WO2022065055A1 - シール材およびシール材の製造方法 - Google Patents

シール材およびシール材の製造方法 Download PDF

Info

Publication number
WO2022065055A1
WO2022065055A1 PCT/JP2021/033158 JP2021033158W WO2022065055A1 WO 2022065055 A1 WO2022065055 A1 WO 2022065055A1 JP 2021033158 W JP2021033158 W JP 2021033158W WO 2022065055 A1 WO2022065055 A1 WO 2022065055A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sealing material
mass
elastomer
compound
Prior art date
Application number
PCT/JP2021/033158
Other languages
English (en)
French (fr)
Inventor
雅則 岡崎
直樹 大住
Original Assignee
株式会社バルカー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社バルカー filed Critical 株式会社バルカー
Priority to JP2022551867A priority Critical patent/JPWO2022065055A1/ja
Priority to US18/246,701 priority patent/US20230365848A1/en
Priority to EP21872186.8A priority patent/EP4219644A4/en
Priority to CN202180064235.5A priority patent/CN116209845A/zh
Priority to KR1020237011597A priority patent/KR20230078694A/ko
Publication of WO2022065055A1 publication Critical patent/WO2022065055A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1009Fluorinated polymers, e.g. PTFE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/102Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/068Containing also other elements than carbon, oxygen or nitrogen in the polymer main chain
    • C09K2200/0685Containing silicon

Definitions

  • One embodiment of the present invention relates to a sealing material or a method for manufacturing a sealing material.
  • the sealing material has been widely used in various applications, and among these applications, an example of the application of the sealing material that puts the most load on the sealing material is the sealing material used in semiconductor manufacturing equipment and the like. ..
  • a crosslinkable fluoroelastomer is used because a sealing material having excellent plasma resistance and radical resistance can be obtained.
  • a sealing material made of a crosslinkable fluoroelastomer an elastomer composition obtained by blending the crosslinkable fluoroelastomer with an additive such as a crosslinking agent or a crosslinking aid is usually used, and this elastomer composition is used. It is used as a sealing material by molding and cross-linking.
  • the cross-linking includes a step of irradiating radiation (for example, Patent Document 1).
  • each of the members in the elastomer composition is used to produce a sealing material exhibiting desired physical properties from the elastomer composition.
  • the ingredients need to be mixed uniformly.
  • a conventional crosslinkable fluoroelastomer especially when a liquid or oily component is used, it takes a long time to prepare such a uniform elastomer composition, and in this respect. There was room for improvement.
  • a sealing material from the produced elastomer composition when forming a sealing material from the produced elastomer composition with high productivity, it is usually performed to make the elastomer composition into a sheet by a dispensing step.
  • This dispensing step is usually performed by passing the elastomer composition between the rolls, but when the conventional elastomer composition is used, the elastomer composition may not be caught between the rolls or may not be wound well around the rolls. Therefore, it was not easy to make a sheet (poor sortability). Therefore, the conventional elastomer composition has room for improvement in terms of moldability.
  • the sealing material formed from the conventional elastomer composition has room for improvement in terms of characteristics as a sealing material such as tensile strength and elongation at the time of cutting.
  • One embodiment of the present invention provides a sealing material that can be manufactured with good molding processability, has excellent sealing properties, and has high tensile strength and elongation at the time of cutting.
  • the configuration example of the present invention is as follows.
  • a sealing material which is a radiation crosslinker of an elastomer composition containing a crosslinkable fluoroelastomer (A) other than a perfluoroelastomer, a crosslinking agent, and a crosslinking aid.
  • the fluoroelastomer (A) contains a crosslinkable fluoroelastomer (A1) other than a perfluoroelastomer having a fluorine content in the range of 66 to 68% by mass. Sealing material.
  • the elastomer composition comprises at least one ethylenically unsaturated bond-containing compound selected from a compound having a perfluoro skeleton having an ethylenically unsaturated bond and a compound having a siloxane skeleton having an ethylenically unsaturated bond.
  • Perfluoro which contains a crosslinkable fluoroelastomer (A) other than the perfluoroelastomer, a crosslinking agent and a crosslinking aid, and the fluoroelastomer (A) has a fluorine content in the range of 66 to 68% by mass.
  • a method for producing a sealing material which comprises a step of irradiating an elastomer composition containing a crosslinkable fluoroelastomer (A1) other than the elastomer or a crosslinked product of the elastomer composition with radiation.
  • a sealing material which can be manufactured with good molding processability, has excellent sealing properties (small compression set), and has high tensile strength and elongation at the time of cutting.
  • a uniform elastomer composition can be obtained in a short time, and a sealing material having excellent sealability, tensile strength and elongation at the time of cutting can be obtained from an elastomer composition having excellent moldability, particularly dispensing property.
  • the hardness, tensile strength, elongation at cutting, and tensile stress (100% Mo) at 100% elongation are well-balanced and excellent, and plasma resistance (radical resistance) is further improved.
  • a sealing material having excellent crack resistance, compression set and the like can be obtained. Therefore, the sealing material can be suitably used as a sealing material for semiconductor manufacturing equipment and a sealing material for plasma processing equipment.
  • the sealing material according to one embodiment of the present invention is an elastomer composition containing a crosslinkable fluoroelastomer (A) other than the perfluoroelastomer, a crosslinking agent, and a crosslinking aid (hereinafter, “the present sealing material”).
  • This composition is also referred to as "the present composition"), and the fluoroelastomer (A) contains a crosslinkable fluoroelastomer (A1) other than a perfluoroelastomer having a fluorine content in the range of 66 to 68% by mass. ..
  • the radiation crosslinked product of the present composition is specifically, radiation is applied to the present composition itself or a crosslinked product of the present composition (eg, a crosslinked product obtained by thermally cross-linking the present composition).
  • a crosslinked product of the present composition eg, a crosslinked product obtained by thermally cross-linking the present composition.
  • examples thereof include a radiation crosslinked body obtained by a method including a step of irradiating.
  • This sealing material can be used, for example, as a gasket or packing for various members, and in particular, because it exerts the above-mentioned effect, it is used for semiconductor manufacturing equipment and plasma processing equipment, especially for openings of plasma processing chamber units. It can be suitably used for a drive unit such as a gate valve.
  • the shape and the like of the sealing material may be appropriately selected according to the intended use.
  • the present sealing material can be a sealing material having the following physical properties while being a sealing material that does not contain the filler.
  • the shore A hardness (type A durometer hardness) measured based on JIS K 6253: 2012 of this sealing material is preferably 60 or more.
  • the tensile strength measured based on JIS K 6251: 2017 of this sealing material is preferably 10 MPa or more.
  • the elongation at cutting measured based on JIS K 6251: 2017 of this sealing material is preferably 130% or more.
  • the 100% modulus measured based on JIS K 6251: 2017 of this sealing material is preferably 3.5 MPa or more.
  • the compression set measured based on JIS K 6262: 2013 of this sealing material is preferably 35% or less.
  • the elastomer (A) is not particularly limited as long as it contains a crosslinkable fluoroelastomer (A1) other than the perfluoroelastomer having a fluorine content in the range of 66 to 68% by mass.
  • a crosslinkable fluoroelastomer (A1) other than the perfluoroelastomer having a fluorine content in the range of 66 to 68% by mass.
  • the elastomer (A) one type may be used, two or more types may be used, and one type or two or more types of elastomer (A1) may be used.
  • "elastomer” and “rubber” have the same meaning, and there is no particular distinction between them.
  • the elastomer (A) may contain a crosslinkable fluoroelastomer (hereinafter, also referred to as “elastomer (A2)”) other than the perfluoroelastomer other than the elastomer (A1), and has plasma resistance. It is preferable to contain an elastomer (A2) from the viewpoint that a sealing material having excellent chemical resistance such as chemical resistance can be easily obtained.
  • elastomer (A) contains an elastomer (A2), one type of the elastomer (A2) may be used, or two or more types may be used.
  • the elastomer (A) is also referred to as unvulcanized fluororubber, and examples of the cross-linking type include peroxide cross-linking, polyol cross-linking, amine cross-linking, and radiation cross-linking type. Among these, it is not necessary to use an acid receiving agent that is a source of particles in a plasma atmosphere or the like, and there is no risk of generating particles while using the obtained sealing material. It is preferably a possible fluoroelastomer.
  • the elastomer (A) include a fluoroelastomer (FKM), a tetrafluoroethylene-propylene-based elastomer (FEPM), a fluoroelastomer-based thermoplastic elastomer (eg, at least one elastomeric polymer chain segment and at least one non-elastomer).
  • FKM fluoroelastomer
  • FEPM tetrafluoroethylene-propylene-based elastomer
  • FEPM tetrafluoroethylene-propylene-based elastomer
  • an elastomer capable of obtaining a sealing material showing resistance to plasma (plasma etching treatment) used in various semiconductor dry processes is preferable, plasma resistance is relatively good, and sealing property is good.
  • FKM excellent in is more preferable. FKM is also preferable in terms of low cost and versatility.
  • the elastomer (A) one synthesized by a conventionally known method may be used, or a commercially available product may be used.
  • the commercially available product include “Daiel” manufactured by Daikin Industries, Ltd., “Baiton” manufactured by The Chemours Company, “Dynion” manufactured by 3M, and “Technoflon” manufactured by Solvay.
  • the fluorine content of the elastomer (A1) is 66 to 68% by mass.
  • the fluorine content of the elastomer (A2) is not particularly limited as long as it is in the range other than 66 to 68% by mass, but a sealing material having excellent chemical resistance such as plasma resistance and chemical resistance can be easily obtained. From this point of view, it is preferably 69% by mass or more, more preferably 70% by mass or more, still more preferably 73% by mass or less, still more preferably 71% by mass or less.
  • a uniform elastomer composition can be obtained in a short time, an elastomer composition having excellent moldability can be easily obtained, and hardness and tensile strength can be obtained.
  • a sealing material having an excellent balance of elongation at the time of cutting and 100% Mo.
  • the fluorine content can be measured and calculated by elemental analysis of fluorine using 19 F-NMR, 1 H-NMR, etc., mass spectrometry (MS spectrum method), or the like.
  • the fluorine content in the present invention is a value rounded off to the nearest whole number.
  • the Mooney viscosity of the elastomer (A) is preferably 10 or more, more preferably 15 or more, still more preferably 20 or more, preferably 140 or less, more preferably 120 or less, still more preferably 80 or less, and particularly preferably 60 or less. Is. When the Mooney viscosity of the elastomer (A) is in the above range, an elastomer composition having excellent moldability, particularly dispenseability, can be easily obtained.
  • the Mooney viscosity in the present specification refers to the Mooney viscosity (ML1 + 10) at 121 ° C. measured according to ASTM D 1646.
  • the Mooney viscosity is preferably in the range of 40 to 140, more preferably 40 to 120, still more preferably 40 to 60, and the Mooney viscosity is in the range of 40 to 60. It is preferable to use an elastomer (A2-2) preferably in the range of 10 or more and less than 40, more preferably 10 to 30.
  • the normal physical properties of the obtained sealing material such as hardness, tensile strength, elongation at cutting and 100% Mo, and moldability, especially dispensing property, etc. It is preferable because it is more well-balanced with the physical properties of the elastomer composition.
  • the content of the elastomer (A2-1) is preferably 20 to 80% by mass with respect to 100% by mass of the total of these. ..
  • the normal physical properties of the obtained sealing material such as hardness, tensile strength, elongation at cutting and 100% Mo, and the elastomer such as moldability, particularly dispenser property, etc. It is preferable because it is more well-balanced with the physical characteristics of the composition.
  • the content of the elastomer (A1) in the solid content of the present composition is preferably 50% by mass or more, more preferably 70% by mass or more, and preferably 70% by mass or more. It is 97% by mass or less, more preferably 95% by mass or less.
  • a sealing material having excellent sealing properties, moldability, and chemical resistance can be easily obtained.
  • a solid content means a component other than a solvent.
  • the content of the elastomer (A1) in the solid content of the present composition is preferably 2% by mass or more, more preferably 5% by mass or more, and preferably 50. It is mass% or less, more preferably 40 mass% or less.
  • the elastomer (A1) content is in the above range, a sealing material having a good balance between moldability and chemical resistance can be easily obtained.
  • the content of the elastomer (A2) in the solid content of the present composition is preferably 40% by mass or more, more preferably 50% by mass or more, and is preferable. Is 95% by mass or less, more preferably 85% by mass or less.
  • a sealing material having excellent chemical resistance such as plasma resistance and chemical resistance can be easily obtained.
  • the content of the elastomer (A1) is preferably 5% by mass or more, more preferably more than the total content of the elastomers (A1) and (A2) in the present composition. Is 10% by mass or more, preferably 40% by mass or less, and more preferably 35% by mass or less.
  • the mass ratio of the contents of the elastomers (A1) and (A2) is in the above range, a sealing material having a good balance between moldability and chemical resistance can be easily obtained.
  • the FKM is not particularly limited, and examples thereof include a polymer containing a hydrogen atom (carbon-hydrogen bond) in the polymer main chain, and specifically, it is preferable to include a structural unit derived from vinylidene fluoride.
  • the FKM is not particularly limited, and specific examples thereof include vinylidene fluoride-hexafluoropropylene-based polymer; vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based polymer; vinylidene fluoride-propylene-tetrafluoroethylene-based weight. Combined; ethylene-tetrafluoroethylene-perfluoroalkyl vinyl ether polymer; vinylidene fluoride-tetrafluoroethylene-perfluoroalkyl vinyl ether polymer can be mentioned.
  • the perfluoroalkyl vinyl ether include perfluoromethyl vinyl ether.
  • a ternary polymer is preferable, and a vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene polymer is more preferable from the viewpoint of excellent plasma resistance, heat resistance, chemical resistance, and the like.
  • the fluoroepolymer that can be crosslinked with peroxide preferably has a functional group such as an iodine group, a bromine group, a cyano group, a peroxy group, and an unsaturated group, and the iodine group and the bromine group are more suitable for easy introduction of the functional group.
  • a fluoroelastomer having an iodine group and / or a bromine group can be obtained, for example, by using one or more saturated or unsaturated iodine-containing and / or bromine-containing compounds when synthesizing the elastomer.
  • Examples of the iodine-containing and / or bromine-containing compound include compounds represented by the following formula (1) or (2).
  • a fluoroelastomer having an iodine group and / or a bromine group in the side chain can be synthesized, and by using the compound represented by the following formula (2).
  • Fluoroelastomers having an iodine group and / or a bromine group at the ends can be synthesized.
  • CY 1 2 CY 2 RfX (1)
  • Y 1 and Y 2 are independently fluorine atoms, hydrogen atoms or methyl groups, and Rf is a linear or branched fluorine-containing alkylene group in which part or all of the hydrogen atoms are substituted with fluorine atoms. , Or a group containing an ether bond as part of the fluorine-containing alkylene group, and X is an iodine atom or a bromine atom.
  • Specific examples of the compound represented by the formula (2) include the compounds described in JP-A-2002-97329 and JP-A-2008-56739.
  • the cross-linking agent is not particularly limited, and can be selected and used from conventionally known cross-linking agents according to the type of elastomer (A) used.
  • the cross-linking agent one type may be used, or two or more types may be used.
  • cross-linking agent examples include, when FKM is used, a peroxide-based cross-linking agent, a polyamine-based cross-linking agent, a polyol-based cross-linking agent, a triazine-based cross-linking agent, and the like.
  • an acid receiving agent such as magnesium oxide or calcium hydroxide, which is a source of particles, in the present composition under a plasma atmosphere or the like, and the obtained sealing material is used during use.
  • a peroxide-based cross-linking agent is preferable because there is no risk of generating particles.
  • peroxide-based cross-linking agent examples include 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, dicumyl peroxide, 2,4-dichlorobenzoyl peroxide, and di-t-butylper.
  • Oxide t-butyldicumyl peroxide, benzoyl peroxide, 2,5-dimethyl-2,5- (t-butylperoxy) hexine-3, 2,5-dimethyl-2,5-di (benzoylperoxy) ) Hexane, ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene, t-butylperoxyisopropyl carbonate, di- (4-t-butylcyclohexyl) peroxydicarbonate, p-chlorobenzoylper Oxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxybenzoate, 1,1-bis (t-butylperoxy) -3,5,5-trimethylcyclohexane, 2,5-dimethylhexane Examples thereof include -2,5-dihydroperoxide, ⁇ , ⁇ -bis (t
  • 2,5-dimethyl-2,5-di (t-butylperoxy) hexane 2,4-dichlorobenzoyl peroxide, dicumyl peroxide, benzoyl peroxide, ⁇ , ⁇ '-bis (t).
  • 2,5-dimethyl-2,5-di (t-butylperoxy) hexane is preferred, and 2,5-dimethyl-2,5-di (t-butylperoxy) hexane is more preferred.
  • the content of the cross-linking agent in the present composition is such that the cross-linking reaction proceeds sufficiently and a sealing material having an excellent balance of hardness, tensile strength, elongation at cutting and 100% Mo can be easily obtained.
  • the amount is preferably 0.2 to 4 parts by mass, and more preferably 0.2 to 2.5 parts by mass with respect to 100 parts by mass of the elastomer (A).
  • the cross-linking aid is not particularly limited, and a conventionally known cross-linking aid may be selected depending on the type of the cross-linking agent. As the cross-linking aid, one type may be used, or two or more types may be used.
  • cross-linking aids used when a peroxide-based cross-linking agent is used include triallyl isocyanurate; triallyl cyanurate; trimetalyl isoscyanurate; triallylformal; triallyl trimerirate; N, N. '-M-Phenylene bismaleimide; dipropagil terephthalate; diallyl phthalate; tetraallyl terephthalamide; polyfunctional (meth) acrylate such as ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate; etc.
  • the content of the cross-linking aid in the present composition is such that the cross-linking reaction proceeds sufficiently and a sealing material having an excellent balance of hardness, tensile strength, elongation at cutting and 100% Mo can be easily obtained. Therefore, it is preferably 1 part by mass or more, more preferably 2 parts by mass or more, further preferably 4 parts by mass or more, preferably 10 parts by mass or less, and more preferably 7 parts by mass with respect to 100 parts by mass of the elastomer (A). Parts or less, more preferably 6 parts by mass or less.
  • a radiation-crosslinked sealing material (radiated product) is preferable, but in this case, even if the following filler is not used, it is more preferable.
  • the content of the crosslinking aid in the present composition is preferably 2 parts by mass or more with respect to 100 parts by mass of the elastomer (A) from the viewpoint that a sealing material having high hardness and high modulus can be easily obtained. It is more preferably 4 parts by mass or more, preferably 7 parts by mass or less, and further preferably 6 parts by mass or less.
  • the mass ratio of the content of the cross-linking aid to the content of the cross-linking agent in the present composition shows the desired physical properties by reacting the cross-linking agent in just proportion.
  • a sealing material can be easily obtained, and in particular, a sealing material having higher hardness and higher modulus can be easily obtained without using a filler as described below, and thus preferably 4 or more. It is more preferably 6 or more, preferably 30 or less, and more preferably 20 or less.
  • the present composition may contain other conventionally known components that have been blended in the sealing material, if necessary, as long as the effects of the present invention are not impaired.
  • the other components include ethylenically unsaturated bond-containing compounds; reactive organic silicon compounds having two or more hydrosilyl groups in the molecule; catalysts; acid-receiving agents such as magnesium oxide and calcium hydroxide; anthraquinone-based compounds.
  • Organic pigments such as pigments, perylene pigments, dioxazine pigments; plasticizers; processing aids; vulture accelerators; antioxidants; antioxidants; inorganic fillers; organic fillers.
  • one kind may be used, or two or more kinds may be used.
  • the present composition contains an ethylenically unsaturated bond-containing compound (hereinafter, also referred to as “compound (B)”) from the viewpoints of being excellent in plasma resistance and easily obtaining a non-adhesive sealing material. Is preferable.
  • the compound (B) include at least one compound selected from a compound having a perfluoro skeleton having an ethylenically unsaturated bond (B1) and a compound having a siloxane skeleton having an ethylenically unsaturated bond (B2). ..
  • the compound (B) preferably contains the compound (B1) from the viewpoint that a sealing material having more excellent plasma resistance can be easily obtained.
  • Examples of the ethylenically unsaturated bond include an alkenyl group having 2 to 8 carbon atoms such as a vinyl group, a methyl vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, a pentenyl group, a hexenyl group and a heptenyl group.
  • Examples thereof include a vinylphenyl group, a (meth) acryloyl group, an allyloxy group, a styryl group, and a propargyl group.
  • an alkenyl group is preferable, an alkenyl group having 2 to 4 carbon atoms is more preferable, and a vinyl group is particularly preferable.
  • Compound (B) may have two or more ethylenically unsaturated bonds.
  • the compound (B) a compound synthesized by a conventionally known method may be used, or a commercially available product may be used.
  • the commercially available product include "SIFEL” (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the commercially available product containing the compound (B) includes a one-component type commercial product and a two-component type commercial product, and any of these may be used.
  • there are liquid, paste, oil, mirabable and the like, and any of these may be used.
  • the commercially available product includes a reactive organic silicon compound having two or more hydrosilyl groups in the molecule (eg, JP-A-2003-183402, JP-A-11-116684).
  • a reactive organic silicon compound having two or more hydrosilyl groups in the molecule eg, JP-A-2003-183402, JP-A-11-116684.
  • Additives such as organic silicon compounds described in JP-A), catalysts (eg, catalysts described in JP-A-2003-183402, JP-A-11-116684, etc.), fillers (eg, silica), etc. are included.
  • the compound (B) those containing these additives may be used.
  • the content of the compound (B) in the present composition can be a uniform elastomer composition in a shorter time, and a sealing material having better plasma resistance can be obtained. From the viewpoint that it can be easily obtained, it is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and preferably 50 parts by mass or less, more preferably, with respect to 100 parts by mass of the elastomer (A). Is 25 parts by mass or less, more preferably 10 parts by mass or less.
  • the mass ratio (content of compound (B) / content of cross-linking agent) is preferably 1 or more, more preferably 2 or more, preferably 20 or less, and more preferably 10 or less.
  • the compound (B1) is a compound other than the elastomer (A).
  • Examples of the compound (B1) include a compound having a perfluoropolyether structure having an ethylenically unsaturated bond and a compound having a perfluoroalkylene structure having an ethylenically unsaturated bond. Among these, the ethylenically unsaturated compound is mentioned.
  • a compound having a perfluoropolyether structure having a bond (hereinafter, also referred to as “compound (B1-1)”) is preferable.
  • the compound (B1) contained in the present composition may be one kind or two or more kinds.
  • the compound (B1-1) is preferably a perfluoropolyether having two or more ethylenically unsaturated bonds in one molecule.
  • Preferable examples of the compound (B1-1) include the compounds described in JP-A-2003-183402, JP-A-11-116684, JP-A-11-116685, and JP-A-2015-67737. ..
  • Examples of the compound (B1-1) include a compound represented by the following formula (1).
  • X is independently -CH 2- , -CH 2 O-, -CH 2 OCH 2- , * -Si (R 2 ) 2 -Ph- (Ph: phenylene group), * -Y-NR 1 SO 2 -or * -Y-NR 1 -CO- (However, Y is -CH 2- or * -Si (R 2 ) 2 -Ph-. The * portion is bound to Z 1 or Z 2. ) Is.
  • Rf is a divalent perfluoropolyether group (divalent perfluorooxyalkylene group).
  • p is independently 0 or 1.
  • a is an integer of 0 or more, preferably an integer of 0 to 10, and more preferably an integer of 0 to 6.
  • Q is a group represented by the following formula (2), (3) or (4).
  • R 2 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, particularly 1 to 8 carbon atoms, and is, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and the like.
  • Alkyl groups such as t-butyl group, pentyl group, hexyl group, octyl group and decyl group, cycloalkyl groups such as cyclopentyl group, cyclohexyl group and cycloheptyl group, vinyl group, allyl group, propenyl group, isopropenyl group and butenyl.
  • Alkyl groups such as groups and hexenyl groups, aryl groups such as phenyl groups, trill groups, xylyl groups and naphthyl groups, aralkyl groups such as benzyl groups, phenylethyl groups and phenylpropyl groups, and some of the hydrogen atoms of these groups or Groups entirely substituted with halogen atoms or the like (eg, chloromethyl group, chloropropyl group, bromoethyl group, 3,3,3-trifluoropropyl group, 6,6,6,5,5,4,4,3 A fluorine-substituted alkyl group such as a 3-nonafluorohexyl group) can be mentioned.
  • halogen atoms or the like eg, chloromethyl group, chloropropyl group, bromoethyl group, 3,3,3-trifluoropropyl group, 6,6,6,5,5,4,4,3
  • R 1 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, particularly 1 to 8 carbon atoms similar to the hydrogen atom or the group exemplified as R 2 above, and is the same as the hydrogen atom or R 2 .
  • Examples include an alkyl group such as a methyl group, an ethyl group, a propyl group and an isopropyl group, a cycloalkyl group such as a cyclohexyl group, an alkenyl group such as a vinyl group and an allyl group, a phenyl group and a trill group.
  • Aryl group a group in which a part of the hydrogen atom of these groups is substituted with a halogen atom, etc. (eg, chloromethyl group, chloropropyl group, 3,3,3-trifluoropropyl group, 6,6,6,5 , 5, 4, 4, 3, 3-Fluoro-substituted alkyl groups such as nonafluorohexyl groups).
  • Z 1 and Z 2 are independently ethylenically unsaturated bond-containing groups, and may be —Si (ethylenically unsaturated bond-containing group) (R') 2 .
  • R' is an independently substituted or unsubstituted monovalent hydrocarbon group, specifically, for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, i-.
  • Alkyl groups such as butyl group, t-butyl group, pentyl group and hexyl group; aryl groups such as phenyl group, trill group and xylyl group; halogens such as 3-chloropropyl group and 3,3,3-trifluoropropyl group Examples thereof include an alkyl group, and among these, an alkyl group having 1 to 5 carbon atoms is preferable.
  • R 3 and R 4 are each independently substituted or unsubstituted divalent hydrocarbon group in which one or more selected from oxygen atom, nitrogen atom, silicon atom and sulfur atom may be interposed in the middle of bonding, and the formula is R 3 in (2) and R 4 in formula (3) may be independently represented by the following formula (5) or (6).
  • R 5 is a substituted or unsubstituted monovalent hydrocarbon group
  • R 6 is one or more selected from a carbon atom, an oxygen atom, a nitrogen atom, a silicon atom and a sulfur atom. It is a group containing.
  • the R 3 and R 4 are not particularly limited as long as they are substituted or unsubstituted divalent hydrocarbon groups, but divalent hydrocarbon groups having 1 to 20 carbon atoms, particularly 2 to 12 carbon atoms are preferable, and specifically.
  • divalent hydrocarbon groups having 1 to 20 carbon atoms, particularly 2 to 12 carbon atoms are preferable, and specifically.
  • an alkylene group such as a methylene group, an ethylene group, a propylene group, a methylethylene group, a butylene group, a hexamethylene group, a cycloalkylene group such as a cyclohexylene group, a phenylene group, a trilen group, a xylylene group, a naphthylene group, a biphenylene group, etc.
  • Examples thereof include an arylene group, a group in which a part of the hydrogen atom of these groups is substituted with a halogen atom or the like, a substituted or unsubstituted alkylene group thereof, and a combination of an arylene group.
  • R 7 indicates a perfluoroalkanediyl group, and n is an integer of 2 or more. show. A plurality of R 7s may be the same or different from each other. ] Is preferable.
  • Examples of the perfluoroalkanediyl group represented by R 7 include a group represented by C m F 2 m (m is an integer of 2 or more), and may be linear or branched.
  • the number of carbon atoms (that is, m) of the perfluoroalkanediyl group is, for example, 1 to 10, preferably 2 to 6, more preferably 2 to 4, and particularly preferably 2 to 3.
  • N may be 2 or more, for example, 10 or more, preferably 40 or more, and more preferably 70 or more. Further, n is, for example, 300 or less, preferably 200 or less, and more preferably 150 or less.
  • the compound represented by the formula (1) is preferably a compound represented by the following formula (1-1).
  • the definition of each code in the formula (1-1) is the same as the definition of each code in the formula (1). ]
  • the compound represented by the formula (1-1) is preferably a compound in which a is 0, and in this case, it is represented by the following formula (1-1-1).
  • the definition of each code in the formula (1-1-1) is the same as the definition of each code in the formula (1). ]
  • Rf examples include the following groups. -[CF (Z) OCF 2 ] p- (CF 2 ) r- [CF 2 OCF (Z)] q- (Z is a fluorine atom or ⁇ CF 3 , and p, q and r are integers satisfying p ⁇ 1, q ⁇ 1, 2 ⁇ p + q ⁇ 200, preferably 2 ⁇ p + q ⁇ 110, 0 ⁇ r ⁇ 6.
  • the compound (B2) is preferably a polysiloxane having two or more ethylenically unsaturated bonds in one molecule, and has two or more ethylenically unsaturated bonds in one molecule, and It is preferably an organopolysiloxane in which an organic group is bonded to a silicon atom.
  • the bond position of the ethylenically unsaturated bond is not particularly limited.
  • the compound (B2) contained in the present composition may be one kind or two or more kinds.
  • Examples of the organic group bonded to the silicon atom include the ethylenically unsaturated bond, a linear alkyl group, a branched chain alkyl group, a cyclic alkyl group, an aryl group, an aralkyl group and an alkyl halide group.
  • Examples of the linear alkyl group include groups having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group and a decyl group.
  • Examples of the branched alkyl group include groups having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms such as an isopropyl group, an isobutyl group, a t-butyl group and a 2-ethylhexyl group.
  • Examples of the cyclic alkyl group include a group having 3 to 20 carbon atoms such as a cyclopentyl group and a cyclohexyl group.
  • Examples of the aryl group include a group having 6 to 20 carbon atoms such as a phenyl group and a tolyl group.
  • Examples of the aralkyl group include a group having 7 to 20 carbon atoms such as a benzyl group, a 2-phenylethyl group and a 2-methyl-2-phenylethyl group.
  • Examples of the alkyl halide group include a 3,3,3-trifluoropropyl group, a 2- (nonafluorobutyl) ethyl group, a 2- (heptadecafluorooctyl) ethyl group, and the like, preferably having 1 to 20 carbon atoms. Groups having 1 to 6 carbon atoms can be mentioned.
  • a linear alkyl group, an alkenyl group and an aryl group are preferable, a linear alkyl group having 1 to 6 carbon atoms, an alkenyl group and an aryl group are more preferable, and a methyl group and vinyl are more preferable.
  • Groups and phenyl groups are particularly preferred.
  • the molecular structure of compound (B2) is not particularly limited, and examples thereof include linear, branched chain, linear with partial branch, and dendrimer (dendrimer), preferably linear and partially branched. It has a linear shape.
  • the compound (B2) may be a single polymer having these molecular structures, a copolymer having these molecular structures, or a mixture of two or more of these polymers.
  • Examples of the compound (B2) include dimethylpolysiloxane having a dimethylvinylsiloxy group block at both ends of the molecular chain, dimethylpolysiloxane having a methylphenylvinylsiloxy group block having both ends of the molecular chain, and dimethylsiloxane / methylphenyl having a dimethylvinylsiloxy group block having both ends of the molecular chain.
  • Siloxane copolymer dimethylvinylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer at both ends of the molecular chain, dimethylsiloxane / methylvinylsiloxane copolymer at both ends of the molecular chain, dimethylsiloxane group-blocked at both ends of the molecular chain ⁇ Methylvinylsiloxane ⁇ Methylphenylsiloxane copolymer, trimethylsiloxy group-blocked dimethylsiloxane at both ends of the molecular chain dimethylsiloxane ⁇ Methylvinylsiloxane copolymer, dimethylvinylsiloxy group-blocked methyl at both ends of the molecular chain (3,3,3-trifluoropropyl) ) Polysiloxane, formula: (CH 3 ) 3 siloxane unit represented by SiO 1/2 and formula
  • R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group
  • R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group
  • b is. It is an integer of 2 to 100
  • a is an integer of 1 to 3.
  • at least two of R 1 and R 2 in the formula (7) include the ethylenically unsaturated bond.
  • R 1 is independently unsubstituted or substituted, preferably a monovalent hydrocarbon group having 1 to 10 carbon atoms, and an example thereof is an organic group bonded to the silicon atom.
  • a monovalent hydrocarbon group having 1 to 6 carbon atoms is preferable, and an alkenyl group, an aryl group, and an alkyl group having 1 to 3 carbon atoms are more preferable.
  • Examples of the alkyl group and alkenyl group in R 2 in the formula (7) include a linear alkyl group, a branched chain alkyl group, and a cyclic alkyl group similar to the group exemplified as the organic group bonded to the silicon atom.
  • Examples include alkenyl groups.
  • Examples of the alkoxyalkyl group in R 2 in the formula (7) include a group having 2 to 10 carbon atoms such as a methoxyethyl group and a methoxypropyl group.
  • Examples of the acyl group in R 2 in the formula (7) include a group having 2 to 10 carbon atoms such as an acetyl group and an octanoyl group.
  • B in the formula (7) is preferably an integer of 10 to 50, and a is preferably 3.
  • the reactive organic silicon compound is a compound other than the compound (B2), and preferably, two or more hydrosilyl groups are contained in the molecule described in JP-A-2003-183402, JP-A-11-116684 and the like. Examples thereof include compounds similar to those of the compound.
  • catalysts Preferred examples of the catalyst include catalysts similar to those described in JP-A-2003-183402, JP-A-11-116684 and the like.
  • organic pigment Preferred examples of the organic pigment include organic pigments similar to those described in International Publication No. 2016/043100, Japanese Patent No. 472501, International Publication No. 2004/094527 and the like.
  • the inorganic filler and the organic filler are particulate (powdered) components other than the cross-linking agent, the cross-linking aid and the compound (B). be.
  • the inorganic filler include carbon black, silica, barium sulfate, titanium oxide, and aluminum oxide.
  • the organic filler include fluororesins such as PTFE, PFA, FEP, ETFE, and PVDF, polyethylene resins, polyimide resins, silicone resins, and melamine resins.
  • the content of the filler is preferably 5 parts by mass with respect to 100 parts by mass of the elastomer (A).
  • it is more preferably 3 parts by mass or less, and most preferably 0 part by mass.
  • the present composition can be produced by mixing (kneading) the elastomer (A), the cross-linking agent, the cross-linking aid, and, if necessary, the other components, preferably the elastomer (A). It can be produced by mixing (kneading) a cross-linking agent, a cross-linking aid, the compound (B), and if necessary, the other components.
  • the mixing order of the elastomer (A), the cross-linking agent, the cross-linking aid, and the other components is not particularly limited, and the elastomer (A) may be sequentially mixed (kneaded) in any order, or these may be mixed (kneaded) all at once. It is good, but it is preferable to sequentially mix (knead) so that each component becomes uniform.
  • a conventionally known mixing (kneading) machine can be used, and examples thereof include an open roll, a Banbury mixer, a twin-screw roll, and a kneader. Further, at the time of the mixing (kneading), depending on the mixing (kneading) machine, mixing (kneading) may be performed under heating or cooling, if necessary.
  • the sealing material can be produced by a method including a step of irradiating the composition or a crosslinked product thereof with radiation (irradiation step).
  • irradiation step By including the radiation irradiation step in this way, it is excellent in plasma resistance (radical resistance), crack resistance, compression set, non-adhesiveness, etc., and is balanced in hardness, tensile strength, elongation at cutting and 100% Mo.
  • a good and excellent sealing material can be easily obtained, and cracks that may occur in the sealing material can be easily suppressed in a plasma atmosphere or the like.
  • This dispensing step is usually performed using a roll or the like, and is also usually a step of preliminarily forming the present composition into a sheet.
  • the sheet obtained in the dispensing step is preformed into a desired sealing material shape before the crosslinking step or the irradiation step.
  • a desired sealing material shape may be formed directly from the sheet obtained in the dispensing step, and the sheet obtained in the dispensing step may be cut or extruded into a rope shape (ribbon shape, etc.). Udon-shaped or the like is also synonymous with the shape), and the obtained rope-shaped material may be formed into a desired sealing material shape.
  • the crosslinking step when producing the present sealing material, it is preferable to include a crosslinking step before the irradiation step, and it is more preferable that the crosslinking step includes a primary crosslinking step and a secondary crosslinking step.
  • the cross-linking step is preferably performed using the desired sealing material shape obtained by the preforming.
  • the primary cross-linking step is preferably a step of heating and pressurizing the desired sealing material shape obtained by the preforming, and specifically, for example, the preformed material is put into a mold and heated.
  • Examples thereof include a step of cross-linking with a press machine or the like under pressure of about 2 to 15 MPa at a temperature of, for example, 150 to 200 ° C. for, for example, about 5 to 20 minutes.
  • the secondary cross-linking step is preferably a step of heating the molded product obtained in the primary cross-linking step, and specifically, using various ovens, preferably a vacuum oven, under normal pressure to reduced pressure. For example, a step of heating at a temperature of 150 to 300 ° C. for 1 to 24 hours, more preferably about 3 to 24 hours can be mentioned.
  • the radiation to be irradiated in the irradiation step is not particularly limited as long as it can crosslink the elastomer (A), and for example, X-rays, gamma rays, electron beams, proton rays, neutron rays, heavy particle beams, alpha rays, etc. Beta rays are mentioned, and among these, gamma rays and electron beams are preferable.
  • the radiation to be irradiated may be one type alone or two or more types.
  • the absorbed dose is preferably 1 to 120 kGy, more preferably 20 to 100 kGy. Irradiation with such an amount of radiation can reduce unreacted components that can become particles and emitted gas, does not excessively reduce the molecular weight of the elastomer (A), and has excellent plasma resistance, crack resistance, and the like. The material can be easily obtained.
  • the radiation irradiation step may be performed in two or more stages by changing the conditions.
  • the irradiation step is performed in an atmosphere of an inert gas such as nitrogen or argon.
  • Example 1 20 parts by mass of elastomer (A1-1) and 80 parts by mass of elastomer (A2-2), 1.0 part by mass of SIFEL 8070A (manufactured by Shin-Etsu Chemical Co., Ltd.), SIFEL 8070B (manufactured by Shin-Etsu Chemical Co., Ltd.) 1. 0 parts by mass, TAIC (manufactured by Mitsubishi Chemical Co., Ltd., triallyl isocyanurate) 6.0 parts by mass, and Perhexa 25B (manufactured by Nichiyu Co., Ltd.) 0.5 parts by mass were sequentially put into the kneader, and the current value was increased.
  • SIFEL 8070A manufactured by Shin-Etsu Chemical Co., Ltd.
  • SIFEL 8070B manufactured by Shin-Etsu Chemical Co., Ltd.
  • TAIC manufactured by Mitsubishi Chemical Co., Ltd., triallyl isocyanurate
  • Perhexa 25B
  • SIFEL 8070A and SIFEL 8070B contains a compound having a perfluoroskeleton having an ethylenically unsaturated bond.
  • the total time from the addition of the first component to the kneader to the stabilization of the current value after the addition of the final component was defined as the kneader kneading time.
  • the results are shown in Table 1.
  • Table 1 Generally, when kneading using a kneader, the current value stabilizes when each added component is uniformly kneaded. Therefore, as a guideline for the completion of kneading, a uniform composition is obtained when the current value stabilizes. It is often judged that a product has been obtained.
  • the obtained massive elastomer composition was subjected to a dispensing step (sheeting step) using a roll (roll interval: 8 mm, temperature: 50 ° C.).
  • sheeting step sheeting step
  • roll interval: 8 mm, temperature: 50 ° C. the case where the sheet can be formed from the lumpy elastomer composition
  • the sortability was evaluated as “NG”. The results are shown in Table 1.
  • the sheet obtained in the dispensing step is press-molded at 170 ° C. for 10 minutes under a pressure of 5 MPa using a compression vacuum press (primary cross-linking), and then the sheet after press-molding is placed in a vacuum oven (vacuum). Degree: 50 Pa) under reduced pressure, heated at 200 ° C. for 16 hours (secondary cross-linking). Then, the secondary crosslinked sheet was irradiated with radiation so that the absorbed dose was 80 kGy to obtain a molded product. The following normal physical properties of the obtained molded product were measured. The results are shown in Table 1.
  • Example 1 various evaluations were performed in the same manner as in Example 1 except that the elastomer shown in Table 1 was used in the amount shown in Table 1. The results are shown in Table 1.
  • Example 1 to 6 it was found that the time required to produce a uniform elastomer composition was short, and the elastomer compositions obtained in Examples 1 to 6 were excellent in dispensing property (sheet formability). .. In Comparative Examples 1 and 2, it took a long time to produce a uniform elastomer composition, and the elastomer compositions obtained in Comparative Examples 1 and 2 had poor dispenseability, specifically. , The elastomer composition did not get caught between the rolls or wound well around the rolls, so that a good sheet could not be formed.
  • Example 7 30 parts by mass of crosslinkable fluoroelastomer (A1-1) and 70 parts by mass of crosslinkable fluoroelastomer (A2-1), SIFEL 3590-N (manufactured by Shin-Etsu Chemical Industry Co., Ltd., perfluoro skeleton having ethylenically unsaturated bond) Compound-containing, one-component liquid type) 2 parts by mass, 6 parts by mass of TAIC, and 0.5 parts by mass of Perhexa 25B are sequentially placed in a kneader and kneaded until the current value stabilizes to obtain a massive elastomer composition. rice field. Using the obtained massive elastomer composition, a molded product was obtained in the same manner as in Example 1. The normal physical properties and the following plasma resistance of the obtained molded product were measured. The results are shown in Table 2.
  • Example 8 In Example 7, a lumpy elastomer composition was obtained in the same manner as in Example 7 except that the amount of SIFEL 3590-N used was changed to 10 parts by mass and the amount of Perhexa 25B used was changed to 1 part by mass. Using the obtained massive elastomer composition, a molded product was obtained in the same manner as in Example 1. The normal physical properties and the following plasma resistance of the obtained molded product were measured. The results are shown in Table 2.
  • Example 9 In Example 7, a lumpy elastomer composition was obtained in the same manner as in Example 7 except that the amount of SIFEL 3590-N used was changed to 20 parts by mass and the amount of Perhexa 25B used was changed to 1 part by mass. Using the obtained massive elastomer composition, a molded product was obtained in the same manner as in Example 1. The normal physical properties and the following plasma resistance of the obtained molded product were measured. The results are shown in Table 2.
  • Example 10 In Example 7, instead of 2 parts by mass of SIFEL 3590-N, 2 parts by mass of KE-1830 (manufactured by Shin-Etsu Chemical Co., Ltd., containing a compound having a siloxane skeleton having an ethylenically unsaturated bond, one-component liquid type) In the same manner as in Example 7 except that the above was used, a lumpy elastomer composition was obtained. Using the obtained massive elastomer composition, a molded product was obtained in the same manner as in Example 1. The normal physical properties and the following plasma resistance of the obtained molded product were measured. The results are shown in Table 2.
  • Example 11 to 12 and Comparative Examples 3 to 7 a massive elastomer composition was obtained in the same manner as in Example 1 except that the elastomer shown in Table 3 was used in the amount shown in Table 3.
  • the obtained massive elastomer composition was filled in a mold, press-molded at 170 ° C. for 10 minutes at 170 ° C. under a pressure of 5 MPa using a compression vacuum press machine (primary cross-linking), and then the sheet after press molding was pressed. It was heated at 200 ° C. for 16 hours under reduced pressure in a vacuum oven (vacuum degree: 50 Pa) (secondary cross-linking). Then, the secondary crosslinked sheet was irradiated with radiation so that the absorbed dose was 80 kGy to obtain a molded product. The normal physical properties of the obtained molded product were measured. The results are shown in Table 3.
  • Example 13 a radiation crosslinked body was prepared in the same manner as in Example 11 except that the elastomer shown in Table 4 was used in the amount shown in Table 4. However, in Example 15, SIFEL 8070A and SIFEL 8070B were not used.
  • Example 11 the elastomer shown in Table 4 was used in the amount shown in Table 4, and a secondary crosslinked product was prepared in the same manner as in Example 11 except that no irradiation was performed.
  • a measurement sample (AS214 O-ring) was prepared and prepared from the radiation crosslinked products obtained in Examples 13 to 15 or the secondary crosslinked products obtained in Comparative Examples 8 to 9 in accordance with JIS K 6262: 2013.
  • the O-ring was compressed by 25% in the thickness direction at 200 ° C. for 70 hours, then taken out from the compressor and 30 minutes later, the thickness of the crosslinked body was measured, and the compression set was calculated.
  • Table 4 The results are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の一実施形態は、シール材またはシール材の製造方法に関し、該シール材は、パーフルオロエラストマー以外の架橋性フルオロエラストマー(A)、架橋剤および架橋助剤を含むエラストマー組成物の放射線架橋体であるシール材であって、前記フルオロエラストマー(A)が、フッ素含有量が66~68質量%の範囲にあるパーフルオロエラストマー以外の架橋性フルオロエラストマー(A1)を含む。

Description

シール材およびシール材の製造方法
 本発明の一実施形態は、シール材またはシール材の製造方法に関する。
 従来より、シール材は、各種用途に幅広く使用されており、これらの用途の中でも、シール材に最も負荷のかかるシール材の用途の一例として、半導体製造装置等に使用されるシール材が挙げられる。
 このようなシール材としては、耐プラズマ性や耐ラジカル性に優れるシール材を得ることができることから、架橋性フルオロエラストマーが使用されている。
 このような架橋性フルオロエラストマー製のシール材は、通常、該架橋性フルオロエラストマーに、架橋剤や架橋助剤などの添加剤を配合して得られたエラストマー組成物を用い、このエラストマー組成物を成形、架橋することでシール材として使用されている。特に、得られるシール材の耐プラズマ性やシール性等の点から、前記架橋の際には、放射線を照射する工程を含む架橋が行われている(例えば、特許文献1)。
特開2004-131656号公報
 前述したように、架橋性フルオロエラストマーに添加剤を配合してエラストマー組成物とする際には、該エラストマー組成物から所望の物性を示すシール材を製造するために、該エラストマー組成物中の各成分は均一に混合している必要がある。
 しかしながら、従来の架橋性フルオロエラストマーを用いた場合、特に液状やオイル状の成分を用いる場合には、このような均一なエラストマー組成物を作製するのに長い時間を要しており、この点で改良の余地があった。
 また、作製されたエラストマー組成物から、生産性よくシール材を形成する際には、分出し工程により、エラストマー組成物をシート化することが通常行われている。この分出し工程は、通常、ロール間にエラストマー組成物を通して行われるが、従来のエラストマー組成物を用いた場合には、ロール間にエラストマー組成物が噛み込まなかったり、ロールにうまく巻付かなかったりして、シート化することが容易ではなかった(分出し性が悪かった)。従って、従来のエラストマー組成物は、成形性の点で改良の余地があった。
 さらに、従来のエラストマー組成物から形成されたシール材は、引張強さや切断時伸びなどのシール材としての特性の点でも改良の余地があった。
 本発明の一実施形態は、成形加工性よく製造することができ、シール性に優れ、引張強さおよび切断時伸びの大きいシール材を提供する。
 本発明者が、前記課題を解決すべく鋭意検討した結果、下記構成例によれば、前記課題を解決できることを見出し、本発明を完成した。
 本発明の構成例は以下の通りである。
 [1] パーフルオロエラストマー以外の架橋性フルオロエラストマー(A)、架橋剤および架橋助剤を含むエラストマー組成物の放射線架橋体であるシール材であって、
 前記フルオロエラストマー(A)が、フッ素含有量が66~68質量%の範囲にあるパーフルオロエラストマー以外の架橋性フルオロエラストマー(A1)を含む、
シール材。
 [2] 前記フルオロエラストマー(A)がパーオキサイド架橋可能なフルオロエラストマーである、[1]に記載のシール材。
 [3] 前記エラストマー組成物が、エチレン性不飽和結合を有するパーフルオロ骨格の化合物、および、エチレン性不飽和結合を有するシロキサン骨格の化合物から選ばれる少なくとも1種のエチレン性不飽和結合含有化合物を含む、[1]または[2]に記載のシール材。
 [4] 充填材の含有量が、前記フルオロエラストマー(A)100質量部に対し、5質量部以下である、[1]~[3]のいずれかに記載のシール材。
 [5] パーフルオロエラストマー以外の架橋性フルオロエラストマー(A)、架橋剤および架橋助剤を含み、かつ、該フルオロエラストマー(A)が、フッ素含有量が66~68質量%の範囲にあるパーフルオロエラストマー以外の架橋性フルオロエラストマー(A1)を含むエラストマー組成物、または、該エラストマー組成物の架橋物に放射線を照射する工程を含む、シール材の製造方法。
 本発明の一実施形態によれば、成形加工性よく製造することができ、シール性に優れ(圧縮永久ひずみが小さく)、引張強さおよび切断時伸びの大きいシール材を提供することができる。具体的には、短時間で均一なエラストマー組成物とすることができ、成形性、特に分出し性に優れるエラストマー組成物から、シール性に優れ、引張強さおよび切断時伸びの大きいシール材を提供することができる。
 また、本発明の一実施形態によれば、硬度、引張強さ、切断時伸び、および、100%伸びにおける引張応力(100%Mo)にバランスよく優れ、さらに、耐プラズマ性(耐ラジカル性)、耐クラック性、圧縮永久ひずみ等に優れるシール材を得ることができる。このため、該シール材は、半導体製造装置用シール材、プラズマ処理装置用シール材として好適に使用することができる。
≪シール材≫
 本発明の一実施形態に係るシール材(以下「本シール材」ともいう。)は、パーフルオロエラストマー以外の架橋性フルオロエラストマー(A)、架橋剤および架橋助剤を含むエラストマー組成物(以下「本組成物」ともいう。)の放射線架橋体であり、前記フルオロエラストマー(A)が、フッ素含有量が66~68質量%の範囲にあるパーフルオロエラストマー以外の架橋性フルオロエラストマー(A1)を含む。
 なお、本組成物の放射線架橋体とは、具体的には、本組成物自体、または、該本組成物の架橋物(例:本組成物を熱架橋して得られる架橋物)に放射線を照射する工程を含む方法で得られた放射線架橋体が挙げられる。
 本シール材は、例えば、種々の部材のガスケットやパッキンとして使用することができ、特に前記効果を奏するため、半導体製造装置用や、プラズマ処理装置用、特に、プラズマ処理チャンバーユニットの開口部に使用されるゲートバルブをはじめとした駆動部用として好適に使用することができる。
 本シール材の形状等は、用いる用途に応じて適宜選択すればよい。
 本シール材は、前記充填材を含まないシール材でありながら、以下の物性を有するシール材とすることができる。
 本シール材のJIS K 6253:2012に基づいて測定されたショアA硬度(タイプAデュロメータ硬度)は、好ましくは60以上である。
 本シール材のJIS K 6251:2017に基づいて測定された引張強さは、好ましくは10MPa以上である。
 本シール材のJIS K 6251:2017に基づいて測定された切断時伸びは、好ましくは130%以上である。
 本シール材のJIS K 6251:2017に基づいて測定された100%モジュラスは、好ましくは3.5MPa以上である。
 本シール材のJIS K 6262:2013に基づいて測定された圧縮永久ひずみは、好ましくは35%以下である。
<パーフルオロエラストマー以外の架橋性フルオロエラストマー(A)>
 前記エラストマー(A)は、フッ素含有量が66~68質量%の範囲にあるパーフルオロエラストマー以外の架橋性のフルオロエラストマー(A1)を含めば特に制限されない。
 エラストマー(A)は、1種を用いてもよく、2種以上を用いてもよく、エラストマー(A1)も、1種を用いてもよく、2種以上を用いてもよい。
 なお、本発明において、「エラストマー」と「ゴム」は同義であり、これらに特に区別はない。
 前記エラストマー(A)は、前記エラストマー(A1)以外である、パーフルオロエラストマー以外の他の架橋性フルオロエラストマー(以下「エラストマー(A2)」ともいう。)を含んでいてもよく、耐プラズマ性、耐薬品性等の化学的耐性に優れるシール材を容易に得ることができる等の点から、エラストマー(A2)を含んでいることが好ましい。
 エラストマー(A)がエラストマー(A2)を含む場合、該エラストマー(A2)は、1種を用いてもよく、2種以上を用いてもよい。
 エラストマー(A)は、未加硫フッ素ゴムなどともいい、架橋タイプとしては、パーオキサイド架橋、ポリオール架橋、アミン架橋、放射線架橋タイプなどが挙げられる。これらの中でも、プラズマ雰囲気下等において、パーティクルの発生源となる受酸剤を用いる必要がなく、得られたシール材を使用中に、パーティクルを発生させる恐れがない等の点で、パーオキサイド架橋可能なフルオロエラストマーであることが好ましい。
 エラストマー(A)の具体例としては、フルオロエラストマー(FKM)、テトラフルオロエチレン-プロピレン系エラストマー(FEPM)、フッ素系熱可塑性エラストマー(例:少なくとも1種のエラストマー性ポリマー鎖セグメントおよび少なくとも1種の非エラストマー性ポリマー鎖セグメントを含み、これらのうちの少なくとも一方は含フッ素ポリマー鎖セグメントであるエラストマー)が挙げられる。
 エラストマー(A)としては、各種半導体ドライプロセスで使用されるプラズマ(プラズマエッチング処理)に対する耐性を示すシール材を得ることができるようなエラストマーが好ましく、耐プラズマ性が比較的良好であり、シール性に優れるFKMがより好ましい。また、FKMは、安価で汎用性のある等の点でも好ましい。
 エラストマー(A)としては、従来公知の方法で合成したものを用いてもよく、市販品を用いてもよい。該市販品としては、ダイキン工業(株)製の「ダイエル」、ケマーズ社製の「バイトン」、3M社製の「ダイニオン」、ソルベイ社製の「テクノフロン」等が挙げられる。
 エラストマー(A1)のフッ素含有量は、66~68質量%である。
 エラストマー(A2)のフッ素含有量は、66~68質量%以外の範囲にあれば特に制限されないが、耐プラズマ性、耐薬品性等の化学的耐性に優れるシール材を容易に得ることができる等の点から、好ましくは69質量%以上、より好ましくは70質量%以上であり、より好ましくは73質量%以下、さらに好ましくは71質量%以下である。
 フッ素含有量が前記範囲にあるエラストマーを少なくとも2種類用いることで、短時間で均一なエラストマー組成物とすることができ、成形性に優れるエラストマー組成物を容易に得ることができ、硬度、引張強さ、切断時伸びおよび100%Moにバランスよく優れるシール材を容易に得ることができる。
 前記フッ素含有量は、19F-NMRや1H-NMR等を用いたフッ素の元素分析または質量分析法(MSスペクトル法)等により、測定・算出することができる。
 なお、本発明におけるフッ素含有量は、小数点以下を四捨五入した値である。
 エラストマー(A)のムーニー粘度は、好ましくは10以上、より好ましくは15以上、さらに好ましくは20以上であり、好ましくは140以下、より好ましくは120以下、さらに好ましくは80以下、特に好ましくは60以下である。
 エラストマー(A)のムーニー粘度が前記範囲にあると、成形性、特に分出し性に優れるエラストマー組成物を容易に得ることができる。
 なお、本明細書におけるムーニー粘度は、ASTM D 1646に準拠して測定した121℃におけるムーニー粘度(ML1+10)のことをいう。
 エラストマー(A2)の一態様としては、ムーニー粘度が、好ましくは40~140、より好ましくは40~120、さらに好ましくは40~60の範囲にある、エラストマー(A2-1)と、ムーニー粘度が、好ましくは10以上40未満、より好ましくは10~30の範囲にある、エラストマー(A2-2)とを用いることが好ましい。
 エラストマー(A2-1)および(A2-2)を用いることで、硬度、引張強さ、切断時伸びおよび100%Mo等の得られるシール材の常態物性と、成形性、特に分出し性等のエラストマー組成物の物性とに、よりバランスよく優れるため好ましい。
 エラストマー(A2)として、エラストマー(A2-1)および(A2-2)を用いる場合、これらの合計100質量%に対する、エラストマー(A2-1)の含有量は、好ましくは20~80質量%である。
 エラストマー(A2-1)の含有量が前記範囲にあると、硬度、引張強さ、切断時伸びおよび100%Mo等の得られるシール材の常態物性と、成形性、特に分出し性等のエラストマー組成物の物性とに、よりバランスよく優れるため好ましい。
 エラストマー(A)がエラストマー(A1)のみからなる場合、本組成物の固形分中のエラストマー(A1)の含有量は、好ましくは50質量%以上、より好ましくは70質量%以上であり、好ましくは97質量%以下、より好ましくは95質量%以下である。
 エラストマー(A1)含有量が前記範囲にあると、シール性、成形性、化学的耐性に優れるシール材を容易に得ることができる。
 なお、本明細書において、固形分とは、溶剤以外の成分のことをいう。
 エラストマー(A)がエラストマー(A2)を含む場合、本組成物の固形分中のエラストマー(A1)の含有量は、好ましくは2質量%以上、より好ましくは5質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下である。
 エラストマー(A1)含有量が前記範囲にあると、成形性および化学的耐性にバランスよく優れるシール材を容易に得ることができる。
 また、エラストマー(A)がエラストマー(A2)を含む場合、本組成物の固形分中のエラストマー(A2)の含有量は、好ましくは40質量%以上、より好ましくは50質量%以上であり、好ましくは95質量%以下、より好ましくは85質量%以下である。
 エラストマー(A2)含有量が前記範囲にあると、耐プラズマ性、耐薬品性等の化学的耐性に優れるシール材を容易に得ることができる。
 エラストマー(A)がエラストマー(A2)を含む場合、本組成物中のエラストマー(A1)および(A2)の合計含有量に対する、エラストマー(A1)の含有量は、好ましくは5質量%以上、より好ましくは10質量%以上であり、好ましくは40質量%以下、より好ましくは35質量%以下である。
 エラストマー(A1)および(A2)の含有量の質量比が前記範囲にあると、成形性および化学的耐性にバランスよく優れるシール材を容易に得ることができる。
[FKM]
 FKMとしては特に制限されないが、ポリマー主鎖中に水素原子(炭素-水素結合)を含むポリマーが挙げられ、具体的には、フッ化ビニリデン由来の構成単位を含むことが好ましい。
 FKMとしては特に制限されないが、具体例としては、フッ化ビニリデン-ヘキサフルオロプロピレン系重合体;フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン系重合体;フッ化ビニリデン-プロピレン-テトラフルオロエチレン系重合体;エチレン-テトラフルオロエチレン-パーフルオロアルキルビニルエーテル系重合体;フッ化ビニリデン-テトラフルオロエチレン-パーフルオロアルキルビニルエーテル系重合体が挙げられる。
 前記パーフルオロアルキルビニルエーテルの好適例としては、パーフルオロメチルビニルエーテルが挙げられる。
 これらの中でも、耐プラズマ性、耐熱性、耐薬品性等に優れる等の点から、三元系ポリマーであることが好ましく、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン系重合体がより好ましい。
 パーオキサイド架橋可能なフルオロエラストマーは、ヨウ素基、臭素基、シアノ基、ペルオキシ基、不飽和基等の官能性基を有することが好ましく、官能性基導入の容易性からヨウ素基、臭素基がより好ましい。
 ヨウ素基および/または臭素基を有するフルオロエラストマーは、例えば、該エラストマーを合成する際に、飽和または不飽和の含ヨウ素および/または含臭素化合物を1種以上用いることで得ることができる。
 前記含ヨウ素および/または含臭素化合物としては、例えば、下記式(1)または(2)で表される化合物が挙げられる。
 下記式(1)で表される化合物を用いることで、ヨウ素基および/または臭素基を側鎖に有するフルオロエラストマーを合成することができ、下記式(2)で表される化合物を用いることで、ヨウ素基および/または臭素基を末端に有するフルオロエラストマーを合成することができる。
  CY1 2=CY2RfX  (1)
[Y1およびY2はそれぞれ独立に、フッ素原子、水素原子またはメチル基であり、Rfは、水素原子の一部または全部がフッ素原子で置換された直鎖状または分岐状の含フッ素アルキレン基、または、該含フッ素アルキレン基の一部にエーテル結合を含む基であり、Xはヨウ素原子または臭素原子である。]
 前記式(1)で表される化合物の具体例としては、国際公開第2009/119409号に記載の化合物が挙げられる。
  InBrmR  (2)
[Rは炭素数1~12のフルオロ炭化水素基であり、nおよびmはそれぞれ独立に、0~2の整数であり、n+mは1または2である。]
 前記式(2)で表される化合物の具体例としては、特開2002-97329号公報や特開2008-56739号公報に記載の化合物が挙げられる。
<架橋剤>
 前記架橋剤としては特に制限されず、用いるエラストマー(A)の種類に応じて従来公知の架橋剤の中から選択して用いることができる。
 架橋剤は、1種を用いてもよく、2種以上を用いてもよい。
 前記架橋剤としては、例えば、FKMを用いる場合、パーオキサイド系架橋剤、ポリアミン系架橋剤、ポリオール系架橋剤、トリアジン系架橋剤等が挙げられる。
 これらの中でも、プラズマ雰囲気下等において、パーティクルの発生源となる、酸化マグネシウム、水酸化カルシウムなどの受酸剤を本組成物中に配合する必要がなく、得られたシール材を使用中に、パーティクルを発生させる恐れがない等の点でパーオキサイド系架橋剤が好ましい。
 パーオキサイド系架橋剤としては、例えば、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジクミルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルジクミルパーオキサイド、ベンゾイルパーオキサイド、2,5-ジメチル-2,5-(t-ブチルパーオキシ)ヘキシン-3、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、t-ブチルパーオキシイソプロピルカーボネート、ジ-(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、p-クロロベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシベンゾエート、1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド、α,α-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、t-ブチルパーオキシベンゼン、t-ブチルパーオキシマレイン酸が挙げられる。
 これらの中でも、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,4-ジクロロベンゾイルパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、α,α’-ビス(t-ブチルペルオキシ-m-イソプロピル)ベンゼンが好ましく、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンがより好ましい。
 本組成物中の架橋剤の含有量は、架橋反応が十分に進行し、硬度、引張強さ、切断時伸びおよび100%Moにバランスよく優れるシール材を容易に得ることができる等の点から、エラストマー(A)100質量部に対して、好ましくは0.2~4質量部、より好ましくは0.2~2.5質量部である。
<架橋助剤>
 前記架橋助剤としては特に制限されず、架橋剤の種類に応じて従来公知の架橋助剤を選択すればよい。
 架橋助剤は、1種を用いてもよく、2種以上を用いてもよい。
 例えば、パーオキサイド系架橋剤を用いる場合に使用される架橋助剤の例としては、トリアリルイソシアヌレート;トリアリルシアヌレート;トリメタリルイソシアヌレート;トリアリルホルマール;トリアリルトリメリテート;N,N'-m-フェニレンビスマレイミド;ジプロパギルテレフタレート;ジアリルフタレート;テトラアリルテレフタルアミド;エチレングリコール・ジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなどの多官能性(メタ)アクリレート;等のラジカルによる共架橋が可能な化合物(多官能性モノマー):高級カルボン酸の金属塩:多価アルコール(メタ)アクリレート:(メタ)アクリル酸金属塩が挙げられる。
 これらの中では、反応性に優れ、耐熱性に優れ、高硬度で高モジュラスのシール材を容易に得ることができる等の点から、トリアリルイソシアヌレートが好ましい。
 本組成物中の架橋助剤の含有量は、架橋反応が十分に進行し、硬度、引張強さ、切断時伸びおよび100%Moにバランスよく優れるシール材を容易に得ることができる等の点から、エラストマー(A)100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上、さらに好ましくは4質量部以上であり、好ましくは10質量部以下、より好ましくは7質量部以下、さらに好ましくは6質量部以下である。
 特に、プラズマ雰囲気下等において、シール材に生じ得るクラックを抑制するために、放射線架橋したシール材(放射線処理物)が好ましいが、この場合、下記のような充填材を用いなくても、より高硬度で高モジュラスのシール材を容易に得ることができる等の点から、本組成物中の架橋助剤の含有量は、エラストマー(A)100質量部に対して、好ましくは2質量部以上、さらに好ましくは4質量部以上であり、好ましくは7質量部以下、さらに好ましくは6質量部以下である。
 本組成物中の架橋剤の含有量に対する架橋助剤の含有量の質量比(架橋助剤の含有量/架橋剤の含有量)は、架橋剤を過不足なく反応させ、所望の物性を示すシール材を容易に得ることができる、特に、下記のような充填材を用いなくても、より高硬度で高モジュラスのシール材を容易に得ることができる等の点から、好ましくは4以上、より好ましくは6以上であり、好ましくは30以下、より好ましくは20以下である。
<その他の成分>
 本組成物は、前記成分の他に、本発明の効果を損なわない範囲で、必要に応じて、シール材に配合されてきた従来公知のその他の成分を含んでいてもよい。該その他の成分としては、例えば、エチレン性不飽和結合含有化合物;分子中に2個以上のヒドロシリル基を有する反応性有機珪素化合物;触媒;酸化マグネシウム、水酸化カルシウム等の受酸剤;アントラキノン系顔料、ペリレン系顔料、ジオキサジン系顔料等の有機顔料;可塑剤;加工助剤;加硫促進剤;老化防止剤;酸化防止剤;無機充填材;有機充填材が挙げられる。
 前記その他の成分はそれぞれ、1種を用いてもよいし、2種以上を用いてもよい。
[エチレン性不飽和結合含有化合物]
 本組成物は、耐プラズマ性に優れ、非粘着であるシール材を容易に得ることができる等の点から、エチレン性不飽和結合含有化合物(以下「化合物(B)」ともいう。)を含むことが好ましい。
 化合物(B)としては、エチレン性不飽和結合を有するパーフルオロ骨格の化合物(B1)、および、エチレン性不飽和結合を有するシロキサン骨格の化合物(B2)から選ばれる少なくとも1種の化合物が挙げられる。これらの中でも、より耐プラズマ性に優れるシール材を容易に得ることができる等の点から、前記化合物(B)は、化合物(B1)を含むことが好ましい。
 前記エチレン性不飽和結合としては、例えば、ビニル基、メチルビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基等の炭素数2~8のアルケニル基、ビニルフェニル基、(メタ)アクリロイル基、アリルオキシ基、スチリル基、プロパルギル基が挙げられる。これらの中でも、アルケニル基が好ましく、炭素数2~4のアルケニル基がより好ましく、ビニル基が特に好ましい。
 化合物(B)は、2種以上のエチレン性不飽和結合を有していてもよい。
 化合物(B)は、従来公知の方法で合成したものを用いてもよく、市販品を用いてもよい。該市販品としては、例えば、「SIFEL」(信越化学工業(株)製)が挙げられる。
 なお、化合物(B)を含む市販品としては、1成分型の市販品と2成分型の市販品等があるが、これらのいずれを使用してもよい。また、化合物(B)を含む市販品としては、液状、ペースト状、オイル状、ミラブル状等があるが、これらのいずれを使用してもよい。
 化合物(B)として市販品を用いる場合、該市販品には、分子中に2個以上のヒドロシリル基を有する反応性有機珪素化合物(例:特開2003-183402号公報、特開平11-116684号公報等に記載の有機ケイ素化合物)、触媒(例:特開2003-183402号公報、特開平11-116684号公報等に記載の触媒)、充填材(例:シリカ)等の添加剤が含まれている場合があり、前記化合物(B)としては、これらの添加剤を含むものを用いてもよい。
 本組成物が化合物(B)を含有する場合、本組成物中の化合物(B)の含有量は、より短時間で均一なエラストマー組成物とすることができ、耐プラズマ性により優れるシール材を容易に得ることができる等の点から、エラストマー(A)100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上であり、好ましくは50質量部以下、より好ましくは25質量部以下、さらに好ましくは10質量部以下である。
 本組成物が、化合物(B)と架橋剤とを含む場合、耐プラズマ性により優れるシール材を容易に得ることができる等の点から、本組成物中の架橋剤の含有量に対する化合物(B)の含有量の質量比(化合物(B)の含有量/架橋剤の含有量)は、好ましくは1以上、より好ましくは2以上であり、好ましくは20以下、より好ましくは10以下である。
[化合物(B1)]
 前記化合物(B1)は、エラストマー(A)以外の化合物である。
 前記化合物(B1)としては、例えば、エチレン性不飽和結合を有するパーフルオロポリエーテル構造の化合物、エチレン性不飽和結合を有するパーフルオロアルキレン構造の化合物が挙げられ、これらの中でも、エチレン性不飽和結合を有するパーフルオロポリエーテル構造の化合物(以下「化合物(B1-1)」ともいう。)が好ましい。
 本組成物が化合物(B1)を含む場合、本組成物に含まれる化合物(B1)は、1種でもよく、2種以上でもよい。
・化合物(B1-1)
 前記化合物(B1-1)としては、1分子中に2個以上のエチレン性不飽和結合を有するパーフルオロポリエーテルであることが好ましい。
 化合物(B1-1)の好適例としては、特開2003-183402号公報、特開平11-116684号公報、特開平11-116685号公報、特開2015-67737号公報に記載の化合物が挙げられる。
 化合物(B1-1)としては、例えば、下記式(1)で表される化合物が挙げられる。
 Z1-(X)p-(Rf-Q)a-Rf-(X)p-Z2 ・・・(1)
 Xは独立に-CH2-、-CH2O-、-CH2OCH2-、*-Si(R2)2-Ph-(Ph:フェニレン基)、*-Y-NR1SO2-または*-Y-NR1-CO-(但し、Yは-CH2-または*-Si(R2)2-Ph-である。なお、前記*部分が、Z1またはZ2に結合する。)である。
 Rfは2価パーフルオロポリエーテル基(2価パーフルオロオキシアルキレン基)である。
 pは独立に0または1である。aは0以上の整数であり、好ましくは0~10の整数、より好ましくは0~6の整数である。
 Qは下記式(2)、(3)または(4)で表される基である。
 R2は、炭素数1~10、特に炭素数1~8の置換または非置換の1価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基等のアルケニル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、これらの基の水素原子の一部または全部をハロゲン原子等で置換した基(例:クロロメチル基、クロロプロピル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、6,6,6,5,5,4,4,3,3-ノナフルオロヘキシル基等のフッ素置換アルキル基)が挙げられる。
 R1は、水素原子または前記R2として例示した基と同様の炭素数1~10、特に炭素数1~8の置換または非置換の1価炭化水素基であり、水素原子またはR2と同様の基を挙げることができ、例えば、メチル基、エチル基、プロピル基、イソプロピル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、これらの基の水素原子の一部をハロゲン原子等で置換した基(例:クロロメチル基、クロロプロピル基、3,3,3-トリフルオロプロピル基、6,6,6,5,5,4,4,3,3-ノナフルオロヘキシル基等のフッ素置換アルキル基)が挙げられる。
 Z1およびZ2はそれぞれ独立に、エチレン性不飽和結合含有基であり、-Si(エチレン性不飽和結合含有基)(R’)2であってもよい。
 該エチレン性不飽和結合含有基としては、1価のアルケニル基が好ましく、炭素数2~4の1価のアルケニル基がより好ましく、1価のビニル基が特に好ましい。
 R’は独立に、置換または非置換の1価の炭化水素基であり、具体的には、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、ペンチル基、ヘキシル基などのアルキル基;フェニル基、トリル基、キシリル基などのアリール基;3-クロロプロピル基、3,3,3-トリフルオロプロピル基などのハロゲン化アルキル基が挙げられ、これらの中でも、炭素数1~5のアルキル基が好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(2)~(4)において、X、pおよびR1は前記式(1)中のX、pおよびR1と同義である。R3およびR4はそれぞれ独立に、結合途中に酸素原子、窒素原子、ケイ素原子および硫黄原子から選ばれる1種以上を介在させてもよい置換または非置換の2価炭化水素基であり、式(2)中のR3および式(3)中のR4はそれぞれ独立に、下記式(5)または(6)で表される基であってもよい。
Figure JPOXMLDOC01-appb-C000002
 式(5)、(6)において、R5は置換または非置換の1価炭化水素基であり、R6は炭素原子、酸素原子、窒素原子、ケイ素原子および硫黄原子から選ばれる1種以上を含む基である。
 R3およびR4としては、置換または非置換の2価炭化水素基であれば特に限定されないが、炭素数1~20、特に2~12の2価炭化水素基が好適であり、具体的にはメチレン基、エチレン基、プロピレン基、メチルエチレン基、ブチレン基、ヘキサメチレン基等のアルキレン基、シクロヘキシレン基等のシクロアルキレン基、フェニレン基、トリレン基、キシリレン基、ナフチレン基、ビフェニレン基等のアリーレン基、これらの基の水素原子の一部をハロゲン原子等で置換した基、これらの置換または非置換のアルキレン基、アリーレン基の組み合わせが例示される。
 -(X)p-(Rf-Q)a-Rf-(X)p-は、-(O-R7n-[R7はパーフルオロアルカンジイル基を示し、nは2以上の整数を示す。複数存在するR7は互いに同一でも異なっていてもよい。]であることが好ましい。
 R7で表されるパーフルオロアルカンジイル基としては、例えば、Cm2mで表される基(mは2以上の整数)が挙げられ、直鎖状でも分岐状であってもよい。パーフルオロアルカンジイル基の炭素数(すなわちm)は、例えば1~10であり、好ましくは2~6、より好ましくは2~4、特に好ましくは2~3である。
 nは2以上であればよく、例えば10以上、好ましくは40以上、より好ましくは70以上である。また、nは、例えば300以下、好ましくは200以下、より好ましくは150以下である。
 -(O-R7n-は、下記Rfと同様の基であってもよい。
 前記式(1)で表される化合物は、下記式(1-1)で表される化合物であることが好ましい。
 CH2=CH-(X)p-(Rf-Q)a-Rf-(X)p-CH=CH2 ・・・(1-1)
[式(1-1)中の各符号の定義は、式(1)中の各符号の定義と同様ある。]
 また、前記式(1-1)で表される化合物は、aが0である化合物であることが好ましく、この場合、下記式(1-1-1)で表される。
 CH2=CH-(X)p-Rf-(X)p-CH=CH2 ・・・(1-1-1)
[式(1-1-1)中の各符号の定義は、式(1)中の各符号の定義と同様ある。]
 前記Rfの具体例としては、以下の基が挙げられる。
 -[CF(Z)OCF2p-(CF2r-[CF2OCF(Z)]q
(Zは、フッ素原子または-CF3であり、p、qおよびrは、p≧1、q≧1、2≦p+q≦200、好ましくは2≦p+q≦110、0≦r≦6を満たす整数である。)、
 -CF2CF2OCF2-(CF(CF3)OCF2s-(CF2r-(CF2OCF(CF3))t-CF2OCF2CF2
(r、sおよびtは、0≦r≦6、s≧0、t≧0、0≦s+t≦200、好ましくは2≦s+t≦110を満たす整数である。)、
 -CF(Z)-(OCF(Z)CF2u-(OCF2v-OCF(Z)-
(Zは、フッ素原子または-CF3であり、uおよびvは、1≦u≦100、1≦v≦50を満たす整数である。)、
 -CF2CF2-[OCF2CF2CF2w-OCF2CF2
(wは、1≦w≦100を満たす整数である。)
[化合物(B2)]
 前記化合物(B2)としては、1分子中に2個以上のエチレン性不飽和結合を有するポリシロキサンであることが好ましく、1分子中に2個以上のエチレン性不飽和結合を有し、かつ、ケイ素原子に有機基が結合したオルガノポリシロキサンであることが好ましい。前記エチレン性不飽和結合の結合位置は特に制限されない。
 本組成物が化合物(B2)を含む場合、該本組成物に含まれる化合物(B2)は、1種でもよく、2種以上でもよい。
 ケイ素原子に結合した有機基としては、例えば、前記エチレン性不飽和結合、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基が挙げられる。
 直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基等の炭素数1~20、好ましくは炭素数1~6の基が挙げられる。
 分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、t-ブチル基、2-エチルヘキシル基等の炭素数1~20、好ましくは炭素数1~6の基が挙げられる。
 環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等の炭素数3~20の基が挙げられる。
 アリール基としては、例えば、フェニル基、トリル基等の炭素数6~20の基が挙げられる。
 アラルキル基としては、例えば、ベンジル基、2-フェニルエチル基、2-メチル-2-フェニルエチル基等の炭素数7~20の基が挙げられる。
 ハロゲン化アルキル基としては、例えば、3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基等の炭素数1~20、好ましくは炭素数1~6の基が挙げられる。
 前記ケイ素原子に結合した有機基としては、直鎖状アルキル基、アルケニル基、アリール基が好ましく、炭素数1~6の直鎖状アルキル基、アルケニル基、アリール基がより好ましく、メチル基、ビニル基、フェニル基が特に好ましい。
 化合物(B2)の分子構造は特に限定されず、例えば、直鎖状、分岐鎖状、一部分岐を有する直鎖状、樹枝状(デンドリマー状)が挙げられ、好ましくは直鎖状、一部分岐を有する直鎖状である。化合物(B2)は、これらの分子構造を有する単一の重合体、これらの分子構造を有する共重合体、これらの重合体の2種以上の混合物であってもよい。
 化合物(B2)としては、例えば、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端メチルフェニルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖メチル(3,3,3-トリフルオロプロピル)ポリシロキサン、式:(CH33SiO1/2で表されるシロキサン単位と式:(CH32(CH2=CH)SiO1/2で表されるシロキサン単位と式:CH3SiO3/2で表されるシロキサン単位と式:(CH32SiO2/2で表されるシロキサン単位とからなるオルガノシロキサン共重合体、下記式(7)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
[式(7)中、R1はそれぞれ独立に、非置換または置換の1価炭化水素基であり、R2は独立に、アルキル基、アルコキシアルキル基、アルケニル基またはアシル基であり、bは2~100の整数であり、aは1~3の整数である。但し、式(7)中のR1およびR2のうち少なくとも2つは、前記エチレン性不飽和結合を含む。]
 式(7)中、R1はそれぞれ独立に、非置換または置換の、好ましくは炭素数1~10の1価炭化水素基であり、その例としては、前記ケイ素原子に結合した有機基として例示した基と同様の基が挙げられる。これらの中では、炭素数1~6の1価炭化水素基が好ましく、アルケニル基、アリール基、炭素数1~3のアルキル基がより好ましい。
 式(7)中のR2におけるアルキル基およびアルケニル基としては、例えば、前記ケイ素原子に結合した有機基として例示した基と同様の直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基が挙げられる。
 式(7)中のR2におけるアルコキシアルキル基としては、例えば、メトキシエチル基、メトキシプロピル基等の炭素数2~10の基が挙げられる。
 式(7)中のR2におけるアシル基としては、例えば、アセチル基、オクタノイル基等の炭素数2~10の基が挙げられる。
 式(7)中のbは、好ましくは10~50の整数であり、aは、好ましくは3である。
[反応性有機珪素化合物]
 前記反応性有機珪素化合物は化合物(B2)以外の化合物であり、好適には、特開2003-183402号公報、特開平11-116684号公報等に記載の分子中に2個以上のヒドロシリル基を有する化合物と同様の化合物等が挙げられる。
[触媒]
 前記触媒としては、好適には、特開2003-183402号公報、特開平11-116684号公報等に記載の触媒と同様の触媒等が挙げられる。
[有機顔料]
 前記有機顔料としては、好適には、国際公開第2016/043100号、特許第4720501号公報、国際公開第2004/094527号等に記載の有機顔料と同様の有機顔料等が挙げられる。
[充填材]
 前記無機充填材および有機充填材(以下これらを総称して、単に「充填材」ともいう。)は、前記架橋剤、架橋助剤および化合物(B)以外の粒子状(粉末状)の成分である。
 前記無機充填材としては、例えば、カーボンブラック、シリカ、硫酸バリウム、酸化チタン、酸化アルミニウムが挙げられる。
 前記有機充填材としては、例えば、PTFE、PFA、FEP、ETFE、PVDF等のフッ素樹脂、ポリエチレン樹脂、ポリイミド樹脂、シリコーン樹脂およびメラミン樹脂が挙げられる。
 本シール材を、プラズマ雰囲気下等の、パーティクルの発生が問題となるような用途に用いる場合には、前記充填材の含有量は、エラストマー(A)100質量部に対し、好ましくは5質量部以下、より好ましくは3質量部以下、最も好ましくは0質量部である。
<本組成物の製造方法>
 本組成物は、エラストマー(A)と、架橋剤と、架橋助剤と、必要により前記その他の成分とを混合(混練)することで製造することができ、好ましくは、エラストマー(A)と、架橋剤と、架橋助剤と、化合物(B)と、必要により前記その他の成分とを混合(混練)することで製造することができる。
 エラストマー(A)と、架橋剤、架橋助剤、前記その他の成分の混合順は特に制限されず、任意の順番で順次混合(混練)してもよく、これらを一括混合(混練)してもよいが、各成分が均一になるように、順次混合(混練)することが好ましい。
 前記混合(混練)の際には、従来公知の混合(混練)機を用いることができ、例えば、オープンロール、バンバリーミキサー、二軸ロール、ニーダーが挙げられる。
 また、前記混合(混練)の際には、混合(混練)機に応じて、必要により、加熱下または冷却下で混合(混練)してもよい。
<本シール材の製造方法>
 本シール材は、本組成物またはその架橋物に放射線を照射する工程(放射線照射工程)を含む方法で製造することができる。
 このように放射線照射工程を含むことで、耐プラズマ性(耐ラジカル性)、耐クラック性、圧縮永久ひずみ、非粘着性等により優れ、硬度、引張強さ、切断時伸びおよび100%Moにバランスよく優れるシール材を容易に得ることができ、プラズマ雰囲気下等において、シール材に生じ得るクラックを容易に抑制することができる。
 本組成物からシール材を形成する際には、成形作業の効率を向上させるためや、不良率を低減するためなどの点から、分出し工程を行うことが好ましい。この分出し工程は、通常、ロールなどを使用して行われ、通常、本組成物をシート状に予備的に成形する工程でもある。
 前記分出し工程で得られたシートは、前記架橋工程や放射線照射工程前に、所望のシール材の形状に予備成形することが好ましい。
 この予備成形は、分出し工程で得られたシートから直接所望のシール材形状を形成してもよく、分出し工程で得られたシートを、裁断や押出成形等により、ロープ状(リボン状、うどん状等も同義である。)等の形状にし、得られたロープ状物を所望のシール材形状にしてもよい。
 本シール材を製造する際には、前記放射線照射工程の前に、架橋工程を含むことが好ましく、該架橋工程は、一次架橋工程および二次架橋工程を含むことがより好ましい。
 前記架橋工程は、前記予備成形で得られた所望のシール材形状物を用いて行うことが好ましい。
 前記一次架橋工程としては、前記予備成形で得られた所望のシール材形状物を加熱加圧する工程であることが好ましく、具体的には、例えば予備成形された材料を金型に投入し、加熱プレス機等によって2~15MPa程度の加圧下、例えば150~200℃の温度で、例えば5~20分間程度架橋する工程が挙げられる。
 前記二次架橋工程としては、前記一次架橋工程で得られた成形体を加熱する工程であることが好ましく、具体的には、常圧~減圧下で各種オーブン、好ましくは真空オーブンを用いて、例えば150~300℃の温度で、1~24時間、より好ましくは3~24時間程度加熱する工程が挙げられる。
 この二次架橋工程により、架橋を促進させたり、前記一次架橋工程後に未反応成分が残存していたとしても、該未反応成分を分解揮散させることができ、より放出ガス発生の少ないシール材を得ることができる。
 前記放射線照射工程において照射する放射線としては、エラストマー(A)を架橋できるものであれば特に制限されないが、例えば、X線、ガンマ線、電子線、陽子線、中性子線、重粒子線、アルファー線、ベータ線が挙げられ、これらの中でも、ガンマ線、電子線が好ましい。
 照射する放射線は、1種単独でもよく、2種以上でもよい。
 放射線を照射する際には、吸収線量が、好ましくは1~120kGy、より好ましくは20~100kGyとなるように放射線を照射することが望ましい。このような量で放射線を照射すると、パーティクルや放出ガスとなり得る未反応成分を低減することができ、エラストマー(A)を過度に低分子量化せず、耐プラズマ性、耐クラック性等に優れるシール材を容易に得ることができる。
 なお、前記放射線照射工程は、条件を変更して、2段階以上に分けて行ってもよい。
 放射線を照射する際には、空気中で照射してもよいが、放射線照射時に酸素が存在すると、架橋反応が阻害され、シール材の機械的強度の低下や、シール材の表面にベタツキが生じる恐れがある。このため、前記放射線照射工程は、窒素やアルゴンなどの不活性ガスの雰囲気下で行なうことが好ましい。
 次に、本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
<エラストマー>
 下記実施例および比較例で用いたエラストマーは、以下の通りである。
・エラストマー(A1-1):テクノフロンP757(ソルベイ社製、フッ素含有量:67質量%)
・エラストマー(A1-2):テクノフロンP457(ソルベイ社製、フッ素含有量:67質量%)
・エラストマー(A2-1):ダイエルG912(ダイキン工業(株)製、フッ素含有量:71質量%)
・エラストマー(A2-2):テクノフロンP959(ソルベイ社製、フッ素含有量:70質量%)
・エラストマー(A2-3):テクノフロンP459(ソルベイ社製、フッ素含有量:70質量%)
・エラストマー(A2-4):テクノフロンPL855(ソルベイ社製、フッ素含有量:64質量%)
・エラストマー(A2-5):ダイエルLT302(ダイキン工業(株)製、フッ素含有量:65質量%)
[実施例1]
 エラストマー(A1-1)20質量部およびエラストマー(A2-2)80質量部、SIFEL 8070A(信越化学工業(株)製)1.0質量部、SIFEL 8070B(信越化学工業(株)製)1.0質量部、TAIC(三菱ケミカル(株)製、トリアリルイソシアヌレート)6.0質量部、および、パーヘキサ25B(日油(株)製)0.5質量部を順次ニーダーに入れ、電流値が安定するまで混練することで塊状のエラストマー組成物を得た。
 なお、SIFEL 8070AおよびSIFEL 8070Bの少なくとも一方には、エチレン性不飽和結合を有するパーフルオロ骨格の化合物が含まれている。
 ニーダーに最初の成分を添加してから、最終の成分を添加した後、電流値が安定するまでの総時間をニーダー練り時間とした。結果を表1に示す。
 一般的に、ニーダーを用いて混練りを行う場合、添加した各成分が均一に混練されると電流値が安定するため、混練りの完了の目安として電流値が安定した時点をもって、均一な組成物が得られたと判断することが多い。
 得られた塊状のエラストマー組成物を、ロール(ロール間隔:8mm、温度:50℃)を用いて、分出し工程(シート化工程)を行った。
 この際に、塊状のエラストマー組成物からシートを形成できた場合を、分出し性「OK」とし、ロール間にエラストマー組成物が噛み込まなかったり、ロールへの密着性が悪く、良好な分出しシートが得られなかった場合を、分出し性「NG」として、分出し性を評価した。結果を表1に示す。
 前記分出し工程で得られたシートを、圧縮真空プレス機を用い、5MPaの加圧下、170℃で10分間のプレス成形し(一次架橋)、次いで、プレス成形後のシートを、真空オーブン(真空度:50Pa)での減圧下、200℃で16時間加熱した(二次架橋)。その後、二次架橋されたシートに、吸収線量が80kGyとなるように放射線を照射することで成形体を得た。
 得られた成形体について、下記常態物性を測定した。結果を表1に示す。
<常態物性>
 常態物性として、JIS K 6253:2012に準拠して、ショアA硬度を測定し、かつ、JIS K 6251:2017に準拠して、引張強さ、切断時伸び、100%伸びにおける引張応力(100%Mo)を測定した。
[実施例2~6および比較例1~2]
 実施例1において、表1に示すエラストマーを、表1に示す量で用いた以外は実施例1と同様にして、各種評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例1~6では、均一なエラストマー組成物を製造するのにかかる時間が短く、実施例1~6で得られたエラストマー組成物は、分出し性(シート成形性)に優れることが分かった。
 なお、比較例1および2では、均一なエラストマー組成物を製造するのに長い時間を要し、また、比較例1および2で得られたエラストマー組成物は分出し性が悪く、具体的には、ロール間にエラストマー組成物が噛み込まなかったり、ロールへうまく巻付かなかったりして、良好なシートを形成することができなかった。
[実施例7]
 架橋性フルオロエラストマー(A1-1)30質量部および架橋性フルオロエラストマー(A2-1)70質量部、SIFEL 3590-N(信越化学工業(株)製、エチレン性不飽和結合を有するパーフルオロ骨格の化合物含有、一液型液状タイプ)2質量部、TAIC 6質量部、および、パーヘキサ25B 0.5質量部を順次ニーダーに入れ、電流値が安定するまで混練することで塊状のエラストマー組成物を得た。
 得られた塊状のエラストマー組成物を用いて、実施例1と同様にして成形体を得た。
 得られた成形体について、前記常態物性および下記耐プラズマ性を測定した。結果を表2に示す。
[実施例8]
 実施例7において、SIFEL 3590-Nの使用量を10質量部、パーヘキサ25Bの使用量を1質量部に変更した以外は、実施例7と同様にして、塊状のエラストマー組成物を得た。
 得られた塊状のエラストマー組成物を用いて、実施例1と同様にして成形体を得た。
 得られた成形体について、前記常態物性および下記耐プラズマ性を測定した。結果を表2に示す。
[実施例9]
 実施例7において、SIFEL 3590-Nの使用量を20質量部、パーヘキサ25Bの使用量を1質量部に変更した以外は、実施例7と同様にして、塊状のエラストマー組成物を得た。
 得られた塊状のエラストマー組成物を用いて、実施例1と同様にして成形体を得た。
 得られた成形体について、前記常態物性および下記耐プラズマ性を測定した。結果を表2に示す。
[実施例10]
 実施例7において、SIFEL 3590-N 2質量部の代わりに、KE-1830(信越化学工業(株)製、エチレン性不飽和結合を有するシロキサン骨格の化合物含有、一液型液状タイプ)2質量部を用いた以外は実施例7と同様にして、塊状のエラストマー組成物を得た。
 得られた塊状のエラストマー組成物を用いて、実施例1と同様にして成形体を得た。
 得られた成形体について、前記常態物性および下記耐プラズマ性を測定した。結果を表2に示す。
<耐プラズマ性>
 また、得られた成形体について、耐プラズマ性(質量減少率)を測定した。具体的には以下の通り測定した。
 電極径:φ300mm、電極間距離:50mmの平板プラズマ処理装置を用いて、RF500W、CF4ガス流量50sccm、O2ガス流量150sccm、真空度1torrの条件下で、得られた成形体にプラズマを3時間照射した。
 なお、得られた成形体は、プラズマ電極より6cm離れた場所に設置した。次いで、試験前後の成形体の質量を測定して、下記式により、質量減少率(%)を求めることで、耐プラズマ性を評価した。質量減少率が小さいほど耐プラズマ性に優れるといえる。
 質量減少率(%)=[(試験前の成形体の質量-試験後の成形体の質量)/試験前の成形体の質量]×100
Figure JPOXMLDOC01-appb-T000005
[実施例11~12および比較例3~7]
 実施例1において、表3に示すエラストマーを、表3に示す量で用いた以外は実施例1と同様にして、塊状のエラストマー組成物を得た。
 得られた塊状のエラストマー組成物を金型に充填し、圧縮真空プレス機を用い、5MPaの加圧下、170℃で10分間のプレス成形し(一次架橋)、次いで、プレス成形後のシートを、真空オーブン(真空度:50Pa)での減圧下、200℃で16時間加熱した(二次架橋)。その後、二次架橋されたシートに、吸収線量が80kGyとなるように放射線を照射することで成形体を得た。
 得られた成形体について、前記常態物性を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000006
[実施例13~15]
 実施例11において、表4に示すエラストマーを、表4に示す量で用いた以外は実施例11と同様にして、放射線架橋体を作製した。
 但し、実施例15では、SIFEL 8070AおよびSIFEL 8070Bを使用しなかった。
[比較例8~9]
 実施例11において、表4に示すエラストマーを、表4に示す量で用い、放射線を照射しなかった以外は実施例11と同様にして、二次架橋体を作製した。
<圧縮永久ひずみ>
 JIS K 6262:2013に準拠して、実施例13~15で得られた放射線架橋体または比較例8~9で得られた二次架橋体から測定試料(AS214 Oリング)を作製し、作製したOリングを、200℃で70時間厚さ方向に25%圧縮した後、圧縮装置から取り出して30分後の架橋体の厚さを測定し、圧縮永久ひずみを計算した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000007

Claims (5)

  1.  パーフルオロエラストマー以外の架橋性フルオロエラストマー(A)、架橋剤および架橋助剤を含むエラストマー組成物の放射線架橋体であるシール材であって、
     前記フルオロエラストマー(A)が、フッ素含有量が66~68質量%の範囲にあるパーフルオロエラストマー以外の架橋性フルオロエラストマー(A1)を含む、
    シール材。
  2.  前記フルオロエラストマー(A)がパーオキサイド架橋可能なフルオロエラストマーである、請求項1に記載のシール材。
  3.  前記エラストマー組成物が、エチレン性不飽和結合を有するパーフルオロ骨格の化合物、および、エチレン性不飽和結合を有するシロキサン骨格の化合物から選ばれる少なくとも1種のエチレン性不飽和結合含有化合物を含む、請求項1または2に記載のシール材。
  4.  充填材の含有量が、前記フルオロエラストマー(A)100質量部に対し、5質量部以下である、請求項1~3のいずれか1項に記載のシール材。
  5.  パーフルオロエラストマー以外の架橋性フルオロエラストマー(A)、架橋剤および架橋助剤を含み、かつ、該フルオロエラストマー(A)が、フッ素含有量が66~68質量%の範囲にあるパーフルオロエラストマー以外の架橋性フルオロエラストマー(A1)を含むエラストマー組成物、または、該エラストマー組成物の架橋物に放射線を照射する工程を含む、シール材の製造方法。
PCT/JP2021/033158 2020-09-28 2021-09-09 シール材およびシール材の製造方法 WO2022065055A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022551867A JPWO2022065055A1 (ja) 2020-09-28 2021-09-09
US18/246,701 US20230365848A1 (en) 2020-09-28 2021-09-09 Sealing Material and Method for Producing Sealing Material
EP21872186.8A EP4219644A4 (en) 2020-09-28 2021-09-09 SEALING MATERIAL AND METHOD FOR PRODUCING A SEALING MATERIAL
CN202180064235.5A CN116209845A (zh) 2020-09-28 2021-09-09 密封材料及密封材料的制造方法
KR1020237011597A KR20230078694A (ko) 2020-09-28 2021-09-09 시일재 및 시일재의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-162301 2020-09-28
JP2020162301 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022065055A1 true WO2022065055A1 (ja) 2022-03-31

Family

ID=80845295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033158 WO2022065055A1 (ja) 2020-09-28 2021-09-09 シール材およびシール材の製造方法

Country Status (7)

Country Link
US (1) US20230365848A1 (ja)
EP (1) EP4219644A4 (ja)
JP (1) JPWO2022065055A1 (ja)
KR (1) KR20230078694A (ja)
CN (1) CN116209845A (ja)
TW (1) TW202222954A (ja)
WO (1) WO2022065055A1 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116684A (ja) 1997-10-13 1999-04-27 Shin Etsu Chem Co Ltd 硬化性組成物
JPH11116685A (ja) 1997-10-09 1999-04-27 Shin Etsu Chem Co Ltd 硬化性組成物
JP2002097329A (ja) 2000-09-20 2002-04-02 Nippon Mektron Ltd 含フッ素共重合体組成物
JP2003183402A (ja) 2001-10-12 2003-07-03 Nichias Corp 耐プラズマ性フッ素系エラストマーシール材
JP2004131656A (ja) 2002-10-11 2004-04-30 Asahi Glass Co Ltd 半導体装置用シール材
WO2004094527A1 (ja) 2003-04-22 2004-11-04 Daikin Industries Ltd. プラズマ老化防止効果に優れた含フッ素エラストマー組成物およびその成形品
JP2008056739A (ja) 2006-08-29 2008-03-13 Nok Corp フッ素ゴム組成物
US20080157439A1 (en) * 2006-12-27 2008-07-03 Freudenberg-Nok General Partnership Methods for preparing articles from processable and dimensionally stable elastomer compositions
WO2009119409A1 (ja) 2008-03-27 2009-10-01 ダイキン工業株式会社 パーオキサイド架橋系含フッ素エラストマー組成物
JP2012102272A (ja) * 2010-11-11 2012-05-31 Mitsubishi Cable Ind Ltd ゴム組成物、およびそれを用いてなるゴム部材、搬送ローラおよびシール部材
JP2015067737A (ja) 2013-09-30 2015-04-13 日本バルカー工業株式会社 熱伝導性樹脂組成物及びこれを用いた熱伝導性シート
WO2016043100A1 (ja) 2014-09-16 2016-03-24 ダイキン工業株式会社 含フッ素エラストマー組成物および成形品
JP2018127510A (ja) * 2017-02-06 2018-08-16 Nok株式会社 過酸化物架橋ゴム用遅延剤マスターバッチとその製造方法
WO2019137920A1 (en) * 2018-01-10 2019-07-18 Solvay Specialty Polymers Italy S.P.A. Fluoroelastomer curable composition
WO2020089128A1 (en) * 2018-10-31 2020-05-07 Solvay Specialty Polymers Italy S.P.A. Curable composition of elastomers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033580A1 (ja) * 2002-10-11 2004-04-22 Asahi Glass Co., Ltd. 半導体装置用シール材およびその製造方法
JP5189728B2 (ja) * 2005-06-08 2013-04-24 日本バルカー工業株式会社 フッ素ゴムシール材

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116685A (ja) 1997-10-09 1999-04-27 Shin Etsu Chem Co Ltd 硬化性組成物
JPH11116684A (ja) 1997-10-13 1999-04-27 Shin Etsu Chem Co Ltd 硬化性組成物
JP2002097329A (ja) 2000-09-20 2002-04-02 Nippon Mektron Ltd 含フッ素共重合体組成物
JP2003183402A (ja) 2001-10-12 2003-07-03 Nichias Corp 耐プラズマ性フッ素系エラストマーシール材
JP2004131656A (ja) 2002-10-11 2004-04-30 Asahi Glass Co Ltd 半導体装置用シール材
JP4720501B2 (ja) 2003-04-22 2011-07-13 ダイキン工業株式会社 プラズマ老化防止効果に優れた含フッ素エラストマー組成物およびその成形品
WO2004094527A1 (ja) 2003-04-22 2004-11-04 Daikin Industries Ltd. プラズマ老化防止効果に優れた含フッ素エラストマー組成物およびその成形品
JP2008056739A (ja) 2006-08-29 2008-03-13 Nok Corp フッ素ゴム組成物
US20080157439A1 (en) * 2006-12-27 2008-07-03 Freudenberg-Nok General Partnership Methods for preparing articles from processable and dimensionally stable elastomer compositions
WO2009119409A1 (ja) 2008-03-27 2009-10-01 ダイキン工業株式会社 パーオキサイド架橋系含フッ素エラストマー組成物
JP2012102272A (ja) * 2010-11-11 2012-05-31 Mitsubishi Cable Ind Ltd ゴム組成物、およびそれを用いてなるゴム部材、搬送ローラおよびシール部材
JP2015067737A (ja) 2013-09-30 2015-04-13 日本バルカー工業株式会社 熱伝導性樹脂組成物及びこれを用いた熱伝導性シート
WO2016043100A1 (ja) 2014-09-16 2016-03-24 ダイキン工業株式会社 含フッ素エラストマー組成物および成形品
JP2018127510A (ja) * 2017-02-06 2018-08-16 Nok株式会社 過酸化物架橋ゴム用遅延剤マスターバッチとその製造方法
WO2019137920A1 (en) * 2018-01-10 2019-07-18 Solvay Specialty Polymers Italy S.P.A. Fluoroelastomer curable composition
WO2020089128A1 (en) * 2018-10-31 2020-05-07 Solvay Specialty Polymers Italy S.P.A. Curable composition of elastomers

Also Published As

Publication number Publication date
EP4219644A4 (en) 2024-10-23
TW202222954A (zh) 2022-06-16
KR20230078694A (ko) 2023-06-02
US20230365848A1 (en) 2023-11-16
JPWO2022065055A1 (ja) 2022-03-31
EP4219644A1 (en) 2023-08-02
CN116209845A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
JP4675907B2 (ja) ゴム組成物、プラズマ処理装置用シール材
JP5189728B2 (ja) フッ素ゴムシール材
JP5614551B2 (ja) 架橋性フッ素ゴム組成物および架橋ゴム物品
WO2022065057A1 (ja) エラストマー組成物、シール材およびシール材の製造方法
JP7562465B2 (ja) ゴム製品及びその製造方法
WO2022065053A1 (ja) エラストマー組成物、シール材およびシール材の製造方法
WO2022065054A1 (ja) エラストマー組成物、シール材およびシール材の製造方法
WO2022065055A1 (ja) シール材およびシール材の製造方法
WO2022065056A1 (ja) エラストマー組成物、シール材およびシール材の製造方法
WO2024202607A1 (ja) エラストマー組成物、エラストマー組成物の製造方法、シール材およびシール材の製造方法
JP7522418B1 (ja) シール材形成材料、シール材およびシール材の製造方法
WO2024214625A1 (ja) 含フッ素共重合体組成物及び架橋ゴム物品
JP2022188562A (ja) シール材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551867

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237011597

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021872186

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021872186

Country of ref document: EP

Effective date: 20230428