WO2022070849A1 - 現場重合型熱可塑性エポキシ樹脂用の前駆体混合物、エポキシ樹脂組成物、エポキシ樹脂組成物シート、プリプレグ、及びこれらを用いた現場重合型の熱可塑性繊維強化プラスチック - Google Patents

現場重合型熱可塑性エポキシ樹脂用の前駆体混合物、エポキシ樹脂組成物、エポキシ樹脂組成物シート、プリプレグ、及びこれらを用いた現場重合型の熱可塑性繊維強化プラスチック Download PDF

Info

Publication number
WO2022070849A1
WO2022070849A1 PCT/JP2021/033439 JP2021033439W WO2022070849A1 WO 2022070849 A1 WO2022070849 A1 WO 2022070849A1 JP 2021033439 W JP2021033439 W JP 2021033439W WO 2022070849 A1 WO2022070849 A1 WO 2022070849A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
precursor mixture
bifunctional
less
Prior art date
Application number
PCT/JP2021/033439
Other languages
English (en)
French (fr)
Inventor
敬一 林
哲也 中西
亮 山田
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to CN202180066363.3A priority Critical patent/CN116457397A/zh
Priority to JP2022553763A priority patent/JPWO2022070849A1/ja
Publication of WO2022070849A1 publication Critical patent/WO2022070849A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs

Definitions

  • the present invention relates to a field-polymerized thermoplastic epoxy resin and a thermoplastic fiber reinforced plastic.
  • the on-site polymerization type thermoplastic resin has a low molecular weight at the time of shipment from the factory, but after being impregnated with the reinforced fiber at the fiber reinforced thermoplastic (FRTP) manufacturing site, it is rapidly polymerized by hot melt (heat melting).
  • FRTP fiber reinforced thermoplastic
  • Thermoplastic resin is a material that has plasticity when heated and can be easily molded.
  • thermoplastic resins generally have a high molecular weight and a high melt viscosity, high temperature and high pressure are required for molding. It is not easy to combine with a narrow space or a material that is difficult to heat or pressurize.
  • Patent Document 1 proposes a method for producing a field-polymerized thermoplastic epoxy resin using a bifunctional epoxy resin and a bifunctional curing agent. According to this technique, it is possible to provide a thermoplastic fiber reinforced plastic that is easily impregnated due to the use of a low molecular weight resin and has few voids.
  • the crystalline compound can be diluted to the extent that crystals do not appear and used, and in the only example, the weight of the raw material used shown in Table 1 is about 300 parts. As many as 90 parts of organic solvent are used.
  • the epoxy resin and the phenol compound crystalline compounds are also exemplified, but a technique for suppressing crystallization while reducing the amount of organic solvent is desired.
  • Non-Patent Document 1 discloses that the glass transition temperature (Tg) of a polymer is controlled by changing the skeleton of the main chain depending on the type of the epoxy resin or the phenol compound in the field-polymerized thermoplastic epoxy resin.
  • Tg glass transition temperature
  • Patent Document 2 discloses a method for producing a crystalline adduct having a lower melting point by heating and cooling a mixture of bisphenol A and bisphenol TMC. This bisphenol crystalline adduct is only disclosed with respect to its melting point, and there is no description regarding its application to epoxy resins, especially field-polymerized thermoplastic epoxy resins.
  • the present invention provides an epoxy resin composition and a precursor mixture thereof which are excellent in heat resistance even with no solvent or a small amount of solvent and can obtain a field-polymerized thermoplastic fiber reinforced plastic which can be produced by a hot melt method.
  • the challenge is to provide.
  • the present invention is a precursor mixture used in a field-polymerized thermoplastic epoxy resin obtained by addition polymerization of a bifunctional epoxy resin and a bifunctional phenol compound. It contains two or more kinds of bifunctional phenol compounds as essential components, the total amount of the bifunctional phenol compounds is 0.9 to 1.1 mol with respect to 1 mol of the bifunctional epoxy resin, and the viscosity at 60 ° C. is 1 Pa. It is a precursor mixture characterized by having s or more and 50 Pa ⁇ s or less.
  • the precursor mixture does not contain a solvent, or even if it contains a solvent, it may be 10 parts by weight or less of the solvent with respect to 100 parts by weight of the total amount of the bifunctional epoxy resin and the bifunctional phenol compound. preferable.
  • the haze value in the thickness direction is preferably less than 30%.
  • the two or more kinds of bifunctional phenol compounds are preferably selected from the group consisting of bisphenol compounds and biphenol compounds, and the ratio of the most abundant component in the two or more kinds of bifunctional phenol compounds is 90% by weight or less.
  • at least one of the two or more bifunctional phenolic compounds has a melting point of 160 ° C. or higher.
  • the vapor pressure of the bifunctional phenol compound is preferably 0.01 Pa or less at 25 ° C.
  • the present invention is an epoxy resin composition obtained by blending a polymerization catalyst with the precursor mixture.
  • the epoxy resin composition uses 0.05 to 5.0% by weight of the polymerization catalyst with respect to the total amount of the bifunctional epoxy resin and the bifunctional phenol compound, and either does not use a solvent or is twice as much as the polymerization catalyst. It is preferable to add the polymerization catalyst to the precursor mixture using an amount or less of the solvent.
  • the haze value in the thickness direction is preferably less than 30%, and the viscosity at 60 ° C. is preferably 3 Pa ⁇ s or more and 150 Pa ⁇ s or less.
  • the present invention is an epoxy resin composition sheet in which the epoxy resin composition has a thickness of 10 ⁇ m or more and 300 ⁇ m or less.
  • the present invention is a field-polymerized thermoplastic epoxy resin obtained by polymerizing the epoxy resin composition, or a sheet-shaped field-polymerized thermoplastic epoxy resin obtained by polymerizing the epoxy resin composition sheet.
  • the present invention is a prepreg obtained from the epoxy resin composition and / or the epoxy resin composition sheet and a reinforcing fiber, and is a field-polymerized thermoplastic fiber reinforced plastic obtained by polymerizing the prepreg.
  • the precursor mixture for the field-polymerized thermoplastic epoxy resin of the present invention does not precipitate crystals of the phenol compound even when cooled to room temperature after mixing, it is not necessary to use a large amount of organic solvent when impregnating the carbon fibers. , Specific components can be uniformly impregnated without being strained by the fibers, whereby an epoxy resin composition having stable polymerization quality can be obtained.
  • the field-polymerized thermoplastic epoxy resin is obtained by addition polymerization of a bifunctional epoxy resin and a bifunctional phenol compound, and is a precursor mixture (sometimes referred to as a precursor) used in the field-polymerized thermoplastic epoxy resin of the present invention.
  • a precursor mixture sometimes referred to as a precursor
  • the bifunctional phenol compound is a compound having two phenolic hydroxyl groups in one molecule, and its purity is preferably 95% by weight or more. Then, as long as the purity as a bifunctional compound is high, the positional isomer may be contained.
  • the monofunctional impurities are preferably 2% by weight or less with respect to the bifunctional phenol compound.
  • the amount of trifunctional or higher impurities is preferably 1% by weight or less with respect to the bifunctional phenol compound.
  • the molecular weight after polymerization may decrease as the amount increases. Therefore, it is preferably 2% by weight or less with respect to the bifunctional phenol compound.
  • the viscosity of the precursor mixture at 60 ° C. is preferably 1 Pa ⁇ s or more and 50 Pa ⁇ s or less. If the viscosity is less than 1 Pa ⁇ s, the resin component in the epoxy resin composition sheet or prepreg, which will be described later, becomes too soft, resulting in poor handleability near room temperature.
  • the molecular weights of the two or more bifunctional phenol compounds are preferably 500 or less. Further, the weight average molecular weight (Mw) as a mixture of two or more kinds is preferably 320 or less.
  • bifunctional phenol compounds from bisphenol compounds or biphenol compounds.
  • the bisphenol compound include bisphenol A, bisphenol F (above, manufactured by Nittetsu Chemical & Materials Co., Ltd.), bisphenol fluorene, bisphenol fluorene (above, manufactured by Osaka Gas Chemical Co., Ltd.), Bis-E, Bis-Z, etc.
  • biphenol compound examples include biphenol, dimethyl biphenol, tetramethyl biphenol and the like.
  • bifunctional phenolic compounds include benzenediols such as hydroquinone, methylhydroquinone, dibutylhydroquinone, resorcin, methylresorcin, catechol, and methylcatechol, and naphthalenediols such as naphthalenediol.
  • the bifunctional phenol compound is a mixture of two or more kinds of bifunctional phenol compounds as exemplified. By mixing two or more kinds of bifunctional phenol compounds, it is possible to suppress the precipitation of bifunctional phenol compounds as an epoxy resin composition when stored at room temperature.
  • the content of the most abundant bifunctional phenol compound is preferably 90% by weight or less, more preferably 80% by weight or less, based on the total amount of the two or more kinds of bifunctional phenol compounds.
  • the melting point of at least one bifunctional phenol compound is preferably 160 ° C. or higher, more preferably 200 ° C. or higher. Further, it is desirable that the melting point of all the bifunctional phenol compounds is 150 ° C. or higher.
  • the bifunctional epoxy resin used in the epoxy resin composition of the present invention is a resin having two epoxy groups in one molecule, and its purity is preferably 95% or more. Then, as long as the purity as a bifunctional compound is high, positional isomers and oligomers may be contained. When monofunctional impurities are contained, the molecular weight after polymerization does not increase, so that the mechanical properties of the produced thermoplastic resin may deteriorate. Therefore, the monofunctional impurities are preferably 2% by weight or less with respect to the bifunctional epoxy resin.
  • the amount of trifunctional or higher impurities is preferably 1% by weight or less with respect to the bifunctional epoxy resin. It should be noted that even for an impurity component that does not have an active group that reacts with either an epoxy resin or a phenolic hydroxyl group and that does not inhibit the polymerization reaction by itself, the molecular weight after polymerization may decrease as the amount increases. Therefore, it is preferably 2% by weight or less with respect to the bifunctional epoxy resin.
  • bifunctional epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol acetophenone type epoxy resin, diphenyl sulfide type epoxy resin, diphenyl ether type epoxy resin, and tetramethyl bisphenol F type epoxy.
  • Bisphenol type epoxy resin such as resin, bisphenol fluorene type epoxy resin, biscresol fluorene type epoxy resin, biphenol type epoxy resin such as tetramethylbiphenol type epoxy resin, diphenyldicyclopentadiene type epoxy resin, alkylene glycol type epoxy resin, dihydroxy Examples thereof include, but are not limited to, naphthalene type epoxy resin and dihydroxybenzene type epoxy resin.
  • the bifunctional epoxy resin one having an epoxy equivalent in the range of 150 to 350 g / eq can be preferably used.
  • the blending ratio of the bifunctional epoxy resin and the bifunctional phenol compound is 0.9 to 1.1 mol in total of the bifunctional phenol compound with respect to 1 mol of the bifunctional epoxy resin. , 0.95 to 1.05 mol, more preferably 0.96 to 1.04 mol, still more preferably 0.97 to 1.03 mol.
  • the blending ratio of the bifunctional phenol compound is within this range, the molecular weight of the obtained field-polymerized thermoplastic epoxy resin is sufficiently extended, which is preferable.
  • the organic solvent is not an essential component in the precursor mixture.
  • the total amount of the bifunctional epoxy resin and the bifunctional phenol compound is preferably 10 parts by weight or less with respect to 100 parts by weight. It is more preferably 5 parts by weight or less, and preferably not contained.
  • the boiling point of the organic solvent at 1 atm is preferably 200 ° C. or lower.
  • the mixing conditions of the precursor mixture depend on the melting point of the bifunctional phenol compound used, but it is preferably melted at 200 ° C. or lower.
  • the bifunctional epoxy resin may be added to a place where the bifunctional phenol compound is previously melted at 300 ° C. or lower, preferably 200 ° C. or lower, rapidly cooled, and mixed at 150 ° C. or lower.
  • the precursor mixture is completely melted at a temperature of 200 ° C or lower.
  • the precursor mixture was placed in a glass petri dish so as to have a thickness of 2 mm without containing bubbles, and if the haze value (turbidity) in the thickness direction was less than 30%, the mixture was melted to a level that did not affect the polymerization reaction. Judge as a thing.
  • the haze value is more preferably less than 20%, still more preferably less than 10%.
  • the viscosity of the precursor mixture at 60 ° C. is 1 Pa ⁇ s or more and 50 Pa ⁇ s or less. If the viscosity is less than 1 Pa ⁇ s, the precursor mixture of the thermoplastic epoxy resin and the material after that become too soft, and the handleability at around room temperature may deteriorate. Further, if the viscosity exceeds 50 Pa ⁇ s, the workability when blending the polymerization catalyst in the next step may deteriorate, or the storage stability may deteriorate because the treatment at a high temperature is required. There is. A more preferable viscosity is 3 Pa ⁇ s or more and 40 Pa ⁇ s or less, and preferably 5 Pa ⁇ s or more and 30 Pa ⁇ s or less. The precursor mixture is in a viscous liquid or solid state at room temperature.
  • the weight average molecular weight of the precursor mixture according to the standard polystyrene calibration curve is preferably 300 or more and 500 or less.
  • a more preferable weight average molecular weight is 300 or more and 450 or less, and preferably 300 or more and 400 or less.
  • the precursor mixture of the present invention is prepared as an epoxy resin composition by blending a polymerization catalyst.
  • a polymerization catalyst used in the epoxy resin composition, known and commonly used ones can be used, but a phosphine compound is preferable. Specific examples thereof include phosphorus-based polymerization catalysts such as triphenylphosphine, trisparatoluylphosphine, trisorthotoluylphosphine, and trisparamethoxyphenylphosphine. Examples of other polymerization catalysts include imidazole compounds, and specific examples thereof include TBZ, 1B2MZ, and 1B2PZ.
  • the polymerization catalyst is preferably 0.05% by weight or more and 5.0% by weight or less with respect to the total amount of the bifunctional phenol compound and the bifunctional phenol compound. It is more preferably 3.0% by weight or less, further preferably 2.0% by weight or less, and particularly preferably 1.0% by weight or less. If it is less than 0.05% by weight, the productivity may decrease due to the time required for in-situ polymerization, and the target molecular weight may be deactivated for some reason. If it exceeds 5.0% by weight, the curing reaction proceeds rapidly, but storage stability may be impaired and process compatibility problems may occur. Therefore, there is a risk of impairing the physical properties after polymerization, and since it is simply expensive, it is economically disadvantageous.
  • the polymerization catalyst is dissolved in an organic solvent as necessary, and then added to and mixed with the precursor mixture.
  • the organic solvent used is not particularly limited as long as it does not inhibit the reaction between the epoxy resin and the phenol compound, but hydrocarbon-based, ketone-based, and ether-based solvents are preferable from the viewpoint of easy availability. Specific examples thereof include toluene, xylene, acetone, methyl ethyl ketone, isobutyl ketone, cyclopentanone, cyclohexanone, and diethylene glycol dimethyl ether.
  • the amount of the organic solvent is preferably twice or less the amount of the polymerization catalyst. In other words, it is preferable to use it as a polymerization catalyst solution in which the polymerization catalyst as an active ingredient is 33% by weight or more. If the polymerization catalyst can uniformly mix the bifunctional phenol compound and the bifunctional phenol compound, it is not necessary to use an organic solvent.
  • the epoxy resin composition of the present invention can be stored at room temperature or refrigerated. Similarly to the precursor mixture, the epoxy resin composition preferably has a haze value in the thickness direction of less than 30% when the thickness is 2 mm.
  • the epoxy resin composition of the present invention does not necessarily contain a solvent, and may be contained in a small amount, and crystallization can be suppressed by blending two or more kinds of bifunctional phenol compounds.
  • the viscosity at 60 ° C. is 3.0 to 150 Pa ⁇ s. It is preferably 4 Pa ⁇ s or more and 100 Pa ⁇ s or less, and preferably 5 Pa ⁇ s or more and 80 Pa ⁇ s or less.
  • the viscosity is less than 3.0 Pa ⁇ s, the resin component in the epoxy resin composition sheet or prepreg, which will be described later, becomes too soft, and the handleability at around room temperature may deteriorate. Further, when the viscosity exceeds 150 Pa ⁇ s, it is necessary to raise the temperature of the step of applying to the film and the step of impregnating the reinforcing fiber to a high temperature, which may affect the storage stability.
  • the field-polymerized epoxy resin composition of the present invention is a composition containing two or more kinds of bifunctional phenol compounds, a bifunctional epoxy resin, and a polymerization catalyst as essential components, and can be polymerized by heating. It may contain additives.
  • the additive include a filler such as fumed silica, a flame retardant such as aluminum hydroxide and red phosphorus, and a modifier such as core-shell rubber. From the viewpoint of stabilizing the polymerization reaction, it is desirable to add an additive different from the resin phase, but as long as it does not affect the reaction, an organic solvent, plasticizer, or compatibility is used as a dissolution aid or viscosity adjustment. A type of flame retardant may be included.
  • the epoxy resin composition sheet (sometimes referred to as a composition sheet) of the present invention is a cover film obtained by applying an epoxy resin composition to a mold-released paper or a plastic film and, if necessary, a mold-released cover film. It is equipped with.
  • the release paper, the release plastic film, and the cover film known and commonly used ones can be used, and the present invention is not particularly limited.
  • the thickness of the epoxy resin composition sheet is determined by the design thickness of the prepreg and the resin ratio, but the usual thickness is 10 ⁇ m or more and 300 ⁇ m or less.
  • the opening of the fiber becomes conspicuous unless the reinforcing fiber is defibrated cleanly, and if it exceeds 300 ⁇ m, it becomes difficult to uniformly impregnate the reinforcing fiber. It is preferably 15 ⁇ m or more and 150 ⁇ m or less, and more preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the reinforcing fiber used in the present invention is for reinforcing plastics such as carbon fiber, aramid fiber, and cellulose fiber, and is not particularly limited. Further, the form of the fiber is not particularly limited, and examples thereof include a UD sheet in which the fiber is arranged, a woven fabric, a tow, a chopped fiber, a non-woven fabric, and a paper machine. However, from the viewpoint of impregnation property, the thickness of each fiber bundle is 1 mm or less, preferably 0.5 mm or less, and more preferably 0.2 mm or less.
  • the prepreg of the present invention is obtained from an epoxy resin composition and / or an epoxy resin composition sheet and reinforcing fibers.
  • the ratio of the reinforcing fiber to the resin is 2: 8 to 7: 3, preferably 5: 5 to 7: 3. If the ratio of the reinforcing fibers is less than 2, the amount of the reinforcing fibers is small, so that the strength required for the fiber reinforcing material may not be sufficiently satisfied. If it exceeds 7, the resin may be insufficient and the number of voids may increase. If voids remain during impregnation, they may become defects in the final product and may not be able to develop the desired strength. Therefore, it is desirable to reduce voids during impregnation. As the means, heat treatment and pressure treatment can be performed.
  • the heat treatment is generally performed at 50 ° C. or higher and 100 ° C. or lower. If the temperature is lower than 50 ° C., the viscosity of the resin cannot be sufficiently lowered, and impregnation failure may occur. If the temperature exceeds 100 ° C., the polymerization reaction may proceed.
  • the heat treatment time is usually 5 seconds or more and 3 minutes or less. If it is less than 5 seconds, the viscosity may be sufficiently lowered and impregnation may not proceed depending on the thickness. If it exceeds 3 minutes, the polymerization reaction may proceed slightly and the desired tackiness may not be obtained.
  • thermocompression bonding by a hot press or a hot roll can be mentioned.
  • the pressure depends on the substrate, but is 0.01 MPa or more and 1 MPa or less. If the pressure is less than 0.01 MPa, the impregnation may be insufficient, and if it exceeds 1 MPa, the reinforcing fibers may be damaged or the resin may flow out.
  • the field-polymerized thermoplastic epoxy resin of the present invention is preferably a field-polymerized thermoplastic fiber reinforced plastic having a weight average molecular weight (Mw) of 35,000 to 150,000, more preferably 50,000 to 100,000.
  • Mw weight average molecular weight
  • the dispersion is preferably 1 or more and 20 or less, and more preferably 2 or more and 15 or less. When the dispersion exceeds 20, it tends to be easy to gel. The variance is never less than 1.
  • the glass transition temperature (Tg) shows physical characteristics of 100 to 130 ° C.
  • [Phenol compound] A1 Bisphenol A (manufactured by Nittetsu Chemical & Materials Co., Ltd., molecular weight 228, melting point 158 ° C)
  • A2 4,4'-(3,3,5-trimethylcyclohexylidene) bisphenol (manufactured by Honshu Chemical Industry Co., Ltd., BisP-HTG, molecular weight 310, melting point 206 ° C)
  • A3 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (manufactured by Osaka Gas Chemical Co., Ltd., molecular weight 378, melting point 217 ° C)
  • [Epoxy resin] B1 Bisphenol A type liquid epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd., YD-128, epoxy equivalent 188 g / eq)
  • B2 Tetramethylbisphenol F type epoxy resin (YSLV-80XY: manufactured by Nittetsu Chemical & Materials Co., Ltd., YSLV-80XY, epoxy equivalent 192 g / eq)
  • B3 Tetramethylbiphenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, YX4000, epoxy equivalent 188 g / eq)
  • Example 1 150 parts of A1 and 50 parts of A2 are placed in a separable flask equipped with a stirrer, thermocouple, nitrogen inlet, and nitrogen outlet, and the temperature is raised while stirring to the extent that powder does not fly without using a solvent. bottom.
  • A1 began to melt when the internal temperature exceeded 150 ° C., and A2 melted at 180 ° C. to become uniform. Therefore, 317 parts of B1 at 40 ° C. was added thereto and mixed to cool the inside of the system. Further, the mixture was cooled to 50 ° C. with stirring to obtain a uniform liquid precursor mixture.
  • the result of evaluating the appearance of the obtained precursor mixture was ⁇ , and the viscosity at 60 ° C.
  • the obtained epoxy resin composition was applied to a release paper coated with silicone using a bar coater preheated at 80 ° C. to a thickness of 50 ⁇ m.
  • An epoxy resin composition sheet was obtained by protecting it with a cover film made of polyethylene.
  • the peelability of the composition sheet was evaluated based on the presence or absence of resin transfer from the epoxy resin composition sheet to the cover film peeled off at 23 ° C. ⁇ 50% RH, and the presence or absence of defects such as cracks in the sheet itself. bottom. If there was no resin transfer or sheet defect, the peelability evaluation was evaluated as ⁇ , and if there was a resin transfer or sheet defect, the release property evaluation was evaluated as x.
  • the cover film was peeled off from the obtained epoxy resin composition sheet, carbon fibers (I1) were bonded to the peeled resin surface so as to have a strand density of 15 strands per 10 cm, and preheated to 90 ° C.
  • the result was ⁇ .
  • the evaluation of the prepreg peelability was judged by the presence or absence of transfer of the resin to the release paper peeled from the prepreg in the state of 23 ° C. ⁇ 50% RH.
  • the peelability evaluation was 0, and if there was resin transfer, the peelability evaluation was x. Moreover, as a result of evaluating the tackiness of the obtained prepreg, it was ⁇ .
  • the evaluation of tackiness is whether the prepregs can be peeled off without disturbing the fibers when they are lightly layered at 23 ° C x 50% RH, and whether the adhesiveness that does not come off after being lightly pressed with a roller is exhibited. I decided.
  • lightly stacked means to bond only by the weight of the prepreg
  • “lightly pressed by a roller” means to bond the prepreg using a 500 g roller.
  • the tackiness is set to ⁇ . If it does not stick even when pressed, the tackiness is set to x.
  • the release paper of the prepreg was peeled off at 23 ° C. ⁇ 50% RH.
  • the prepreg was laminated in four layers of 0/90/90/0, and the obtained laminate was polymerized under the conditions of a press pressure of 0.5 MPa and 160 ° C. for 1 hour to obtain a laminate.
  • the weight average molecular weight (Mw) of the in-situ polymerization type thermoplastic epoxy resin was 76000.
  • the method for measuring Mw is as follows. Analysis was performed using HLC-8320GPC manufactured by Tosoh Corporation.
  • the column was connected in series with TSKguardcolumnHXL, TSKgel GMHXL, TSKgel GMHXL and TSKgel G2000HXL, and the column oven was set to 40 ° C.
  • the eluent was tetrahydrofuran and the detector was an RI detector.
  • the flow rate was 1 mL / min on the sample side and 0.5 mL / min on the reference side.
  • Approximately 0.1 g of the laminated board was weighed, dissolved in 10 mL of tetrahydrofuran containing 5% cyclohexanone as an external standard substance, and filtered through a 0.45 ⁇ m PTFE membrane filter for analysis.
  • the molecular weight was converted using a standard polystyrene calibration curve, and the elution time was corrected using cyclohexanone.
  • the glass transition temperature (Tg) of the thermoplastic fiber reinforced plastic was 100 ° C.
  • the method for measuring Tg is as follows. According to JIS K 7121, DSC ⁇ Tmg (glass state and rubber state) when measured with a differential scanning calorimetry device (EXSTAR6000 DSC6200, manufactured by Hitachi High-Tech Science Co., Ltd.) under a temperature rise condition of 10 ° C./min. It was expressed as the temperature (intermediate temperature of the variation curve with respect to the tangent line).
  • Example 2 In the same apparatus as in Example 1, 100 parts of A1 and 100 parts of A2 were charged, and the temperature was raised until the contents were melted while stirring to the extent that the powder did not fly. A1 began to melt when the internal temperature exceeded 150 ° C., and A2 melted and became uniform at 190 ° C. Therefore, 295 parts of B1 at 40 ° C. was added thereto and mixed to cool the inside of the system. The mixture was further cooled to 50 ° C. with stirring to obtain a uniform precursor mixture. Using the obtained precursor mixture, the same operation as in Example 1 was carried out to obtain an epoxy resin composition, an epoxy resin composition sheet, a prepreg, and a laminated board. The measurement of the obtained laminated board was carried out in the same manner as in Example 1.
  • Example 3 In the same apparatus as in Example 1, 50 parts of A1 and 150 parts of A2 were charged, and the temperature was raised until the contents were melted while stirring to the extent that the powder did not fly. A1 began to melt when the internal temperature exceeded 150 ° C., and A2 melted at 200 ° C. to become uniform. Therefore, 272 parts of B1 at 40 ° C. was added thereto and mixed to cool the inside of the system. The mixture was further cooled to 50 ° C. with stirring to obtain a uniform precursor mixture. Using the obtained precursor mixture, the same operation as in Example 1 was carried out to obtain an epoxy resin composition, an epoxy resin composition sheet, a prepreg, and a laminated board. The measurement of the obtained laminated board was carried out in the same manner as in Example 1.
  • Example 4 In the same apparatus as in Example 1, 100 parts of A1 and 100 parts of A2 were charged, and the temperature was raised until the contents were melted while stirring to the extent that the powder did not fly. A1 melted when the internal temperature exceeded 150 ° C., and A2 melted and became uniform at around 190 ° C., so 301 parts of B2 at room temperature was added thereto and mixed to cool the inside of the system. Further stirring was confirmed to confirm the melting of B2, and the mixture was cooled to 50 ° C. to obtain a uniform liquid precursor mixture. Using the obtained precursor mixture, the same operation as in Example 1 was carried out to obtain an epoxy resin composition, an epoxy resin composition sheet, a prepreg, and a laminated board. The measurement of the obtained laminated board was carried out in the same manner as in Example 1.
  • Example 5 In the same apparatus as in Example 1, 100 parts of A1 and 100 parts of A2 were charged, and the temperature was raised until the contents were melted while stirring to the extent that the powder did not fly. Since A1 melted when the internal temperature exceeded 150 ° C. and A2 melted and became uniform at around 190 ° C., 294 parts of B3 at room temperature was added thereto and mixed to cool the inside of the system. Further stirring was confirmed to confirm the melting of B3, and the mixture was cooled to 50 ° C. to obtain a uniform liquid precursor mixture. Using the obtained precursor mixture, the same operation as in Example 1 was carried out to obtain an epoxy resin composition, an epoxy resin composition sheet, a prepreg, and a laminated board. The measurement of the obtained laminated board was carried out in the same manner as in Example 1.
  • Example 6 In the same apparatus as in Example 1, 150 parts of A1, 25 parts of A2, and 25 parts of A3 were charged, and the temperature was raised until the contents were melted while stirring to the extent that the powder did not fly. A1 melted when the internal temperature exceeded 150 ° C, and A2 and A3 melted and became uniform at around 190 ° C. Therefore, 69 parts of B1 and 228 parts of B3 at room temperature were added and mixed while mixing. The inside was cooled. Further stirring was confirmed to confirm the melting of B1 and B3, and the mixture was cooled to 50 ° C. to obtain a uniform liquid precursor mixture. Using the obtained precursor mixture, the same operation as in Example 1 was carried out to obtain an epoxy resin composition, an epoxy resin composition sheet, a prepreg, and a laminated board. The measurement of the obtained laminated board was carried out in the same manner as in Example 1.
  • Comparative Example 1 200 parts of A1 was charged into the same apparatus as in Example 1, and the temperature was raised until the contents were melted while stirring to the extent that the powder did not fly. Since A1 melted from around the internal temperature exceeding 155 ° C. and became uniform at around 160 ° C., 340 parts of B1 at 40 ° C. was added thereto and mixed to cool the inside of the system. Initially, a uniform liquid mixture was obtained, but it precipitated in the process of cooling to 50 ° C., and a cloudy precursor mixture was obtained. Using the obtained precursor mixture, the same operation as in Example 1 was carried out to obtain an epoxy resin composition, an epoxy resin composition sheet, a prepreg, and a laminated board. The measurement of the obtained laminated board was carried out in the same manner as in Example 1.
  • Comparative Example 2 In the same apparatus as in Example 1, 200 parts of A2 was charged, the temperature was raised while stirring to the extent that the powder did not fly, and the temperature was raised until the contents were melted, but the internal temperature reached 200 ° C. But it didn't melt.
  • 250 parts of B1 at 40 ° C. was added and mixed to cool the inside of the system.
  • a cloudy precursor mixture was obtained in the process of cooling to 50 ° C. with further stirring.
  • the same operation as in Example 1 was carried out to obtain an epoxy resin composition, an epoxy resin composition sheet, a prepreg, and a laminated board. The measurement of the obtained laminated board was carried out in the same manner as in Example 1.
  • Example 1 when the epoxy resin is directly added to the melt mixture of BPA (A1) and BisP-HTG (A2) and the inside of the system is cooled as it is, crystallization does not occur and a uniform resin mixture is obtained. I was able to get it. Similar results were obtained in Examples 2 and 3 in which the ratio of BPA and BisP-HTG was changed. As shown in Examples 4 and 5, it was found that the same result can be obtained even if the type of the epoxy resin is changed. In Comparative Example 1 using BPA alone, reprecipitation of crystals was observed during cooling, and it became cloudy.
  • the epoxy resin composition sheet and the prepreg can be productively adjusted in peelability and tackiness without subjecting to aging treatment or the like.
  • the precursor mixture of the present invention can be used for an epoxy resin composition (sheet), and can be particularly preferably used for a field-polymerized thermoplastic epoxy resin, prepreg, thermoplastic fiber reinforced plastic, or the like.

Abstract

耐熱性に優れ、ホットメルト方式にて生産可能な現場重合型熱可塑性繊維強化プラスチックを得られるエポキシ樹脂組成物及びその前駆体混合物を提供する。 2官能エポキシ樹脂と2官能フェノール化合物との付加重合によって得られる現場重合型熱可塑性エポキシ樹脂に用いる前駆体混合物であって、2種以上の2官能フェノール化合物を必須成分として含有し、2官能エポキシ樹脂の1モルに対して2官能フェノール化合物の総和は0.9~1.1モルであり、60℃における粘度が1Pa・s以上50Pa・s以下であることを特徴とする前駆体混合物である。

Description

現場重合型熱可塑性エポキシ樹脂用の前駆体混合物、エポキシ樹脂組成物、エポキシ樹脂組成物シート、プリプレグ、及びこれらを用いた現場重合型の熱可塑性繊維強化プラスチック
 本発明は、現場重合型の熱可塑性エポキシ樹脂及び熱可塑性繊維強化プラスチックに関する。ここで、現場重合型の熱可塑性樹脂とは、工場出荷時には低分子量である一方、繊維強化熱可塑性プラスチック(FRTP)製造現場で強化繊維に含浸した後、ホットメルト(加熱溶融)によって速やかに重合が進行して高分子量の熱可塑性樹脂へと変換され得るものをいう。
 熱可塑性樹脂は加熱によって可塑性を有し、容易に成形ができる材料である。しかしながら、一般的に熱可塑性樹脂は高分子量であり、高い溶融粘度となるため、成形するためには、高温・高圧を要する。狭い空間や加熱や加圧が難しい材料と複合化することは容易ではない。
 この問題に対して、特許文献1において、2官能のエポキシ樹脂と2官能の硬化剤を用いた現場重合型熱可塑性エポキシ樹脂の製造方法が提案されている。この技術によれば、低分子量の樹脂を使用しているために含浸しやすく、ボイドが少ない熱可塑性繊維強化プラスチックを提供することができる。しかしその一方で、結晶性の化合物は結晶が出ない程度に希釈して使用することができると記載されており、唯一の実施例においては、表1に示す使用原料の重量約300部に対して90部もの有機溶剤を使用している。エポキシ樹脂やフェノール化合物は結晶性の化合物も例示されているが、有機溶剤を削減しつつ結晶化を抑制する技術が望まれている。
 非特許文献1では、現場重合型熱可塑性エポキシ樹脂について、エポキシ樹脂やフェノール化合物の種類により主鎖の骨格を変えることによって重合物のガラス転移温度(Tg)を制御することを開示する。しかしながら、ここには主鎖の骨格を変えた材料に関して、それ以上の検討はされていない。
 本発明者らの検討によれば、原料の純度が低いものを用いた場合には分子量が大きくならない、又は現場施工前にゲル化が進行するなどの問題が発生する。工業的に純度を高める手段として蒸留又は再結晶が挙げられるが、蒸留は純度を高めるほど時間当たりの収量が低下する問題があり、再結晶は比較的結晶性が高いことが求められることから、結晶性が高いフェノール化合物を、ほとんど溶剤を含まない系で用いる場合には、エポキシ樹脂中に均一に溶解して安定的に保持することが難しい。炭素繊維に含浸する工程に至るまでの間にフェノール化合物が析出してしまうため、含浸の際に設計通りのモル比をミクロ的に実現することができなくなってしまう。その結果、十分な分子量に到達しないことがあるという問題があった。
 一方、特許文献2ではビスフェノールAとビスフェノールTMCとの混合物を加熱冷却することにより、融点を下げた両者の結晶性付加物の製造方法が開示されている。このビスフェノール結晶性付加物は、融点について開示されているのみで、エポキシ樹脂、特に現場重合型熱可塑性エポキシ樹脂への適用に関しては何ら記載がない。
WO2004/060981 特開平9-059196号公報
総説エポキシ樹脂 最近の進歩I、p422-p430(エポキシ樹脂技術協会)
 本発明は、無溶剤ないし少量の溶剤であっても、耐熱性に優れ、ホットメルト方式にて生産可能な現場重合型の熱可塑性繊維強化プラスチックを得られるエポキシ樹脂組成物及びその前駆体混合物を提供することを課題とする。
 前記課題を解決するために鋭意検討を行った結果、2種類以上のフェノール化合物を溶融させたのち、エポキシ樹脂を加えて急速に冷却したうえで、重合触媒を混合することにより、実質的に重合反応をほとんど進行させることなく、後工程で養生が必要ないBステージ状態のエポキシ樹脂組成物を提供することができ、更には耐熱性に優れる現場重合型の熱可塑性エポキシ樹脂を提供できることを見出した。
 すなわち本発明は、2官能エポキシ樹脂と2官能フェノール化合物との付加重合によって得られる現場重合型熱可塑性エポキシ樹脂に用いる前駆体混合物であって、
 2種以上の2官能フェノール化合物を必須成分として含有し、2官能エポキシ樹脂の1モルに対して2官能フェノール化合物の総和は0.9~1.1モルであり、60℃における粘度が1Pa・s以上50Pa・s以下であることを特徴とする前駆体混合物である。
 前記前駆体混合物は、溶剤を含有しないか、又は溶剤を含有する場合であっても、2官能エポキシ樹脂と2官能フェノール化合物の合計量100重量部に対して溶剤10重量部以下であることが好ましい。前駆体混合物を厚さ2mmにしたときの厚み方向のヘイズ値は30%未満であることが好ましい。
 前記2種以上の2官能フェノール化合物はビスフェノール化合物及びビフェノール化合物からなる群より選択されることが好ましく、2種以上の2官能フェノール化合物中の最も多い成分の比率は90重量%以下であることが好ましく、2種以上の2官能フェノール化合物のうち少なくとも1つは、融点が160℃以上であることが好ましい。また、フェノール化合物を高温で溶融させる必要があることから、2官能フェノール化合物の蒸気圧は25℃において0.01Pa以下であることが好ましい。
 本発明は、前記前駆体混合物に重合触媒を配合してなるエポキシ樹脂組成物である。エポキシ樹脂組成物は、2官能エポキシ樹脂と2官能フェノール化合物の合計総量に対して重合触媒を0.05~5.0重量%使用し、溶剤を使用しないか、又は重合触媒に対して2倍量以下の溶剤を使用して、前駆体混合物に重合触媒を配合することが好ましい。
 前記エポキシ樹脂組成物を厚さ2mmにしたときの厚み方向のヘイズ値は30%未満であることが好ましく、60℃における粘度は3Pa・s以上150Pa・s以下であることが好ましい。
 本発明は、前記エポキシ樹脂組成物を厚さ10μm以上300μm以下にしてなるエポキシ樹脂組成物シートである。
 本発明は、前記エポキシ樹脂組成物を重合してなる現場重合型熱可塑性エポキシ樹脂であるか、又は前記エポキシ樹脂組成物シートを重合してなるシート状の現場重合型熱可塑性エポキシ樹脂である。
 本発明は、前記エポキシ樹脂組成物及び/又は前記エポキシ樹脂組成物シートと、強化繊維とから得られるプリプレグであり、そのプリプレグを重合して得られる現場重合型の熱可塑性繊維強化プラスチックである。
 本発明の現場重合型熱可塑性エポキシ樹脂用の前駆体混合物は、混合後に室温まで冷却しても、フェノール化合物の結晶が析出しないため、炭素繊維含浸する際に大量の有機溶剤を使用せずとも、特定の成分が繊維に漉しとられることなく均一に含浸することができ、これにより安定した重合品質のエポキシ樹脂組成物を得ることができる。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 現場重合型熱可塑性エポキシ樹脂は、2官能エポキシ樹脂と2官能フェノール化合物との付加重合によって得られ、本発明の現場重合型熱可塑性エポキシ樹脂に用いる前駆体混合物(前駆体と称することがある)は、2種以上の2官能フェノール化合物を必須成分として含有する。
 2官能フェノール化合物は、1分子中に2つのフェノール性水酸基を有する化合物であり、その純度は95重量%以上であることが好ましい。そして、2官能化合物としての純度が高ければ、位置異性体については含まれていてもよい。
 1官能の不純物が含まれている場合には重合後の分子量が上がらなくなるために製造された熱可塑性樹脂の機械物性が悪くなる恐れがある。そのため、1官能の不純物は、2官能フェノール化合物に対して2重量%以下であることが好ましい。
 3官能以上の不純物が含まれている場合には、その不純物を起点に架橋構造を形成しやすくなるため、重合物の分散が大きくなるほか、ゲル化して熱可塑性を損なう恐れがある。そのため、3官能以上の不純物は、2官能フェノール化合物に対して1重量%以下であることが好ましい。
 なお、エポキシ樹脂、フェノール性水酸基のいずれとも反応する活性基を持たず、また、単体では重合反応を阻害しない不純物成分についても、量が多くなると重合後の分子量が小さくなる恐れがある。そのため、2官能フェノール化合物に対して2重量%以下であることが好ましい。
 現場重合型の熱可塑性エポキシ樹脂の耐熱性を高めるためには剛直な構造を採用することが望ましい。しかしながら、剛直な構造を取るためには分子そのものが大きくなるため、前駆体混合物の粘度が高くなる。ホットメルト方式で取り扱うためには、前駆体混合物の60℃における粘度は1Pa・s以上50Pa・s以下であることが好ましい。粘度が1Pa・s未満である場合には後述するエポキシ樹脂組成物シートやプリプレグにおける樹脂成分が柔らかくなりすぎるため、室温付近でのハンドリング性が悪くなってしまう。また、粘度が50Pa・sを超える場合には、離型紙や離型フィルムなどの基材に塗布する工程や強化繊維に含浸する工程を高温にする必要が出てくるため、貯蔵安定性に影響を与える問題がある。
 そのため、2種以上の2官能フェノール化合物の分子量は、いずれも500以下であることが好ましい。また、2種以上の混合物としての重量平均分子量(Mw)は320以下であることが好ましい。
 2種以上の2官能フェノール化合物は、ビスフェノール化合物又はビフェノール化合物から選択することが好ましい。ビスフェノール化合物としては、例えば、ビスフェノールA、ビスフェノールF(以上、日鉄ケミカル&マテリアル株式会社製)、ビスフェノールフルオレン、ビスクレゾ-ルフルオレン(以上、大阪ガスケミカル株式会社製)、Bis-E、Bis-Z、BisOC-FL、BisP-AP、BisP-CDE、BisP-HTG、BisP-MIBK、BisP-3MZ、S-BOC、Bis25X-F(以上、本州化学工業株式会社製)、ビスフェノールS、テトラメチルビスフェノールSなどが挙げられる。ビフェノール化合物としては、例えば、ビフェノール、ジメチルビフェノール、テトラメチルビフェノールなどが挙げられる。この他の2官能フェノール化合物としては、例えば、ハイドロキノン、メチルハイドロキノン、ジブチルハイドロキノン、レゾルシン、メチルレゾルシン、カテコール、メチルカテコールなどのベンゼンジオール類や、ナフタレンジオールなどのナフタレンジオール類などが挙げられる。
 2官能フェノール化合物は、例示したような2官能フェノール化合物を2種類以上混合した混合物である。2官能フェノール化合物を2種類以上の混合することで、エポキシ樹脂組成物として、常温保管時に2官能フェノール化合物が析出することを抑制することができる。
 2種以上の2官能フェノール化合物の全量に対して、最も多い2官能フェノール化合物の含有量は、好ましくは90重量%以下、より好ましくは80重量%以下である。
 2種以上の2官能フェノール化合物のうち、少なくとも1種の2官能フェノール化合物の融点は、好ましくは160℃以上であり、より好ましくは200℃以上である。また、全ての2官能フェノール化合物の融点は、150℃以上であることが望ましい。
 本発明のエポキシ樹脂組成物で使用する2官能エポキシ樹脂は1分子中に2つのエポキシ基を有する樹脂であり、その純度は95%以上であることが好ましい。そして、2官能の化合物としての純度が高ければ、位置異性体やオリゴマーについては含まれてもよい。
 1官能の不純物が含まれている場合には重合後の分子量が上がらなくなるために製造された熱可塑性樹脂の機械物性が悪くなる恐れがある。そのため、1官能の不純物は2官能エポキシ樹脂に対して2重量%以下であることが好ましい。
 3官能以上の不純物が含まれている場合には、その不純物を起点に架橋構造を形成しやすくなるため、重合物の分散が大きくなるほか、ゲル化して熱可塑性を損なう恐れがある。そのため、3官能以上の不純物については2官能エポキシ樹脂に対して1重量%以下であることが好ましい。
 なお、エポキシ樹脂、フェノール性水酸基のいずれとも反応する活性基を持たず、また、単体では重合反応を阻害しない不純物成分についても、量が多くなると重合後の分子量が小さくなる恐れがある。そのため、2官能エポキシ樹脂に対して2重量%以下であることが好ましい。
 2官能エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールアセトフェノン型エポキシ樹脂、ジフェニルスルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、ビスクレゾールフルオレン型エポキシ樹脂などのビスフェノール型エポキシ樹脂や、テトラメチルビフェノール型エポキシ樹脂などのビフェノール型エポキシ樹脂、ジフェニルジシクロペンタジエン型エポキシ樹脂、アルキレングリコール型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂などが挙げられるが、これらに限りではない。
 2官能エポキシ樹脂は、エポキシ当量が150~350g/eqの範囲のものを好適に使用できる。
 本発明の前駆体混合物において、2官能エポキシ樹脂と2官能フェノール化合物との配合割合は、2官能エポキシ樹脂の1モルに対して2官能フェノール化合物の総和が0.9~1.1モルであり、0.95~1.05モルが好ましく、0.96~1.04モルがより好ましく、0.97~1.03モルが更に好ましい。2官能フェノール化合物の配合割合がこの範囲内であれば、得られる場重合型熱可塑性エポキシ樹脂の分子量が十分伸長するので好ましい。
 前駆体混合物において有機溶剤は必須成分ではない。2官能エポキシ樹脂と2官能フェノール化合物の合計量100重量部に対して、10重量部以下であることが好ましい。より好ましくは5重量部以下であり、望ましくは含有しないことである。また、有機溶剤を使用する場合、有機溶剤の1気圧における沸点は200℃以下であることが好ましい。
 前駆体混合物の混合条件は、用いる2官能フェノール化合物の融点に依存するが200℃以下で溶融することが好ましい。又は2官能フェノール化合物をあらかじめ300℃以下、好ましくは200℃以下で溶融したところに2官能エポキシ樹脂を加えて急冷し、150℃以下で混合してもよい。
 200℃以下の温度で前駆体混合物は完全に溶融していることが望ましい。気泡を含まない状態でガラス製シャーレに厚さ2mmになるように前駆体混合物を入れ、その厚み方向のヘイズ値(濁度)が30%未満であれば、重合反応に影響しない水準まで溶融したものと判断する。ヘイズ値についてより好ましくは20%未満、さらに好ましくは10%未満である。
 前駆体混合物の60℃における粘度は1Pa・s以上50Pa・s以下である。粘度が1Pa・s未満である場合には熱可塑性エポキシ樹脂の前駆体混合物及びそれ以降の材料が柔らかくなりすぎるため、室温付近でのハンドリング性が悪くなってしまう恐れがある。また、粘度が50Pa・sを超える場合には、次の工程で重合触媒を配合する際の作業性が悪くなってしまう恐れや、高温での処理が必要となるため貯蔵安定性が悪化する恐れがある。より好ましい粘度は3Pa・s以上40Pa・s以下であり、望ましくは5Pa・s以上30Pa・s以下である。なお、前駆体混合物は、室温では粘ちょう液体又は固体状態である。
 前駆体混合物の標準ポリスチレン検量線による重量平均分子量は300以上500以下であることが好ましい。より好ましい重量平均分子量は300以上450以下であり、望ましくは300以上400以下である。重量平均分子量を範囲内にすることで前駆体混合物の60℃における粘度を好ましい範囲にすることが容易である。
 本発明の前駆体混合物は、重合触媒を配合してエポキシ樹脂組成物とされる。エポキシ樹脂組成物で使用する重合触媒は公知慣用のものを使用することができるが、ホスフィン化合物が好ましい。具体的にはトリフェニルホスフィン、トリスパラトルイルホスフィン、トリスオルソトルイルホスフィン、トリスパラメトキシフェニルホスフィンなどのリン系重合触媒が挙げられる。それ以外の重合触媒としてはイミダゾール化合物が挙げられ、具体的にはTBZ、1B2MZ、1B2PZなどが挙げられる。重合触媒は2官能フェノール化合物と2官能フェノール化合物の合計総量に対して、0.05重量%以上5.0重量%以下であることが望ましい。より好ましくは3.0重量%以下、さらに好ましくは2.0重量%以下、特に好ましくは1.0重量%以下である。0.05重量%未満である場合は、現場重合において時間がかかってしまうために生産性が低下する恐れがあるほか、目標の分子量に到達するまでに何らかの理由で失活する恐れがある。5.0重量%を超える場合は、硬化反応が速やかに進行する一方で貯蔵安定性を損なってプロセス適合性に問題が発生する恐れがあり、反応に関与するが骨格には取り込まれない成分であるため、重合後の物性を損なう恐れがあるほか、単純に高価であるため、経済的にも不利益である。
 重合触媒は必要に応じて有機溶剤に溶解してから、前駆体混合物に添加混合する。用いる有機溶剤はエポキシ樹脂とフェノール化合物との反応を阻害しないものであれば特に限定されるものではないが、入手のしやすさから、炭化水素系、ケトン系、エーテル系が好ましい。具体的にはトルエン、キシレン、アセトン、メチルエチルケトン、イソブチルケトン、シクロペンタノン、シクロヘキサノン、ジエチレングリコールジメチルエーテルなどが挙げられる。ただし、有機溶剤が反応に関与しなくても、現場重合型のエポキシ樹脂組成物中に多く含まれるとエポキシ樹脂とフェノール化合物が希釈されるため、量が多くなると重合後の分子量が小さくなる恐れがあるため、有機溶剤量は重合触媒に対して2倍量以下が好ましい。言い換えれば、有効成分としての重合触媒が33重量%以上である重合触媒溶液として使用することが好ましい。なお、重合触媒が2官能フェノール化合物と2官能フェノール化合物に均一混合が可能であれば、有機溶剤を使用しなくてもよい。
 本発明のエポキシ樹脂組成物を室温又は冷蔵にて保管することができる。エポキシ樹脂組成物についても、前駆体混合物と同様に、厚さ2mmにしたときの厚み方向のヘイズ値が30%未満であることが好ましい。本発明のエポキシ樹脂組成物は、溶剤を含有することは必須ではなく、含有しても少量でよく、2種以上の2官能フェノール化合物を配合することによって結晶化を抑制できる。60℃における粘度が3.0~150Pa・sである。好ましくは4Pa・s以上100Pa・s以下であり、望ましくは5Pa・s以上80Pa・s以下である。粘度が3.0Pa・s未満である場合には後述するエポキシ樹脂組成物シートやプリプレグにおける樹脂成分が柔らかくなりすぎるため、室温付近でのハンドリング性が悪くなってしまう恐れがある。また、粘度が150Pa・sを超える場合には、フィルムに塗布する工程や強化繊維に含浸する工程を高温にする必要が出てくるため、貯蔵安定性に影響を与える恐れがある。
 本発明の現場重合型のエポキシ樹脂組成物とは2種類以上の2官能フェノール化合物、2官能エポキシ樹脂、及び重合触媒を必須成分として含み、加熱により重合することができる組成物である。これには添加剤が含まれていてもよい。添加剤としては、例えばヒュームドシリカなどの充填剤、水酸化アルミニウムや赤燐などの難燃剤、コアシェルゴムなどの改質剤などが挙げられる。重合反応を安定させる観点から、添加剤は樹脂相とは異なるものが配合されることが望ましいが、反応に影響しない範囲において、溶解助剤や粘度調整などとして有機溶剤や、可塑剤、相溶型の難燃剤が含まれていてもよい。
 本発明のエポキシ樹脂組成物シート(組成物シートと称することがある)は、エポキシ樹脂組成物を離型処理された紙又はプラスチックフィルムに塗工し、必要に応じて離型処理されたカバーフィルムを備えるものである。離型紙や離形プラスチックフィルム、カバーフィルムに関しては公知慣用のものを用いることができ、特に限定されるものではない。エポキシ樹脂組成物シートの厚さはプリプレグの設計厚さと樹脂比率によって定められるが、通常の厚さは10μm以上300μm以下である。10μm未満の場合、強化繊維をきれいに解繊しなければ繊維の目開きが目立ってしまう問題があり、300μmを超える場合は強化繊維に均一に含浸しにくくなる。好ましくは15μm以上150μm以下であり、より好ましくは20μm以上100μm以下である。
 本発明で使用する強化繊維は、炭素繊維、アラミド繊維、セルロース繊維などのプラスチックを強化するためのものであり、特に限定されるものではない。また、繊維の形態についても繊維を引きそろえたUDシート、織物、トウ、チョップドファイバー、不織布、抄紙などが挙げられ、特に限定されるものではない。ただし、含浸性の観点から、それぞれの繊維束の厚みは1mm以下、好ましくは0.5mm以下、より好ましくは0.2mm以下である。
 本発明のプリプレグは、エポキシ樹脂組成物及び/又はエポキシ樹脂組成物シートと強化繊維から得られる。
 強化繊維と樹脂の比率は体積比で2:8~7:3であり、好ましくは5:5~7:3である。強化繊維の比率が、2より小さい場合は強化繊維の量が少なくなることから繊維強化材料に求められる強度を十分に満足できない恐れがある。7を超える場合は樹脂が不足し、ボイドが多くなる恐れがある。
 含浸時にボイドが残存すると、最終製品中の欠陥となり、所望の強度を発現できない可能性があるため、含浸時にボイドを削減することが望ましい。その手段として、加熱処理や加圧処理を行うことができる。
 加熱処理は、一般的に50℃以上100℃以下で行われる。50℃未満である場合には樹脂の粘度を十分に下げることができず、含浸不良が発生する恐れがある。100℃を超える場合には重合反応が進行する恐れがある。加熱処理の時間は通常、5秒以上3分以下である。5秒に満たない場合には厚みによっては十分な低粘度化と含浸が進行しない恐れがある。3分を超えると重合反応がわずかに進行し、所望のタック性が得られない恐れがある。
 含浸精度をさらに高める手段として、熱プレスや熱ロールなどによる熱圧着が挙げられる。圧力は基材にもよるが0.01MPa以上1MPa以下である。圧力が0.01MPaに満たない場合には含浸が不十分になる恐れがあり、1MPaを超える場合は強化繊維が損傷する恐れや樹脂が流れ出してしまう恐れがある。
 本発明の現場重合型熱可塑性エポキシ樹脂を使用した場合、例えば、温度150~200℃、圧力0,1MPa以上1.0MPa以下の条件で重合させることにより、現場重合型熱可塑性繊維強化プラスチックを得ることができる。
 本発明の現場重合型熱可塑性エポキシ樹脂は、現場重合型熱可塑性繊維強化プラスチックにおいて、重量平均分子量(Mw)は35000~150000が好ましく、50000~100000がより好ましい。分散(重合平均分子量/数平均分子量)は1以上20以下が好ましく、2以上15以下がより好ましい。分散が20を超える場合はゲル化しやすくなる傾向にある。なお、分散が1未満となることはない。また、ガラス転移温度(Tg)は100~130℃の物性を示す。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。特に断りがない限り「部」は重量部を表し、「%」は重量%を表す。なお、以下の実施例で使用した原材料は以下の通りである。
[フェノール化合物]
A1:ビスフェノールA(日鉄ケミカル&マテリアル株式会社製、分子量228、融点158℃)
A2:4,4’-(3,3,5-トリメチルシクロヘキシリデン)ビスフェノール(本州化学工業株式会社製、BisP-HTG、分子量310、融点206℃)
A3:9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(大阪ガスケミカル株式会社製、分子量378、融点217℃)
[エポキシ樹脂]
B1:ビスフェノールA型液状エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、YD-128、エポキシ当量188g/eq)
B2:テトラメチルビスフェノールF型エポキシ樹脂(YSLV-80XY:日鉄ケミカル&マテリアル株式会社製、YSLV-80XY、エポキシ当量192g/eq)
B3:テトラメチルビフェノール型エポキシ樹脂(三菱ケミカル株式会社製、YX4000、エポキシ当量188g/eq)
[重合触媒]
C1:トリス(パラメトキシフェニル)ホスフィン(北興化学工業株式会社製、TPAP)
[強化繊維]
I1:PAN系炭素繊維(東レ株式会社製、T700SC-12K-60E)
実施例1
 撹拌機、熱電対、窒素吹込み口、窒素排出口を備えたセパラブルフラスコにA1を150部、A2を50部仕込み、溶剤を使用することなく、粉が舞わない程度に撹拌しながら昇温した。内温が150℃を超えた辺りからA1が溶融し始め、180℃でA2が溶融して均一になったため、ここに40℃のB1を317部加えて混合しつつ系内を冷却した。更に撹拌しながら50℃まで冷却し、均一な液状の前駆体混合物を得た。得られた前駆体混合物の外観を評価した結果、〇であり、60℃での粘度を、東亜工業株式会社製CV-1sを用いて測定した結果、2Pa・sであった。
 前駆体混合物を100部測り取り、予めシクロヘキサノンにて溶解しておいた50%のC1触媒溶液を2部加えて混合しエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物の外観を評価した結果、〇であり、60℃での粘度を、アントンパール社製MCR102を用いて測定した結果、5Pa・sであった。
 外観の評価は目視で行い、試料中に不溶解物が沈殿する場合は×とし、試料を厚みが2mmになるようにシャーレにとり、そのヘイズ値が30%以上である場合は△とし、ヘイズ値が30%未満である場合は〇とした。
 得られたエポキシ樹脂組成物を、80℃で予熱したバーコーターを用いてシリコーンを塗布した離型紙上に50μmの厚さで塗布した。その上にポリエチレン製のカバーフィルムで保護してエポキシ樹脂組成物シートを得た。
 得られたエポキシ樹脂組成物シートの剥離性を評価した結果、〇であった。
 なお、組成物シート剥離性の評価は、23℃×50%RHの状態でエポキシ樹脂組成物シートから剥離したカバーフィルムへの樹脂の転写の有無と、シートそのもののひび割れなどの欠陥の有無で評価した。樹脂の転写及びシートの欠陥がなければ剥離性評価を〇とし、樹脂の転写又はシートの欠陥があれば剥離性評価を×とした。
 続いて、得られたエポキシ樹脂組成物シートからカバーフィルムの剥離を行い、剥離した樹脂面上に、10cm当たり15本のストランド密度となるように炭素繊維(I1)を貼り合わせ、90℃に予熱したホットプレスを用いて面圧が0.5MPaになるように圧力を加え、1分後に取り出して空冷して、Rc=33%のエポキシ樹脂プリプレグを得た。
 得られたプリプレグの剥離性を評価した結果、〇であった。
 なお、プリプレグ剥離性の評価は、23℃×50%RHの状態でプリプレグから剥離した離型紙への樹脂の転写の有無で判断した。樹脂の転写がなければ剥離性評価を〇とし、樹脂の転写があれば剥離性評価を×とした。
 また、得られたプリプレグのタック性を評価した結果、〇であった。
 なお、タック性の評価は、23℃×50%RHの状態でプリプレグどうしを軽く重ねたときに繊維を乱さずに剥離可能がどうかと、ローラーで軽く押さえた後はずれない粘着性を発現するかどうかで判断した。なお、「軽く重ねた」とは、プリプレグの自重のみで接着させることを指し、「ローラーで軽く押さえた」とは、500gのローラーを用いてプリプレグを接着させることを指す。軽く重ねたときは繊維を乱さずに剥離可能で、かつローラーで軽く押さえた後はずれない粘着性を発現する場合はタック性を〇とし、軽く重ねても粘着が強すぎる場合、又はローラーで軽く押さえても粘着しない場合にはタック性を×とした。
 23℃×50%RHの状態でプリプレグの離型紙を剥離した。プリプレグを0/90/90/0の4層で積層し、得られた積層体をプレス圧0.5MPa、160℃×1時間の条件で重合して積層板を得た。
 得られた積層板について、現場重合型熱可塑性エポキシ樹脂の重量平均分子量(Mw)は76000であった。なお、Mwの測定方法は以下の通りである。
 東ソー株式会社製HLC-8320GPCを用いて分析した。カラムはTSKguardcolumnHXLとTSKgel GMHXLとTSKgel GMHXLとTSKgel G2000HXLを直列で接続し、カラムオーブンは40℃とした。溶離液はテトラヒドロフランとして、検出器はRI検出器とした。流量はサンプル側を1mL/min、リファレンス側を0.5mL/minとした。積層板約0.1gをはかりとり、外部標準物質としてシクロヘキサノンを5%含有するテトラヒドロフラン10mLに溶解し、0.45μmのPTFEメンブレンフィルターでろ過したものを分析に供した。分子量は標準ポリスチレン検量線を用いて換算し、シクロヘキサノンを用いて溶出時間の補正を行った。
 また、熱可塑性繊維強化プラスチックのガラス転移温度(Tg)は100℃であった。なお、Tgの測定方法は以下のとおりである。
 JIS K 7121に準じて、示差走査熱量測定装置(株式会社日立ハイテクサイエンス製、EXSTAR6000 DSC6200)にて10℃/分の昇温条件で測定を行った時のDSC・Tmg(ガラス状態とゴム状態の接線に対して変異曲線の中間温度)の温度で表した。
実施例2
 実施例1と同様の装置に、A1を100部、A2を100部仕込み、粉が舞わない程度に撹拌しながら内容物が溶融するまで昇温した。内温が150℃を超えた辺りからA1が溶融し始め、190℃でA2が溶融して均一になったため、ここに40℃のB1を295部加えて混合しつつ系内を冷却した。更に撹拌しながら50℃まで冷却し、均一な前駆体混合物を得た。
 得られた前駆体混合物を使用して、実施例1と同様の操作を行い、エポキシ樹脂組成物、エポキシ樹脂組成物シート、プリプレグ、及び積層板を得た。得られた積層板の測定を実施例1と同様に行った。
実施例3
 実施例1と同様の装置に、A1を50部、A2を150部仕込み、粉が舞わない程度に撹拌しながら内容物が溶融するまで昇温した。内温が150℃を超えた辺りからA1が溶融し始め、200℃でA2が溶融して均一になったため、ここに40℃のB1を272部加えて混合しつつ系内を冷却した。更に撹拌しながら50℃まで冷却し、均一な前駆体混合物を得た。
 得られた前駆体混合物を使用して、実施例1と同様の操作を行い、エポキシ樹脂組成物、エポキシ樹脂組成物シート、プリプレグ、及び積層板を得た。得られた積層板の測定を実施例1と同様に行った。
実施例4
 実施例1と同様の装置に、A1を100部、A2を100部仕込み、粉が舞わない程度に撹拌しながら内容物が溶融するまで昇温した。内温が150℃を超えた辺りからA1が溶融し、190℃前後でA2が溶融して均一になったため、ここに室温のB2を301部加えて混合し、系内を冷却した。更に撹拌してB2の溶融を確認し50℃まで冷却し、均一な液状の前駆体混合物を得た。
 得られた前駆体混合物を使用して、実施例1と同様の操作を行い、エポキシ樹脂組成物、エポキシ樹脂組成物シート、プリプレグ、及び積層板を得た。得られた積層板の測定を実施例1と同様に行った。
実施例5
 実施例1と同様の装置に、A1を100部、A2を100部仕込み、粉が舞わない程度に撹拌しながら内容物が溶融するまで昇温した。内温が150℃を超えた辺りからA1が溶融し、190℃前後でA2が溶融して均一になったため、ここに室温のB3を294部加えて混合しつつ系内を冷却した。更に撹拌してB3の溶融を確認し50℃まで冷却し、均一な液状の前駆体混合物を得た。
 得られた前駆体混合物を使用して、実施例1と同様の操作を行い、エポキシ樹脂組成物、エポキシ樹脂組成物シート、プリプレグ、及び積層板を得た。得られた積層板の測定を実施例1と同様に行った。
実施例6
 実施例1と同様の装置に、A1を150部、A2を25部、A3を25部仕込み、粉が舞わない程度に撹拌しながら内容物が溶融するまで昇温した。内温が150℃を超えた辺りからA1が溶融し、190℃前後でA2、A3が溶融して均一になったため、ここに室温のB1を69部、B3を228部加えて混合しつつ系内を冷却した。更に撹拌してB1、B3の溶融を確認し50℃まで冷却し、均一な液状の前駆体混合物を得た。
 得られた前駆体混合物を使用して、実施例1と同様の操作を行い、エポキシ樹脂組成物、エポキシ樹脂組成物シート、プリプレグ、及び積層板を得た。得られた積層板の測定を実施例1と同様に行った。
比較例1
 実施例1と同様の装置に、A1を200部仕込み、粉が舞わない程度に撹拌しながら内容物が溶融するまで昇温した。内温が155℃を超えた辺りからA1が溶融し、160℃前後で均一になったため、ここに40℃のB1を340部加えて混合しつつ系内を冷却した。当初は均一な液状の混合物が得られたが、50℃まで冷却する過程で析出し、白濁した前駆体混合物を得た。
 得られた前駆体混合物を使用して、実施例1と同様の操作を行い、エポキシ樹脂組成物、エポキシ樹脂組成物シート、プリプレグ、及び積層板を得た。得られた積層板の測定を実施例1と同様に行った。
比較例2
 実施例1と同様の装置に、A2を200部仕込み、粉が舞わない程度に撹拌しながら昇温し、内容物を溶融するまで昇温することを試みたが、内温が200℃に到達しても溶融しなかった。ここに40℃のB1を250部加えて混合しつつ系内を冷却した。更に撹拌しながら50℃まで冷却する過程で白濁した前駆体混合物を得た。
 得られた前駆体混合物を使用して、実施例1と同様の操作を行い、エポキシ樹脂組成物、エポキシ樹脂組成物シート、プリプレグ、及び積層板を得た。得られた積層板の測定を実施例1と同様に行った。
 
Figure JPOXMLDOC01-appb-T000001
 
 実施例1において、BPA(A1)とBisP-HTG(A2)の溶融混合物にエポキシ樹脂を直接投入し、そのまま系内を冷却する手法とした場合には結晶化が起こらず、均一な樹脂混合物を得ることができた。BPAとBisP-HTGの比率を変えた実施例2、3においても同様の結果が得られた。実施例4、5に示すとおり、エポキシ樹脂の種類を変えても同様の結果が得られることがわかった。
 BPA単体とした比較例1は、冷却中に結晶の再析出が見られ、白濁した。フラスコ内にわずかに残存した種結晶の影響を受けたものと考えられるが、実施例1から実施例6ではこのような現象が見られなかったことから、フェノール化合物を混合して用いることにより溶融状態の品質が安定することがわかった。なお、前駆体混合物についてはせん断によるBPAの再析出の影響と思われるが、60℃で粘度の測定は安定しなかったため、結果を測定不可とした。
 BisP-HTG単体とした比較例2は、200℃まで加温しても溶融せず、エポキシ樹脂を投入しても溶融させることはできなかった。この積層板や樹脂板は、ほかの材料と比較して重合が不十分であった。剛直で融点が高いフェノール化合物を単独で用いると硬化温度においてもフェノール化合物が溶融せず、重合反応に悪影響を与えるためであると考察した。
 すなわち、フェノール化合物を混合して用いることによりその溶融温度を効果的に下げることができ、剛直な分子構造を有するフェノール化合物を熱可塑性エポキシ樹脂組成物として使用することができた。
 以上のことから、融点が高い剛直なフェノール化合物であっても、他のフェノール化合物と溶融混合することにより、有機溶剤の使用を著しく低減しながらも現場重合型熱可塑性エポキシ樹脂の骨格に導入し、耐熱性を改善することができる。また、複数のフェノール化合物を用いることにより樹脂混合物として結晶の析出を抑えることができるため、積層板の重合度を高めることができる。更に、エポキシ樹脂組成物シートやプリプレグに関して、エージング処理などを施すことなく、生産性よく剥離性やタック性を調整することができることが示された。
 本発明の前駆体混合物は、エポキシ樹脂組成物(シート)に使用でき、特に現場重合型の熱可塑性エポキシ樹脂、プリプレグ及び熱可塑性繊維強化プラスチック等に好適に用いることができる。
 
 

Claims (15)

  1.  2官能エポキシ樹脂と2官能フェノール化合物との付加重合によって得られる現場重合型熱可塑性エポキシ樹脂に用いる前駆体混合物であって、
     2種以上の2官能フェノール化合物を必須成分として含有し、2官能エポキシ樹脂の1モルに対して2官能フェノール化合物の総和は0.9~1.1モルであり、60℃における粘度が1Pa・s以上50Pa・s以下であることを特徴とする前駆体混合物。
  2.  溶剤を含有しないか、又は溶剤を含有する場合であっても、2官能エポキシ樹脂と2官能フェノール化合物の合計量100重量部に対して溶剤10重量部以下である請求項1に記載の前駆体混合物。
  3.  厚さ2mmにしたときの厚み方向のヘイズ値が30%未満である請求項1に記載の前駆体混合物。
  4.  前記2種以上の2官能フェノール化合物がビスフェノール化合物及びビフェノール化合物からなる群より選択される請求項1に記載の前駆体混合物。
  5.  前記2種以上の2官能フェノール化合物中の最も多い成分の比率が90重量%以下である請求項1に記載の前駆体混合物。
  6.  前記2種以上の2官能フェノール化合物のうち少なくとも1つは、融点が160℃以上である請求項1に記載の前駆体混合物。
  7.  請求項1~6のいずれか1項に記載の前駆体混合物に重合触媒を配合し、互いに相溶してなるエポキシ樹脂組成物。
  8.  2官能エポキシ樹脂と2官能フェノール化合物の合計総量に対して重合触媒を0.05~5.0重量%使用し、溶剤を使用しないか、又は重合触媒に対して2倍量以下の溶剤を使用して、前駆体混合物に重合触媒を配合する請求項7に記載のエポキシ樹脂組成物。
  9.  厚さ2mmにしたときの厚み方向のヘイズ値が30%未満である請求項7に記載のエポキシ樹脂組成物。
  10.  60℃における粘度が3Pa・s以上150Pa・s以下である請求項7に記載のエポキシ樹脂組成物。
  11.  請求項7~10のいずれか1項に記載のエポキシ樹脂組成物を重合して得られる熱可塑性エポキシ樹脂。
  12.  請求項7~10のいずれか1項に記載のエポキシ樹脂組成物を厚さ10μm以上300μm以下にしてなるエポキシ樹脂組成物シート。
  13.  請求項12に記載のエポキシ樹脂組成物シートを重合して得られるシート状の現場重合型熱可塑性エポキシ樹脂。
  14.  請求項7~10のいずれか1項に記載のエポキシ樹脂組成物及び/又は請求項12に記載のエポキシ樹脂組成物シートと、強化繊維とから得られるプリプレグ。
  15.  請求項14に記載のプリプレグを重合して得られる現場重合型の熱可塑性繊維強化プラスチック。
     
     
PCT/JP2021/033439 2020-09-30 2021-09-13 現場重合型熱可塑性エポキシ樹脂用の前駆体混合物、エポキシ樹脂組成物、エポキシ樹脂組成物シート、プリプレグ、及びこれらを用いた現場重合型の熱可塑性繊維強化プラスチック WO2022070849A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180066363.3A CN116457397A (zh) 2020-09-30 2021-09-13 原位聚合型热塑性环氧树脂用前体混合物、环氧树脂组合物、环氧树脂组合物片材、预浸料和使用它们的原位聚合型的热塑性纤维强化塑料
JP2022553763A JPWO2022070849A1 (ja) 2020-09-30 2021-09-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020164486 2020-09-30
JP2020-164486 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022070849A1 true WO2022070849A1 (ja) 2022-04-07

Family

ID=80951364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033439 WO2022070849A1 (ja) 2020-09-30 2021-09-13 現場重合型熱可塑性エポキシ樹脂用の前駆体混合物、エポキシ樹脂組成物、エポキシ樹脂組成物シート、プリプレグ、及びこれらを用いた現場重合型の熱可塑性繊維強化プラスチック

Country Status (4)

Country Link
JP (1) JPWO2022070849A1 (ja)
CN (1) CN116457397A (ja)
TW (1) TW202214738A (ja)
WO (1) WO2022070849A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094633A1 (ja) * 2015-12-01 2017-06-08 新日鉄住金マテリアルズ株式会社 現場重合型熱可塑性プリプレグ、熱可塑性コンポジット及びその製造方法
JP2017171802A (ja) * 2016-03-24 2017-09-28 新日鉄住金化学株式会社 ビスフェノールf骨格含有フェノキシ樹脂、その製造方法、及びそれを用いた樹脂組成物
JP2019147863A (ja) * 2018-02-26 2019-09-05 日鉄ケミカル&マテリアル株式会社 リン含有フェノキシ樹脂、その樹脂組成物、及び硬化物
JP2020100728A (ja) * 2018-12-21 2020-07-02 日鉄ケミカル&マテリアル株式会社 フェノキシ樹脂、その樹脂組成物、その硬化物、およびその製造方法。

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094633A1 (ja) * 2015-12-01 2017-06-08 新日鉄住金マテリアルズ株式会社 現場重合型熱可塑性プリプレグ、熱可塑性コンポジット及びその製造方法
JP2017171802A (ja) * 2016-03-24 2017-09-28 新日鉄住金化学株式会社 ビスフェノールf骨格含有フェノキシ樹脂、その製造方法、及びそれを用いた樹脂組成物
JP2019147863A (ja) * 2018-02-26 2019-09-05 日鉄ケミカル&マテリアル株式会社 リン含有フェノキシ樹脂、その樹脂組成物、及び硬化物
JP2020100728A (ja) * 2018-12-21 2020-07-02 日鉄ケミカル&マテリアル株式会社 フェノキシ樹脂、その樹脂組成物、その硬化物、およびその製造方法。

Also Published As

Publication number Publication date
CN116457397A (zh) 2023-07-18
JPWO2022070849A1 (ja) 2022-04-07
TW202214738A (zh) 2022-04-16

Similar Documents

Publication Publication Date Title
TWI488879B (zh) 環氧樹脂組成物
US9994697B2 (en) Epoxy resin composition, prepreg, fiber-reinforced composite material, and method for producing same
US20110111663A1 (en) Epoxy resin composition and prepreg using the same
EP3168249B1 (en) Process for production of thermoplastic cured epoxy resin with transparency to visible light, and thermoplastic epoxy resin composition
US20130059945A1 (en) Curable compositions
JP2018162362A (ja) オキサゾリドン環含有エポキシ樹脂組成物、その製造方法、硬化性樹脂組成物、及び硬化物
TWI515217B (zh) 二氧化二乙烯基芳烴樹脂組成物
US20160208091A1 (en) Curable epoxy compositions
WO2022070849A1 (ja) 現場重合型熱可塑性エポキシ樹脂用の前駆体混合物、エポキシ樹脂組成物、エポキシ樹脂組成物シート、プリプレグ、及びこれらを用いた現場重合型の熱可塑性繊維強化プラスチック
US11345777B2 (en) Epoxy resin, epoxy resin composition, epoxy resin composition for carbon fiber-reinforced composite material, prepreg, and carbon fiber-reinforced composite material
EP2496632B1 (en) Storage stable epoxy resin compositions for electrical laminates
US11427707B2 (en) Curable epoxy resin composition and fiber-reinforced composite material using same
JP4912617B2 (ja) 芳香族エーテルスルホン骨格を有する重合体、その製造方法及び組成物
WO2022070846A1 (ja) 現場重合型熱可塑性エポキシ樹脂の前駆体混合物、エポキシ樹脂組成物、エポキシ樹脂組成物シート、プリプレグ、及びこれらを用いた現場重合型の熱可塑性繊維強化プラスチック
JP2019001867A (ja) 樹脂組成物、樹脂ワニス、積層板の製造方法、熱硬化性成型材料および封止材
WO2022209715A1 (ja) エポキシ樹脂組成物、プリプレグ、及びこれらを用いた繊維強化プラスチック
KR101910134B1 (ko) 변성 에폭시 수지 및 그 제조방법
WO2020255775A1 (ja) 繊維強化エポキシ樹脂複合シート、繊維強化複合板および繊維強化成形体、ならびにそれらの製造方法
TWI577717B (zh) A method for producing a naphthol resin containing an imide group, a thermosetting resin composition and a hardened product thereof and a use
TW202344557A (zh) 硬化性樹脂、其硬化物、樹脂組成物、及硬化性樹脂之製造方法
WO2023157780A1 (ja) 硬化性樹脂の製造方法
WO2020071360A1 (ja) シートモールディングコンパウンド、繊維強化複合材料、繊維強化複合材料の製造方法
JP2023149496A (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料及びその製造方法
TW202302693A (zh) 酚樹脂混合物、硬化性樹脂組成物及其硬化物
JPWO2020116467A1 (ja) 熱硬化性樹脂組成物及びシート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553763

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180066363.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875151

Country of ref document: EP

Kind code of ref document: A1