WO2022068604A1 - 一种cha-off-eri共生结构分子筛、其制备方法、其催化剂及其催化剂的应用 - Google Patents

一种cha-off-eri共生结构分子筛、其制备方法、其催化剂及其催化剂的应用 Download PDF

Info

Publication number
WO2022068604A1
WO2022068604A1 PCT/CN2021/118889 CN2021118889W WO2022068604A1 WO 2022068604 A1 WO2022068604 A1 WO 2022068604A1 CN 2021118889 W CN2021118889 W CN 2021118889W WO 2022068604 A1 WO2022068604 A1 WO 2022068604A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
cha
eri
structure molecular
symbiotic
Prior art date
Application number
PCT/CN2021/118889
Other languages
English (en)
French (fr)
Inventor
李振国
李凯祥
任晓宁
吕丛杰
王晓晗
高继东
孔祥辰
邵元凯
Original Assignee
中汽研(天津)汽车工程研究院有限公司
中国汽车技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中汽研(天津)汽车工程研究院有限公司, 中国汽车技术研究中心有限公司 filed Critical 中汽研(天津)汽车工程研究院有限公司
Publication of WO2022068604A1 publication Critical patent/WO2022068604A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/023Preparation of physical mixtures or intergrowth products of zeolites chosen from group C01B39/04 or two or more of groups C01B39/14 - C01B39/48
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/30Erionite or offretite type, e.g. zeolite T
    • C01B39/305Erionite or offretite type, e.g. zeolite T using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/50Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
    • B01J29/52Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952 containing iron group metals, noble metals or copper
    • B01J29/56Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/50Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
    • B01J29/58Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/783CHA-type, e.g. Chabazite, LZ-218
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/20Powder free flowing behaviour
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • C01P2006/37Stability against thermal decomposition

Definitions

  • the invention belongs to the technical field of molecular sieve synthesis, in particular to a CHA-OFF-ERI symbiotic structure molecular sieve, a preparation method thereof, a catalyst thereof and the application of the catalyst.
  • Diesel vehicle exhaust has become the main source of air pollution, causing great damage to the ecological environment and human health.
  • the main pollutants in diesel vehicle exhaust are particulate matter (PM) and nitrogen oxides (NO X ).
  • PM particulate matter
  • NO X nitrogen oxides
  • NO X not only causes photochemical smog and acid rain, but also stimulates human lungs and damages the ozone layer. negative impact on human health.
  • NH 3 -SCR NH 3 Selective Catalytic Reduction
  • V 2 O 5 /WO x -TiO 2 which is the most widely used in the National V stage, has disadvantages such as poor low-temperature activity, low N 2 selectivity, and volatile vanadium oxides at high temperatures, which limit its further application.
  • Molecular sieves are one of the mainstream materials for NH 3 -SCR catalysts due to their large specific surface area and complex and orderly pores, which are beneficial to the dispersion and diffusion of metal species and gas molecules on its surface and pores.
  • Symbiotic molecular sieves are usually composite crystals formed by chemical methods from two or more molecular sieves. It not only has the characteristics of a single component in structure, but also has its own unique structural characteristics and acid properties, and exhibits unique synergistic effects and special reaction performance different from pure phase molecular sieves in catalytic reactions.
  • Patent CN104556143A relates to a SAPO-34/ZSM-5 composite molecular sieve and a synthesis method thereof, which are used to solve the problems of single pore size, weak acidity and low reactivity of porous materials synthesized in the prior art.
  • the SAPO series molecular sieve complexed with ZSM-5 is easily affected by hydrothermal skeleton during the reaction process, which destroys the molecular sieve structure and affects the catalyst life.
  • Patent CN104591216A relates to a method for synthesizing ZSM-5/ZSM-12 composite molecular sieve, but this method has complicated steps, and the formed composite molecular sieve has poor stability and does not improve catalyst performance.
  • a common molecular sieve type CHA suitable for NH 3 -SCR, CHA molecular sieve is a small pore molecular sieve with an ellipsoid three-dimensional cage-like channel structure with an eight-membered ring orifice, and its small pore size can effectively inhibit the generation of by-product N 2 O , and can inhibit the Al atoms removed from the framework during the hydrothermal aging process from leaving the pores, inhibit the deposition of HC into the pores at low temperatures, and reduce carbon deposition. It has good SCR catalytic activity, N 2 selectivity, hydrothermal stability, and HC resistance Poisoning properties.
  • the molecular sieve of OFF-ERI symbiotic structure has the same basic structural unit, during the crystal growth process, there will be some very small erionite structural units in the framework structure of chabazite zeolite, and these structural units are formed by stacking layers.
  • the form of zirconium exists in the main channel of chabazite zeolite, and this special structure exposes more active sites and adsorption sites, and has the advantages of large specific surface area, well-developed microporous structure, and good hydrothermal stability.
  • CHA-OFF-ERI symbiotic molecular sieve and its synthesis method there is no report on CHA-OFF-ERI symbiotic molecular sieve and its synthesis method.
  • the present invention aims to propose a CHA-OFF-ERI symbiotic structure molecular sieve and a preparation method thereof, so as to solve the problems of single pore size and low reactivity of the molecular sieve materials synthesized by the prior art; the present invention comprehensively considers different pore sizes,
  • the characteristics of pore structure molecular sieve in Urea-SCR technology, the proposed CHA-OFF-ERI symbiotic structure molecular sieve has the advantages of multi-level pore channels, various micropore structures, adjustable acidity, and high reactivity.
  • the invention also provides a CHA-OFF-ERI symbiotic structure molecular sieve SCR catalyst, which can effectively improve the catalytic performance, hydrothermal stability and selectivity of the existing catalyst.
  • a CHA-OFF-ERI symbiotic structure molecular sieve is a molecular sieve formed by symbiotic OFF-ERI symbiotic structure molecular sieve and CHA structure molecular sieve, and has both CHA and OFF-ERI topological structures.
  • the OFF-ERI symbiotic structure molecular sieve includes at least one of T-type and ZSM-34 molecular sieves;
  • the CHA structure molecular sieve includes SSZ-13, SSZ-62, AlPO-34, SAPO-34, SAPO-44 At least one of molecular sieves.
  • the silicon-aluminum ratio of the CHA-OFF-ERI intergrowth molecular sieve is in the range of 5-200, preferably in the range of 10-25, and the silicon-aluminum ratio is the molar ratio of SiO 2 and Al 2 O 3 .
  • the invention also provides a preparation method of a CHA-OFF-ERI symbiotic structure molecular sieve, comprising the following steps:
  • templating agent 1 After adding templating agent 1, templating agent 2, caustic alkali, soluble organic alcohol, and aluminum source in sequence to deionized water, mix and dissolve;
  • the product is subjected to solid-liquid separation, and the filter cake is repeatedly washed with deionized water; after drying, the filter cake is placed in a 5wt%-20wt% ammonium salt solution at 60-80°C for constant temperature stirring reaction for 4-12h
  • solid-liquid separation is carried out again, and the filter cake is repeatedly washed with deionized water, dried and roasted to obtain a white symbiotic molecular sieve powder product, which is the target product.
  • step S1 deionized water is injected into the rubber mill to start circulating rubber grinding, and then template agent 1, template agent 2, caustic alkali, soluble organic alcohol are added in sequence, and the rubber grinding is continued, and then the aluminum source is added. ;
  • step S2 the dissolved solution is recycled for 30min; grinding is continued for 1-4h after adding the silicon source; in the step S3, the composite sol can be placed in a high-temperature hydrothermal synthesis kettle, sealed at 140-180°C The reaction was carried out under constant temperature stirring for 6.5-12 h.
  • step S3 after adding SSZ-13 molecular sieve as a seed crystal to the obtained composite sol, the reaction is carried out under constant temperature stirring at 140-180° C. for 6.5-12 hours in a closed state;
  • the mol ratio of each component in the raw material is:
  • Aluminum source: silicon source: template agent 1: template agent 2: caustic alkali: deionized water: soluble organic alcohol 1: 1 ⁇ 250: 0.05 ⁇ 50: 0.05 ⁇ 50: 0.01 ⁇ 20: 1 ⁇ 1000: 0.1 ⁇ 100 ;
  • the molar ratio of each component in the preferred raw material is:
  • the aluminum source is calculated as Al 2 O 3
  • the silicon source is calculated as SiO 2 .
  • the template agent 1 in the step S1 includes N,N,N-trimethyl-1-adamantyl ammonium hydroxide, benzyltrimethylammonium, triethylamine phosphate, tetraethylammonium hydroxide , at least one of hydroxide-1,1,3,5-tetramethylpiperidine, and hydroxide-1,1,2,6-tetramethylpiperidine, preferably N,N,N-trimethyl- 1-adamantyl ammonium hydroxide;
  • the templating agent 2 in the step S1 includes at least one of 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, choline chloride, and tetramethylammonium hydroxide ;
  • the caustic alkali in described step S1 comprises at least one in potassium hydroxide, sodium hydroxide;
  • the soluble organic alcohol in the step S1 includes at least one of methanol, ethanol, ethylene glycol, and propanol, preferably ethanol;
  • the aluminum source in the step S2 includes pseudoboehmite, sodium aluminate, aluminum nitrate, polyaluminum chloride, polyaluminum sulfate, ultrafine aluminum hydroxide, X-type molecular sieve, A-type molecular sieve, Y-type molecular sieve, ZSM At least one of -5 molecular sieve, beta molecular sieve, L zeolite, coal gangue, preferably pseudo-boehmite, sodium metaaluminate, aluminum nitrate, ZSM-5 molecular sieve, beta molecular sieve;
  • the ammonium salt in the step S4 includes at least one of ammonium nitrate, ammonium chloride, ammonium sulfate, ammonium carbonate, ammonium bicarbonate, and ammonium acetate; in the filter cake drying treatment, the drying temperature is 100-130° C.; In the cake roasting treatment, the heating rate is 1-5°C/min, and the temperature is raised to 500-600°C for 3-6h constant temperature treatment.
  • the preparation method of the CHA-OFF-ERI symbiotic structure molecular sieve is divided into two stages: crystallization reaction and ammonium exchange.
  • the aluminum source, silicon source, caustic alkali, and additives first build the prototype of the CHA-OFF-ERI symbiotic structure around the template agent, and gradually nucleate and grow as the crystallization time prolongs, and finally form a crystal;
  • the prepared CHA-OFF-ERI symbiotic structure molecular sieve contains K and Na elements, which cannot be directly used as molecular sieve SCR catalyst carrier, and needs further " ammonium exchange" .
  • the alkali metal in the molecular sieve is continuously exchanged to obtain an ammonium-type molecular sieve precursor, which is dried and calcined to obtain an H-type molecular sieve, which can be used to prepare a molecular sieve SCR catalyst.
  • the present invention also provides a CHA-OFF-ERI symbiotic structure molecular sieve SCR catalyst, comprising the CHA-OFF-ERI symbiotic structure molecular sieve described in any one of claims 1 to 3 and an active metal element supported thereon; the Active metal elements account for 1wt%-5wt% of the CHA-OFF-ERI intergrowth molecular sieve SCR catalyst; the active metal elements include Cu, Fe, Co, Mn, Ce, La, Ni, Nd, Ag, Pt, Pd Among at least two of them, Cu, Fe, Co, Mn, and Pt are preferable.
  • the ion exchange method or the impregnation method or the one-step method or the sol-gel method is used to load the active metal element, and the CHA-OFF-ERI symbiotic structure molecular sieve is prepared by drying and roasting. SCR catalyst powder.
  • the present invention also provides a CHA-OFF-ERI symbiotic structure molecular sieve SCR monolithic catalyst, which is a monolithic catalyst formed by coating the CHA-OFF-ERI symbiotic structure molecular sieve SCR catalyst described in claim 8 on a carrier substrate
  • the CHA-OFF-ERI symbiotic structure molecular sieve SCR catalyst accounts for 10wt%-40wt% of the CHA-OFF-ERI symbiotic structure molecular sieve SCR monolithic catalyst, preferably 30wt%.
  • the CHA-OFF-ERI symbiotic structure molecular sieve SCR monolithic catalyst can be a CHA-OFF-ERI symbiotic structure molecular sieve SCR catalyst, a binder, a dispersant, deionized water, and a catalyst assistant, which are slurried and coated on the honeycomb ceramics. prepared on a carrier.
  • the pulping refers to the mixing of CHA-OFF-ERI symbiotic molecular sieve SCR catalyst powder, binder, dispersant, deionized water, and catalytic aids to make coating slurry.
  • the honeycomb ceramic carrier is uniformly coated; the solid content of the slurry is 10-50wt%, preferably 20-40wt%.
  • the CHA-OFF-ERI intergrowth molecular sieve SCR catalyst is uniformly distributed on the honeycomb ceramic carrier in the form of a coating, wherein the coating loading ratio is 10wt%-40wt%, preferably 30wt%.
  • CHA-OFF-ERI symbiotic structure molecular sieve SCR monolithic catalyst application in the field of mobile source Urea-SCR, used to eliminate nitrogen oxides in the exhaust gas discharged from mobile sources, specific pollutant types include NO, NO 2 , N 2 O, N 2 O 3 , N 2 O 5 and the like.
  • the CHA-OFF-ERI symbiotic structure molecular sieve, its preparation method and its catalyst of the present invention have the following advantages:
  • the CHA-OFF-ERI symbiotic molecular sieve avoids the defects of pore structure caused by a single structure, weak acidity, low reactivity, and less exposure of active sites and adsorption sites.
  • Activity, high selectivity, high hydrothermal stability and multi-dimensional channel OFF-ERI intergrowth molecular sieve has high adsorption, high thermal stability, high acid resistance, and its catalyst shows excellent ammonia adsorption capacity in Urea-SCR technology, Low temperature activity, temperature operating window, N2 selectivity and structural stability.
  • the present invention adopts the rubber grinding method to fully grind the raw materials such as silicon source, aluminum source, template agent, etc., while destroying the chemical bonds of solid raw materials and macromolecular raw materials, it helps to build a molecular sieve precursor sol system, and avoids the long-term aging of molecular sieve.
  • the crystallization step after rubber grinding, the crystallization reaction can be directly carried out, and the crystallization time is greatly shortened to 6.5h.
  • Fig. 1 is the XRD spectrum of the CHA-OFF-ERI intergrowth molecular sieve described in Example 1;
  • Fig. 2 is the SEM photograph of the CHA-OFF-ERI symbiotic structure molecular sieve described in Example 1;
  • Fig. 3 is the SEM photo of the CHA-OFF-ERI symbiotic structure molecular sieve described in Example 2;
  • Fig. 4 is the NOx conversion rate curve of the CHA-OFF-ERI symbiotic structure molecular sieve SCR catalyst described in Example 9 in the NH 3 -SCR reaction;
  • Fig. 5 is the NH 3 escape curve of the CHA-OFF-ERI symbiotic structure molecular sieve SCR catalyst described in Example 9 in the NH 3 -SCR reaction;
  • Fig. 6 is the NOx conversion rate curve of the CHA-OFF-ERI symbiotic structure molecular sieve SCR catalyst described in Example 9 after hydrothermal aging treatment in the NH 3 -SCR reaction;
  • Fig. 7 is the XRD spectrum of the product of comparative example 1;
  • FIG. 8 is a SEM photograph of the product of Comparative Example 1.
  • test reagents used in the following examples are conventional biochemical reagents unless otherwise specified; the experimental methods are conventional methods unless otherwise specified.
  • the product is sent to a high-speed filter shaker for solid-liquid separation by a transfer pump, and the filter cake is washed with 20 L of deionized water, and repeated 3 times; Min heating rate 500 °C constant temperature treatment for 5h, to obtain a white powder molecular sieve product.
  • the product is a CHA-OFF-ERI intergrowth molecular sieve, as shown in Figure 1.
  • the microscopic morphology of the CHA-OFF-ERI symbiotic structure molecular sieve the main body is regular columnar stacked into an axis, and the middle "along the axis" is irregularly divergent growth and columnar, as shown in Figure 2.
  • Example 1 On the basis of Example 1, the difference from Example 1 is that the template agent 2 is 1,4-butanediamine, the dosage is 1.227kg, and the CHA-OFF-ERI symbiotic molecular sieve is obtained under the same synthesis conditions.
  • the template agent 2 is 1,4-butanediamine
  • the dosage is 1.227kg
  • the CHA-OFF-ERI symbiotic molecular sieve is obtained under the same synthesis conditions.
  • Example 1 On the basis of Example 1, the difference from Example 1 is that 0.05g of SSZ-13 molecular sieve was added to the composite sol in step (3) as a seed crystal, and the reaction was stirred at 160°C for 6.5h in a closed state; after crystallization, the product After solid-liquid separation, the filter cake was washed three times with deionized water; then, the filter cake was then dried at 120 °C for 8 h, and treated at a constant temperature of 500 °C at a heating rate of 2 °C/min for 5 h to obtain CHA-OFF-ERI symbiotic molecular sieves.
  • Example 1 On the basis of Example 1, the difference from Example 1 is that the caustic alkali is potassium hydroxide, the feeding amount is 2.735kg, and the reaction is stirred for 7h in a closed state at 155 °C; Washed three times with deionized water; then, the filter cake was then dried at 120 °C for 8 h, and treated at a constant temperature of 500 °C for 5 h at a heating rate of 2 °C/min to obtain CHA-OFF-ERI symbiotic molecular sieves.
  • the caustic alkali is potassium hydroxide
  • the feeding amount is 2.735kg
  • the reaction is stirred for 7h in a closed state at 155 °C
  • Washed three times with deionized water then, the filter cake was then dried at 120 °C for 8 h, and treated at a constant temperature of 500 °C for 5 h at a heating rate of 2 °C/min to obtain CHA-OFF-ERI symbiotic mo
  • Example 5 On the basis of Example 5, the difference from Example 5 is that the template agent is N,N,N-trimethyl-1-adamantyl ammonium hydroxide solution (content 25wt%), the addition amount is 20g, and in step (3), 0.05 g of SSZ-13 molecular sieve was added to the composite sol as a seed crystal, and the CHA-OFF-ERI symbiotic structure molecular sieve was obtained under the same synthesis conditions.
  • the template agent is N,N,N-trimethyl-1-adamantyl ammonium hydroxide solution (content 25wt%)
  • the addition amount is 20g
  • step (3) 0.05 g of SSZ-13 molecular sieve was added to the composite sol as a seed crystal, and the CHA-OFF-ERI symbiotic structure molecular sieve was obtained under the same synthesis conditions.
  • Example 5 On the basis of Example 5, the difference from Example 5 is that the aluminum source is ⁇ molecular sieve, and the feeding amount is 5.5 g. Under the same preparation conditions, white CHA-OFF-ERI symbiotic structure molecular sieve powder is obtained.
  • Example 5 On the basis of Example 5, the difference from Example 5 is that the silicon source is ultrafine silica powder, and the feeding amount is 17.2 g. Under the same preparation conditions, white CHA-OFF-ERI symbiotic structure molecular sieve powder is obtained.
  • Verification test 1 NH 3 -SCR catalytic performance evaluation
  • the CHA-OFF-ERI symbiotic structure molecular sieve SCR catalyst described in Example 9 was made into a 40-60 mesh powder sample, and the catalytic performance of NH 3 -SCR was evaluated on a micro-fixed bed reactor.
  • the size of the quartz reaction tube used was 15 mm, and the heating rate of the evaluation test was 5°C/min.
  • the simulated atmosphere composition 500ppm NO, 500ppm NH3 , 5% O2 , N2 as equilibrium gas, the total flow is 1800ml/min, and the reaction space velocity is 54000h -1 .
  • Verification test 2 Evaluation of catalytic performance of NH 3 -SCR after high temperature hydrothermal aging
  • Example 1 The difference from Example 1 is that the rubber grinding device is not used, and other raw materials are added in the mechanical stirring tank in turn according to the same conditions, feeding amounts, and operating steps as in Example 1, and the reaction is stirred; after the reaction is completed, the heating in the tank is turned on. , stirred and reacted in a closed state at 155°C for 10h; after the reaction, the product was sent to a high-speed filter by a transfer pump for solid-liquid separation, and the filter cake was washed with 20L deionized water, repeated 3 times; the filter cake was then dried at 120°C for 8h , and treated at a constant temperature of 500 °C for 5 h at a heating rate of 2 °C/min to obtain a light gray product.
  • the product After XRD characterization, the product has an amorphous structure, and no CHA-OFF-ERI intergrowth molecular sieve is formed, as shown in Figure 7.
  • the product did not form the typical microscopic morphology of the CHA-OFF-ERI intergrowth molecular sieve, as shown in Figure 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种CHA-OFF-ERI共生结构分子筛、其制备方法、其催化剂及其催化剂的应用,所述CHA-OFF-ERI共生结构分子筛是由OFF-ERI共生结构分子筛与CHA结构分子筛共生而成的分子筛,兼具CHA与OFF-ERI拓扑结构,其硅铝比范围为5~200。本发明所述的CHA-OFF-ERI共生结构分子筛具有多级孔道、多种微孔结构、酸性可调、反应活性高等优点。

Description

一种CHA-OFF-ERI共生结构分子筛、其制备方法、其催化剂及其催化剂的应用 技术领域
本发明属于分子筛合成技术领域,尤其是涉及一种CHA-OFF-ERI共生结构分子筛、其制备方法、其催化剂及其催化剂的应用。
背景技术
柴油车尾气已成为大气污染的主要来源,对生态环境以及人类身体健康造成了极大损害。柴油车尾气中主要污染物是颗粒物(PM)和氮氧化物(NO X),其中,NO X不仅会造成光化学烟雾和酸雨,还会刺激人体肺部、造成臭氧层破坏,对生态环境、经济和人体健康带来负面影响。目前,NH 3-SCR(NH 3选择性催化还原)的NO X转化率和温度窗口以及N 2选择性都有明显的优势,能够有效地净化NO X,已经成为治理柴油车尾气污染的最有效的技术之一。国五阶段应用最广泛的V 2O 5/WO x-TiO 2存在低温活性较差、N 2选择性较低以及钒氧化物在高温下易挥发等缺点,限制了其进一步应用。而分子筛由于具有大比表面积与孔道复杂有序等特点,有利于金属物种以及气体分子在其表面和孔道内的分散与扩散,成为NH 3-SCR催化剂的主流材料之一。
然而,对于某一特定分子筛,其孔径结构单一,或往往存在某一缺陷,不能处理复杂组分,而共生结构的产生可以带来分子筛孔道、骨架以及酸性的调变,进而影响到其催化性能。共生分子筛通常是由两种或两种以上分子筛通过化学方法形成的复合晶体。其在结构上既具有单一组分的特性,又具有自身独特的结构特征和酸性质,在催化反应中表现出不同于纯相分子筛的独有的协同效应和特殊的反应性能。
专利CN104556143A涉及一种SAPO-34/ZSM-5复合分子筛及其合成方法,用以解决现有技术合成的多孔材料孔径单一、酸性较弱、反应活性低的问题。但是与ZSM-5复合的SAPO系列分子筛在反应过程中受水热影响容易骨架坍塌,破坏分子筛结构,影响催化剂寿命。专利CN104591216A涉及一种ZSM-5/ZSM-12复合分子筛的合成方法,而该方法步骤繁琐,形成的复合分子筛稳定性差,并未改善催化剂性能。文献(Chem.eng.j.,2017,323,295;RSC Adv.,2017,7,939)报道了一种混合模板合成AEI/CHA分子筛的方法,但是昂贵模板剂(N,N-二异丙基乙基胺)的使用造成该方法成本较高。
适用于NH 3-SCR的常见的分子筛类型CHA,CHA分子筛为具有八元环孔口的椭球形三维笼状孔道结构的小孔分子筛,其较小的孔径能够有效抑制副产物N 2O的生成,并可以抑制水热老化过程中骨架脱下的Al原子离开孔道、抑制低温下HC进入孔道沉积,减少积碳,具有良好的SCR催化活性、N 2选择性、水热稳定性、以及抗HC中毒性能。同时,OFF-ERI共生结构分子筛由于具有相同的基本结构单元,在晶体生长过程中,菱钾沸石的骨架结构中会存在着一些非常小的毛沸石结构基元,这些结构基元以堆垛层错的形式存在菱钾沸石的主孔道中,该特殊结构暴露活性位点和吸附位点更多,并具备比表面积大、微孔结构发达、水热稳定性好等优点。目前,尚未有CHA-OFF-ERI共生结构分子筛及其合成方法的报道。
发明内容
有鉴于此,本发明旨在提出一种CHA-OFF-ERI共生结构分子筛及其制备方法,以解决现有技术合成的分子筛材料孔径单一、反应活性较低的问题;本发明综合考量不同孔径、孔结构分子筛在Urea-SCR技术中的特点,提出的CHA-OFF-ERI共生结构分子筛具有多级孔道、多种微孔结构、酸性可调、 反应活性高等优点。
本发明还提供了一种CHA-OFF-ERI共生结构分子筛SCR催化剂,有效改善现有催化剂的催化性能、水热稳定性和选择性。
为达到上述目的,本发明的技术方案是这样实现的:
一种CHA-OFF-ERI共生结构分子筛,所述CHA-OFF-ERI共生结构分子筛是由OFF-ERI共生结构分子筛与CHA结构分子筛共生而成的分子筛,兼具CHA与OFF-ERI拓扑结构。
进一步的,所述CHA-OFF-ERI共生结构分子筛的特征衍射峰位于2θ=7.79±0.1、9.53±0.1、11.78±0.1、12.91±0.1、13.44±0.1、14.11±0.1、15.51±0.1、16.12±0.1、17.79±0.1、19.06±0.1、19.48±0.1、20.59±0.1、22.39±0.1、23.07±0.1、23.34±0.1、23.74±0.1、24.90±0.1、25.88±0.1、27.00±0.1、27.60±0.1、28.08±0.1、28.40±0.1、30.60±0.1、31.03±0.1、31.19±0.1、31.48±0.1、33.47±0.1、34.45±0.1、36.19±0.1、38.27±0.1、39.26±0.1、40.96±0.1、42.71±0.1、43.36±0.1、48.20±0.1、50.55±0.1、51.56±0.1、53.10±0.1、55.56±0.1、58.17±0.1、59.44±0.1、66.49±0.1处。
进一步的,所述OFF-ERI共生结构分子筛包括T型、ZSM-34分子筛中的至少一种;所述CHA结构分子筛包括SSZ-13、SSZ-62、AlPO-34、SAPO-34、SAPO-44分子筛中的至少一种。
进一步的,所述CHA-OFF-ERI共生结构分子筛的硅铝比范围为5~200,优选硅铝比范围为10~25,所述硅铝比为SiO 2和Al 2O 3的摩尔比。
本发明还提供了一种CHA-OFF-ERI共生结构分子筛的制备方法,包括如下步骤:
S1.向去离子水中依次加入模板剂1、模板剂2、苛性碱、可溶性有机醇、 铝源后,混匀溶解;
S2.对S1中溶解后的溶液进行循环胶磨;随后缓慢加入硅源,继续研磨制胶;
S3.制胶完毕后,得到复合溶胶,将复合溶胶在140-180℃密闭状态下恒温搅拌反应6.5-12h;
S4.反应结束后,对产物进行固液分离,用去离子水反复洗涤滤饼;经干燥后,将滤饼置于5wt%-20wt%铵盐溶液中60-80℃恒温搅拌反应4-12h;反应结束后,再次进行固液分离,滤饼经去离子水反复洗涤后,经干燥、焙烧处理后,得白色共生结构分子筛粉末产物即为目标产物。
进一步的,所述步骤S1中,向胶磨机中注入去离子水,开始循环胶磨,随后依次加入模板剂1、模板剂2、苛性碱、可溶性有机醇,持续胶磨,再加入铝源;所述步骤S2中,溶解后的溶液循环胶磨30min;加入硅源后继续研磨1-4h;所述步骤S3中,可将复合溶胶置于高温水热合成釜中,140-180℃密闭状态下恒温搅拌反应6.5-12h。
进一步的,所述步骤S3中,向得到复合溶胶中加入作为晶种的SSZ-13分子筛后,再在140-180℃密闭状态下恒温搅拌反应6.5-12h;
进一步的,原料中各组分的摩尔比为:
铝源:硅源:模板剂1:模板剂2:苛性碱:去离子水:可溶性有机醇=1:1~250:0.05~50:0.05~50:0.01~20:1~1000:0.1~100;
优选原料中各组分的摩尔比为:
铝源:硅源:模板剂1:模板剂2:苛性碱:去离子水:可溶性有机醇=1:10~65:0.5~10:0.5~10:0.1~10:10~200:0.1~1;
其中,铝源以Al 2O 3计,硅源以SiO 2计。
进一步的,所述步骤S1中的模板剂1包括N,N,N-三甲基-1-金刚烷基氢氧化铵、苄基三甲基铵、磷酸三乙胺、四乙基氢氧化铵、氢氧化-1,1,3,5-四甲基哌啶、氢氧化-1,1,2,6-四甲基哌啶中至少一种,优选N,N,N-三甲基-1-金刚烷基氢氧化铵;
所述步骤S1中的模板剂2包括1,4-丁二胺,1,6-己二胺,1,8-辛二胺、氯化胆碱、四甲基氢氧化铵中的至少一种;
所述步骤S1中的苛性碱包括氢氧化钾、氢氧化钠中至少一种;
所述步骤S1中的可溶性有机醇包括甲醇、乙醇、乙二醇、丙醇中至少一种,优选乙醇;
所述步骤S2中的铝源包括拟薄水铝石、铝酸钠、硝酸铝、聚合氯化铝、聚合硫酸铝、超细氢氧化铝、X型分子筛、A型分子筛、Y型分子筛、ZSM-5分子筛、β分子筛、L沸石、煤矸石中的至少一种,优选拟薄水铝石、偏铝酸钠、硝酸铝、ZSM-5分子筛、β分子筛;
所述步骤S2中的硅源包括中性硅溶胶(pH=6.0~7.5)、碱性硅溶胶(pH=8.5~10.5)、酸性硅溶胶(pH=2.0~4.0)、超细硅胶粉、超细白炭黑、硅酸钠、超细二氧化硅、硅酸、硅酸四乙酯、Y型分子筛、ZSM-5分子筛、β分子筛、L沸石、煤矸石中的至少一种,优选中性硅溶胶(pH=6.0~7.5)、碱性硅溶胶(pH=8.5~10.5);
所述步骤S4中的铵盐包括硝酸铵、氯化铵、硫酸铵、碳酸铵、碳酸氢铵、乙酸铵中的至少一种;滤饼干燥处理中,其干燥温度为100~130℃;滤饼焙烧处理中,其升温速率为1~5℃/min,升至500~600℃恒温处理3-6h。
所述的CHA-OFF-ERI共生结构分子筛的制备方法,分为晶化反应和铵交换两个阶段。在人为创造高温密闭环境中,铝源、硅源、苛性碱、助剂先 围绕模板剂搭建CHA-OFF-ERI共生结构雏形,随着晶化时间延长,逐渐成核、生长,最终形成晶体;经过晶化反应,制备的CHA-OFF-ERI共生结构分子筛含有K、Na元素,无法直接用于分子筛SCR催化剂载体,需要进一步“铵交换”,在60~80℃铵盐溶液中,NH 4 +持续交换掉分子筛中的碱金属,得到铵型分子筛前体,经过干燥、焙烧处理后得到H型分子筛,能够用于制备分子筛SCR催化剂。
本发明还提供了一种CHA-OFF-ERI共生结构分子筛SCR催化剂,包括权利要求1到3任一项所述的CHA-OFF-ERI共生结构分子筛及负载于其上的活性金属元素;所述活性金属元素占比所述CHA-OFF-ERI共生结构分子筛SCR催化剂1wt%-5wt%;所述活性金属元素包括Cu、Fe、Co、Mn、Ce、La、Ni、Nd、Ag、Pt、Pd中的至少二中,优选Cu、Fe、Co、Mn、Pt。
进一步的,以CHA-OFF-ERI共生结构分子筛为载体,采用离子交换法或浸渍法或一步法或溶胶-凝胶法负载活性金属元素,经干燥、焙烧制备成CHA-OFF-ERI共生结构分子筛SCR催化剂粉末。
本发明还提供了一种CHA-OFF-ERI共生结构分子筛SCR整体式催化剂,是由权利要求8所述的CHA-OFF-ERI共生结构分子筛SCR催化剂涂覆于载体基底上而成的整体式催化剂;所述CHA-OFF-ERI共生结构分子筛SCR催化剂占所述CHA-OFF-ERI共生结构分子筛SCR整体式催化剂10wt%-40wt%,优选30wt%。
所述CHA-OFF-ERI共生结构分子筛SCR整体式催化剂可为CHA-OFF-ERI共生结构分子筛SCR催化剂与粘结剂、分散剂、去离子水、催化助剂经过制浆并涂覆于蜂窝陶瓷载体上制备成。
所述的制浆是指CHA-OFF-ERI共生结构分子筛SCR催化剂粉体、粘结剂、分散剂、去离子水、催化助剂混匀制成涂层浆料,利用浆料粘附性在蜂 窝陶瓷载体上均匀涂布;所述浆料固含量为10-50wt%,优选20-40wt%。
所述的CHA-OFF-ERI共生结构分子筛SCR催化剂以涂层形式均匀分布在蜂窝陶瓷载体上,其中,涂层负载率为10wt%-40wt%,优选30wt%。
所述CHA-OFF-ERI共生结构分子筛SCR整体式催化剂的用途:在移动源Urea-SCR领域的应用,用于消除移动源排放尾气中氮氧化物,具体污染物种类包括NO、NO 2、N 2O、N 2O 3、N 2O 5等。
相对于现有技术,本发明所述的CHA-OFF-ERI共生结构分子筛、其制备方法、其催化剂具有以下优势:
(1)CHA-OFF-ERI共生结构分子筛避免了单一结构导致的孔道结构缺陷、酸性较弱、反应活性低、活性位点与吸附位点暴露少等缺陷,充分结合CHA结构小孔分子筛的高活性、高选择性、高水热稳定性和多维孔道OFF-ERI共生结构分子筛的高吸附性、高热稳定性、高耐酸性,其催化剂在Urea-SCR技术中表现出优异的氨气吸附能力、低温活性、温度操作窗口、N 2选择性和结构稳定性。
(2)本发明采用胶磨法,将硅源、铝源、模板剂等原料充分研磨,破坏固体原料、大分子原料化学键的同时,助力构建分子筛前体溶胶体系,避免了分子筛长时间的陈化步骤,经过胶磨后,可直接进行晶化反应,且晶化时间大幅缩短至6.5h。
附图说明
图1为实施例1所述的CHA-OFF-ERI共生结构分子筛的XRD谱;
图2为实施例1所述的CHA-OFF-ERI共生结构分子筛的SEM照片;
图3为实施例2所述的CHA-OFF-ERI共生结构分子筛的SEM照片;
图4为实施例9所述的CHA-OFF-ERI共生结构分子筛SCR催化剂在 NH 3-SCR反应中的NO X转化率曲线;
图5为实施例9所述的CHA-OFF-ERI共生结构分子筛SCR催化剂在NH 3-SCR反应中的NH 3逃逸曲线;
图6为实施例9所述的CHA-OFF-ERI共生结构分子筛SCR催化剂经过水热老化处理后在NH 3-SCR反应中的NO X转化率曲线;
图7为对比例1的产物的XRD谱;
图8为对比例1的产物的SEM照片。
具体实施方式
除有定义外,以下实施例中所用的技术术语具有与本发明所属领域技术人员普遍理解的相同含义。以下实施例中所用的试验试剂,如无特殊说明,均为常规生化试剂;所述实验方法,如无特殊说明,均为常规方法。
下面结合实施例及附图来详细说明本发明。
实施例1
(1)向高速胶磨机中注入25kg去离子水,启动机器,开始循环胶磨;随后依次加入5.57kg的N,N,N-三甲基-1-金刚烷基氢氧化铵溶液(含量25wt%)、2.05kg四乙基氢氧化铵、1.95kg氢氧化钠、20ml甲醇,继续胶磨;
(2)向(1)中胶磨后的溶液中加入2.46kg偏铝酸钠,完全溶解后继续研磨30min;随后缓慢加入85kg硅溶胶(30%固含量),继续研磨制胶2h;
(3)制胶完毕后,得到复合溶胶,将之转移至100L高温水热合成釜中,155℃密闭状态下搅拌反应10h;
(4)反应结束后,将产物通过输送泵送至高速甩滤机进行固液分离,用20L去离子水洗涤滤饼,重复3次;滤饼随后经120℃干燥8h,并以2℃ /min升温速率500℃恒温处理5h后,得白色粉末分子筛产物。
经过XRD表征,该产物为CHA-OFF-ERI共生结构分子筛,见图1。
经过SEM表征,该CHA-OFF-ERI共生结构分子筛微观形貌:主体呈规则柱状堆积成轴,中间“沿轴”无规则发散式生长呈柱状,见图2。
实施例2
在实施例1的基础上,与实施例1的区别是模板剂2为1,4-丁二胺,用量为1.227kg,相同合成条件下获得CHA-OFF-ERI共生结构分子筛。
其微观形貌与实施例1相似,见图3。
实施例3
在实施例1的基础上,与实施例1的区别是在步骤(3)复合溶胶中加入0.05g SSZ-13分子筛作晶种,160℃密闭状态下搅拌反应6.5h;晶化结束后,产物经过固液分离,滤饼用去离子水洗涤3次;随后,滤饼随后经120℃干燥8h,并以2℃/min升温速率500℃恒温处理5h得CHA-OFF-ERI共生结构分子筛。
其微观形貌与实施例1相似。
实施例4
在实施例1的基础上,与实施例1的区别是苛性碱为氢氧化钾,加料量为2.735kg,155℃密闭状态下搅拌反应7h;晶化结束后,产物经过固液分离,滤饼用去离子水洗涤3次;随后,滤饼随后经120℃干燥8h,并以2℃/min升温速率500℃恒温处理5h得CHA-OFF-ERI共生结构分子筛。
其微观形貌与实施例1相似。
实施例5
(1)取500ml去离子水置于烧杯中,依次加入23.09g磷酸三乙胺、10.56g氯化胆碱、18g氢氧化钾、1ml乙醇、7.8g偏铝酸钠,并在磁力搅拌器上充分溶清;
(2)将(1)中溶液注入胶磨泵中,开始循环胶磨30min;随后缓慢加入60g硅溶胶(30%固含量),继续研磨制胶2h;
(3)制胶完毕后,得到复合溶胶,取400ml转移至500ml聚四氟乙烯内衬中,165℃密闭状态下晶化反应8h;
(4)反应结束后,产物进行固液分离,用去离子水洗涤滤饼3次;滤饼随后经120℃干燥8h,并以2℃/min升温速率500℃恒温处理5h得CHA-OFF-ERI共生结构分子筛。
其微观形貌与实施例1相似。
实施例6
在实施例5的基础上,与实施例5的区别在于模板剂为N,N,N-三甲基-1-金刚烷基氢氧化铵溶液(含量25wt%),加入量为20g,并在步骤(3)复合溶胶中加入0.05g SSZ-13分子筛作晶种,相同合成条件下得到CHA-OFF-ERI共生结构分子筛。
其微观形貌与实施例1相似。
实施例7
在实施例5的基础上,与实施例5的区别在于铝源为β分子筛,投料量为5.5g,相同制备条件下,获得白色CHA-OFF-ERI共生结构分子筛粉末。
其微观形貌与实施例1相似。
实施例8
在实施例5的基础上,与实施例5的区别在于硅源为超细二氧化硅粉,投料量为17.2g,相同制备条件下,获得白色CHA-OFF-ERI共生结构分子筛粉末。
其微观形貌与实施例1相似。
实施例9
使用实施例1所制备的CHA-OFF-ERI共生结构分子筛制备CHA-OFF-ERI共生结构分子筛SCR催化剂:
取25kg所述CHA-OFF-ERI共生结构分子筛置于50L搪瓷搅拌釜中,向其中加入30L质量分数为10%的硝酸铜溶液,80℃密闭搅拌均匀分散,反应6h后,过滤并洗涤滤饼;滤饼经120℃干燥,550℃焙烧处理5h,得到淡蓝色CHA-OFF-ERI共生结构分子筛催化剂粉末。
实施例10
使用实施例9所制备的CHA-OFF-ERI共生结构分子筛SCR催化剂制备CHA-OFF-ERI共生结构分子筛SCR整体式催化剂:
向搅拌机中加入20kg所述CHA-OFF-ERI共生结构分子筛SCR催化剂、40kg去离子水、15kg硅溶胶、100g聚乙二醇、100g铝溶胶、10g磷酸、50g硝酸锰溶液,10g硝酸铈,循环搅拌2h制成浆料,采用浸渍法将蜂窝陶瓷载体浸没在浆料中20s,取出用压缩空气吹扫残余液体,120℃烘干后,重复浸渍涂覆一次,再次烘干,550℃焙烧5h,获得CHA-OFF-ERI共生结构分子筛SCR整体式催化剂。
性能测试
验证试验1:NH 3-SCR催化性能评价
将实施例9所述CHA-OFF-ERI共生结构分子筛SCR催化剂制成40-60 目粉末样,在微型固定床反应器上进行NH 3-SCR催化性能评价。使用的石英反应管尺寸为15mm,评价测试升温速率5℃/min。模拟气氛组成:500ppm NO,500ppm NH 3,5%O 2,N 2为平衡气,总流量为1800ml/min,反应空速54000h -1
性能测试结果见图4和图5,由结果可知,CHA-OFF-ERI共生结构分子筛催化剂操作温度窗口T 90(NO X转化率超90%时温度范围)170-505℃;起燃温度T 50(NO X转化率达到50%时温度)为140℃;NH 3逃逸情况,在100-650℃测试温度范围内平均值低于10ppm。
验证试验2:高温水热老化后NH 3-SCR催化性能评价
将验证试验1所述的40-60目的CHA-OFF-ERI共生结构分子筛SCR催化剂粉末10g,置于水热老化炉中以空气作为载气,10%水蒸汽氛围中760℃老化处理48h;老化结束后,样品采用验证实施例1中性能测试条件进行测试。
测试结果见图6,由结果可知,经过10%水蒸汽氛围中760℃老化处理48h后,温度窗口没有明显变窄,T 90范围200-460℃;起燃温度T 50(NO X转化率达到50%时温度)为170℃。
对比例1
与实施例1不同的是不使用胶磨装置,其他按照与实施例1相同的条件、加料量、操作步骤,在机械搅拌釜内依次加入原料,并搅拌反应;反应结束后,开启釜内加热,155℃密闭状态下搅拌反应10h;反应结束后,产物通过输送泵送至高速甩滤机进行固液分离,用20L去离子水洗涤滤饼,重复3次;滤饼随后经120℃干燥8h,并以2℃/min升温速率500℃恒温处理5h得浅灰色产物。
经过XRD表征,该产物为无定型结构,没有形成CHA-OFF-ERI共生 结构分子筛,见图7。
经SEM标准,该产物没有形成CHA-OFF-ERI共生结构分子筛典型的微观形貌,见图8。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种CHA-OFF-ERI共生结构分子筛,其特征在于:所述CHA-OFF-ERI共生结构分子筛是由OFF-ERI共生结构分子筛与CHA结构分子筛共生而成的分子筛。
  2. 根据权利要求1所述的CHA-OFF-ERI共生结构分子筛,其特征在于:所述CHA-OFF-ERI共生结构分子筛的特征衍射峰位于2θ=7.79±0.1、9.53±0.1、11.78±0.1、12.91±0.1、13.44±0.1、14.11±0.1、15.51±0.1、16.12±0.1、17.79±0.1、19.06±0.1、19.48±0.1、20.59±0.1、22.39±0.1、23.07±0.1、23.34±0.1、23.74±0.1、24.90±0.1、25.88±0.1、27.00±0.1、27.60±0.1、28.08±0.1、28.40±0.1、30.60±0.1、31.03±0.1、31.19±0.1、31.48±0.1、33.47±0.1、34.45±0.1、36.19±0.1、38.27±0.1、39.26±0.1、40.96±0.1、42.71±0.1、43.36±0.1、48.20±0.1、50.55±0.1、51.56±0.1、53.10±0.1、55.56±0.1、58.17±0.1、59.44±0.1、66.49±0.1处。
  3. 根据权利要求1所述的CHA-OFF-ERI共生结构分子筛,其特征在于:所述OFF-ERI共生结构分子筛包括T型、ZSM-34分子筛中的至少一种;所述CHA结构分子筛包括SSZ-13、SSZ-62、AlPO-34、SAPO-34、SAPO-44分子筛中的至少一种。
  4. 根据权利要求1到3任一项所述的CHA-OFF-ERI共生结构分子筛,其特征在于:所述CHA-OFF-ERI共生结构分子筛的硅铝比范围为5~200,优选硅铝比范围为10~25,所述硅铝比为SiO 2和Al 2O 3的摩尔比。
  5. 一种CHA-OFF-ERI共生结构分子筛的制备方法,其特征在于:包括如下步骤:
    S1.向去离子水中依次加入模板剂1、模板剂2、苛性碱、可溶性有机醇、铝源后,搅拌溶解;
    S2.对S1中溶解后的溶液进行循环胶磨;随后缓慢加入硅源,继续研 磨制胶;
    S3.制胶完毕后,得到复合溶胶,将复合溶胶在140-180℃密闭状态下恒温搅拌反应6.5-12h;
    S4.反应结束后,对产物进行固液分离,用去离子水反复洗涤滤饼;经干燥后,将滤饼置于5wt%-20wt%铵盐溶液中60-80℃恒温搅拌反应4-12h;反应结束后,再次进行固液分离,滤饼经去离子水反复洗涤后,经干燥、焙烧处理后,得白色共生结构分子筛粉末产物即为目标产物。
  6. 根据权利要求5所述的CHA-OFF-ERI共生结构分子筛的制备方法,其特征在于:原料中各组分的摩尔比为:
    铝源:硅源:模板剂1:模板剂2:苛性碱:去离子水:可溶性有机醇=1:1~250:0.05~50:0.05~50:0.01~20:1~1000:0.1~100;
    优选原料中各组分的摩尔比为:
    铝源:硅源:模板剂1:模板剂2:苛性碱:去离子水:可溶性有机醇=1:10~65:0.5~10:0.5~10:0.1~10:10~200:0.1~1;
    其中,铝源以Al 2O 3计,硅源以SiO 2计。
  7. 根据权利要求5或6所述的CHA-OFF-ERI共生结构分子筛的制备方法,其特征在于:
    所述步骤S1中的模板剂1包括N,N,N-三甲基-1-金刚烷基氢氧化铵、苄基三甲基铵、磷酸三乙胺、四乙基氢氧化铵、氢氧化-1,1,3,5-四甲基哌啶、氢氧化-1,1,2,6-四甲基哌啶中至少一种,优选N,N,N-三甲基-1-金刚烷基氢氧化铵;
    所述步骤S1中的模板剂2包括1,4-丁二胺,1,6-己二胺,1,8-辛二胺、氯化胆碱、四甲基氢氧化铵中的至少一种;
    所述步骤S1中的苛性碱包括氢氧化钾、氢氧化钠中至少一种;
    所述步骤S1中的可溶性有机醇包括甲醇、乙醇、乙二醇、丙醇中至少一种,优选乙醇;
    所述步骤S2中的铝源包括拟薄水铝石、铝酸钠、硝酸铝、聚合氯化铝、聚合硫酸铝、超细氢氧化铝、X型分子筛、A型分子筛、Y型分子筛、ZSM-5分子筛、β分子筛、L沸石、煤矸石中的至少一种,优选拟薄水铝石、偏铝酸钠、硝酸铝、ZSM-5分子筛、β分子筛;
    所述步骤S2中的硅源包括中性硅溶胶、碱性硅溶胶、酸性硅溶胶、超细硅胶粉、超细白炭黑、硅酸钠、超细二氧化硅、硅酸、硅酸四乙酯、Y型分子筛、ZSM-5分子筛、β分子筛、L沸石、煤矸石中的至少一种,优选中性硅溶胶、碱性硅溶胶;
    所述步骤S4中的铵盐包括硝酸铵、氯化铵、硫酸铵、碳酸铵、碳酸氢铵、乙酸铵中的至少一种;滤饼干燥处理中,其干燥温度为100~130℃;滤饼焙烧处理中,其升温速率为1~5℃/min,升至500~600℃恒温处理3-6h。
  8. 一种CHA-OFF-ERI共生结构分子筛SCR催化剂,其特征在于:包括权利要求1到3任一项所述的CHA-OFF-ERI共生结构分子筛及负载于其上的活性金属元素;所述活性金属元素占比所述CHA-OFF-ERI共生结构分子筛SCR催化剂1wt%-5wt%;所述活性金属元素包括Cu、Fe、Co、Mn、Ce、La、Ni、Nd、Ag、Pt、Pd中的至少二中,优选Cu、Fe、Co、Mn、Pt。
  9. 一种CHA-OFF-ERI共生结构分子筛SCR整体式催化剂,其特征在于:是由权利要求8所述的CHA-OFF-ERI共生结构分子筛SCR催化剂涂覆于载体基底上而成的整体式催化剂;所述CHA-OFF-ERI共生结构分子筛SCR催化剂占所述CHA-OFF-ERI共生结构分子筛SCR整体式催化剂 10wt%-40wt%,优选30wt%。
  10. 权利要求9所述的CHA-OFF-ERI共生结构分子筛SCR整体式催化剂的用途,其特征在于:在移动源Urea-SCR领域的应用,用于消除移动源排放尾气中氮氧化物。
PCT/CN2021/118889 2020-09-30 2021-09-16 一种cha-off-eri共生结构分子筛、其制备方法、其催化剂及其催化剂的应用 WO2022068604A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011061668.9 2020-09-30
CN202011061668.9A CN112158857B (zh) 2020-09-30 2020-09-30 一种cha-off-eri共生结构分子筛、其制备方法、其催化剂及其催化剂的应用

Publications (1)

Publication Number Publication Date
WO2022068604A1 true WO2022068604A1 (zh) 2022-04-07

Family

ID=73860934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118889 WO2022068604A1 (zh) 2020-09-30 2021-09-16 一种cha-off-eri共生结构分子筛、其制备方法、其催化剂及其催化剂的应用

Country Status (2)

Country Link
CN (1) CN112158857B (zh)
WO (1) WO2022068604A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114772610A (zh) * 2022-05-07 2022-07-22 安徽纳蓝环保科技有限公司 一种高效快速合成的h-ssz-13型分子筛方法
CN115382556A (zh) * 2022-09-30 2022-11-25 常州大学 Cu-Ru双金属掺杂的钛硅金属复合氧化物催化剂及其在三丙酮胺催化加氢中的应用
CN115536040A (zh) * 2022-09-27 2022-12-30 厦门大学 一种纳米荷叶状富铝型丝光沸石分子筛及合成方法和应用
CN115770611A (zh) * 2022-12-12 2023-03-10 大连龙缘化学有限公司 一种偏三甲苯异构化制备均三甲苯催化剂的制备方法及应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112158857B (zh) * 2020-09-30 2021-11-23 中汽研(天津)汽车工程研究院有限公司 一种cha-off-eri共生结构分子筛、其制备方法、其催化剂及其催化剂的应用
CN112939014A (zh) * 2021-03-17 2021-06-11 南开大学 一种无模板剂合成低硅zsm-5分子筛的方法
CN113198525B (zh) * 2021-05-08 2023-05-09 北京工业大学 一种低温条件下笑气分解和NOx催化还原协同净化的催化剂及其制备方法
ES2950057B2 (es) * 2022-02-28 2024-04-18 Univ Alicante Material zeolitico hibrido, metodos de obtencion y usos asociados
US11992827B2 (en) 2022-04-13 2024-05-28 China Automotive Technology And Research Center Co., Ltd MSECT-4 molecular sieves with off and ERI topologies, preparation method therefor, and applications thereof
CN114455604B (zh) * 2022-04-13 2022-07-01 中汽研(天津)汽车工程研究院有限公司 一种OFF+ERI结构msect-4分子筛、其制备方法及应用
CN114790007B (zh) * 2022-04-15 2024-05-10 中化学科学技术研究有限公司 SSZ-39分子筛及其制备方法与DeNOx反应催化剂
CN115318334B (zh) * 2022-09-13 2024-01-26 陕西煤业化工技术研究院有限责任公司 一种含活性金属的m-cha/m-mor复合分子筛及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101314135A (zh) * 2008-06-27 2008-12-03 吉林大学 水热/溶剂热体系制备双催化中心分子筛核壳材料的方法
US20150367337A1 (en) * 2014-06-18 2015-12-24 Basf Corporation Molecular Sieve Catalyst Compositions, Catalytic Composites, Systems, And Methods
US20160303550A1 (en) * 2015-04-15 2016-10-20 Basf Corporation Isomorphously Substituted Catalyst
CN112158857A (zh) * 2020-09-30 2021-01-01 中汽研(天津)汽车工程研究院有限公司 一种cha-off-eri共生结构分子筛、其制备方法、其催化剂及其催化剂的应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509290B1 (en) * 2000-07-17 2003-01-21 Exxon Mobil Chemical Patents, Inc. Catalyst composition including attrition particles and method for making same
MY136131A (en) * 2000-09-14 2008-08-29 Boc Group Inc Adsorbent compositions
KR20180026484A (ko) * 2015-07-02 2018-03-12 존슨 맛쎄이 퍼블릭 리미티드 컴파니 수동 NOx 흡착제
JP6697549B2 (ja) * 2015-10-16 2020-05-20 シェブロン ユー.エス.エー. インコーポレイテッド 分子ふるいssz−105、その合成および使用
EP3323785A1 (en) * 2016-11-18 2018-05-23 Umicore AG & Co. KG Crystalline zeolites with eri/cha intergrowth framework type

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101314135A (zh) * 2008-06-27 2008-12-03 吉林大学 水热/溶剂热体系制备双催化中心分子筛核壳材料的方法
US20150367337A1 (en) * 2014-06-18 2015-12-24 Basf Corporation Molecular Sieve Catalyst Compositions, Catalytic Composites, Systems, And Methods
US20160303550A1 (en) * 2015-04-15 2016-10-20 Basf Corporation Isomorphously Substituted Catalyst
CN112158857A (zh) * 2020-09-30 2021-01-01 中汽研(天津)汽车工程研究院有限公司 一种cha-off-eri共生结构分子筛、其制备方法、其催化剂及其催化剂的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GILBERT J.E., MOSSET A.: "Preparation of impurity-free zeolites from coal-mine schists", EUROPEAN JOURNAL OF SOLID STATE AND INORGANIC CHEMISTRY, vol. 35, no. 6-7, 1 June 1998 (1998-06-01), FR , pages 447 - 458, XP055917393, ISSN: 0992-4361, DOI: 10.1016/S0992-4361(98)80022-2 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114772610A (zh) * 2022-05-07 2022-07-22 安徽纳蓝环保科技有限公司 一种高效快速合成的h-ssz-13型分子筛方法
CN114772610B (zh) * 2022-05-07 2024-03-12 安徽纳蓝环保科技有限公司 一种高效快速合成的h-ssz-13型分子筛方法
CN115536040A (zh) * 2022-09-27 2022-12-30 厦门大学 一种纳米荷叶状富铝型丝光沸石分子筛及合成方法和应用
CN115536040B (zh) * 2022-09-27 2023-08-15 厦门大学 一种纳米荷叶状富铝型丝光沸石分子筛及合成方法和应用
CN115382556A (zh) * 2022-09-30 2022-11-25 常州大学 Cu-Ru双金属掺杂的钛硅金属复合氧化物催化剂及其在三丙酮胺催化加氢中的应用
CN115382556B (zh) * 2022-09-30 2024-02-20 常州大学 Cu-Ru双金属掺杂的钛硅金属复合氧化物催化剂及其在三丙酮胺催化加氢中的应用
CN115770611A (zh) * 2022-12-12 2023-03-10 大连龙缘化学有限公司 一种偏三甲苯异构化制备均三甲苯催化剂的制备方法及应用
CN115770611B (zh) * 2022-12-12 2024-02-06 大连龙缘化学有限公司 一种偏三甲苯异构化制备均三甲苯催化剂的制备方法及应用

Also Published As

Publication number Publication date
CN112158857A (zh) 2021-01-01
CN112158857B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2022068604A1 (zh) 一种cha-off-eri共生结构分子筛、其制备方法、其催化剂及其催化剂的应用
JP5762816B2 (ja) 8員環細孔開口構造を有するモレキュラーシーブまたはゼオライトを含んで成る新規マイクロポーラス結晶性物質およびその製法およびその使用
JP6427610B2 (ja) 安定化したミクロポーラス結晶性材料、その製造方法およびNOxの選択触媒還元のための使用方法
US10384162B2 (en) High silica chabazite for selective catalytic reduction, methods of making and using same
CN104736241B (zh) 具有促进剂以改进低温性能的8环小孔分子筛
US20170050179A1 (en) Copper-containing kfi-type zeolite and use in scr catalysis
CN107376989B (zh) 一种Cu-AEI分子筛催化剂合成及应用
KR20140057616A (ko) 분자체 전구체 및 분자체의 합성
EP3609838A1 (en) Copper-containing small-pore zeolites having a low alkali metal content, method of making thereof, and their use as scr catalysts
WO2023197490A1 (zh) 一种OFF+ERI结构msect-4分子筛、其制备方法及应用
WO2021114208A1 (zh) 脱硝催化剂及使用该催化剂的脱硝方法
EP3307434B1 (en) Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of nox
CN110171835B (zh) 一种含铜沸石、其制造方法及用途
US20180178205A1 (en) Method for producing transition-metal-containing zeolite, transition metal zeolite produced by the method, and exhaust gas purification catalyst including the zeolite
WO2018152829A1 (zh) Cu-SAPO分子筛、合成方法及其催化应用
JP2023503159A (ja) Aei骨格型を有する希土類元素含有ゼオライト材料及びコーティングされたモノリス基材
WO2022079141A1 (en) Passive nitrogen oxide adsorber
KR20210029943A (ko) 고성능 질소산화물 저감용 제올라이트 및 이의 제조방법 그리고 이를 이용한 촉매
CN117320809A (zh) 用于吸附nox的含钯afx沸石催化剂的合成

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023110666

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874265

Country of ref document: EP

Kind code of ref document: A1