹脂成形材料中のフェノール系硬化剤(D)の含有量は、例えば0.1~20質量%、好ましくは0.5~10質量%である。
 また、樹脂成形材料中のフェノール系硬化剤(D)の含有量は、例えば0.5~60体積%、好ましくは3~40体積%である。
 フェノール系硬化剤(D)の量を適切に調整することにより、流動性を一層向上させることができ、得られる硬化物の機械特性や磁気特性を向上させることができる。
[硬化促進剤(E)]
 本実施形態の樹脂成形材料は、さらに硬化促進剤(E)を含むことができる。硬化促進剤(E)は、エポキシ樹脂の硬化反応を早めるものである限り特に限定されず、公知のエポキシ硬化促進剤を用いることができる。
 具体的には、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;2-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール類(イミダゾール系硬化促進剤);1,8-ジアザビシクロ[5.4.0]ウンデセン-7、ベンジルジメチルアミン等が例示されるアミジンや3級アミン、アミジンやアミンの4級塩等の窒素原子含有化合物などを挙げることができ、
 テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物が好ましい。
 硬化促進剤(E)を用いる場合、1種のみを用いてもよいし、2種以上を用いてもよい。
 硬化促進剤(E)を用いる場合、その含有量は、樹脂成形材料全体に対して、好ましくは0.01~1質量%、より好ましくは0.04~0.8質量%である。体積分率は、好ましくは0.05~5体積%、より好ましくは0.10~0.4体積%である。このような数値範囲とすることにより、他の性能を過度に悪くすることなく、十分に硬化促進効果が得られる。
[シリコーン化合物(F)]
 本実施形態の樹脂成形材料は、さらにシリコーン化合物(F)を含むことができる。
 シリコーン化合物(F)を含むことにより、樹脂成形材料の流動性がさらに高まり金型内への充填性により優れるとともに、濡れ性も改善されボイド等の発生も抑制される。
 シリコーン化合物(F)としては、本発明の効果を奏する範囲で公知のシリコーン化合物を用いることができるが、好ましくは下記一般式(1)で表されるシリコーン化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000007
 一般式(1)中、Rはそれぞれ独立に炭素数1~10の置換または非置換の一価の有機基を示し、Rのうち少なくとも1つは、アミノ基置換有機基、エポキシ基置換有機基、ポリオキシアルキレン基含有有機基、水酸基置換有機基、ビニル基置換有機基、カルボキシル基置換有機基、イソシアネート基置換有機基、メルカプト基置換有機基、(メタ)アクリル基置換有機基および酸無水物基置換有機基から選択される基である。nは1~100の整数を示す。
 Rのうち少なくとも1つが上記の基である場合、残りのRは、炭素数1~10のアルキル基またはアルコキシ基が好ましく、炭素数1~10のアルキル基がより好ましく、炭素数1~5のアルキル基がさらに好ましい。
 本実施形態においては、本発明の効果の観点から、Rのうち少なくとも1つはエポキシ基置換有機基であることが好ましい。
 シリコーン化合物(F)の常温(25℃)で液状であることが好ましい。
 シリコーン化合物(F)の官能基当量は、本発明の効果の観点から、好ましくは200~30,000、より好ましくは300~20,000である。
また、シリコーン化合物(F)の重量平均分子量は好ましくは200~10,000、より好ましくは500~8,000である。
 シリコーン化合物(F)としては、下記一般式(1a)で表されるシリコーン化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 一般式(1a)中、Qはエポキシ基置換有機基またはポリオキシアルキレン基含有有機基であり、複数存在するQは同一でも異なっていてもよい。Qはエポキシ基置換有機基を含むことが好ましい。
 aは1~50の整数を示し、bは1~50の整数を示す。
 前記エポキシ基置換有機基は下記一般式(a)で表すことができる。
Figure JPOXMLDOC01-appb-C000009
 式(a)中、Xは、炭素数1~10のアルキレン基または炭素数1~10のオキシアルキレン基を示し、当該アルキレン基中にエーテル基を含んでいてもよい。*は結合手を示す。
 前記ポリオキシアルキレン基含有有機基は下記一般式(b)で表すことができる。
Figure JPOXMLDOC01-appb-C000010
 式(b)中、Xは、炭素数1~10のアルキレン基または炭素数1~10のオキシアルキレン基を示し、Rは水素原子、炭素数1~3のアルキレン基を示す。
cは1~20の整数を示し、dは1~20の整数を示す。
*は結合手を示す。
 シリコーン化合物(F)としては、例えば、SF8421EG、FZ-3730、BY16-869、BY16-870、X-22-4741、X-22-178SX,X-22-178DX(以上、東レ・ダウコーニング社製)、KF-1002、X-22-343(以上、信越化学工業社製)等を挙げることができる。
 本実施形態の樹脂成形材料は、シリコーン化合物(F)を0.5質量%以下、好ましくは0.4質量%以下、さらに好ましくは0.3質量%以下の量で含むことができる。下限値は、0.01質量%以上、好ましくは0.05質量%以上である。これにより、樹脂成形材料の流動性がさらに高まり金型内への充填性に特に優れるとともに、濡れ性も改善されボイド等の発生もより抑制される。なお、本実施形態においては、成形収縮率の改善を目的としてシリコーン化合物(F)を添加するものではなく、添加量は上記範囲であることが好ましい。
[カルボン酸系分散剤]
 本実施形態の樹脂成形材料は、さらに、カルボン酸系分散剤を含むことができる。カルボン酸系分散剤を含むことにより、樹脂成形材料の金型への充填性をより改善することができる。
 カルボン酸系分散剤としては、本発明の効果を発揮することができれば特に限定されることなく従来公知の化合物を用いることができる。本実施形態においては、カルボン酸系分散剤として、下記一般式(i)で表される化合物を少なくとも1種含むことが好ましい。
Figure JPOXMLDOC01-appb-C000011
 一般式(i)中、Rは、カルボキシル基、ヒドロキシル基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~5のアルキルカルボキシル基、炭素数1~5のアルコキシカルボキシル基、炭素数1~5のアルキルアルコール基、炭素数1~5のアルコキシアルコール基を示し、複数存在するRは同一でも異なっていてもよい。
 Rは、カルボキシル基、ヒドロキシル基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~5のアルキルカルボキシル基であることが好ましい。
 Xは、酸素原子、炭素数1~30のアルキレン基、二重結合を1以上有する炭素数1~30の2価の鎖状炭化水素基、三重結合を1以上有する炭素数1~30の2価の鎖状炭化水素基を示し、複数存在するXは同一でも異なっていてもよい。2価の鎖状炭化水素基としては、アルキレン基等が挙げられる。
 Xは、酸素原子、炭素数1~20のアルキレン基、二重結合を1以上有する炭素数1~20の2価の鎖状炭化水素基であることが好ましく、酸素原子、炭素数1~20のアルキレン基、二重結合を1つ有する炭素数1~20のアルキレン基であることが好まし。
 nは0~20の整数、mは1~5の整数を示す。
 一般式(i)で表される化合物は、以下の一般式(ia)または一般式(ib)で表される化合物であることが好ましい。カルボン酸系分散剤は、これらから選択される少なくとも1種を含むことができる。
Figure JPOXMLDOC01-appb-C000012
 一般式(ia)中、R、m、nは一般式(i)と同義である。
Figure JPOXMLDOC01-appb-C000013
 一般式(ib)中、Qは炭素数1~5のアルキレン基を示し、炭素数1~3のアルキレン基であることが好ましい。Xは一般式(i)と同義である。
 カルボン酸系分散剤の酸価は、5~500mgKOH/g、好ましくは10~350mgKOH/g、より好ましくは15~100mgKOH/gである。酸価が上記範囲であると、高飽和磁束密度を有する磁性材料が得られるとともに、流動性に優れており成形性に優れる。
 カルボン酸系分散剤は、固体状もしくはろう状であることが好ましい。
 カルボン酸系分散剤の含有量は、本発明の効果の観点から、樹脂成形材料100質量%に対して、0.01質量%以上2質量%以下、好ましくは0.05質量%以上1質量%以下である。
 カルボン酸系分散剤に含まれる一般式(i)で表される化合物としては、CRODA社製の、Hypermer KD-4(質量平均分子量:1700、酸価:33mgKOH/g)、Hypermer KD-9(質量平均分子量:760、酸価:74mgKOH/g)、Hypermer KD-12(質量平均分子量:490、酸価:111mgKOH/g)、Hypermer KD-16(質量平均分子量:370、酸価:299mgKOH/g)等を挙げることができる。
(その他の成分)
 本実施形態の樹脂成形材料は、上述した成分以外の成分を含んでいてもよい。例えば、低応力剤、カップリング剤、密着助剤、離型剤、着色剤、酸化防止剤、耐食剤、染料、顔料、難燃剤等のうち1または2以上を含んでもよい。
 低応力剤としては、ポリブタジエン化合物、アクリロニトリルブタジエン共重合化合物、シリコーンオイル、シリコーンゴム等のシリコーン化合物が挙げられる。低応力剤を用いる場合、1種のみを用いてもよいし2種以上を併用してもよい。
 カップリング剤としては、上述の、磁性体粒子の表面処理に用いられるカップリング剤を用いることができる。例えば、シラン系カップリング剤、チタン系カップリング剤、ジルコニア系カップリング剤、アルミニウム系カップリング剤等が挙げられる。カップリング剤を用いる場合、1種のみを用いてもよいし2種以上を併用してもよい。
 本実施形態の樹脂成形材料は、工業的には、例えば、まず(1)ミキサーを用いて各成分を混合し、(2)その後、ロールを用いて、120℃前後で5分以上、好ましくは10分程度混練することにより混練物を得、(3)そして得られた混練物を冷却し、(4)さらにその後、粉砕することにより製造することができる。以上により、粉末状の樹脂成形材料を得ることができる。本実施形態の粉末状の樹脂成形材料は凝集固結化が抑制されていることから流動性に優れており、ハンドリング性が改善される。
(樹脂成形材料の形態)
 本実施形態の樹脂成形材料は、23℃で、好ましくはタブレット状または顆粒状であり、より好ましくはタブレット状である。粉末状の樹脂成形材料を打錠し、タブレット状に形成することができる。樹脂成形材料がタブレット状または顆粒状であることにより、樹脂成形材料の流通や保管がしやすく、また、トランスファー成形や圧縮成形に適用しやすい。
 本実施形態の粉末状の樹脂成形材料は凝集固結化が抑制されており、均一な組成のタブレット状または顆粒状の組成物とすることができる。
(樹脂成形材料を溶融させた際の特性)
 本実施形態の樹脂成形材料は、微粉シリカ(B)を所定の量で含むことから、樹脂成形材料の溶融時の流動性を改善することができ、充填性や成形性などを高めることができる。
 樹脂成形材料の充填性は以下の「広がり性試験」により、樹脂成形材料の溶融時の充填性や成形性を精度良く確認することができる。すなわち、広がり性試験を用いることにより、溶融した樹脂成形材料全体に応力を継続的に印可した場合に、この溶融材料が溶け広がる特性を確認することができ、実際の製造工程に近い条件で金型への充填性や成形性をより精度よく確認することができる。樹脂成形材料が当該特性に優れることにより、射出成形においては金型内の細部への充填性や成形性を精度良く確認することができ、特に圧縮成形においては金型に入れて加温・プレスした際に、金型への充填性とともに成形性を精度良く確認することができる。
 (広がり性試験)
 175℃のゲル板上に、ゲル測定用スプーン一杯(2.0ml)の樹脂成形材料を置く。その上に、175℃に加熱した薄バリ測定用金型(下型3,000g)を載せ、5分間放置した。薄バリ測定用金型を取り除き、略円形に押し広げられた樹脂成形材料の直径を測定する。
 具体的には、温度175℃のスパイラルフロー試験により測定される流動長が30cm以上、好ましくは40cm以上、さらに好ましくは45cm以上とすることができる。
 スパイラルフロー試験は、たとえば低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に金型温度175℃、注入圧力6.9MPa、保圧時間180秒の条件で樹脂成形材料を注入し、流動長を測定することにより行うことができる。
 また、本実施形態の樹脂成形材料は、高化式粘度測定装置を用いて、測定温度175℃、荷重40kgfの条件で測定される高化式粘度が30Pa・s以上300Pa・s以下、好ましくは50Pa・s以上250Pa・s以下、さらに好ましくは60Pa・s以上200Pa・s以下とすることができる。
(硬化物のガラス転移温度)
 本実施形態の樹脂成形材料を175℃で溶融して成形したものを、大気下で175℃、4時間後硬化させて得られる硬化物のガラス転移温度は、好ましくは150~220℃、より好ましくは160~200℃である。ガラス転移温度が150℃以上となるように樹脂成形材料を設計することで、例えば車載用途で要求される耐熱性をクリアしやすい。ガラス転移温度が220℃以下となるように樹脂成形材料を設計することで、比較的低温で成形をすることができるようになる。このことは、低温加工による成形物の収縮の抑制の点で好ましい。
<成形体>
 本実施形態の成形体は、上述の樹脂成形材料を硬化して得ることができる。本実施形態の粉末状の樹脂成形材料は軟磁性粒子(A)が高充填であるものの充填性や成形性に優れることから、得られる成形体(磁性材料)の組成が均一であり、透磁率または飽和磁束密度等の磁気特性や機械的強度などにおいて所望の特性を発揮することができる。
 具体的には、本実施形態の成形体は、比透磁率が40以上、好ましくは42以上、さらに好ましくは45以上である。
 また、本実施形態の成形体は上述のように組成が均一であり、さらに飽和磁束密度が高い複合材料から構成されているため、高飽和磁束密度を実現することができ、1.0T以上、好ましくは1.2T以上、より好ましくは1.3T以上とすることができる。
 成形体の製造方法は、特に限定されないが、トランスファー成形法または圧縮成形法等を挙げることができる。
(トランスファー成形法)
 トランスファー成形法による成形体の製造方法は、トランスファー成形装置を用いて、上述の樹脂成形材料の溶融物を金型に注入する工程と、その溶融物を硬化させる工程と、前記金型から成形体を離型する工程と、を含む。
 トランスファー成形については、公知のトランスファー成形装置を適宜用いるなどして行うことができる。具体的には、まず、予熱した樹脂成形材料を、トランスファー室とも言われる加熱室に入れて溶融し、溶融物を得る。その後、その溶融物をプランジャーで金型に注入し、そのまま保持して溶融物を硬化させる。これにより、所望の成形物を得ることができる。
 トランスファー成形は、成形体の寸法の制御性や、形状自由度の向上などの点で好ましい。
 トランスファー成形における各種条件は、任意に設定することができる。例えば、予熱の温度は60~100℃、溶融の際の加熱温度は100~250℃、金型温度は100~200℃、金型に樹脂成形材料の溶融物を注入する際の圧力は1~20MPaの間で適宜調整することができる。
 金型温度を高くしすぎないことで、成形物の収縮を抑えることができる。
(圧縮成形法)
 圧縮成形法(コンプレッション成形法)による成形体の製造方法は、前記樹脂成形材料を圧縮成形する工程を含む。具体的には、本実施形態の樹脂成形材料を金型内で圧縮成形する工程と、前記金型から成形体を離型する工程と、を含む。
 圧縮成形については、公知の圧縮成形装置を適宜用いて行うことができる。具体的には、上方に開口した凹形状の固定金型の凹部内に前記樹脂成形材料を載置する。樹脂成形材料は予め加熱しておくことができる。これにより、成形体を均一に硬化させることができ、成形圧力を低くすることができる。
 次いで、上方から、凸形状の金型を凹形状の固定金型に移動して、凸部および凹部によって形成されたキャビティ内において樹脂成形材料を圧縮する。初めは低圧で樹脂成形材料を十分に軟化流動させ、次いで、金型を閉じて、再度加圧して所定時間硬化させる。
 圧縮成形における各種条件は、任意に設定することができる。例えば、予熱の温度は60~100℃、溶融の際の加熱温度は100~250℃、金型温度は100~200℃、金型で樹脂成形材料を圧縮する際の圧力は1~20MPa、硬化時間60~300秒の間で適宜調整することができる。
 金型温度を高くしすぎないことで、成形物の収縮を抑えることができる。
 本実施形態の樹脂成形材料は、高透磁率を有する磁性材料が得られることから、当該樹脂成形材料を硬化して得られる成形体は、インダクタ中の磁性コアや、磁性コアおよびコイルを封止する外装部材に使用することができる。
 本実施形態の樹脂成形材料の硬化物で構成された外装部材を備える構造体(一体型インダクタ)の概要について図1を用いて説明する。
 図1(a)は、構造体100の上面からみた構造体の概要を示す。図1(b)は、図1(a)におけるA-A'断面視における断面図を示す。
 本実施形態の構造体100は、図1に示すように、コイル10および磁性コア20を備えることができる。磁性コア20は、空芯コイルであるコイル10の内部に充填されている。コイル10および磁性コア20は、外装部材30(封止部材)で封止されている。磁性コア20および外装部材30は、本実施形態の樹脂成形材料の硬化物で構成することができる。磁性コア20および外装部材30は、シームレスの一体部材として形成されていてもよい。
 本実施形態の構造体100の製造方法としては、例えば、コイル10を金型に配置し、本実施形態の樹脂成形材料を用いて、トランスファー成形等の金型成形することにより、当該樹脂成形材料を硬化させて、コイル10中に充填された磁性コア20およびこれらの周囲に外装部材30を一体化形成することができる。このときコイル10は、巻線の端部を外装部材30の外部に引き出した不図示の引き出し部を有してもよい。
 コイル10は、通常、金属線の表面に絶縁被覆を施した巻線を巻回した構造により構成される。金属線は、導電性の高いものが好ましく、銅、銅合金が好適に利用できる。また、絶縁被覆は、エナメルなどの被覆が利用できる。巻線の断面形状は、円形や矩形、六角形などが挙げられる。
 一方、磁性コア20の断面形状は、特に限定されないが、例えば、断面視において、円形形状や、四角形や六角形などの多角形状とすることができる。磁性コア20は、本実施形態の樹脂成形材料のトランスファー成形品で構成されるため、所望の形状を有することが可能である。
 本実施形態の樹脂成形材料の硬化物によれば、成形性および高透磁率などの磁気特性に優れた磁性コア20および外装部材30を実現できるため、これらを有する構造体100(一体型インダクタ)においては、低磁気損失が期待される。また、機械的特性に優れた外装部材30を実現できるため、構造体100の耐久性や信頼性、製造安定性を高めることが可能である。このため、本実施形態の構造体100は、昇圧回路用や大電流用のインダクタに用いることができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、本発明の効果を損なわない範囲で、上記以外の様々な構成を採用することができる。
 以下に、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
<実施例1~7、比較例1~5>
 まず、表1に記載の各成分を、記載の比率で準備し、まず軟磁性粒子を混合しながら、そこにその他の成分を添加し均一に混合して混合物を得た。
 次いで、得られた混合物を、120℃、10分の条件で混練した。混練終了後、得られた混練物を室温まで冷却して固形状とし、そして粉砕、打錠成形した。以上により、タブレット状の樹脂成形材料を得た。
 表1に記載された原料成分を以下に示す。表1における樹脂成形材料および成形品の評価結果を示す。なお、表1に記載された軟磁性体粒子の含有率(体積%)は、軟磁性粒子を含む樹脂成形材料を100体積%としたときの含有率(すなわち充填率)である。
(軟磁性粒子)
 鉄基粒子1:アモルファス磁性粉(エプソンアトミックス株式会社製、KUAMET6B2、メジアン径D50:50μm)
 鉄基粒子2:アモルファス磁性粉(エプソンアトミックス株式会社製、AW2-08、メジアン径D50:4μm)
(シリカ)
 微粉シリカ1:溶融シリカ、メジアン系D50=0.5μm
 超微粉シリカ1:AEROSIL-RX200、メジアン系D50=12nm
 シリカ1:SC-5500-SQ、メジアン系D50=1.6μm、アドマ社製
 シリカ2:TS-6021、メジアン系D50=10μm、マイクロン社製
(エポキシ樹脂)
 エポキシ樹脂1:jER1032H60:三菱ケミカル株式会社製のトリフェニルメタン構造を含むエポキシ樹脂、23℃で固形、前掲の一般式(a1)で表される構造単位含有
 エポキシ樹脂2:YL-6810:三菱ケミカル株式会社製のビスフェノールA型エポキシ樹脂、23℃で固形、前掲の一般式(EP)で表される構造含有
 エポキシ樹脂3:NC3000L:日本化薬株式会社製のビフェニルアラルキル型エポキシ樹脂、23℃で固形、前掲の一般式(BP1)で表される構造単位含有)
(硬化剤)
 硬化剤1:PR-HF-3:住友ベークライト株式会社製のノボラック型フェノール樹脂、23℃で固形
 硬化剤2:MEH-7851SS:明和化成株式会社製のビフェニレン骨格含有フェノールアラルキル樹脂、23℃で固形
(密着助剤)
 密着助剤1: CDA-1M(重金属不活性化剤、ADEKA社製)
(離型剤)
 離型剤1:WE-4(ワックス、クラリアントケミカルズ株式会社製)
(触媒)
 触媒1:下記化学式で表される化合物
Figure JPOXMLDOC01-appb-C000014
 撹拌装置付きのセパラブルフラスコに4,4'-ビスフェノールS 37.5g(0.15モル)、メタノール100mlを仕込み、室温で撹拌溶解し、更に攪拌しながら予め50mlのメタノールに水酸化ナトリウム4.0g(0.1モル)を溶解した溶液を添加した。次いで予め150mlのメタノールにテトラフェニルホスホニウムブロマイド41.9g(0.1モル)を溶解した溶液を加えた。しばらく攪拌を継続し、300mlのメタノールを追加した後、フラスコ内の溶液を大量の水に撹拌しながら滴下し、白色沈殿を得た。沈殿を濾過、乾燥し、白色結晶の上記触媒1を得た。
 触媒2:下記化学式で表される化合物
Figure JPOXMLDOC01-appb-C000015
 メタノール1800gを入れたフラスコに、フェニルトリメトキシシラン249.5g、2,3-ジヒドロキシナフタレン384.0gを加えて溶かし、次に室温攪拌下28%ナトリウムメトキシド-メタノール溶液231.5gを滴下した。さらにそこへ予め用意したテトラフェニルホスホニウムブロマイド503.0gをメタノール600gに溶かした溶液を室温攪拌下滴下すると結晶が析出した。析出した結晶を濾過、水洗、真空乾燥し、桃白色結晶の触媒2を得た。
(カップリング剤)
・カップリング剤1: CF-4083(フェニルアミノプロピルトリメトキシシラン、東レ・ダウコーニング(株)製)
(金属分散剤)
・分散剤1: Hypermer KD-9(質量平均分子量:760、酸価:74mgKOH/g、CRODA社製)
(シリコーン化合物)
 シリコーンオイル:下記化学式で示されるシリコーンオイル(常温(25℃)で液状、FZ-3730、東レ・ダウコーニング社製)
Figure JPOXMLDOC01-appb-C000016
<評価>
(広がり性試験)
 175℃のゲル板上に、ゲル測定用スプーン一杯(2.0ml)の樹脂成形材料を置く。その上に、175℃に加熱した薄バリ測定用金型(下型3,000g)を載せ、5分間放置した。薄バリ測定用金型を取り除き、略円形に押し広げられた樹脂成形材料の直径を測定した。
(流動性:スパイラルフロー試験)
 実施例および比較例の樹脂成形材料を用いてスパイラルフロー試験を行った。
 試験は、低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に、金型温度175℃、注入圧力6.9MPa、保圧時間180秒の条件で樹脂成形材料を注入し、流動長を測定することにより行った。数値が大きいほど、流動性が良好であることを示す。
(高化式粘度)
 高化式粘度測定装置(高化式フローテスター、株式会社島津製作所、CFT-100EX)を用いて、測定温度175℃、荷重40kgf、ノズル寸法:直径1.0mm×長さ10mmの条件で、樹脂成形材料の高化式粘度を測定した。
(比透磁率)
 樹脂成形材料を、低圧トランスファー成形機(コータキ精機株式会社製「KTS-30」)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒間で注入成形し、直径50mmΦ、厚み3mmの円板状成形物を得た。次いで、得られた成形品を175℃、4時間で後硬化した。その後ルーター加工機により、外形27mmΦ、内径15mmΦのトロイダル形状に加工し、比透磁率評価用試験片を作製した。得られたトロイダル形状成形品に42巻きの1次コイルと42巻きの2次コイルを巻き、直流交流磁化特性試験装置(メトロン技研株式会社製「MTR-1488」)を用いて、交流測定を行った。周波数50KHz、磁束密度50mTでの値を比透磁率とした。
Figure JPOXMLDOC01-appb-T000017
 表1に記載のように、比較例1と実施例1および2、比較例2と実施例3~5、比較例3および4と実施例6、比較例5と実施例7の比較において、本発明に係る実施例の樹脂成形材料は広がり試験の結果、直径が大きく、溶融した樹脂成形材料全体に応力を継続的に印可した場合に、溶け広がる特性に優れることから、金型内への充填性や成形性等に優れることが推察された。さらに、軟磁性粒子を高充填とすることが可能であることから高透磁率である磁性材料が得られた。
 この出願は、2020年10月5日に出願された日本出願特願2020-168306号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100 構造体
10  コイル
20  磁性コア
30  外装部材

Claims (15)

  1.  (A)軟磁性粒子と、
     (B)平均粒径が0.1μm以上2.0μm以下の微粉シリカと、
     (C)熱硬化性樹脂と、
    を含み、
     軟磁性粒子(A)の含有量が96質量%以上であり、
     微粉シリカ(B)の含有量が1.5質量%以下である、樹脂成形材料。
  2.  熱硬化性樹脂(C)はエポキシ樹脂を含む、請求項1に記載の樹脂成形材料。
  3.  前記エポキシ樹脂は、ビスフェノールA型エポキシ樹脂、トリスフェニルメタン型エポキシ樹脂、およびビフェニルアラルキル型エポキシ樹脂から選択される少なくても1種である、請求項2に記載の樹脂成形材料。
  4.  さらにフェノール系硬化剤(D)を含む、請求項1~3のいずれかに記載の樹脂成形材料。
  5.  フェノール系硬化剤(D)は、ノボラック型フェノール樹脂、およびビフェニルアラルキル型フェノール樹脂から選択される少なくても1種である、請求項4に記載の樹脂成形材料。
  6.  さらに硬化促進剤(E)を含み、
     当該硬化促進剤(E)は、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物、ホスフィン化合物とキノン化合物との付加物、及び、ホスホニウム化合物とシラン化合物との付加物から選択される少なくても1種である、請求項1~5のいずれかに記載の樹脂成形材料。
  7.  さらにシリコーン化合物(F)を含む、請求項1~6のいずれかに記載の樹脂成形材料。
  8.  シリコーン化合物(F)は下記一般式(1)で表される、請求項7に記載の樹脂成形材料。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、それぞれ独立に炭素数1~10の置換または非置換の一価の有機基を示し、Rのうち少なくとも1つは、アミノ基置換有機基、エポキシ基置換有機基、ポリオキシアルキレン基含有有機基、水酸基置換有機基、ビニル基置換有機基、カルボキシル基置換有機基、イソシアネート基置換有機基、メルカプト基置換有機基、(メタ)アクリル基置換有機基および酸無水物基置換有機基から選択される基である。nは1~100の整数を示す。)
  9.  23℃でタブレット状または顆粒状である、請求項1~8のいずれかに記載の樹脂成形材料。
  10.  EMMI-1-66法に従い、金型温度175℃、注入圧力6.9MPa、保圧時間180秒の条件で測定されるスパイラルフロー流動長が30cm以上である、請求項1~9のいずれかに記載の樹脂成形材料。
  11.  高化式粘度測定装置を用いて、測定温度175℃、荷重40kgfの条件で測定される高化式粘度が30Pa・s以上300Pa・s以下である、請求項1~10のいずれかに記載の樹脂成形材料。
  12.  請求項1~11のいずれかに記載の樹脂成形材料を硬化してなる成形体。
  13.  比透磁率が40以上である請求項12に記載の成形体。
  14.  トランスファー成形装置を用いて、請求項1~11のいずれかに記載の樹脂成形材料の溶融物を金型に注入する工程と、
     前記溶融物を硬化する工程と、
    を含む、成形体の製造方法。
  15.  請求項1~11のいずれかに記載の樹脂成形材料を圧縮成形する工程を含む、成形体の製造方法。
PCT/JP2021/036235 2020-10-05 2021-09-30 樹脂成形材料、成形体および当該成形体の製造方法 WO2022075191A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21877492.5A EP4227341A1 (en) 2020-10-05 2021-09-30 Resin molding material, molded body and method for producing said molded body
US18/028,647 US20230331981A1 (en) 2020-10-05 2021-09-30 Resin molding material, molded product, and method for producing molded product
JP2022555425A JPWO2022075191A1 (ja) 2020-10-05 2021-09-30
CN202180068331.7A CN116348516A (zh) 2020-10-05 2021-09-30 树脂成形材料、成形体和该成形体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-168306 2020-10-05
JP2020168306 2020-10-05

Publications (1)

Publication Number Publication Date
WO2022075191A1 true WO2022075191A1 (ja) 2022-04-14

Family

ID=81126871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036235 WO2022075191A1 (ja) 2020-10-05 2021-09-30 樹脂成形材料、成形体および当該成形体の製造方法

Country Status (6)

Country Link
US (1) US20230331981A1 (ja)
EP (1) EP4227341A1 (ja)
JP (1) JPWO2022075191A1 (ja)
CN (1) CN116348516A (ja)
TW (1) TW202222885A (ja)
WO (1) WO2022075191A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243268A (ja) * 2012-05-21 2013-12-05 Hitachi Chemical Co Ltd 圧粉磁心、圧粉磁心用被覆金属粉、及びこれらの製造方法
JP2019080058A (ja) 2017-10-20 2019-05-23 住友ベークライト株式会社 磁性コア形成用樹脂組成物および構造体
JP2019182950A (ja) 2018-04-05 2019-10-24 住友ベークライト株式会社 成形材料および成形体
WO2019229960A1 (ja) * 2018-05-31 2019-12-05 日立化成株式会社 コンパウンド及び成形体
JP2020145310A (ja) * 2019-03-06 2020-09-10 Ntn株式会社 圧粉磁心材料
JP2020161726A (ja) * 2019-03-27 2020-10-01 旭化成株式会社 高周波用複合磁性材料
JP2020168306A (ja) 2019-04-05 2020-10-15 スズキ株式会社 電動車両

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185457B2 (ja) * 1993-03-10 2001-07-09 住友金属鉱山株式会社 樹脂結合型磁石用組成物及び樹脂結合型磁石とそれらの製造方法
JP3185458B2 (ja) * 1993-03-12 2001-07-09 住友金属鉱山株式会社 樹脂結合型磁石用組成物及び樹脂結合型磁石とその製造方法
JPH0722226A (ja) * 1993-07-02 1995-01-24 Sumitomo Metal Mining Co Ltd 樹脂結合型磁石用組成物及び、それを用いた樹脂結合型磁石とその製造方法
JP2003105067A (ja) * 2001-10-01 2003-04-09 Mitsui Chemicals Inc エポキシ樹脂組成物及びその製造方法
JP2003335920A (ja) * 2002-05-17 2003-11-28 Mitsui Chemicals Inc エポキシ樹脂組成物およびそれを用いた半導体装置
US11578183B2 (en) * 2016-11-28 2023-02-14 Somar Corporation Resin composition, method for producing resin composition, resin composition molded body, and method for producing resin composition molded body
JP7194909B2 (ja) * 2017-12-08 2022-12-23 パナソニックIpマネジメント株式会社 磁性樹脂粉末、磁性プリプレグ及び磁性樹脂ペースト
JP2019210447A (ja) * 2018-06-04 2019-12-12 住友ベークライト株式会社 封止用樹脂組成物、これを用いる電子装置及び封止用樹脂組成物の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243268A (ja) * 2012-05-21 2013-12-05 Hitachi Chemical Co Ltd 圧粉磁心、圧粉磁心用被覆金属粉、及びこれらの製造方法
JP2019080058A (ja) 2017-10-20 2019-05-23 住友ベークライト株式会社 磁性コア形成用樹脂組成物および構造体
JP2019182950A (ja) 2018-04-05 2019-10-24 住友ベークライト株式会社 成形材料および成形体
WO2019229960A1 (ja) * 2018-05-31 2019-12-05 日立化成株式会社 コンパウンド及び成形体
JP2020145310A (ja) * 2019-03-06 2020-09-10 Ntn株式会社 圧粉磁心材料
JP2020161726A (ja) * 2019-03-27 2020-10-01 旭化成株式会社 高周波用複合磁性材料
JP2020168306A (ja) 2019-04-05 2020-10-15 スズキ株式会社 電動車両

Also Published As

Publication number Publication date
TW202222885A (zh) 2022-06-16
CN116348516A (zh) 2023-06-27
EP4227341A1 (en) 2023-08-16
US20230331981A1 (en) 2023-10-19
JPWO2022075191A1 (ja) 2022-04-14

Similar Documents

Publication Publication Date Title
JP2019102782A (ja) 熱硬化性樹脂組成物、磁性コアおよび/または外装部材を備えるコイルおよび成形品の製造方法
JP2021080411A (ja) 樹脂成形材料、成形品および成形品の製造方法
JP7435693B2 (ja) 溶融成形用の樹脂組成物、磁性部材、磁性部材を備えるコイル、磁性部材の製造方法
JP2023130438A (ja) 磁性コア形成用樹脂組成物および構造体
JP2019080060A (ja) インダクタ成形用樹脂組成物および一体型インダクタ
US11987695B2 (en) Resin composition for forming magnetic member and method for manufacturing magnetic member
WO2019106812A1 (ja) コンパウンド粉
JP7243035B2 (ja) トランスファー成形用の樹脂組成物、当該樹脂組成物の成形物を備える電気・電子デバイス、および、当該樹脂組成物を用いた成形物の製造方法
JP2022180555A (ja) 樹脂組成物および成形品
WO2022075191A1 (ja) 樹脂成形材料、成形体および当該成形体の製造方法
WO2022075186A1 (ja) 樹脂成形材料、成形体および当該成形体の製造方法
JP2021123721A (ja) 樹脂成形材料、成形体、コイルおよび成形体の製造方法
JP2019080059A (ja) 外装部材形成用樹脂組成物および構造体
JP2019210362A (ja) 磁性部材成形用の樹脂組成物、磁性部材、コイル、磁性部材の製造方法および磁性部材成形用キット
JP2022187217A (ja) 樹脂成形材料、成形体および当該成形体の製造方法
WO2021132434A1 (ja) 固体状樹脂成形材料、成形品および成形品の製造方法
WO2023190373A1 (ja) 軟磁性材料、成形品、当該成形品の製造方法
JP2019212664A (ja) 磁性部材成形用の樹脂組成物、磁性部材、コイル、磁性部材の製造方法および磁性部材成形用キット
JP2021130811A (ja) 樹脂成形材料、成形品、当該成形品の製造方法
JP2023108807A (ja) 樹脂成形材料、成形品および当該成形品の製造方法
WO2020213500A1 (ja) 磁性部材形成用樹脂組成物および磁性部材の製造方法
JP2023018448A (ja) 樹脂成形材料、成形体、コイルおよび成形体の製造方法
JP2022032171A (ja) 樹脂成形材料、成形品および当該成形品の製造方法
JP2023147262A (ja) 軟磁性材料、成形品、当該成形品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555425

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021877492

Country of ref document: EP

Effective date: 20230508