WO2022063135A1 - 一种紫外固化涂料组合物及其应用 - Google Patents

一种紫外固化涂料组合物及其应用 Download PDF

Info

Publication number
WO2022063135A1
WO2022063135A1 PCT/CN2021/119669 CN2021119669W WO2022063135A1 WO 2022063135 A1 WO2022063135 A1 WO 2022063135A1 CN 2021119669 W CN2021119669 W CN 2021119669W WO 2022063135 A1 WO2022063135 A1 WO 2022063135A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoinitiators
water
photoinitiator
coating composition
optical fiber
Prior art date
Application number
PCT/CN2021/119669
Other languages
English (en)
French (fr)
Inventor
吴严
于建斌
Original Assignee
上海飞凯材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海飞凯材料科技股份有限公司 filed Critical 上海飞凯材料科技股份有限公司
Priority to US18/027,445 priority Critical patent/US20230331992A1/en
Priority to EP21871505.0A priority patent/EP4219640A4/en
Priority to KR1020237009626A priority patent/KR20230054439A/ko
Publication of WO2022063135A1 publication Critical patent/WO2022063135A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • C09D133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/43Thickening agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Definitions

  • the present application relates to the technical field of UV-curable coatings, in particular to a UV-curable coating composition and applications thereof.
  • Water-blocking optical cables can be divided into filled optical cables, semi-dry optical cables and fully dry optical cables according to different water blocking methods.
  • filled and semi-dry optical cables are mainly filled with ointment in the optical fiber loose tube. The effect of blocking water, but the ointment is often difficult to clean during the construction process, and at the same time brings pollution to the environment, brings certain inconvenience to the construction of the optical cable, and also increases the weight of the optical cable.
  • the all-dry optical cable Since there is no grease filling in the production process, the all-dry optical cable not only solves many troubles in the construction process, but also conforms to the concept of green environmental protection. Therefore, the all-dry optical cable will be a major trend in the development of optical cables in the future.
  • Water-blocking materials such as water-blocking powder, water-blocking yarn or hot-melt adhesive water-blocking ring are mostly used in the existing dry-type optical cable sheath, and the radial water-blocking effect of the casing can be realized through its own good water absorption and expansion performance.
  • Water-blocking powder and water-blocking yarn are very easy to absorb moisture, and the storage environment is strictly required. When the phenomenon of powder drop is serious, it will lead to the production accident of the optical cable, and the process requirements are high.
  • water-blocking ointments, water-blocking powders, water-blocking yarns, and water-blocking tapes are basically filled or wound, although they can block water to a certain extent. effect, but most of the production process is complicated, and the material itself is thicker, which also leads to the excessive weight of the optical cable.
  • a first aspect of the present application provides a UV-curable coating composition
  • the composition includes the following components: unsaturated carboxylic acid and its salt, carbonyl-containing compound, thickener, photoinitiator , deionized water; the optical fiber attenuation coefficient increase value of the composition is less than 0.02dB/km.
  • the unsaturated carboxylate is selected from at least one of unsaturated carboxylate sodium salt, unsaturated carboxylate potassium salt, and unsaturated carboxylate zinc salt.
  • the carbon atom in the carbonyl group forms a bond with an oxygen atom or a nitrogen atom.
  • the thickener is selected from at least one of aqueous polyurethane thickeners, hydrophobically modified polyether thickeners, and hydrophobically modified amino thickeners.
  • the photoinitiator is selected from acylphosphine oxide photoinitiators, alkylphenone photoinitiators, benzophenone photoinitiators, benzil photoinitiators, sulfur At least one of the xanthone-based photoinitiators.
  • the photoinitiator is selected from acylphosphine oxide photoinitiators, alkylphenone photoinitiators, benzophenone photoinitiators, benzil photoinitiators, sulfur At least two of the xanthone-based photoinitiators.
  • the photoinitiator is selected from acylphosphine oxide photoinitiators, alkylphenone photoinitiators, benzophenone photoinitiators, benzil photoinitiators, sulfur At least three of the xanthone-based photoinitiators.
  • the photoinitiator is selected from the group consisting of at least two photoinitiators, as a preferred technical solution, the photoinitiator contains at least an alkylphenone photoinitiator and a benzophenone photoinitiator , one of benzil photoinitiators and thioxanthone photoinitiators.
  • the proportion of the alkylphenone photoinitiator in the photoinitiator is less than 70 wt %.
  • the composition includes the following components: 20-70 wt% of unsaturated carboxylic acid and its salt, 0.02-10 wt% of carbonyl-containing compound, 1-20 wt% of thickener, 0.01 wt% of photoinitiator ⁇ 5 wt% with the balance being deionized water.
  • a second aspect of the present application provides an application of the above-mentioned UV-curable coating composition in a dry-type optical cable.
  • the present application provides a UV-curable coating composition, through the interaction between active groups, a network-like cross-linked coating is formed on the surface of the optical fiber, the water absorption rate is faster, and at the extreme of low water content It can also quickly absorb water under certain conditions, has better water blocking effect, and is not easy to lose water; under the preferred raw material mixing, the water absorption rate of the coating composition is maintained at 3 to 15 times, and further can be controlled at 3 to 10 times.
  • the thickness of the coating is greatly reduced, which can reach below 10 ⁇ m, and can reach below 6 ⁇ m, and the preferred thickness can reach 4 ⁇ m, which can significantly reduce the weight of the optical cable.
  • the coating composition can be directly coated and cured by using the existing ink coloring equipment, the process is simple, the curing speed is fast, and the production efficiency is high; the coating composition of the present application still maintains an elastic film state after water absorption and expansion, and will not fall off ; Good product stability, high uniformity, suitable for long-term storage.
  • a first aspect of the present application provides a UV-curable coating composition
  • the composition includes the following components: unsaturated carboxylic acid and its salt, carbonyl-containing compound, thickener, photoinitiator , deionized water; the optical fiber attenuation coefficient increase value of the composition is less than 0.02dB/km.
  • the unsaturated carboxylic acids and their salts in this application have both unsaturated groups and carboxyl groups, so they have good solubility in water, and can also be polymerized, coated and cured by UV to form a water-blocking coating attached to the optical fiber Floor.
  • the unsaturated carboxylic acid is acrylic acid.
  • the unsaturated carboxylate is selected from at least one of unsaturated carboxylate sodium salt, unsaturated carboxylate potassium salt, and unsaturated carboxylate zinc salt; further preferably, the unsaturated carboxylate
  • the saturated carboxylate is sodium unsaturated carboxylate; further, the unsaturated carboxylate is sodium acrylate.
  • Both acrylic acid and sodium acrylate in the present application can be purchased from the market, and inorganic bases can also be used to neutralize the acrylic acid groups into their salts, and inorganic bases well-known to those skilled in the art are suitable for this purpose.
  • the sodium acrylate is obtained by neutralizing acrylic acid with sodium hydroxide according to a certain degree of neutralization.
  • neutralization degree refers to the molar ratio of acrylic acid to sodium hydroxide, while being equal to the molar ratio of acrylic acid to sodium acrylate.
  • the molar ratio of the acrylic acid and sodium acrylate is (1:9) to (9:1).
  • the molar ratio of acrylic acid and sodium acrylate may be 1:9, 1:4, 3:7, 2:3, 1:1, 3:2, 7:3, 4:1, 9: 1 and so on.
  • the carbon atom in the carbonyl group-containing compound forms a bond with an oxygen atom or a nitrogen atom; further preferably, the carbonyl group-containing compound also Contains carbon-carbon double bonds.
  • the carbonyl-containing compound acts as a cross-linking agent for cross-linking and curing the coating composition to form a network-like coating.
  • the carbonyl-containing compound is used as a comonomer to improve the mechanical properties, heat resistance and corrosion resistance of the coating composition.
  • the carbonyl-containing compound is present in the coating composition both as a crosslinking agent and as a comonomer.
  • the carbonyl-containing compound is selected from diacetone acrylamide, N-p-hydroxyphenylacrylamide, N,N-dibenzylpropene Amide, N,N-methylenebisacrylamide, N,N-ethylenebisacrylamide, N-methylolacrylamide, N-hydroxyethylacrylamide, ethylene glycol diacrylate, diethylenediol Alcohol Diacrylate, Triethylene Glycol Diacrylate, Tetraethylene Glycol Diacrylate, Ethoxylated Hexylene Glycol Diacrylate, Ethoxylated Trimethylolpropane Triacrylate, Trimethylolpropane Diacrylate Acrylates, Trimethylolpropane Triacrylate, Methyl Ether Diacrylate, Neopentyl Glycol Diacrylate, 1,3-Butanediol Diacrylate, Glycerol-1,3-Diglyceride Diacrylate ,
  • the carbonyl-containing compound is selected from the group consisting of: Glycol Diacrylate, N,N-Ethylenebisacrylamide, N,N-Methylenebisacrylamide, N-Hydroxyethylacrylamide, N-Methylolacrylamide, Propylene Glycol Diacrylate, 1 , a mixture of one or more of 3-butanediol diacrylate and diethylene glycol diacrylate.
  • the proportion of the cross-linking agent in the coating composition is 0.02 to 5 wt%.
  • the weight percentage of the crosslinking agent in the coating composition may be 0.02%, 0.05%, 0.08%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8% , 0.9%, 1%, 1.2%, 1.4%, 1.6%, 1.8%, 2%, 2.2%, 2.4%, 2.6%, 2.8%, 3%, 3.2%, 3.4%, 3.6%, 3.8%, 4 %, 4.2%, 4.4%, 4.6%, 4.8%, 5%, etc., further preferably, the proportion of the crosslinking agent in the coating composition is 0.1-3wt%.
  • the carbonyl-containing compound can be selected from the following compounds: hydroxyethyl acrylate, methoxy (polyethylene glycol) acrylate, ethoxy (polyethylene glycol) Acrylate, 2-(2-ethoxyethoxy)ethyl acrylate, ethylene glycol methyl ether acrylate, diethylene glycol methyl ether acrylate, triethylene glycol methyl ether acrylate, tetraethylene glycol Methyl glycol methyl ether acrylate, ethylene glycol ethyl ether acrylate, diethylene glycol ethyl ether acrylate, triethylene glycol ethyl ether acrylate, tetramethylene glycol ethyl ether acrylate, diethylene glycol-2 - Mixture of one or more of ethylhexyl acrylate.
  • the carbonyl-containing compound is selected from hydroxyethyl acrylate, methoxy (poly) A mixture of one or more of ethylene glycol) acrylate, ethylene glycol methyl ether acrylate, triethylene glycol methyl ether acrylate, ethoxy (polyethylene glycol) acrylate.
  • the inventor found in careful research that the amount of comonomer added needs to be strictly controlled, and when the amount is too large, the water absorption rate and expansion ratio of the coating will be greatly reduced.
  • the added amount of comonomer (percent by weight) should not exceed 5%, preferably not more than 1%, and the optional comonomer ratio is 0.01wt%, 0.05% wt %, 0.1 wt %, 0.5 wt %, 0.6 wt %, 0.8 wt %. In some preferred embodiments, it is more preferred that no comonomer is added.
  • the thickener is selected from at least one of aqueous polyurethane thickeners, hydrophobically modified polyether thickeners, and hydrophobically modified amino thickeners.
  • aqueous polyurethane thickener herein is a class of hydrophobic group-modified ethoxylated polyurethane water-soluble polymers, consisting of three parts: hydrophobic group, hydrophilic chain and polyurethane group; the term “ Hydrophobically modified amino thickener” (HEAT) is a multi-branched sparse structure compound prepared by attaching multiple hydrophobic groups to amino resins containing polyoxyethylene chains.
  • the aqueous polyurethane thickener is selected from at least one of BYK425, TEGO ViscoPlus 3010, TEGO ViscoPlus 3030, and TEGO ViscoPlus 3060.
  • the hydrophobically modified amino thickener is Optiflo H500.
  • the hydrophobically modified polyether thickener is selected from at least one of Aquaflow NLS 200, Aquaflow NLS210, and Aquaflow NHS300.
  • the photoinitiator is selected from acylphosphine oxide photoinitiators, alkyl phenones At least one of photoinitiator, benzophenone photoinitiator, benzil photoinitiator, thioxanthone photoinitiator; further preferably, the photoinitiator is a photoinitiator .
  • the photoinitiator is selected from acylphosphine oxide photoinitiators, alkylphenone photoinitiators, benzophenone photoinitiators, and benzophenone photoinitiators. At least two kinds of initiators, benzil-based photoinitiators, and thioxanthone-based photoinitiators; further preferably, the photoinitiators include two kinds of photoinitiators.
  • the photoinitiator is selected from the group consisting of acylphosphine oxide photoinitiators, alkylphenone photoinitiators, benzophenone photoinitiators, benzil photoinitiators, At least three of the thioxanthone-based photoinitiators, preferably the photoinitiators comprise three photoinitiators.
  • acylphosphine oxide photoinitiator it can be bisacylphosphine oxide (BAPO) or monoacylphosphine oxide (MAPO); as the bisacylphosphine oxide photoinitiator, phenylbis(2,4,6-tris Methylbenzoyl) phosphine oxide (819), bis(2,4,6-trimethylbenzoyl)-(2,4-dipentyloxyphenyl)phosphine oxide, bis(2,6-di methoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, etc.; as a monoacylphosphine oxide photoinitiator, 2,4,6-trimethylbenzoyldiphenyl can be exemplified Phosphine oxide (TPO), 2,4,6-trimethylbenzoylethoxyphenylphosphine oxide (TEPO), etc.
  • BAPO bisacylphosphine oxide
  • MAPO monoacylphosphine oxide
  • alkylphenone-based photoinitiator examples include 1-hydroxycyclohexylbenzophenone (184), 2-hydroxy-2-methyl-1-phenyl-1-propanone (1173), 2-methyl- 1-[4-(Methylthio)phenyl]-2-(4-morpholinyl)-1-propanone (907), 2-hydroxy-2-methyl-1-[4-(2-hydroxy Ethoxy)phenyl]-1-propanone (2959), 1,1'-(methylenebis-4,1-phenylene)bis[2-hydroxy-2-methyl-1-propanone]( 127), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl) butanone (369), 2-(4-methylbenzyl-2-(dimethylamino)- 1-[4-(4-Morpholinyl)phenyl]-1-butanone, 2-benzyl-2-(dimethylamino)-1-[3,4-dimethoxyphenyl]- 1-But
  • benzophenone-based photoinitiator examples include benzophenone (BP), 2,4,6-trimethylbenzophenone, 4-methylbenzophenone, and 2-methylbenzophenone. Ketone, 2-methoxycarbonylbenzophenone, 4,4'-bis(chloromethyl)-benzophenone, 4-chlorobenzophenone, 4-phenylbenzophenone, 4,4 '-Bis(dimethylamino)-benzophenone, 4,4'-bis(diethylamino)benzophenone, methyl 2-benzoylbenzoate, 3,3'-dimethyl-4 -Methoxybenzophenone, 4-(4-methylphenylthio)benzophenone, 2,4,6-trimethyl-4'-phenylbenzophenone, 3-methyl- 4'-phenylbenzophenone, etc.
  • benzil-based photoinitiator examples include 2,2-dimethoxy-2-phenylacetophenone (BDK), 2,2-dimethoxy-1,2-diphenyl-ethanone Wait.
  • BDK 2,2-dimethoxy-2-phenylacetophenone
  • Wait 2,2-dimethoxy-1,2-diphenyl-ethanone Wait.
  • the photoinitiator contains alkyl phenone light an initiator, and at least one of a benzophenone-based photoinitiator, a benzil-based photoinitiator, and a thioxanthone-based photoinitiator.
  • the proportion of the alkylphenone photoinitiator in the photoinitiator is less than 70 wt %.
  • the proportion (weight percentage) of alkyl phenone photoinitiator in the photoinitiator can be 30%, 32.5%, 35%, 37.5%, 40%, 42.5%, 45%, 47.5%, 50% %, 52.5%, 55%, 57.5%, 60%, 62.5%, 65%, 67.5%, 70%, etc. Further preferably, the proportion of the alkylphenone photoinitiator in the photoinitiator is 30-70wt%; further, the proportion of the alkylphenone photoinitiator in the photoinitiator 40 to 60 wt %.
  • the applicant has proved through a large number of experiments that, compared to using a single photoinitiator, a group consisting of at least two photoinitiators is used as the photoinitiator of the present application and the alkylphenone type photoinitiator is in the photoinitiator.
  • the proportion of the coating is lower than 70wt%, the coating has a faster water absorption rate under the same water absorption rate.
  • the composition comprises the following components: 20-70 wt% of unsaturated carboxylic acid and its salt, 0.02-10 wt% of carbonyl-containing compound, 1-20 wt% of thickener, 0.01 wt% of photoinitiator ⁇ 5wt%, the balance is deionized water; as an example, the proportion (weight percentage) of the unsaturated carboxylate and its salt in the coating composition can be 20%, 25%, 30%, 35% %, 40%, 45%, 50%, 55%, 60%, 65%, 70%, etc.; as an example, the proportion (weight percent) of the carbonyl-containing compound in the coating composition may be 0.02 %, 0.06%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.2%, 1.4%, 1.6%, 1.8%, 2%, 2.2%, 2.4%, 2.6%, 2.8%, 3%, 3.2%, 3.4%, 3.6%, 3.8%, 4%, 4.2%,
  • the composition comprises the following components: 40-70wt% of unsaturated carboxylic acid and its salt, 0.1-4wt% of carbonyl-containing compound, 3-10wt% of thickener, 0.1-1wt% of photoinitiator, The balance is deionized water.
  • the components can be synergistically coordinated, so that the water absorption rate of the prepared UV coating is controlled at 3-15 times, the water absorption rate is fast, and it has both low fiber attenuation and excellent water blocking effect. .
  • water as a part of the coating composition of the present application, is used to dissolve small molecular unsaturated carboxylic acids and their salts, and the amount of water should not exceed 70wt% of the coating composition. It affects the water absorption performance of the coating, resulting in an excessively low water absorption rate. At the same time, the water content should not be less than 20wt% of the coating composition. If the water content is too low, the raw materials will not be completely dissolved, and will be dispersed in the coating in granular form, which is unfavorable for use.
  • the coating composition is cured into a water-absorbing and water-swellable coating by UV, and the water absorption rate of the coating is positively correlated with the water absorption rate. It will enter the fiber and cause damage to the fiber, so the faster the water absorption rate, the better the water blocking effect.
  • the market requires that the attenuation coefficient of optical fibers should not exceed 0.200dB/km. A large attenuation coefficient will cause serious obstruction of optical fiber signal transmission, making it difficult to use.
  • the attenuation coefficient of ordinary optical fibers (without water-blocking paint) is generally 0.180.
  • the coating is a water-absorbing and swellable coating formed by directly coating the liquid coating on the surface of the optical fiber and curing. The water absorption rate is too high and the volume expansion is too large, which will squeeze the surrounding optical fiber and cause attenuation.
  • Example 15 provided in this application further illustrates.
  • the increase value of the optical fiber attenuation coefficient is less than or equal to 0.02dB/km, and when the water absorption rate exceeds 15 times, the optical fiber attenuation coefficient increases significantly .
  • the increase value of the attenuation coefficient of the optical fiber is less than or equal to 0.01dB/km, which has a large tolerance to the attenuation coefficient of the ordinary optical fiber itself, and can be used for a wide range of optical fiber attenuation. of ordinary optical fibers.
  • the applicant has researched and found that when the water absorption ratio is 3 times, the minimum water blocking requirement of the optical fiber water blocking coating is satisfied.
  • the water absorption rate of the optical fiber water blocking coating needs to be controlled in a suitable range, generally controlled at 3 to 15 times, As an example, the water absorption rate of the optical fiber water blocking coating may be 3 times, 4 times, 5 times, 6 times, 7 times, 8 times, 9 times, 10 times, 11 times, 12 times, 13 times, 14 times, 15 times, etc., more preferably 3 to 10 times are ideal. It should be noted that the water absorption rate is positively correlated with the water absorption rate, and the water loss rate is positively correlated with the water absorption rate. The water absorption rate of the coating composition satisfies the condition of low optical fiber attenuation. The higher the water absorption rate, the better the water blocking effect.
  • the amount is higher than 20wt%, the curing time will be too long, and the coating will be easily broken.
  • heating is required, and the water will volatilize. When the water volatilizes to a certain proportion, the unsaturated carboxylic acid The solubility of the salt in the system will decrease, and the solid particles will crystallize out, making the product deteriorated and unusable.
  • the coating composition for water blocking of the present application is directly coated on the optical fiber or the optical fiber bundle, and the control of the viscosity of the coating composition is very high, and the viscosity of the coating composition is preferably in the range of 40-1000cps.
  • the viscosity of the coating composition may be 40cps, 80cps, 100cps, 150cps, 200cps, 250cps, 300cps, 350cps, 400cps, 450cps, 500cps, 550cps, 600cps, 650cps, 700cps, 750cps, 800cps, 850cps, 900cps, 950cps , 1000cps etc.
  • the viscosity of the coating is more preferably in the range of 400-600 cps, the coating and curing effect of the curable coating composition described in the present application is the best, and the room temperature condition is sufficient without heating.
  • the photoinitiator can affect the polymerization degree of acrylic acid-sodium acrylate, and excessive use will adversely affect the water absorption rate and water absorption rate of the coating. If the water absorption rate is too low, it is difficult to meet the water blocking requirements of the optical fiber. At the same time, the water absorption rate is too slow, and it is difficult to quickly absorb water under extreme conditions such as low water content, and the water blocking effect is not ideal.
  • the coating composition further includes toner.
  • the toner is an organic toner or an inorganic toner, which can provide different colors for the system, wherein the organic toner is an organic mixture composed of hydrocarbons, and the inorganic toner is a metal-free toner , Organic-free toner.
  • the toner titanium dioxide, carbon black, phthalocyanine blue, phthalocyanine green, benzidine yellow, rouge 4B, permanent violet, permanent red and the like can be exemplified.
  • the amount of the toner is 0.001-0.5wt% of the coating composition, as an example, the amount of the toner is 0.001%, 0.003%, 0.005% by weight of the coating composition , 0.007%, 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.1%, 0.15%, 0.2%, 0.25%, 0.3%, 0.35%, 0.4 %, 0.45%, 0.5%, etc., further preferably, the amount of the toner is 0.005-0.2wt% of the coating composition.
  • the coating composition further includes fluorescent whitening powder.
  • the fluorescent whitening powder is selected from stilbene-based fluorescent whitening agents, coumarin-based fluorescent whitening agents, azole-based fluorescent whitening agents, and dicarboximide-based fluorescent whitening agents A mixture of one or more of these.
  • stilbene type fluorescent whitening agent triazine type stilbene, bisamide type stilbene, triazole type stilbene, etc.
  • the coumarin type fluorescent whitening agent 3-carboxyl incense Coumarin, 4-methyl-7-aminocoumarin, 3-phenyl-7-aminocoumarin, heterocyclic coumarin, etc.
  • azole fluorescent whitening agents phenylpropoxazole, benzene imidazole, pyrazoline, other heterocyclic azole-based fluorescent whitening agents, etc.
  • dicarboximide-based fluorescent whitening agents phthalimide, naphthalimide, and the like can be exemplified.
  • the amount of the fluorescent whitening powder is 0.001-0.125% by weight of the coating composition, as an example, the amount of the fluorescent whitening powder is 0.001%, 0.003% by weight of the coating composition, 0.005%, 0.007%, 0.01%, 0.012%, 0.015%, 0.018%, 0.02%, 0.025%, 0.03%, 0.035%, 0.04%, 0.045%, 0.05%, 0.055%, 0.06%, 0.065%, 0.07% , 0.075%, 0.08%, 0.085%, 0.09%, 0.095%, 0.1%, 0.11%, 0.125%, etc. Further preferably, the amount of the fluorescent whitening powder is 0.0005-0.05wt% of the coating composition.
  • the water-blocking coating has a fluorescent effect under ultraviolet light irradiation, and it is easy to distinguish multi-core fibers.
  • the present application also provides a method for preparing the above coating composition as follows: first, dissolve the weighed photoinitiator and carbonyl-containing compound in acrylic acid, add a small amount of deionized water to dilute to prepare component one; Sodium oxide is dissolved in the remaining deionized water to make component 2; then component 1 and component 2 are neutralized in a cold water bath (not higher than 35°C) to make acrylic acid-sodium acrylate with a certain degree of neutralization solution; add a certain amount of thickener to the above-mentioned acrylic acid-sodium acrylate solution and mix thoroughly to form a coating.
  • a second aspect of the present application provides an application of the above-mentioned UV-curable coating composition, which is used as a water-blocking coating for dry-type optical cables.
  • the present application also provides a method for using the above-mentioned coating composition, comprising the following steps: using optical fiber ink coloring equipment, coating the coating composition on the surface of the optical fiber with a liquid film with a thickness of 4-6 ⁇ m in the form of dip coating; The liquid film is cured under UV light irradiation to obtain a water-blocking coating.
  • the preparation method of each embodiment includes the following steps: dissolving the weighed photoinitiator D and carbonyl-containing compound B in acrylic acid A1, adding a small amount of deionized water to dilute to prepare component one; at the same time, dissolving sodium hydroxide in acrylic acid A1.
  • the remaining deionized water is made into component two; then component one and component two are neutralized in a cold water bath (not higher than 35 ° C) to make acrylic acid A1-sodium acrylate A2 solution; in the above acrylic acid A1- Thickener C is added to the sodium acrylate A2 solution, and mixed to form a coating; the amount of sodium hydroxide is determined according to the required molar ratio of acrylic acid A1 and sodium acrylate A2.
  • each embodiment includes the following steps: using optical fiber coloring ink coloring equipment, the coating composition prepared under the mixing of each component in the above-mentioned proportion, is coated on the surface of the optical fiber with a liquid with a thickness of about 5 ⁇ m by dip coating. The film is then cured using a UV lamp to obtain a water-blocking coating for optical fibers.
  • the paint obtained in each embodiment is measured for performance, and the test content includes viscosity, water absorption rate, water absorption rate, water retention performance, and optical fiber attenuation.
  • the test method is as follows:
  • Viscosity measurement The viscosity of the coating was measured using a Bolifei rotational viscometer, and the unit was cps.
  • Optical fiber attenuation measurement Since the 1550nm band is more sensitive to the bending loss of the optical fiber than other bands, the 1550nm band is used to test the optical fiber attenuation, one end of the optical fiber is connected to the optical fiber tester, and 5 sets of optical fiber attenuation data at the 1550 nm band are read. Take its average. At the wavelength of 1550 nm, the difference obtained by subtracting the attenuation coefficient of the optical fiber coated with the water-blocking paint from the attenuation coefficient of the ordinary optical fiber not coated with the water-blocking paint is the increase value of the attenuation coefficient of the optical fiber.
  • n(A1):n(A2) represents the molar ratio of raw material A1 and raw material A2, the following is similar.
  • Example 1-3 of the present application on the condition that other components remain unchanged, a group consisting of at least two photoinitiators is used as the photoinitiator of the present application and the alkyl phenone light
  • the proportion of the initiator in the photoinitiator is less than 70 wt %, under the same water absorption ratio, the coating of the present application has a faster water absorption rate.
  • the UV coatings provided by Examples 1-9 have faster water absorption rates, especially when the photoinitiator is incorporated into the coating composition as a group of at least two photoinitiators , the coating has a faster water absorption rate, can quickly absorb water under extreme conditions with less water content, and has a water loss rate of less than 5%, good water retention performance, can protect the optical fiber from water vapor, and has excellent optical fiber Water blocking effect;
  • the water absorption ratio of the UV coating provided by the embodiment of the present application is 3-10 times, which meets the water blocking requirements of the optical fiber and makes the optical fiber attenuation increase value less than 0.01dB/km, has a large tolerance to the attenuation of ordinary optical fibers, and can be used for comparison Ordinary fiber with a wide range of fiber attenuation;
  • the UV coating provided in the embodiment of the present application maintains an elastic film state after water absorption and expansion, has good adhesion to the optical fiber, and is not easy to fall off.
  • m(D4):m(D2) represents the mass ratio of raw material D4 and raw material D2.
  • the water blocking effect is better in the range of the content (0.1-1wt%), and when the photoinitiator content exceeds 5wt%, the water absorption rate of the coating composition is difficult to meet the water blocking requirements of the optical fiber, and the water absorption rate is too slow, and the water content is less.
  • the water blocking effect is not ideal in more stringent environments.
  • the amount of thickener affects the viscosity of the coating composition to a large extent.
  • Example 11 shows that by controlling the content of the thickener within the range of the content (1%-20%) defined in this application, the content (3%-20%) is further preferred. 10%), adjust the viscosity of the system and improve the construction performance, so that it can be cured at room temperature without heating.
  • the applicant achieves the purpose of convenient construction by controlling the viscosity, it is found that when the viscosity of the coating composition is too high, in order to reduce the viscosity and facilitate coating, heating is required, and heating will cause water volatilization. Oversaturation will precipitate out to form particles, and the coating on the surface of the fiber will be uneven, which will increase the attenuation of the fiber and make the product unusable.
  • the applicant observed that the incompatibility of the cross-linking agent would cause particles in the water-blocking coating, and the coating of the coating on the surface of the optical fiber would cause unevenness on the surface of the optical fiber, resulting in increased attenuation, and the product could not be used. Due to the limited solubility of the above-mentioned cross-linking agents, they are incompatible under the mixing of the types and contents of other components.
  • the above-mentioned cross-linking agent is forcibly dissolved in the mixture of other components, a large amount of acid needs to be added, but the added acid will Neutralization with sodium hydroxide, the neutralization degree of acrylic acid-sodium acrylate is less than 10%, the water absorption rate will be reduced, and the water blocking effect is not good.
  • the applicant has found that the neutralization degree needs to be reduced to 5%. species to dissolve 0.02wt%. That is to say, if the neutralization degree of acrylic acid-sodium acrylate in the present application reaches more than 10%, the above-mentioned types of crosslinking agents are insoluble.
  • Tables 13 and 14 show that the aforementioned carbonyl-containing compounds such as hydroxyethyl acrylate have little effect on the water absorption rate, but the increase of its content will reduce the water absorption rate and water absorption rate of the coating composition. Specifically, its addition amount exceeds 1% When the coating composition exceeds 5%, the coating composition can hardly meet the basic water-blocking requirements of the optical fiber; and when the addition amount exceeds 5%, the water-blocking coating has basically lost the ability to absorb water. Examples 12 and 13 show that the effect of comonomer is consistent for formulations of different levels of water absorption.
  • the attenuation coefficient of ordinary optical fiber (uncoated with water-blocking paint) is generally 0.180dB/km-0.190dB/km, and the attenuation coefficient of optical fiber is usually required not to exceed 0.200dB/km. Based on the attenuation coefficient on ordinary optical fibers, Increasing the external force (such as the application of water-blocking paint), the increase of the attenuation coefficient of the optical fiber must be less than 0.02dB/km, more preferably less than 0.01dB/km, to be accepted by the market.
  • the increase value of optical fiber attenuation coefficient in Table 15 is the increase of attenuation coefficient of optical fiber coated with water-blocking paint compared with that of ordinary optical fiber without water-blocking paint.
  • the increase value of the optical fiber attenuation coefficient is less than or equal to 0.02dB/km.
  • the optical fiber attenuation coefficient increases significantly. accepted by the market.
  • the optical fiber water-blocking coating provided by the present application has a large tolerance to ordinary optical fibers, and can be used for ordinary optical fibers with a wide range of optical fiber attenuation.
  • the UV-curable coating composition involved in the present application can be applied to the technical field of UV-curable coatings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

本申请公开了一种紫外固化涂料组合物,所述组合物包括以下组分:不饱和羧酸及其盐、含羰基的化合物、增稠剂、光引发剂、去离子水;所述组合物的光纤衰减系数增加值低于0.02dB/km。该涂料组合物通过活性基团之间的相互作用,在光纤表面形成内部呈网络状交联的涂层,吸水速率更快,阻水效果更好,且不易失水,在优选的原料混配下,所述涂料组合物的吸水倍率保持在3~15倍,更进一步地还可控制在3~10倍,从而使得涂敷于光纤上的水溶张性涂层吸水之后不会过度挤压光纤造成光纤衰减超标,相比于现有干式光缆所用各类光纤阻水材料,本申请的涂层厚度大大降低,可显著降低光缆重量,因此在同等重量下,光线的芯数增加,可增大通讯重量。

Description

一种紫外固化涂料组合物及其应用 技术领域
本申请涉及紫外固化涂料技术领域,尤其涉及一种紫外固化涂料组合物及其应用。
背景技术
众所周知,水汽对光缆十分有害,外部水分和湿气的没入会造成光缆氢损增加,光纤强度受损,进而影响光缆光纤的使用寿命和传输性能。阻水光缆按阻水方式的不同可分为填充式光缆、半干式光缆和全干式光缆,其中填充式和半干式光缆在光纤松套管中主要是采用填充油膏的方式来达到阻水的效果,但是油膏在施工过程中往往难以擦净,同时对环境带来污染,给光缆施工带来一定的不便,还会增加光缆重量。全干式光缆由于在生产过程中无油膏填充,既解决了施工过程中诸多麻烦,又符合绿色环保的理念,因此全干式光缆将是未来光缆发展的一大趋势。现有干式光缆护套间多用阻水粉、阻水纱或热熔胶阻水环等阻水材料,通过其本身良好的吸水膨胀性能,实现套管的径向阻水效果。阻水粉、阻水纱极易吸潮,保存环境要求严格,易出现掉粉现象严重时会导致光缆生产事故,工艺要求高;热熔胶阻水环填充在光缆内外护套间的阻水方法效率低,工艺繁琐,且阻水效果差。在现有干式光缆的设计和制造中,阻水油膏、阻水粉,阻水纱和阻水带等阻水材料基本都是采用填充或缠绕式,虽然都可起到一定程度的阻水效果,但大都制作工艺复杂,材料自身较厚亦导致光缆重量过大。
CN107245122A、CN1208784C等中国专利公开了阻水带、阻水纱的相关技术,虽然材料的阻水效果较好,但均存在产品形态较厚、光缆截面直径大、制作工艺复杂等问题。目前能够以可控的方式直接涂覆到光纤表面,可辐射固化成均匀涂层并具有阻水性能的涂料组合物在文献中的记载极少,其中国外专利WO2019203639A1涉及一种用于光纤阻水且可辐射固化的涂料组合物,该涂料的吸水倍数相当大,而吸水倍数过大会造成对光纤的挤压,使光纤衰减较为严重。此外,现有用于光纤阻水的涂料大都追求更高的吸水倍率,致使光纤衰减严重,信号传输严重受阻,市场对衰减超标的光纤也难以接受;进一步的,现有光纤阻水涂料在固化过程中会因固化不均导致阻水性能差,具体来说,会导致吸水速率 较慢,在含水量较少等更为严格的环境中不能达到理想的阻水效果;涂料的稳定性也会影响涂料的贮存性能、涂覆性能、阻水性能等。
发明内容
为了解决上述问题,本申请的第一方面提供了一种紫外固化涂料组合物,所述组合物包括以下组分:不饱和羧酸及其盐、含羰基的化合物、增稠剂、光引发剂、去离子水;所述组合物的光纤衰减系数增加值低于0.02dB/km。
作为一种优选的技术方案,所述不饱和羧酸盐选自不饱和羧酸钠盐、不饱和羧酸钾盐、不饱和羧酸锌盐中的至少一种。
作为一种优选的技术方案,所述羰基中的碳原子与氧原子或氮原子成键。
作为一种优选的技术方案,所述增稠剂选自水性聚氨酯增稠剂、疏水改性聚醚增稠剂、疏水改性氨基增稠剂的至少一种。
作为一种优选的技术方案,所述光引发剂选自酰基氧化膦类光引发剂、烷基苯酮类光引发剂、二苯甲酮类光引发剂、苯偶酰类光引发剂、硫杂蒽酮类光引发剂中的至少一种。
作为一种优选的技术方案,所述光引发剂选自酰基氧化膦类光引发剂、烷基苯酮类光引发剂、二苯甲酮类光引发剂、苯偶酰类光引发剂、硫杂蒽酮类光引发剂中的至少两种。
作为一种优选的技术方案,所述光引发剂选自酰基氧化膦类光引发剂、烷基苯酮类光引发剂、二苯甲酮类光引发剂、苯偶酰类光引发剂、硫杂蒽酮类光引发剂中的至少三种。
光引发剂选自至少两种光引发剂组成的组时,作为一种优选的技术方案,所述光引发剂中至少含有烷基苯酮类光引发剂,以及二苯甲酮类光引发剂、苯偶酰类光引发剂、硫杂蒽酮类光引发剂中的一种。
光引发剂选自至少两种光引发剂组成的组时,作为一种优选的技术方案,所述烷基苯酮类光引发剂在光引发剂中的占比低于70wt%。
作为一种优选的技术方案,所述组合物包括以下组分:不饱和羧酸及其盐20~70wt%、含羰基的化合物0.02~10wt%、增稠剂1~20wt%、光引发剂0.01~5wt%,余量为去离子水。
本申请的第二方面提供了一种如上所述的紫外固化涂料组合物在干式光缆 中的应用。
有益效果:本申请提供了一种紫外固化涂料组合物,通过活性基团之间的相互作用,在光纤表面形成内部呈网络状交联的涂层,吸水速率更快,在含水量少的极端条件下也能快速吸水,阻水效果更好,且不易失水;在优选的原料混配下,所述涂料组合物的吸水倍率保持在3~15倍,更进一步地还可控制在3~10倍,从而使得涂敷于光纤上的水溶胀性涂层吸水之后不会过度挤压光纤造成光纤衰减超标;相比于现有干式光缆所用各类光纤阻水材料,本申请所述阻水涂层厚度大大降低,可以达到10μm以下,更可达到6μm以下,优选的厚度可达到4μm,可显著降低光缆重量,因此在同等重量下,光线的芯数增加,可增大通讯重量;该涂料组合物可直接使用现有油墨着色装备进行涂覆并固化,工艺简单,固化速度较快,生产效率高;本申请所述涂料组合物吸水膨胀后仍然保持为弹性的薄膜状态,不会掉落;产品稳定性好,均匀度高,适于长期保存。
具体实施方式
结合以下本申请的优选实施方法的详述以及包括的实施例可进一步地理解本申请的内容。除非另有说明,本文中使用的所有技术及科学术语均具有与本申请所属领域普通技术人员的通常理解相同的含义。如果现有技术中披露的具体术语的定义与本申请中提供的任何定义不一致,则以本申请中提供的术语定义为准。
在本文中使用的,除非上下文中明确地另有指示,否则没有限定单复数形式的特征也意在包括复数形式的特征。还应理解的是,如本文所用术语“由…制备”与“包含”同义,“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示所陈述的组合物、步骤、方法、制品或装置,但不排除存在或添加一个或多个其它组合物、步骤、方法、制品或装置。此外,当描述本申请的实施方式时,使用“优选的”、“优选地”、“更优选的”等是指,在某些情况下可提供某些有益效果的本申请实施方案。然而,在相同的情况下或其他情况下,其他实施方案也可能是优选的。除此之外,对一个或多个优选实施方案的表述并不暗示其他实施方案不可用,也并非旨在将其他实施方案排除在本申请的范围之外。
为了解决上述问题,本申请的第一方面提供了一种紫外固化涂料组合物,所 述组合物包括以下组分:不饱和羧酸及其盐、含羰基的化合物、增稠剂、光引发剂、去离子水;所述组合物的光纤衰减系数增加值低于0.02dB/km。
本申请中的不饱和羧酸及其盐同时具有不饱和基团和羧基,因此在水中具有良好的溶解性,还可发生聚合,涂覆并经UV固化后形成附着在光纤上的阻水涂层。在一些优选的实施方式中,所述不饱和羧酸为丙烯酸。
在一些优选的实施方式中,所述不饱和羧酸盐选自不饱和羧酸钠盐、不饱和羧酸钾盐、不饱和羧酸锌盐中的至少一种;进一步优选的,所述不饱和羧酸盐为不饱和羧酸钠盐;更进一步的,所述不饱和羧酸盐为丙烯酸钠。
本申请中的丙烯酸和丙烯酸钠均可由市面购买得到,也可使用无机碱将丙烯酸基团中和为其盐,本领域技术人员熟知的无机碱均适用于该目的。
从简化工艺的角度考虑,在一些实施方式中,所述丙烯酸钠由丙烯酸通过氢氧化钠按照一定的中和度中和得到。
本文中的术语“中和度”表示丙烯酸和氢氧化钠的摩尔比,同时等于丙烯酸和丙烯酸钠的摩尔比。在一些优选的实施方式中,所述丙烯酸和丙烯酸钠的摩尔比为(1︰9)~(9︰1)。作为一种示例,所述丙烯酸和丙烯酸钠的摩尔比可以为1:9,1:4,3:7,2:3,1:1,3:2,7:3,4:1,9:1等。发明人在研究中发现,如果中和度过低,则丙烯酸钠含量相对少,吸水倍率过低,达不到阻水需求,如果中和度过高,丙烯酸钠含量相对过高,交联程度会低,固化速度会降低,且吸水膨胀倍率会偏大,挤压光纤,光纤内的光会因散射而损失掉造成损耗,光纤弯曲也会影响信号的传输。
从平衡涂料的阻水性能和固化速率角度考虑,在一些优选的实施方式中,所述含羰基中的碳原子与氧原子或氮原子成键;进一步优选的,所述含羰基的化合物中还含有碳碳双键。发明人发现,含羰基的化合物中引入双键能够使其与不饱和羧酸发生聚合,同时羰基碳原子与氧原子或氮原子成键,增加了分子极性,进而在极性作用下,体系中形成网状的交联结构,改善了涂料的各项性能。
在一些优选的实施方式中,所述含羰基的化合物作为交联剂,用于使涂料组合物交联固化形成网状涂层。
在一些优选的实施方式中,所述含羰基的化合物作为共聚单体,用于提高涂料组合物的力学性能、耐热性和耐腐蚀性。
在一些优选的实施方式中,所述含羰基的化合物作为交联剂和作为共聚单体 同时存在于涂料组合物中。
所述含羰基的化合物作为交联剂时,在一些优选的实施方式中,所述含羰基的化合物选自双丙酮丙烯酰胺、N-对羟苯基丙烯酰胺、N,N-二苄基丙烯酰胺、N,N-亚甲基双丙烯酰胺、N,N-亚乙基双丙烯酰胺、N-羟甲基丙烯酰胺、N-羟乙基丙烯酰胺、乙二醇二丙烯酸酯、二乙二醇二丙烯酸酯、三甘醇二丙烯酸酯、四乙二醇二丙烯酸酯、乙氧基化己二醇二丙烯酸酯、乙氧基化三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、甲基醚二丙烯酸酯、新戊二醇二丙烯酸酯、1,3-丁二醇二丙烯酸酯、甘油-1,3-二甘油酯二丙烯酸酯、1,6-己二基双[氧基-2-羟基-3,1-丙二基]双丙烯酸酯、季戊四醇三丙烯酸酯、乙氧基化季戊四醇三丙烯酸酯、1,4-丁二醇二丙烯酸酯、1,6-己二醇二丙烯酸酯、聚乙二醇二丙烯酸酯、丙二醇二丙烯酸酯、六亚甲基二醇二丙烯酸酯、双酚A二丙烯酸酯、季戊四醇四丙烯酸酯中的一种或多种的混合;发明人在研究中发现,交联剂在产品体系中存在溶解性问题,导致涂料组合物中出现颗粒,涂料涂覆于光纤表面后会引发光纤表面不平造成衰减增加,从涂料组合物在水体系中的稳定性、涂料组合物相容性好,从而获得低光纤衰减涂料组合物角度考虑,在一些优选的实施方式中,所述含羰基的化合物选自乙二醇二丙烯酸酯、N,N-亚乙基双丙烯酰胺、N,N-亚甲基双丙烯酰胺、N-羟乙基丙烯酰胺、N-羟甲基丙烯酰胺、丙二醇二丙烯酸酯、1,3-丁二醇二丙烯酸酯、二乙二醇二丙烯酸酯中的一种或多种的混合。在一些优选的实施方式中,交联剂在涂料组合物中的占比为0.02~5wt%,交联剂含量过高会导致体系相容性不好,存在不溶性颗粒造成光纤衰减变大,过低起不到交联的效果,吸水倍率和速率不达标。作为一种示例,交联剂在涂料组合物中的重量百分比可以为0.02%,0.05%,0.08%,0.1%,0.2%,0.3%,0.4%,0.5%,0.6%,0.7%,0.8%,0.9%,1%,1.2%,1.4%,1.6%,1.8%,2%,2.2%,2.4%,2.6%,2.8%,3%,3.2%,3.4%,3.6%,3.8%,4%,4.2%,4.4%,4.6%,4.8%,5%等,进一步优选的,交联剂在涂料组合物中的占比为0.1~3wt%。
所述含羰基的化合物作为共聚单体时,所述含羰基的化合物可以选自以下化合物:丙烯酸羟乙酯、甲氧基(聚乙二醇)丙烯酸酯、乙氧基(聚乙二醇)丙烯酸酯、2-(2-乙氧基乙氧基)乙基丙烯酸酯、乙二醇甲基醚丙烯酸酯、二乙二醇甲基醚丙烯酸酯、三甘醇甲基醚丙烯酸酯、四亚甲基乙二醇甲醚丙烯酸酯、乙二 醇乙醚丙烯酸酯、二乙二醇乙醚丙烯酸酯、三乙二醇乙醚丙烯酸酯、四亚甲基乙二醇乙醚丙烯酸酯、二乙二醇-2-乙基己基丙烯酸酯中的一种或多种的混合。从提高涂料组合物的力学性能、耐酸、耐碱、耐腐蚀和耐热性的角度考虑,在一些优选的实施方式中,所述含羰基的化合物选自丙烯酸羟乙酯、甲氧基(聚乙二醇)丙烯酸酯、乙二醇甲基醚丙烯酸酯、三甘醇甲基醚丙烯酸酯、乙氧基(聚乙二醇)丙烯酸酯的一种或多种的混合。然而,发明人在仔细的研究中发现,共聚单体的加入量需进行严格控制,加入量过多时会引起涂料吸水速率的和膨胀倍率大幅降低。为了不影响涂料固化后涂层的吸水速度和膨胀倍率,共聚单体的加入量(重量百分比)不得超过5%,优选不超过1%,可选的共聚单体占比为0.01wt%、0.05wt%、0.1wt%、0.5wt%、0.6wt%、0.8wt%。在一些优选的实施方案中,更优选不加入共聚单体。
在一些优选的实施方式中,所述增稠剂选自水性聚氨酯增稠剂、疏水改性聚醚增稠剂、疏水改性氨基增稠剂的至少一种。
本文中的术语“水性聚氨酯增稠剂”(HEUR)是一类疏水基团改性的乙氧基聚氨酯水溶性聚合物,由疏水基团、亲水链和聚氨酯基团三部分组成;术语“疏水改性氨基增稠剂”(HEAT)是在含有聚氧乙烯链的氨基树脂上接上多个疏水基团制成的多支化的疏状结构化合物。
在一些优选的实施方式中,所述水性聚氨酯增稠剂(HEUR)选自BYK425、TEGO ViscoPlus 3010、TEGO ViscoPlus 3030、TEGO ViscoPlus 3060中的至少一种。
在一些优选的实施方式中,所述疏水改性氨基增稠剂(HEAT)为Optiflo H500。
在一些优选的实施方式中,所述疏水改性聚醚增稠剂选自Aquaflow NLS 200、Aquaflow NLS210、Aquaflow NHS300中的至少一种。
以涂料组合物稳定性好、易于储存、相容性好、无毒无味为出发点,在一些优选的实施方式中,所述光引发剂选自酰基氧化膦类光引发剂、烷基苯酮类光引发剂、二苯甲酮类光引发剂、苯偶酰类光引发剂、硫杂蒽酮类光引发剂中的至少一种;进一步优选的,所述光引发剂为一种光引发剂。
以提高涂料组合物的吸水速率为出发点,在另一些优选的实施方式中,所述光引发剂选自酰基氧化膦类光引发剂、烷基苯酮类光引发剂、二苯甲酮类光引发 剂、苯偶酰类光引发剂、硫杂蒽酮类光引发剂中的至少两种;进一步优选的,所述光引发剂包含两种光引发剂。
在另一些优选的实施方式中,所述光引发剂选自酰基氧化膦类光引发剂、烷基苯酮类光引发剂、二苯甲酮类光引发剂、苯偶酰类光引发剂、硫杂蒽酮类光引发剂中的至少三种,优选所述光引发剂包含三种光引发剂。
作为酰基氧化膦类光引发剂,可为双酰基氧化膦(BAPO)或单酰基氧化膦(MAPO);作为双酰基氧化膦类光引发剂,可举例苯基双(2,4,6-三甲基苯甲酰基)氧化膦(819)、双(2,4,6-三甲基苯甲酰基)-(2,4-双戊基氧苯基)氧化膦、双(2,6-二甲氧基苯甲酰基)-2,4,4-三甲基戊基氧化膦等;作为单酰基氧化膦类光引发剂,可举例2,4,6-三甲基苯甲酰基二苯基氧化膦(TPO)、2,4,6-三甲基苯甲酰基乙氧基苯基氧化膦(TEPO)等。
作为烷基苯酮类光引发剂,可举例1-羟基环己基苯甲酮(184)、2-羟基-2-甲基-1-苯基-1-丙酮(1173)、2-甲基-1-[4-(甲基硫代)苯基]-2-(4-吗啉基)-1-丙酮(907)、2-羟基-2-甲基-1-[4-(2-羟基乙氧基)苯基]-1-丙酮(2959)、1,1’-(亚甲基二-4,1-亚苯基)双[2-羟基-2-甲基-1-丙酮](127)、2-苄基-2-二甲基氨基-1-(4-吗啉苯基)丁酮(369)、2-(4-甲基苄基-2-(二甲基氨基)-1-[4-(4-吗啉基)苯基]-1-丁酮、2-苄基-2-(二甲基氨基)-1-[3,4-二甲氧基苯基]-1-丁酮等。
作为二苯甲酮类光引发剂,可举例二苯甲酮(BP)、2,4,6-三甲基二苯甲酮、4-甲基二苯甲酮、2-甲基二苯甲酮、2-甲氧基羰基二苯甲酮、4,4’-双(氯甲基)-二苯甲酮、4-氯二苯甲酮、4-苯基二苯甲酮、4,4’-双(二甲氨基)-二苯甲酮、4,4’-双(二乙氨基)二苯甲酮、2-苯甲酰基苯甲酸甲酯、3,3’-二甲基-4-甲氧基二苯甲酮、4-(4-甲基苯硫基)二苯甲酮、2,4,6-三甲基-4’-苯基二苯甲酮、3-甲基-4’-苯基二苯甲酮等。
作为苯偶酰类光引发剂,可举例2,2-二甲氧基-2-苯基苯乙酮(BDK)、2,2-二甲氧基-1,2-二苯基-乙酮等。
作为硫杂蒽酮类光引发剂,可举例2-异丙基硫杂蒽酮(ITX)等。
从保证涂料的固化速率和吸水速率角度考虑,在一些优选的以至少两种光引发剂组成的组作为本申请光引发剂的实施方式中,所述光引发剂中含有烷基苯酮类光引发剂,以及二苯甲酮类光引发剂、苯偶酰类光引发剂、硫杂蒽酮类光引发 剂中的至少一种。在一些优选的以至少两种光引发剂组成的组作为本申请光引发剂的实施方式中,烷基苯酮类光引发剂在所述光引发剂中的占比低于70wt%,示例的,烷基苯酮类光引发剂在所述光引发剂中的占比(重量百分比)可以为30%,32.5%,35%,37.5%,40%,42.5%,45%,47.5%,50%,52.5%,55%,57.5%,60%,62.5%,65%,67.5%,70%等。进一步优选的,烷基苯酮类光引发剂在所述光引发剂中的占比为30~70wt%;更进一步的,烷基苯酮类光引发剂在所述光引发剂中的占比为40~60wt%。
申请人经大量实验证明,相比于单独使用一种光引发剂,以至少两种光引发剂组成的组作为本申请光引发剂且烷基苯酮类光引发剂在所述光引发剂中的占比低于70wt%时,相同的吸水倍率下,所述涂层具有较快的吸水速率。
在一些优选的实施方式中,所述组合物包括以下组分:不饱和羧酸及其盐20~70wt%、含羰基的化合物0.02~10wt%、增稠剂1~20wt%、光引发剂0.01~5wt%,余量为去离子水;作为一种示例,所述不饱和羧酸盐及其盐在涂料组合物中的占比(重量百分比)可以为20%,25%,30%,35%,40%,45%,50%,55%,60%,65%,70%等;作为一种示例,所述含羰基的化合物在涂料组合物中的占比(重量百分比)可以为0.02%,0.06%,0.1%,0.2%,0.3%,0.4%,0.5%,0.6%,0.7%,0.8%,0.9%,1%,1.2%,1.4%,1.6%,1.8%,2%,2.2%,2.4%,2.6%,2.8%,3%,3.2%,3.4%,3.6%,3.8%,4%,4.2%,4.4%,4.6%,4.8%,5%,5.2%,5.4%,5.6%,5.8%,6%,6.2%,6.4%,6.6%,6.8%,7%,7.2%,7.4%,7.6%,7.8%,8%,8.2%,8.4%,8.6%,8.8%,9%,9.2%,9.4%,9.6%,9.8%,10%等;作为一种示例,所述增稠剂在涂料组合物中的占比(重量百分比)可以为1%,2%,3%,4%,5%,6%,7%,8%,9%,10%,11%,12%,13%,14%,15%,16%,17%,18%,19%,20%等;作为一种示例,所述光引发剂在涂料组合物中的占比(重量百分比)可以为0.01%,0.03%,0.05%,0.08%,1%,1.2%,1.5%,1.8%,2%,2.2%,2.5%,2.8%,3%,3.2%,3.5%,3.8%,4%,4.2%,4.5%,4.8%,5%等。
进一步优选的,所述组合物包括以下组分:不饱和羧酸及其盐40~70wt%、含羰基的化合物0.1~4wt%、增稠剂3~10wt%、光引发剂0.1~1wt%,余量为去离子水。
当上述各组分在上述比例范围内时,各组分可以协同配合,使得制备的UV 涂层吸水倍率控制在3-15倍,吸水速率较快,兼具低光纤衰减和优异的阻水效果。
申请人在大量实践中发现,水作为本申请涂料组合物中的一部分,用来溶解小分子不饱和羧酸及其盐,其用量不应超过涂料组合物的70wt%,当水量过多时,会影响涂层的吸水性能,导致吸水倍率过低,同时水量不应低于涂料组合物的20wt%,水量过低会使原料无法完全溶解,呈颗粒状分散于涂料中,不利于使用。所述涂料组合物通过UV固化成吸水和水溶胀性涂层,涂层的吸水速率与吸水倍率为正相关,若吸水速率过低,当有水入侵时,无法在短时间内完全吸水,水会进入光纤,造成光纤损坏,因此吸水速率越快则阻水效果越好。此外,市场对光纤的衰耗系数要求不得超过0.200dB/km,较大的衰耗系数会导致光纤信号传输严重受阻,难以使用,普通光纤(未涂覆阻水涂料)衰耗系数一般在0.180dB/km~0.190dB/km,因而增加外力(比如阻水涂料的涂覆),使得光纤衰耗系数的增加值必须小于0.02dB/km,更优选小于0.01dB/km才能满足市场对光纤的使用要求。所述涂层是液态涂料直接涂敷于光纤表面固化形成的吸水溶胀性涂层,吸水倍率过高,体积膨胀过大,会挤压周围光纤造成衰减,本申请提供的实施例15进一步说明了将阻水涂料涂敷于光纤上时,吸水倍率为1~15倍时,光纤的衰耗系数增加值小于或等于0.02dB/km,当吸水倍率超过15倍时,光纤衰耗系数增速明显,进一步的,吸水倍率为1-10倍时,光纤的衰耗系数增加值小于或等于0.01dB/km,对普通光纤本身衰耗系数的容忍度较大,可以用于较广范围光纤衰耗的普通光纤。此外,申请人研究发现吸水倍率为3倍时满足所述光纤阻水涂料的最低阻水需求,吸水倍率太低,体积膨胀不足以填充空隙,阻水效果不好。为保证所述涂料组合物具有良好阻水效果的同时不使光纤受到挤压,造成损耗,所述光纤阻水涂层的吸水倍率需要控制在一个合适的范围,一般控制在3~15倍,作为一种示例,所述光纤阻水涂层的吸水倍率可以为3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、11倍、12倍、13倍、14倍、15倍等,更优选3~10倍较为理想。需要说明的是,吸水速率与吸水倍率为正相关,失水率与吸水倍率为正相关,涂料组合物的吸水倍率在满足低光纤衰减条件下,吸水倍率越高,阻水效果越好。
控制增稠剂的用量,调节体系粘度,保证在不降低阻水性能的条件下改善产品的贮存性能和施工性能,使其在常温条件即可固化,无需加热,增稠剂使用量 低于1wt%可能造成涂覆厚度不足,反之使用量高于20wt%则固化时间过长,涂层易碎裂,为了加快固化还需要加热,水会挥发,当水分挥发到一定比例后,不饱和羧酸盐在体系中的溶解度会下降,结晶析出固体颗粒物,使产品变质,无法使用。本申请用于阻水的涂料组合物是直接涂敷于光纤或光纤束上,对所述涂料组合物粘度的控制要求很高,涂料组合物的粘度优选为40~1000cps范围内,作为一种示例,所述涂料组合物的粘度可以为40cps,80cps,100cps,150cps,200cps,250cps,300cps,350cps,400cps,450cps,500cps,550cps,600cps,650cps,700cps,750cps,800cps,850cps,900cps,950cps,1000cps等。进一步的,所述涂料的粘度更优选在400~600cps范围内,本申请所述可固化涂料组合物的涂覆和固化效果最好,常温条件即可,无需加热。
光引发剂可影响丙烯酸-丙烯酸钠的聚合程度,过量使用会对涂层的吸水速率和吸水倍率造成不利影响,本申请提供的实施例10进一步说明了光引发剂含量超过5wt%,涂料组合物的吸水倍率过低难以达到光纤阻水需求,同时吸水速率过慢,在含水量较少等极端条件下难以快速吸水,阻水效果不理想。发明人发现,当光引发剂以至少两种光引发剂组成的组的形式引入涂料组合物中时,涂层的固化速率得到提高,不仅阻水性能尤其是吸水速率得到提升,保水性能同样得到了改善。
从光纤识别的角度出发,在一些优选的实施方式中,所述涂料组合物还包括色粉。
在一些优选的实施方式中,所述色粉为有机色粉或无机色粉,可为体系提供不同的颜色,其中有机色粉是由碳氢化合物构成的有机混合物,无机色粉是不含金属、不含有机物的色粉。作为色粉,可举例二氧化钛、炭黑、酞菁蓝、酞菁绿、联苯胺黄、宝红4B、永固紫、永固红等。
在一些优选的实施方式中,所述色粉的用量为涂料组合物的0.001~0.5wt%,作为一种示例,所述色粉的用量为涂料组合物重量的0.001%,0.003%,0.005%,0.007%,0.01%,0.02%,0.03%,0.04%,0.05%,0.06%,0.07%,0.08%,0.09%,0.1%,0.15%,0.2%,0.25%,0.3%,0.35%,0.4%,0.45%,0.5%等,进一步优选的,所述色粉的用量为涂料组合物的0.005~0.2wt%。
从多芯数光纤识别的角度出发,在一些优选的实施方式中,所述涂料组合物还包括荧光增白粉。
在一些优选的实施方式中,所述荧光增白粉选自二苯乙烯类荧光增白剂、香豆素类荧光增白剂、唑类荧光增白剂、二甲酰亚胺类荧光增白剂中的一种或多种的混合。作为二苯乙烯类荧光增白剂,可举例三嗪型二苯乙烯、双酰胺型二苯乙烯、三唑型二苯乙烯中等;作为香豆素类荧光增白剂,可举例3-羧基香豆素、4-甲基-7-氨基香豆素、3-苯基-7-氨基香豆素、杂环香豆素等;作为唑类荧光增白剂,可举例苯丙噁唑、苯并咪唑、吡唑啉、其他杂环型唑类荧光增白剂等;作为二甲酰亚胺类荧光增白剂,可举例苯二甲酰亚胺、萘二甲酰亚胺等。
在一些优选的实施方式中,所述荧光增白粉的用量为涂料组合物的0.001~0.125wt%,作为一种示例,所述荧光增白粉的用量为涂料组合物重量的0.001%,0.003%,0.005%,0.007%,0.01%,0.012%,0.015%,0.018%,0.02%,0.025%,0.03%,0.035%,0.04%,0.045%,0.05%,0.055%,0.06%,0.065%,0.07%,0.075%,0.08%,0.085%,0.09%,0.095%,0.1%,0.11%,0.125%等,进一步优选的,所述荧光增白粉的用量为涂料组合物的0.0005~0.05wt%。
发明人发现,在涂料中加入荧光增白剂后,阻水涂层在紫外光照射下具有荧光效果,易于区分多芯数光纤。
本申请还提供了一种上述涂料组合物的制备方法如下:首先将称量好的光引发剂、含羰基的化合物溶于丙烯酸中,加入少量去离子水稀释制成组分一;同时将氢氧化钠溶于剩余的去离子水中制成组分二;然后将组分一和组分二在冷水浴中(不高于35℃)进行中和,制成一定中和度的丙烯酸-丙烯酸钠溶液;在上述丙烯酸-丙烯酸钠溶液中加入一定量的增稠剂充分混合形成涂料。
本申请的第二方面提供了一种如上所述的紫外固化涂料组合物的应用,其用作干式光缆的阻水涂料。
本申请还提供了一种如上所述涂料组合物的使用方法,包括以下步骤:使用光纤油墨着色设备,将涂料组合物以浸涂的方式在光纤表面涂覆4~6μm厚度的液膜,在UV灯照射下液膜固化,得到阻水涂层。
实施例
以下通过实施例对本申请技术方案进行详细说明,但是本申请的保护范围不局限于所述实施例。如无特殊说明,本申请中的原料均为市售。
以下为各实施例中所用原料:
A.不饱和羧酸及其盐
A1.丙烯酸
A2.丙烯酸钠
B.含羰基的化合物
B1.乙二醇二丙烯酸酯
B2.N,N-亚乙基双丙烯酰胺
B3.N,N-亚甲基双丙烯酰胺
B4.N-羟乙基丙烯酰胺
B5.丙二醇二丙烯酸酯
B6.二乙二醇二丙烯酸酯
B7.双丙酮丙烯酰胺
B8.丙烯酸羟乙酯
B9.甲氧基(聚乙二醇)丙烯酸酯
C.增稠剂
C1.BYK 425
C2.TEGO ViscoPlus 3010
C3.TEGO ViscoPlus 3060
C4.Optiflo H500
C5.Aquaflow NLS200
D.光引发剂
D1. 907
D2.BDK
D3. 2959
D4. 184
D5.BP
D6. 1173
D7. 819
D8.TPO
D9. 369
D10. 4-甲基二苯甲酮
D11.ITX
D12. 127
各实施例的制备方法包括以下步骤:将称量好的光引发剂D、含羰基的化合 物B溶于丙烯酸A1中,加入少量去离子水稀释制成组分一;同时将氢氧化钠溶于剩余的去离子水中制成组分二;然后将组分一和组分二在冷水浴中(不高于35℃)进行中和,制成丙烯酸A1-丙烯酸钠A2溶液;在上述丙烯酸A1-丙烯酸钠A2溶液中加入增稠剂C,混合形成涂料;其中氢氧化钠的用量根据所需丙烯酸A1和丙烯酸钠A2的摩尔比确定。
各实施例的使用方法包括以下步骤:使用光纤着色油墨着色设备,将各组分在上述配比的混配下制备得到的涂料组合物,以浸涂的方式在光纤表面涂覆5μm左右厚度的液膜,然后使用UV灯固化,得到光纤用阻水涂层。
对各实施例中得到的涂料进行性能测定,测试内容包括粘度、吸水倍率、吸水速率、保水性能、光纤衰减,测试方法如下:
1.粘度测定:使用博力飞旋转粘度仪对涂料的粘度进行测定,单位为cps。
2.吸水倍率测定:(1)在洁净的玻璃板表面涂覆5±0.5μm厚度的液膜,并使用UV灯固化;(2)将固化后的涂膜从玻璃板表面揭下,在干燥箱中放置24小时后称重,记录重量为W1;(3)将放置后的涂膜完全浸入常温去离子水中2小时;(4)从水中取出浸泡后的涂膜,用无尘纸擦去表面残留的水珠后称重,记录重量为W2;(5)吸水倍率计算:(W2-W1)/W1。
3.吸水速率测定:常温环境中,称取固化后的涂料薄膜2g,并加入5g去离子水,记录去离子水完全被涂膜吸收所需的时间。
4.保水性能测定:将吸水后的涂膜放置在常温干燥箱中24小时,取出称重记录为m2,吸水后涂膜重量记录为m1,失水率计算:(m1-m2)/m1。
5.光纤衰减测定;由于1550nm波段对光纤弯曲损耗的影响比其他波段敏感,因此选用1550nm波段测试光纤衰减情况,将光纤一端连接到光纤测试仪上,读取5组1550nm波段处光纤衰减数据,取其平均值。1550nm波段处,涂覆有所述阻水涂料的光纤衰耗系数减去未涂覆阻水涂料的普通光纤衰耗系数所得差值为光纤衰耗系数增加值。
实施例1
表1
Figure PCTCN2021119669-appb-000001
Figure PCTCN2021119669-appb-000002
注:n(A1):n(A2)表示原料A1和原料A2的摩尔比,以下类同。
实施例2
表2
Figure PCTCN2021119669-appb-000003
实施例3
表3
Figure PCTCN2021119669-appb-000004
Figure PCTCN2021119669-appb-000005
实施例4
表4
Figure PCTCN2021119669-appb-000006
实施例5
表5
Figure PCTCN2021119669-appb-000007
Figure PCTCN2021119669-appb-000008
实施例6
表6
Figure PCTCN2021119669-appb-000009
实施例7
表7
Figure PCTCN2021119669-appb-000010
实施例8
表8
Figure PCTCN2021119669-appb-000011
实施例9
表9
Figure PCTCN2021119669-appb-000012
由表1-3可以看出,本申请实施例1-3在保持其他组分不变的情况下,以至少两种光引发剂组成的组作为本申请光引发剂且烷基苯酮类光引发剂在所述光引发剂中的占比低于70wt%时,相同的吸水倍率下,本申请所述涂层具有较快的吸水速率。
由表1-9可以看出,实施例1-9提供的UV涂层具有较快的吸水速率,尤其当光引发剂以至少两种光引发剂组成的组的形式引入到涂料组合物中时,所述涂层吸水速率更快,在含水量较少的极端条件下也能快速吸水,且失水率低于5%,保水性能较好,能够保护光纤不受水汽影响,具有优异的光纤阻水效果;
本申请实施例提供的UV涂层吸水倍率为3-10倍,满足光纤阻水需求的同时使得光纤衰减增加值低于0.01dB/km,对普通光纤衰减的容忍度较大,可以用于较广范围光纤衰减的普通光纤;
本申请实施例提供的UV涂层吸水膨胀后保持为弹性的薄膜状态,与光纤的附着力好,不易掉落。
实施例10
表10
Figure PCTCN2021119669-appb-000013
Figure PCTCN2021119669-appb-000014
注:m(D4):m(D2)表示原料D4和原料D2的质量比。
实施例10以D4︰D2=2:1混合作为本申请光引发剂,表明光引发剂含量在本申请限定的含量(0.01~5wt%)范围内具有较好的阻水效果,在进一步优选的含量(0.1~1wt%)范围内阻水效果更优,而当光引发剂含量超过5wt%时,涂料组合物的吸水倍率难以达到光纤阻水需求,且吸水速率过慢,在含水量较少等更为严格的环境中阻水效果不理想。
实施例11
表11
Figure PCTCN2021119669-appb-000015
增稠剂的用量很大程度上影响了涂料组合物的粘度,实施例11表明通过控制增稠剂含量在本申请限定的含量(1%-20%)范围内,进一步优选含量(3%-10%)范围内,调节体系粘度,改善施工性能,使其在常温条件下即可固化,无需加热。此外,申请人在通过控制粘度达到施工便捷的目的时,研究发现涂料组合物粘度过高时为了降低粘度方便涂覆,需要进行加热,加热则会导致水分挥发,丙烯酸钠盐在涂料组合物因过饱和会析出形成颗粒,涂敷在光纤表面会不平整,使光纤 衰减增大,导致产品无法使用。
实施例12
申请人在实验过程中尝试使用了双丙酮丙烯酰胺、N-对羟苯基丙烯酰胺、N,N-二苄基丙烯酰胺等作为本申请交联剂以提高涂料组合物的阻水性能,结果发现存在相容性差的问题,以B7:双丙酮丙烯酰胺为例,实验结果表12所示。
表12
Figure PCTCN2021119669-appb-000016
在该实施例中,申请人观察到交联剂不相容会造成阻水涂料中存在颗粒,涂料涂覆于光纤表面会引发光纤表面不平造成衰减增加,产品无法使用。由于上述交联剂种类溶解度有限,在其他组分种类及含量的混配下并不相容,若使上述交联剂强行溶于其他各组分混合物,需要加入大量的酸,但是加入的酸会和氢氧化钠中和,丙烯酸-丙烯酸钠的中和度达不到10%以上,吸水倍率会降低,阻水效果不好,申请人研究发现需要降低中和度至5%,上述交联剂种类才能溶解0.02wt%。也就是说,本申请丙烯酸-丙烯酸钠中和度若达到10%以上,使用上述交联剂种类是不溶的。
实施例13
表13
Figure PCTCN2021119669-appb-000017
Figure PCTCN2021119669-appb-000018
实施例14
表14
Figure PCTCN2021119669-appb-000019
表13和14显示丙烯酸羟乙酯等前述含羰基的化合物种类对吸水倍率影响不大,但其含量的增加会降低涂料组合物的吸水倍率和吸水速率,具体来说,其添加量超过1%时,所述涂料组合物已难以满足光纤基本的阻水要求;而其添加量超过5%时,所述阻水涂层已基本丧失了吸水能力。实施例12和13表明不同吸水等级的配方,共聚单体的影响是一致的。
实施例15
表15 吸水倍率对光纤成缆后衰减的影响
Figure PCTCN2021119669-appb-000020
Figure PCTCN2021119669-appb-000021
Figure PCTCN2021119669-appb-000022
普通光纤(未涂覆阻水涂料)衰耗系数一般在0.180dB/km-0.190dB/km,而通常对光纤的衰耗系数要求不得超过0.200dB/km,基于普通光纤上的衰耗系数,增加外力(比如阻水涂料的涂覆),使得光纤衰减系数的增加值须得小于0.02dB/km,更优选小于0.01dB/km才能被市场接受。表15中光纤衰耗系数增加值是涂覆有阻水涂料的光纤相比于未涂覆阻水涂料的普通光纤衰耗系数的增加,由上表数据得知,将上述阻水涂料涂敷于光纤上,吸水倍率为1~15倍时,光纤的衰耗系数增加值小于或等于0.02dB/km,当吸水倍率超过15倍时,光纤衰耗系数增速明显,此类产品将不为市场所接受。要保证光纤具有一定的阻水效果的同时避免过高的衰耗,需把阻水涂料的吸水倍数控制在3~15倍,更优选控制在3~10倍。另外,从控制光纤衰耗上看,本申请提供的光纤阻水涂料对普通光纤的容忍度较大,可以用于较广范围光纤衰耗的普通光纤。
前述的实例仅是说明性的,用于解释本申请所述方法的一些特征。所附的权利要求旨在要求可以设想的尽可能广的范围,且本文所呈现的实施例仅是根据所有可能的实施例的组合的选择的实施方式的说明。因此,申请人的用意是所附的权利要求不被说明本申请的特征的示例的选择限制。在权利要求中所用的一些数值范围也包括了在其之内的子范围,这些范围中的变化也应在可能的情况下解释为被所附的权利要求覆盖。
工业实用性
本申请所涉及的紫外固化涂料组合物可以应用于紫外固化涂料技术领域。

Claims (10)

  1. 一种紫外固化涂料组合物,其中,所述组合物包括以下组分:不饱和羧酸及其盐、含羰基的化合物、增稠剂、光引发剂、去离子水;所述组合物的光纤衰减系数增加值低于0.02dB/km。
  2. 如权利要求1所述的紫外固化涂料组合物,其中,所述不饱和羧酸盐选自不饱和羧酸钠盐、不饱和羧酸钾盐、不饱和羧酸锌盐中的至少一种。
  3. 如权利要求1所述的紫外固化涂料组合物,其中,所述羰基中的碳原子与氧原子或氮原子成键。
  4. 如权利要求1所述的紫外固化涂料组合物,其中,所述增稠剂选自水性聚氨酯增稠剂、疏水改性聚醚增稠剂、疏水改性氨基增稠剂的至少一种。
  5. 如权利要求1所述的紫外固化涂料组合物,其中,所述光引发剂选自酰基氧化膦类光引发剂、烷基苯酮类光引发剂、二苯甲酮类光引发剂、苯偶酰类光引发剂、硫杂蒽酮类光引发剂中的至少一种。
  6. 如权利要求1所述的紫外固化涂料组合物,其中,所述光引发剂选自酰基氧化膦类光引发剂、烷基苯酮类光引发剂、二苯甲酮类光引发剂、苯偶酰类光引发剂、硫杂蒽酮类光引发剂中的至少两种。
  7. 如权利要求1所述的紫外固化涂料组合物,其中,所述光引发剂选自酰基氧化膦类光引发剂、烷基苯酮类光引发剂、二苯甲酮类光引发剂、苯偶酰类光引发剂、硫杂蒽酮类光引发剂中的至少三种。
  8. 如权利要求6或7所述的紫外固化涂料组合物,其中,所述光引发剂中至少含有烷基苯酮类光引发剂,以及二苯甲酮类光引发剂、苯偶酰类光引发剂、硫杂蒽酮类光引发剂中的一种。
  9. 如权利要求8所述的紫外固化涂料组合物,其中,所述烷基苯酮类光引发剂在光引发剂中的占比低于70wt%。
  10. 一种如权利要求1~9任一项所述的紫外固化涂料组合物在干式光缆中的应用。
PCT/CN2021/119669 2020-09-23 2021-09-22 一种紫外固化涂料组合物及其应用 WO2022063135A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/027,445 US20230331992A1 (en) 2020-09-23 2021-09-22 Ultraviolet curing coating composition and use thereof
EP21871505.0A EP4219640A4 (en) 2020-09-23 2021-09-22 UV-CURING COATING COMPOSITION AND ITS USE
KR1020237009626A KR20230054439A (ko) 2020-09-23 2021-09-22 자외선 경화형 도료 조성물 및 이의 응용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011010489.2A CN114249995B (zh) 2020-09-23 2020-09-23 一种紫外固化涂料组合物及其应用
CN202011010489.2 2020-09-23

Publications (1)

Publication Number Publication Date
WO2022063135A1 true WO2022063135A1 (zh) 2022-03-31

Family

ID=80789802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119669 WO2022063135A1 (zh) 2020-09-23 2021-09-22 一种紫外固化涂料组合物及其应用

Country Status (5)

Country Link
US (1) US20230331992A1 (zh)
EP (1) EP4219640A4 (zh)
KR (1) KR20230054439A (zh)
CN (1) CN114249995B (zh)
WO (1) WO2022063135A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199098A (en) * 1991-10-09 1993-03-30 Corning Incorporated Moisture resistant optical fiber coatings with improved stability
US5645973A (en) 1989-10-27 1997-07-08 Ciba-Geigy Corporation Process for adjusting the sensitivity to radiation of photopolymerizable compositions
CN1208784C (zh) 2001-11-26 2005-06-29 湖北省化学研究所 光缆或电缆用高吸水膨胀型阻水纱
CN1850936A (zh) * 2005-05-12 2006-10-25 苏州大学 光缆阻水油膏
WO2014088926A1 (en) * 2012-12-03 2014-06-12 Dsm Ip Assets Bv D1530 radiation curable primary coatings for optical fiber
CN104263063A (zh) * 2014-10-11 2015-01-07 武汉长盈通光电技术有限公司 可辐射固化的光纤着色油墨
CN107245122A (zh) 2017-06-19 2017-10-13 岳阳澳源通信材料有限公司 一种丙烯酸钠吸水膨胀树脂溶液、pet纤维吸水膨胀阻水带及其制备方法
WO2019203639A1 (en) 2018-04-16 2019-10-24 Artofil Coatings B.V. Method for coating an optical fibre and an optical fibre comprising the same
CN110764207A (zh) * 2019-11-13 2020-02-07 江苏亨通光电股份有限公司 新型阻水方式的全干式光缆结构及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496210A (en) * 1982-07-19 1985-01-29 Desoto, Inc. Low temperature-flexible radiation-curable unsaturated polysiloxane coated fiber optic
US5134175A (en) * 1987-12-16 1992-07-28 Michael Lucey Curable composition for electrical and electronic components
JPH115944A (ja) * 1997-06-16 1999-01-12 Takeda Chem Ind Ltd 単心被覆光ファイバ用紫外線硬化型被覆組成物及び単心被覆光ファイバ
WO2001098817A2 (en) * 2000-06-22 2001-12-27 Dsm N.V. Radiation curable colored coating composition
US6584263B2 (en) * 2000-07-26 2003-06-24 Corning Incorporated Optical fiber coating compositions and coated optical fibers
US20030129397A1 (en) * 2001-09-07 2003-07-10 Wilson Daniel A. Coated optical fibers using adhesion promoters, and methods for making and using same
CN102336861A (zh) * 2011-07-01 2012-02-01 东莞市赛璞实业有限公司 一种聚丙烯酸盐高吸水性树脂及其制备方法
JP7364239B2 (ja) * 2017-11-03 2023-10-18 コベストロ (ネザーランズ) ビー.ブイ. 液体放射線硬化性sap組成物でコーティングされたファイバーを含む水遮断システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645973A (en) 1989-10-27 1997-07-08 Ciba-Geigy Corporation Process for adjusting the sensitivity to radiation of photopolymerizable compositions
US5199098A (en) * 1991-10-09 1993-03-30 Corning Incorporated Moisture resistant optical fiber coatings with improved stability
US5199098B1 (en) * 1991-10-09 1995-02-14 Corning Ware Inc Moisture resistant optical fiber coatings with improved stability
CN1208784C (zh) 2001-11-26 2005-06-29 湖北省化学研究所 光缆或电缆用高吸水膨胀型阻水纱
CN1850936A (zh) * 2005-05-12 2006-10-25 苏州大学 光缆阻水油膏
WO2014088926A1 (en) * 2012-12-03 2014-06-12 Dsm Ip Assets Bv D1530 radiation curable primary coatings for optical fiber
CN104263063A (zh) * 2014-10-11 2015-01-07 武汉长盈通光电技术有限公司 可辐射固化的光纤着色油墨
CN107245122A (zh) 2017-06-19 2017-10-13 岳阳澳源通信材料有限公司 一种丙烯酸钠吸水膨胀树脂溶液、pet纤维吸水膨胀阻水带及其制备方法
WO2019203639A1 (en) 2018-04-16 2019-10-24 Artofil Coatings B.V. Method for coating an optical fibre and an optical fibre comprising the same
CN110764207A (zh) * 2019-11-13 2020-02-07 江苏亨通光电股份有限公司 新型阻水方式的全干式光缆结构及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Photoinitiator Principle, Features, Selection Principle and Development", ANYANG GENERAL CHEMICAL CO., LTD, 2017, pages 1 - 6, XP093132148, [retrieved on 20240216]
GREEN W A: "Boosting the cure of phosphine oxide photoinitiators. Sensitisation or Synergy?", RADTECH, 1 January 2016 (2016-01-01), pages 1 - 10, XP093104536
See also references of EP4219640A4

Also Published As

Publication number Publication date
EP4219640A4 (en) 2024-04-24
US20230331992A1 (en) 2023-10-19
CN114249995A (zh) 2022-03-29
EP4219640A1 (en) 2023-08-02
CN114249995B (zh) 2022-12-13
KR20230054439A (ko) 2023-04-24

Similar Documents

Publication Publication Date Title
JP6861215B2 (ja) ポリ塩化ビニル絶縁粘着テープに用いられるuv架橋性ホットメルト感圧性接着剤
CN101454351B (zh) 金属氧化物组合物、固化膜及层叠体
JP7364239B2 (ja) 液体放射線硬化性sap組成物でコーティングされたファイバーを含む水遮断システム
CN104508023A (zh) 制备硬涂膜的方法
JPWO2010122912A1 (ja) コーティング組成物
US9057006B2 (en) Photo-curing and strippable adhesive composition and uses thereof
WO2022063135A1 (zh) 一种紫外固化涂料组合物及其应用
JPH06234554A (ja) 輻射線硬化コーティング被覆光学ガラス繊維
TWI817009B (zh) 塗料組成物、裝飾薄膜及裝飾成形品
CN106795304A (zh) 吸水性聚合物片
CN114249996B (zh) 一种涂料组合物及其应用
JP2009155440A (ja) 帯電防止性ハードコート組成物及び光学物品
JP2014196410A (ja) 活性エネルギー線硬化性組成物、活性エネルギー線硬化性塗料、及び該塗料で塗装された物品
US20220098334A1 (en) Photopolymerizable composition and cured film and display device using the same
CN114249997B (zh) 一种涂料组合物及其应用
JP2010276870A (ja) 防眩フィルム、偏光板、及び、液晶表示素子
JP5413287B2 (ja) プラスチッククラッド光ファイバ
KR20210048157A (ko) 벤조페논기를 갖는 uv 경화성 아크릴계 중합체의 제조방법, 이로부터 제조된 uv 경화성 아크릴계 중합체 및 이를 포함하는 uv 경화성 아크릴계 접착제 조성물
JP6106001B2 (ja) 硬化型被覆材組成物、ハードコート用樹脂組成物及び樹脂成形物
JPH06157819A (ja) 光学材料用組成物
JPH041214A (ja) 導電性架橋性材料
TWI747600B (zh) 紫外光硬化性樹脂組成物
JP4000008B2 (ja) 樹脂成形体の製造方法
EP3645649B1 (en) Wet and dry surface adhesives
WO2009108055A1 (en) Water soluble coating material for optical cables

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237009626

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021871505

Country of ref document: EP

Effective date: 20230424