WO2022064725A1 - 減速装置及び電気機器 - Google Patents

減速装置及び電気機器 Download PDF

Info

Publication number
WO2022064725A1
WO2022064725A1 PCT/JP2020/048417 JP2020048417W WO2022064725A1 WO 2022064725 A1 WO2022064725 A1 WO 2022064725A1 JP 2020048417 W JP2020048417 W JP 2020048417W WO 2022064725 A1 WO2022064725 A1 WO 2022064725A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
bearing
motor
rotating shaft
axial direction
Prior art date
Application number
PCT/JP2020/048417
Other languages
English (en)
French (fr)
Inventor
友績 ▲ご▼
國智 顔
國▲みん▼ 王
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202080105337.2A priority Critical patent/CN116194687A/zh
Publication of WO2022064725A1 publication Critical patent/WO2022064725A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/46Systems consisting of a plurality of gear trains each with orbital gears, i.e. systems having three or more central gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • a speed reducer having a high reduction ratio uses a multi-stage planetary gear device that is long in the axial direction, so that the device becomes large.
  • a speed reducer having a multi-stage planetary gear device is proposed. According to this device, a high reduction ratio can be obtained.
  • a speed reducer having a two-stage planetary gear device is proposed, and a significantly high reduction ratio can be obtained by using the two-stage gear device.
  • a configuration is proposed in which the motor has a space in the center and the speed reducer is designed to be mounted in the space. In such a technique, the device as a whole is designed to be axially thin.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to realize a high reduction ratio (high output torque) and to make the thickness of the entire structure smaller.
  • the speed reducing device includes a first rotating shaft and a second rotating shaft that rotate about the central axis, and a first rotor arranged radially outside the first rotating shaft. From the second rotor arranged radially outside the second rotating shaft, the stator arranged between the first rotor and the second rotor, and the stator of the first rotor.
  • a motor having a first motor housing arranged on one side in the axial direction and a second motor housing arranged on the other side in the axial direction away from the stator of the second rotor, and the first motor.
  • a first gear that is arranged on one side in the axial direction away from the housing and rotates about the central axis, a second gear that meshes with the first gear, and a third gear that meshes with the second gear.
  • the motor comprises at least one bearing disposed radially outward of the first rotary shaft, comprising a carrier disposed between the first rotary shaft and a reduction component having the bearing. Is located between the first rotor and the first motor housing, the deceleration component comprises at least one bearing located radially inside the first gear, said first.
  • the second gear and the third gear each include two gears arranged adjacent to each other in the axial direction.
  • the first gear may include two gears arranged adjacent to each other in the axial direction.
  • the deceleration component includes a first ring member arranged between the third gear and the first motor housing, and a second ring member arranged between the third gear and the output shaft.
  • the first ring member is in contact with one end of the rotating shaft, and the second ring member is in contact with the other end of the rotating shaft.
  • the second rotating shaft includes a through hole penetrating along the axial direction, and the through hole is provided with a connecting member for connecting the first rotating shaft and the second rotating shaft. ing.
  • the first motor housing includes a first end portion on one side in the axial direction away from the first rotor, the bearing of the deceleration component includes a first bearing, and the first bearing is said.
  • the third gear may be located on the inner side in the radial direction, and the peripheral surface on the inner side in the radial direction of the first bearing and the first end portion may face each other in the radial direction.
  • the first motor housing further includes a second end portion connected to the first end portion on the other side in the axial direction approaching the first rotor, and the bearing of the deceleration component has a second bearing.
  • the second bearing is located between the first ring member and the first motor housing, and has a radial inner peripheral surface of the second bearing and the second convex portion. May be configured to face each other in the radial direction. It was
  • the motor is provided with a bearing on the other side of the second rotating shaft in the axial direction away from the first rotating shaft, and the second motor housing is one in the axial direction.
  • the second rotating shaft has a concave portion on the other end in the axial direction, and the bearing is arranged between the inner peripheral surface of the concave portion and the outer peripheral surface of the convex portion. Has been done. It was
  • the number of the second gears is at least two, and it is preferable that two or more of the second gears are arranged side by side in the circumferential direction with the central axis as the center. It was
  • the first gear is a ring gear
  • the second gear is a planetary gear
  • the third gear is a sun gear
  • the motor is preferably an axial magnetic flux motor. It was
  • the deceleration component further includes a bearing arranged radially outside the output shaft. It was
  • a positioning unit may be provided between the two second gears arranged adjacent to each other in the axial direction. It was
  • the radial outermost end of the first gear may be located radially inside the radial outermost end of the first motor housing. .. It was
  • the carrier may be configured such that one end is connected to the first rotating shaft and the other end is connected to the third gear. It was
  • the carrier may be configured such that one end is connected to the first rotating shaft and the other end is connected to the rotating shaft. It was
  • the deceleration device includes a motor and a deceleration component, the motor and the deceleration component are arranged in the axial direction, and the deceleration component is arranged on one side of the first motor housing away from the motor. It comprises a first gear, a second gear that meshes with the first gear, and a third gear that meshes with the second gear, the first gear, the second gear, and the third gear. , Located on one axial side of the first motor housing, the deceleration component comprises at least one bearing located radially inside the first gear, the first gear is at least one. Since the second gear and the third gear each include two gears arranged adjacent to each other in the axial direction, a high reduction ratio is realized and the thickness of the entire structure in the axial direction and the radial direction is increased. It can be made smaller.
  • the speed reducing device 100 is the first example of the speed reducing device, and includes a motor 1 and a speed reducing component 2.
  • a state in which the motor 1 and the deceleration component 2 are separated is shown.
  • the motor 1 and the deceleration component 2 are integrated in the axial direction by the bolt 34 to form the deceleration device 100. It was
  • the motor 1 is arranged on the radial outer side of the first rotating shaft 16 and the second rotating shaft 17 that rotate about the central axis C indicated by the one-point chain line, and the first rotating shaft 16.
  • the stator 11 is arranged between the first rotor 14 and the second rotor 15 arranged radially outside the second rotating shaft 17, and between the first rotor 14 and the second rotor 15.
  • a first motor housing 12 arranged on one side in the axial direction away from the stator 11 of the first rotor 14, and a second motor arranged on the other side in the axial direction away from the stator 11 of the second rotor 15. It includes a housing 13 and one bearing 18 disposed radially outward of the first rotating shaft 16.
  • the motor 1 includes two rotors and may be referred to herein as a double rotor motor. It was
  • the first motor housing 12 is located on the front side of the stator 11 and the second motor housing 13 is located on the rear side of the stator 11 with the stator 11 as a boundary.
  • the first rotor 14 is located in front of the stator 11 and between the stator 11 and the first motor housing 12.
  • the second rotor 15 is located behind the stator 11 and between the stator 11 and the second motor housing 14.
  • the bearing 18 is axially located between the first rotor 14 and the first motor housing 12.
  • the first rotor 14 and the second rotor 15 shown in the present embodiment are, for example, disk-shaped disc rotors. It was
  • the motor 1 and the deceleration component 2 are arranged in the axial direction, and the deceleration component 2 is provided on the front side of the motor 1.
  • the deceleration component 2 is on the front side of the first motor housing 12. Is located in.
  • the first motor housing 12 is connected to a first end portion 120 on one side in the axial direction away from the first rotor 14 and a second end portion 120 on the other side in the axial direction toward the first rotor 14. 121 and.
  • the first rotation shaft 16 is located inside the first end portion 120 and the second end portion 121 in the radial direction. It was
  • the bearing 18 is located between the second end 121 and the first rotating shaft 16.
  • the first rotary shaft 16 and the second rotary shaft 17 in the present embodiment are rotatably supported by one bearing 18 in the first motor housing 12.
  • a space can be formed on the front side of the first motor housing 12 as compared with the case where a plurality of bearings are provided on the front side of the stator 11.
  • the second rotating shaft 17 includes a through hole 170 penetrating in the axial direction.
  • the through hole 170 is located on the rear side of the second rotating shaft 17 in the axial direction.
  • the through hole 170 is provided with a connecting member 50 for connecting the first rotating shaft 16 and the second rotating shaft 17.
  • the connecting member 50 is, for example, a bolt.
  • the connecting member 50 is not limited to the bolt, and may be other than the bolt. It was
  • the first rotating shaft 16 includes a first hole 160 and a second hole 161.
  • the first hole 160 is located on the rear side of the first rotation shaft 16 in the axial direction and faces the second rotation shaft 17 side.
  • the second hole 161 is located on the front side of the first rotating shaft 16 in the axial direction and faces the speed reducing component 2.
  • the first hole 160 and the second hole 161 are both female screw holes having female threads, for example. It was
  • the connecting member 50 When connecting the first rotary shaft 16 and the second rotary shaft 17, the connecting member 50 is inserted through the through hole 170 and screwed through the first hole 160 to fasten the first rotary shaft 16 first. And the second rotating shaft 17 are connected to form a combined rotating shaft in which the two rotating shafts are combined.
  • the first rotating shaft 16 and the second rotating shaft 17 may have a hollow structure. As a result, the weight of the first rotating shaft 16 and the second rotating shaft 17 can be reduced.
  • the combined rotation axis referred to in the present specification means a rotation axis in which two rotation axes are combined so as to be connected in the axial direction. It was
  • the second hole 161 is provided with a connecting member 34 for connecting the combined rotary shaft and the speed reducing component 2 described above.
  • the connecting member 34 is, for example, a bolt.
  • the connecting member 34 is not limited to the bolt, and may be other than the bolt.
  • the combined rotary shaft and the deceleration component 2 are connected by inserting the connecting member 34 into the second hole 161 from the deceleration component 2 side and fastening the screw.
  • the speed reducing device 100 in which the motor 1 and the speed reducing component 2 shown in FIG. 3 are integrated is configured. It was
  • the reduction gear 2 includes two first gears 21 and 23 and first gears 21 and 23 arranged on one side in the axial direction away from the motor 1 of the first motor housing 12.
  • the two meshing second gears 22 and 24, the two third gears 30 and 31, and the third gears 30 and 31 drive the rotation of the second gears 22 and 24, and the second gear (book).
  • the output shaft 25 driven by the second gear 24), the rotary shaft 26, and the carrier 32 arranged between the output shaft 25 and the first rotary shaft 16 are provided. It was
  • the speed reduction component 2 includes two-stage planetary gear trains PGT1 and PGT2.
  • the planetary gear trains PGT1 and PGT2 each include three gears.
  • the planetary gear train PGT1 includes a first gear 21, a second gear 22, and a third gear 30.
  • the planetary gear train PGT2 includes a first gear 23, a second gear 24, and a third gear 31. It was
  • the planetary gear trains PGT1 and PGT2 are located on the outer side in the axial direction of the first motor housing 12 shown in FIG. 4, that is, on the front side. Further, the planetary gear trains PGT1 and PGT2 are both located on the radial outer side of the bearing 18. It was
  • the two first gears 21 and 23 are arranged adjacent to each other in the axial direction.
  • the first gear 21 is fixed to the first motor housing 12, and the first gear 23 is connected to the output shaft 25.
  • the two second gears 22 and 24 are arranged adjacent to each other in the axial direction.
  • the two second gears 22 and 24 are each attached to the rotating shaft 26 by a bearing 27.
  • the two third gears 30 and 31 are arranged adjacent to each other in the axial direction.
  • the two third gears 30 and 31 are attached to the carrier 32 by bolts 33 to form a common gear integrally configured. Since the speed reduction component 2 shown in the present embodiment is configured as a two-stage planetary gear device, a higher reduction ratio can be obtained as compared with the one-stage planetary gear device. It was
  • the reduction gear 2 is a second ring member 28 arranged between the third gear 30 and the first motor housing 12, and a second ring member 28 arranged between the third gear 31 and the output shaft 25.
  • the ring member 29 is provided.
  • the first ring member 28 is in contact with one end of the rotating shaft 26 of the third gear, and the second ring member 29 is in contact with the other end of the rotating shaft 26. That is, the rotating shaft 26 is fixed by the first ring member 28 and the second ring member 29.
  • the rotating shaft 26 is integrally configured with the first ring member 28 and the second ring member 29. As a result, the rotary shaft 26 is stably attached to the deceleration component 2.
  • the rotary shaft 26 is a rotary shaft common to the two-stage gear structure according to the present disclosure in a state of being integrated with the first ring member 28 and the second ring member 29. It was
  • the speed reduction component 2 includes at least one bearing arranged radially inside the first gear 21.
  • the bearing of the speed reduction component 2 includes at least the first bearing 38 and the second bearing 39.
  • the first bearing 38 is located radially inside the third gears 30 and 31.
  • the second bearing 39 is located between the first ring member 28 and the first motor housing 13. Then, when the motor 1 and the deceleration component 2 are connected, the peripheral surface on the inner side in the radial direction of the first bearing 38 and the first end portion 120 are positioned so as to face each other in the radial direction, and the second bearing The radial inner peripheral surface of 39 and the second convex portion 121 are aligned so as to face each other in the radial direction. It was
  • the carrier 32 is connected to the first rotating shaft 16 by the connecting member 34. Therefore, the carrier 32 functions as an input shaft for inputting a driving force to the deceleration component 2.
  • the carrier 32 can transmit the driving force of the motor 1 to, for example, the third gear 30. It was
  • the radial outermost end 320 of the carrier 32 is arranged radially inside the innermost end 250 of the output shaft 25 in the radial direction.
  • the carrier 32 can further reduce the axial thickness of the deceleration component 2 without interfering with the rotation of the output shaft 25. In this way, the axial thickness of the speed reducer 100 can be further reduced. It was
  • the reduction gear 2 further includes a bearing 35 arranged radially outside the output shaft 25, a housing 36 connected to the first gear 21, and a bearing 37 arranged radially inside the output shaft 25. ..
  • the output shaft 25 is rotatable within the bearing 35.
  • the bearing 35 has an output shaft 25 attached to the housing 36 of the reduction component 2.
  • the bearing 37 is supported by the carrier 32. It was
  • the bearing 18 is provided on the front side of the first motor housing 12 of the motor 1.
  • a large space can be formed to surround the large space, which can efficiently accommodate the first gears 21, 23, the second gears 22, 24 and the third gears 30, 31 of the reduction component 2. can.
  • the motor 1 and the deceleration component 2 are configured to be small in the axial direction and the radial direction. It was
  • the tip end side of the first motor housing 12 in the axial direction is supported by the first bearing 38 and the second bearing 39 of the speed reduction component 2. That is, the radial inner peripheral surface of the first bearing 38 and the first end portion 120 shown in FIG. 2 face each other in the radial direction, and the radial inner peripheral surface and the second convex portion of the second bearing 39. Since the motor 1 and the deceleration component 2 are connected with the 121 facing each other in the radial direction, the bearing 18 on the motor 1 side, the first bearing 38 on the deceleration component 2 side, and the second bearing 39 make the first bearing. Since the motor housing 12 is supported, the rigidity of the motor 1 can be increased. Therefore, the runout of the combined rotating shaft can be prevented. As a result, the stability of the combined rotary shaft can be improved, and the stability of the entire reduction gear can be improved. It was
  • the motor 1 shown in the present embodiment is preferably an axial magnetic flux motor (Axial flux motor). Since the motor 1 is short in the axial direction, the overall structure of the speed reducer 100 can be made more compact. It was
  • the first gears 21 and 23 are, for example, ring gears.
  • the second gears 22 and 24 are, for example, planetary gears.
  • the third gears 30 and 31 are, for example, sun gears. It was
  • the diameters of the two second gears according to the present disclosure are different.
  • the diameter of the second gear 22 is larger than the diameter of the second gear 24.
  • the configuration is not limited to the above, and for example, the diameter of the second gear 22 may be the same as the diameter of the second gear 24. It was
  • the second gear 22 in the planetary gear train PGT1 is capable of revolving around the third gear 30 with the central axis C as the axis on the radial inner circumference of the first gear 21. , Can rotate around the axis of rotation 26. Further, the third gear 30 in the planetary gear train PGT1 can rotate or make a circular motion about the central axis C together with the first rotating shaft 16. It was
  • the second gear 24 in the planetary gear train PGT2 can revolve around the third gear 31 with the central axis C as the axis on the radial inner circumference of the first gear 23, and , Can rotate around the axis of rotation 26. Further, the third gear 31 in the planetary gear train PGT2 can rotate or circularly move about the central axis C together with the first rotating shaft 16.
  • the first gears 21 and 23, the second gears 22 and 24, and the third gears 30 and 31 are not limited to the above configuration. It was
  • the second gears 22 and 24 may be fixed to the rotating shaft 26. Further, the tip of the rotating shaft 26 may be attached to the carrier 32. As a result, the second gears 22 and 24 can rotate around the rotating shaft 26 by the journal bearing or the roller bearing in the carrier 32. It was
  • the number of each of the second gears 22 and 24 may be two or more, and the two or more second gears 22 and 24 are arranged side by side in the circumferential direction with the central axis C as the center. ..
  • the number of each of the second gears 22 and 24 may be determined according to the reduction ratio required by the reduction component 2. In one embodiment, the number of each of the second gears 22 and 24 may be, for example, 4 to 10. In this embodiment, the number of each of the second gears 22 and 24 is 6. It was
  • the speed of the carrier 32 is determined by the planetary gear train PGT1 on the input side.
  • the number of the third gear 30 (sun gear), the second gear 22 (planetary gear), and the first gear 21 (ring gear) of the planetary gear train PGT1 is z1, z2, z3, respectively.
  • the number of the third gear 31 (sun gear), the second gear 24 (planetary gear), and the first gear 23 (ring gear) of the planetary gear train PGT2 is z4, z5, z6, respectively.
  • the reduction ratio in this case is determined by the following equation. However, the reduction ratio is determined by the number of gears of the planetary gear trains PGT1 and PGT2. It was
  • the speed reducing device 100 of the first embodiment includes a double rotor motor (motor 1) and a deceleration component 2, the double rotor motor and the deceleration component 2 are arranged in the axial direction, and the deceleration component 2 is the second.
  • a first gear arranged on one side of the motor housing 12 away from the motor 1, a second gear that meshes with the first gear, and a third gear that meshes with the second gears 22 and 24 are provided.
  • the first gear, the second gear, and the third gear are located on the axially outer side of the first motor housing, and the reduction gear 2 is located on the radial inner side of the first gear.
  • the double rotor motor and the speed reducer are further provided with bearings, the double rotor motor and the speed reducer can be made compact in the axial direction and the radial direction, and a speed reducer having a small volume and a strong drive capacity can be obtained. Further, since each of the first gear, the second gear, and the third gear includes two gears arranged adjacent to each other, a high reduction ratio is realized and a multi-stage in which three or more gears are overlapped. It is possible to make the thickness of the entire structure smaller than in the case of the structure.
  • the third gears 30 and 31 are manufactured separately and then assembled, or manufactured as one component including the carrier 32. Further, in the reduction gear 100, the first gear 23 and the output shaft 25 are manufactured separately and then assembled or manufactured as one component. It was
  • the speed reduction device 100A shown in FIG. 8 is a modification of the speed reduction device 100, and includes a motor 1A and a speed reduction component 2A.
  • the connecting member 34 integrally constitutes the deceleration device 100A with the motor 1A and the deceleration component 2A.
  • a configuration different from that of the speed reducer 100 will be described, and the configuration common to the speed reducer 100 is designated by a common reference numeral and detailed description thereof will be omitted. It was
  • the motor 1A is a second motor housing 12a, a second motor housing 13a, a bearing 18, a first rotary shaft 16a, a second rotary shaft 17a, and a second rotary shaft 16a away from the first rotary shaft 16a.
  • a bearing 19 is provided on the other side of the rotating shaft 17a in the axial direction.
  • the first motor housing 12a includes an end 122 that projects axially unilaterally away from the first rotor 14.
  • the second motor housing 13a includes a convex portion 130 projecting on one side in the axial direction, and the second rotating shaft 17a includes a concave portion 171 at the end on the other side in the axial direction.
  • the bearing 19 is arranged between the inner peripheral surface of the concave portion 171 and the end surface of the convex portion 130. It was
  • the rotating shaft is supported by two bearings 18 and 19. That is, since the second rotary shaft 17a on the rear side (rear side) is supported by the bearing 19 and the first rotary shaft 16a on the front side (front side) is supported by the bearing 18, the rigidity of the motor is increased. Can be enhanced. Then, the connecting rotary shaft and the deceleration component 2A are connected by inserting the connecting member 34 into the second hole 161 from the deceleration component 2 side and fastening the screw. As a result, the speed reducer 100A in which the motor 1A and the speed reduction component 2A shown in FIG. 9 are integrated is configured. It was
  • the two third gears 30 and 31 of the speed reducing component 2A are connected to the first rotating shaft 16a. That is, in the reduction gear 100A, the third gears 30 and 31 are directly connected to the combined rotation shaft without using a carrier, and the third gears 30 and 31 input the driving force to the reduction component 2A. Functions as an input axis. Further, the output shaft 25 is supported by a bearing 37 attached to the third gear 31. It was
  • the peripheral surface on the inner side of the bearing 39 in the radial direction and the convex portion 122 face each other in the radial direction, and the motor 1A and the speed reducing component 2A are connected to each other.
  • the bearing 39 of the deceleration component 2A supports the tip side of the first motor housing 12a in the axial direction, and the two bearings 18 and 19 on the motor 1 side support the first motor housing 12a, so that the rigidity of the motor 1 is increased. Can be enhanced. Therefore, similarly to the speed reducing device 100, it is possible to prevent the combined rotating shaft from swinging. As a result, the stability of the combined rotary shaft can be improved, and the stability of the entire reduction gear can be improved. It was
  • the speed reducing device 200 shown in FIG. 10 is a second example of the speed reducing device, and includes a motor 1 and a speed reducing component 2B.
  • a configuration different from that of the first embodiment will be described, and the configuration common to the speed reducing device 100 will be designated by a common reference numeral and detailed description thereof will be omitted. It was
  • the speed reduction component 2B includes two first gears 21a and 23a arranged on one side away from the motor 1 of the first motor housing 12 and two second gears 22a and 24a that mesh with the first gears 21a and 23a. , Two third gears 30, 31 and an output shaft 25a, two rotary shafts 26a, 26b, two housings 36a, 36b, and two first gears 21a, 23a.
  • a positioning ring 40 is provided. It was
  • the radial outermost ends 210 and 230 of the first gears 21a and 23a are located radially inside the radial outermost end 123 of the first motor housing 12. As a result, the radial size of the deceleration component 2B can be reduced. It was
  • the positioning ring 40 is arranged between the two first gears 21a and 23a, it is possible to restrict both of them from moving in the axial direction with each other.
  • the second gear 22a is attached to the rotating shaft 26a by the bearing 27, and the second gear 22b is attached to the rotating shaft 26b by the bearing 27. There is. It was
  • the housing 36a is fixed to the first motor housing 12, and the end portion of the rotating shaft 26a is fixed to the housing 36a.
  • the rotating shaft 26b is fixed to the output shaft 25a.
  • the output shaft 25a is assembled to the housing 36b by the bearing 35 and supported by the carrier 32a by the bearing 37. It was
  • the speed reduction component 2A shown in the present embodiment includes two stages of planetary gear trains PGT1 and PGT2, and each of the planetary gear trains PGT1 and PGT2 includes three gears.
  • the planetary gear train PGT1 includes a first gear 21a, a second gear 22a, and a third gear 30.
  • the planetary gear train PGT2 includes a first gear 23a, a second gear 24a, and a third gear 31. It was
  • the second gear 22a in the planetary gear train PGT1 of the reduction gear 2A is revolving around the third gear 30 with the central axis C as the axis on the inner circumference in the radial direction of the first gear 21a, and is a rotating shaft. It can rotate around 26a. Further, the third gear 30 in the planetary gear train PGT1 can rotate or make a circular motion about the central axis C together with the first rotating shaft 16.
  • the second gear 24a in the planetary gear train PGT2 of the reduction gear 2A is revolving around the third gear 31 with the central axis C as the axis on the inner circumference in the radial direction of the first gear 23a, and is a rotating shaft. It can rotate around 26b. Further, the third gear 31 in the planetary gear train PGT2 can rotate or circularly move about the central axis C together with the first rotating shaft 16. It was
  • the speed of the common gear is determined by the planetary gear train PGT1 on the input side.
  • the numbers of the third gear 31 (sun gear), the second gear 22a (planetary gear), and the first gear 21a (ring gear) of the planetary gear train PGT1 are z1, z2, and z3, respectively.
  • the number of the third gear 31 (sun gear), the second gear 24a (planetary gear), and the first gear 23a (ring gear) of the planetary gear train PGT2 is z4, z5, z6, respectively.
  • the reduction ratio in this case is determined by the following equation. However, the reduction ratio is determined by the number of gears of the planetary gear trains PGT1 and PGT2. It was
  • the speed reduction device 200A shown in FIG. 12 is a modification of the speed reduction device 200, and includes a motor 1A and a speed reduction component 2C.
  • the connecting member 34 integrally constitutes the speed reducing device 200A with the motor 1A and the speed reducing component 2C.
  • the motor 1A has the same configuration as the motor 1A of the speed reducer 100A. That is, in the motor 1A of the speed reducer 200A, since the rotating shaft is supported by the two bearings 18 and 19, the rigidity of the motor can be increased.
  • the connection member 34 is inserted into the hole from the deceleration component 2B side and screwed to connect the combined rotary shaft and the deceleration component 2B.
  • a speed reducer 200A in which the motor 1A and the speed reduction component 2B are integrated is configured. It was
  • the speed reducing component 2C includes two third gears 30a and 31a, and the third gears 30a and 31a are connected to the first rotating shaft 16a. That is, in the reduction gear 200A, the third gears 30a and 31a are directly connected to the combined rotation shaft without using a carrier, and the third gears 30a and 31a input the driving force to the reduction component 2C. Functions as an input axis. Further, the output shaft 25a is supported by a bearing 37 attached to the third gear 31a. It was
  • the speed reducing device 300 shown in FIG. 13 is a third example of the speed reducing device, and includes a motor 1B and a speed reducing component 2D.
  • the connecting member 34 integrally constitutes the speed reducing device 300 with the motor 1B and the speed reducing component 2D.
  • configurations different from those of the speed reducers 100 and 200 will be described, and the configurations common to the speed reducers 100 and 200 are designated by common reference numerals and detailed description thereof will be omitted. It was
  • the motor 1B includes a first motor housing 12b, and has the same configuration as that of the motor 1 except that the motor 1B has a first motor housing 12b.
  • the first motor housing 12b includes an end portion 124 that projects axially unilaterally away from the first rotor 14. It was
  • the reduction component 2D includes one first gear 21b arranged on one side away from the motor 1B of the first motor housing 12b, and two second gears 22b and 24b that mesh with the first gear 21b. It includes third gears 30b and 31b, one rotating shaft 26c, a housing 36b, a carrier 41, and a bearing 42. It was
  • the first gear 21b extends axially longer than the first gear 21 of the first embodiment.
  • the first gear 21b is a gear commonly used with respect to the second gears 22b and 24b.
  • the first gear 21b is supported by a bearing 42 attached to the housing 36b. Further, the radial outermost end 210 of the first gear 21b is located radially inside the radial outermost end 123 of the first motor housing 12b. As a result, the radial size of the deceleration component 2D can be reduced. It was
  • the third gear 30b is fixed to the first motor housing 12b.
  • the third gear 31b is attached to the housing 36b by the bearing 35 and supported by the carrier 41 by the bearing 37.
  • the third gear 31b of the third embodiment functions as an output shaft. It was
  • the two second gears 22b and 24b are each attached to the rotating shaft 26c by a bearing 27.
  • Each of the two second gears 22b and 24b can rotate as a rotation shaft 26c axis.
  • the rotating shaft 26c is fixed to a carrier 41 that inputs the driving force of the motor 1B to the deceleration component 2C. It was
  • the speed reduction component 2D shown in the present embodiment includes two stages of planetary gear trains PGT1 and PGT2, and each of the planetary gear trains PGT1 and PGT2 includes three gears.
  • the planetary gear train PGT1 includes a first gear 21b, a second gear 22b, a third gear 30b, and a carrier 41.
  • the planetary gear train PGT2 includes a first gear 23b, a second gear 24b, a third gear 31b, and a carrier 41. It was
  • the second gear 22b in the planetary gear train PGT1 of the reduction component 2D is revolving around the third gear 30b with the central axis C as the axis on the inner circumference in the radial direction of the first gear 21b, and is a rotating shaft. It can rotate around 26c. Further, the third gear 30b in the planetary gear train PGT1 can rotate or circularly move about the central axis C together with the first rotating shaft 16.
  • the second gear 24b in the planetary gear train PGT2 of the reduction gear 2C is capable of revolving around the central axis C on the radial inner circumference of the first gear 23b and around the third gear 31b, and is a rotating shaft. It can rotate around 26c. Further, the third gear 31b in the planetary gear train PGT2 can rotate or circularly move about the central axis C together with the first rotating shaft 16.
  • the speed of the carrier 41 is determined by the planetary gear train PGT1 on the input side.
  • the number of the third gear 31b (sun gear), the second gear 22b (planetary gear), and the first gear 21b (ring gear) of the planetary gear train PGT1 is z1, z2, z3, respectively.
  • the number of the third gear 31b (sun gear), the second gear 24b (planetary gear), and the first gear 23b (ring gear) of the planetary gear train PGT2 is z4, z5, z6, respectively.
  • the reduction ratio in this case is determined by the following equation. However, the reduction ratio is determined by the number of gears of the planetary gear trains PGT1 and PGT2. It was
  • the first gear 21b (ring gear) and the housing 36b of the speed reducing component 2D have a single configuration, the number of parts of the device as a whole can be reduced.
  • the first gear 21b may be manufactured as one component, may be manufactured as two components, and then may be connected and configured as one component. It was
  • the carrier 41 supports the intermediate portion in the axial direction of the rotating shaft 26c, and the second gears 22b and 24b installed at the front end and the rear end of the rotating shaft 26c are the first. Since the gear 21b and the third gears 30b and 31b are meshed with each other, the stability of the rotating shaft 26c is high. Therefore, in the third embodiment, it is not necessary to provide the first ring member 28 and the second ring member 29 in the first embodiment described above. Further, the number of parts of the entire device can be reduced, and the thickness of the entire structure can be made smaller. It was
  • the speed reduction device 300A shown in FIG. 15 is a modification of the speed reduction device 300, and includes a motor 1A and a speed reduction component 2D.
  • the connecting member 34 integrally constitutes the speed reducing device 300A with the motor 1A and the speed reducing component 2D.
  • the motor 1A has the same configuration as the motor 1A of the speed reducer 100A, and the deceleration component 2D has the same configuration as the deceleration component 2D of the speed reduction device 300.
  • the rigidity of the motor can be increased.
  • the speed reducing device 400 shown in FIG. 16 is a fourth example of the speed reducing device, and includes a motor 1 and a speed reducing component 2E.
  • the connecting member 34 integrally constitutes the speed reducing device 400 with the motor 1 and the speed reducing component 2E.
  • configurations different from those of the first to third embodiments will be described, and configurations common to the speed reducers 100, 200, and 300 are designated by common reference numerals and detailed description thereof will be omitted. It was
  • the reduction gear 2E includes two first gears 21 and 23, two second gears 22 and 24, two third gears 30c and 31c, an output shaft 25, a rotation shaft 26, and a third gear.
  • a ring member 28a arranged between the gear 30c and the first motor housing 12 and a carrier 43 arranged between the third gear 31c and the output shaft 25 are provided.
  • the carrier 43 functions as an input shaft for inputting the driving force of the motor 1 to the deceleration component 2D. It was
  • third gears 30c and 31c are separate bodies, they function as one gear by connecting the motor 1 and the reduction component 2E.
  • the third gears 30c and 31c are rotatable in the bearing 38 attached to the first motor housing 12. It was
  • the two second gears 22 and 24 are each attached to the rotating shaft 26 by a bearing 27. Each of the two second gears 22 and 24 can rotate about the rotation shaft 26. It was
  • the first ring member 28a abuts on one end of the rotating shaft 26, and the carrier 43 abuts on the other end of the rotating shaft 26.
  • the rotary shaft 26 is stably attached to the deceleration component 2E as in the first embodiment.
  • the output shaft 25 is attached to the housing 36 by the bearing 35 and is supported by the carrier 43 by the bearing 37. It was
  • the speed reduction component 2E shown in the present embodiment includes two stages of planetary gear trains PGT1 and PGT2, and each of the planetary gear trains PGT1 and PGT2 includes three gears.
  • the planetary gear train PGT1 includes a first gear 21, a second gear 22, a third gear 30c, and a carrier 43.
  • the planetary gear train PGT2 includes a first gear 23, a second gear 24, a third gear 31c, and a carrier 43. It was
  • the second gear 22 in the planetary gear train PGT1 of the reduction component 2E can revolve around the third gear 30c with the central axis C as the axis on the inner circumference in the radial direction of the first gear 21 and is a rotation shaft. It can rotate around 26. Further, the third gear 30c in the planetary gear train PGT1 can rotate or circularly move about the central axis C together with the first rotating shaft 16.
  • the second gear 24 in the planetary gear train PGT2 of the reduction gear 2D can revolve around the third gear 31c with the central axis C as the axis on the inner circumference in the radial direction of the first gear 23, and is a rotation shaft. It can rotate around 26. Further, the third gear 31c in the planetary gear train PGT2 can rotate or circularly move about the central axis C together with the first rotating shaft 16. It was
  • the speed of the carrier 43 is determined by the planetary gear train PGT1 on the input side.
  • the number of the third gear 31c (sun gear), the second gear 22 (planetary gear), and the first gear 21 (ring gear) of the planetary gear train PGT1 is z1, z2, z3, respectively.
  • the number of the third gear 31c (sun gear), the second gear 24 (planetary gear), and the first gear 23 (ring gear) of the planetary gear train PGT2 is z4, z5, z6, respectively.
  • the reduction ratio in this case is determined by the following equation. However, the reduction ratio is determined by the number of gears of the planetary gear trains PGT1 and PGT2. It was
  • the speed reducing device 400 of the fourth embodiment since the carrier 43 is directly fixed to the rotating shaft 26, the stability of the rotating shaft 26 is high. Therefore, in the fourth embodiment, it is not necessary to provide the second ring member 29 in the first embodiment described above. Further, the number of parts of the entire device can be reduced, and the thickness of the entire structure can be made smaller. It was
  • the speed reduction device 400A shown in FIG. 18 is a modification of the speed reduction device 400, and includes a motor 1C and a speed reduction component 2E.
  • the connecting member 34 integrally constitutes the speed reducing device 400A with the motor 1C and the speed reducing component 2E.
  • the motor 1C includes a first motor housing 12 similar to the motor 1 and a second motor housing 13a similar to the motor 1A.
  • the deceleration component 2E has the same configuration as the deceleration component 2E of the deceleration device 400.
  • the combined rotation shaft is supported by the two bearings 18 and 19, and the combination rotation shaft is supported by the two bearings 38 and 39 on the reduction component 2E side, so that the rigidity of the motor is further increased. Can be enhanced.
  • the connection member 34 is inserted into the second hole (not shown) from the deceleration component 2E side and fastened with screws to connect the combined rotary shaft and the deceleration component 2E.
  • a speed reducer 400A in which the motor 1C and the speed reduction component 2E are integrated is configured. It was
  • the present invention is not limited to the description of the first embodiment to the fourth embodiment, and the motor and the deceleration component may have other structures. It was
  • the speed reducer of the present disclosure can be used in all technical fields in which the speed reducer is used.
  • it is a speed reducer for which miniaturization is required, and can be widely used for a speed reducer in which a motor and a speed reducer are integrally configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear Transmission (AREA)
  • Retarders (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

高減速比を実現するとともに、構造全体の厚みをより小さくできるようにする。減速装置は、モータと減速部品とを備え、モータと減速部品とが軸方向に配置され、減速部品は第1のモータハウジングのモータから離れる一方に配置された第1のギアと、第1のギアと噛み合う第2のギアと、第2のギアと噛み合う第3のギアとを備え、第1のギア、第2のギア、及び第3のギアは、第1のモータハウジングの軸方向一方側に位置し、減速部品は、第1のギアの径方向内側に配置された少なくとも1つの軸受を備え、第1のギアは、少なくとも1つであり、第2のギア及び第3のギアは、各々が、軸方向において互いに隣接して配置された2つのギアを含むため、高減速比を実現するとともに、軸方向及び径方向における構造全体の厚みをより小さくすることができる。

Description

減速装置及び電気機器
本開示は、減速装置及び電気機器に関する。本願は、2020年9月24日に日本に出願された特願2020-159870号に基づき優先権を主張し、その内容をここに援用する。
従来、モータと減速機とを組み合わせた技術がある。モータと減速機との一般的な組み合わせは、減速機をモータに直接的に接続する構造となっている。モータと減速機とを組み合わせたアクチュエータは、ロボットアプリケーションの主要コンポーネントである。大きなトルクを出力するためには、モータの高速低トルク出力を低速高トルク出力に変換するように、減速機が高い減速比を有する必要がある。 
通常、高い減速比を有する減速機は、軸方向に長い多段遊星歯車装置を使用しているため、装置が大型化する。例えば、下記の特許文献1及び2においては、多段遊星歯車装置を有する減速機が提案されている。この装置によれば、高い減速比を得ることができる。 また、例えば、下記の特許文献3においては、2段の遊星歯車装置を有する減速機が提案されており、2段歯車装置を使用することで大幅に高い減速比を得ることができる。 さらに、例えば、下記の特許文献4においては、モータが中心にスペースを有し、減速機が当該スペースに取り付けられるように設計されている構成が提案されている。かかる技術では、装置全体として軸方向に薄くなるように設計されている。
米国特許第8829750号明細書 中国公開特許第103545981号 米国公開特許第20110009232号 中国公開特許第101258664号
しかし、上記特許文献1及び2の多段遊星歯車装置を有する減速機や上記特許文献3の2段遊星歯車装置を有する減速機と、モータとを単純に組み合わせただけの技術では、高い減速比を得ることができるものの、装置全体として軸方向に大型化するという問題がある。一方、上記特許文献4では、減速機をモータのスペースに内蔵させるために、モータの外径が大きくなる。 
本発明は、上記の事情に鑑みてなされたものであり、高減速比(高出力トルク)を実現するとともに、構造全体の厚みをより小さくできるようにすることを目的としている。
本開示の一態様に係る減速装置は、中心軸線を軸として回転する第1の回転軸及び第2の回転軸と、前記第1の回転軸の径方向外側に配置された第1のロータと、前記第2の回転軸の径方向外側に配置された第2のロータと、前記第1のロータと前記第2のロータとの間に配置されたステータと、前記第1のロータのステータから離れる軸方向一方側に配置された第1のモータハウジングと、前記第2のロータのステータから離れる軸方向他方側に配置された第2のモータハウジングと、を有するモータと、前記第1のモータハウジングから離れる軸方向一方側に配置され前記中心軸線を軸として回転する第1のギアと、前記第1のギアと噛み合う第2のギアと、前記第2のギアと噛み合う第3のギアと、前記第2のギアが自転可能に取り付けられる回転軸と、前記第3のギアが前記第2のギアの回転を駆動し、前記第2のギアによって駆動される出力軸と、前記出力軸と前記第1の回転軸との間に配置されたキャリヤと、を有する減速部品と、を備え、モータは、前記第1の回転軸の径方向外側に配置された少なくとも1つの軸受を備え、この軸受は、前記第1のロータと前記第1のモータハウジングとの間に位置しており、減速部品は、前記第1のギアの径方向内側に配置された少なくとも1つの軸受を備え、前記第1のギアは、少なくとも1つであり、前記第2のギア及び前記第3のギアは、各々が、軸方向において互いに隣接して配置された2つのギアを含む。 前記第1のギアは、軸方向において互いに隣接して配置された2つのギアを含む構成でもよい。 前記減速部品は、前記第3のギアと前記第1のモータハウジングとの間に配置された第1のリング部材と、前記第3のギアと前記出力軸との間に配置された第2のリング部材と、を備え、前記第1のリング部材が前記回転軸の一端に接し、前記第2のリング部材が前記回転軸の他端に接している。 前記第2の回転軸は、軸方向に沿って貫通する貫通孔を備え、前記貫通孔には、前記第1の回転軸と前記第2の回転軸とを接続するための接続部材が設けられている。 前記第1のモータハウジングは、前記第1のロータから離れる軸方向一方側に第1端部を備え、前記減速部品の前記軸受は、第1の軸受を含み、前記第1の軸受は、前記第3のギアの径方向内側に位置しており、前記第1の軸受の径方向内側の周面と前記第1端部とが径方向に対向している構成でもよい。 また、前記第1のモータハウジングは、前記第1のロータに近づく軸方向他方側に前記第1端部に繋がる第2端部をさらに備え、前記減速部品の前記軸受は、第2の軸受をさらに含み、前記第2の軸受は、第1のリング部材と前記第1のモータハウジングとの間に位置しており、前記第2の軸受の径方向内側の周面と前記第2凸部とが径方向に対向している構成でもよい。 
本開示に係る別の実施形態によれば、モータは、前記第1の回転軸から離れる前記第2の回転軸の軸方向他方側に軸受を備え、前記第2のモータハウジングは、軸方向一方側に突出する凸部を備え、前記第2の回転軸は、軸方向他方側の端に凹部を備え、前記軸受は、前記凹部の内周面と前記凸部の外周面との間に配置されている。 
前記第2のギアの数は、少なくとも2以上であり、2以上の前記第2のギアが、前記中心軸線を中心として周方向に並んで配置されることが好ましい。 
前記第1のギアは、リングギアであり、前記第2のギアは、遊星ギアであり、前記第3のギアは、太陽ギアであることが好ましい。 
前記モータは、軸方向磁束モータであることが好ましい。 
前記減速部品は、前記出力軸の径方向外側に配置された軸受をさらに備えることが好ましい。 
本開示に係る別の実施形態によれば、軸方向において隣接して配置された2つの前記第2のギアの間に位置決め部を備える構成でもよい。 
本開示に係る別の実施形態によれば、前記第1のギアの径方向最外端は、前記第1のモータハウジングの径方向最外端よりも径方向内側に位置している構成でもよい。 
本開示に係る別の実施形態によれば、前記キャリヤは、一端が前記第1の回転軸に接続され、他端が前記第3のギアに接続される構成でもよい。 
本開示に係る別の実施形態によれば、前記キャリヤは、一端が前記第1の回転軸に接続され、他端が前記回転軸に接続される構成でもよい。 
本開示の一態様に係る減速装置を備える電気機器を提供することができる。
本開示の一態様に係る減速装置は、モータと減速部品とを備え、上記モータと上記減速部品とが軸方向に配置され、減速部品は上記第1のモータハウジングの上記モータから離れる一方に配置された第1のギアと、第1のギアと噛み合う第2のギアと、第2のギアと噛み合う第3のギアとを備え、第1のギア、第2のギア、及び第3のギアは、第1のモータハウジングの軸方向一方側に位置し、減速部品は、第1のギアの径方向内側に配置された少なくとも1つの軸受を備え、第1のギアは、少なくとも1つであり、第2のギア及び第3のギアは、各々が、軸方向において互いに隣接して配置された2つのギアを含むため、高減速比を実現するとともに、軸方向及び径方向における構造全体の厚みをより小さくすることができる。
減速装置の第1の実施形態であって、減速部品とモータとが分離された状態を示す斜視図である。 第1の実施形態の減速部品とモータとが分離された状態の構成を示す断面図である。 第1の回転軸及び第2の回転軸の構成を部分的に示す断面図である。 第1の実施形態の構成を示す断面図である。 第1の実施形態の減速部品の遊星歯車列を示す図である。 第1の実施形態の減速部品の一部の構成を示す斜視図である。 第1の実施形態の減速部品の一部であって、1段目の遊星歯車列の構成を示す上面図である。 第1の実施形態の減速部品の一部であって、2段目の遊星歯車列の構成を示す上面図である。 減速装置の第1の実施形態の変形例であって、減速部品とモータとが分離された状態を示す斜視図である。 第1の実施形態の変形例の構成を示す断面図である。 減速装置の第2の実施形態の構成を示す断面図である。 第2の実施形態の減速部品の遊星歯車列を示す図である。 減速装置の第2の実施形態の変形例の構成を示す断面図である。 減速装置の第3の実施形態の構成を示す断面図である。 第3の実施形態の減速部品の遊星歯車列を示す図である。 減速装置の第3の実施形態の変形例の構成を示す断面図である。 減速装置の第4の実施形態の構成を示す断面図である。 第4の実施形態の減速部品の遊星歯車列を示す図である。 減速装置の第4の実施形態の変形例の構成を示す断面図である。
図1-図18を参照して、本開示の例として、減速装置の実施形態について説明する。以下では、説明の便宜上、モータの第1の回転軸及び第2の回転軸の中心軸線を中心とする半径方向を「径方向」といい、当該中心軸線周りの方向を「周方向」といい、当該中心軸線の延出方向及びそれと平行な方向を「軸方向」というものとする。また、軸方向に、モータが減速部品を指向する方向を「前方」といい、「前方」と逆向きとなる方向を「後方」というものとする。 
[第1の実施形態] 図1に示すように、本開示に係る減速装置100は、減速装置の第1例であって、モータ1と、減速部品2とを備える。図示の例では、モータ1と減速部品2とが分離された状態を示している。そして、ボルト34によって、軸方向にモータ1と減速部品2とが一体となって減速装置100が構成される。 
図2に示すように、モータ1は、一点鎖線で示す中心軸線Cを軸として回転する第1の回転軸16及び第2の回転軸17と、第1の回転軸16の径方向外側に配置された第1のロータ14と、第2の回転軸17の径方向外側に配置された第2のロータ15と、第1のロータ14と第2のロータ15との間に配置されたステータ11と、第1のロータ14のステータ11から離れる軸方向一方側に配置された第1のモータハウジング12と、第2のロータ15のステータ11から離れる軸方向他方側に配置された第2のモータハウジング13と、第1の回転軸16の径方向外側に配置された1つの軸受18と、を備える。モータ1は、2つのロータを備えており、本明細書ではダブルロータモータと呼ぶことがある。 
図2の例では、ステータ11を境にして、ステータ11の前方側に第1のモータハウジング12が位置し、ステータ11の後方側に第2のモータハウジング13が位置している。第1のロータ14は、ステータ11の前方であって、ステータ11と第1のモータハウジング12との間に位置している。また、第2のロータ15は、ステータ11の後方であって、ステータ11と第2のモータハウジング14との間に位置している。軸受18は、軸方向に第1のロータ14と第1のモータハウジング12との間に位置している。本実施形態に示す第1のロータ14及び第2のロータ15は、例えば、円盤状のディスクロータである。 
本実施形態において、モータ1と減速部品2とは、軸方向に配置され、減速部品2がモータ1の前方側に設けられており、例えば、減速部品2が第1のモータ
ハウジング12の前方側に位置している。 
第1のモータハウジング12は、第1のロータ14から離れる軸方向一方側に第1端部120と、第1のロータ14に近づく軸方向他方側に第1端部120に繋がる第2端部121と、を備える。第1端部120及び第2端部121の径方向内側に第1の回転軸16が位置している。 
本実施形態において、軸受18は、第2端部121と第1の回転軸16との間に位置している。本実施形態における第1の回転軸16及び第2の回転軸17は、第1のモータハウジング12において1つの軸受18により回転可能に支持される。これにより、例えば、ステータ11の前方側に複数の軸受を設ける場合と比較して、第1のモータハウジング12の前方側にスペースを形成することができる。 
図3に示すように、第2の回転軸17は、軸方向に貫通する貫通孔170を備える。貫通孔170は、軸方向において、第2の回転軸17の後方側に位置している。貫通孔170には第1の回転軸16と第2の回転軸17とを接続するための接続部材50が設けられる。接続部材50は、例えばボルトである。接続部材50はボルトに限定されず、ボルト以外でもよい。 
図2及び図3に示すように、第1の回転軸16は、第1の孔160と、第2の孔161とを備える。第1の孔160は、軸方向において、第1の回転軸16の後方側に位置し、第2の回転軸17側に向いている。第2の孔161は、軸方向において、第1の回転軸16の前方側に位置し、減速部品2側に向いている。第1の孔160及び第2の孔161は、いずれも例えば雌ネジを有する雌ネジ孔である。 
第1の回転軸16と第2の回転軸17とを接続する際には、貫通孔170から接続部材50を挿入し、第1の孔160でネジ締結することによって、第1の回転軸16及び第2の回転軸17が接続されて、2つの回転軸を組み合わせた組み合わせ回転軸を形成することができる。第1の回転軸16及び第2の回転軸17は、空洞構造であってもよい。これにより、第1の回転軸16及び第2の回転軸17の重さを軽くすることができる。本明細書でいう組み合わせ回転軸とは、2つの回転軸を軸方向に連なるように組み合わせた回転軸を意味する。 
第2の孔161には、上記した組み合わせ回転軸と減速部品2とを接続するための接続部材34が設けられる。接続部材34は、例えばボルトである。接続部材34はボルトに限定されず、ボルト以外でもよい。減速部品2側から第2の孔161に接続部材34を挿入し、ネジ締結することによって組み合わせ回転軸と減速部品2とが接続される。これにより、図3に示すモータ1と減速部品2とが一体となった減速装置100が構成される。 
次に、減速部品2の構成について詳述する。図4に示すように、減速部品2は、第1のモータハウジング12のモータ1から離れる軸方向一方側に配置された2つの第1のギア21、23と、第1のギア21、23と噛み合う2つの第2のギア22、24と、2つの第3のギア30、31と、第3のギア30、31が第2のギア22、24の回転を駆動し、第2のギア(本実施形態では第2のギア24)によって駆動される出力軸25と、回転軸26と、出力軸25と第1の回転軸16との間に配置されたキャリヤ32と、を備える。 
減速部品2は、図5に示すように、2段の遊星歯車列PGT1,PGT2を備える。遊星歯車列PGT1,PGT2は、各々が3つのギアを含む。具体的には、遊星歯車列PGT1は、第1のギア21と、第2のギア22と、第3のギア30とを含む。遊星歯車列PGT2は、第1のギア23と、第2のギア24と、第3のギア31とを含む。 
遊星歯車列PGT1及びPGT2は、図4に示す第1のモータハウジング12の軸方向外側、つまり、前方側に位置している。また、遊星歯車列PGT1及びPGT2は、いずれも軸受18の径方向外側に位置している。 
2つの第1のギア21、23は、軸方向において互いに隣接して配置されている。本実施形態では、2つの第1のギア21、23のうち、第1のギア21が第1のモータハウジング12に固定され、第1のギア23は出力軸25に接続されている。また、2つの第2のギア22、24は、軸方向において互いに隣接して配置されている。2つの第2のギア22、24は、各々が軸受27によって回転軸26に取り付けられている。さらに、2つの第3のギア30、31は、軸方向において互いに隣接して配置されている。2つの第3のギア30、31は、ボルト33によってキャリヤ32に取り付けられて、一体となって構成された共通ギアとなる。本実施形態に示す減速部品2は、2段の遊星歯車装置として構成されるため、1段の遊星歯車装置と比較して高い減速比を得ることができる。 
減速部品2は、第3のギア30と第1のモータハウジング12との間に配置された第1のリング部材28と、第3のギア31と出力軸25との間に配置された第2のリング部材29とを備える。第1のリング部材28が第3のギアの回転軸26の一端に接しており、第2のリング部材29が回転軸26の他端に接している。つまり、回転軸26は、第1のリング部材28、及び第2のリング部材29によって固定されている。回転軸26は、第1のリング部材28、及び第2のリング部材29と一体となって構成されている。これにより、回転軸26は、減速部品2において安定して取付けられている。回転軸26は、第1のリング部材28、及び第2のリング部材29と一体となった状態で、本開示に係る2段ギア構造において共通する回転軸となる。 
減速部品2は、第1のギア21の径方向内側に配置された少なくとも1つの軸受を備える。本実施形態では、減速部品2の軸受は、第1の軸受38と第2の軸受39とを少なくとも含む。第1の軸受38は、第3のギア30、31の径方向内側に位置している。第2の軸受39は、第1のリング部材28と第1のモータハウジング13との間に位置している。そして、モータ1と減速部品2とが接続されるとき、第1の軸受38の径方向内側の周面と第1端部120とが径方向に対向して位置が合わせられ、第2の軸受39の径方向内側の周面と第2凸部121とが径方向に対向して位置が合わせられる。 
キャリヤ32は、接続部材34により第1の回転軸16に接続される。そのため、キャリヤ32は、減速部品2へ駆動力を入力する入力軸として機能する。キャリヤ32は、モータ1の駆動力を例えば第3のギア30に伝達することができる。 
キャリヤ32の径方向最外端320は、出力軸25の径方向最内端250よりも径方向内側に配置されている。これにより、キャリヤ32は、出力軸25の回転に干渉することなく、減速部品2の軸方向厚さをさらに低減することができる。このように、減速装置100の軸方向厚さをさらに低減することができる。 
減速部品2は、出力軸25の径方向外側に配置された軸受35と、第1のギア21に接続されるハウジング36と、出力軸25の径方向内側に配置された軸受37とをさらに備える。出力軸25は、軸受35内で回転可能となっている。軸受35は、出力軸25を減速部品2のハウジング36に取り付けられている。軸受37は、キャリヤ32によって支持されている。 
本実施形態では、図4に示すように、1つの軸受18が軸方向にステータ11の前方側に位置しているので、モータ1の第1のモータハウジング12の前方側には、軸受18を囲む大きなスペースを形成することができ、当該大きなスペースは、減速部品2の第1のギア21、23、第2のギア22、24及び第3のギア30、31を効率的に収容することができる。これにより、モータ1及び減速部品2は、軸方向及び径方向に小さく構成される。 
さらに、本実施形態では、減速部品2の第1の軸受38及び第2の軸受39によって、第1モータハウジング12の軸方向における先端側が支持されている。すなわち、図2に示した第1の軸受38の径方向内側の周面と第1端部120とが径方向に対向し、第2の軸受39の径方向内側の周面と第2凸部121とが径方向に対向して、モータ1と減速部品2とが接続されるため、モータ1側の軸受18、減速部品2側の第1の軸受38、第2の軸受39によって第1のモータハウジング12を支持するため、モータ1の剛性を高めることができる。そのため、組み合せ回転軸の振れを防止できる。これにより、組み合せ回転軸の安定性が向上し、減速装置全体の安定性を向上させることができる。 
本実施形態に示すモータ1は、軸方向磁束モータ(Axial flux motor)であることが好ましい。モータ1は、軸方向に短いため、減速装置100の全体構造をよりコンパクトにすることができる。 
本実施形態では、図6に示すように、第1のギア21、23は、例えばリングギアである。第2のギア22、24は、例えば遊星ギアである。第3のギア30、31は、例えば太陽ギアである。 
本開示に係る2つの第2のギア、すなわち、第2のギア22と第2のギア24との直径は異なっている。例えば、第2のギア22の径が第2のギア24の直径よりも大きい。また、上記構成に限らなくてもよく、例えば、第2のギア22の直径が第2のギア24の直径と同じでもよい。 
図7Aに示すように、遊星歯車列PGT1における第2のギア22は、第1のギア21の径方向内周に中心軸線Cを軸として第3のギア30の周囲を公転可能であり、かつ、回転軸26の周りに自転可能である。また、遊星歯車列PGT1における第3のギア30は、第1の回転軸16とともに中心軸線Cを軸として回転または円運動が可能である。 
図7Bに示すように、遊星歯車列PGT2における第2のギア24は、第1のギア23の径方向内周に中心軸線Cを軸として第3のギア31の周囲を公転可能であり、かつ、回転軸26の周りに自転可能である。また、遊星歯車列PGT2における第3のギア31は、第1の回転軸16とともに中心軸線Cを軸として回転または円運動が可能である。なお、第1のギア21、23、第2のギア22、24、第3のギア30、31は、上記の構成に限定されない。 
第2のギア22、24は、回転軸26に固定されてもよい。また、回転軸26の先端がキャリヤ32に取り付けられてもよい。これにより、第2のギア22、24がキャリヤ32においてジャーナル軸受又はローラ軸受により回転軸26周りに回転することができる。 
第2のギア22、24の各々の数は、2つ以上であってもよく、当該2つ以上の第2のギア22、24が中心軸線Cを中心として周方向に並んで配置されている。第2のギア22、24の各々の数は、減速部品2が取得必要な減速比に応じて決定されてもよい。一つの実施形態において、第2のギア22、24の各々の数は、例えば4ないし10であってもよい。本実施形態では、第2のギア22、24の各々の数は6である。 
ここで、キャリヤ32の速度は、入力側の遊星歯車列PGT1によって決定される。図4の例では、遊星歯車列PGT1の第3のギア30(太陽ギア)、第2のギア22(遊星ギア)、第1のギア21(リングギア)の個数はそれぞれz1,z2,z3とし、遊星歯車列PGT2の第3のギア31(太陽ギア)と、第2のギア24(遊星ギア)と、第1のギア23(リングギア)の個数はそれぞれz4,z5,z6とする。この場合の減速比は、以下の式から決定される。もっとも、減速比は、遊星歯車列PGT1、PGT2のギア数により決まる。 
Figure JPOXMLDOC01-appb-M000001
このように、第1の実施形
態の減速装置100は、ダブルロータモータ(モータ1)と減速部品2とを備え、ダブルロータモータと減速部品2とが軸方向に配置され、減速部品2は第1のモータハウジング12のモータ1から離れる一方に配置された第1のギアと、第1のギアと噛み合う第2のギアと、第2のギア22、24と噛み合う第3のギアとを備え、第1のギア、第2のギア、及び第3のギアは、第1のモータハウジングの軸方向外側に位置し、減速部品2は、第1のギアの径方向内側に配置された少なくとも1つの軸受をさらに備えるため、ダブルロータモータ及び減速機は、軸方向及び径方向におけるコンパクト化を実現でき体積が小さくて駆動能力の強い減速装置を得ることができる。 また、第1のギア、第2のギア、第3のギアの各々が互いに隣接して配置された2つのギアを含むため、高減速比を実現するとともに、3つ以上のギアが重なった多段構造とした場合よりも構造全体の厚みをより小さくできるようにすることができる。 
なお、減速装置100では、第3のギア30および31は別々に製造されてから組み立てられるか、キャリヤ32を含む1つの部品として製造される。また、減速装置100では、第1のギア23と出力軸25は別々に製造されてから組み立てられるか、1つの部品として製造される。 
[第1の実施形態の変形例] 図8に示す減速装置100Aは、減速装置100の変形例であり、モータ1Aと、減速部品2Aとを備える。接続部材34によって、モータ1Aと減速部品2Aとが一体となって減速装置100Aが構成される。以下では、減速装置100と異なる構成について説明するものとし、減速装置100と共通する構成については、共通の符号を付してその詳細な説明は省略する。 
モータ1Aは、第1のモータハウジング12aと、第2のモータハウジング13aと、軸受18と、第1の回転軸16aと、第2の回転軸17aと、第1の回転軸16aから離れる第2の回転軸17aの軸方向他方側に軸受19を備える。第1のモータハウジング12aは、第1のロータ14から離れる軸方向一方側に突出する端部122を備える。第2のモータハウジング13aは、軸方向一方側に突出する凸部130を備え、第2の回転軸17aは、軸方向他方側の端に凹部171を備える。軸受19は、凹部171の内周面と凸部130の端面との間に配置されている。 
モータ1Aでは、2つの軸受18、19によって回転軸が支持されている。すなわち、リア側(後方側)の第2の回転軸17aは、軸受19によって支持され、フロント側(前方側)の第1の回転軸16aは軸受18によって支持されているため、モータの剛性を高めることができる。そして、減速部品2側から第2の孔161に接続部材34を挿入し、ネジ締結することによって組み合わせ回転軸と減速部品2Aとが接続される。これにより、図9に示すモータ1Aと減速部品2Aとが一体となった減速装置100Aが構成される。 
減速部品2Aの2つの第3のギア30、31は、第1の回転軸16aに接続されている。つまり、減速装置100Aでは、キャリヤを用いずに、第3のギア30、31が直接的に組み合わせ回転軸に接続されており、第3のギア30、31が減速部品2Aへの駆動力を入力する入力軸として機能する。また、出力軸25は、第3のギア31に取り付けられた軸受37によって支持されている。 
減速装置100Aでは、軸受39の径方向内側の周面と凸部122とが径方向に対向して、モータ1Aと減速部品2Aとが接続される。減速部品2Aの軸受39により、第1モータハウジング12aの軸方向における先端側を支持するとともに、モータ1側の2つの軸受18、19によって第1のモータハウジング12aを支持するため、モータ1の剛性を高めることができる。そのため、減速装置100と同様に、組み合せ回転軸の振れを防止できる。これにより、組み合せ回転軸の安定性が向上し、減速装置全体の安定性を向上させることができる。 
[第2の実施形態] 図10に示す減速装置200は、減速装置の第2例であり、モータ1と、減速部品2Bとを備える。以下では、第1の実施形態と異なる構成について説明するものとし、減速装置100と共通する構成については、共通の符号を付してその詳細な説明は省略する。 
減速部品2Bは、第1のモータハウジング12のモータ1から離れる一方に配置された2つの第1のギア21a、23aと、第1のギア21a、23aと噛み合う2つの第2のギア22a、24aと、2つの第3のギア30、31と、出力軸25aと、2つの回転軸26a,26bと、2つのハウジング36a、36bと、2つの第1のギア21a、23aの間に配置された位置決めリング40と、を備える。 
第1のギア21a、23aの径方向最外端210、230は、第1のモータハウジング12の径方向最外端123よりも径方向内側に位置している。これによって減速部品2Bの径方向サイズを小さくすることができる。 
位置決めリング40は、2つの第1のギア21a、23aの間に配置されているため、双方が互いに軸方向に移動するのを規制することができる。また、第2の実施形態2では、第1の実施形態と異なり、第2のギア22aが軸受27によって回転軸26aに取り付けられ、第2のギア22bが軸受27によって回転軸26bに取り付けられている。 
さらに、第2の実施施形態では、ハウジング36aが第1のモータハウジング12に固定され、回転軸26aの端部がハウジング36aに固定されている。一方、回転軸26bは、出力軸25aに固定されている。出力軸25aは、軸受35によってハウジング36bに組み付けられ、軸受37によってキャリヤ32aに支持されている。 
本実施形態に示す減速部品2Aは、図11に示すように、2段の遊星歯車列PGT1,PGT2を備えており、遊星歯車列PGT1,PGT2は、各々が3つのギアを含む。具体的には、遊星歯車列PGT1は、第1のギア21aと、第2のギア22aと、第3のギア30とを含む。遊星歯車列PGT2は、第1のギア23aと、第2のギア24aと、第3のギア31とを含む。 
減速部品2Aの遊星歯車列PGT1における第2のギア22aは、第1のギア21aの径方向内周に中心軸線Cを軸として第3のギア30の周囲を公転可能であり、かつ、回転軸26aの周りに自転可能である。また、遊星歯車列PGT1における第3のギア30は、第1の回転軸16とともに中心軸線Cを軸として回転または円運動が可能である。減速部品2Aの遊星歯車列PGT2における第2のギア24aは、第1のギア23aの径方向内周に中心軸線Cを軸として第3のギア31の周囲を公転可能であり、かつ、回転軸26bの周りに自転可能である。また、遊星歯車列PGT2における第3のギア31は、第1の回転軸16とともに中心軸線Cを軸として回転または円運動が可能である。 
ここで、共通ギアの速度は、入力側の遊星歯車列PGT1によって決定される。図10の例では、遊星歯車列PGT1の第3のギア31(太陽ギア)、第2のギア22a(遊星ギア)、第1のギア21a(リングギア)の個数はそれぞれz1,z2,z3とし、遊星歯車列PGT2の第3のギア31(太陽ギア)と、第2のギア24a(遊星ギア)と、第1のギア23a(リングギア)の個数はそれぞれ順にz4,z5,z6とする。この場合の減速比は、以下の式から決定される。もっとも、減速比は、遊星歯車列PGT1、PGT2のギア数により決まる。 
Figure JPOXMLDOC01-appb-M000002
[第2の実施形態の変形例] 図12に示す減速装置200Aは、減速装置200の変形例であって、モータ1Aと、減速部品2Cとを備える。接続部材34によって、モータ1Aと減速部品2Cとが一体となって減速装置200Aが構成される。モータ1Aは、上記減速装置100Aのモータ1Aと同様の構成となっている。すなわち、減速装置200Aのモータ1Aでは、2つの軸受18、19によって回転軸が支持されているため、モータの剛性を高めることができる。そして、減速部品2B側から孔に接続部材34を挿入し、ネジ締結することによって組み合わせ回転軸と減速部品2Bとが接続される。これにより、モータ1Aと減速部品2Bとが一体となった減速装置200Aが構成される。 
減速部品2Cの2つの第3のギア30a、31aを備え、第3のギア30a、31aは第1の回転軸16aに接続されている。つまり、減速装置200Aでは、キャリヤを用いずに、第3のギア30a、31aが直接的に組み合わせ回転軸に接続されており、第3のギア30a、31aが減速部品2Cへの駆動力を入力する入力軸として機能する。また、出力軸25aは、第3のギア31aに取り付けられた軸受37によって支持されている。 
[第3の実施形態] 図13に示す減速装置300は、減速装置の第3例であって、モータ1Bと、減速部品2Dとを備える。接続部材34によって、モータ1Bと減速部品2Dとが一体となって減速装置300が構成される。以下では、減速装置100、200と異なる構成について説明するものとし、減速装置100、200と共通する構成については、共通の符号を付してその詳細な説明は省略する。 
モータ1Bは、第1のモータハウジング12bを備え、その他はモータ1と同様の構成である。第1のモータハウジング12bは、第1のロータ14から離れる軸方向一方側に突出する端部124を備える。 
減速部品2Dは、第1のモータハウジング12bのモータ1Bから離れる一方に配置された1つの第1のギア21bと、第1のギア21bと噛み合う2つの第2のギア22b、24bと、2つの第3のギア30b、31bと、1つの回転軸26cと、ハウジング36bと、キャリヤ41と、軸受42とを備える。 
第1のギア21bは、第1の実施形態の第1のギア21に比べて軸方向に長く延びている。この第1のギア21bは、第2のギア22b、24bに対して共通して利用されるギアである。第1のギア21bは、ハウジング36bに取り付けられた軸受42によって支持されている。また、第1のギア21bの径方向最外端210が、第1のモータハウジング12bの径方向最外端123よりも径方向内側に位置している。これにより、減速部品2Dの径方向サイズを小さくすることができる。 
第3の実施形態では、第3のギア30bは、第1のモータハウジング12bに固定されている。一方、第3のギア31bは、軸受35によってハウジング36bに取り付けられ、かつ、軸受37によってキャリヤ41に支持されている。第3の実施形態の第3のギア31bは、出力軸として機能する。 
2つの第2のギア22b、24bは、各々が軸受27によって回転軸26cに取り付けられている。2つの第2のギア22b、24bは、各々が回転軸26c軸として回転可能である。回転軸26cは、モータ1Bの駆動力を減速部品2Cへ入力するキャリヤ41に固定されている。 
本実施形態に示す減速部品2Dは、図14に示すように、2段の遊星歯車列PGT1,PGT2を備えており、遊星歯車列PGT1,PGT2は、各々が3つのギアを含む。具体的には、遊星歯車列PGT1は、第1のギア21bと、第2のギア22bと、第3のギア30bと、キャリヤ41とを含む。遊星歯車列PGT2は、第1のギア23bと、第2のギア24bと、第3のギア31bとキャリヤ41とを含む。 
減速部品2Dの遊星歯車列PGT1における第2のギア22bは、第1のギア21bの径方向内周に中心軸線Cを軸として第3のギア30bの周
囲を公転可能であり、かつ、回転軸26cの周りに自転可能である。また、遊星歯車列PGT1における第3のギア30bは、第1の回転軸16とともに中心軸線Cを軸として回転または円運動が可能である。減速部品2Cの遊星歯車列PGT2における第2のギア24bは、第1のギア23bの径方向内周に中心軸線Cの周りに第3のギア31bの周囲を公転可能であり、かつ、回転軸26cの周りに自転可能である。また、遊星歯車列PGT2における第3のギア31bは、第1の回転軸16とともに中心軸線Cを軸として回転または円運動が可能である。 
ここで、キャリヤ41の速度は、入力側の遊星歯車列PGT1によって決定される。図14の例では、遊星歯車列PGT1の第3のギア31b(太陽ギア)、第2のギア22b(遊星ギア)、第1のギア21b(リングギア)の個数は、それぞれz1,z2,z3とし、遊星歯車列PGT2の第3のギア31b(太陽ギア)と、第2のギア24b(遊星ギア)と、第1のギア23b(リングギア)の個数はそれぞれz4,z5,z6とする。この場合の減速比は、以下の式から決定される。もっとも、減速比は、遊星歯車列PGT1、PGT2のギア数により決まる。 
Figure JPOXMLDOC01-appb-M000003
減速装置300では、第1のギア21b(リングギア)、減速部品2Dのハウジング36bが単一の構成であることから、装置全体として部品点数が少なくて済む。なお、第1のギア21bは、1つの部品として製造されてもよいし、2つの部品として製造され、その後、1つの部品として接続されて構成されてもよい。 
また、第3の実施形態では、キャリヤ41が回転軸26cの軸方向の中間部位を支持しており、回転軸26cの先端及び後端に設置された第2のギア22b及び24bが第1のギア21b及び第3のギア30b、31bにそれぞれ噛み合うので、回転軸26cの安定性が高い。このため、第3の実施形態では、上記した第1の実施形態における第1のリング部材28、第2のリング部材29を設ける必要がない。そして、装置全体として部品点数が少なくて済み、構造全体の厚みをより小さくできる。 
[第3の実施形態の変形例] 図15に示す減速装置300Aは、減速装置300の変形例であって、モータ1Aと、減速部品2Dとを備える。接続部材34によって、モータ1Aと減速部品2Dとが一体となって減速装置300Aが構成される。モータ1Aは、上記減速装置100Aのモータ1Aと同様の構成であり、減速部品2Dは、上記減速装置300の減速部品2Dの構成と同様となっている。減速装置300Aのモータ1Aでは、2つの軸受18、19によって回転軸が支持されているため、モータの剛性を高めることができる。そして、減速部品2D側から孔に接続部材34を挿入し、ネジ締結することによって組み合わせ回転軸と減速部品2Dとが接続される。これにより、モータ1Aと減速部品2Dとが一体となった減速装置300Aが構成される。 
[第4の実施形態] 図16に示す減速装置400は、減速装置の第4例であって、モータ1と、減速部品2Eとを備える。接続部材34によって、モータ1と減速部品2Eとが一体となって減速装置400が構成される。以下では、第1ないし第3の実施形態と異なる構成について説明するものとし、減速装置100、200、300と共通する構成については、共通の符号を付してその詳細な説明は省略する。 
減速部品2Eは、2つの第1のギア21、23と、2つの第2のギア22、24と、2つの第3のギア30c、31cと、出力軸25と、回転軸26と、第3のギア30cと第1のモータハウジング12との間に配置されたリング部材28aと、第3のギア31cと出力軸25との間に配置されたキャリヤ43と、を備える。キャリヤ43はモータ1の駆動力を減速部品2Dへ入力する入力軸として機能する。 
第3のギア30c、31cは、別体であるが、モータ1と減速部品2Eとが接続されることで、1つのギアとして機能する。第3のギア30c、31cは、第1のモータハウジング12に取り付けられた軸受38内で回転可能となっている。 
2つの第2のギア22、24は、各々が軸受27によって回転軸26に取り付けられている。2つの第2のギア22、24は、各々が回転軸26を軸として回転可能である。 
第1のリング部材28aが回転軸26の一端に突き当たっており、キャリヤ43が回転軸26の他端に突き当たっている。これにより、第1の実施形態と同様に、減速部品2Eにおいて回転軸26が安定して取付けられている。出力軸25は、軸受35によってハウジング36に取り付けられ、軸受37によってキャリヤ43に支持されている。 
本実施形態に示す減速部品2Eは、図17に示すように、2段の遊星歯車列PGT1,PGT2を備えており、遊星歯車列PGT1,PGT2は、各々が3つのギアを含む。具体的には、遊星歯車列PGT1は、第1のギア21と、第2のギア22と、第3のギア30cと、キャリヤ43とを含む。遊星歯車列PGT2は、第1のギア23と、第2のギア24と、第3のギア31cとキャリヤ43とを含む。 
減速部品2Eの遊星歯車列PGT1における第2のギア22は、第1のギア21の径方向内周に中心軸線Cを軸として第3のギア30cの周囲を公転可能であり、かつ、回転軸26の周りに自転可能である。また、遊星歯車列PGT1における第3のギア30cは、第1の回転軸16とともに中心軸線Cを軸として回転または円運動が可能である。減速部品2Dの遊星歯車列PGT2における第2のギア24は、第1のギア23の径方向内周に中心軸線Cを軸として第3のギア31cの周囲を公転可能であり、かつ、回転軸26の周りに自転可能である。また、遊星歯車列PGT2における第3のギア31cは、第1の回転軸16とともに中心軸線Cを軸として回転または円運動が可能である。 
ここで、キャリヤ43の速度は、入力側の遊星歯車列PGT1によって決定される。図16の例では、遊星歯車列PGT1の第3のギア31c(太陽ギア)、第2のギア22(遊星ギア)、第1のギア21(リングギア)の個数は、それぞれz1,z2,z3とし、遊星歯車列PGT2の第3のギア31c(太陽ギア)と、第2のギア24(遊星ギア)と、第1のギア23(リングギア)の個数はそれぞれz4,z5,z6とする。この場合の減速比は、以下の式から決定される。もっとも、減速比は、遊星歯車列PGT1、PGT2のギア数により決まる。 
Figure JPOXMLDOC01-appb-M000004
第4の実施形態の減速装置400は、キャリヤ43が回転軸26に直接固定されていることから、回転軸26の安定性が高い。このため、第4の実施形態では、上記した第1の実施形態における第2のリング部材29を設ける必要がない。そして、装置全体として部品点数が少なくて済み、構造全体の厚みをより小さくできる。 
[第4の実施形態の変形例] 図18に示す減速装置400Aは、減速装置400の変形例であって、モータ1Cと、減速部品2Eとを備える。接続部材34によって、モータ1Cと減速部品2Eとが一体となって減速装置400Aが構成される。モータ1Cは、上記モータ1と同様の第1のモータハウジング12と、上記モータ1Aと同様の第2のモータハウジング13aとを備える。減速部品2Eは、上記減速装置400の減速部品2Eの構成と同様となっている。減速装置400Aのモータ1Cでは、2つの軸受18、19によって組み合わせ回転軸を支持するとともに、減速部品2E側の2つの軸受38、39によって組み合わせ回転軸を支持しているため、モータの剛性をより高めることができる。そして、減速部品2E側から第2の孔(不図示)に接続部材34を挿入し、ネジ締結することによって組み合わせ回転軸と減速部品2Eとが接続される。これにより、モータ1Cと減速部品2Eとが一体となった減速装置400Aが構成される。 
また、本発明は、第1の実施形態乃至及び第4の実施形態の記載に限られるものではなく、モータ、減速部品が他の構造を備えてもよい。 
以上のとおり、具体的な実施形態を組み合わせて本発明を説明したが、当業者は、これらの記述がいずれも例示するものであり、本発明の保護範囲を限定するものではないことを理解すべきである。当業者は、本発明の技術思想及び原理に基づいて本発明に対して各種の変形及び補正を行うことができ、これらの変形及び補正が本発明の範囲内に含まれる。
本開示の減速装置は、減速機を利用するあらゆる技術分野において利用可能である。特に、小型化が求められる減速装置であって、モータと減速機とが一体として構成される減速装置に広く利用可能である。
1:モータ 2:減速部品11:ステータ 12:第1のモータハウジング 120:第1凸部 121:第2凸部13:第2のモータハウジング 14:第1のロータ 15:第2のロータ 16:第1の回転軸 160:孔 17:第2の回転軸 170:貫通孔 171:凹部18:軸受 19:軸受21:第1のギア 22:第2のギア 23:第1のギア 24:第2のギア25:出力軸 26:回転軸 27:軸受 28:第1のリング部材29:第2のリング部材30,31:第3のギア 32:キャリヤ 33,34:接続部材 35:軸受36:ハウジング 37:軸受 38:第1の軸受:39:第2の軸受40:位置決めリング 41:キャリヤ 42:軸受 43:キャリヤ50:接続部材100:減速装置 200:減速装置 300:減速装置 400:減速装置
 

Claims (16)


  1.  中心軸線を軸として回転する第1の回転軸及び第2の回転軸と、

     前記第1の回転軸の径方向外側に配置された第1のロータと、

     前記第2の回転軸の径方向外側に配置された第2のロータと、

     前記第1のロータと前記第2のロータとの間に配置されたステータと、

     前記第1のロータの前記ステータから離れる軸方向一方側に配置された第1のモータハウジングと、

     前記第2のロータの前記ステータから離れる軸方向他方側に配置された第2のモータハウジングと、

    を有するモータと、

     前記第1のモータハウジングから離れる軸方向一方側に配置され前記中心軸線を軸として回転する第1のギアと、前記第1のギアと噛み合う第2のギアと、前記第2のギアと噛み合う第3のギアと、

     前記第2のギアが自転可能に取り付けられる回転軸と、

     前記第3のギアが前記第2のギアの回転を駆動し、前記第2のギアによって駆動される出力軸と、

     前記出力軸と前記第1の回転軸との間に配置されたキャリヤと、

    を有する減速部品と、 を備える減速装置であって、

     前記モータは、

     前記第1の回転軸の径方向外側に配置された少なくとも1つの軸受を備え、

     前記軸受は、軸方向に前記第1のロータと前記第1のモータハウジングとの間に位置しており、

     前記減速部品は、前記第1のギアの径方向内側に配置された少なくとも1つの軸受を備え、

     前記第1のギアは、少なくとも1つであり、

     前記第2のギア及び前記第3のギアは、各々が、軸方向において互いに隣接して配置された2つのギアを含む、

     ことを特徴とする減速装置。

  2.  前記第1のギアは、軸方向において互いに隣接して配置された2つのギアを含む、

     請求項1に記載の減速装置。

  3.  前記減速部品は、前記第3のギアと前記第1のモータハウジングとの間に配置された第1のリング部材と、

     前記第3のギアと前記出力軸との間に配置された第2のリング部材と、

     を備え、

     前記第1のリング部材が前記回転軸の一端に接し、

     前記第2のリング部材が前記回転軸の他端に接している、請求項1または2に記載の減速装置。

  4.  前記第2の回転軸は、軸方向に沿って貫通する貫通孔を備え、前記貫通孔には、前記第1の回転軸と前記第2の回転軸とを接続するための接続部材が設けられている請求項1から3のいずれか一項に記載の減速装置。

  5.  前記第1のモータハウジングは、前記第1のロータから離れる軸方向一方側に第1端部を備え、

     前記減速部品の前記軸受は、第1の軸受を含み、

     前記第1の軸受は、前記第3のギアの径方向内側に位置しており、前記第1の軸受の径方向内側の周面と前記第1端部とが径方向に対向している、

     請求項1に記載の減速装置。

  6.  前記第1のモータハウジングは、前記第1のロータに近づく軸方向他方側に前記第1端部に繋がる第2端部をさらに備え、

     前記減速部品の前記軸受は、第2の軸受をさらに含み、

     前記第2の軸受は、第1のリング部材と前記第1のモータハウジングとの間に位置しており、前記第2の軸受の径方向内側の周面と前記第2凸部とが径方向に対向している、

     請求項5に記載の減速装置。

  7.  前記モータは、前記第1の回転軸から離れる前記第2の回転軸の軸方向他方側に軸受を備え、

     前記第2のモータハウジングは、軸方向一方側に突出する凸部を備え、

     前記第2の回転軸は、軸方向他方側の端に凹部を備え、

     前記軸受は、前記凹部の内周面と前記凸部の外周面との間に配置されている、

     請求項1乃至6のいずれか一項に記載の減速装置。

  8.  前記第2のギアの数は、少なくとも2以上であり、

     2以上の前記第2のギアが、前記中心軸線を中心として周方向に並んで配置される請求項1に記載の減速装置。

  9.  前記第1のギアは、リングギアであり、

     前記第2のギアは、遊星ギアであり、

     前記第3のギアは、太陽ギアである、

     請求項1ないし8に記載の減速装置。

  10.  前記モータは、軸方向磁束モータである請求項1に記載の減速装置。

  11.  前記減速部品は、前記出力軸の径方向外側に配置された軸受をさらに備える請求項1に記載の減速装置。

  12.  軸方向において隣接して配置された2つの前記第2のギアの間に位置決め部を備える、

     請求項2に記載の減速装置。

  13.  前記第1のギアの径方向最外端は、前記第1のモータハウジングの径方向最外端よりも径方向内側に位置している請求項1に記載の減速装置。

  14.  前記キャリヤは、一端が前記第1の回転軸に接続され、他端が前記第3のギアに接続される、請求項1に記載の減速装置。

  15.  前記キャリヤは、一端が前記第1の回転軸に接続され、他端が前記回転軸に接続される、請求項2に記載の減速装置。

  16.  請求項1乃至15のいずれか一項に記載の減速装置を備える電気機器。

     
     
PCT/JP2020/048417 2020-09-24 2020-12-24 減速装置及び電気機器 WO2022064725A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080105337.2A CN116194687A (zh) 2020-09-24 2020-12-24 减速装置和电气设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-159870 2020-09-24
JP2020159870 2020-09-24

Publications (1)

Publication Number Publication Date
WO2022064725A1 true WO2022064725A1 (ja) 2022-03-31

Family

ID=80845196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048417 WO2022064725A1 (ja) 2020-09-24 2020-12-24 減速装置及び電気機器

Country Status (2)

Country Link
CN (1) CN116194687A (ja)
WO (1) WO2022064725A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024662A (ja) * 1973-07-09 1975-03-15
JPS5442870U (ja) * 1977-08-31 1979-03-23
JPS6334343A (ja) * 1986-07-28 1988-02-15 Toshiba Corp 差動遊星歯車装置
JP2010019271A (ja) * 2008-07-08 2010-01-28 Ricoh Co Ltd 遊星差動歯車減速機、および画像形成装置
JP2020029959A (ja) * 2018-08-24 2020-02-27 日本電産株式会社 減速装置及び電気機器
JP2020072641A (ja) * 2018-10-31 2020-05-07 日本電産株式会社 減速装置及び電気設備

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024662A (ja) * 1973-07-09 1975-03-15
JPS5442870U (ja) * 1977-08-31 1979-03-23
JPS6334343A (ja) * 1986-07-28 1988-02-15 Toshiba Corp 差動遊星歯車装置
JP2010019271A (ja) * 2008-07-08 2010-01-28 Ricoh Co Ltd 遊星差動歯車減速機、および画像形成装置
JP2020029959A (ja) * 2018-08-24 2020-02-27 日本電産株式会社 減速装置及び電気機器
JP2020072641A (ja) * 2018-10-31 2020-05-07 日本電産株式会社 減速装置及び電気設備

Also Published As

Publication number Publication date
CN116194687A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
US11078989B2 (en) Reduction gear and electromechanical device
EP2068036B1 (en) Reduction gear
JP5533194B2 (ja) 変速歯車装置
JPS6334343A (ja) 差動遊星歯車装置
EP1998080A2 (en) Final reduction gear device
CN110858743B (zh) 减速装置及机电设备
JP4897496B2 (ja) 揺動内接噛合式の遊星歯車装置
JP2020029914A (ja) ハイポサイクロイド減速機
US6220107B1 (en) Eccentric orbiting type speed changing device
JP2017040348A (ja) 遊星歯車装置及びその設計方法
US20070204712A1 (en) Series of power transmission devices and series of geared motors
WO2022064725A1 (ja) 減速装置及び電気機器
JPH01169154A (ja) 遊星歯車減速機
JP2006300338A (ja) 減速機
KR100339845B1 (ko) 감속기
JP4598460B2 (ja) 遊星歯車変速機
CN111971490B (zh) 差动传动
JPH03209038A (ja) 遊星歯車装置
JP3919350B2 (ja) 内歯揺動型内接噛合遊星歯車装置
WO2022064726A1 (ja) サイクロイド減速装置及び電気機器
JP3233532B2 (ja) モータ内蔵ローラ
JP7074628B2 (ja) 遊星減速装置及び電動アクチュエータ
KR200429619Y1 (ko) 헤리컬 유성감속기
WO2023238401A1 (ja) 遊星歯車減速機
JP4947770B2 (ja) 減速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP