WO2022064591A1 - 内燃機関の制御方法及び内燃機関の制御装置 - Google Patents
内燃機関の制御方法及び内燃機関の制御装置 Download PDFInfo
- Publication number
- WO2022064591A1 WO2022064591A1 PCT/JP2020/035993 JP2020035993W WO2022064591A1 WO 2022064591 A1 WO2022064591 A1 WO 2022064591A1 JP 2020035993 W JP2020035993 W JP 2020035993W WO 2022064591 A1 WO2022064591 A1 WO 2022064591A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- internal combustion
- combustion engine
- rotation speed
- engine
- fuel injection
- Prior art date
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 210
- 238000000034 method Methods 0.000 title claims description 18
- 239000000446 fuel Substances 0.000 claims abstract description 70
- 238000002347 injection Methods 0.000 claims abstract description 59
- 239000007924 injection Substances 0.000 claims abstract description 59
- 230000003247 decreasing effect Effects 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 7
- 239000007858 starting material Substances 0.000 abstract description 16
- 230000000994 depressogenic effect Effects 0.000 description 16
- 239000003054 catalyst Substances 0.000 description 9
- 238000000746 purification Methods 0.000 description 3
- 101150045411 ATG8 gene Proteins 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N11/00—Starting of engines by means of electric motors
- F02N11/08—Circuits or control means specially adapted for starting of engines
- F02N11/0814—Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
- F02N11/0818—Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
- F02N11/0822—Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to action of the driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/042—Introducing corrections for particular operating conditions for stopping the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/02—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N11/00—Starting of engines by means of electric motors
- F02N11/08—Circuits or control means specially adapted for starting of engines
- F02N11/0814—Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
- F02N11/0844—Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop with means for restarting the engine directly after an engine stop request, e.g. caused by change of driver mind
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2200/00—Parameters used for control of starting apparatus
- F02N2200/02—Parameters used for control of starting apparatus said parameters being related to the engine
- F02N2200/022—Engine speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2200/00—Parameters used for control of starting apparatus
- F02N2200/10—Parameters used for control of starting apparatus said parameters being related to driver demands or status
- F02N2200/102—Brake pedal position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2200/00—Parameters used for control of starting apparatus
- F02N2200/10—Parameters used for control of starting apparatus said parameters being related to driver demands or status
- F02N2200/103—Clutch pedal position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2300/00—Control related aspects of engine starting
- F02N2300/20—Control related aspects of engine starting characterised by the control method
- F02N2300/2002—Control related aspects of engine starting characterised by the control method using different starting modes, methods, or actuators depending on circumstances, e.g. engine temperature or component wear
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Definitions
- the present invention relates to an internal combustion engine control method and an internal combustion engine control device.
- Patent Document 1 when an automatic stop request is generated during the operation of an internal combustion engine, fuel injection is stopped.
- Patent Document 1 when a restart request for an internal combustion engine is generated while fuel injection is stopped due to an automatic stop request, the engine rotation speed at that time is within the rotation speed range in which restart is possible only by fuel injection (starterless start is possible). If it is above the lower limit of the rotation speed), the internal combustion engine is restarted only by fuel injection, and the engine rotation speed at that time is outside the rotation speed range that can be restarted only by fuel injection (less than the lower limit of the rotation speed that can be started without starter). ), Restart the internal combustion engine using a starter that drives the crankshaft to rotate.
- the lower limit of the engine rotation speed that can be restarted only by fuel injection (the lower limit of the rotation speed that can be started without starter) is set according to the deceleration of the internal combustion engine.
- the deceleration of the internal combustion engine changes depending on the amount of depressing the brake (depression amount), and it becomes difficult to set the lower limit of the engine rotation speed at which combustion start can be realized. .. If the lower limit of the engine rotation speed that can start combustion is set assuming a situation where the deceleration of the internal combustion engine is large due to sudden braking, combustion will occur when the deceleration of the internal combustion engine is normal (a situation that is not sudden braking).
- the area that can be started is limited.
- the internal combustion engine of the present invention has a predetermined rotation speed threshold value or higher at which the engine rotation speed can be restarted only by fuel injection when the internal combustion engine is requested to be restarted while the engine rotation speed is reduced due to the automatic stop of the internal combustion engine. If there is, the internal combustion engine is started by restarting the fuel injection, and if the engine rotation speed of the internal combustion engine is lower than the above rotation speed threshold, the internal combustion engine is rotated and started by using an electric motor. Then, if a restart request is made while the brake is on while the engine rotation speed of the internal combustion engine is decreasing due to automatic stop, the internal combustion engine is rotated and started by using the above electric motor.
- a timing chart showing an example of how an internal combustion engine that has automatically stopped is restarted.
- a timing chart showing an example of how an internal combustion engine that has automatically stopped is restarted.
- a timing chart showing an example of how an internal combustion engine that has automatically stopped is restarted.
- FIG. 1 is an explanatory diagram schematically showing an outline of a system configuration of an internal combustion engine 1 to which the present invention is applied.
- the internal combustion engine 1 is, for example, a multi-cylinder spark-ignition gasoline engine, which is mounted as a drive source in a vehicle such as an automobile.
- the internal combustion engine 1 may be a diesel engine.
- the internal combustion engine 1 has a fuel injection valve (not shown).
- the fuel injection amount of the fuel injection valve, the fuel injection timing of the fuel injection valve, the pressure of the fuel supplied to the fuel injection valve, and the like are optimally controlled by the control unit 21 described later.
- the internal combustion engine 1 has a starter motor 2 as an electric motor.
- the starter motor 2 rotates the crankshaft (not shown) of the internal combustion engine 1 in a stopped state to start the internal combustion engine 1 (cranking start).
- the starter motor 2 is controlled by a control unit 21 described later.
- the driving force of the internal combustion engine 1 is transmitted to the CVT (continuously variable transmission) 5 as a transmission via the torque converter 3 and the clutch 4, and the driving force transmitted to the CVT 5 is transmitted via the final gear 6. It is transmitted to the drive wheel 7 of the vehicle.
- the internal combustion engine 1 transmits, for example, the rotation of the crankshaft (not shown) to the drive wheels 7 of the vehicle as a driving force.
- the clutch 4 is located between the torque converter 3 and the CVT 5, and is engaged when the drive torque from the internal combustion engine 1 can be transmitted to the drive wheels 7. That is, the clutch 4 is arranged on the power transmission path that transmits the driving force of the internal combustion engine 1 to the driving wheels 7.
- the clutch 4 engagement / release operation is performed based on a control command from the control unit 21, which will be described later.
- the clutch 4 is released, for example, at the time of a coast stop described later.
- the CVT 5 has a primary pulley 8 on the input side, a secondary pulley 9 on the output side, and a belt 10 that transmits the rotation of the primary pulley 8 to the secondary pulley 9.
- the CVT 5 changes the width of the V-groove (not shown) of the primary pulley 8 and the secondary pulley 9 on which the belt 10 is wound by using hydraulic pressure, and contacts the belt 10 with the primary pulley 8 and the secondary pulley 9.
- the radius is changed and the gear ratio is changed steplessly.
- the CVT5 is used as the transmission, it is also possible to use a stepped automatic transmission instead of the CVT5.
- the clutch 4 is configured by diverting a plurality of friction fastening elements in the stepped automatic transmission.
- the control unit 21 includes a crank angle sensor 22 that detects the crank angle of the crank shaft, an accelerator opening sensor 23 that detects the amount of depression of the accelerator pedal (not shown), a vehicle speed sensor 24 that detects the vehicle speed of the vehicle, and a brake pedal.
- Brake sensor (brake switch) 25 for detecting the amount of depression (not shown), catalyst for detecting the catalyst temperature of the exhaust purification catalyst (not shown) provided in the exhaust passage (not shown) of the internal combustion engine 1. Detection signals of various sensors such as the temperature sensor 26 are input.
- the control unit 21 calculates the required load (engine load) of the internal combustion engine 1 by using the detected value of the accelerator opening sensor 23.
- control unit 21 can detect SOC (State Of Charge), which is the ratio of the remaining charge to the charge capacity of the in-vehicle battery (not shown). That is, the control unit 21 corresponds to the battery SOC detection unit.
- SOC State Of Charge
- the crank angle sensor 22 can detect the engine rotation speed (engine rotation speed) of the internal combustion engine 1.
- the internal combustion engine 1 stops the fuel supply and automatically stops when a predetermined automatic stop condition is satisfied when the vehicle is running or the vehicle is stopped. Then, the internal combustion engine 1 restarts when a predetermined automatic restart condition is satisfied during the automatic stop. That is, the control unit 21 automatically stops the internal combustion engine 1 when the predetermined automatic stop condition is satisfied, and automatically restarts the internal combustion engine 1 when the predetermined automatic restart condition is satisfied.
- the automatic stop conditions of the internal combustion engine 1 are, for example, a state in which the accelerator pedal is not depressed, the battery SOC of the vehicle-mounted battery is larger than a predetermined battery threshold SOCth, and the catalyst temperature of the exhaust gas purification catalyst is a predetermined first. 1 It is higher than the catalyst temperature threshold value T1 and the like.
- the internal combustion engine 1 automatically stops when all of these automatic stop conditions are satisfied.
- the control unit 21 automatically stops the internal combustion engine 1 when all of these automatic stop conditions are satisfied during the operation of the internal combustion engine 1. That is, the control unit 21 corresponds to a first control unit that stops fuel injection and automatically stops the internal combustion engine 1 when a predetermined automatic stop condition is satisfied.
- the conditions for automatic restart of the internal combustion engine 1 are, for example, that the accelerator pedal is depressed, that the battery SOC of the vehicle-mounted battery is equal to or less than a predetermined battery threshold SOCth, and that the catalyst temperature of the exhaust gas purification catalyst is a predetermined first.
- the catalyst temperature threshold is T1 or less.
- the internal combustion engine 1 restarts when there is a restart request during automatic stop.
- the control unit 21 restarts the internal combustion engine 1 when any of the above-mentioned automatic restart conditions is satisfied during the automatic stop of the internal combustion engine 1.
- the internal combustion engine 1 that is automatically stopped restarts when the battery SOC of the vehicle-mounted battery becomes equal to or less than the battery threshold SOCth as a predetermined value.
- the automatic stop of the internal combustion engine 1 for example, there are an idle stop, a coast stop and a sailing stop.
- Idle stop is implemented when the vehicle is temporarily stopped, for example, when the above automatic stop conditions are satisfied. Further, the idle stop is released when, for example, any of the above-mentioned automatic restart conditions is satisfied.
- the coast stop is carried out while the vehicle is running, for example, when the above automatic stop conditions are satisfied. Further, the coast stop is canceled when, for example, any of the above-mentioned automatic restart conditions is satisfied.
- the coast stop is, for example, the automatic stop of the internal combustion engine 1 during deceleration in a state where the brake pedal is depressed at a low vehicle speed.
- the sailing stop is carried out while the vehicle is running, for example, when the above automatic stop conditions are satisfied. Further, the sailing stop is released when, for example, any of the above-mentioned automatic restart conditions is satisfied.
- the sailing stop is, for example, the automatic stop of the internal combustion engine 1 during inertial running in which the brake pedal is not depressed at a medium or high vehicle speed.
- the control unit 21 When the control unit 21 receives a request to restart the internal combustion engine 1 while the engine rotation speed of the internal combustion engine 1 is reduced due to automatic stop, the control unit 21 can restart the internal combustion engine 1 only by injecting fuel. If it is equal to or higher than the recoverable rotation speed threshold R1 (rotation speed threshold), the internal combustion engine 1 is started (combustion start) by restarting fuel injection, and if the engine rotation speed of the internal combustion engine 1 is lower than the combustion recoverable rotation speed threshold R1. The internal combustion engine 1 is started (cranked) by rotationally driving the crankshaft using the starter motor 2. Further, when a restart request is made while the brake pedal is depressed and the brake is on, the control unit 21 does not start the internal combustion engine 1 by restarting fuel injection, but the engine rotation speed becomes "0". After that, the internal combustion engine 1 is rotated and started by using the starter motor 2. That is, the control unit 21 corresponds to the second control unit.
- R1 recoverable rotation speed threshold
- the combustion recoverable rotation speed threshold R1 takes into consideration the time difference between the timing when the fuel injection start command of the internal combustion engine 1 during automatic stop is issued and the timing when the fuel is ignited in the cylinder (the timing of the first combustion after the fuel injection is restarted). Is set. That is, the combustion recoverable rotation speed threshold R1 is the first combustion after the restart of fuel injection in consideration of the decrease in the engine rotation speed between the timing when the fuel injection start command is issued and the timing when the fuel is ignited by the cylinder.
- the engine rotation speed at the timing of is set so as not to be lower than the rotation speed at which the internal combustion engine 1 can be started by restarting the fuel injection.
- the combustion recoverable rotation speed threshold value R1 is set according to the deceleration of the internal combustion engine 1, and is, for example, a value of about 600 rpm.
- the timing at which the fuel injection start command is issued and the timing at which the fuel is ignited in the cylinder (the timing of the first combustion after the fuel injection is restarted).
- Has a time lag That is, the timing of the start of combustion in the internal combustion engine 1 is delayed from the timing of issuing the fuel injection start command. This is because fuel is supplied to the cylinder which is the intake stroke after the command to start fuel injection is issued, and the fuel in this cylinder is ignited (combusted) through the compression stroke.
- the engine rotation speed drops significantly before the ignition timing of the cylinder in which the fuel first burns, the fuel cannot be burned, the engine stalls (stalls), and the internal combustion engine 1 is started when the fuel injection is restarted. It may not be possible.
- the internal combustion engine 1 is started by using the starter motor 2 instead of starting by restarting the fuel injection.
- the restart request when the brake pedal is depressed and the brake is on is not due to the acceleration request by the driver. Therefore, it is less necessary to restart the internal combustion engine 1 at an early stage in the restart request when the brake is turned on. Therefore, when a restart request is made while the brake pedal is depressed, the starter motor 2 is used after the engine rotation speed becomes "0" instead of starting the internal combustion engine 1 by restarting fuel injection. Start the internal combustion engine 1.
- FIG. 2 is a timing chart showing a state when the automatically stopped internal combustion engine 1 is restarted, and shows a case where the internal combustion engine 1 in the brake-on state is restarted.
- the time t1 in FIG. 2 is the timing at which the automatic stop condition of the internal combustion engine 1 is satisfied.
- the automatic stop condition is satisfied at the time t1 when the brake is turned on and the vehicle speed is decreasing, and the automatic stop of the internal combustion engine 1 is permitted.
- the time t2 in FIG. 2 is the timing when the internal combustion engine 1 that is automatically stopped is requested to restart. That is, the time t2 in FIG. 2 is the timing at which any of the above-mentioned automatic restart conditions is satisfied.
- the engine rotation speed is larger than the combustion recoverable rotation speed threshold value R1, but the brake is on. Therefore, the internal combustion engine 1 is not restarted by the combustion start, but is restarted by the starter motor 2 after waiting for the engine rotation speed to become "0".
- the time t3 in FIG. 2 is the timing at which the engine rotation speed becomes "0" after the restart request.
- the starter motor 2 starts (turns on) at time t3.
- Times t3 to t4 in FIG. 2 are cranking periods in which the crankshaft of the internal combustion engine 1 is rotated by the starter motor 2.
- FIG. 3 is a timing chart showing a state when the automatically stopped internal combustion engine 1 is restarted, and shows a case where the brake is turned off and the vehicle accelerates again when the automatically stopped internal combustion engine 1 is restarted. ..
- the time t1 in FIG. 3 is the timing at which the automatic stop condition of the internal combustion engine 1 is satisfied.
- the automatic stop condition is satisfied at the time t1 when the brake is turned on and the vehicle speed is decreasing, and the automatic stop of the internal combustion engine 1 is permitted.
- the time t2 in FIG. 3 is the timing when the accelerator pedal is depressed and the internal combustion engine 1 which is automatically stopped is requested to restart. That is, the time t2 in FIG. 3 is the timing at which any of the above automatic restart conditions is satisfied when the accelerator pedal is depressed. Further, the time t2 in FIG. 3 is a timing at which the driver's foot is separated from the brake pedal and the brake is turned off.
- the brake is off and the engine rotation speed is larger than the combustion recoverable rotation speed threshold value R1. Therefore, at time t2 in FIG. 3, the restart of the internal combustion engine 1 by the combustion start is started.
- the time t3 in FIG. 3 is the timing of the first combustion after the restart of fuel injection.
- the control unit 21 receives a restart request in a state where the clutch 4 is released and the driving force of the internal combustion engine 1 is not transmitted to the drive wheels 7, the engine rotation speed of the internal combustion engine 1 is combustible and recoverable. If it is equal to or higher than the speed threshold R1 (rotational speed threshold), the internal combustion engine 1 is started by restarting fuel injection even when the brake pedal is depressed and the brake is on.
- R1 rotational speed threshold
- the internal combustion engine 1 is not affected by the increase in deceleration due to the driver's brake operation when the clutch 4 is released (clutch off). Therefore, even if the control unit 21 is in the brake-on state when the restart request is made, the engine rotation speed of the internal combustion engine 1 should be equal to or higher than the combustion recoverable rotation speed threshold R1 with the clutch 4 released. For example, the internal combustion engine 1 is started by restarting the fuel injection.
- the internal combustion engine 1 can expand the region where it is restarted only by fuel injection.
- FIG. 4 is a timing chart showing a state when the automatically stopped internal combustion engine 1 is restarted, and shows a case where the clutch 4 is sometimes released when the automatically stopped internal combustion engine 1 is restarted. ..
- the time t1 in FIG. 4 is the timing at which the automatic stop condition of the internal combustion engine 1 is satisfied.
- the automatic stop condition is satisfied at the time t1 when the brake is turned on and the vehicle speed is decreasing, and the automatic stop (coast stop) of the internal combustion engine 1 is permitted.
- the clutch 4 is released with the start of the coast stop.
- the time t2 in FIG. 4 is the timing when the accelerator pedal is depressed and the internal combustion engine 1 which is automatically stopped is requested to restart. That is, the time t2 in FIG. 4 is the timing at which any of the above-mentioned automatic restart conditions is satisfied.
- the time t3 in FIG. 4 is the timing of the first combustion after the restart of fuel injection.
- the time t4 in FIG. 4 is the timing at which the clutch 4 is engaged after the combustion start of the internal combustion engine 1.
- the control unit 21 has a predetermined low vehicle speed threshold value V1 or less, which is less affected by the deceleration of the internal combustion engine 1 regardless of whether the internal combustion engine 1 is stopped and a restart request is made or the vehicle speed of the vehicle is brake-on.
- V1 vehicle speed threshold value
- the internal combustion engine 1 is not affected by the increase in deceleration due to the driver's braking operation when the vehicle is stopped or the vehicle speed is equal to or lower than the predetermined low vehicle speed threshold value V1. Therefore, even if the brake is depressed, the control unit 21 starts the internal combustion engine 1 by restarting the fuel injection in such a state.
- the internal combustion engine 1 can expand the region where it is restarted only by fuel injection.
- FIG. 5 is a timing chart showing a state when the automatically stopped internal combustion engine 1 is restarted, and is a case where the vehicle speed is equal to or less than the low vehicle speed threshold value V1 when the automatically stopped internal combustion engine 1 is restarted. Shows.
- the time t1 in FIG. 5 is the timing at which the automatic stop condition of the internal combustion engine 1 is satisfied.
- the automatic stop condition is satisfied at the time t1 when the brake is turned on and the vehicle speed is decreasing, and the automatic stop of the internal combustion engine 1 is permitted.
- the time t2 in FIG. 5 is the timing when the accelerator pedal is depressed and the internal combustion engine 1 which is automatically stopped is requested to restart. That is, the time t2 in FIG. 5 is the timing at which any of the above-mentioned automatic restart conditions is satisfied.
- the brake is on, but the vehicle speed is a low vehicle speed of the low vehicle speed threshold value V1 or less, and the engine rotation speed is larger than the combustion recoverable rotation speed threshold value R1. Therefore, at time t2 in FIG. 5, the restart of the internal combustion engine 1 by the combustion start is started.
- the time t3 in FIG. 5 is the timing of the first combustion after the restart of fuel injection.
- FIG. 6 is a flowchart showing a control flow of the internal combustion engine 1 in the above-described embodiment.
- step S1 it is determined whether or not a restart request for the internal combustion engine 1 has occurred. That is, it is determined whether or not the automatic restart condition is satisfied during the automatic stop of the internal combustion engine 1. If it is determined that the restart request has occurred in step S1, the process proceeds to step S2. If it is not determined in step S1 that the restart request has occurred, the current routine is terminated.
- step S2 it is determined whether or not the engine rotation speed is equal to or higher than the combustion recoverable rotation speed threshold value R1. If the engine rotation speed is equal to or higher than the combustion recoverable rotation speed threshold value R1 in step S2, the process proceeds to step S3. If the engine rotation speed is not equal to or higher than the combustion recoverable rotation speed threshold value R1 in step S2, the process proceeds to step S7.
- step S3 it is determined whether or not the brake is off. In step S3, if the rake is in the rake-off state, the bu proceeds to step S4. In step S3, if the brake is not off, the process proceeds to step S5.
- step S4 the internal combustion engine 1 is started by restarting fuel injection.
- step S5 it is determined whether or not the clutch is in the disengaged state. If the clutch is disengaged in step S5, the process proceeds to step S4. If the clutch is not in the clutch off state in step S5, the process proceeds to step S6.
- step S6 it is determined whether or not the vehicle speed is equal to or less than the low vehicle speed threshold value V1. In step S6, if the vehicle speed is equal to or less than the low vehicle speed threshold value V1, the process proceeds to step S4. In step S6, if the vehicle speed is not equal to or less than the low vehicle speed threshold value V1, the process proceeds to step S7.
- step S7 the internal combustion engine 1 is started by cranking by the starter motor 2.
- the rotation speed threshold value is set according to the deceleration of the internal combustion engine, but it may not be set according to the deceleration of the internal combustion engine when the brake is on. If a restart request is made while the brake is on while the engine speed of the internal combustion engine is decreasing due to automatic stop, the rotation speed threshold is not set or the rotation speed threshold is set to infinity.
- the internal combustion engine may be rotated and started by using an electric motor. Further, the rotation speed threshold value may be set to a constant value when the brake is on.
- the above-mentioned embodiment relates to a control method for an internal combustion engine and a control device for the internal combustion engine.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
内燃機関(1)は、自動停止条件が成立すると燃料噴射を停止して自動停止する。内燃機関(1)は、自動停止による機関回転速度低下中に再始動要求があった場合、機関回転速度が燃料噴射のみで再始動可能となる燃焼リカバー可能回転速度閾値(R1)以上であれば燃料噴射の再開により始動し、機関回転速度が燃焼リカバー可能回転速度閾値(R1)未満であればスタータモータ(2)を用いて内燃機関(1)を始動する。内燃機関(1)は、ブレーキオンの状態で再始動要求があった場合には、燃料噴射の再開による始動ではなく、スタータモータ(2)を用いて内燃機関を回転させて始動する。
Description
本発明は、内燃機関の制御方法及び内燃機関の制御装置に関する。
アイドル運転中に所定の自動停止条件が成立すると内燃機関を自動停止し、自動停止中に所定の自動再始動条件が成立すると内燃機関を自動再始動する内燃機関のアイドルストップ制御が従来から知られている。
例えば特許文献1においては、内燃機関の運転中に自動停止要求が発生すると燃料噴射を停止する。特許文献1においては、自動停止要求による燃料噴射停止中に内燃機関の再始動要求が発生すると、そのときの機関回転速度が燃料噴射のみで再始動可能な回転速度領域内(スタータレス始動可能な回転速度下限値以上)であれば燃料噴射のみで内燃機関を再始動し、そのときの機関回転速度が燃料噴射のみで再始動可能な回転速度領域外(スタータレス始動可能な回転速度下限値未満)であればクランクシャフトを回転駆動するスタータも用いて内燃機関を再始動する。
燃料噴射のみで再始動可能となる機関回転速度の下限値(スタータレス始動可能な回転速度下限値)は、内燃機関の減速度に応じて設定される。しかしながら、運転者がブレーキペダルを踏み込んだ場合、ブレーキ踏み込みの大きさ(踏み込み量)によって内燃機関の減速度が変化し、燃焼始動が実現可能な機関回転速度の下限値を定めるのが困難となる。急ブレーキによる内燃機関の減速度が大きい状況を想定して燃焼始動が実現可能な機関回転速度の下限値を設定すると、内燃機関の減速度が通常(急ブレーキではない状況)の場合に、燃焼始動を可能とする領域が制約されてしまう。
本発明の内燃機関は、内燃機関の自動停止による機関回転速度低下中に内燃機関の再始動要求があった場合、機関回転速度が燃料噴射のみで再始動可能となる所定の回転速度閾値以上であれば燃料噴射の再開により内燃機関を始動し、内燃機関の機関回転速度が上記回転速度閾値よりも低ければ電動機を用いて内燃機関を回転させて始動する。そして、自動停止による内燃機関の機関回転速度低下中に、ブレーキオンの状態で再始動要求があった場合には、上記電動機を用いて内燃機関を回転させて始動する。
これによって、燃料噴射のみで再始動可能となる機関回転速度の回転速度閾値は、運転者のブレーキ操作に伴う内燃機関の減速度増大を考慮して設定する必要がなくなる。つまり、ブレーキが踏み込まれていない状態で再始動要求がある場合に、燃料噴射のみで再始動する領域を拡大することができる。
以下、本発明の一実施例を図面に基づいて詳細に説明する。図1は本発明が適用される内燃機関1のシステム構成の概略を模式的に示した説明図である。
内燃機関1は、例えば多気筒の火花点火式ガソリン機関であり、自動車等の車両に駆動源として搭載されるものである。なお、内燃機関1は、ディーゼル機関であってもよい。
内燃機関1は、燃料噴射弁(図示せず)を有するものである。燃料噴射弁の燃料噴射量、燃料噴射弁の燃料噴射時期、燃料噴射弁に供給される燃料の圧力等は、後述するコントロールユニット21によって最適に制御される。
また、内燃機関1は、電動機としてのスタータモータ2を有している。スタータモータ2は、停止状態の内燃機関1のクランクシャフト(図示せず)を回転させて内燃機関1を始動(クランキング始動)させるものである。スタータモータ2は、後述するコントロールユニット21によって制御される。
内燃機関1の駆動力は、トルクコンバータ3及びクラッチ4を介して変速機としてのCVT(連続無段可変変速機)5に伝達され、このCVT5に伝達された駆動力はファイナルギヤ6を介して車両の駆動輪7に伝達されている。
つまり、内燃機関1は、例えば、図示せぬクランクシャフトの回転を駆動力として車両の駆動輪7に伝達するものである。
クラッチ4は、トルクコンバータ3とCVT5との間に位置し、内燃機関1からの駆動トルクが駆動輪7に伝達可能となる場合に締結されるものである。つまり、クラッチ4は、内燃機関1の駆動力を駆動輪7に伝達する動力伝達経路上に配置されている。なお、クラッチ4の締結/解放の動作は、後述するコントロールユニット21からの制御指令に基づいて行われている。クラッチ4は、例えば、後述するコーストストップ等の際に解放される。
CVT5は、入力側のプライマリプーリ8と、出力側のセカンダリプーリ9と、プライマリプーリ8の回転をセカンダリプーリ9に伝達するベルト10と、を有している。
CVT5は、例えば、ベルト10が巻き掛けられるプライマリプーリ8及びセカンダリプーリ9のV溝(図示せず)の幅を油圧を利用して変化させ、ベルト10とプライマリプーリ8、セカンダリプーリ9との接触半径を変化させ、変速比を無段階に変化させるものである。
なお、変速機としてCVT5が用いられているが、CVT5の代わりに有段自動変速機を用いることも可能である。この場合、クラッチ4は有段自動変速機内の複数の摩擦締結要素を流用して構成されることになる。
コントロールユニット21には、クランクシャフトのクランク角を検出するクランク角センサ22、アクセルペダル(図示せず)の踏込量を検出するアクセル開度センサ23、車両の車速を検出する車速センサ24、ブレーキペダル(図示せず)の踏み込み量を検出するブレーキセンサ(ブレーキスイッチ)25、内燃機関1の排気通路(図示せず)に設けられた排気浄化用触媒(図示せず)の触媒温度を検出する触媒温度センサ26等の各種センサ類の検出信号が入力されている。
コントロールユニット21は、アクセル開度センサ23の検出値を用いて、内燃機関1の要求負荷(エンジン負荷)を算出する。
また、コントロールユニット21は、車載バッテリ(図示せず)の充電容量に対する充電残量の比率であるSOC(State Of Charge)を検出可能となっている。つまり、コントロールユニット21は、バッテリSOC検出部に相当する。
クランク角センサ22は、内燃機関1の機関回転速度(機関回転数)を検出可能なものである。
内燃機関1は、車両の走行時もしくは車両の停止時に、所定の自動停止条件が成立すると、燃料供給を停止して自動停止する。そして、内燃機関1は、自動停止中に所定の自動再始動条件が成立すると再始動する。つまり、コントロールユニット21は、所定の自動停止条件が成立すると内燃機関1を自動停止し、所定の自動再始動条件が成立すると内燃機関1を自動再始動する。
内燃機関1の自動停止条件は、例えば、アクセルペダルが踏み込まれていない状態であること、車載バッテリのバッテリSOCが所定のバッテリ閾値SOCthよりも大きいこと、排気浄化用触媒の触媒温度が所定の第1触媒温度閾値T1よりも高いこと等である。
内燃機関1は、これらの自動停止条件が全て成立した場合に自動停止する。換言すれば、コントロールユニット21は、内燃機関1の運転中にこれらの自動停止条件が全て成立すると内燃機関1を自動停止させる。つまり、コントロールユニット21は、所定の自動停止条件が成立すると燃料噴射を停止して内燃機関1を自動停止する第1制御部に相当する。
内燃機関1の自動再始動条件は、例えば、アクセルペダルが踏み込まれた状態であること、車載バッテリのバッテリSOCが所定のバッテリ閾値SOCth以下であること、排気浄化用触媒の触媒温度が所定の第1触媒温度閾値T1以下であること等である。
内燃機関1は、自動停止中に再始動要求があると再始動する。換言すれば、コントロールユニット21は、内燃機関1の自動停止中に上述した自動再始動条件のいずれかが成立すると内燃機関1を再始動させる。例えば、自動停止中の内燃機関1は、車載バッテリのバッテリSOCが所定値としてのバッテリ閾値SOCth以下になると再始動する。
内燃機関1の自動停止として、例えば、アイドルストップ、コーストストップ及びセーリングストップがある。
アイドルストップは、車両の一時停止時に、例えば上記のような自動停止条件が成立した場合に実施される。また、アイドルストップは、例えば上記のような自動再始動条件のいずれかが成立すると解除される。
コーストストップは、車両の走行中に、例えば上記のような自動停止条件が成立した場合に実施される。また、コーストストップは、例えば上記のような自動再始動条件のいずれかが成立すると解除される。なお、コーストストップとは、例えば、低車速でブレーキペダルが踏み込まれた状態の減速中に内燃機関1を自動停止することである。
セーリングストップは、車両の走行中に、例えば上記のような自動停止条件が成立した場合に実施される。また、セーリングストップは、例えば上記のような自動再始動条件のいずれかが成立した場合に解除される。なお、セーリングストップとは、例えば中高車速でブレーキペダルが踏まれていない惰性走行中に内燃機関1を自動停止することである。
コントロールユニット21は、自動停止による内燃機関1の機関回転速度低下中に内燃機関1の再始動要求があった場合、内燃機関1の機関回転速度が燃料噴射のみで再始動可能となる所定の燃焼リカバー可能回転速度閾値R1(回転速度閾値)以上であれば燃料噴射の再開により内燃機関1を始動(燃焼始動)し、内燃機関1の機関回転速度が燃焼リカバー可能回転速度閾値R1よりも低ければスタータモータ2を用いてクランクシャフトを回転駆動して内燃機関1を始動(クランキング)する。さらに、コントロールユニット21は、ブレーキペダルが踏み込まれたブレーキオンの状態で再始動要求があった場合には、燃料噴射の再開による内燃機関1の始動ではなく、機関回転速度が「0」になってからスタータモータ2を用いて内燃機関1を回転させて始動する。つまり、コントロールユニット21は、第2制御部に相当する。
燃焼リカバー可能回転速度閾値R1は、自動停止中の内燃機関1の燃料噴射開始指令が発せられるタイミングと気筒で燃料に点火されるタイミング(燃料噴射再開後の最初の燃焼のタイミング)の時間差を考慮して設定される。つまり、燃焼リカバー可能回転速度閾値R1は、燃料噴射開始指令が発せられるタイミングから気筒で燃料に点火されるタイミングまでの間の機関回転速度の低下代を考慮し、燃料噴射再開後の最初の燃焼のタイミングにおける機関回転速度が燃料噴射の再開により内燃機関1を始動可能な回転速度よりも低くならないように設定される。燃焼リカバー可能回転速度閾値R1は、内燃機関1の減速度に応じて設定され、例えば600rpm程度の値となる。
自動停止中の内燃機関1を燃料噴射の再開により始動(燃焼始動)させる場合、燃料噴射開始の指令が発せられるタイミングと気筒で燃料に点火されるタイミング(燃料噴射再開後の最初の燃焼のタイミング)には時間差がある。つまり、内燃機関1での燃焼開始のタイミングは、燃料噴射開始指令が発せられるタイミングから遅れることになる。これは、燃料噴射開始の指令が発せられてから吸気行程となる気筒に燃料が供給され、この気筒の燃料が圧縮行程を経て点火(燃焼)されるからである。
ここで、自動停止中の内燃機関1を燃料噴射の再開により始動(燃焼始動)させる際に、燃料噴射開始の指令が発せられるタイミングでブレーキペダルの踏み増しにより車両の減速度が増大すると、最初に燃料が燃焼する気筒の点火時期前に機関回転速度が大きく低下する可能性がある。ブレーキペダルの踏み増しにより車両の減速度が増大すると、車両の減速度に内燃機関1の機関回転速度がひきずられ、機関回転速度の降下速度が増大する。
そのため、内燃機関1は、最初に燃料が燃焼する気筒の点火時期前に機関回転速度が大きく低下し、燃料が燃焼できずにエンジンストール(エンスト)して燃料噴射の再開では内燃機関1を始動できない虞がある。
そこで、内燃機関1は、ブレーキペダルが踏み込まれたブレーキオンの状態で再始動要求があった場合、燃料噴射の再開による始動ではなく、スタータモータ2を用いて始動する。
ブレーキペダルが踏み込まれたブレーキオンのときの再始動要求は、運転者による加速要求に起因するものではない。そのため、ブレーキオンのときの再始動要求では、内燃機関1を早期に再始動する必要性が低い。そこで、ブレーキペダルが踏まれた状態で再始動要求があった場合には、燃料噴射の再開による内燃機関1の始動ではなく、機関回転速度が「0」になってからスタータモータ2を用いて内燃機関1を始動する。
そのため、燃料噴射のみで再始動可能となる機関回転速度の下限値(燃焼リカバー可能回転速度閾値R1)は、運転者のブレーキ操作に伴う内燃機関1の減速度増大を考慮して設定する必要がなくなる。
つまり、ブレーキペダルが踏み込まれていない状態で再始動要求がある場合に、燃料噴射のみで再始動する領域を拡大することができる。
図2は、自動停止した内燃機関1を再始動する際の様子を示すタイミングチャートであって、ブレーキオンの状態の内燃機関1を再始動する場合を示している。
図2の時刻t1は、内燃機関1の自動停止条件が成立しているタイミングである。図2においては、ブレーキオンとなって車速が低下中の時刻t1において自動停止条件が成立し、内燃機関1の自動停止が許可されている。
図2の時刻t2は、自動停止中の内燃機関1に再始動要求があったタイミングである。つまり、図2における時刻t2は、上記のような自動再始動条件のいずれかが成立したタイミングである。
図2の時刻t2においては、機関回転速度が燃焼リカバー可能回転速度閾値R1よりも大きくなっているが、ブレーキオンの状態になっている。そこで、内燃機関1は、燃焼始動による再始動ではなく、機関回転速度が「0」になるのを待ってスタータモータ2による再始動を行う。
図2の時刻t3は、再始動要求後に機関回転速度が「0」となるタイミングである。スタータモータ2は、時刻t3において始動(オン)する。図2の時刻t3~t4は、スタータモータ2により内燃機関1のクランクシャフトを回転させるクランキング期間である。
図3は、自動停止した内燃機関1を再始動する際の様子を示すタイミングチャートであって、自動停止した内燃機関1を再始動する際にブレーキオフとなって再加速する場合を示している。
図3の時刻t1は、内燃機関1の自動停止条件が成立しているタイミングである。図3においては、ブレーキオンとなって車速が低下中の時刻t1において自動停止条件が成立し、内燃機関1の自動停止が許可されている。
図3の時刻t2は、アクセルペダルが踏み込まれて自動停止中の内燃機関1に再始動要求があったタイミングである。つまり、図3における時刻t2は、アクセルペダルが踏み込まれることで上記のような自動再始動条件のいずれかが成立したタイミングである。また、図3の時刻t2は、ブレーキペダルから運転者の足が離れてブレーキオフの状態になるタイミングである。
図3の時刻t2においては、ブレーキオフの状態となり、機関回転速度が燃焼リカバー可能回転速度閾値R1よりも大きくなっている。そこで、図3の時刻t2においては、燃焼始動による内燃機関1の再始動を開始する。図3の時刻t3は、燃料噴射再開後の最初の燃焼のタイミングである。
また、コントロールユニット21は、クラッチ4が解放されて内燃機関1の駆動力が駆動輪7に伝達されていない状態で再始動要求があった場合、内燃機関1の機関回転速度が燃焼リカバー可能回転速度閾値R1(回転速度閾値)以上であれば、ブレーキペダルが踏み込まれたブレーキオンの状態であっても燃料噴射の再開により内燃機関1を始動する。
内燃機関1は、クラッチ4が解放された状態(クラッチオフ)では、運転者のブレーキ操作に伴う減速度増大の影響を受けることはない。そこで、コントロールユニット21は、再始動要求があった際にブレーキオンの状態であっても、クラッチ4が解放された状態で内燃機関1の機関回転速度が燃焼リカバー可能回転速度閾値R1以上であれば、燃料噴射の再開により内燃機関1を始動させる。
これにより、内燃機関1は、燃料噴射のみで再始動する領域を拡大することができる。
図4は、自動停止した内燃機関1を再始動する際の様子を示すタイミングチャートであって、自動停止した内燃機関1を再始動する際に時にクラッチ4が解放されている場合を示している。
図4の時刻t1は、内燃機関1の自動停止条件が成立しているタイミングである。図4においては、ブレーキオンとなって車速が低下中の時刻t1において自動停止条件が成立し、内燃機関1の自動停止(コーストストップ)が許可されている。図4の時刻t1のタイミングでは、コーストストップの開始にともないクラッチ4が解放される。
図4の時刻t2は、アクセルペダルが踏み込まれて自動停止中の内燃機関1に再始動要求があったタイミングである。つまり、図4における時刻t2は、上記のような自動再始動条件のいずれかが成立したタイミングである。
図4の時刻t2においては、ブレーキオンの状態であるが、クラッチ4が解放され、かつ機関回転速度が燃焼リカバー可能回転速度閾値R1よりも大きくなっている。そこで、図4の時刻t2においては、燃焼始動による内燃機関1の再始動を開始する。
図4の時刻t3は、燃料噴射再開後の最初の燃焼のタイミングである。図4の時刻t4は、内燃機関1の燃焼始動後にクラッチ4が締結されるタイミングである。
コントロールユニット21は、内燃機関1が停止した状態で再始動要求があった場合や、車両の車速がブレーキオンの状態によらず内燃機関1の減速度の影響が小さい所定の低車速閾値V1以下の状態で再始動要求があった場合、ブレーキオンの状態であっても燃料噴射の再開により内燃機関1を始動する。
内燃機関1は、車両が停止した状態や車速が所定の低車速閾値V1以下の状態では、運転者のブレーキ操作に伴う減速度増大の影響を受けることはない。そこで、コントロールユニット21は、ブレーキが踏み込まれた状態であっても、このような状態であれば、内燃機関1を燃料噴射の再開により始動させる。
これにより、内燃機関1は、燃料噴射のみで再始動する領域を拡大することができる。
図5は、自動停止した内燃機関1を再始動する際の様子を示すタイミングチャートであって、自動停止した内燃機関1を再始動する際に車速が低車速閾値V1以下となっている場合を示している。
図5の時刻t1は、内燃機関1の自動停止条件が成立しているタイミングである。図5においては、ブレーキオンとなって車速が低下中の時刻t1において自動停止条件が成立し、内燃機関1の自動停止が許可されている。
図5の時刻t2は、アクセルペダルが踏み込まれて自動停止中の内燃機関1に再始動要求があったタイミングである。つまり、図5における時刻t2は、上記のような自動再始動条件のいずれかが成立したタイミングである。
図5の時刻t2においては、ブレーキオンの状態であるが、車速が低車速閾値V1以下の低車速、かつ機関回転速度が燃焼リカバー可能回転速度閾値R1よりも大きくなっている。そこで、図5の時刻t2においては、燃焼始動による内燃機関1の再始動を開始する。図5の時刻t3は、燃料噴射再開後の最初の燃焼のタイミングである。
図6は、上述した実施例における内燃機関1の制御の流れを示すフローチャートである。
ステップS1では、内燃機関1の再始動要求が発生したか否かを判定する。すなわち、内燃機関1の自動停止中に自動再始動条件が成立したか否かを判定する。ステップS1において再始動要求が発生したと判定された場合は、ステップS2へ進む。ステップS1において再始動要求が発生したと判定されない場合は、今回のルーチンを終了する。
ステップS2では、機関回転速度が燃焼リカバー可能回転速度閾値R1以上であるか否かを判定する。ステップS2において機関回転速度が燃焼リカバー可能回転速度閾値R1以上であれば、ステップS3へ進む。ステップS2において機関回転速度が燃焼リカバー可能回転速度閾値R1以上でなければ、ステップS7へ進む。
ステップS3では、ブレーキオフの状態であるか否かを判定する。ステップS3においてブは、レーキオフの状態であればステップS4へ進む。ステップS3においては、ブレーキオフの状態でなければステップS5へ進む。
ステップS4では、燃料噴射の再開により内燃機関1を始動する。
ステップS5では、クラッチオフの状態であるか否かを判定する。ステップS5においてクラッチオフの状態であればステップS4へ進む。ステップS5においてクラッチオフの状態でなければステップS6へ進む。
ステップS6では、車速が低車速閾値V1以下であるか否かを判定する。ステップS6においては、車速が低車速閾値V1以下であればステップS4へ進む。ステップS6においては、車速が低車速閾値V1以下でなければステップS7へ進む。
ステップS7では、スタータモータ2によるクランキングにより内燃機関1を始動する。
以上、本発明の実施例を説明してきたが、本発明は、上述した実施例に限定されるものではなく、その趣旨を逸脱しない範囲で種々の変更が可能である。
例えば、回転速度閾値は内燃機関の減速度に応じて設定されるが、ブレーキオンの状態では内燃機関の減速度に応じて設定しない対応も考えられる。また、自動停止による内燃機関の機関回転速度低下中に、ブレーキオンの状態で再始動要求があった場合には、回転速度閾値を設定せず、もしくは、回転速度閾値を無限大に設定して、電動機を用いて内燃機関を回転させて始動させてもよい。さらには、回転速度閾値は、ブレーキオンの状態では一定値に設定してもよい。
なお、上述した実施例は、内燃機関の制御方法及び内燃機関の制御装置に関するものである。
Claims (9)
- 所定の自動停止条件が成立すると燃料噴射を停止して内燃機関を自動停止し、この自動停止による内燃機関の機関回転速度低下中に内燃機関の再始動要求があった場合、内燃機関の機関回転速度が燃料噴射のみで再始動可能となる所定の回転速度閾値以上であれば燃料噴射の再開により内燃機関を始動し、内燃機関の機関回転速度が上記回転速度閾値よりも低ければ電動機を用いて内燃機関を回転させて始動し、
自動停止による内燃機関の機関回転速度低下中に、ブレーキオンの状態で再始動要求があった場合には、上記電動機を用いて内燃機関を回転させて始動する内燃機関の制御方法。 - 内燃機関の駆動力を駆動輪に伝達する動力伝達経路上のクラッチが解放され、内燃機関の駆動力が上記駆動輪に伝達されていない状態で再始動要求があった場合には、ブレーキオンの状態であっても燃料噴射の再開により内燃機関を始動する請求項1に記載の内燃機関の制御方法。
- 内燃機関を駆動源とする車両が停止した状態で再始動要求があった場合には、ブレーキオンの状態であっても燃料噴射の再開により内燃機関を始動する請求項1または2に記載の内燃機関の制御方法。
- 内燃機関を駆動源とする車両の車速が所定の低車速閾値以下の状態で再始動要求があった場合には、ブレーキオンの状態であっても燃料噴射の再開により内燃機関を始動する請求項1~3のいずれかに記載の内燃機関の制御方法。
- 上記回転速度閾値は内燃機関の減速度に応じて設定される請求項1~4のいずれかに記載の内燃機関の制御方法。
- 上記回転速度閾値は、ブレーキオンの状態では内燃機関の減速度に応じて設定されない請求項5記載の内燃機関の制御方法。
- 自動停止による内燃機関の機関回転速度低下中に、ブレーキオンの状態で再始動要求があった場合には、上記回転速度閾値を設定せず、もしくは、上記回転速度閾値を無限大に設定して、上記電動機を用いて内燃機関を回転させて始動する請求項5に記載の内燃機関の制御方法。
- 上記回転速度閾値は、ブレーキオンの状態では一定値に設定される請求項5に記載の内燃機関の制御方法。
- 内燃機関を始動させることが可能な電動機と、
所定の自動停止条件が成立すると燃料噴射を停止して内燃機関を自動停止する第1制御部と、
自動停止による内燃機関の機関回転速度低下中に内燃機関の再始動要求があった場合に、内燃機関の機関回転速度が燃料噴射のみで再始動可能となる所定の回転速度閾値以上であれば燃料噴射の再開により内燃機関を始動し、内燃機関の機関回転速度が上記回転速度閾値よりも低ければ上記電動機を用いて内燃機関を始動する第2制御部と、を有し、
上記第2制御部は、自動停止による内燃機関の機関回転速度低下中に、内燃機関の機関回転速度が上記回転速度閾値以上であってブレーキオンの状態で再始動要求があった場合には、上記電動機を用いて内燃機関を始動する内燃機関の制御装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022551487A JPWO2022064591A1 (ja) | 2020-09-24 | 2020-09-24 | |
US18/040,452 US11859588B2 (en) | 2020-09-24 | 2020-09-24 | Method for controlling internal combustion engine, and device for controlling internal combustion engine |
EP20955185.2A EP4219924A4 (en) | 2020-09-24 | 2020-09-24 | METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE AND DEVICE FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE |
CN202080105512.8A CN116194664A (zh) | 2020-09-24 | 2020-09-24 | 内燃机的控制方法以及内燃机的控制装置 |
PCT/JP2020/035993 WO2022064591A1 (ja) | 2020-09-24 | 2020-09-24 | 内燃機関の制御方法及び内燃機関の制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/035993 WO2022064591A1 (ja) | 2020-09-24 | 2020-09-24 | 内燃機関の制御方法及び内燃機関の制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022064591A1 true WO2022064591A1 (ja) | 2022-03-31 |
Family
ID=80844611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/035993 WO2022064591A1 (ja) | 2020-09-24 | 2020-09-24 | 内燃機関の制御方法及び内燃機関の制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11859588B2 (ja) |
EP (1) | EP4219924A4 (ja) |
JP (1) | JPWO2022064591A1 (ja) |
CN (1) | CN116194664A (ja) |
WO (1) | WO2022064591A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008215154A (ja) * | 2007-03-02 | 2008-09-18 | Toyota Motor Corp | 内燃機関の停止始動制御装置 |
JP2010223006A (ja) | 2009-03-19 | 2010-10-07 | Denso Corp | 内燃機関の自動停止始動制御装置 |
JP2016003649A (ja) * | 2014-06-20 | 2016-01-12 | 日立オートモティブシステムズ株式会社 | 内燃機関の自動停止/再始動制御システム及び可変動弁装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3478723B2 (ja) * | 1998-02-03 | 2003-12-15 | 本田技研工業株式会社 | ハイブリッド車両の制御装置 |
JP3847438B2 (ja) * | 1998-02-03 | 2006-11-22 | 本田技研工業株式会社 | ハイブリッド車両の制御装置 |
US6945905B2 (en) * | 2003-10-22 | 2005-09-20 | General Motors Corporation | CVT hybrid powertrain fueling and engine stop-start control method |
WO2012039066A1 (ja) * | 2010-09-24 | 2012-03-29 | トヨタ自動車株式会社 | 車両のエンジン始動制御装置 |
JP5548599B2 (ja) | 2010-12-02 | 2014-07-16 | ジヤトコ株式会社 | コーストストップ車両およびその制御方法 |
WO2019069345A1 (ja) | 2017-10-02 | 2019-04-11 | 日産自動車株式会社 | 内燃機関の制御方法及び内燃機関の制御装置 |
CN111712626B (zh) * | 2018-02-15 | 2022-04-12 | 日产自动车株式会社 | 内燃机的控制方法以及内燃机的控制装置 |
-
2020
- 2020-09-24 CN CN202080105512.8A patent/CN116194664A/zh active Pending
- 2020-09-24 EP EP20955185.2A patent/EP4219924A4/en active Pending
- 2020-09-24 US US18/040,452 patent/US11859588B2/en active Active
- 2020-09-24 JP JP2022551487A patent/JPWO2022064591A1/ja active Pending
- 2020-09-24 WO PCT/JP2020/035993 patent/WO2022064591A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008215154A (ja) * | 2007-03-02 | 2008-09-18 | Toyota Motor Corp | 内燃機関の停止始動制御装置 |
JP2010223006A (ja) | 2009-03-19 | 2010-10-07 | Denso Corp | 内燃機関の自動停止始動制御装置 |
JP2016003649A (ja) * | 2014-06-20 | 2016-01-12 | 日立オートモティブシステムズ株式会社 | 内燃機関の自動停止/再始動制御システム及び可変動弁装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4219924A4 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022064591A1 (ja) | 2022-03-31 |
CN116194664A (zh) | 2023-05-30 |
US20230304464A1 (en) | 2023-09-28 |
EP4219924A4 (en) | 2023-11-15 |
EP4219924A1 (en) | 2023-08-02 |
US11859588B2 (en) | 2024-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9249741B2 (en) | Engine automatic stopping device and engine automatic stopping method | |
JP3788736B2 (ja) | エンジンの自動停止始動制御装置 | |
JP5870660B2 (ja) | 車両のエンジン自動制御装置 | |
JP2003041967A (ja) | 内燃機関の自動停止制御装置 | |
JP7211190B2 (ja) | ハイブリッド車両の制御装置 | |
JP5098921B2 (ja) | 内燃機関の制御装置 | |
JP6741167B2 (ja) | 内燃機関の制御方法及び内燃機関の制御装置 | |
WO2022064591A1 (ja) | 内燃機関の制御方法及び内燃機関の制御装置 | |
WO2017149948A1 (ja) | 車両用制御装置 | |
JP2010024887A (ja) | エンジンの制御装置 | |
JP6036121B2 (ja) | 車両におけるエンジンの自動停止および再始動の制御装置 | |
JP3978959B2 (ja) | 車両用内燃機関の制御装置 | |
JP3572446B2 (ja) | 車両のエンジン自動停止再始動装置 | |
JP6844721B2 (ja) | 内燃機関の制御方法及び内燃機関の制御装置 | |
JP7501273B2 (ja) | 内燃機関の制御方法及び内燃機関の制御装置 | |
JP6759684B2 (ja) | 車両駆動部の制御装置およびプログラム | |
JP6008692B2 (ja) | 制御装置 | |
JP7302751B2 (ja) | 内燃機関の制御方法及び内燃機関の制御装置 | |
JP2015143479A (ja) | 制御装置 | |
JP2023115607A (ja) | ハイブリッド車両の制御装置 | |
JP6053393B2 (ja) | アイドルストップ車両の制御装置 | |
JP2023118396A (ja) | ハイブリッド車両の制御装置 | |
JP6292781B2 (ja) | 車両の制御装置 | |
WO2019069444A1 (ja) | 内燃機関の制御方法及び内燃機関の制御装置 | |
JP2014189197A (ja) | 車両の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20955185 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022551487 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020955185 Country of ref document: EP Effective date: 20230424 |