WO2022073343A1 - 一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法 - Google Patents

一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法 Download PDF

Info

Publication number
WO2022073343A1
WO2022073343A1 PCT/CN2021/092546 CN2021092546W WO2022073343A1 WO 2022073343 A1 WO2022073343 A1 WO 2022073343A1 CN 2021092546 W CN2021092546 W CN 2021092546W WO 2022073343 A1 WO2022073343 A1 WO 2022073343A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
hydroxyethoxy
phenyl
fluorene
acid
Prior art date
Application number
PCT/CN2021/092546
Other languages
English (en)
French (fr)
Inventor
袁其亮
蒋栋栋
万应
石永根
徐鹏飞
陈海峰
Original Assignee
浙江中欣氟材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江中欣氟材股份有限公司 filed Critical 浙江中欣氟材股份有限公司
Priority to US17/574,334 priority Critical patent/US20220135509A1/en
Publication of WO2022073343A1 publication Critical patent/WO2022073343A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/40Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes

Definitions

  • the invention belongs to the technical field of chemical synthesis, in particular to a method for synthesizing 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene.
  • 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene is a very important bisphenol compound.
  • As a functional polymer material monomer it is mainly used in the manufacture of high heat resistance. , epoxy resin, polycarbonate, polyarylate, polyether and other polymer materials with excellent optical properties and excellent flame retardancy, which are widely used in aerospace, electronic appliances, automobile manufacturing and other fields.
  • polycarbonate synthesized with 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene as a monomer has excellent optical properties and is used to manufacture high-end resin lenses;
  • 9,9- Bis[4-(2-hydroxyethoxy)phenyl]fluorene is an epoxy resin synthesized from a monomer.
  • This synthetic route has the advantages of cheap and readily available raw materials, simple reaction and high synthesis yield, but a large amount of strong acid catalysts, such as concentrated sulfuric acid, hydrogen chloride, solid heteropolyacids, superacids, etc., are used in the synthesis process, resulting in a large amount of acid waste, and the pressure on environmental protection is great.
  • strong acid catalysts such as concentrated sulfuric acid, hydrogen chloride, solid heteropolyacids, superacids, etc.
  • the purpose of the present invention is to provide an industrial synthesis method of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene.
  • the present invention is based on the second synthetic route and optimized by the process conditions.
  • a method for synthesizing 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene comprising the following steps:
  • the obtained crystallization mother liquor is left to stand for stratification, and after the water phase is divided, the alkane solvent is recovered by organic phase distillation, and the concentrate is rectified to recover phenoxyethanol.
  • 9-Fluorenone and phenoxyethanol are used as the main raw materials for the reaction. It can be seen from the reaction equation that 1 equivalent of 9-fluorenone needs to react with 2 equivalents of phenoxyethanol to obtain 9,9-bis[4-(2-hydroxyl ethoxy)phenyl]fluorene, so the ratio of the amount of phenoxyethanol to the minimum amount of 9-fluorenone is 2:1. In order to speed up the reaction and ensure the sufficient reaction of 9-fluorenone, an excessive amount of phenoxyethanol is usually used, but the amount of phenoxyethanol is not as much as possible. On the contrary, the reaction speed is slowed down due to the dilution of the concentration of the catalyst and the co-catalyst, and the preferred ratio of the amount of 9-fluorenone to the phenoxyethanol is 1:(2-6).
  • the catalyst refers to a compound with strong acid, which can be an organic acid compound or an inorganic acid compound, selected from one or more of the following: concentrated sulfuric acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid , heteropoly acid, super acid, solid acid, hydrogen halide, etc., the more preferred catalyst is one or both of the following: concentrated sulfuric acid and methanesulfonic acid.
  • the mass ratio of catalyst to 9-fluorenone is (0.0001 ⁇ 1):1, the preferred mass ratio of catalyst to 9-fluorenone is (0.0005 ⁇ 0.5):1, and the more preferred mass ratio of catalyst to 9-fluorenone It is (0.001 ⁇ 0.2):1.
  • the cocatalyst refers to the straight-chain alkyl carboxylic acid and alkyl alcohol compounds containing mercapto groups in the molecular structure, and can be expressed by the following general formula:
  • the cocatalyst can be a single mercapto-containing linear alkyl carboxylic acid, or a mixture of multiple mercapto-containing linear alkyl carboxylic acids; it can be a single mercapto-containing linear alkyl alcohol, or a variety of mercapto-containing linear alkyl alcohols.
  • the cocatalyst is selected from one or more of the following: mercaptoacetic acid, 3-mercaptopropionic acid, 4-mercaptobutyric acid, 5-mercaptovaleric acid, 6-mercaptohexanoic acid, 7-mercaptoheptanoic acid, 8-mercaptooctanoic acid, 9 -Mercaptononanoic acid, 10-mercaptodecanoic acid, ethanethiol, 3-mercaptopropanol, 4-mercaptobutanol, 5-mercaptopentanol, 6-mercaptohexanol, 7-mercaptoheptanol, 8-mercaptooctanol , 9-mercaptononanol, 10-mercaptodecanol.
  • the mass ratio of the cocatalyst to the 9-fluorenone is (0.0001-0.2):1, and the preferred mass ratio of the cocatalyst to the 9-fluorenone is (0.001-0.1)
  • the alkane-based solvent refers to C6-C10 linear, branched or cyclic alkanes. Compared with traditional aromatic hydrocarbon solvents, such as toluene, xylene, chlorobenzene, etc., the alkane solvent is selected. If the solvent is used, side reactions such as Friedel-Crafts reaction and sulfonation reaction will occur with the raw material 9-fluorenone, strong acid catalyst, etc., resulting in a decrease in reaction yield and a decrease in product quality.
  • the choice of alkane solvent is mainly related to its boiling point and water azeotropy.
  • the azeotrope performance of the alkane solvent and water is also crucial. If the alkane solvent cannot form an effective azeotrope with water, the water generated by the reaction cannot be azeotroped with water in a timely manner. Removal in the reaction system is not conducive to the progress of the reaction.
  • Preferred alkane solvents are selected from one or more of the following: n-hexane, n-heptane, n-octane, isooctane, nonane, decane, cyclohexane, methylcyclohexane, ethylcyclohexane alkyl.
  • the amount of the alkane solvent is (0.1-10) times the mass of the 9-fluorenone, and the preferred amount of the alkane solvent is (0.3-5) times the mass of the 9-fluorenone.
  • the reaction process is as follows:
  • the 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene-containing mixed solution obtained after the reaction is viscous in physical properties, which is not conducive to solid-liquid separation, can effectively improve the properties of the reaction solution by diluting with water,
  • the amount of water used is (0.1-10) times the mass of 9-fluorenone, and preferably the amount of water is (0.1-3) times the mass of 9-fluorenone.
  • the temperature of the reaction solution diluted with water is gradually lowered to room temperature or lower, preferably at a temperature of 0-30° C., stirring and crystallization for 0-5 hours, and solid-liquid separation is performed after sufficient crystallization.
  • the obtained solid was separated, rinsed with pure water until the pH value of the rinse solution was neutral, and the wet product was dried to obtain a finished product of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene, with a content of ⁇ 99.0%, yield ⁇ 90%.
  • the crystallization mother liquor is left to stand for stratification, and after the water phase is separated, the main components of the obtained organic phase are alkane solvents and unreacted phenoxyethanol, which have high recovery value.
  • the organic phase first recovers the alkane solvent by distillation, with a recovery rate of more than 90% and a content of more than 99%, and then recovers phenoxyethanol through rectification, with a recovery rate of more than 90% and a content of more than 99%.
  • the recovered alkane solvent and benzene All oxyethanols can be used to synthesize 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene, which has no effect on product quality and reaction yield.
  • the present invention has beneficial effects as follows:
  • the azeotropic dehydration method is adopted to take the water generated by the reaction out of the system to ensure the smooth progress of the reaction, and at the same time, the amount of acid catalyst is greatly reduced, the amount of acid waste is greatly reduced, and the process is environmentally friendly;
  • the invention has the advantages of cheap and easy-to-obtain raw materials, simple operation, good atom economy, high synthesis yield, good product quality, and environmental friendliness, and is suitable for industrial application.
  • the crystallization mother liquor obtained by filtration was left standing to separate out the water phase, and the organic phase was distilled at atmospheric pressure to obtain 492 g of cyclohexane with a content of 99.7% and a recovery rate of 91.1%.
  • the concentrated solution is rectified under reduced pressure to obtain 127.1 g of phenoxyethanol, the content of which is 99.2%, and the recovery rate is 91.5% after deducting the theoretical consumption.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the crystallization mother liquor obtained by filtration was left standing to separate out the water phase, and the organic phase was distilled at atmospheric pressure to obtain 291.4 g of n-heptane with a content of 99.8% and a recovery rate of 92.5%.
  • the concentrated solution is rectified under reduced pressure to obtain 31.6 g of phenoxyethanol, the content of which is 99.1%, and the recovery rate is 90.4% after deducting the theoretical consumption.
  • the crystallization mother liquor obtained by filtration was left standing to separate out the water phase, and the organic phase was distilled at atmospheric pressure to obtain 181.8 g of methylcyclohexane with a content of 99.6% and a recovery rate of 90.9%.
  • the concentrated solution is rectified under reduced pressure to obtain 242.7 g of phenoxyethanol, the content of which is 99.6%, and the recovery rate is 94.1% after deducting the theoretical consumption.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the crystallization mother liquor obtained by filtration was left standing to separate out the water phase, and the organic phase was distilled at atmospheric pressure to obtain 184.6 g of isooctane with a content of 99.7% and a recovery rate of 92.3%.
  • the concentrated solution is rectified under reduced pressure to obtain 136.8 g of phenoxyethanol, the content of which is 99.7%, and the recovery rate is 93.3% after deducting the theoretical consumption.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the crystallization mother liquor obtained by filtration was left standing to separate out the water phase, and the organic phase was distilled at atmospheric pressure to obtain 343.9 g of ethylcyclohexane with a content of 99.5% and a recovery rate of 91.7%.
  • the concentrated solution is rectified under reduced pressure to obtain 157.7 g of phenoxyethanol, the content of which is 99.4%, and the recovery rate is 92.8% after deducting the theoretical consumption.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the crystallization mother liquor obtained by filtration was left standing to separate out the water phase, and the organic phase was distilled at atmospheric pressure to obtain 72.4 g of n-octane with a content of 99.3% and a recovery rate of 90.5%.
  • the concentrated solution is rectified under reduced pressure to obtain 166.5 g of phenoxyethanol, the content of which is 99.5%, and the recovery rate is 93.9% after deducting the theoretical consumption.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • the crystallization mother liquor obtained by filtration was left standing to separate out the water phase, and the organic phase was distilled at atmospheric pressure to obtain 138.3 g of n-heptane with a content of 99.3% and a recovery rate of 92.2%.
  • the concentrated solution is rectified under reduced pressure to obtain 126.6 g of phenoxyethanol with a content of 99.5%, and the recovery rate is 93.1% after deducting the theoretical consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法,属于化学合成技术领域。9-芴酮、苯氧基乙醇、催化剂、助催化剂在烷烃类溶剂中,搅拌升温至回流,一边反应一边将生成的水经共沸方式从反应液中脱除,反应结束后加水稀释,搅拌均匀,降温析晶,过滤,滤饼经漂洗、干燥,得到9,9-二[4-(2-羟基乙氧基)苯基]芴成品;过滤得到的结晶母液静置分层,分除水相后,有机相蒸馏回收烷烃类溶剂,浓缩物经精馏,回收苯氧基乙醇。本发明具有原料价廉易得,操作简单,原子经济性好、合成收率高,产品质量好、对环境友好等优点,适合工业化应用。

Description

一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法 技术领域:
本发明属于化学合成技术领域,具体地说,涉及一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法。
背景技术:
9,9-二[4-(2-羟基乙氧基)苯基]芴是一种非常重要的双酚化合物,作为一种功能性高分子材料单体,主要用于制造具有高耐热性、优异光学性和优良阻燃性的环氧树脂、聚碳酸酯、聚芳香酯、聚醚等高分子材料,在航空航天、电子电器、汽车制造等领域具有广泛用途。如,以9,9-二[4-(2-羟基乙氧基)苯基]芴为单体合成的聚碳酸酯,具有优异的光学性能,用于制造高端树脂镜头;以9,9-二[4-(2-羟基乙氧基)苯基]芴为单体合成的环氧树脂,作为封装材料,在显示屏制作、芯片封装等领域得到广泛应用。因此,随着5G时代的到来,万物互联成为现实,作为基础支撑材料的9,9-二[4-(2-羟基乙氧基)苯基]芴将迎来一个快速发展的黄金期。
9,9-二[4-(2-羟基乙氧基)苯基]芴的合成路线有以下两种:
路线一:以9,9-二(4-羟基苯基)芴为原料,与乙二醇碳酸酯,或环氧乙烷,或2-卤代乙醇等反应,合成9,9-二[4-(2-羟基乙氧基)苯基]芴:
Figure PCTCN2021092546-appb-000001
该合成路线具有反应简单、合成收率高、三废量少等优点,但原料9,9-二(4-羟基苯基)芴价格昂贵不易得,导致合成成本高,市场竞争力差,目前已逐步淘汰。
路线二:以9-芴酮为原料,在强酸性催化剂与巯基化合物助催化剂共同作用下,与苯氧基乙醇反应,合成9,9-二[(4-羟乙氧基)苯基]芴:
Figure PCTCN2021092546-appb-000002
该合成路线具有原料价廉易得、反应简单、合成收率高等优点,但在合成过程中需用到大量的强酸性催化剂,如浓硫酸、氯化氢、固体杂多酸、超强酸等,产生大量的酸性废弃物,环保压力大。
发明内容:
本发明的目的在于提供一种9,9-二[4-(2-羟基乙氧基)苯基]芴的工业化合成方法。有鉴于9,9-二[4-(2-羟基乙氧基)苯基]芴的合成路线二较合成路线一具有更强的竞争力,本发明以合成路线二为基础,通过工艺条件优化:1)避免使用大量强酸,仅采用催化量的强酸,实现9,9-二[4-(2-羟基乙氧基)苯基]芴的高效率合成,大幅减少酸性废弃物的产生和排放;2)对反应溶剂与未参与反应的苯氧基乙醇,通过蒸馏、精馏等方式从母液中加以回收利用,降低合成成本。本发明具有原料价廉易得,操作简单,原子经济性好、合成收率高,产品质量好、对环境友好等优点,适合工业化应用。
本发明采用的技术方案如下:
一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法,其特征在于,包括以下步骤:
(1)、9-芴酮、苯氧基乙醇、催化剂、助催化剂在烷烃类溶剂中,搅拌升温至回流,一边反应一边将生成的水经共沸方式从反应液中脱除,得到含9,9-二[4-(2-羟基乙氧基)苯基]芴的混合液;
(2)、所得含9,9-二[4-(2-羟基乙氧基)苯基]芴的混合液,加水稀释,搅拌均匀,降温析晶,过滤,滤饼经漂洗、干燥,得到9,9-二[4-(2-羟基乙氧基)苯基]芴成品;
(3)、所得结晶母液静置分层,分除水相后,有机相蒸馏回收烷烃类溶剂,浓缩物经精馏,回收苯氧基乙醇。
本发明采用的技术路线可用如下反应式表示:
Figure PCTCN2021092546-appb-000003
本发明的进一步设置如下:
9-芴酮、苯氧基乙醇作为主要反应原料,从反应方程式可知,1当量的9-芴酮需与2当量的苯氧基乙醇反应,得到9,9-二[4-(2-羟基乙氧基)苯基]芴,因此,苯氧基乙醇与9-芴酮最低物质的量之比为2:1。为了加快反应速度,同时确保9-芴酮充分反应,通常使用过量的苯氧基乙醇,但苯氧基乙醇用量并非越多越好,过多的苯氧基乙醇用量,不但不能提升反应速度,反而因稀释催化剂与助催化剂浓度,导致反应速度减慢,优选的9-芴酮与苯氧基乙醇的物质的量之比为1:(2~6)。
所述催化剂,是指具有强酸性的化合物,可以是有机酸性化合物,也可以是无机酸性化合物,选自以下一种或几种:浓硫酸、甲基磺酸、苯磺酸、对甲苯磺酸、杂多酸、超强酸、固体酸、卤化氢等,更优选的催化剂为以下一种或 两种:浓硫酸和甲基磺酸。催化剂与9-芴酮的质量比为(0.0001~1):1,优选的催化剂与9-芴酮的质量比为(0.0005~0.5):1,更优选的催化剂与9-芴酮的质量比为(0.001~0.2):1。
所述助催化剂,是指分子结构中含有巯基的直链烷基羧酸和烷基醇类化合物,可用如下通式表式:
HS-(CH 2)n-CO 2H和HS-(CH 2)m-OH
其中n为1~9,m为2~10。助催化剂可以是单一的含巯基直链烷基羧酸,也可以是多种含巯基直链烷基羧酸的混合物;可以是单一的含巯基直链烷基醇,也可以是多种含巯基直链烷基醇的混合物;亦可以是含巯基直链烷基羧酸与含巯基直链烷基醇的混合物。助催化剂选自以下一种或几种:巯基乙酸、3-巯基丙酸、4-巯基丁酸、5-巯基戊酸、6-巯基己酸、7-巯基庚酸、8-巯基辛酸、9-巯基壬酸、10-巯基癸酸、乙硫醇、3-巯基丙醇、4-巯基丁醇、5-巯基戊醇、6-巯基己醇、7-巯基庚醇、8-巯基辛醇、9-巯基壬醇、10-巯基癸醇。助催化剂与9-芴酮的质量比为(0.0001~0.2):1,优选的助催化剂与9-芴酮的质量比为(0.001~0.1):1。
所述烷烃类溶剂,是指C6~C10的直链、支链或环状烷烃。选用烷烃类溶剂,相较于传统的芳烃类溶剂,如甲苯、二甲苯、氯苯等,其优点在于,烷烃类溶剂在反应过程不会参与反应,也不会发生副反应,而传统芳烃类溶剂,则会与原料9-芴酮、强酸催化剂等发生诸如傅克反应、磺化反应等副反应,导致反应收率下降、产品质量降低。烷烃类溶剂的选择主要与其沸点、与水共沸性相关。如果烷烃类溶剂沸点过低,回流反应时温度过低,反应速度过慢,不利于提高合成效率;如果烷烃类溶剂沸点过高,回流反应时温度过高,副反应增加,反应收率和产品质量下降。除了选择合适的沸点外,烷烃类溶剂与水的共沸性能 也至关重要,如果烷烃类溶剂无法与水形成有效共沸,则无法通过共沸带水的方式,将反应生成的水及时从反应体系中脱除,不利于反应的进行。优选的烷烃类溶剂,选自以下一种或几种:正己烷、正庚烷、正辛烷、异辛烷、壬烷、癸烷、环己烷、甲基环己烷、乙基环己烷。烷烃类溶剂用量为9-芴酮质量的(0.1~10)倍,优选的烷烃类溶剂用量为9-芴酮质量的(0.3~5)倍。
反应过程如下所示:
Figure PCTCN2021092546-appb-000004
反应结束后得到的含9,9-二[4-(2-羟基乙氧基)苯基]芴混合液,物性较粘,不利于固液分离,通过加水稀释,可以有效改善反应液性状,利于后续降温析晶后的固液分离,水的用量为9-芴酮质量的(0.1~10)倍,优选水的用量为9-芴酮质量的(0.1~3)倍。
加水稀释后的反应液,逐步降低温度,至室温或更低温度,优选的温度为0~30℃,搅拌析晶0~5小时,待析晶充分后进行固液分离。分离得到的固体,用纯水漂洗,至漂洗液pH值呈中性,湿品经烘干,得到9,9-二[4-(2-羟基乙氧基)苯基]芴成品,含量≥99.0%,收率≥90%。
结晶母液经静置分层,分除水相后,得到的有机相主要成分为烷烃类溶剂和未反应的苯氧基乙醇,具有较高回收价值。有机相首先通过蒸馏回收烷烃类溶剂,回收率90%以上,含量99%以上,然后再经精馏回收苯氧基乙醇,回收率90%以上,含量99%以上,回收的烷烃类溶剂和苯氧基乙醇均可用于合成9,9-二[4-(2-羟基乙氧基)苯基]芴,对产品质量和反应收率无影响。
本发明与现有技术相比,其有益的效果体现在:
1、选用烷烃类溶剂替代传统芳烃类溶剂,避免溶剂参与副反应,提高反应收率和产品质量;
2、采用共沸脱水的方式,将反应生成的水带出体系,确保反应顺利进行的同时,大幅减少酸性催化剂用量,酸性废弃物产生量大幅减少,工艺对环境友好;
3、对反应溶剂与未反应的苯氧基乙醇进行回收利用,提高原子经济性、降低生产成本、减少三废排放;
4、本发明具有原料价廉易得,操作简单,原子经济性好、合成收率高,产品质量好、对环境友好等优点,适合工业化应用。
以下结合具体实施方式对本发明作进一步说明。
具体实施方式:
实施例一:
2升反应瓶中加入9-芴酮180克,苯氧基乙醇415克,3-巯基丙酸1.8克,环己烷540克,开启搅拌,滴加浓硫酸27克,滴加完毕后,升温至回流,边反应边回流分水24小时,停反应。加入水360克,降温析晶,于20~30℃搅拌2小时,过滤,滤饼用纯水漂洗,至漂洗液pH呈中性,滤饼经干燥,得9,9-二[4-(2-羟基乙氧基)苯基]芴412.2克,收率94.1%,含量99.2%。
将过滤得到的结晶母液,静置分除水相,有机相常压蒸馏,得环己烷492克,含量99.7%,回收率91.1%。浓缩液减压精馏,得苯氧基乙醇127.1克,含量99.2%,扣除理论消耗量,回收率91.5%。
实施例二:
1升反应瓶中加入9-芴酮90克,苯氧基乙醇173克,巯基乙酸1.8克,正庚烷315克,甲基磺酸9克,搅拌升温至回流,边反应边回流分水18小时,停反应。加入水135克,降温析晶,于0~10℃搅拌2小时,过滤,滤饼用纯水漂洗,至漂洗液pH呈中性,滤饼经干燥,得9,9-二[4-(2-羟基乙氧基)苯基]芴203.2克,收率92.8%,含量99.1%。
将过滤得到的结晶母液,静置分除水相,有机相常压蒸馏,得正庚烷291.4克,含量99.8%,回收率92.5%。浓缩液减压精馏,得苯氧基乙醇31.6克,含量99.1%,扣除理论消耗量,回收率90.4%。
实施例三:
2升反应瓶中加入9-芴酮135克,苯氧基乙醇465克,8-巯基辛醇0.7克,甲基环己烷200克,浓硫酸7克,搅拌升温至回流,边反应边回流分水20小时,停反应。加入水135克,降温析晶,于10~15℃搅拌3小时,过滤,滤饼用纯水漂洗,至漂洗液pH呈中性,滤饼经干燥,得9,9-二[4-(2-羟基乙氧基)苯基]芴310.1克,收率94.4%,含量99.2%。
将过滤得到的结晶母液,静置分除水相,有机相常压蒸馏,得甲基环己烷181.8克,含量99.6%,回收率90.9%。浓缩液减压精馏,得苯氧基乙醇242.7克,含量99.6%,扣除理论消耗量,回收率94.1%。
实施例四:
1升反应瓶中加入9-芴酮100克,苯氧基乙醇300克,3-巯基丙醇3克,浓硫 酸1克,异辛烷200克,搅拌升温至回流,边反应边回流分水15小时,停反应。加入水50克,降温析晶,于20~25℃搅拌1小时,过滤,滤饼用纯水漂洗,至漂洗液pH呈中性,滤饼经干燥,得9,9-二[4-(2-羟基乙氧基)苯基]芴228.3克,收率93.8%,含量99.4%。
将过滤得到的结晶母液,静置分除水相,有机相常压蒸馏,得异辛烷184.6克,含量99.7%,回收率92.3%。浓缩液减压精馏,得苯氧基乙醇136.8克,含量99.7%,扣除理论消耗量,回收率93.3%。
实施例五:
2升反应瓶中加入9-芴酮150克,苯氧基乙醇400克,乙硫醇7.5克,乙基环己烷375克,浓硫酸4.5克,搅拌升温至回流,边反应边回流分水12小时,停反应。加入水120克,降温析晶,于0~5℃搅拌2小时,过滤,滤饼用纯水漂洗,至漂洗液pH呈中性,滤饼经干燥,得9,9-二[4-(2-羟基乙氧基)苯基]芴344.9克,收率94.5%,含量99.3%。
将过滤得到的结晶母液,静置分除水相,有机相常压蒸馏,得乙基环己烷343.9克,含量99.5%,回收率91.7%。浓缩液减压精馏,得苯氧基乙醇157.7克,含量99.4%,扣除理论消耗量,回收率92.8%。
实施例六:
1升反应瓶中加入9-芴酮80克,苯氧基乙醇300克,6-巯基己酸1.2克,甲基磺酸6.4克,正辛烷80克,搅拌升温至回流,边反应边回流分水12小时,停反应。加入水100克,降温析晶,于15~20℃搅拌3小时,过滤,滤饼用纯水漂洗,至漂洗液pH呈中性,滤饼经干燥,得9,9-二[4-(2-羟基乙氧基)苯基]芴181.6克,收率93.3%,含量99.5%。
将过滤得到的结晶母液,静置分除水相,有机相常压蒸馏,得正辛烷72.4 克,含量99.3%,回收率90.5%。浓缩液减压精馏,得苯氧基乙醇166.5克,含量99.5%,扣除理论消耗量,回收率93.9%。
实施例七:
1升反应瓶中加入9-芴酮120克,回收苯氧基乙醇320克,3-巯基丙酸1.2克,回收正庚烷150克,浓硫酸6克,搅拌升温至回流,边反应边回流分水20小时,停反应。加入水100克,降温析晶,于10~15℃搅拌2小时,过滤,滤饼用纯水漂洗,至漂洗液pH呈中性,滤饼经干燥,得9,9-二[4-(2-羟基乙氧基)苯基]芴273克,收率93.5%,含量99.4%。
将过滤得到的结晶母液,静置分除水相,有机相常压蒸馏,得正庚烷138.3克,含量99.3%,回收率92.2%。浓缩液减压精馏,得苯氧基乙醇126.6克,含量99.5%,扣除理论消耗量,回收率93.1%。
对比实施例:
500毫升反应瓶中加入9-芴酮60克,苯氧基乙醇140克,3-巯基丙酸1克,浓硫酸6克,正庚烷80克,浓硫酸6克,搅拌升温至回流,边反应边回流分水25小时,取样HPLC检测,产物含量97.9%,停反应。加入水60克,降温析晶,于0~10℃搅拌3小时,过滤,滤饼用纯水漂洗,至漂洗液pH呈中性,滤饼经干燥,得9,9-二[4-(2-羟基乙氧基)苯基]芴135克,收率92.5%,含量99.2%。
500毫升反应瓶中加入9-芴酮60克,苯氧基乙醇140克,3-巯基丙酸1克,浓硫酸6克,甲苯80克,搅拌升温至回流,边反应边回流分水25小时,取样HPLC检测,产物含量89.6%,停反应。加入水60克,降温析晶,于0~10℃搅拌3小时,过滤,滤饼用纯水漂洗,至漂洗液pH呈中性,滤饼经干燥,得9,9-二[4-(2-羟基乙氧基)苯基]芴120.2克,收率82.3%,含量94.9%。
500毫升反应瓶中加入9-芴酮60克,苯氧基乙醇140克,3-巯基丙酸1克,浓 硫酸6克,搅拌升温至110°反应25小时,取样HPLC检测,产物9,9-二[4-(2-羟基乙氧基)苯基]芴含量38.2%,停反应。

Claims (7)

  1. 一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法,其特征在于,包括以下步骤:
    (1)、9-芴酮、苯氧基乙醇、催化剂、助催化剂在烷烃类溶剂中,搅拌升温至回流,一边反应一边将生成的水经共沸方式从反应液中脱除,得到含9,9-二[4-(2-羟基乙氧基)苯基]芴的混合液;
    (2)、所得含9,9-二[4-(2-羟基乙氧基)苯基]芴的混合液,加水稀释,搅拌均匀,降温析晶,过滤,滤饼经漂洗、干燥,得到9,9-二[4-(2-羟基乙氧基)苯基]芴成品;
    (3)、所得结晶母液静置分层,分除水相后,有机相蒸馏回收烷烃类溶剂,浓缩物经精馏,回收苯氧基乙醇。
  2. 根据权利要求1所述的一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法,其特征在于:9-芴酮与苯氧基乙醇的物质的量之比为1:2~6。
  3. 根据权利要求1所述的一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法,其特征在于:所述催化剂选自以下一种或两种:浓硫酸和甲基磺酸,催化剂与9-芴酮的质量比为0.001~0.2:1。
  4. 根据权利要求1所述的一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法,其特征在于:所述助催化剂,是指分子结构中含有巯基的直链烷基羧酸和烷基醇类化合物,选自以下一种或几种:巯基乙酸、3-巯基丙酸、4-巯基丁酸、5-巯基戊酸、6-巯基己酸、7-巯基庚酸、8-巯基辛酸、9-巯基壬酸、10-巯基癸酸、乙硫醇、3-巯基丙醇、4-巯基丁醇、5-巯基戊醇、6-巯基己醇、7-巯基庚醇、8-巯基辛醇、9-巯基壬醇、10-巯基癸醇,助催化剂与9-芴酮的质量比为0.001~0.1:1。
  5. 根据权利要求1所述的一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法,其特征在于:所述烷烃类溶剂,是指C6~C10的直链、支链或环状烷烃。
  6. 根据权利要求1所述的一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法,其特征在于:所述烷烃类溶剂选自以下一种或几种:正己烷、正庚烷、正辛烷、异辛烷、壬烷、癸烷、环己烷、甲基环己烷、乙基环己烷,烷烃类溶剂用量为9-芴酮质量的0.3~5倍。
  7. 根据权利要求1所述的一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法,其特征在于:稀释水的用量为9-芴酮质量的0.1~3倍。
PCT/CN2021/092546 2020-10-09 2021-05-10 一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法 WO2022073343A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/574,334 US20220135509A1 (en) 2020-10-09 2022-01-12 Synthetic method of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011071056.8 2020-10-09
CN202011071056.8A CN112142574B (zh) 2020-10-09 2020-10-09 一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/574,334 Continuation US20220135509A1 (en) 2020-10-09 2022-01-12 Synthetic method of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene

Publications (1)

Publication Number Publication Date
WO2022073343A1 true WO2022073343A1 (zh) 2022-04-14

Family

ID=73952554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092546 WO2022073343A1 (zh) 2020-10-09 2021-05-10 一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法

Country Status (3)

Country Link
US (1) US20220135509A1 (zh)
CN (1) CN112142574B (zh)
WO (1) WO2022073343A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112142574B (zh) * 2020-10-09 2021-12-03 浙江中欣氟材股份有限公司 一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法
CN113024377A (zh) * 2021-03-15 2021-06-25 沧州临港丰亚化工有限公司 一种由固载催化剂合成芴基结构多乙氧基丙烯酸酯化物的新型方法
TWI805272B (zh) * 2022-03-11 2023-06-11 住華科技股份有限公司 感光性樹脂組成物、彩色濾光片以及顯示裝置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045656A (ja) * 1996-07-30 1998-02-17 Taoka Chem Co Ltd フルオレン誘導体の製造法
CN101657406A (zh) * 2007-02-15 2010-02-24 田冈化学工业株式会社 芴衍生物的结晶多形体及其制造方法
CN102976960A (zh) * 2012-11-14 2013-03-20 华南理工大学 含有线性共轭单元的阴极缓冲层分子型材料及其制备方法与应用
CN104211585A (zh) * 2013-05-28 2014-12-17 三星电机株式会社 芴衍生物及其共聚物和利用该芴衍生物的透镜
JP2018024889A (ja) * 2017-10-17 2018-02-15 大神薬化株式会社 樹脂組成物
CN108863733A (zh) * 2017-12-08 2018-11-23 黄骅市信诺立兴精细化工股份有限公司 一种含芴骨架芳醚类化合物制备方法
CN110023274A (zh) * 2017-01-19 2019-07-16 杰富意化学株式会社 亚芴基二烯丙基酚类的制造方法及亚芴基二烯丙基酚类
CN111465589A (zh) * 2018-01-31 2020-07-28 帝人株式会社 具有芴骨架的化合物及其制造方法
CN112142574A (zh) * 2020-10-09 2020-12-29 浙江中欣氟材股份有限公司 一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045656A (ja) * 1996-07-30 1998-02-17 Taoka Chem Co Ltd フルオレン誘導体の製造法
CN101657406A (zh) * 2007-02-15 2010-02-24 田冈化学工业株式会社 芴衍生物的结晶多形体及其制造方法
CN102976960A (zh) * 2012-11-14 2013-03-20 华南理工大学 含有线性共轭单元的阴极缓冲层分子型材料及其制备方法与应用
CN104211585A (zh) * 2013-05-28 2014-12-17 三星电机株式会社 芴衍生物及其共聚物和利用该芴衍生物的透镜
CN110023274A (zh) * 2017-01-19 2019-07-16 杰富意化学株式会社 亚芴基二烯丙基酚类的制造方法及亚芴基二烯丙基酚类
JP2018024889A (ja) * 2017-10-17 2018-02-15 大神薬化株式会社 樹脂組成物
CN108863733A (zh) * 2017-12-08 2018-11-23 黄骅市信诺立兴精细化工股份有限公司 一种含芴骨架芳醚类化合物制备方法
CN111465589A (zh) * 2018-01-31 2020-07-28 帝人株式会社 具有芴骨架的化合物及其制造方法
CN112142574A (zh) * 2020-10-09 2020-12-29 浙江中欣氟材股份有限公司 一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法

Also Published As

Publication number Publication date
CN112142574A (zh) 2020-12-29
US20220135509A1 (en) 2022-05-05
CN112142574B (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2022073343A1 (zh) 一种9,9-二[4-(2-羟基乙氧基)苯基]芴的合成方法
CN112142570B (zh) 一种对羟基联苯二酚的制备方法
CN106349030A (zh) 高堆积密度9,9-二[3-苯基-4-(2-羟基乙氧基)苯基]芴晶体的制备
CN111116441B (zh) 一种含有磺酸基的硫叶立德的合成方法及其应用
WO2019223290A1 (zh) 一种制备硫氨酯并联产2-巯基乙醇或o-烷硫基乙基黄原酸盐的方法
CN108484567B (zh) 一种1-氟-1,3-丙烷磺酸内酯的制备方法
CN109293625A (zh) 一种高纯度1,4-丁烷磺酸内酯的合成方法
CN102531855A (zh) 一种双酚a环氧乙烷加成物的制备方法
CN106478381B (zh) 一种由环氧乙烷催化制备双醚芴的方法
CN105693475B (zh) 一种固体酸H2SO4‑SiO2催化制备双酚芴的工艺方法
CN102942463A (zh) 一种二苯甲酮类化合物的制备方法
US10787408B1 (en) Method for producing 9,9-bis(3-phenyl-4-(2-hydroxyethoxy)phenyl)fluorene
CN103992294A (zh) 一种丙烯酰胺类活性稀释剂的合成方法
CN110452089A (zh) 对氯甲基苯乙烯的合成方法
CN111675621A (zh) 一种9,9-双(4-氨基苯基)芴衍生物的合成方法
CN101628909A (zh) 用乙二醇合成1,4-二氧六环-2-酮的方法
CN111423891A (zh) 一种4-(反式-3-戊烯)-4′-烷基环己基联苯类液晶化合物的合成方法
CN108250049A (zh) 一种双酚芴的绿色合成方法
CN113234099B (zh) 一种烷基硼酸酯类化合物的光化学合成方法
CN114292162A (zh) 3-氯-β-亚甲基苯乙醇类化合物及其中间体各自的制备方法
CN102731281A (zh) 一种以洗油为原料制取粗芴和芴酮的方法
WO2022141699A1 (zh) 一种9-芴甲醛的制备方法
CN101781205A (zh) 一种合成取代丙烯酸苯酯的方法
JP2001328967A (ja) 高純度アルキルアダマンチルエステルの製造方法
CN103288641A (zh) 一种甲基丙烯酸羟丙酯的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21876866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21876866

Country of ref document: EP

Kind code of ref document: A1