WO2022062723A9 - 显示面板及其制备方法、显示装置及拼接显示装置 - Google Patents

显示面板及其制备方法、显示装置及拼接显示装置 Download PDF

Info

Publication number
WO2022062723A9
WO2022062723A9 PCT/CN2021/111259 CN2021111259W WO2022062723A9 WO 2022062723 A9 WO2022062723 A9 WO 2022062723A9 CN 2021111259 W CN2021111259 W CN 2021111259W WO 2022062723 A9 WO2022062723 A9 WO 2022062723A9
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
backplane
electrodes
display panel
subsurface
Prior art date
Application number
PCT/CN2021/111259
Other languages
English (en)
French (fr)
Other versions
WO2022062723A1 (zh
Inventor
龚林辉
刘超
孙海威
汪楚航
王莉莉
王潮洋
董学
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/926,791 priority Critical patent/US20230207733A1/en
Priority to EP21871100.0A priority patent/EP4187610A4/en
Publication of WO2022062723A1 publication Critical patent/WO2022062723A1/zh
Publication of WO2022062723A9 publication Critical patent/WO2022062723A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • G09F9/3026Video wall, i.e. stackable semiconductor matrix display modules
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/18Tiled displays

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display panel and a manufacturing method thereof, a display device and a spliced display device.
  • the mini LED (mini Organic Light-Emitting Diode, mini light-emitting diode) display device has the advantages of high brightness, clear display picture and low power consumption. It has a good application prospect and can be applied to large-scale splicing display devices. The size of the seam is an important factor affecting its display effect. Therefore, display devices with narrow borders have become one of the development trends.
  • a display panel including: a backplane, a plurality of light emitting devices, a plurality of first electrodes and a plurality of connecting leads.
  • the backboard includes opposite first and second main surfaces, and a plurality of side surfaces connecting the first and second main surfaces, at least one of the plurality of side surfaces for the selected side surface.
  • a plurality of light emitting devices are arranged on the second main surface of the backplane.
  • a plurality of first electrodes are disposed on the second main surface of the back plate; the plurality of first electrodes are close to the selected side surface relative to the plurality of light emitting devices, and the plurality of first electrodes are in contact with the selected side surface.
  • the plurality of light emitting devices are electrically connected.
  • a plurality of connection leads are disposed on the first major surface and selected side surfaces of the backplane; each connection lead in the plurality of connection leads includes a first portion on the first major surface and a first portion on the first major surface.
  • the second part on the selected side surface, the ratio of the thickness of the first part to the thickness of the second part is between 0.6-1.6; the connecting lead passes through the first main surface in turn.
  • a selected side surface is electrically connected to one of the plurality of first electrodes.
  • the selected side surface includes a side subsurface perpendicular or substantially perpendicular to the first major surface and the second major surface, and a side subsurface connecting the first major surface and the side subsurface The first transition subsurface of .
  • the tangent at any point on the first transition sub-surface is the same as the first main surface
  • the included angle between the surfaces is larger than 90°, and the included angle with the side sub-surface is larger than 90°.
  • the connection lead is electrically connected to one of the plurality of first electrodes through the first transition sub-surface and the side sub-surface of the selected side surface sequentially from the first main surface.
  • one end of the plurality of first electrodes close to the selected side surface and an end of the second main surface close to the selected side surface The sides are flush or approximately flush.
  • the connecting lead extends from the first main surface through the first transition sub-surface and the side sub-surface of the selected side surface to the side of the second main surface close to the selected side surface, and electrically connected to the first electrode.
  • the connecting lead also includes a third part located on the second main surface, the ratio of the thickness of the third part to the thickness of the second part is between 0.6-1.6; the connecting lead is composed of The first main surface passes through the first transition subsurface and the side subsurface of the selected side surface in sequence, extends to the second main surface, and is electrically connected to the first electrode.
  • the selected side surface further includes a second transition subsurface connecting the side subsurface and the second major surface.
  • the tangent at any point on the second transition sub-surface is the same as the second main surface
  • the included angle between the surfaces is larger than 90°, and the included angle with the side sub-surface is larger than 90°.
  • the connection lead is electrically connected to the first electrode through the first transition sub-surface, the side sub-surface and the second transition sub-surface of the selected side surface sequentially from the first main surface.
  • the first transition sub-surface is a plane or an arc.
  • the selected side surface also includes a second transitional subsurface
  • the second transitional subsurface is planar or arcuate.
  • the display panel further includes: a plurality of second electrodes disposed on the first main surface; the plurality of second electrodes are configured to be electrically connected to the driving chip or the flexible circuit board. Each of the plurality of connection leads is electrically connected to one of the plurality of second electrodes.
  • the orthographic projections of the first electrode and the second electrode electrically connected to the same connecting lead on the first main surface are at least partially coincident.
  • the portion of the plurality of connecting leads located on the first main surface is configured to be bound to a driver chip or a flexible circuit board.
  • the first main surface of the backplane has a binding area; the parts of the plurality of connection leads on the first main surface extend into the binding area, and are configured to be on the binding area. Binding the driver chip or the flexible circuit board in a certain area.
  • the length of the binding region is equal to or substantially equal to the length of the side of the first major surface close to the selected side surface; The side of the surface points to the direction of the binding area, and the part of the plurality of connection leads on the first main surface extends into the binding area.
  • the length of the binding region is less than the length of the side of the first main surface close to the selected side surface; along the side from the first main surface close to the selected side surface to the The direction of the binding area, the part of the plurality of connection leads on the first main surface is gathered in the binding area.
  • a plurality of signal lines are arranged in the backplane; the plurality of first electrodes are electrically connected to the plurality of light-emitting devices through the plurality of signal lines;
  • the widths of the electrically connected signal lines are the same or substantially the same; in the case that the connection leads further include a third portion located on the second main surface, the width of the third portion is the same as that of the electrically connected signal lines have the same or approximately the same width.
  • the width of the first part of the connecting lead is the same or substantially the same as the width of the third part; the width of the second part of the connecting lead is larger than the width of the first part and larger than the width of the third part. width.
  • the parts of the plurality of connection leads located on the same selected side surface are arranged at equal intervals along the direction parallel to the boundary of the backplane where the side subsurface of the selected side surface is located; The spacing between two adjacent connecting leads among the plurality of connecting leads on the fixed side surface is different.
  • the plurality of first electrodes close to the same side subsurface are arranged at equal intervals along a direction parallel to the boundary of the backplane where the side subsurface is located.
  • the plurality of connecting leads those arranged on the same side surface are arranged at equal intervals along a direction parallel to the boundary of the backplane where the side subsurface is located.
  • the display panel further includes a plurality of second electrodes, among the plurality of second electrodes, the plurality of second electrodes close to the same side sub-surface, along a direction parallel to the boundary of the back plate where the side sub-surface is located, etc. Interval arrangement.
  • the plurality of connection leads are prepared by a laser etching process, and the display panel further includes an energy absorbing film; the energy absorbing film is disposed on the first main surface of the backplane and the multiple between the connecting leads.
  • the material of the energy absorbing film includes at least one of tin dioxide and zinc oxide.
  • each connecting lead in the plurality of connecting leads includes a first buffer conductive pattern, a main conductive pattern and a second buffer conductive pattern that are sequentially stacked, and the first buffer conductive pattern is opposite to the The main conductive pattern is close to the backplane.
  • the adhesion between the first buffer conductive pattern and the backplane is greater than the adhesion between the main conductive pattern and the backplane; the oxidation resistance of the second buffer conductive pattern is better than that of the backplane. Oxidation resistance of the above-mentioned main conductive pattern.
  • the material of the first buffer conductive pattern is the same as that of the second buffer conductive pattern, and the materials of the first buffer conductive pattern and the second buffer conductive pattern include titanium, chromium, molybdenum, and molybdenum. at least one of niobium alloys.
  • the display panel further includes a first protective adhesive layer, and the first protective adhesive layer covers the plurality of connection leads.
  • the display panel further includes a second protective adhesive layer disposed on the side of the plurality of light emitting devices facing away from the back plate; the second protective adhesive layer covers the plurality of light emitting devices and The plurality of first electrodes fills the gap regions between the plurality of light emitting devices and the plurality of first electrodes.
  • the backplane includes a substrate and a driving circuit layer; the driving circuit layer is disposed on a side surface of the substrate close to the plurality of light emitting devices; the driving circuit layer and the driving circuit layer are The plurality of light emitting devices are electrically connected and configured to drive the plurality of light emitting devices to emit light.
  • a display device comprising: the display panel as described in the above aspect, and a driving chip; the driving chip is arranged on the first main surface of the backplane of the display panel, and the driving chip passes through The multiple connection leads of the display panel are electrically connected to the multiple first electrodes of the display panel.
  • the driving chip when the display panel further includes a plurality of second electrodes, the driving chip is electrically connected to the plurality of second electrodes, so as to communicate with the plurality of second electrodes through the plurality of second electrodes.
  • the connection leads are electrically connected; or, the driving chip is electrically connected to the part of the plurality of connection leads on the first main surface of the backplane.
  • a spliced display device comprising: a plurality of display devices as described above, and the plurality of display devices are spliced and assembled.
  • a method for preparing a display panel including: providing an initial backplane; the initial backplane includes opposite first and second main surfaces, and connecting the first main surface and the second main surface A plurality of sides of the two main surfaces; the plurality of sides are perpendicular or substantially perpendicular to the first main surface and the second main surface.
  • a plurality of first electrodes are formed on the second major surface of the initial backplane; the plurality of first electrodes are adjacent to at least one of the plurality of sides, the at least one side being a selected side.
  • the backplane includes a plurality of side surfaces connecting the first main surface and the second main surface, at least one side surface of the plurality of side surfaces is a selected side surface, and the selected side surface includes the first main surface and the second main surface.
  • a side sub-surface perpendicular or approximately perpendicular to the second main surface, and a first transition sub-surface connecting the first main surface and the side sub-surface.
  • the tangent at any point on the first transition sub-surface is the same as the first main surface
  • the included angle between the surfaces is larger than 90°, and the included angle with the side sub-surface is larger than 90°.
  • connection leads are formed on the first major surface and selected side surfaces of the backplane; each connection lead in the plurality of connection leads includes a first portion on the first major surface and a first portion on the The second part on the selected side surface, the ratio of the thickness of the first part to the thickness of the second part is between 0.6-1.6; the connecting lead passes through the first main surface in turn.
  • the first transition sub-surface and the side sub-surface of the selected side surface are electrically connected to one of the plurality of first electrodes.
  • a plurality of connection leads are formed on the first main surface of the backplane and the at least one side surface, including:
  • a metal layer is formed on the first major surface of the backplate and the selected side surfaces, the metal layer being in contact with the plurality of first electrodes. patterning the metal layer to form a plurality of connection leads; each connection lead in the plurality of connection leads sequentially passes through the first transition sub-surface of the selected side surface and The side subsurface is electrically connected to one of the plurality of first electrodes.
  • connection leads when the plurality of connection leads includes a portion on the selected side surface of the backplane and a portion on the first major surface of the backplane, on the first side surface of the backplane A plurality of connection leads are formed on the main surface and the selected side surface, including:
  • a metal layer is formed on the selected side surface of the backplate, the metal layer being in contact with the plurality of first electrodes.
  • the metal layer is patterned to result in a plurality of connection leads on portions of the selected side surface of the backplane.
  • a mask plate is provided on the first main surface of the backplane, and the mask plate is configured to expose a region on the first main surface of the backplane where the plurality of connection leads need to be arranged.
  • Metal is deposited on the first main surface of the backplane to form a metal layer; the mask is removed to form a part where the plurality of connection leads are located on the first main surface of the backplane, and the plurality of connection leads are Portions on the first major surface of the backplane are electrically connected to portions of the plurality of connection leads on the selected side surface of the backplane.
  • connection leads comprising a portion on the selected side surface of the backplane and a portion on the first major surface of the backplane; each of the plurality of connection leads A connecting lead is electrically connected to one of the plurality of first electrodes through the first transition sub-surface and the side sub-surface of the selected side surface sequentially from the first main surface of the backplane.
  • FIG. 1 is a front structural view of a display panel according to some embodiments of the present disclosure
  • FIG. 2A is an enlarged view of the front and back of the region G of the display panel shown in FIG. 1;
  • FIG. 2B is a schematic diagram according to the orthographic projection of the display panel shown in FIG. 1;
  • FIG. 3 is a front structural view of another display panel according to some embodiments of the present disclosure.
  • FIG. 4A is a structural diagram of a backplane in a display panel according to some embodiments of the present disclosure.
  • 4B is another structural diagram of a backplane in a display panel according to some embodiments of the present disclosure.
  • FIG. 4C is a schematic diagram of an included angle of a backplane in a display panel according to some embodiments of the present disclosure.
  • FIG. 5A is a cross-sectional structure diagram of a display panel according to some embodiments of the present disclosure.
  • Fig. 5B is an enlarged view according to the region G' of the display panel shown in Fig. 5A;
  • FIG. 6 is a side structural view of the display panel shown in FIG. 5A;
  • FIG. 7A is a cross-sectional structure diagram of another display panel according to some embodiments of the present disclosure.
  • FIG. 7B is a side structural view of the display panel shown in FIG. 7A;
  • FIG. 8A is a cross-sectional structure diagram of another display panel according to some embodiments of the present disclosure.
  • FIG. 8B is a back view of another display panel according to some embodiments of the present disclosure.
  • FIG. 9A is a cross-sectional structure diagram of another display panel according to some embodiments of the present disclosure.
  • FIG. 9B is a cross-sectional structure diagram of another display panel according to some embodiments of the present disclosure.
  • FIG. 10A is a back view of another display panel according to some embodiments of the present disclosure.
  • Fig. 10B is a back view of another display panel according to some embodiments of the present disclosure.
  • FIG. 11A is a front structural view of a display panel according to some embodiments of the present disclosure.
  • FIG. 11B is another front structural view of a display panel according to some embodiments of the present disclosure.
  • Fig. 11C is another front structural view of a display panel according to some embodiments of the present disclosure.
  • FIG. 12A is a structural diagram of a pixel in a display panel according to some embodiments of the present disclosure.
  • Fig. 12B is a schematic diagram of an array layout structure corresponding to a pixel in the display panel provided by an embodiment of the present disclosure
  • FIG. 13 is a structural diagram of connecting leads of a display panel according to some embodiments of the present disclosure.
  • FIG. 14 is a structural diagram of a display device according to some embodiments of the present disclosure.
  • Fig. 15 is a structural diagram of a spliced display device according to some embodiments of the present disclosure.
  • FIG. 16A is a flow chart of a manufacturing method of a display panel according to some embodiments of the present disclosure.
  • FIG. 16B is a flow chart of another manufacturing method of a display panel according to some embodiments of the present disclosure.
  • 17A to 17F are step diagrams of a method for manufacturing a display panel according to some embodiments of the present disclosure.
  • 18A to 18F are step diagrams of another method of manufacturing a display panel according to some embodiments of the present disclosure.
  • FIG. 19 is another flowchart of a method of manufacturing a display panel according to some embodiments of the present disclosure.
  • FIG. 20 is another flowchart of a method of manufacturing a display panel according to some embodiments of the present disclosure.
  • FIG. 21A is a structural diagram of a mask plate used in a method of manufacturing a display panel according to some embodiments of the present disclosure
  • 21B is a structural diagram of another mask used in the method of manufacturing a display panel according to some embodiments of the present disclosure.
  • FIG. 22 is another flowchart of a method of manufacturing a display panel according to some embodiments of the present disclosure.
  • FIG. 23 is a structural diagram of another mask used in the method of manufacturing a display panel according to some embodiments of the present disclosure.
  • 24A is a step diagram of attaching a protective film in a method for manufacturing a display panel according to some embodiments of the present disclosure
  • FIG. 24B is another step diagram of attaching a protective film in the method of manufacturing a display panel according to some embodiments of the present disclosure
  • Fig. 25 is a structural diagram of an overall tooling structure in a method of manufacturing a display panel according to some embodiments of the present disclosure
  • Fig. 26A is an enlarged view of region G1 in the overall tooling structure shown in Fig. 21;
  • FIG. 26B is another enlarged view of the region G1 in the overall tooling structure shown in FIG. 21 .
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C” and includes combinations of the following: only A, only B, only C, a combination of A and B, A Combination with C, combination of B and C, and combination of A, B and C.
  • a and/or B includes a combination of the following three situations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations in shape from the drawings as a result, for example, of manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an etched region illustrated as a rectangle will, typically, have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • the display device includes a display panel and a driver chip.
  • the driver chip is a driver integrated circuit (IC, Integrated Circuit) that drives the display panel for display.
  • the driver chip includes, for example, a gate driver circuit, a source driver circuit, a timing controller, and a power supply circuit.
  • the driving chip is electrically connected to the display panel and is configured to output corresponding signals to control the display panel to display.
  • the display panel includes a display area and a peripheral area located on at least one side of the display area, wherein the peripheral area includes a bonding area, and the driving chip is bonded to the display panel in the binding area, that is,
  • the binding area is set on the display surface (front side) of the display panel, and the driver chip is bound on the front side of the display panel, so the area of the peripheral area of the display panel cannot be reduced, so that the frame of the display device is wider, and it is impossible to realize ultra-high performance.
  • the narrow frame also cannot increase the screen-to-body ratio of the display device.
  • some embodiments of the present disclosure provide a display panel, a display device, and a spliced display device.
  • a display panel By arranging a plurality of connection leads connecting the two opposite main surfaces of the backplane in the display panel, the binding area Transfer to the non-display surface (back side) of the display panel, and bind the driver chip on the back side of the display panel, so that the area of the peripheral area of the display panel can be reduced, and the frame of the display device can be reduced, so that the application of the display device
  • the splicing seam width of the splicing display device is reduced, so that seamless splicing can be realized, and the display quality is improved.
  • the display panel, the display device and the spliced display device provided by the present disclosure are respectively introduced below.
  • FIG. 1 , FIG. 3 , FIG. 11A and FIG. 11B are planar structural diagrams of the display panel 10, and figure (a) in FIG. 2A is an enlarged front view of region G of the display panel shown in FIG. 1 , and FIG. 2A Figure (b) in FIG. 1 is an enlarged rear view of the region G of the display panel shown in FIG. 1 .
  • 5A, 7A, 8A, 9A and 9B are cross-sectional views of the display panel 10 taken along the section line DD' in FIG. 2A.
  • the first electrode 3, the light emitting device 2 and the side leads 4 of the display panel in Fig. 5A are removed to obtain the backplane 1 shown in Figs. 4A to 4C.
  • the display panel 10 includes: display area AA (Active Area, referred to as AA area; effective display area) and a peripheral area BB located on at least one side of the AA area.
  • display area AA Active Area, referred to as AA area; effective display area
  • peripheral area BB located on at least one side of the AA area.
  • each pixel includes sub-pixels of at least three colors ( sub pixel) P
  • the multi-color sub-pixel P at least includes a first color sub-pixel, a second color sub-pixel and a third color sub-pixel
  • the first color, the second color and the third color are three primary colors (such as red , green and blue).
  • a display panel 10 includes a backplane 1 , a plurality of light emitting devices 2 , a plurality of first electrodes 3 and a plurality of connection leads 4 .
  • the backplane 1 includes opposite first main surface 1a and second main surface 1b, and a plurality of side surfaces 1c connecting the first main surface 1a and the second main surface 1b. At least one side surface 1c among the plurality of side surfaces 1c is a selected side surface 1cc.
  • the shape of the first main surface 1 a and the second main surface 1 b of the backplane 1 is, for example, rectangular, and the backplane 1 includes four side surfaces 1 c.
  • the backplane 1 includes a substrate and a driving circuit layer arranged on one side of the substrate.
  • the material of the substrate can be rigid materials such as glass, quartz, plastic, etc.
  • the driving circuit layer includes, for example, thin film transistors (TFTs) and The structure of the above multiple signal lines and the like, the driving circuit layer is coupled to the multiple light emitting devices 2 and is configured to drive the multiple light emitting devices 2 to emit light.
  • TFTs thin film transistors
  • a plurality of light emitting devices 2 are disposed on the second main surface 1 b of the backplane 1 .
  • the light-emitting device 2 includes but is not limited to organic light-emitting diode (Organic Light-Emitting Diode, OLED for short), mini light-emitting diode (mini Organic Light-Emitting Diode, mini LED for short), micro light-emitting diode (micro Organic Light-Emitting Diode, Referred to as micro LED) and so on.
  • each sub-pixel P includes at least one light emitting device 2 .
  • a plurality of first electrodes 3 are disposed on the second main surface 1b of the back plate 1, the plurality of first electrodes 3 are close to a selected side surface 1cc relative to the plurality of light emitting devices 2, and the plurality of first electrodes 3 and the plurality of light emitting devices 2 electrical connections.
  • a plurality of light emitting devices 2 are disposed in the display area AA of the display panel 10
  • a plurality of first electrodes 3 are disposed in the peripheral area BB of the display panel 10 .
  • the plurality of first electrodes 3 are electrically connected to the plurality of light emitting devices 2 through the driving circuit layer.
  • a plurality of first electrodes 3 are arranged on the second main surface 1b at a position close to the selected side surface 1cc, that is to say, a plurality of first electrodes 3 are closer to the first main surface The side connected to the selected side surface 1cc among the four sides of 1a.
  • a plurality of connection leads 4 are disposed on the first main surface 1 a and the selected side surface 1 cc of the backplane 1 .
  • Each connecting lead 4 in the plurality of connecting leads 4 includes a first portion 41 located on the first main surface 1a and a second portion 42 located on a selected side surface 1cc, the thickness of the first portion 41 being d1 and The ratio of the thickness d2 of the second part 42 has a value between 0.6-1.6.
  • Each connection lead is electrically connected to one first electrode 3 among the plurality of first electrodes 3 from the first main surface 1 a through the selected side surface 1 cc in sequence.
  • the first part 41 is the part of the connecting lead 4 located on the first main surface 1 a, including the part of the connecting lead 4 directly in contact with the first main surface 1 a, where the connecting lead 4 and the second electrode 5 exist.
  • the first portion 41 also includes a portion located on the surface of the second electrode 5 away from the first main surface 1a.
  • the above-mentioned thickness d1 of the first part 41 refers to the dimension of the first part 41 along the direction perpendicular to the first main surface 1a.
  • the thickness d1 of the first part 41 can be the thickness at any position of the first part 41 , for example, FIG. 5B illustrates the thickness d 1 at two positions of the first portion 41 .
  • the second portion 42 is a portion of the connecting lead 4 located on the selected side surface 1cc, and the thickness d2 of the above-mentioned second portion 42 means that the second portion 42 is along a direction parallel to the first main surface 1a (perpendicular to the selected side).
  • the dimension in the direction of the side subsurface 1c1 in the surface 1cc, for example, the thickness d2 of the second part 42 may be the thickness at any position of the second part 42.
  • FIG. 5B illustrates the thickness d 2 at two locations of the second portion 42 .
  • the ratio of the thickness d1 of the first part 41 of each connection lead 4 to the thickness d2 of the second part 42 is between 0.6-1.6, that is, in some embodiments, the thickness d2 of the second part 42 can be greater than
  • the thickness d 1 of the first portion 41 and the difference between the thickness d 2 of the second portion 42 and the thickness d 1 of the first portion 41 are within a certain range.
  • each connection lead 4 the ratio of the thickness d1 at any position of the first part 41 to the thickness d2 at any position of the second part 42 satisfies the above-mentioned range, for example, the second The ratio of the maximum thickness d2 of the part 42 to the minimum thickness d1 of the first part 41 is 0.6, which can ensure the uniformity of the film thickness of the connecting lead 4 , so that the thickness difference between the first part 41 and the second part 42 of the connecting lead 4 Smaller size improves the connection stability of multiple connecting leads for efficient signal transmission.
  • the ratio of the thickness d 1 of the first portion 41 to the thickness d 2 of the second portion 42 of each connection lead 4 is 0.6, 0.8 or 0.9, 1.1 and so on.
  • the thickness d 2 of the second portion 42 is greater than or equal to 900 nm and less than or equal to 1100 nm
  • the thickness d 1 of the first portion 41 is greater than or equal to 660 nm and less than 900 nm.
  • the thickness d2 of the second part 42 is 1100nm
  • the thickness d1 of the first part 41 is 660nm
  • the thickness d2 of the second part 42 is 1020nm
  • the thickness d1 of the first part 41 is 816nm
  • the second part 41 has a thickness d1 of 816nm.
  • the thickness d 2 of the portion 42 is 1000 nm
  • the thickness d 1 of the first portion 41 is 850 nm.
  • connection leads 4 are equal in number to a plurality of first electrodes 3, and each connection lead 4 is electrically connected to a first electrode 3 from the first main surface 1a through the selected side surface 1cc, thereby realizing the first electrode 3 It is electrically connected from the second main surface 1b of the backplane 1 to the opposite first main surface 1a.
  • the display panel 10 provided by some embodiments of the present disclosure, by arranging a plurality of connection leads 4 on the first main surface 1a and the selected side surface 1cc of the backplane 1, the A plurality of first electrodes 3 on the second main surface 1b of the backplane 1 are connected to the first main surface 1a of the backplane 1, so that the bonding area of the driving chip can be moved to the first main surface 1a of the backplane 1 (ie, the display panel 10), a plurality of first electrodes 3 can be electrically connected to the driver chip or the flexible circuit board in the display device 100 where the display panel 10 is located through a plurality of connecting wires 4, so that there is no need to arrange an electrode at the edge of the display panel 10 In the binding area, the frame of the display panel 10 is reduced.
  • the thickness of the structure provided on the side surface 1c of the display panel 10 is relatively small, such as 1um-4um, so that the ultra-narrow bezel display panel 10 can be obtained.
  • the ratio of the thickness d1 of the first part 41 of each connecting lead 4 to the thickness d2 of the second part 42 is between 0.6-1.6, the film thickness uniformity of multiple connecting leads 4 can be guaranteed , enabling efficient signal transmission.
  • At least one side surface 1c among the multiple side surfaces 1c of the backplane 1 is a selected side surface 1cc, and the selected side surface 1cc includes the first main surface 1a and the first main surface 1a and the selected side surface 1cc.
  • the second main surface 1b has a vertical or substantially vertical side subsurface 1c1, and a first transitional subsurface 1c2 connecting the first main surface 1a and the side subsurface 1c1.
  • the present disclosure does not limit the structure of other side surfaces 1c among the plurality of side surfaces 1c.
  • the four side surfaces 1c of the backplane 1 are selected side surfaces 1cc, as shown in Figure 3, there is a side surface 1c in the four side surfaces 1c of the backplane 12 (in Figure 3
  • the side surface 1c) adjacent to the plurality of first electrodes 3 is the selected side surface 1cc, and the structure of the other three side surfaces 1c is not limited.
  • the tangent line at any point on the first transition subsurface 1c2 and the first main surface 1a The angle is greater than 90°, and the included angle with the side sub-surface 1c1 is greater than 90°.
  • the boundary of the backplane refers to the boundary of the orthographic projection of the backplane 1 on the plane where the first main surface 1a or the second main surface 1b is located.
  • FIG. 2B shows that the backplane 1 shown in FIG. An orthographic projection on the plane where the first main surface 1a is located, the orthographic projection includes four boundaries B1, B2, B3, and B4.
  • the backplane boundary of the backplane 1 including the first transition subsurface 1c2 it refers to the edge of the side subsurface 1c2 of the selected side surface 1cc of the backplane 1 adjoining its first transition subsurface 1c2, for example, Fig. 4A- FIG.
  • FIG. 4C is a schematic diagram of the backplane 1 in the cross-sectional view (FIG. 5A) of the display panel 10 obtained according to the cross-sectional line DD' in FIG. 2A. It can be seen that the side subsurface 1c1 of the backplane 1 in FIGS. 4A to 4C is located at the boundary of the backplane is the boundary B4, the section of the backplane 1 perpendicular to the first main surface 1a and perpendicular to the backplane boundary (boundary B4) where the side subsurface 1c1 is located is the section shown in FIGS. 4A-4C .
  • the included angle ⁇ 1 between the side sub-surfaces 1c1 refers to the included angle toward the interior of the backplane 1 .
  • the angle between the tangent at any point on the first transition subsurface 1c2 of the backplane 1 and the first main surface 1a is greater than 90°, and the tangent at any point on the first transition subsurface 1c2
  • the angle between the side subsurface 1c1 and the side subsurface 1c1 is greater than 90°, so that the first main surface 1a can transition from the first transition subsurface 1c2 to the side subsurface 1c1 more smoothly, or the side subsurface 1c1 can be transformed from the first transition subsurface 1c2 transitions more smoothly to the first main surface 1a, compared to the side surface 1c including the side subsurface 1c1 but not including the first transition subsurface 1c2, the first main surface 1a is directly connected to the side subsurface 1c1 (in this case , the angle between the first main surface 1a and the side sub-surface 1c1 is 90°), in the present disclosure, a plurality of connection leads 4 are arranged on the first main surface 1a of the backplane 1, the first transition sub-
  • the selected side surface 1cc among the plurality of side surfaces 1c includes a second transition subsurface in addition to the first transition subsurface 1c2 and the side subsurface 1c1.
  • Surface 1c3; the second transitional subsurface 1c3 connects the side subsurface 1c1 with the second main surface 1b.
  • the tangent line at any point on the second transition subsurface 1c3 and the second main surface 1b The angle ⁇ 4 is larger than 90°, and the included angle ⁇ 3 with the side sub-surface 1c1 is larger than 90°.
  • the angle between the tangent at any point on the second transition subsurface 1c3 and the second main surface 1b, and the angle between the tangent at any point on the second transition subsurface 1c3 and the side subsurface 1c1 are both Refers to the angle toward the inside of the backplane 1.
  • each connection lead 4 passes through the first transition sub-surface 1c2 , the side sub-surface 1c1 and the second transition sub-surface 1c3 sequentially from the first main surface 1a to be electrically connected to the first electrode 3 .
  • the angle ⁇ 4 between the tangent at any point on the second transition sub-surface 1c3 and the second main surface 1b is greater than 90°
  • the angle between the tangent at any point on the second transition sub-surface 1c3 and the side sub-surface 1c1 ⁇ 3 is greater than 90°, so that the second main surface 1b can transition from the second transition sub-surface 1c3 to the side sub-surface 1c1 relatively smoothly, or the side sub-surface 1c1 can transition from the second transition sub-surface 1c3 to the second main surface relatively smoothly.
  • connection leads 4 are arranged on the first main surface 1a, the first transition sub-surface 1c2, the side sub-surface 1c1 and the second transition sub-surface 1c3 of the backplane 1, and each connection lead 4 is subjected to
  • the stress is small, which reduces the disconnection problem caused by excessive stress concentration, so that the multiple connecting leads 4 are not easy to break at the corners, which further ensures that the multiple connecting leads 4 can be stably connected to the two opposite main surfaces of the backplane 1, The reliability of the display panel 10 is further enhanced.
  • the first transitional sub-surface 1c2 included in the side surface 1c is a plane or an arc surface.
  • the side surface 1c further includes a second transition sub-surface 1c3, the second transition sub-surface 1c3 is a plane or an arc.
  • the first transition subsurface 1c2 and the second transition subsurface 1c3 are planar
  • the first transition subsurface 1c2 is called the chamfer of the first main surface 1a and the side subsurface 1c1
  • the second transition subsurface 1c3 is called Chamfering of the second main surface 1b and the side subsurface 1c1.
  • the width value d of the chamfer is 30um
  • the included angle ⁇ 2 between the first transition subsurface 1c2 and the first main surface 1a is greater than 90°, for example, ⁇ 2 is 135°
  • the included angle ⁇ 1 between the first transition subsurface 1c2 and the side subsurface 1c1 is greater than 90°, for example ⁇ 1 is 135°
  • the angle ⁇ 4 between the second transition subsurface 1c3 and the second main surface 1b is greater than 90°, for example, ⁇ 4 is 135°
  • the first transition subsurface 1c2 and the second transition subsurface 1c3 are arc surfaces
  • the first transition subsurface 1c2 is called the rounded corner of the first main surface 1a and the side subsurface 1c1
  • the second transition subsurface 1c3 Called the rounding of the second main surface 1b and the side subsurface 1c1.
  • a tangent is made at a point in the middle of the first transitional subsurface 1c2 (arc)
  • the angle ⁇ 2 between the tangent and the first main surface 1a is 135°
  • the included angle ⁇ 1 between the tangent and the side sub-surface 1c1 is 135°.
  • connection leads 4 are arranged on the curved surface, which can further disperse the stress and further avoid the disconnection problem caused by excessive stress concentration.
  • At least one side surface 1c of the plurality of side surfaces 1c of the backplane 1 includes a first transition subsurface 1c2 and a side subsurface 1c1 (or also includes a second transition subsurface 1c3), and the at least one side surface
  • the surface 1c is a selected side surface 1cc on which a plurality of connection leads 4 are arranged, and other side surfaces 1c may, for example, only include a side subsurface 1c1, which is compatible with the first main surface 1a and the first main surface 1a and The second main surface 1b is vertical or approximately vertical.
  • the four side surfaces 1c of the backplane 1 are all selected side surfaces 1cc, and each side surface 1c includes a first transition subsurface 1c2 and a side subsurface 1c1, or also includes a second transition subsurface 1c1.
  • Two transition subsurfaces 1c3; a plurality of first electrodes 3 are distributed on the second main surface 1b near the four sides of the second main surface 1b, for example, on the second main surface 1b of the backplane 1 near the second main surface
  • a plurality of first electrodes 3 are provided on the four sides of 1b
  • a plurality of connection leads 4 correspond to and connect to the plurality of first electrodes, and are arranged on the four side surfaces 1c of the backplane 1, each The connecting lead 4 passes through the first transition sub-surface 1c2 and the side sub-surface 1c1 of the side surface 1c sequentially from the first main surface 1a, and is electrically connected to one first electrode 3 among the plurality of first electrodes 3 .
  • two side surfaces 1c of the four side surfaces 1c of the backplane 1 are selected side surfaces 1cc, for example, these two side surfaces are two opposite side surfaces, and each side
  • the surface 1c includes a first transition sub-surface 1c2 and a side sub-surface 1c1, or also includes a second transition sub-surface 1c3, and a plurality of first electrodes 3 are distributed on the second main surface 1b near the opposite two sides of the second main surface 1b.
  • the position of the sides of the bar (the two sides correspond to the two selected side surfaces 1cc).
  • connection lead 4 passes through the first transition sub-surface 1c2 and the side sub-surface 1c1 of the selected side surface 1cc sequentially from the first main surface 1a, and is electrically connected to one first electrode 3 among the plurality of first electrodes 3 .
  • the other two side surfaces 1c in the four side surfaces 1c may include, for example, a side subsurface 1c1, which is perpendicular or substantially perpendicular to the first main surface 1a and the second main surface 1b, and on the other two side surfaces 1c
  • the connection lead 4 is not provided on it.
  • one of the four side surfaces 1c of the backplane 1 is the selected side surface 1cc, or three of the four side surfaces 1c of the backplane 1 are the selected side surfaces 1cc, Regarding the situation that the backplane 1 includes one selected side surface 1cc or three selected side surfaces 1cc, please refer to the above description of the backplane 1 including four selected side surfaces 1cc, which will not be repeated here.
  • one end of the plurality of first electrodes 3 close to the side subsurface 1c1 and the second main surface 1b close to the side subsurface The sides of the 1c1 are flush or approximately flush.
  • the distance between the end of each first electrode 3 close to the side subsurface 1c1 and the side of the second main surface 1b close to the side subsurface 1c1 is zero or approximately zero, so that the positions of the plurality of first electrodes 3 are as far as possible
  • the area of the display area of the display panel 10 can be expanded as much as possible.
  • Each connecting lead 4 in the plurality of connecting leads 4 passes through the first transition sub-surface 1c2 and the side sub-surface 1c1 sequentially from the first main surface 1a, and extends to the side of the second main surface 1b close to the side sub-surface 1c1, and is connected with The first electrodes 3 are electrically connected.
  • each connecting lead 4 in the plurality of connecting leads 4 extends from the first main surface 1a to the second main surface 1b through the first transition sub-surface 1c2, the side sub-surface 1c1 and the second transition sub-surface 1c3 in sequence. It is close to the side of the side sub-surface 1c1 and is electrically connected to the first electrode 3 .
  • the shape of each connection lead 4 is L-shaped.
  • each connection lead 4 is electrically connected to the first electrode 3 in such a way that each connection lead 4 extends to the side of the second main surface 1b close to the side subsurface 1c1 , contact with an end of the first electrode 3 close to the side subsurface 1c1 to realize electrical connection, and the connecting lead 4 and the first electrode 3 do not overlap.
  • each first electrode 3 in the plurality of first electrodes 3 close to the side subsurface 1c1 and the second main surface
  • the distance between the end of each first electrode 3 close to the side sub-surface 1c1 and the side of the second main surface 1b close to the side sub-surface 1c1 is relatively small, for example, as As shown in FIG. 2A and FIG.
  • the distance A1 between the end of each first electrode 3 close to the side subsurface 1c1 and the side edge of the second main surface 1b close to the selected side surface 1cc is equal, for example, the distance A1 is 30 ⁇ m ⁇ 50 ⁇ m.
  • each connecting lead 4 in the plurality of connecting leads 4 also includes a third portion 43 located on the second main surface 1 b, and each connecting lead 4 passes through the first main surface 1 a sequentially from the first main surface 1 a.
  • the transition sub-surface 1c2 and the side sub-surface 1c1 extend to the second main surface 1b and are electrically connected to the first electrode 3, that is, each connecting lead 4 includes the first main surface 1a, the first transition sub-surface 1c2, Four parts on the side subsurface 1c1 and on the second main surface 1b.
  • each of the plurality of connection leads 4 is formed from the first main surface 1a passes through the first transition subsurface 1c2, the side subsurface 1c1 and the second transition subsurface 1c3 in sequence, extends to the second main surface 1b, and is electrically connected to the first electrode 3, that is, each connection lead 4 includes Five parts on the surface 1a, on the first transitional subsurface 1c2, on the side subsurface 1c1, on the second transitional subsurface 1c3 and on the second main surface 1b.
  • the shape of the plurality of connection leads 4 is U-shaped.
  • each connection lead 4 is electrically connected to the first electrode 3 in such a way that the part of each connection lead 4 located on the second main surface 1b is on the second main surface
  • the orthographic projection on 1b at least partially overlaps with the orthographic projection of the first electrode 3 electrically connected to the connecting lead 4 on the second main surface 1b, that is, the connecting lead 4 covers its corresponding first electrode 3
  • each connection lead 4 has a larger contact area with its corresponding first electrode 3, so that the connection lead 4 and the first electrode 3 can be fully contacted, which is conducive to signal transmission .
  • each connecting lead 4 extending to the second main surface 1b is in contact with an end surface of the corresponding first electrode 3 close to the side subsurface 1c1 to realize electrical connection, and the connecting lead 4 is connected to the There is no overlapping portion of the first electrodes 3 .
  • the third part 43 is a part of the connecting lead 4 located on the second main surface 1b, including a part of the connecting lead 4 directly in contact with the second main surface 1b, between the connecting lead 4 and the first electrode 3
  • the first portion 41 also includes a portion located on the surface of the second electrode 5 away from the first main surface 1a.
  • the ratio of the thickness d 3 of the third portion 43 of each connection lead 4 to the thickness d 2 of the second portion 42 is between 0.6-1.6.
  • the thickness d3 of the above-mentioned third part 43 refers to the dimension of the first part 41 along the direction perpendicular to the first main surface 1a.
  • the thickness d3 of the third part 43 can be at any position of the first part 41
  • FIG. 5B illustrates the thickness d 3 at two positions of the third portion 43 .
  • the thickness d 2 of the second portion 42 of each connection lead 4 is greater than the thickness d 3 of the third portion 43, and the difference between the thickness d 2 of the second portion 42 and the thickness d 3 of the third portion 43 is within a certain range, it should be noted that in each connection lead 4, the ratio of the thickness d3 at any position of the third part 43 to the thickness d2 at any position of the second part 42 satisfies the above-mentioned range, for example, the ratio of the maximum thickness d2 of the second part 42 to the minimum thickness d3 of the third part 43 is 60%, like this, as shown in Figure 5B, the first part 41 of each connecting lead, the second part 42 The thickness difference with the third part 43 is within a certain range, which can further ensure the uniformity of the film thickness of the connecting lead 4, make the thickness difference between the first part 41 and the second part 42 of the connecting lead 4 smaller, and further improve the connection of multiple lines.
  • the connection stability of the leads enables effective signal transmission.
  • the ratio of the thickness d 3 of the third portion 43 of each connecting lead 4 to the thickness d 2 of the second portion 42 is 60%, 80% or 90%, etc.
  • the thickness d 2 of the second portion 42 is greater than or equal to 900 nm and less than or equal to 1100 nm
  • the thickness d 3 of the third portion 43 is greater than or equal to 660 nm and less than 900 nm.
  • the thickness d2 of the second part 42 is 1100nm
  • the thickness d3 of the third part 43 is 660nm
  • the thickness d2 of the second part 42 is 1020nm
  • the thickness d3 of the third part 43 is 816nm
  • the thickness d 2 of the second portion 42 is 1000 nm
  • the thickness d 3 of the third portion 43 is 850 nm.
  • the ratio of the thickness d 1 of the first part 41 of each connection lead 4 to the thickness d 2 of the second part 42 is between 0.6-1.6;
  • the ratio of the thickness d 2 of the two parts 42 is between 0.6-1.6, and the difference between the thickness d 3 of the third part 43 and the thickness d 1 of the first part 41 is within 100 nm.
  • the thickness d1 of the first part 41 of each connection lead 4 is 816nm
  • the thickness d2 of the second part 42 is 1000nm
  • the thickness d3 of the third part 43 is 850nm, so that each part of each connection lead 4
  • the thicknesses are relatively uniform, and the film thickness uniformity of the multiple connecting leads can be further improved, which is beneficial to improving the connection stability of the multiple connecting leads 4 and improving the stability of signal transmission.
  • the display panel 10 further includes: a plurality of second electrodes 5 disposed on the first main surface 1 a.
  • the multiple second electrodes 5 are configured to be electrically connected to the driver chip or the flexible circuit board.
  • One connection lead 4 is electrically connected to one second electrode 5 among the plurality of second electrodes 5 .
  • a plurality of second electrodes 5 are disposed on the first main surface 1a of the backplane 1, configured to be electrically connected to the driver chip or the flexible circuit board, that is, the plurality of second electrodes 5 are used to bind the driver chip or the flexible circuit board .
  • there is a binding area on the first main surface 1a of the backplane 1 at least a part of the plurality of second electrodes 5 is located in the binding area, and the plurality of second electrodes 5 are in the binding area with the driver chip or The flexible circuit board is bonded.
  • a plurality of second electrodes are electrically connected to the binding area CC through the connection line 10, and are bound to the driver chip or the flexible circuit board through the connection line 10.
  • the driver chip or the flexible circuit board can be arranged on the back of the display panel 10, and electrically connected to the front of the display panel 10 through a plurality of second electrodes 5, a plurality of first leads and a plurality of first electrodes 3, and then control the light emission.
  • the device 2 emits light to realize display.
  • Multiple second electrodes 5 are consistent with the number of multiple connection leads 4, one end of each connection lead 4 is electrically connected to the first electrode 3, and the other end is electrically connected to the second electrode 5, and multiple connection leads 4 can be connected to each other.
  • a first electrode 3 is communicated with a plurality of second electrodes 5 in one-to-one correspondence, so as to realize signal transmission.
  • the distance A2 between the end of each first electrode 3 close to the side subsurface 1c1 and the side of the second main surface 1b close to the side subsurface 1c1 is equal, for example, the distance A2 is 400 ⁇ m ⁇ 600 ⁇ m.
  • the orthographic projection of the part of each connection lead 4 located on the first main surface 1 a on the first main surface 1 a, the second electrode 5 electrically connected to the connection lead 4 is on
  • the orthographic projections on the first main surface 1a are at least partially coincident. That is to say, the connection lead 4 covers a part of its corresponding second electrode 5, so that each connection lead 4 has a larger contact area with the second electrode 5, thereby connecting the connection lead 4 and the second electrode 5. It can be fully contacted, which is conducive to the transmission of signals.
  • the part of the plurality of connection leads 4 located on the first main surface 1 a of the backplane 1 is configured to bind a driver chip or a flexible circuit board. That is to say, the display panel 10 does not include a plurality of second electrodes 5, and the driving chip and the flexible circuit board in the display device 100 are directly bound on the part where the plurality of connection leads 4 are located on the first main surface 1a of the backplane 1. , so that the driver chip or flexible circuit board can be arranged on the back of the display panel 10, and electrically connected to the front of the display panel 10 through a plurality of first leads and a plurality of first electrodes 3, so as to control the light emitting device 2 to emit light and realize display.
  • the above solution of using multiple connecting leads 4 to directly bind the driving chip or the flexible circuit board can save the production of multiple second electrodes 5, simplify the manufacturing process of the display panel 10, improve the manufacturing efficiency, and avoid multiple second electrodes 5.
  • Contact resistance is generated between the two electrodes and the plurality of connection leads, which is beneficial to the transmission of electrical signals.
  • the first main surface 1a of the backplane 1 has a binding area. Parts of the plurality of connection leads 4 located on the first main surface 1 a of the backplane 1 extend into the binding area, and are configured to bind the driver chip or the flexible circuit board in the binding area.
  • the length k2 of the binding region CC is equal to or substantially equal to the length k1 of the side of the first main surface 1a close to the side subsurface 1c1, along the length from the first main surface 1a to the side subsurface 1c1.
  • the side of the surface 1c1 points to the direction X of the binding area, and the parts of the plurality of connection leads 4 on the first main surface 1a extend into the binding area CC.
  • a plurality of connection leads 4 are arranged on the selected side surface 1cc and the first main surface 1a, and are electrically connected to the plurality of first electrodes 3.
  • the parts of the plurality of connection leads 4 on the first main surface 1 a correspond to the positions of the plurality of first electrodes 3 one by one.
  • a plurality of connection leads 4 are arranged parallel to each other and at equal intervals, and the plurality of connection leads 4 extend from the selected side surface 1cc to the first main surface 1a, and then extend to the bonding area CC of the first main surface 1a.
  • the size setting of the part where the plurality of connection leads 4 are located on the first main surface 1 a can be, for example: each connection lead 4 is located on the first main surface 1 a.
  • the width e2 of a part 41 is 300 ⁇ m to 440 ⁇ m, the distance e1 between adjacent connecting leads 4 on the first main surface 1 a is 40 ⁇ m to 50 ⁇ m, and each connecting lead 4 is located on the first part 41 on the first main surface 1 a
  • the length e 3 is 800 ⁇ m to 150 ⁇ m, and the size of the part of the above-mentioned plurality of connection leads 4 located on the first main surface 1 a is set in an appropriate range, so that the driver chip or the flexible circuit board can be stably connected to the plurality of wires.
  • the lead wires 4 are bound, and at the same time, the size of the portion of the plurality of connecting lead wires 4 on the first main surface 1 a will not be too large, and the manufacturing process of
  • the display panel 10 can be matched with a flexible circuit board or a driver chip of a corresponding size, for example, the length of the flexible circuit board is equal to or approximately equal to the side of the first main surface 1a of the backplane 1 that is close to the side subsurface 1c1
  • the length of the side in this case, the size of the flexible circuit board is larger, and the size of the part of the above-mentioned plurality of connecting leads 4 located on the first main surface 1a can be determined according to the size of the driver chip or the flexible circuit board that needs to be bound. set up.
  • the length k3 of the binding region CC is smaller than the length k1 of the side of the first main surface 1a close to the side subsurface 1c1;
  • the sides of the connecting wires 4 point to the direction X of the binding area, and the parts of the plurality of connection leads 4 located on the first main surface 1a are gathered in the binding area CC.
  • the backplane 1 includes a selected side surface 1cc
  • a plurality of connection leads 4 are arranged on the selected side surface 1cc and the first main surface 1a, and the plurality of connection leads 4 are located on the first main surface
  • the part on 1a includes a first subsection, a second subsection and a third subsection
  • the first part 41 of each connection lead 4 located on the first main surface 1a includes a first subsection 41a, a second subsection 41b and a second subsection 41b.
  • each connection lead 4 connects its first subsection 41a and its third subsection 41c, the first subsection 41a is closer to the side of the selected side surface 1cc of the first main surface 1a,
  • the third sub-section 41c is located in the binding area CC, and the third sub-section 41c of each connection lead 4 is gathered inwardly relative to its first sub-section 41a, so that a plurality of connection leads 4 are located on the part of the first main surface 1a There is an overall trend of converging towards the binding area CC.
  • the parts of the plurality of connection leads 4 located on the selected side surface 1cc are parallel to each other and arranged at equal intervals, so that the first sub-parts 41a of the parts of the plurality of connection leads 4 located on the first main surface 1a are mutually connected.
  • the third sub-parts 41c of the part where the plurality of connection leads 4 are located on the first main surface 1a are parallel to each other and arranged at equal intervals, and the parts where two adjacent connection leads 4 are located on the first main surface 1a
  • the distance e 8 of the third sub-part 41c of the third sub-part 41c is smaller than the distance e 5 of the first sub-part 41a of the part where two adjacent connection leads 4 are located on the first main surface 1a, so that the plurality of connection leads 4 are located on the first main surface 1a.
  • the part on the main surface 1a is gathered in the bonding zone CC.
  • the size setting of the part of the plurality of connection leads 4 located on the first main surface 1 a may be, for example: the first part 41 of each connection lead 4 located on the first main surface 1 a
  • the width e4 of the first sub-part 41a is 150 ⁇ m to 400 ⁇ m
  • the distance e5 between the first sub-parts 41 a of the first parts 41 of two adjacent connecting leads 4 is 140 ⁇ m to 300 ⁇ m
  • the width e 7 of the third sub-section 41c is greater than 80 ⁇ m
  • the distance e 8 between the third sub-section 41 c of two adjacent connection leads 4 is greater than 50 ⁇ m, e 7 +e 8 ⁇ 130um, and e 7 ⁇ e 4 , e 8 ⁇ e 5 .
  • the vertical distance e 6 of the first portion 41 of each connection lead 4 located on the first main surface 1 a is 1 mm ⁇ 2 mm.
  • the display panel 10 can be matched with a flexible circuit board or a driver chip of a corresponding size, for example, it can be applied to a flexible circuit board with a small size.
  • the relevant size can be set according to the size of the driver chip or the flexible circuit board that needs to be bound.
  • the plurality of first electrodes 3 close to the same side sub-surface 1c1 are arranged along a direction perpendicular to the boundary of the backplane where the side sub-surface 1c1 is located. direction, and are arranged at equal intervals along a direction parallel to the boundary of the backplane where the side sub-surface 1c1 is located.
  • the plurality of connection leads 4 provided on the same side surface 1c are arranged at equal intervals along the direction parallel to the boundary of the backplane where the side subsurface 1c1 is located.
  • the display panel 10 further includes a plurality of second electrodes 5, among the plurality of second electrodes 5, the plurality of second electrodes 5 close to the same side sub-surface 1c1 are arranged along a direction perpendicular to the boundary of the back plate where the side sub-surface 1c1 is located. extending in a direction, and arranged at equal intervals along a direction parallel to the boundary of the backplane where the side sub-surface 1c1 is located.
  • the plurality of first electrodes 3, the plurality of connecting leads 4 and the plurality of second electrodes 5 are designed at equal intervals, so that the plurality of first electrodes 3, the plurality of connecting leads 4 and the plurality of second electrodes 5 can be evenly distributed on the backplane.
  • the distribution is beneficial to the refined design of the structure of the display panel 10 .
  • the display panel 10 includes a display area AA and a peripheral area BB.
  • a plurality of pixels P' and a plurality of signal lines are arranged in the display area AA.
  • the plurality of signal lines are connected to
  • the plurality of pixels are electrically connected, and the structure and connection relationship between the plurality of pixels P′ and the plurality of signal lines will be introduced below.
  • the plurality of pixels P' are arranged in an array, for example, the plurality of pixels P' are arranged in N rows and M columns, and the plurality of signal lines include a plurality of data lines D1- DM, multiple first positive signal lines H11-HM1, multiple second positive signal lines H12-HM2, multiple reference signal lines V1-VM, and multiple scanning signal lines S1-SN extending along the row direction X1, multiple
  • the first signal line also includes a plurality of scanning signal transfer wires C1-CN extending along the column direction Y1, and each scanning signal transfer wire Cn is electrically connected to one scanning signal line Sn, so that the corresponding scanning signal can be sent to the corresponding scanning signal through the scanning signal transfer wire Cn.
  • the line Sn provides the scan signal, so that the signal source for providing the scan signal can be arranged at both ends of the scan signal transfer line Cn.
  • each row of pixels P' is electrically connected to the same scanning signal line Sn
  • each column of pixels P' is connected to a data signal line Dm, a reference signal line Vm, a first positive signal line Hm1 and a second positive signal line
  • the wires Hm2 are electrically connected to realize reasonable wiring, and transmit corresponding signals to the pixel P′ through a plurality of signal wires.
  • each pixel P' among the plurality of pixels P' includes: sub-pixels P of at least three colors and a pixel driving chip 02 for driving each sub-pixel P to emit light.
  • Each sub-pixel P includes at least one light emitting device 2, which may be, for example, an inorganic light emitting diode.
  • each pixel P' includes three sub-pixels P, and each sub-pixel P includes two light-emitting devices 2 as an example for description.
  • the six light emitting devices 2 in the figure are arranged in three rows and two columns, and the three rows of light emitting devices 2 are the first color light emitting device 2 , the second color light emitting device 2 and the third color light emitting device 2 sequentially from top to bottom.
  • the pixel driving chip 02 is configured to time-divisionally write the signal of the data signal line Dm into the sub-pixels P of different colors under the control of the scanning signal line Sn, wherein the reference signal line Vm is used to provide the pixel driving chip 02 with a negative electrode signal, so that a current path is formed between the pixel driving chip 02 and the light emitting device 2 .
  • the pixel driver chip 02 has a first signal terminal O1, a second signal terminal O2, a third signal terminal O3, a fourth signal terminal O4, a fifth signal terminal O5 and a sixth signal terminal O5.
  • Signal terminal O6 the pixel driver chip 02 has a first signal terminal O1, a second signal terminal O2, a third signal terminal O3, a fourth signal terminal O4, a fifth signal terminal O5 and a sixth signal terminal O5.
  • Signal terminal O6 is a first signal terminal O1, a second signal terminal O2, a third signal terminal O3, a fourth signal terminal O4, a fifth signal terminal O5 and a sixth signal terminal O5.
  • the first signal terminal O1 is connected to the negative electrode R- of the first color light emitting device 2
  • the second signal terminal O2 is connected to the negative electrode G- of the second color light emitting device 2
  • the third signal terminal O3 is connected to the third color light emitting device 2
  • the negative pole B- is connected
  • the fourth signal terminal O4 is electrically connected to the data signal line Dm through the via hole P1
  • the fifth signal terminal O5 is connected to the scanning signal line Sn
  • the sixth signal terminal O6 is connected to the reference signal line Vm through the via hole P2 .
  • the anode R+ of the first color light emitting device 2 is connected to the first positive signal line Hm1 through the via hole P5
  • the anode G+ of the second color light emitting device 2 is connected to the second positive signal line Hm2 through the via hole P4
  • the third color light emitting device 2 The positive electrode B+ of the positive electrode is connected to the second positive electrode signal line Hm2 through the via hole P4.
  • the scan signal line Sn is connected to the scan signal transfer line Cn through the via hole P3.
  • a plurality of first electrodes 3 are arranged on the second main surface 1b of the back plate 1 near the two sides, which are referred to as the first sides (located on the back side) hereinafter.
  • the upper side of the board 1) and the second side (located on the lower side of the backplane 1), the first side and the second side are arranged opposite to each other in the column direction Y1, it can be understood that, as shown in Figures 11A to 11C
  • the display panel 10 of FIG. 3 corresponds to the display panel 10 shown in FIG. 3
  • the backplane 1 includes two selected side surfaces 1cc disposed opposite to each other. Among them, FIGS.
  • 11A to 11C illustrate that one end of a plurality of first electrodes 3 close to the selected side surface 1cc is flush or substantially flush with the side of the second main surface 1b close to the selected side surface 1cc. Therefore, The third portion 43 of the connection lead 4 is not shown in the figure.
  • the plurality of first electrodes 3 are electrically connected to the plurality of light emitting devices 2 through the plurality of signal lines, and each of the plurality of first electrodes 3 is electrically connected to a signal line extending along the column direction Y1.
  • a part of the first electrodes 3 among the plurality of first electrodes 3 is disposed at a position close to the first side of the second main surface 1b of the backplane 1, and the part of the first
  • Each first electrode 3 among the electrodes 3 is electrically connected to one signal line among the plurality of second positive signal lines H12 ⁇ HM2 and the plurality of reference signal lines V1 ⁇ VM .
  • Another part of the first electrodes 3 among the plurality of first electrodes 3 is arranged at a position close to the second side of the second main surface 1b of the backplane 1, and each first electrode 3 in this part of the first electrodes 3, and
  • the plurality of data lines D1-DM, the plurality of first positive signal lines H11-HM1, and the plurality of scanning signal transfer lines C1-CN are electrically connected to one signal line.
  • the following rules are set for the positions of the plurality of first electrodes 3, the plurality of first electrodes 3 electrically connected to one pixel column
  • the number is at least four, and the four first electrodes 3 include at least the first electrodes 3 connected to the first positive signal line Hm1, the second positive signal line Hm2, the data line Dm and the reference signal line Vm respectively, and then connected to a plurality of The number of multiple first electrodes 3 electrically connected to the first positive signal line Hm1, the multiple second positive signal lines H12-HM2, the multiple data lines D1-DM and the multiple reference signal lines V1-VM is 4 ⁇ M indivual.
  • the number of the plurality of scanning signal transfer lines C1-CN is equal to the number of the scanning signal lines S1-SN, both of which are N, then the number of the plurality of first electrodes 3 electrically connected to the plurality of scanning signal transfer lines C1-CN is N.
  • the number N of pixel rows in the display area AA is smaller than the number M of pixel columns, that is, in the case of N ⁇ M, one side of some pixel columns corresponds to a scanning signal switch.
  • Wiring Cn the number of these pixel columns is N, there is no scanning signal transfer line Cn on one side of other pixel columns, the number of these pixel columns is (M-N), and at this time, the adjacent two pixel columns in these pixel columns There is no scanning signal transfer line Cn between them.
  • the peripheral area BB corresponds to the second column of pixels
  • the first electrode 3 is not provided at the position. In this way, the number of multiple first electrodes corresponding to some pixel columns (for example, the first column of pixels and the third column of pixels) is 5, and the number of multiple first electrodes corresponding to other pixel columns (for example, the second column of pixels) The number is 4.
  • the right side of the pixels in the second column is provided with a scanning signal transition line C2 correspondingly electrically connected to the scanning signal line S2, and a scanning signal transition line C20 correspondingly electrically connected to the scanning signal line S20, then the peripheral area BB is connected to the second column
  • a first electrode 3 electrically connected to the scan signal transfer line C2 and another first electrode 3 electrically connected to the scan signal transfer line C20 are disposed at positions corresponding to the pixels.
  • the number of multiple first electrodes corresponding to some pixel columns (for example, the first column of pixels and the third column of pixels) is 5, and the number of multiple first electrodes corresponding to other pixel columns (for example, the second column of pixels) The number is 6.
  • the plurality of first electrodes in FIG. 11A to FIG. 11C can be further moved toward the inside of the display area AA, for example, two adjacent pixels P' arranged in a row closest to the selected side surface 1cc Between the pixels P′, the size of the peripheral area BB is further narrowed, so that the non-display area of the display panel is narrower.
  • the signal lines connected to a pixel P' have different line widths because they provide different signals.
  • the width of the first electrode 3 and the signal line to which it is electrically connected The width of the signal line is the same or approximately the same.
  • the width of the signal line refers to the width of the signal line in the direction perpendicular to its main body extension (for example, the column direction Y1), that is, the dimension of the signal line along the row direction X1.
  • the width of the first electrode 3 refers to the width of the first electrode 3.
  • the size of an electrode 3 in the row direction X1 for example, the first electrode electrically connected to the reference signal line Vm is as wide as the reference signal line Vm, or the width of the first electrode 3 is slightly larger than the width of the reference signal line Vm.
  • the width L1 of the reference signal line Vm is greater than the width L2 of the data line Dm, then the width of the first electrode 3 electrically connected to the reference signal line Vm is greater than the width of the first electrode 3 electrically connected to the data line Dm
  • a plurality of first electrodes 3 have different widths, and the width of each first electrode 3 corresponds to the width of the signal line to which it is electrically connected, and the signal lines of different widths are electrically connected to each other.
  • the connected first electrodes 3 have different widths.
  • each connection lead 4 further includes a third portion 43 located on the second main surface 1 b of the backplane 1
  • the width of the third portion 43 is equal to the width of the signal line to which it is electrically connected.
  • the widths are the same or approximately the same, and the third portion 43 refers to its size in the row direction X1. That is, there is a corresponding relationship between the widths of the signal line, the first electrode 3 and the third portion 43 of the connection lead 4 that are electrically connected in sequence.
  • the distance between two adjacent first electrodes 3 is designed based on the criterion of preventing signal crosstalk, which is not limited in the present disclosure.
  • the width of the first portion 41 of each connection lead 4 is the same or substantially the same as the width of the third portion 43 .
  • the width of the first portion 41 refers to its size in the row direction X1 .
  • the orthographic projection of the first part 41 and the third part of each connection lead 4 on the first main surface 1 a of the backplane 1 has an overlapping area.
  • the orthographic projection of the first part 41 of each connecting lead 4 and its third part on the first main surface 1a of the backplane 1 roughly coincides.
  • the first part 41 of each connecting lead 4 The orthographic projection of a part 41 and its third part on the first main surface 1a of the backplane 1 roughly coincides, as shown in FIG.
  • the orthographic projections of the first main surface 1a of 1 are approximately coincident.
  • the width of the first part 41 of each connection lead 4 is the same or substantially the same as the width of its third part 43, and the first part 41 and its third part 43 of each connection lead 4 are on the two opposite main surfaces of the backplane corresponding to the position.
  • the width of the second portion 42 of each connection lead 4 is greater than the width of the first portion 41 and greater than the width of the third portion 43 .
  • the width of the second portion 42 of each connection lead 4 is equal to or approximately equal to the width of its first portion 41 , and equal to or approximately equal to the width of its third portion 43 .
  • the second part 42 of the plurality of connection leads 4 located on the same selected side surface 1cc is arranged along the side parallel to the selected side surface 1cc.
  • the surfaces are arranged at equal intervals in the direction of the backplane boundary, but the line width of the second part 42 of each connecting lead 4 is not necessarily the same.
  • the distance between the second parts 42 of every two adjacent connecting leads 4 is d 4
  • the width of the second part 42 of each connecting lead 4 is basically proportional to the width of the third part 43 .
  • the parts of the plurality of connection leads 4 located on the first main surface 1 a , the parts located on the selected side surface 1 cc and the parts located on the second main surface 1 b are respectively prepared through different processes.
  • the metal layer can be formed by sputtering on the selected side surface 1cc, and the metal layer is subjected to laser etching to obtain the part where the plurality of connection leads 4 are located on the selected side surface 1cc. Etching can cut the metal layer into multiple parts to obtain multiple second parts 42.
  • a specific value such as d4
  • multiple connecting leads arranged at equal intervals can be obtained.
  • the portion lying on the selected side surface 1cc This is beneficial to control the process precision and reduce the difficulty of preparation.
  • the distance between the second portions 42 of every two adjacent connection leads 4 may also be different, for example, it may be consistent with the distance between the first portions 41 of two adjacent connection leads 4 .
  • the spacing between two adjacent connecting leads 4 among the plurality of connecting leads 4 located on different selected side surfaces 1cc is different. Since the first part 41, the second part 42 and the third part 42 of each connection lead 4 are connected to each other and their positions are corresponding, and the width of the third part 43 is the width of the first electrode 3 to which it is electrically connected, and the adjacent third part The pitch of the portion 43 is related to the pitch of the first electrodes 3 to which it is electrically connected. Therefore, when the widths and pitches of the plurality of first electrodes 3 corresponding to different selected side surfaces 1cc are different, they are located on different selected side surfaces 1cc. Among the plurality of connection leads 4 on the top, the spacing between two adjacent connection leads 4 is different.
  • the plurality of connection leads 4 can be prepared, for example, by processes such as electroplating, evaporation, and pad printing of silver glue; or by sputtering onto the first main surface 1a and the selected side surface 1cc of the backplane 1
  • a metal layer is formed and patterned by an etching process to obtain a plurality of connection leads 4 .
  • the etching process may be, for example, wet etching or laser etching.
  • the power of laser etching is too high, and the energy is too large to cause adverse effects on other structures of the display panel 10, especially on the metal layer.
  • the part on the first main surface 1a of the backplane 1 is etched, if the laser energy is too high, the laser will penetrate the backplane 1 and may cause bulges in the structure on the second main surface 1b of the backplane 1 Case.
  • the display panel 10 further includes an energy absorbing film 7 .
  • the energy absorbing film 7 is disposed on the side close to the first main surface 1a of the backplane 1 relative to the plurality of connecting leads 4, and specifically may be in direct contact with the first main surface 1a, that is, before forming the metal layer, on the backplane 1.
  • An energy absorbing film 7 is formed on the first main surface 1 a of the plate 1 .
  • the energy absorbing film 7 is configured to absorb at least a part of the laser energy during the laser etching process, so that, in the process of obtaining a plurality of connecting leads 4 through the laser etching process, especially in the first metal layer located on the backplane 1
  • the energy absorbing film 7 can absorb a part of the laser energy, so as to prevent the structure on the second main surface 1b of the backplane 1 from being bulged due to excessive laser energy, and reduce the impact of laser etching on Detrimental effects on the second main surface 1b of the backplane 1.
  • an energy absorbing film can also be arranged between the second main surface 1b of the backplane 1 and the plurality of connection leads 4, or between the selected side surface 1cc of the backplane 1 and the plurality of connection leads 4
  • An energy absorbing film is arranged between them to reduce possible adverse effects on other structures of the backplane 1 during the process of forming a plurality of connecting leads 4 by laser etching.
  • the material of the energy absorbing film is selected from inorganic materials capable of absorbing laser energy.
  • the material of the energy absorbing film includes at least one of tin dioxide (SnO 2 ) and zinc oxide (ZnO), and the material of the energy absorbing film It is SnO 2 , ZnO, or a mixed material of SnO 2 and ZnO.
  • each connection lead 4 includes a first buffer conductive pattern 4a, a main conductive pattern 4b and a second buffer conductive pattern 4c which are sequentially stacked, and the first buffer conductive pattern 4a is opposite to the main conductive pattern 4a.
  • the electrical pattern 4b is close to the backplane 1 .
  • the adhesion between the first buffer conductive pattern 4a and the backplane 1 is greater than the adhesion between the main conductive pattern 4b and the backplane 1; the oxidation resistance of the second buffer conductive pattern 4c is better than that of the main conductive pattern 4b. Oxidation.
  • the first buffer conductive pattern 4a, the main conductive pattern 4b and the second buffer conductive pattern 4c are all conductive, and the main conductive pattern 4b has strong electrical conductivity and low resistivity.
  • the material of the main conductive pattern 4b is copper, for example. (Cu).
  • the first buffer conductive pattern 4a is arranged on both sides of the main conductive pattern 4b of each connecting lead 4 and the second buffer conductive pattern 4c, enhance the adhesion between the multiple connecting leads 4 and the backplane 1, make the multiple connecting leads 4 not easy to fall off, and enhance the oxidation resistance of the multiple connecting leads 4, so that multiple connecting leads 4
  • the connecting lead wire 4 is not easily corroded by water and oxygen, which prolongs the service life.
  • the material of the first buffer conductive pattern 4a is selected from a material with strong adhesion, such as a material with a strong bonding force with glass
  • the material of the second buffer conductive pattern 4c is selected from a material with strong resistance. oxidizing material.
  • the material of the first buffer conductive pattern 4a is the same as that of the second buffer conductive pattern 4c
  • the materials of the first buffer conductive pattern 4a and the second buffer conductive pattern 4c include titanium (Ti), chromium (Ge), molybdenum (Mo) and molybdenum-niobium alloy (MoNb).
  • the material of the first buffer conductive pattern 4 a and the second buffer conductive pattern 4 c is Ti, Ge, Mo, Monb or a mixed material of Ti and Ge, or a mixed material of Ti, Ge and Mo.
  • the display panel 10 further includes a first protective adhesive layer 6 , and the first protective adhesive layer 6 covers the plurality of connection leads 4 .
  • the first protective adhesive layer 6 is arranged on the side of the plurality of connecting leads 4 away from the backplane 1.
  • the first protective adhesive layer 6 can fill the gap area of the plurality of connecting leads 4 and cover the gaps of the plurality of connecting leads 4. surface. It can be understood that if the parts of the plurality of connection leads 4 located on the first main surface 1a of the backplane 1 need to be exposed for bonded connection with the driver chip 20, then the first protective adhesive layer 6 needs to be avoided.
  • connection lead 4 Covering the part where the connection lead 4 is to be connected with the driver chip 20; in addition, usually the positive projection of the first protective adhesive layer 6 on any surface of the display panel is equal to or greater than the positive projection of the connection lead 4 on any surface of the display panel. projection.
  • the plurality of connection leads 4 are U-shaped, and the first protective adhesive layer 6 is also U-shaped.
  • the plurality of connection leads 4 are L-shaped, and the first protective adhesive layer 6 is also L-shaped.
  • the first protective adhesive layer 6 is configured to protect the multiple connecting leads 4 , and to play the role of electrical insulation and waterproof against oxygen corrosion, so as to prevent the multiple connecting leads 4 from being damaged by the outside world, such as peeling, disconnection, oxidation and other problems.
  • the material of the first protective adhesive layer 6 is an insulating material with high corrosion resistance and adhesion.
  • the first protective adhesive layer 6 is OC (over coating) adhesive, such as the first protective adhesive
  • the material of layer 6 may include dark OC glue, or a dark ink layer.
  • the ink has high hardness and good corrosion resistance, which can protect multiple connecting leads.
  • the thickness d5 of the first protective adhesive layer 6 is greater than or equal to 1 ⁇ m and less than or equal to 4.6 ⁇ m
  • the thickness d 5 of the first protective adhesive layer is 1.5 ⁇ m, 2 ⁇ m or 3 ⁇ m.
  • the thickness d5 of the first protective adhesive layer is not uniform everywhere.
  • the first protective adhesive layer is disposed on the selected side surface 1cc of the backplane 1, and covers a plurality of connection leads 4, in some examples, with Taking the first protective adhesive layer corresponding to the upper selected side surface 1cc of the back plate 1 shown in FIG.
  • the first protective adhesive layer 6 is thicker in the middle and thinner at both sides.
  • the thickness of the middle position of the first protective adhesive layer 6 is 4.58 ⁇ m, and the thickness of the two sides can be 1.5 ⁇ m, 3.31 ⁇ m or 3.56 ⁇ m, for example.
  • the above-mentioned uneven thickness is caused by the preparation process (such as spraying process, deposition process, etc.) of the first protective adhesive layer, and does not affect the function of the first protective adhesive layer 6, as long as the first protective adhesive layer can It only needs to cover a plurality of connecting leads 4 and the thickness of the first protective adhesive layer 6 is sufficient to enable the first protective adhesive layer 6 to effectively protect the plurality of connecting leads 4 .
  • the thickness of the first protective adhesive layer is preferably uniform everywhere.
  • the display panel 10 when the first protective adhesive layer 6 is a dark ink layer, the display panel 10 also includes silicon nitride film layer 8. After the silicon nitride film is formed, it has high density and high oxidation resistance. By setting the silicon nitride film layer 8 and the dark ink layer at the same time on the side of the multiple connection leads 4 facing away from the backplane 1, it can further protect multiple wires. connecting lead wires 4 to prevent multiple connecting lead wires 4 from being corroded, and setting the dark ink layer on the outside can ensure that the first protective adhesive layer 6 has sufficient hardness to avoid being bumped and falling off, and strengthen the protection of multiple connecting lead wires 4 protective effect.
  • the display panel 10 further includes a second protective adhesive layer 9 disposed on the side of the plurality of light emitting devices 2 facing away from the backplane 1 .
  • the second protective glue layer 9 includes a portion 91 covering the plurality of light emitting devices 2 and a portion 92 filling gap regions of the plurality of light emitting devices 2 .
  • FIG. 7A and FIG. 8A the display panel 10 further includes a second protective adhesive layer 9 disposed on the side of the plurality of light emitting devices 2 facing away from the backplane 1 .
  • the second protective glue layer 9 includes a portion 91 covering the plurality of light emitting devices 2 and a portion 92 filling gap regions of the plurality of light emitting devices 2 .
  • the part 92 filling the gap regions of the plurality of light emitting devices 2 is a dark glue, so as to avoid the problem of reduced contrast caused by the reflection of external ambient light after it irradiates the display panel;
  • the part 91 of each light-emitting device 2 is a high-transmittance adhesive material, which prevents the multiple light-emitting devices 2 from being damaged in the subsequent process and ensures the light extraction efficiency of the multiple light-emitting devices 2 .
  • the second protective adhesive layer 9 can use Adhesive materials of the same material and color, because the light emitting brightness of the inorganic light-emitting diode is very strong, and the thickness of the second protective adhesive layer covering the plurality of light-emitting devices 2 is smaller than the thickness of the part filling the gap regions of the plurality of light-emitting devices 2 , so as not to affect the display effect and ensure high contrast.
  • the material of the second protective adhesive layer 9 may be black silicone or black resin.
  • black silica gel can be coated on the side of the plurality of light-emitting devices 2 facing away from the back plate 1 to cover the plurality of light-emitting devices 2, and the surface of the black silica gel can be smoothed to ensure the uniformity and transparency of the second protective adhesive layer 9. Lightness.
  • the second protective adhesive layer 9 further includes a portion 93 covering the plurality of first electrodes 3 .
  • the connection lead 4 covers a part of its corresponding first electrode 3 to realize electrical connection
  • the second protective adhesive layer 9 covers the other part of each first electrode 3 in the plurality of first electrodes 3 .
  • the first protective adhesive layer 6 and the second protective adhesive layer 9 may be in contact.
  • the second protective adhesive layer 9 covers a plurality of first electrodes 3 .
  • the second protective adhesive layer 9 is flush or substantially flush with the side of the second main surface 1b of the backplane 1, and the connection leads 4 can extend to the side of the second protective adhesive layer 9 and the second main surface 1b of the backplane 1
  • the edge is flush with the end surface, so that the connecting lead 4 can fully contact with the first electrode 3, and the first protective adhesive layer 6 and the second protective adhesive layer 9 are not in contact.
  • Some embodiments of the present disclosure also provide a display device 100. As shown in FIG. 5A, FIG. 7A, FIG. 8A, FIG. 9A, FIG. 9B, and FIG.
  • the driving chip 20 is disposed on the first main surface 1 a of the backplane 1 of the display panel 10 , and the driving chip 20 is electrically connected to the plurality of first electrodes 3 of the display panel 10 through the plurality of connection leads 4 of the display panel 10 .
  • the display panel 10 further includes a plurality of second electrodes 5
  • the plurality of second electrodes 5 are respectively connected to the plurality of connection leads 4 is electrically connected
  • the driving chip 20 is electrically connected to the plurality of second electrodes 5, so as to be electrically connected to the plurality of connecting leads 4 through the plurality of second electrodes 5.
  • the thickness at the position where the second electrode 5 is bound to the driver chip 20 can be the same as the thickness at other positions of the second electrode 5; the thickness at the position where the second electrode 5 is bound to the driver chip 20 can also be It is smaller than the thickness at other positions of the second electrode 5 .
  • the driving chip 20 is directly connected to the plurality of connection leads 4 located on the backplane 1 . Portions on the first main surface 1a are electrically connected. It can be understood that the thickness at the position where the connecting lead 4 is bound to the driver chip 20 can be the same as the thickness at other positions of the connecting lead 45; Thickness at other locations of lead 4.
  • the binding area can be transferred to the display panel.
  • the driver chip 20 is electrically connected to the front of the display panel 10 through a plurality of connecting wires 4, and the display panel 10 is controlled to display, so that the area of the peripheral area of the display panel 10 can be reduced, and the frame of the display device 100 can be enlarged. Decrease, the screen ratio increases, and the display effect is improved.
  • the display device 100 has a narrow frame.
  • the structure including a plurality of connection leads 4 and the first protective glue disposed on the selected side surface 1cc of the backplane 1 layer 6 etc.
  • the size of the frame of the display device 100 is much smaller than 1 mm.
  • Some embodiments of the present disclosure also provide a spliced display device 1000. As shown in FIG. For splicing and assembly, since the frame size of each display device 100 used for splicing is very small, the joint between two adjacent display devices 100 in the actual viewing of the splicing display device 1000 is difficult to be found by the naked eye within the viewing distance. A better display effect can be presented.
  • the display device provided by the present disclosure is a display device with an ultra-narrow bezel, when the multiple display devices are applied to a spliced display device, the gap between two adjacent display devices is small, so that the spliced display device The display screen is more complete and the display effect is better.
  • the width of the seam between two adjacent display devices is 0.4 mm to 0.9 mm, so that when the spliced display device is displaying, it is difficult to find the existence of the seam when viewed by naked eyes, which improves the splicing display.
  • the display quality of the device is 0.4 mm to 0.9 mm, so that when the spliced display device is displaying, it is difficult to find the existence of the seam when viewed by naked eyes, which improves the splicing display.
  • Some embodiments of the present disclosure also provide a method for preparing a display panel, which is used to prepare the display panel described above in the present disclosure. As shown in Figure 16A and Figure 16B, the preparation method includes:
  • the initial backplane 1' includes opposite first main surfaces 1a and second main surfaces 1b, and connects the first main surface 1a and the second main surface A plurality of side surfaces 1c' of the surface 1b; the plurality of side surfaces 1c' are perpendicular or substantially perpendicular to the first main surface 1a and the second main surface 1b.
  • the above-mentioned initial backplane 1' refers to a substrate prepared with a driving circuit layer.
  • the initial backplane 1' includes a substrate and a driving circuit layer disposed on one side surface 1c of the substrate.
  • the driving circuit layer is far away from the substrate.
  • the surface is the second main surface 1b of the initial backplane 1'.
  • the aforementioned substrate is, for example, a glass substrate.
  • a plurality of first electrodes 3 are formed on the second main surface 1b of the initial backplane 1'; the plurality of first electrodes 3 are close to at least one of the plurality of side surfaces 1c' 1c', the at least one side 1c' is a selected side 1c'.
  • the at least one side 1c' is the side 1c' used to arrange a plurality of connection leads 4 in subsequent steps, and the at least one side 1c' is called the selected side 1c', and the plurality of first electrodes 3 are close to the second main surface
  • the initial backplane 1' has four sides 1c', and among the four sides 1c', one side 1c', two sides 1c', three sides 1c' can be selected side 1c', or four
  • the side surfaces 1c' are all selected side surfaces 1c', and a plurality of first electrodes 3 are formed on the second main surface 1b of the initial backplane 1' near the selected side surfaces 1c'.
  • first preset distance A3 there is a first preset distance A3 between one end of each first electrode 3 close to the selected side 1c' and the side of the second main surface 1b of the initial backplane 1' close to the selected side 1c',
  • the first preset distance A3 needs to take into account the area of the display area of the final display panel to be formed, the preset distance should not be too large, and at the same time, it is necessary to reserve a space for subsequent chamfering or rounding, as shown in Figure 17B As shown, for example, the first preset distance A3 is 50 ⁇ m ⁇ 80 ⁇ m.
  • the plurality of first electrodes 3 can be formed by the same film forming process or the same patterning process as the driving circuit layer on the second main surface 1b.
  • the backplane 1 includes a plurality of side surfaces 1c connecting the first main surface 1a and the second main surface 1b, at least one side surface 1c in the plurality of side surfaces 1c is a selected side surface 1cc, and the selected side surface 1cc includes The side subsurface 1c1 perpendicular or approximately perpendicular to the first main surface 1a and the second main surface 1b, and the first transition subsurface 1c2 connecting the side subsurface 1c1 and the first main surface 1a are called the at least one side surface 1c 1 cc for the selected side surface.
  • the first main surface 1 a and the second main surface 1 b of the initial backplane 1' are the first and second main surfaces 1 a and 1 b of the backplane 1 .
  • the tangent line at any point on the first transition subsurface 1c2 and the first main surface 1a The angle is greater than 90°, and the included angle with the side sub-surface 1c1 is greater than 90°.
  • S3 further includes: processing the border of the second main surface 1b of the initial backplane 1' and the selected side surface 1c' to form a connection between the The second main surface 1b and the second transitional subsurface 1c3 of said selected side 1c', resulting in a backplane.
  • Selected side surfaces 1c of the plurality of side surfaces 1c of the back plate also include a second transition sub-surface 1c3, where the back plate is perpendicular to the second main surface 1b and perpendicular to the side sub-surface 1c1.
  • the angle between the tangent at any point on the second transition sub-surface 1c3 and the second main surface 1b is greater than 90°, and the angle between the tangent at any point on the second transition sub-surface 1c3 and the side sub-surface 1c1 The angle is greater than 90°.
  • a chamfering process is used to grind the boundary edge of the first main surface 1a of the initial backplane 1' and the selected side surface 1c' to form the first transitional subsurface 1c2, or, at the same time, the initial backplane 1
  • the border between the second main surface 1b of ' and the selected side surface 1c' is ground to form a second transitional sub-surface 1c3.
  • first transition subsurface 1c2 and the second transition subsurface 1c3 are plane or arc surfaces.
  • first transition sub-surface 1c2 and second transition sub-surface 1c3 there may be defects such as pits and burrs.
  • the diameter or the length of the diagonal is within 10 um, and the impact of the plurality of pits on the overall flatness of the first transition sub-surface 1c2 and the second transition sub-surface 1c3 is negligible.
  • a step of cleaning the surface of the formed backplane is further included, so as to remove debris and oil stains existing on the surface of the backplane after grinding.
  • the cleaning method may adopt methods such as wet cleaning, ion source cleaning, ozone cleaning and the like.
  • wet cleaning 5% weak alkaline KOH solution can be used to clean the surface of the backplane, so that while removing oil stains, it can also improve the surface activity of the backplane and improve the metal layer in the subsequent process. Adhesion to the backplane (such as adhesion between metal and glass substrates).
  • connection leads 4 on the first main surface 1a and the at least one side surface 1c of the backplane.
  • Each of the plurality of connection leads 4 passes through the first transition sub-surface 1c2 and the side sub-surface 1c1 of the side surface 1c in turn from the first main surface 1a of the backplane, and connects with the plurality of connection leads 4.
  • One of the first electrodes 3 is electrically connected.
  • connection leads 4 may be provided on the second main surface 1 b of the backplane in addition to being formed on the first main surface 1 a and selected side surfaces 1 cc of the backplane.
  • each of the plurality of connection leads 4 passes sequentially from the first main surface 1a of the backplane through the The first transition subsurface 1c2 , the side subsurface 1c1 and the second transition subsurface 1c3 of the side surface 1c are electrically connected to one first electrode 3 among the plurality of first electrodes 3 .
  • the step of forming a plurality of connection leads 4 in S4 includes:
  • a metal layer is formed on the first main surface 1a of the backplane, the first transition sub-surface 1c2 and the side sub-surface 1c1 of selected side surfaces 1cc.
  • a metal layer is formed on the first main surface 1a of the backplane, the first transition sub-surface 1c2 of the side surface 1c, the side sub-surface 1c1 and the second transition sub-surface 1c3.
  • the metal layer is also formed on the second main surface 1b of the back plate in the case that there is a space between the end of the first electrode 3 close to the side subsurface 1c1 and the side of the second main surface 1b close to the side subsurface 1c1 , so that the metal layer is in electrical contact with the plurality of first electrodes 3 , for example, the metal layer may cover the plurality of first electrodes 3 so that the two have a larger contact area.
  • the metal layer is formed only on the first main surface 1a and at least one side surface 1c of the backplane, not on the second main surface 1b of the backplane.
  • an electroplating process an evaporation process, pad printing of silver glue, a sputtering process (such as a multi-arc magnetron sputtering process) and the like can be used to deposit the metal layer, so as to deposit the metal layer on the first main surface 1a and the A metal layer is formed on the at least one side surface 1c.
  • a sputtering process such as a multi-arc magnetron sputtering process
  • the metal layer includes a first metal layer, a second metal layer and a third metal layer, and the above process is used to sequentially deposit the first metal layer, the second metal layer and the third metal layer to obtain a stacked arrangement
  • the first metal layer is closer to the backplane than the second metal layer.
  • the thickness of the first metal layer and the second metal layer is 30 nm ⁇ 100 nm.
  • the adhesion between the first metal layer and the backplane is greater than the adhesion between the second metal layer and the backplane; the oxidation resistance of the third metal layer is better than that of the second metal layer.
  • the material of the first metal layer is the same as that of the third metal layer, and the materials of the first metal layer and the third metal layer include at least one of Ti, Ge, Mo and Monb.
  • the material of the second metal layer has strong electrical conductivity, for example, the material of the second metal layer is Cu.
  • connection leads 4 Pattern the metal layer to obtain a plurality of connection leads 4; each connection lead 4 in the plurality of connection leads 4 sequentially passes through the first main surface 1a of the backplane through the first selected side surface 1cc A transition subsurface 1c2 and a side subsurface 1c1 are electrically connected to one first electrode 3 among the plurality of first electrodes 3 .
  • the metal layer is patterned by using a laser etching process with high process precision to obtain a plurality of connection leads 4 .
  • the above method of patterning the metal layer by using a laser etching process before S41, it further includes: S40: forming an energy absorbing film on the first main surface 1a of the backplane, for example,
  • the energy absorbing film is formed by using a deposition process, and the material of the energy absorbing film may include at least one of SnO 2 and ZnO, for example.
  • the energy absorbing film can absorb at least a part of the laser energy during the laser etching process, so as to avoid the structure on the second main surface 1b of the back plate from being bulged due to excessive laser energy, and reduce the impact of laser etching on the second main surface 1b of the back plate. Adverse effects of main surface 1b.
  • a wet etching process is used to pattern the metal layer to obtain a plurality of connection leads 4 .
  • pad printing process is used to pad print insulating ink on the surface of the metal layer to form a protective layer with a pattern to protect the parts of the metal layer that do not need to be etched, and to observe and adjust through automatic optical inspection equipment to ensure insulation
  • the protective layer formed by the ink is in the same position as the plurality of first electrodes, and the metal layer is etched to retain the part of the metal layer covered by the insulating ink to form a plurality of connecting leads 4 .
  • an energy absorbing film can also be formed on the selected side surface 1 cc of the backplane, so as to avoid the influence of the laser etching process on other structures of the backplane.
  • the manufacturing method of the display panel may be, before forming a plurality of first electrodes 3 on the second main surface 1b of the initial backplane 1' in S2, first on the initial backplane 1' A metal layer 4' is formed on the first main surface 1a, the second main surface 1b and the selected side 1c' of ', the metal layer 4' covers the surface of the selected side 1c' of the initial backplane 1', and covers the initial backplane After the metal layer is formed on a part of the first main surface 1a and the second main surface 1b of the board 1' near the selected side 1c', S2 is performed: forming multiple a plurality of first electrodes 3, the plurality of first electrodes 3 are close to a selected side 1c' of the plurality of side surfaces 1c', and the plurality of first electrodes 3 are in contact with the metal layer.
  • the plurality of first electrodes 3 may cover a part of the metal layer, so that the two have a larger contact area, that is to say, the plurality of first electrodes 3 are located on the side of the metal layer away from the initial backplane 1'.
  • the plurality of first electrodes 3 and the driving circuit layer on the second main surface 1b can be formed by the same film forming process or the same patterning process.
  • the display panel further includes a plurality of second electrodes 5 disposed on the first main surface 1a of the backplane 1, before forming the plurality of second electrodes 5, the initial backplane 1' Form the metal layer 4' on the first main surface 1a, the second main surface 1b and the selected side 1c' of the backplane 1', after forming the metal layer, proceed to S2': form multiple a plurality of second electrodes 5; the plurality of second electrodes 5 are close to at least one side surface 1c' of the plurality of side surfaces 1c', and in a direction perpendicular to the first main surface 1a, the plurality of second electrodes 5
  • the positions of the electrodes 5 correspond to the positions of the plurality of first electrodes 3 one by one, and the plurality of second electrodes 5 are in contact with the metal layer.
  • the plurality of second electrodes 5 may cover a part of the metal layer, so that the two have a larger contact area, that is to say, the plurality of second electrodes 5 are located on the side of the metal layer away from the initial backplane 1'.
  • S3 is further included to process the border between the first main surface 1 a of the initial backplane 1 ′ and the selected side 1 c ′. , forming the first transitional subsurface 1c2 at the border, and selecting the side surface 1c' to form the side subsurface 1c1, and the backplane 1 is obtained.
  • the metal layer 4' is thus formed on the first main surface 1a, the second main surface 1b and the selected side surfaces 1cc of the backplane 1.
  • each connection lead 4 in the plurality of connection leads 4 is formed by the obtained
  • the first main surface 1a of the back plate 1 sequentially passes through the first transition subsurface 1c2 and the side subsurface 1c1 of the selected side surface 1cc, and is electrically connected to one first electrode 3 of the plurality of first electrodes 3 .
  • each connection lead 4 is also electrically connected to a second electrode 5 .
  • the method of patterning the metal layer 4' can adopt the laser etching method or the wet etching method described above, which will not be repeated here.
  • each first electrode 3 is located on the side away from the backplane 1 of the connecting lead 4 to which it is electrically connected
  • each second electrode 5 is located on the side away from the backplane 1 to which the connection leads 4 are electrically connected.
  • the step of forming a plurality of connection leads 4 in S4 includes: the step of forming a plurality of connection leads 4 on the selected side surface of the backplane 1 and forming a plurality of connection leads 4 A step of connecting the parts of the leads 4 located on the first main surface 1 a (and the second main surface 1 b ) of the backplane 1 .
  • the step of forming the part of the plurality of connection leads 4 located on the selected side surface of the backplane includes:
  • the step of forming the plurality of connection leads 4 on the first main surface 1a (and the second main surface 1b) of the backplane 1 includes:
  • S41 ′′ disposing a mask on the first main surface 1 a of the backplane, the mask being configured to expose a region on the first main surface 1 a of the backplane where a plurality of connection leads 4 need to be arranged.
  • the aforementioned mask is, for example, a magnetron sputtering mask, for example, the material of the mask includes polyimide or Teflon.
  • the pattern of the mask plate can block the area where the metal layer does not need to be formed on the first main surface 1a of the backplane.
  • the mask plate can be attached to the first main surface 1a of the backplane.
  • the area shown is the area where a plurality of connection leads 4 are subsequently formed.
  • the exposed area on the first main surface 1a corresponds to the portion of the plurality of connecting leads 4 that is located on a selected side surface of the backplane.
  • an electroplating process an evaporation process, pad printing of silver glue, a sputtering process (such as a multi-arc magnetron sputtering process) and the like can be used to deposit the metal layer on the first main surface 1a of the back plate
  • a metal layer is formed covering the area of the first main surface 1a of the backplane exposed by the mask.
  • FIG. 21A and FIG. 21B illustrate two structures of the above-mentioned mask plate 11, the mask plate 11 has a plurality of openings 11a, and the plurality of openings 11a exposes the area on the first main surface 1a of the backplane where metal needs to be deposited,
  • the mask 11 shown in FIG. 21A does not have a frame 11b, and the mask 11 shown in FIG. 21B has a frame 11b.
  • the mask 11 shown in FIG. 21A can be applied.
  • the mask 11 shown in FIG. 21A can be applied to the situation where the backplane 1 is placed horizontally for metal sputtering, and the mask 11 with the frame 11a helps to improve the overall uniformity of the formed metal layer. flatness.
  • the shape of the opening 11a of the mask 11 is the shape of the pattern of the part where the plurality of connection leads 4 are located on the first main surface 1a of the backplane 1, using two kinds of masks shown in Fig. 21A and Fig. 21B 11 , the pattern of the obtained metal layer is consistent with the pattern of the part of the plurality of connection leads 4 located on the first main surface 1 a of the backplane 1 shown in FIG. 10B .
  • the metal layer includes a first metal layer, a second metal layer, and a third metal layer.
  • the plurality of connection leads 4 also include a portion disposed on the second main surface 1b of the backplane
  • sequence of S41' and S42', S41", S42” and S43” is not limited, for example, S41' (on the at least one side surface 1c (selected side surface) of the back plate) Forming a metal layer on the backplane) and S42" (depositing metal on the first main surface 1a of the backplane to form a metal layer) are carried out synchronously, so as to improve the production efficiency.
  • connection leads 4 is formed in contact with the portion of the plurality of connection leads 4 located on the selected side surface 1cc of the back plate 1 on the first main surface 1a of the back plate 1, and also with the plurality of connection leads 4. Portions of the connection leads 4 located on the second main surface 1b of the backplane 1 are in contact, resulting in a plurality of connection leads.
  • Each of the plurality of connection leads 4 passes through the first transition sub-surface 1c2 and the side sub-surface 1c1 of the side surface 1c in turn from the first main surface 1a of the backplane, and connects with the plurality of connection leads 4.
  • One of the first electrodes 3 is electrically connected.
  • the above-mentioned method of using a mask to form the part of the plurality of connection leads 4 located on the first main surface 1a (and the second main surface 1b) of the backplane 1 does not need to use a laser etching process, thus avoiding the use of laser etching.
  • excessive laser energy has adverse effects on the structures on the second main surface 1b and the first main surface 1a of the backplane.
  • the step of forming a plurality of connection leads 4 in S4 includes:
  • S4-1 Set a flexible mask 12 on the first main surface 1a of the backplane 1 and the selected side surface 1cc, the flexible mask 12 is configured to expose the first main surface 1a and the selected side surface 1cc of the backplane. Areas for providing a plurality of connection leads 4 are required on the side surface 1cc.
  • the flexible mask 12 includes a first part P1 , a second part P2 and a third part P3 , and the flexible mask 12 can be attached on the surface of the backplane 1 .
  • the first part P1 is arranged on the first main surface 1a of the backplane 1
  • the second part P2 is arranged on the first main surface 1a of the backplane 1 and the at least one side surface 1c (such as two opposite sides of the backplane).
  • the third part P3 is arranged on the second main surface 1b of the backplane 1
  • the second part P2 can be bent, so that the second part P2 can be attached to the first main surface 1a of the backplane 1.
  • the first transition sub-surface 1c2 and the side sub-surface 1c1 of the fixed side surface 1cc (or also attached to the second transition sub-surface 1c3 of the selected side surface 1cc) and enables the third part P3 to be attached to the backplane on the second main surface 1b.
  • the second part P2 has a plurality of openings 12a exposing areas on the first main surface 1a and the at least one side surface 1c of the backplane where metal needs to be deposited.
  • S4-2 Depositing metal on the first main surface 1a and the selected side surface 1cc of the backplane to form a metal layer.
  • an electroplating process an evaporation process, pad printing of silver glue, a sputtering process (such as a multi-arc magnetron sputtering process) and the like can be used to deposit the metal layer, so as to simultaneously deposit the metal layer on the first main surface 1a of the back plate
  • a metal layer is formed on the at least one side surface 1c, and the metal layer covers the area of the first main surface 1a of the backplane where the at least one side surface 1c is exposed by the flexible mask 12.
  • the metal layer includes a first metal layer, a second metal layer, and a third metal layer.
  • S4-3 removing the flexible mask to form a plurality of connection leads 4 .
  • Each of the plurality of connecting leads 4 formed passes through the first transition sub-surface 1c2 and the side sub-surface 1c1 of the selected side surface 1cc in sequence from the first main surface 1a of the back plate, and is connected with the selected side surface 1cc.
  • One first electrode 3 among the plurality of first electrodes 3 is electrically connected.
  • UV light is used to irradiate the flexible mask to reduce the viscosity of the material bonded between the flexible mask 12 and the backplane 1 , thereby removing the flexible mask 12 from the backplane 1 .
  • the flexible mask 12 is also configured to expose the second main surface 1b of the backplane The area where multiple connection leads 4 need to be set on the top.
  • the second part P2 of the flexible mask 12 can be attached to the first main surface 1a, the second main surface 1b, the first transition sub-surface 1c2 and the side sub-surface 1c1 of the selected side surface 1cc of the backplane 1,
  • the plurality of openings 12a expose areas on the first main surface 1a, the at least one side surface 1c, and the second main surface 1b of the backplate that need to be deposited with metal.
  • Each of the plurality of connection leads 4 thus formed extends from the first main surface 1a of the back plate through the first transition sub-surface 1c2 and the side sub-surface 1c1 of the side surface 1c in sequence, and extends to the backplane.
  • One of the plurality of first electrodes 3 is electrically connected to the second main surface 1 b of the board 1 .
  • the above-mentioned method of using a flexible mask to form a plurality of connecting leads 4 does not need to use a laser etching process, which can avoid the impact on the second main surface 1b and the first main surface 1b of the backplane due to excessive laser energy when using the laser etching process.
  • the adverse effect of the structure on the surface 1a, and because the flexible mask can be bent and can be attached to the selected side surface 1cc of the backplane it is possible to form a plurality of connecting leads 4 at one time on the first main surface of the backplane. Parts on the surface 1a, at least one side surface 1c and the second main surface 1b, improve the production efficiency.
  • the manufacturing method of the display panel further includes:
  • connection leads 4 are short-circuited or open-circuited. If a short-circuit occurs, remove the redundant metal layer that causes the short-circuit of the connection leads 4. Exemplarily, a laser etching process can be used to remove the redundant metal layer. . If a disconnection occurs, metal is added to the disconnected position so that the connection lead 4 is connected. Exemplarily, silver printing can be used to repair the disconnected connection lead 4 .
  • the first protective adhesive layer 6 is configured to protect the plurality of connection leads 4 and to play the role of electrical insulation and waterproofing against oxygen corrosion.
  • the material of the first protective adhesive layer 6 is an insulating material with high corrosion resistance and high adhesion.
  • the first protective adhesive layer 66 is OC (over coating) adhesive or an ink layer.
  • the first protective adhesive layer 6 may be formed by spraying, deposition and other methods.
  • the display panel further includes a plurality of second electrodes 5 disposed on the first main surface 1a of the backplane.
  • the manufacturing method of the above display panel further includes: before S3, S2': forming a plurality of second electrodes 5 on the first main surface 1a of the initial backplane 1'; the plurality of second electrodes 5 are close to the plurality of For at least one side 1c' of the side surfaces 1c', the positions of the plurality of second electrodes 5 correspond to the positions of the plurality of first electrodes 3 in a direction perpendicular to the first main surface 1a.
  • one of the four sides 1c' of the initial backplane 1' is a selected side 1c', and the plurality of first electrodes 3 and the plurality of second electrodes 5 are all close to the selected side surface 1 cc, that is, a plurality of second electrodes 5 are formed on the first main surface 1 a of the initial backplane 1 ′ at positions close to the selected side faces 1 c ′.
  • the orthographic projection of each first electrode 3 on the first main surface 1 a at least partially coincides with the orthographic projection of the corresponding second electrode 5 on the first main surface 1 a.
  • the second electrode 5 there is a second electrode 5 between one end of each second electrode 5 close to the selected side 1c' and the side of the second main surface 1b of the initial backplane 1' close to the selected side 1c'.
  • Two preset distances A4 since the second electrodes 5 are arranged on the second main surface 1b of the initial backplane 1', that is, arranged on the backside of the prepared display panel, a plurality of second electrodes 5 are configured to be bonded and driven
  • the distance between the multiple second electrodes 5 and the side of the second main surface 1b can be designed to be longer
  • the second predetermined distance A4 between one end of each second electrode 5 close to the selected side 1c' and the side of the second main surface 1b of the initial backplane 1' close to the selected side 1c' is 400 ⁇ m to 400 ⁇ m.
  • the positions of the plurality of second electrodes 5 correspond substantially to the positions of the plurality of first electrodes 3, and the second preset distance A4 may be the same as the first electrode 3.
  • a predetermined distance A3 is equal or substantially equal, for example, the second predetermined distance A4 is 50 ⁇ m ⁇ 80 ⁇ m.
  • S41 includes: A metal layer is formed on the at least one side surface 1 c, and the metal layer is in contact with the plurality of first electrodes 3 and the plurality of second electrodes 5 .
  • S42' includes: forming a metal layer on the first main surface 1a and the at least one side surface 1c of the back plate, and the surface of the shielding layer, the metal layer is connected with the plurality of first electrodes 3 and the plurality of second electrodes 5 contacts. As shown in FIG. 17E , each of the plurality of connection leads 4 finally formed is also electrically connected to one second electrode 5 .
  • step of forming a plurality of first electrodes 3 in S2 and the step of forming a plurality of second electrodes 5 in S2' are not limited in sequence.
  • the preparation of multiple light-emitting devices in the display panel is introduced below.
  • the multiple light-emitting devices are usually called mini LED chips.
  • the preparation sequence of the plurality of light emitting devices is located after the preparation sequence of the plurality of side 1c' leads, that is, after the plurality of connection leads 4 are formed on the first main surface 1a and at least one side surface 1c of the backplane, A plurality of light emitting devices are formed on the second main surface 1b of the back plate, the plurality of light emitting devices are electrically connected to the plurality of first electrodes 3, for example, a plurality of mini LED chips are transferred to the second main surface of the back plate 1b on. In this way, possible damage to multiple light emitting devices during the process of forming multiple connecting leads 4 can be avoided.
  • the preparation sequence of the plurality of light-emitting devices is located before the preparation sequence of the plurality of side 1c' leads, for example, before S3 (hereinafter referred to as S3 is the step of chamfering), the initial backplane 1 A plurality of light emitting devices are formed on the second main surface 1b of ', and the plurality of light emitting devices are electrically connected to the plurality of first electrodes 3 .
  • the manufacturing process of the display panel further includes: forming a second protective adhesive layer 9 on the side of the plurality of first electrodes 3 and the plurality of light-emitting devices facing away from the initial backplane 1'.
  • the above-mentioned method of forming the second protective adhesive layer 9 is as follows: coating the material of the second protective adhesive layer on the second main surface 1b of the initial backplane 1', and adding the formed second protective adhesive layer 9 The surface is smoothed, so that a second protective adhesive layer 9 is formed on the entire surface of the second main surface 1b of the initial backplane 1', and the second protective adhesive layer 9 covers a plurality of light-emitting devices 2 and a plurality of first electrodes 3 , and fill the gap regions of the plurality of light emitting devices 2 , and fill the gap regions of the plurality of first electrodes 3 .
  • the entire second protective adhesive layer 9 is pasted on the second main surface 1b of the initial backplane 1', and the surface of the second protective adhesive layer is ground, so that the second protective adhesive layer 9 covers more each light emitting device 2 and a plurality of first electrodes 3, and fill the gap regions of the plurality of light emitting devices 2, and fill the gap regions of the plurality of first electrodes 3.
  • the second protective adhesive layer 9 can protect multiple light emitting devices 2 and multiple first electrodes 3, and prevent multiple light emitting devices 2 and multiple first electrodes 3 from being damaged in the subsequent process.
  • the chamber where the second protective layer is prepared is not the same chamber as the chamber where the second protective layer is cut, and the second protective adhesive layer 9 can prevent multiple light-emitting devices 2 and multiple first An electrode 3 is damaged, and a plurality of light emitting devices 2 are prevented from being damaged during the process of forming a plurality of connection leads 4 .
  • the formed plurality of connection leads 4 need to be electrically connected with a plurality of first electrodes 3, so before S4, the second protective adhesive layer needs to be cut to expose a plurality of Part of the first electrode 3.
  • the initial backplane 1' has a process edge, along the position of one end of the plurality of first electrodes 3 facing the selected side 1c of the initial backplane 1', the initial backplane 1' and the second The protective adhesive layer 9 is cut to cut off the process edge of the initial backplane 1' and expose one end of the plurality of first electrodes 3 facing the selected side 1c of the initial backplane 1'.
  • the plurality of first electrodes The exposed ends of the plurality of first electrodes 3 are flush or approximately flush with the second protective adhesive layer, and the exposed ends of the plurality of first electrodes 3 are flush or approximately flush with the cut sides of the initial backplane 1 ′.
  • the second protective adhesive layer 9 is cut to expose one end of the plurality of first electrodes 3 facing the selected side 1c of the initial backplane 1'.
  • a black adhesive material can be used to coat the gap regions of the plurality of light-emitting devices 2, and a high-transmittance adhesive material can be selected to be coated on the surface of the plurality of light-emitting devices 2 facing away from the backplane 1, so as to form the first
  • the second protective adhesive layer 9 can improve the contrast of the display panel and ensure the light extraction efficiency of the multiple light emitting devices 2 while preventing the multiple light emitting devices 2 from being damaged in the subsequent process.
  • the material of the second protective adhesive layer 9 can be black silica gel or black resin, for example, the black silica gel is coated on the side of the plurality of light emitting devices 2 and the plurality of first electrodes 3 facing away from the back plate 1, so that the black silica gel covers the plurality of The light-emitting device 2 and a plurality of first electrodes 3, and the surface of the black silica gel is ground, and the part of the black silica gel covering the surface of the plurality of light-emitting devices 2 is ground to a very thin, such as less than 1mm, so that the black silica gel can be Protecting the multiple light emitting devices 2 and the multiple first electrodes 3 can also ensure the light transmittance of the parts covered on the surfaces of the multiple light emitting devices 2 , so as not to affect the light emitting effect of the light emitting devices 2 .
  • the black silica gel is coated on the side of the plurality of light emitting devices 2 and the plurality of first electrodes 3 facing away from the back plate 1, so
  • the present disclosure provides a high-efficiency metal deposition method
  • This high-efficiency metal deposition method is applicable to S41 in Fig. 19, S41' and S42" in Fig. 20, and S4-2 in Fig. 22.
  • the manufacturing method of the display panel also includes A plurality of second electrodes 5 are formed on a main surface 1a, and the finally formed display panel also includes a plurality of second electrodes 5 as an example for illustration.
  • a high-efficiency preparation method for a plurality of connection leads 4 includes:
  • the length of the exposed part of the first electrode 3 and the second electrode 5 can be designed according to the actual situation.
  • the first electrode 3 and the second electrode 5 are both covered 2/ 3 length sections, exposing another 1/3 length section.
  • the preparation sequence of multiple light-emitting devices is located before the preparation sequence of multiple side 1c' leads, that is, before S3 (the step of chamfering), the initial backplane 1'
  • a plurality of light-emitting devices are formed on the second main surface 1 b of the plurality of light-emitting devices, and the plurality of light-emitting devices are electrically connected to the plurality of first electrodes 3 .
  • the manufacturing process of the display panel further includes: forming a second protective adhesive layer 9 on the side of the plurality of first electrodes 3 and the plurality of light-emitting devices facing away from the initial backplane 1', for example
  • the second protective glue layer 9 is black resin.
  • the second protective adhesive layer 9 can be reused as the second protective film 23 without reattaching the second protective film.
  • the first electrode 3 is, for example, covered by 2/3 of the length part, another 1/3 of the length is exposed, and the second electrode 5 only exposes the end face facing the selected side 1c' of the back plate.
  • FIG. 24A and FIG. 24B there is a gap between the first protective film 22 and the back plate, and there is a gap between the second protective film 23 and the back plate 1.
  • a plurality of first electrodes 3 and the plurality of second electrodes 5 are very small in thickness, and both the first protective film 22 and the second protective film 23 are in contact with the backplane and attached to the surface of the backplane.
  • the metal layer can cover the exposed parts of the first electrodes 3 and the second electrodes 5 to form an electrical contact, preventing excess metal from covering a large area of the plurality of first electrodes 3 and the plurality of second electrodes. on the second electrode 5, causing problems such as short circuit.
  • FIG. 26A and FIG. 26B are partial enlarged views of the region G1 of the single tooling module 27 in FIG.
  • the upper cover plate 24 is retracted inwardly by 0.5mm ⁇ 1mm relative to the first protective film 22 .
  • the second protective adhesive layer 9 for example, black resin
  • the lower cover plate 25 extends outward relative to the second protective film 22 by 1mm- 2 mm
  • the upper cover plate 24 is indented inwardly by 0.5 mm to 1 mm relative to the first protective film 22 .
  • This design can ensure that in the subsequent step of sputtering the metal layer, the formed metal layer has a certain thickness, and can also prevent metal ions from entering between the entire backplane 21 and the first protective film 22 or the second protective film 23 The presence of tiny gaps can lead to short circuits.
  • a plurality of single tooling modules 27 are assembled by positioning columns 26 to form an integral tooling module 28, and the integral tooling module 28 is placed on the turntable 31, so that the integral tooling module 28 is placed on the turntable Rotate under the effect of 31, sputter metal to overall frock module 28.
  • the metal target is located at the side position of the overall tooling module 28.
  • the overall tooling module is in rotation, so that the backplane in a plurality of single tooling modules will be simultaneously
  • a metal layer is formed on the exposed area of the selected side surface 1cc and the first main surface 1a, and the thickness of the metal layer formed on the surface of the backplane 1 in a plurality of single tooling modules is approximately the same.
  • the metal target is located at the side position of the overall tooling module 28, the metal sputtered to the selected side surface 1cc of the back plate 1 is relatively more, and the metal layer formed on the selected side surface 1cc of the back plate is relatively thick.
  • the uniformity of the overall thickness of the metal layer can improve the uniformity of the thickness of the formed metal layer by adjusting the relative position of the metal target and the overall tooling module.
  • the ratio of the thickness of the metal layer formed on the exposed area of the first major surface 1a of the back plate to the thickness of the metal layer formed on the selected side surface 1cc of the back plate is between 0.6-1.6, So that the difference in thickness at different positions will not be too large.
  • the formed display panel only includes one or two selected side surfaces 1cc
  • the driver chip or the flexible circuit board is bound on the first main surface of the backplane to obtain a display device with an ultra-narrow frame.
  • the driver chip or the flexible circuit board to a plurality of second electrodes, or bonding the driver chip or the flexible circuit board to the part where the plurality of connection leads are located on the first main surface of the backplane , so that the driver chip or the flexible circuit board is arranged on the back of the display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Multimedia (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Display Devices Of Pinball Game Machines (AREA)

Abstract

一方面,提供一种显示面板,包括:背板、多个发光器件、多个第一电极和多条连接引线。背板包括相对的第一主表面和第二主表面,及连接第一主表面和第二主表面的多个侧表面,多个侧表面中的至少一个侧表面为选定侧表面。多个发光器件设置于背板的第二主表面上。多个第一电极设置于背板的第二主表面上;多个第一电极多个第一电极与多个发光器件电连接。多条连接引线设置于背板的第一主表面和选定侧表面上;多条连接引线中的每条连接引线包括位于第一主表面上的第一部分和位于选定侧表面上的第二部分,第一部分的厚度与第二部分的厚度之比在0.6-1.6之间取值;连接引线由第一主表面依次经过选定侧表面,与多个第一电极中的一个第一电极电连接。

Description

显示面板及其制备方法、显示装置及拼接显示装置
本申请要求于2020年09月24日提交的、申请号为202011020278.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板及其制备方法、显示装置及拼接显示装置。
背景技术
mini LED(mini Organic Light-Emitting Diode,迷你发光二极管)显示装置具有亮度高、显示画面清晰和功耗低等优点,应用前景较好,可应用于大型拼接显示装置中,在拼接显示装置中拼接缝的大小是影响其显示效果的重要因素,因此,窄边框的显示装置成为发展趋势之一。
发明内容
一方面,提供一种显示面板,包括:背板、多个发光器件、多个第一电极和多条连接引线。所述背板包括相对的第一主表面和第二主表面,及连接所述第一主表面和所述第二主表面的多个侧表面,所述多个侧表面中的至少一个侧表面为选定侧表面。
多个发光器件设置于所述背板的第二主表面上。多个第一电极设置于所述背板的第二主表面上;所述多个第一电极相对于所述多个发光器件靠近所述选定侧表面,所述多个第一电极与所述多个发光器件电连接。多条连接引线设置于所述背板的第一主表面和选定侧表面上;所述多条连接引线中的每条连接引线包括位于所述第一主表面上的第一部分和位于所述选定侧表面上的第二部分,所述第一部分的厚度与所述第二部分的厚度之比在0.6-1.6之间取值;所述连接引线由所述第一主表面依次经过所述选定侧表面,与所述多个第一电极中的一个第一电极电连接。
在一些实施例中,所述选定侧表面包括与所述第一主表面和所述第二主表面垂直或大致垂直的侧子表面,以及连接所述第一主表面和所述侧子表面的第一过渡子表面。在所述背板沿垂直于所述第一主表面且垂直于所述侧子表面所在背板边界的方向的截面中,所述第一过渡子表面上任一点处的切线与所述第一主表面之间的夹角大于90°,且与所述侧子表面之间的夹角大于90°。所述连接引线由所述第一主表面依次经过所述选定侧表面的第一过渡子表面以及侧子表面,与所述多个第一电极中的一个第一电极电连接。
在一些实施例中,在垂直于所述第一主表面的方向上,所述多个第一电 极靠近所述选定侧表面的一端与所述第二主表面靠近所述选定侧表面的侧边齐平或大致齐平。所述连接引线由所述第一主表面依次经过所述选定侧表面的第一过渡子表面以及侧子表面,延伸至所述第二主表面靠近所述选定侧表面的侧边,并与所述第一电极电连接。
在一些实施例中,所述第一电极靠近所述选定侧表面的一端与所述第二主表面靠近所述选定侧表面的侧边之间具有间距。所述连接引线还包括位于所述第二主表面上的第三部分,所述第三部分的厚度与所述第二部分的厚度之比在0.6-1.6之间取值;所述连接引线由所述第一主表面依次经过所述选定侧表面的第一过渡子表面以及侧子表面,延伸至所述第二主表面,并与所述第一电极电连接。
在一些实施例中,所述选定侧表面还包括连接所述侧子表面与所述第二主表面的第二过渡子表面。在所述背板沿垂直于所述第一主表面且垂直于所述侧子表面所在背板边界的方向的截面中,所述第二过渡子表面上任一点处的切线与所述第二主表面之间的夹角大于90°,且与所述侧子表面之间的夹角大于90°。所述连接引线由所述第一主表面依次经过所述选定侧表面的第一过渡子表面、所述侧子表面以及所述第二过渡子表面,与所述第一电极电连接。
在一些实施例中,所述第一过渡子表面为平面或弧面。在所述选定侧表面还包括第二过渡子表面的情况下,所述第二过渡子表面为平面或弧面。
在一些实施例中,显示面板还包括:设置于所述第一主表面上的多个第二电极;所述多个第二电极被配置为与驱动芯片或者柔性线路板实现电气连接。所述多条连接引线中的每条连接引线与所述多个第二电极中的一个第二电极电连接。
在一些实施例中,同一条所述连接引线电连接的第一电极和第二电极在所述第一主表面上的正投影至少部分重合。
在一些实施例中,所述多条连接引线位于第一主表面上的部分被配置为绑定驱动芯片或者柔性线路板。
在一些实施例中,所述背板的第一主表面具有绑定区;所述多条连接引线位于第一主表面上的部分延伸至所述绑定区内,被配置为在所述绑定区内绑定所述驱动芯片或者所述柔性线路板。
在一些实施例中,所述绑定区的长度等于或大致等于所述第一主表面的靠近所述选定侧表面的侧边长度;沿由所述第一主表面靠近所述选定侧表面的侧边指向所述绑定区的方向,所述多条连接引线位于所述第一主表面上的部分延伸至所述绑定区内。或者,所述绑定区的长度小于所述第一主表面的 靠近所述选定侧表面的侧边长度;沿由所述第一主表面靠近所述选定侧表面的侧边指向所述绑定区的方向,所述多条连接引线位于所述第一主表面上的部分收拢在所述绑定区内。
在一些实施例中,所述背板中设置有多条信号线;所述多个第一电极通过所述多条信号线与所述多个发光器件电连接;所述第一电极的宽度与其所电连接的信号线的宽度相同或者大致相同;在所述连接引线还包括位于所述第二主表面上的第三部分的情况下,所述第三部分的宽度与其所电连接的信号线的宽度相同或者大致相同。
在一些实施例中,所述连接引线的第一部分的宽度与其第三部分的宽度相同或大致相同;所述连接引线的第二部分的宽度大于其第一部分的宽度,且大于其第三部分的宽度。
在一些实施例中,所述多条连接引线中位于同一选定侧表面上的部分,沿平行于该选定侧表面的侧子表面所在背板边界的方向等间隔布置;位于不同所述选定侧表面上的多条连接引线中相邻两条连接引线的间距不同。
在一些实施例中,所述多个第一电极中靠近同一个侧子表面的多个第一电极,沿平行于该侧子表面所在背板边界的方向等间隔布置。所述多条连接引线中设置于同一侧表面上的多条连接引线,沿平行于该侧子表面所在背板边界的方向等间隔布置。在所述显示面板还包括多个第二电极情况下,所述多个第二电极中靠近同一个侧子表面的多个第二电极,沿平行于该侧子表面所在背板边界的方向等间隔布置。
在一些实施例中,所述多条连接引线通过激光刻蚀工艺制备得到,所述显示面板还包括能量吸收膜;所述能量吸收膜设置于所述背板的第一主表面与所述多条连接引线之间。
在一些实施例中,所述能量吸收膜的材料包括二氧化锡和氧化锌中的至少一种。
在一些实施例中,所述多条连接引线中的每条连接引线包括依次层叠设置的第一缓冲导电图案、主导电图案和第二缓冲导电图案,所述第一缓冲导电图案相对于所述主导电图案靠近所述背板。所述第一缓冲导电图案与所述背板之间的粘附性大于所述主导电图案与所述背板之间的粘附性;所述第二缓冲导电图案的抗氧化性优于所述主导电图案的抗氧化性。
在一些实施例中,所述第一缓冲导电图案的材料与所述第二缓冲导电图案的材料相同,所述第一缓冲导电图案和第二缓冲导电图案的材料包括钛、铬、钼和钼铌合金中的至少一种。
在一些实施例中,所述显示面板还包括第一保护胶层,所述第一保护胶层覆盖所述多条连接引线。
在一些实施例中,所述显示面板还包括设置于所述多个发光器件背向所述背板一侧的第二保护胶层;所述第二保护胶层覆盖所述多个发光器件与所述多个第一电极,且填充所述多个发光器件与所述多个第一电极的间隙区域。
在一些实施例中,所述背板包括衬底和驱动电路层;所述驱动电路层设置于所述衬底的靠近所述多个发光器件的一侧表面上;所述驱动电路层与所述多个发光器件电连接,被配置为驱动所述多个发光器件发光。
另一方面,提供一种显示装置,包括:如上一方面所述的显示面板,和驱动芯片;所述驱动芯片设置于所述显示面板的背板的第一主表面上,所述驱动芯片通过所述显示面板的多条连接引线与所述显示面板的多个第一电极电连接。
在一些实施例中,在所述显示面板还包括多个第二电极的情况下,所述驱动芯片与所述多个第二电极电连接,以通过所述多个第二电极与所述多条连接引线电连接;或者,所述驱动芯片与所述多条连接引线位于在背板的第一主表面上的部分电连接。
又一方面,提供一种拼接显示装置,包括:多个如上所述的显示装置,所述多个显示装置拼接组装。
再一方面,提供一种显示面板的制备方法,包括:提供初始背板;所述初始背板包括相对的第一主表面和第二主表面,及连接所述第一主表面和所述第二主表面的多个侧面;所述多个侧面与所述第一主表面和所述第二主表面垂直或大致垂直。在所述初始背板的第二主表面上形成多个第一电极;所述多个第一电极靠近所述多个侧面中的至少一个侧面,所述至少一个侧面为选定侧面。
对所述初始背板的第一主表面与选定侧面的交界边进行处理,在所述交界边处形成第一过渡子表面,所述选定侧面形成侧子表面,得到背板;所述背板包括连接第一主表面和第二主表面的多个侧表面,所述多个侧表面中的至少一个侧表面为选定侧表面,所述选定侧表面包括与所述第一主表面和所述第二主表面垂直或大致垂直的侧子表面,以及连接所述第一主表面和所述侧子表面的第一过渡子表面。在所述背板沿垂直于所述第一主表面且垂直于所述侧子表面所在背板边界的方向的截面中,所述第一过渡子表面上任一点处的切线与所述第一主表面之间的夹角大于90°,且与所述侧子表面之间的夹角大于90°。
在所述背板的第一主表面和选定侧表面上形成多条连接引线;所述多条连接引线中的每条连接引线包括位于所述第一主表面上的第一部分和位于所述选定侧表面上的第二部分,所述第一部分的厚度与所述第二部分的厚度之比在0.6-1.6之间取值;所述连接引线由所述第一主表面依次经过所述选定侧表面的第一过渡子表面以及侧子表面,与所述多个第一电极中的一个第一电极电连接。
在一些实施例中,在所述背板的第一主表面和所述至少一个侧表面上形成多条连接引线,包括:
在所述背板的第一主表面和所述选定侧表面上形成金属层,所述金属层与所述多个第一电极接触。图案化所述金属层,形成多条连接引线;所述多条连接引线中的每条连接引线由所述背板的第一主表面依次经过所述选定侧表面的第一过渡子表面以及侧子表面,与所述多个第一电极中的一个第一电极电连接。
在一些实施例中,在所述多条连接引线包括位于背板的所述选定侧表面上的部分和位于所述背板的第一主表面上的部分,在所述背板的第一主表面和所述选定侧表面上形成多条连接引线,包括:
在所述背板的所述选定侧表面上形成金属层,所述金属层与所述多个第一电极接触。图案化所述金属层,得到多条连接引线位于背板的所述选定侧表面上的部分。
以及,在所述背板的第一主表面上设置掩模板,所述掩模板被配置为暴露出所述背板的第一主表面上需要设置所述多条连接引线的区域。在所述背板的第一主表面沉积金属,形成金属层;去除所述掩模板,形成所述多条连接引线位于所述背板的第一主表面上的部分,所述多条连接引线位于所述背板的第一主表面上的部分与所述多条连接引线位于背板的所述选定侧表面上的部分电连接。得到多条连接引线,所述多条连接引线包括位于背板的所述选定侧表面上的部分和位于所述背板的第一主表面上的部分;所述多条连接引线中的每条连接引线由所述背板的第一主表面依次经过所述选定侧表面的第一过渡子表面以及侧子表面,与所述多个第一电极中的一个第一电极电连接。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还 可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据本公开的一些实施例的一种显示面板的正面结构图;
图2A为根据图1所示的显示面板的区域G的正面和背面的放大图;
图2B为根据根据图1所示的显示面板的正投影的示意图;
图3为根据本公开的一些实施例的另一种显示面板的正面结构图;
图4A为根据本公开的一些实施例的显示面板中的背板的一种结构图;
图4B为根据本公开的一些实施例的显示面板中的背板的另一种结构图;
图4C为根据本公开的一些实施例的显示面板中的背板的夹角的示意图;
图5A为根据本公开的一些实施例的一种显示面板的截面结构图;
图5B为根据图5A所示的显示面板的区域G’的放大图;
图6为根据图5A所示的显示面板的侧面结构图;
图7A为根据本公开的一些实施例的另一种显示面板的截面结构图;
图7B为根据图7A所示的显示面板的侧面结构图;
图8A为根据本公开的一些实施例的又一种显示面板的截面结构图;
图8B为根据本公开的一些实施例的又一种显示面板的背面结构图;
图9A为根据本公开的一些实施例的又一种显示面板的截面结构图;
图9B为根据本公开的一些实施例的又一种显示面板的截面结构图;
图10A为根据本公开的一些实施例的又一种显示面板的背面结构图;
图10B为根据本公开的一些实施例的又一种显示面板的背面结构图;
图11A为根据本公开的一些实施例的显示面板的一种正面结构图;
图11B为根据本公开的一些实施例的显示面板的另一种正面结构图;
图11C为根据本公开的一些实施例的显示面板的又一种正面结构图;
图12A为根据本公开的一些实施例的显示面板中像素的结构图;
图12B为本公开实施例提供的显示面板中一个像素对应的一种阵列 布局结构示意图;
图13为根据本公开的一些实施例的显示面板的连接引线的结构图;
图14为根据本公开的一些实施例的显示装置的结构图;
图15为根据本公开的一些实施例的拼接显示装置的结构图;
图16A为根据本公开的一些实施例的一种显示面板的制备方法的流程图;
图16B为根据本公开的一些实施例的另一种显示面板的制备方法的流程图;
图17A~图17F为根据本公开的一些实施例的一种显示面板的制备方法的步骤图;
图18A~图18F为根据本公开的一些实施例的另一种显示面板的制备方法的步骤图;
图19为根据本公开的一些实施例的显示面板的制备方法的另一种流程图;
图20为根据本公开的一些实施例的显示面板的制备方法的另一种流程图;
图21A为根据本公开的一些实施例的显示面板的制备方法中用到的一种掩模板的结构图;
图21B为根据本公开的一些实施例的显示面板的制备方法中用到的另一种掩模板的结构图;
图22为根据本公开的一些实施例的显示面板的制备方法的另一种流程图;
图23为根据本公开的一些实施例的显示面板的制备方法中用到的另一种掩模板的结构图;
图24A为根据本公开的一些实施例的显示面板的制备方法中贴附保护膜的步骤图;
图24B为根据本公开的一些实施例的显示面板的制备方法中贴附保护膜的另一种步骤图;
图25为根据本公开的一些实施例的显示面板的制备方法中整体工装结构的结构图;
图26A为根据图21所示的整体工装结构中区域G1的一种放大图;
图26B为根据图21所示的整体工装结构中的区域G1的另一种放大图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下情况的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种情况的组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施 方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
显示装置包括显示面板和驱动芯片,驱动芯片为驱动显示面板进行显示的驱动集成电路(IC,Integrated Circuit),驱动芯片例如包括栅极驱动电路、源极驱动电路、时序控制器以及电源电路等,驱动芯片与显示面板电连接,被配置为输出相应的信号,以控制显示面板进行显示。
在一些实施例中,显示面板包括显示区和位于显示区至少一侧的周边区,其中,周边区包括绑定区,驱动芯片在绑定区内与显示面板进行绑定(bonding),也就是说,绑定区设置在显示面板的显示面(正面)上,驱动芯片绑定在显示面板的正面,显示面板的周边区的面积无法减小,从而使得显示装置的边框较宽,无法实现超窄边框,也无法增大显示装置的屏占比。
基于此,本公开的一些实施例提供了一种显示面板、显示装置和拼接显示装置,通过在显示面板中设置连接背板的相对的两个主表面的多条连接引线,实现将绑定区转移至显示面板的非显示面(背面),将驱动芯片绑定在显示面板的背面,从而显示面板的周边区的面积得以减小,显示装置的边框得以减小,进而使得应用该显示装置的拼接显示装置的拼接缝宽度减小,能够实现无缝拼接,显示质量得以提升。
以下对本公开提供的显示面板、显示装置和拼接显示装置分别进行介绍。
在本公开中,图1、图3、图11A和图11B为显示面板10的平面结构图,图2A中的图(a)为图1所示显示面板的区域G的正面放大图,图2A中的图(b)为图1所示显示面板的区域G的背面放大图。图5A、图7A、图8A、图9A和图9B为根据图2A中的截面线DD’得到的显示面板10的截面图。为了方便对背板1的结构的描述,将图5A中显示面板的第一电极3、发光器件2和侧面引线4等结构去掉,得到图4A~图4C所示的背板1。
本公开的一些实施例提供了一种显示面板10,如图1、图3、图11A和图11B所示,该显示面板10包括:显示区AA(Active Area,简称AA区;也可称为有效显示区)和位于AA区至少一侧的周边区BB。
上述显示面板10中,显示区AA中设置有多个像素P’和多条信号线,多条信号线与多个像素电连接,示例性地,每个像素包括至少三种颜色的亚像 素(sub pixel)P,该多种颜色的亚像素P至少包括第一颜色亚像素、第二颜色亚像素和第三颜色亚像素,第一颜色、第二颜色和第三颜色为三基色(例如红色、绿色和蓝色)。
如图1~图3、图5A所示,在一些实施例中,显示面板10包括背板1、多个发光器件2、多个第一电极3和多条连接引线4。
请参见图4A~图4C所示,背板1包括相对的第一主表面1a和第二主表面1b,及连接第一主表面1a和第二主表面1b的多个侧表面1c,所述多个侧表面1c中的至少一个侧表面1c为选定侧表面1cc。如图1和图3所示,背板1的第一主表面1a和第二主表面1b的形状例如为矩形,背板1包括四个侧表面1c。
示例性地,背板1包括衬底和设置在衬底的一侧的驱动电路层,衬底的材料则可以选择玻璃、石英、塑料等刚性材料,驱动电路层例如包括薄膜晶体管(TFT)以及上述多条信号线等结构,驱动电路层与多个发光器件2耦接,被配置为驱动多个发光器件2发光。
如图1、图3和图5A所示,多个发光器件2设置于背板1的第二主表面1b上。其中,发光器件2包括但不限于有机发光二极管(Organic Light-Emitting Diode,简称OLED)、迷你发光二极管(mini Organic Light-Emitting Diode,简称mini LED)、微型发光二极管(micro Organic Light-Emitting Diode,简称micro LED)等。示例性地,每个亚像素P包括至少一个发光器件2。
多个第一电极3设置于背板1的第二主表面1b上,多个第一电极3相对于多个发光器件2靠近选定侧表面1cc,多个第一电极3与多个发光器件2电连接。示例性地,多个发光器件2设置于显示面板10的显示区AA,多个第一电极3设置于显示面板10的周边区BB。多个第一电极3通过驱动电路层与多个发光器件2电连接。
例如,如图1和图3所示,多个第一电极3设置于第二主表面1b上的靠近选定侧表面1cc的位置,也就是说多个第一电极3更靠近第一主表面1a的四个侧边中的与选定侧表面1cc所连接的侧边。
如图5A~图6所示,多条连接引线4设置于背板1的第一主表面1a和选定侧表面1cc上。所述多条连接引线4中的每条连接引线4包括位于所述第一主表面1a上的第一部分41和位于选定侧表面1cc上的第二部分42,第一部分41的厚度d 1与第二部分4 2的厚度d2之比在0.6-1.6之间取值。每条连接引线由第一主表面1a依次经过选定侧表面1cc,与所述多个第一电极3中的一个第一电极3电连接。
如图5B所示,第一部分41为连接引线4的位于第一主表面1a上的部分,包括连接引线4中直接与第一主表面1a接触的部分,在连接引线4与第二电极5存在交叠部分的情况下,第一部分41还包括位于第二电极5远离第一主表面1a的表面的部分。上述第一部分41的厚度d 1是指第一部分41沿垂直于第一主表面1a的方向上的尺寸,示例性地,第一部分41的厚度d 1可以为在第一部分41的任意位置处的厚度,例如图5B示意出了在第一部分41的两个位置处的厚度d 1。第二部分42为连接引线4的位于选定侧表面1cc上的部分,上述第二部分42的厚度d 2是指第二部分42沿平行于第一主表面1a的方向(垂直于选定侧表面1cc中的侧子表面1c1的方向)上的尺寸,示例性地,第二部分42的厚度d 2可以为在第二部分42的任意位置处的厚度。例如图5B示意出了在第二部分42的两个位置处的厚度d 2
每条连接引线4的第一部分41的厚度d 1与第二部分42的厚度d 2之比在0.6-1.6之间取值,即在一些实施例中,第二部分42的厚度d 2可以大于第一部分41的厚度d 1,且第二部分42的厚度d 2与第一部分41的厚度d 1的差异在一定范围之内。需要说明的是,在每条连接引线4中,在第一部分41的任意位置处的厚度d 1与在第二部分42的任意位置处的厚度d 2之比均满足上述范围,例如,第二部分42的最大厚度d 2与第一部分41的最小厚度d 1之比为0.6,这样能够保证连接引线4的膜厚均一性,使连接引线4的第一部分41和第二部分42的厚度差值较小,提高多条连接引线的连接稳定性,实现有效的信号传输。
示例性地,每条连接引线4的第一部分41的厚度d 1与第二部分42的厚度d 2之比为0.6、0.8或0.9、1.1等。例如,第二部分42的厚度d 2大于或等于900nm,且小于或等于1100nm,第一部分41的厚度d 1大于或等于660nm,且小于900nm。例如,第二部分42的厚度d 2为1100nm,第一部分41的厚度d 1为660nm,或者,第二部分42的厚度d 2为1020nm,第一部分41的厚度d 1为816nm,或者,第二部分42的厚度d 2为1000nm,第一部分41的厚度d 1为850nm。
多条连接引线4与多个第一电极3的数量相等,每条连接引线4由第一主表面1a经过选定侧表面1cc,与一个第一电极3电连接,从而实现将第一电极3从背板1的第二主表面1b电连接至相对的第一主表面1a。
本公开的一些实施例所提供的显示面板10中,通过在背板1的第一主表面1a和选定侧表面1cc上设置多条连接引线4,利用多条连接引线4将位于背板1的第二主表面1b上的多个第一电极3连接至背板1的第一主表面1a, 从而能够将驱动芯片的绑定区域移动至背板1的第一主表面1a(即显示面板10的背面),多个第一电极3能够通过多条连接引线4与该显示面板10所在的显示装置100中的驱动芯片或者柔性线路板电连接,这样就无需在显示面板10的边缘处设置绑定区域,显示面板10的边框得以减小,由于显示面板10的侧面仅具有多条连接引线4等结构,因此显示面板10的侧表面1c所设置的结构的厚度较小,该厚度例如为1um~4um,从而能够得到超窄边框显示面板10。并且,由于每条连接引线4的第一部分41的厚度d 1与第二部分42的厚度d 2之比在0.6-1.6之间取值,从而多条连接引线4的膜厚均一性能够得到保证,能够实现有效的信号传输。
在一些实施例中,请参见图4A~图4C,背板1的多个侧表面1c中的至少一个侧表面1c为选定侧表面1cc,选定侧表面1cc包括与第一主表面1a和第二主表面1b垂直或大致垂直的侧子表面1c1,以及连接第一主表面1a和侧子表面1c1的第一过渡子表面1c2。
本公开对多个侧表面1c中的其他侧表面1c的结构不做限定。例如,如图1所示,背板1的四个侧表面1c均为选定侧表面1cc,如图3所示,背板12的四个侧表面1c中有一个侧表面1c(图3中多个第一电极3所靠近的侧表面1c)为选定侧表面1cc,对其他三个侧表面1c的结构不做限定。
在背板1沿垂直于第一主表面1a且垂直于侧子表面1c1所在背板边界的方向的截面中,第一过渡子表面1c2上任一点处的切线与第一主表面1a之间的夹角大于90°,且与侧子表面1c1之间的夹角大于90°。
需要说明的是,背板边界指的是背板1在其第一主表面1a或第二主表面1b所在平面上的正投影的边界,例如,图2B为图1所示的背板1在其第一主表面1a所在平面上的正投影,该正投影包括B1、B2、B3、B4四个边界。对于包括第一过渡子表面1c2的背板1的背板边界,指的是该背板1的选定侧表面1cc的侧子表面1c2与其第一过渡子表面1c2邻接的边,例如图4A~图4C为根据图2A中截面线DD’得到的显示面板10的截面图(图5A)中背板1的示意图,可知图4A~图4C中的背板1的侧子表面1c1所在背板边界为边界B4,背板1的垂直于第一主表面1a且垂直于侧子表面1c1所在背板边界(边界B4)的截面即为图4A~图4C所示出的截面。
本公开中,如图4A~图4C所示,第一过渡子表面1c2上任一点处的切线与第一主表面1a之间的夹角θ2,以及第一过渡子表面1c2上任一点处的切线与侧子表面1c1之间的夹角θ1,均指朝向背板1内部的夹角。
在上述背板1中,由于背板1的第一过渡子表面1c2上任一点处的切线 与第一主表面1a之间的夹角大于90°,且第一过渡子表面1c2上任一点处的切线与侧子表面1c1之间的夹角大于90°,这样第一主表面1a能够由第一过渡子表面1c2较为平缓地过渡至侧子表面1c1,或者侧子表面1c1能够由第一过渡子表面1c2较为平缓地过渡至第一主表面1a,相比该侧表面1c包括侧子表面1c1而不包括第一过渡子表面1c2,第一主表面1a与侧子表面1c1直接连接(这种情况下,第一主表面1a与侧子表面1c1的夹角为90°)的情况,在本公开中,多条连接引线4设置在背板1的第一主表面1a、第一过渡子表面1c2和侧子表面1c1上,每条连接引线4在拐角处所受到的应力较小,减少了应力过于集中导致的断线问题,这样多条连接引线4在拐角处不易断裂,保证了多条连接引线4能够稳定地连接背板1的相对的两个主表面,增强了显示面板10的可信赖性。
在一些实施例中,如图4A~图4C所示,多个侧表面1c中的选定侧表面1cc在包括第一过渡子表面1c2和侧子表面1c1的基础上,还包括第二过渡子表面1c3;第二过渡子表面1c3连接侧子表面1c1与第二主表面1b。
在背板1沿垂直于第一主表面1a且垂直于侧子表面1c1所在背板边界的方向的截面中,第二过渡子表面1c3上任一点处的切线与第二主表面1b之间的夹角θ4大于90°,且与侧子表面1c1之间的夹角θ3大于90°。此处,第二过渡子表面1c3上任一点处的切线与第二主表面1b之间的夹角,以及第二过渡子表面1c3上任一点处的切线与侧子表面1c1之间的夹角,均指朝向背板1内部的夹角。
如图5A所示,每条连接引线4由第一主表面1a依次经过第一过渡子表面1c2、侧子表面1c1以及第二过渡子表面1c3,与第一电极3电连接。
由于第二过渡子表面1c3上任一点处的切线与第二主表面1b之间的夹角θ4大于90°,且第二过渡子表面1c3上任一点处的切线与侧子表面1c1之间的夹角θ3大于90°,这样第二主表面1b能够由第二过渡子表面1c3较为平缓地过渡至侧子表面1c1,或者侧子表面1c1能够由第二过渡子表面1c3较为平缓地过渡至第二主表面1b,多条连接引线4设置在背板1的第一主表面1a、第一过渡子表面1c2、侧子表面1c1和第二过渡子表面1c3上,每条连接引线4在拐角处所受到的应力较小,减少了应力过于集中导致的断线问题,这样多条连接引线4在拐角处不易断裂,进一步保证了多条连接引线4能够稳定地连接背板1的相对的两个主表面,进一步增强了显示面板10的可靠性。
在一些实施例中,如图4A~图4C所示,侧表面1c所包括的第一过渡子表面1c2为平面或弧面。在侧表面1c还包括第二过渡子表面1c3的情况下, 第二过渡子表面1c3为平面或弧面。
在第一过渡子表面1c2和第二过渡子表面1c3为平面的情况下,第一过渡子表面1c2称为第一主表面1a和侧子表面1c1的倒角,第二过渡子表面1c3称为第二主表面1b和侧子表面1c1的倒角。示例性地,如图4A所示,倒角的宽度值d为30um,倒角的精度控制在20um~30um,例如倒角的宽度d=30±20um。第一过渡子表面1c2与第一主表面1a之间的夹角θ2大于90°,例如θ2为135°,第一过渡子表面1c2与侧子表面1c1之间的夹角θ1大于90°,例如θ1为135°,第二过渡子表面1c3与第二主表面1b之间的夹角θ4大于90°,例如θ4为135°,第二过渡子表面1c3与侧子表面1c1之间的夹角θ3大于90°,例如θ3为135°。
在第一过渡子表面1c2和第二过渡子表面1c3为弧面的情况下,第一过渡子表面1c2称为第一主表面1a和侧子表面1c1的倒圆角,第二过渡子表面1c3称为第二主表面1b和侧子表面1c1的倒圆角。示例性地,如图4B和4C所示,在第一过渡子表面1c2(弧面)的中间位置的一点处做切线,该切线与第一主表面1a之间的夹角θ2为135°,且该切线与侧子表面1c1之间的夹角θ1为135°。在第二过渡子表面1c3(弧面)的中间位置的一点处做切线,该切线与第二主表面1b之间的夹角θ4为135°,且该切线与侧子表面1c1之间的夹角θ3为135°。多条连接引线4设置在弧面上,能够进一步分散应力,进一步避免应力过于集中导致的断线问题。
在一些实施例中,背板1的多个侧表面1c中的至少一个侧表面1c包括第一过渡子表面1c2和侧子表面1c1(或者还包括第二过渡子表面1c3),该至少一个侧表面1c为选定侧表面1cc,多条连接引线4设置在该选定侧表面1cc上,其他的侧表面1c例如可以仅包括侧子表面1c1,该侧子表面1c1与第一主表面1a和第二主表面1b垂直或大致垂直。
示例性地,如图1所示,背板1的四个侧表面1c均为选定侧表面1cc,每个侧表面1c均包括第一过渡子表面1c2和侧子表面1c1,或者还包括第二过渡子表面1c3;多个第一电极3分布在第二主表面1b上靠近第二主表面1b的四条侧边的位置,例如,背板1的第二主表面1b上靠近第二主表面1b的四条侧边的位置上均设置有多个第一电极3;多条连接引线4与多个第一电极一一对应且连接,设置在背板1的四个侧表面1c上,每条连接引线4由第一主表面1a依次经过侧表面1c的第一过渡子表面1c2以及侧子表面1c1,与多个第一电极3中的一个第一电极3电连接。
示例性地,如图3所示,背板1的四个侧表面1c中有两个侧表面1c为选 定侧表面1cc,例如这两个侧表面为相对的两个侧表面,每个侧表面1c中包括第一过渡子表面1c2和侧子表面1c1,或者还包括第二过渡子表面1c3,多个第一电极3分布在第二主表面1b上靠近第二主表面1b的相对的两条侧边(该两条侧边对应两个选定侧表面1cc)的位置。每条连接引线4由第一主表面1a依次经过选定侧表面1cc的第一过渡子表面1c2以及侧子表面1c1,与多个第一电极3中的一个第一电极3电连接。四个侧表面1c中的另外两个侧表面1c例如可以包括侧子表面1c1,该侧子表面1c1与第一主表面1a和第二主表面1b垂直或大致垂直,在另外两个侧表面1c上不设置连接引线4。
示例性地,背板1的四个侧表面1c中有一个侧表面1c为选定侧表面1cc,或者,背板1的四个侧表面1c中有三个侧表面1c为选定侧表面1cc,关于背板1包括一个选定侧表面1cc或三个选定侧表面1cc的情况可参见上面对于背板1包括四个选定侧表面1cc的描述,此处不再赘述。
本公开的一些实施例中,对于多个第一电极3的设置有下述方式。
在一些实施例中,如图7A~图8A所示,在垂直于第一主表面1a的方向上,多个第一电极3靠近侧子表面1c1的一端与第二主表面1b靠近侧子表面1c1的侧边齐平或大致齐平。每个第一电极3靠近侧子表面1c1的一端与第二主表面1b靠近侧子表面1c1的侧边之间的距离为零或者大致为零,这样,多个第一电极3的位置尽可能地靠近第二主表面1b的侧边,从而能够尽可能地扩展显示面板10的显示区的面积。
多条连接引线4中的每条连接引线4由第一主表面1a依次经过第一过渡子表面1c2以及侧子表面1c1,延伸至第二主表面1b靠近侧子表面1c1的侧边,并与第一电极3电连接。或者,所述多条连接引线4中的每条连接引线4由第一主表面1a依次经过第一过渡子表面1c2、侧子表面1c1以及第二过渡子表面1c3,延伸至第二主表面1b靠近侧子表面1c1的侧边,并与第一电极3电连接。如图7A和图8A所示,在显示面板10的截面中,每条连接引线4的形状呈L型。
在一些示例中,如图7A和图8A所示,每条连接引线4与第一电极3的电连接方式为,每条连接引线4延伸至第二主表面1b靠近侧子表面1c1的侧边,与第一电极3的靠近侧子表面1c1的一端接触,实现电连接,该连接引线4与该第一电极3不会存在交叠部分。
在另一些实施例中,如图1、图2A、图3和图5A所示,所述多个第一电极3中的每个第一电极3靠近侧子表面1c1的一端与第二主表面1b靠近侧子表面1c1的侧边之间具有间距。为了保证显示面板10的显示区域的面积, 每个第一电极3靠近侧子表面1c1的一端与第二主表面1b靠近侧子表面1c1的侧边之间的间距较小,示例性地,如图2A和图5A所示,各第一电极3靠近侧子表面1c1的一端与第二主表面1b靠近选定侧表面1cc的侧边之间的间距A1相等,例如,该间距A1为30μm~50μm。
如图5A所示,所述多条连接引线4中的每条连接引线4还包括位于第二主表面1b上的第三部分43,每条连接引线4由第一主表面1a依次经过第一过渡子表面1c2以及侧子表面1c1,延伸至第二主表面1b,并与第一电极3电连接,即每条连接引线4包括位于第一主表面1a上、第一过渡子表面1c2上、侧子表面1c1上和第二主表面1b上的四部分。或者,如图5A和图6所示,在背板1的侧表面1c还包括第二过渡子表面1c3的情况下,所述多条连接引线4中的每条连接引线4由第一主表面1a依次经过第一过渡子表面1c2、侧子表面1c1以及第二过渡子表面1c3,延伸至第二主表面1b,并与第一电极3电连接,即每条连接引线4包括位于第一主表面1a上、第一过渡子表面1c2上、侧子表面1c1、第二过渡子表面1c3上和第二主表面1b上的五部分。如图5A所示,在显示面板10的截面中,多条连接引线4的形状呈U型。
在一些示例中,如图1和如图5A所示,每条连接引线4与第一电极3的电连接方式为,每条连接引线4位于第二主表面1b上的部分在第二主表面1b上的正投影,与该连接引线4所电连接的第一电极3在第二主表面1b上的正投影至少部分重叠,也就是说,该连接引线4覆盖其所对应的第一电极3的一部分,从而实现电连接,这样,每条连接引线4与其所对应的第一电极3具有较大的接触面积,从而连接引线4与第一电极3之间能够充分接触,有利于信号的传输。
或者,如图3所示,每条连接引线4延伸至第二主表面1b上的部分与对应的第一电极3靠近侧子表面1c1的一端面接触,实现电连接,该连接引线4与该第一电极3不存在交叠部分。
如图5B所示,第三部分43为连接引线4的位于第二主表面1b上的部分,包括连接引线4中直接与第二主表面1b接触的部分,在连接引线4与第一电极3存在交叠部分的情况下,第一部分41还包括位于第二电极5远离第一主表面1a的表面的部分。在一些实施例中,每条连接引线4的第三部分43的厚度d 3与其第二部分42的厚度d 2之比在0.6-1.6之间取值。上述第三部分43的厚度d 3是指第一部分41沿垂直于第一主表面1a的方向上的尺寸,示例性地,第三部分43的厚度d 3可以为在第一部分41的任意位置处的厚度,例如图5B示意出了在第三部分43的两个位置处的厚度d 3
请参见图5B,每条连接引线4的第二部分42的厚度d 2大于第三部分43的厚度d 3,且第二部分42的厚度d 2与第三部分43的厚度d 3的差异在一定范围之内,需要说明的是,在每条连接引线4中,在第三部分43的任意位置处的厚度d 3与在第二部分42的任意位置处的厚度d 2之比均满足上述范围,例如,第二部分42的最大厚度d 2与第三部分43的最小厚度d 3之比为60%,这样,如图5B所示,每条连接引线的第一部分41、第二部分42和第三部分43的厚度差异在一定范围内,能够进一步保证连接引线4的膜厚均一性,使连接引线4的第一部分41和第二部分42的厚度差值较小,进一步提高多条连接引线的连接稳定性,实现有效的信号传输。
示例性地,每条连接引线4的第三部分43的厚度d 3与第二部分42的厚度d 2之比为60%、80%或90%等。例如,第二部分42的厚度d 2大于或等于900nm,且小于或等于1100nm,第三部分43的厚度d 3大于或等于660nm,且小于900nm。例如,第二部分42的厚度d 2为1100nm,第三部分43的厚度d 3为660nm,或者,第二部分42的厚度d 2为1020nm,第三部分43的厚度d 3为816nm,或者,第二部分42的厚度d 2为1000nm,第三部分43的厚度d 3为850nm。
作为一种可能的设计,每条连接引线4的第一部分41的厚度d 1与第二部分42的厚度d 2之比在0.6-1.6之间取值;第三部分43的厚度d 3与其第二部分42的厚度d 2之比在0.6-1.6之间取值,并且,第三部分43的厚度d 3与第一部分41的厚度d 1的差值在100nm以内。例如,每条连接引线4的第一部分41的厚度d 1为816nm,第二部分42的厚度d 2为1000nm,,第三部分43的厚度d 3为850nm,从而每条连接引线4的各个部分的厚度均较为均匀,多条连接引线的膜厚均一性得以进一步提高,有利于提高多条连接引线4的连接稳定性,提高信号传输的稳定性。
在一些实施例中,如图5A、图7A、图8A和图8B所示,显示面板10还包括:设置于第一主表面1a上的多个第二电极5。多个第二电极5被配置为与驱动芯片或者柔性线路板实现电气连接。一条连接引线4与多个第二电极5中的一个第二电极5电连接。
多个第二电极5设置于背板1的第一主表面1a上,被配置为与驱动芯片或者柔性线路板实现电气连接,即多个第二电极5用于绑定驱动芯片或者柔性线路板。在一些示例中,背板1的第一主表面1a上具有绑定区,多个第二电极5的至少一部分位于绑定区内,多个第二电极5在绑定区内与驱动芯片或者柔性线路板进行绑定。在另一些示例中,如图8B所示,多个第二电极通 过连接线路10电连接至绑定区CC内,并通过连接线路10与驱动芯片或者柔性线路板进行绑定。从而,驱动芯片或者柔性线路板能够设置在显示面板10的背面,并通过多个第二电极5、多条第一引线和多个第一电极3电连接至显示面板10的正面,进而控制发光器件2发光,实现显示。
多个第二电极5与多条连接引线4的数量一致,每条连接引线4的一端与第一电极3电连接,另一端与第二电极5电连接,通过多条连接引线4能够将多个第一电极3和多个第二电极5一一对应连通,以实现信号的传输。
在一些实施例中,如图2A和图5A所示,第二电极5靠近侧子表面1c1的一端与第一主表面1a靠近侧子表面1c1的侧边之间具有间距。示例性地,各第一电极3靠近侧子表面1c1的一端与第二主表面1b靠近侧子表面1c1的侧边之间的间距A2相等,例如,该间距A2为400μm~600μm。
如图5A所示,在一些实施例中,每条连接引线4位于第一主表面1a上的部分在第一主表面1a上的正投影,与该连接引线4电连接的第二电极5在第一主表面1a上的正投影至少部分重合。也就是说,该连接引线4覆盖其所对应的第二电极5的一部分,这样,每条连接引线4与第二电极5具有较大的接触面积,从而连接引线4与第二电极5之间能够充分接触,有利于信号的传输。
在一些实施例中,如图9A~图10B所示,多条连接引线4位于背板1的第一主表面1a上的部分被配置为绑定驱动芯片或者柔性线路板。也就是说,显示面板10不包括多个第二电极5,显示装置100中的驱动芯片和柔性线路板直接绑定在多条连接引线4位于背板1的第一主表面1a上的部分上,从而驱动芯片或者柔性线路板能够设置在显示面板10的背面,并通过多条第一引线和多个第一电极3电连接至显示面板10的正面,从而控制发光器件2发光,实现显示。
上述采用多条连接引线4直接绑定驱动芯片或者柔性线路板的方案,可以省去多个第二电极5的制作,简化显示面板10的制备工艺,提高制备效率,并且,可以避免多个第二电极与多个连接引线之间产生接触电阻,有利于电信号的传输。
在一些实施例中,背板1的第一主表面1a具有绑定区。多条连接引线4位于背板1的第一主表面1a上的部分延伸至绑定区内,被配置为在绑定区内绑定驱动芯片或者柔性线路板。
在一些示例中,如图10A所示,绑定区CC的长度k2等于或大致等于第一主表面1a的靠近侧子表面1c1的侧边的长度k1,沿由第一主表面1a靠近 侧子表面1c1的侧边指向绑定区的方向X,多条连接引线4位于第一主表面1a上的部分延伸至绑定区CC内。
示例性地,在背板1包括一个选定侧表面1cc的情况下,多条连接引线4设置于该选定侧表面1cc和第一主表面1a上,且与多个第一电极3对应电连接,多条连接引线4位于第一主表面1a上的部分与多个第一电极3的位置一一对应。例如,多条连接引线4相互平行且等间隔设置,多条连接引线4由选定侧表面1cc延伸至第一主表面1a,进而延伸至第一主表面1a的绑定区CC内。
作为一种可能的设计,如图10A所示,关于多条连接引线4位于第一主表面1a上的部分的尺寸设定例如可以为:每条连接引线4位于第一主表面1a上的第一部分41的宽度e 2为300μm~440μm,相邻连接引线4位于第一主表面1a上的部分的间距e 1为40μm~50μm,每条连接引线4位于第一主表面1a上的第一部分41的长度e 3为800μm~150μm,将上述多条连接引线4位于第一主表面1a上的部分的尺寸设置在合适的范围内,这样,能够使驱动芯片或柔性线路板稳固地与多条连接引线4进行绑定,同时多条连接引线4位于第一主表面1a上的部分的尺寸不会过大,多条连接引线4的制备工艺难度不会过大。
上述实施例中,显示面板10能够与相应尺寸的柔性线路板或者驱动芯片相匹配,例如,柔性线路板的长度等于或大致等于背板1的第一主表面1a的靠近侧子表面1c1的侧边的长度,在这种情况下,柔性线路板的尺寸较大,上述多条连接引线4位于第一主表面1a上的部分的尺寸可以根据需要绑定的驱动芯片或者柔性线路板的尺寸进行设置。
在另一些示例中,如图10B所示,绑定区CC的长度k3小于第一主表面1a的靠近侧子表面1c1的侧边的长度k1;沿由第一主表面1a靠近侧子表面1c1的侧边指向绑定区的方向X,多条连接引线4位于第一主表面1a上的部分收拢在绑定区CC内。
示例性地,在背板1包括一个选定侧表面1cc的情况下,多条连接引线4设置于该选定侧表面1cc和第一主表面1a上,多条连接引线4位于第一主表面1a上的部分包括第一子部分、第二子部分和第三子部分,每条连接引线4位于第一主表面1a上的第一部分41包括第一子部分41a、第二子部分41b和第三子部分41c。其中,每条连接引线4的第二子部分41b连接其第一子部分41a和其第三子部分41c,第一子部分41a更靠近第一主表面1a的选定侧表面1cc的侧边,第三子部分41c位于绑定区CC内,每条连接引线4的第三子部 分41c相对于其第一子部分41a向内收拢,使多条连接引线4位于第一主表面1a上的部分呈现整体向绑定区CC收拢的趋势。
作为一种可能的设计,多条连接引线4位于选定侧表面1cc上的部分相互平行且等间隔设置,从而多条连接引线4位于第一主表面1a上的部分的第一子部分41a相互平行且等间隔设置,多条连接引线4位于第一主表面1a上的部分的第三子部分41c相互平行且等间隔设置,且相邻两条连接引线4位于第一主表面1a上的部分的第三子部分41c的间距e 8小于其该相邻两条连接引线4位于第一主表面1a上的部分的第一子部分41a的间距e 5,以使多条连接引线4位于第一主表面1a上的部分由收拢在绑定区CC内。
示例性地,如图10B所示,关于多条连接引线4位于第一主表面1a上的部分的尺寸设定例如可以为:每条连接引线4位于第一主表面1a上的第一部分41的第一子部分41a的宽度e 4为150μm~400μm,相邻两条连接引线4的第一部分41的第一子部分41a的间距e 5为140μm~300μm,每条连接引线4的第一部分41的第三子部分41c的宽度e 7大于80μm,相邻两条连接引线4的第三子部分41c的间距e 8大于50μm,e 7+e 8≥130um,且e 7<e 4,e 8<e 5。沿方向X,每条连接引线4位于第一主表面1a上的第一部分41的垂直距离e 6为1mm~2mm。
上述实施例中,显示面板10能够与相应尺寸的柔性线路板或者驱动芯片相匹配,例如可以适用于尺寸较小的柔性线路板,上述多条连接引线4位于第一主表面1a上的部分的相关尺寸可以根据需要绑定的驱动芯片或者柔性线路板的尺寸进行设置。
在一些实施例中,如图1和图3所示,多个第一电极3中靠近同一个侧子表面1c1的多个第一电极3,沿垂直于该侧子表面1c1所在背板边界的方向延伸,且沿平行于该侧子表面1c1所在背板边界的方向等间隔布置。
如图6和图7B所示,多条连接引线4中设置于同一侧表面1c上的多条连接引线4,沿平行于该侧子表面1c1所在背板边界的方向等间隔布置。
在显示面板10还包括多个第二电极5情况下,多个第二电极5中靠近同一个侧子表面1c1的多个第二电极5,沿垂直于该侧子表面1c1所在背板边界的方向延伸,沿平行于该侧子表面1c1所在背板边界的方向等间隔布置。
将多个第一电极3、多条连接引线4和多个第二电极5等间隔设计,可以使多个第一电极3、多条连接引线4和多个第二电极5在背板上均匀分布,有利于显示面板10的结构的精细化设计。
在一些实施例中,如图11A~图11C所示,显示面板10包括显示区AA 和周边区BB,在显示区AA中设置有多个像素P’和多条信号线,多条信号线与多个像素电连接,以下对多个像素P’和多条信号线的结构及连接关系作介绍。
在一些实施例中,多个像素P’呈阵列式排布,示例性地,多个像素P’排列成N行M列,多条信号线包括沿列方向Y1延伸的多条数据线D1~DM、多条第一正极信号线H11~HM1、多条第二正极信号线H12~HM2和多条参考信号线V1~VM,以及沿行方向X1延伸的多条扫描信号线S1~SN,多条信号线还包括沿列方向Y1延伸的多条扫描信号转接线C1~CN,每条扫描信号转接线Cn与一条扫描信号线Sn电连接,这样可以通过扫描信号转接线Cn向对应的扫描信号线Sn提供扫描信号,从而可以将用于提供扫描信号的信号源设置在扫描信号转接线Cn的两端。
示例性地,每一行像素P’与同一条扫描信号线Sn电连接,每一列像素P’与一条数据信号线Dm、一条参考信号线Vm、一条第一正极信号线Hm1和一条第二正极信号线Hm2电连接,以实现合理布线,通过多条信号线向像素P’传输相应的信号。
如图12A和图12B所示,多个像素P’中的每一像素P’包括:至少三种颜色的子像素P和驱动各子像素P发光的像素驱动芯片02。每一子像素P包括至少一个发光器件2,该发光器件2例如可以为无机发光二极管。以下以每一像素P’包括三个子像素P,每一子像素P包括两个发光器件2为例进行说明。图中的六个发光器件2排成三行两列,三行发光器件2自上而下依次为第一颜色发光器件2、第二颜色发光器件2和第三颜色发光器件2。
像素驱动芯片02和与其驱动的每一子像素01中的发光器件2的负极、该多条数据线中的至少一条数据信号线Dm、该多条扫描线中的至少一条扫描信号线Sn以及该多条参考信号线中的至少一条参考信号线Vm电连接。像素驱动芯片02被配置为在扫描信号线Sn的控制下,将数据信号线Dm的信号分时写入不同颜色的子像素P中,其中,参考信号线Vm用于向像素驱动芯片02提供负极信号,以使像素驱动芯片02和发光器件2之间形成电流通路。
在具体实施时,请参见图12A和图12B,像素驱动芯片02具有第一信号端O1、第二信号端O2、第三信号端O3、第四信号端O4、第五信号端O5和第六信号端O6。其中,第一信号端O1与第一颜色发光器件2的负极R-连接,第二信号端O2与第二颜色发光器件2的负极G-连接,第三信号端O3与第三颜色发光器件2的负极B-连接,第四信号端O4通过过孔P1与数据信号线Dm电连接,第五信号端O5与扫描信号线Sn连接,第六信号端O6通过过孔 P2与参考信号线Vm连接。第一颜色发光器件2的正极R+通过过孔P5与第一正极信号线Hm1连接,第二颜色发光器件2的正极G+通过过孔P4与第二正极信号线Hm2连接,第三颜色发光器件2的正极B+通过过孔P4与第二正极信号线Hm2连接。扫描信号线Sn通过过孔P3与扫描信号转接线Cn连接。
请参见图11A~图11C,多个第一电极3设置在背板1的第二主表面1b上靠近两个侧边的位置处,以下称这两个侧边为第一侧边(位于背板1的上侧)和第二侧边(位于背板1的下侧),第一侧边和第二侧边在列方向Y1上相对设置,可以理解的是,图11A~图11C所示的显示面板10与图3所示的显示面板10对应,背板1包括相对设置的两个选定侧表面1cc。其中,图11A~图11C是以多个第一电极3靠近选定侧表面1cc的一端与第二主表面1b靠近选定侧表面1cc的侧边齐平或大致齐平为例进行示意,因此在图中未画出连接引线4的第三部分43。
多个第一电极3通过所述多条信号线与多个发光器件2电连接,多个第一电极3中的每个第一电极3与一条沿列方向Y1延伸的信号线电连接。示例性地,如图11A和图11B所示,多个第一电极3中的一部分第一电极3设置在靠近背板1的第二主表面1b的第一侧边位置处,该部分第一电极3中的每个第一电极3与多条第二正极信号线H12~HM2以及多条参考信号线V1~VM中的一条信号线电连接。多个第一电极3中的另一部分第一电极3设置在靠近背板1的第二主表面1b的第二侧边位置处,该部分第一电极3中的每个第一电极3,与多条数据线D1~DM、多条第一正极信号线H11~HM1、多条扫描信号转接线C1~CN中的一条信号线电连接。
以多个像素P’呈N行M列排布为例,在一些实施例中,对于多个第一电极3的位置设置有如下规律,与一个像素列对应电连接的多个第一电极3的数量为至少四个,该四个第一电极3至少包括分别与第一正极信号线Hm1、第二正极信号线Hm2、数据线Dm和参考信号线Vm的第一电极3,则与多条第一正极信号线Hm1、多条第二正极信号线H12~HM2、多条数据线D1~DM和多条参考信号线V1~VM的电连接的多个第一电极3的数量为4×M个。多条扫描信号转接线C1~CN的数量与扫描信号线S1~SN的数量相等,均为N个,则与多条扫描信号转接线C1~CN电连接的多个第一电极3的数量为N个。
可选地,如图11A所示,当显示区AA中像素行的个数N和像素列的个数M相同时,即在N=M的情况下,每一像素列的一侧对应设置一条扫描信号转接线Cn,且每相邻两列像素列之间仅设置一条扫描信号转接线Cn,例如,第2列像素的右侧设置有与扫描信号线S2对应电连接的扫描信号转接线C2, 周边区BB与第2列像素相对应的位置处设置有与扫描信号转接线C2电连接的第一电极3,这样,每一像素列对应的多个第一电极的个数为5个。
可选地,如图11B所示,当显示区AA中像素行的个数N小于像素列的个数M,即在N<M的情况下,一些像素列的一侧对应设置一条扫描信号转接线Cn,这些像素列的数量为N,另一些像素列的一侧没有一条扫描信号转接线Cn,这些像素列的数量为(M-N),且此时这些像素列中的相邻两列像素列之间就没有扫描信号转接线Cn。例如,第2列像素的右侧没有设置扫描信号转接线,与扫描信号线S2对应电连接的扫描信号转接线C2设置在其他像素列的一侧,则周边区BB与第2列像素相对应的位置处不设置有第一电极3。这样,一些像素列(例如第1列像素和第3列像素)对应的多个第一电极的个数为5个,另一些像素列(例如第2列像素)对应的多个第一电极的个数为4个。
可选地,如图11C所示,当显示区AA中像素行的个数N小于像素列的个数M,即在N>M的情况下,每一像素列的一侧对应设置至少一条扫描信号转接线Cn,一些像素列的一侧对应设置一条扫描信号转接线Cn,另一些像素列的一侧不设置有一条扫描信号转接线Cn,且某相邻两列像素列之间设置有两条扫描信号转接线Cn。例如,第2列像素的右侧设置有与扫描信号线S2对应电连接的扫描信号转接线C2,以及与扫描信号线S20对应电连接的扫描信号转接线C20,则周边区BB与第2列像素相对应的位置处设置有与扫描信号转接线C2电连接的一个第一电极3,以及与扫描信号转接线C20电连接的另一个第一电极3。这样,一些像素列(例如第1列像素和第3列像素)对应的多个第一电极的个数为5个,另一些像素列(例如第2列像素)对应的多个第一电极的个数为6个。
可以理解的是,图11A~图11C中的多个第一电极,可以进一步朝向显示区AA内部移动,例如,设置在最靠近选定侧表面1cc的一行的像素P’中相邻的两个像素P’之间,从而进一步缩窄周边区BB的尺寸,使得显示面板的非显示区域更窄。
参见图12B,在一些实施例中,与一个像素P’相连的各信号线由于提供的信号不同,故其各自的线宽也不尽相同,第一电极3的宽度与其所电连接的信号线的宽度相同或者大致相同,信号线的宽度指信号线在垂直于其主体延伸方向(例如列方向Y1)上的宽度,即信号线沿行方向X1上的尺寸,第一电极3的宽度指第一电极3在行方向X1上的尺寸,例如与参考信号线Vm电连接的第一电极与该参考信号线Vm等宽,或者,第一电极3的宽度略微 大于该参考信号线Vm的宽度。如图12B所示,参考信号线Vm的宽度L1大于数据线Dm的宽度L2,则与参考信号线Vm电连接的第一电极3的宽度大于与数据线Dm电连接的第一电极3的宽度,如图3、图11A和图11B所示,多个第一电极3的宽度不同,且每个第一电极3的宽度与其所电连接的信号线的宽度对应,不同宽度的信号线所电连接的第一电极3的宽度不同。
进一步地,请参见图3,在每条连接引线4还包括位于背板1的第二主表面1b上的第三部分43的情况下,第三部分43的宽度与其所电连接的信号线的宽度相同或者大致相同,第三部分43指其在行方向X1上的尺寸。即依次电连接的信号线、第一电极3和连接引线4的第三部分43,三者的宽度存在对应关系。
在上述实施例中,相邻两个第一电极3的间距以防止信号串扰的准则为基础进行设计,本公开对此并不设限。
在一些实施例中,每条连接引线4的第一部分41的宽度与其第三部分43的宽度相同或大致相同。可参见图8B、图10A和图10B,第一部分41的宽度指其在行方向X1上的尺寸。
进一步地,每条连接引线4的第一部分41与其第三部分在背板1的第一主表面1a的正投影有重合区域。例如,如图8B所示,每条连接引线4的第一部分41与其第三部分在背板1的第一主表面1a的正投影大致重合,如图10A所示,每条连接引线4的第一部分41与其第三部分在背板1的第一主表面1a的正投影大致重合,如图10B所示,每条连接引线4的第一部分41的第一子部分41a与其第三部分在背板1的第一主表面1a的正投影大致重合。即每条连接引线4的第一部分41的宽度与其第三部分43的宽度相同或大致相同,且每条连接引线4的第一部分41与其第三部分43在背板的相对的两个主表面上的位置相对应。
在一些实施例中,每条连接引线4的第二部分42的宽度大于其第一部分41的宽度,且大于其第三部分43的宽度。
在另一些实施例中,每条连接引线4的第二部分42的宽度等于或大致等于其第一部分41的宽度,且等于或大致等于其第三部分43的宽度。
作为一种可能的设计,如图6和图7B所示,所述多条连接引线4中位于同一选定侧表面1cc上的第二部分42,沿平行于该选定侧表面1cc的侧子表面所在背板边界的方向等间隔布置,但每条连接引线4第二部分42的线宽却不一定相同。例如,每相邻两条连接引线4的第二部分42之间的间距均为d 4,而每条连接引线4第二部分42的线宽与其第三部分43的宽度基本成正比关 系。
在一些示例中,多条连接引线4的位于第一主表面1a上的部分,与位于选定侧表面1cc上的部分以及位于第二主表面1b上的部分通过不同的工序分别制备得到。例如,可通过在选定侧表面1cc溅射形成金属层,并对金属层进行激光刻蚀的方式得到多条连接引线4位于选定侧表面1cc上的部分,在这种情况下,通过激光刻蚀可以将金属层切割为多个部分,得到多个第二部分42,在将激光刻蚀的精度设置为特定值,例如设置为d 4,这样就能得到等间隔布置的多条连接引线位于选定侧表面1cc上的部分。这样有利于控制工艺精度,降低制备难度。
作为另一种可能的设计,每相邻两条连接引线4的第二部分42之间的间距也可以不同,例如可以与相邻两条连接引线4的第一部分41之间的间距保持一致。
在一些实施例中,位于不同选定侧表面1cc上的多条连接引线4中相邻两条连接引线4的间距不同。由于每条连接引线4的第一部分41、第二部分42和第三部分42相互连接且位置对应,且第三部分43的宽度与其所电连接的第一电极3的宽度,以及相邻第三部分43的间距与其所电连接的第一电极3的间距有关,因此在不同的选定侧表面1cc对应的多个第一电极3的宽度以及间距不同的情况下,位于不同选定侧表面1cc上的多条连接引线4中相邻两条连接引线4的间距不同。
在一些实施例中,多条连接引线4例如可以为通过电镀、蒸镀、移印银胶等工艺制备得到;还可以是通过向背板1的第一主表面1a以及选定侧表面1cc溅射形成金属层,并用刻蚀工艺形成图案,得到多条连接引线4。其中,刻蚀工艺例如可以为湿法刻蚀或者激光刻蚀。在通过激光刻蚀工艺得到多条连接引线4的情况下,可能会存在激光刻蚀的功率过高,能量过大而对显示面板10的其他结构造成不良影响的情况,尤其是在对金属层位于背板1的第一主表面1a上的部分进行刻蚀时,若激光能量过高,激光会穿透背板1,并可能会造成背板1的第二主表面1b上的结构出现鼓包的情况。
基于此,如图9B所示,显示面板10还包括能量吸收膜7。能量吸收膜7相对与多条连接引线4设置在靠近背板1的第一主表面1a的一侧,具体可以与第一主表面1a直接接触,也就是说,在形成金属层之前,在背板1的第一主表面1a上形成能量吸收膜7。
能量吸收膜7被配置为吸收至少一部分激光刻蚀过程中的激光能量,这样,在通过激光刻蚀工艺得到多条连接引线4的过程中,尤其是在对金属层 位于背板1的第一主表面1a上的部分进行刻蚀时,能量吸收膜7能够吸收一部分激光能量,避免激光能量过高而造成背板1的第二主表面1b上的结构出现鼓包的情况,降低激光刻蚀对背板1的第二主表面1b的不良影响。
作为一种可能的设计,还可以在背板1的第二主表面1b与多条连接引线4之间设置能量吸收膜,或者在背板1的选定侧表面1cc和多条连接引线4之间设置能量吸收膜,以降低通过激光刻蚀形成多条连接引线4的过程中,对背板1的其他结构可能造成的不良影响。
在一些示例中,能量吸收膜的材料选用能够吸收激光能量的无机材料,例如能量吸收膜的材料包括二氧化锡(SnO 2)和氧化锌(ZnO)中的至少一种,能量吸收膜的材料为SnO 2、ZnO、或者SnO 2和ZnO的混合材料。
在一些实施例中,如图13所示,每条连接引线4包括依次层叠设置的第一缓冲导电图案4a、主导电图案4b和第二缓冲导电图案4c,第一缓冲导电图案4a相对于主导电图案4b靠近背板1。第一缓冲导电图案4a与背板1之间的粘附性大于主导电图案4b与背板1之间的粘附性;第二缓冲导电图案4c的抗氧化性优于主导电图案4b的抗氧化性。
其中,第一缓冲导电图案4a、主导电图案4b和第二缓冲导电图案4c均能导电,主导电图案4b具有较强的导电性能和较低的电阻率,主导电图案4b的材料例如为铜(Cu)。在保证多条连接引线4具备较强的导电性能和较低的信号损失,实现信号的稳定传输的基础上,通过在各连接引线4的主导电图案4b的两侧设置第一缓冲导电图案4a和第二缓冲导电图案4c,增强了多条连接引线4与背板1之间的粘附性,使多条连接引线4不易脱落,且增强了多条连接引线4的抗氧化性,使得多条连接引线4不易受水氧腐蚀,延长了使用寿命。
在一些示例中,第一缓冲导电图案4a的材料选用具有较强的粘附性的材料,例如与玻璃具有较强的结合力的材料,第二缓冲导电图案4c的材料选用具有较强的抗氧化性的材料。示例性地,第一缓冲导电图案4a的材料与第二缓冲导电图案4c的材料相同,第一缓冲导电图案4a和第二缓冲导电图案4c的材料包括钛(Ti)、铬(Ge)、钼(Mo)和钼铌合金(MoNb)中的至少一种。例如,第一缓冲导电图案4a和第二缓冲导电图案4c的材料为Ti、Ge、Mo、Monb或者Ti和Ge的混合材料、Ti、Ge和Mo的混合材料等。
在一些实施例中,如图5A、图7A、图8A~图9B所示,显示面板10还包括第一保护胶层6,第一保护胶层6覆盖多条连接引线4。第一保护胶层6设置在多条连接引线4的远离背板1的一侧,示例性地,第一保护胶层6可 以填充多条连接引线4的间隙区域以及覆盖多条连接引线4的表面。可以理解的是,如果多条连接引线4位于在背板1的第一主表面1a上的部分需要裸露出来以与驱动芯片20进行绑定连接的情况下,那么第一保护胶层6需要避免覆盖在连接引线4待与驱动芯片20连接的部分;除此以外,通常第一保护胶层6在显示面板的任一表面的正投影等于或者大于连接引线4在显示面板的任一表面的正投影。如图5A、图9A和图9B所示,在显示面板10的截面中,多条连接引线4的形状呈U型,则第一保护胶层6也呈U型。如图7A和图8A所示,在显示面板10的截面中,多条连接引线4的形状呈L型,则第一保护胶层6也呈L型。
第一保护胶层6被配置为保护多条连接引线4,并起到电气绝缘、以及防水氧腐蚀的作用,避免多条连接引线4受到外界损伤,出现剥落、断线、氧化等问题。
在一些示例中,第一保护胶层6的材料为耐腐蚀性能以及粘附力较高的绝缘材料,示例性地,第一保护胶层6为OC(over coating)胶,例如第一保护胶层6的材质可以包括深色OC胶,或者深色油墨层。油墨具有较高的硬度和良好的抗腐蚀性能,能够保护多条连接引线。
在一些实施例中,如图5B所示,在垂直于选定侧表面1cc的侧子表面1c1的方向上,第一保护胶层6的厚度d 5大于或等于1μm,且小于或等于4.6μm,例如第一保护胶层的厚度d 5为1.5μm、2μm或3μm。在图5B所示的显示面板的截面中,第一保护胶层的厚度d 5并非处处均匀。在如图1和图3所示的显示面板1的正面视图中,第一保护胶层设置在背板1的选定侧表面1cc上,且覆盖多条连接引线4,在一些示例中,以图3所示的背板1的位于上方的选定侧表面1cc对应的第一保护胶层为例,沿行方向X1,第一保护胶层6的中间位置的厚度大于其两边位置的厚度,第一保护胶层6呈现中间较厚且两边较薄的形状。例如,第一保护胶层6的中间位置的厚度为4.58μm,两边位置的厚度例如可以为1.5μm、3.31μm或3.56μm。
需要说明的是,上述厚度不均现象是第一保护胶层的制备工艺(例如喷涂工艺、沉积工艺等)导致的,并不影响第一保护胶层6的功能,只要第一保护胶层能够覆盖多条连接引线4,且第一保护胶层6的厚度足够使第一保护胶层6起到有效保护多条连接引线4的作用即可。在工艺条件允许的情况下,第一保护胶层在各处的厚度优选是均匀的。
作为一种可能的设计,如图9B所示,在第一保护胶层6为深色油墨层的情况下,显示面板10还包括设置于多条连接引线4与第一保护胶层6之间的 氮化硅膜层8。氮化硅材料成膜后致密性较高,抗氧化性能较高,通过在多条连接引线4背向背板1的一侧同时设置氮化硅膜层8和深色油墨层,能够进一步保护多条连接引线4,避免多条连接引线4被腐蚀,并且,将深色油墨层设置在外侧能够保证第一保护胶层6具有足够的硬度,避免被磕碰而脱落,增强对多条连接引线4的保护效果。
在一些实施例中,如图7A和图8A所示,显示面板10还包括设置于多个发光器件2背向背板1一侧的第二保护胶层9。第二保护胶层9包括覆盖多个发光器件2的部分91和填充多个发光器件2的间隙区域的部分92。在一些实施例中,如图8A所示,填充多个发光器件2的间隙区域的部分92为深色胶,从而避免外界环境光照射到显示面板后被反射导致对比度降低的问题;而覆盖多个发光器件2的部分91为高透光性的胶材,避免多个发光器件2在后续工艺制程中受到损坏的同时保证多个发光器件2的出光效率。
在一些实施例中,如图7A在发光器件2为无机发光二极管时,第二保护胶层9在覆盖多个发光器件2的部分91和填充多个发光器件2的间隙区域的部分92可以采用相同材质和颜色的胶材,因为无机发光二极管的出光亮度很强,且第二保护胶层在覆盖多个发光器件2的部分的厚度小于填充在多个发光器件2的间隙区域的部分的厚度,从而也能够不影响显示效果并保证高对比度。示例性地,第二保护胶层9的材料可以为黑色硅胶或者黑色树脂等。例如可以通过在多个发光器件2背向背板1一侧涂覆黑色硅胶,覆盖多个发光器件2,并对黑色硅胶的表面做磨平处理,保证第二保护胶层9的均匀性和透光性。
在一些示例中,如图7A和图8A所示,第二保护胶层9还包括覆盖多个第一电极3的部分93。示例性地,在连接引线4覆盖其所对应的第一电极3的一部分,实现电连接的情况下,第二保护胶层9覆盖多个第一电极3中的每个第一电极3的另一部分,第一保护胶层6和第二保护胶层9可以有接触。示例性的,如图7A和图8A所示,在连接引线4与其所电连接的第一电极3不存在交叠部分的情况下,第二保护胶层9覆盖多个第一电极3,第二保护胶层9与背板1的第二主表面1b的侧边齐平或大致齐平,连接引线4可以延伸至第二保护胶层9的与背板1的第二主表面1b的侧边齐平的端面,从而连接引线4与第一电极3能够更加充分地接触,第一保护胶层6和第二保护胶层9不接触。
本公开的一些实施例还提供了一种显示装置100,如图5A、图7A、图 8A、图9A、图9B、图14所示,显示装置100包括:显示面板10和驱动芯片20。
驱动芯片20设置于显示面板10的背板1的第一主表面1a上,驱动芯片20通过显示面板10的多条连接引线4与显示面板10的多个第一电极3电连接。在一些实施例中,如图5A、图7A和图8A所示,在显示面板10还包括多个第二电极5的情况下,所述多个第二电极5分别与所述多条连接引线4电连接;所述驱动芯片20与所述多个第二电极5电连接,以通过所述多个第二电极5与所述多条连接引线4电连接。可以理解的是,第二电极5与驱动芯片20绑定的位置处的厚度与第二电极5其他位置处的厚度可以相同;第二电极5与驱动芯片20绑定的位置处的厚度也可以小于与第二电极5其他位置处的厚度。
在另一些实施例中,如图9A和图9B所示,在显示面板10不包括多个第二电极5的情况下,驱动芯片20直接与所述多条连接引线4位于在背板1的第一主表面1a上的部分电连接。可以理解的是,连接引线4与驱动芯片20绑定的位置处的厚度与连接引线45其他位置处的厚度可以相同;连接引线4与驱动芯片20绑定的位置处的厚度也可以小于与连接引线4其他位置处的厚度。
本公开所提供的显示装置100中,由于在显示面板10中设置有连接背板1的第一主表面1a和第二主表面1b的多条连接引线4,能够将绑定区转移至显示面板10的背面,并使驱动芯片20通过多条连接引线4电连接至显示面板10的正面,控制显示面板10进行显示,从而显示面板10的周边区的面积得以减小,显示装置100的边框得以减小,屏占比增大,提升了显示效果。
如图14所示,显示装置100具有较窄的边框,示例性地,显示面板10中,设置于背板1的选定侧表面1cc上的结构(包括多条连接引线4和第一保护胶层6等)的整体厚度为1μm~4μm,显示装置100的边框的尺寸远小于1mm。
本公开的一些实施例还提供了一种拼接显示装置1000,如图15所示,该拼接显示装置1000包括多个如本公开的实施例所提供的显示装置100,所述多个显示装置100拼接组装,由于用于拼接的每个显示装置100的边框尺寸很小,因此拼接显示装置1000在实际观看时相邻两个显示装置100之间的拼缝在观看距离内较难被肉眼发现,可以呈现较佳的显示效果。
由于本公开提供的显示装置为具有超窄边框的显示装置,因此,将该多个显示装置应用于拼接显示装置中,相邻两个显示装置之间的拼缝较小,从 而使得拼接显示装置的显示画面较完整,显示效果较好。
在一些实施例中,相邻两个显示装置之间的拼缝宽度为0.4mm~0.9mm,从而拼接显示装置在进行显示时,使得肉眼观看时难以发现拼接缝的存在,提高了拼接显示装置的显示质量。
本公开的一些实施例还提供了一种显示面板的制备方法,该制备方法用于制备本公开上述介绍的显示面板。如图16A和图16B所示,该制备方法包括:
S1、提供初始背板1’,如图17A所示,初始背板1’包括相对的第一主表面1a和第二主表面1b,及连接所述第一主表面1a和所述第二主表面1b的多个侧面1c’;所述多个侧面1c’与所述第一主表面1a个所述第二主表面1b垂直或大致垂直。
上述初始背板1’是指制备有驱动电路层的基板,示例性地,初始背板1’包括衬底和设置于衬底一侧表面1c上的驱动电路层,驱动电路层远离衬底的表面为初始背板1’的第二主表面1b。上述衬底例如为玻璃衬底。
S2、如图17B所示,在初始背板1’的第二主表面1b上形成多个第一电极3;所述多个第一电极3靠近所述多个侧面1c’中的至少一个侧面1c’,所述至少一个侧面1c’为选定侧面1c’。
所述至少一个侧面1c’为在后续步骤中用来设置多条连接引线4的侧面1c’,称该至少一个侧面1c’为选定侧面1c’,多个第一电极3靠近第二主表面1b的侧边中与选定侧面1c’连接的侧边。示例性地,初始背板1’具有四个侧面1c’,四个侧面1c’中可以有一个侧面1c’、两个侧面1c’、三个侧面1c’为选定侧面1c’,或者四个侧面1c’均为选定侧面1c’,在初始背板1’的第二主表面1b上靠近选定侧面1c’的位置形成多个第一电极3。
示例性地,每个第一电极3靠近选定侧面1c’的一端与初始背板1’的第二主表面1b的靠近选定侧面1c’的侧边之间具有第一预设距离A3,该第一预设距离A3需要考虑到保证最终所形成的显示面板的显示区的面积,预设距离不宜过大,同时还需预留出后续形成倒角或倒圆角的空间,如图17B所示,例如第一预设距离A3为50μm~80μm。
在一些实施例中,所述多个第一电极3可以与位于第二主表面1b的驱动电路层采用同一次成膜工艺或者同一次构图工艺制成。
S3、如图17C和图17D所示,对初始背板1’的第一主表面1a与选定侧面1c’的交界边进行处理,在交界边处形成第一过渡子表面1c2,选定侧面1c’ 形成侧子表面1c1,得到背板1。背板1包括连接第一主表面1a和第二主表面1b的多个侧表面1c,所述多个侧表面1c中的至少一个侧表面1c为选定侧表面1cc,选定侧表面1cc包括与第一主表面1a和第二主表面1b垂直或大致垂直的侧子表面1c1,以及连接侧子表面1c1和第一主表面1a的第一过渡子表面1c2,称所述至少一个侧表面1c为选定侧表面1cc。初始背板1’的第一主表面1a和第二主表面1b为背板1的第一主表面1a和第二主表面1b。
在背板1沿垂直于第一主表面1a且垂直于侧子表面1c1所在背板边界的方向的截面中,第一过渡子表面1c2上任一点处的切线与第一主表面1a之间的夹角大于90°,且与侧子表面1c1之间的夹角大于90°。
在一些实施例中,如图16B、图17C和图17D所示,S3还包括:对初始背板1’的第二主表面1b与选定侧面1c’的交界边进行处理,形成连接所述第二主表面1b与所述选定侧面1c’的第二过渡子表面1c3,得到背板。背板的多个侧表面1c中的选定侧表面1c还包括第二过渡子表面1c3,在所述背板沿垂直于所述第二主表面1b且垂直于所述侧子表面1c1所在背板边界的方向的截面中,所述第二过渡子表面1c3上任一点处的切线与所述第二主表面1b之间的夹角大于90°,且与所述侧子表面1c1之间的夹角大于90°。
在一些示例中,采用倒角工艺,对初始背板1’的第一主表面1a与选定侧面1c’的交界边进行研磨,形成第一过渡子表面1c2,或者,同时对初始背板1’的第二主表面1b与选定侧面1c’的交界边进行研磨,形成第二过渡子表面1c3。
示例性的,第一过渡子表面1c2与第二过渡子表面1c3为平面或弧面。
在采用倒角工艺磨边的过程中,可能会存在凹坑,毛刺等不良,例如所形成的第一过渡子表面1c2和第二过渡子表面1c3上存在多个凹坑,每个凹坑的直径或对角线的长度在10um以内,多个凹坑对第一过渡子表面1c2与第二过渡子表面1c3的整体的平整性的影响可忽略不计。
在一些实施例中,在S3之后,还包括对所形成的背板进行表面清洗的步骤,以去除研磨之后背板的表面存在的碎屑和油污。示例性地,清洗方式可采用湿法清洗、离子源清洗、臭氧清洗等方式。例如,在采用湿法清洗的情况下,可使用5%含量的弱碱KOH溶液对背板的表面进行清洗,这样在去除油污的同时,还能提高背板表面活性,提高后续工艺中金属层与背板之间的粘附性(例如金属与玻璃衬底之间的粘附性)。
S4、如图17E所示,在背板的第一主表面1a和所述至少一个侧表面1c上形成多条连接引线4。所述多条连接引线4中的每条连接引线4由所述背板 的第一主表面1a依次经过所述侧表面1c的第一过渡子表面1c2以及侧子表面1c1,与所述多个第一电极3中的一个第一电极3电连接。
在一些实施例中,多条连接引线4除形成在背板的第一主表面1a和选定侧表面1cc上之外,还可以设置在背板的第二主表面1b上。
在背板的选定侧表面1cc还包括第二过渡子表面1c3的情况下,所述多条连接引线4中的每条连接引线4由所述背板的第一主表面1a依次经过所述侧表面1c的第一过渡子表面1c2、侧子表面1c1以及第二过渡子表面1c3,与所述多个第一电极3中的一个第一电极3电连接。
在一些实施例中,如图19所示,S4中形成多条连接引线4的步骤包括:
S41、在背板的第一主表面1a和选定侧表面1cc上形成金属层,该金属层与所述多个第一电极3接触。
例如,在背板的第一主表面1a、选定侧表面1cc的第一过渡子表面1c2和侧子表面1c1上形成金属层。或者,在背板的第一主表面1a、该侧表面1c的第一过渡子表面1c2、侧子表面1c1和第二过渡子表面1c3上形成金属层。
在第一电极3靠近侧子表面1c1的一端与第二主表面1b靠近所述侧子表面1c1的侧边之间具有间距的情况下,金属层还形成在背板的第二主表面1b上,以使金属层与多个第一电极3电接触,示例性的,金属层可以覆盖多个第一电极3,以使二者具有更大的接触面积。
在垂直于所述第一主表面1a的方向上,在第一电极3靠近侧子表面1c1的一端与第二主表面1b靠近侧子表面1c1的侧边齐平或大致齐平的情况下,金属层仅形成在背板的第一主表面1a和至少一个侧表面1c上,不形成在背板的第二主表面1b上。
示例性地,可以采用电镀工艺、蒸镀工艺、移印银胶、溅镀工艺(例如为多弧磁控溅射工艺)等进行金属层的沉积,以在背板的第一主表面1a和所述至少一个侧表面1c上形成金属层。
在一些实施例中,金属层包括第一金属层、第二金属层和第三金属层,采用上述工艺依次进行第一金属层、第二金属层和第三金属层的沉积,以得到层叠设置的三层金属层,第一金属层相对于第二金属层靠近背板。示例性地,第一金属层和第二金属层的厚度为30nm~100nm。
第一金属层与背板之间的粘附性大于第二金属层与背板之间的粘附性;第三金属层的抗氧化性优于第二金属层的抗氧化性。示例性地,第一金属层的材料与第三金属层的材料相同,第一金属层与第三金属层的材料包括Ti、Ge、Mo和Monb中的至少一种。第二金属层的材料具有较强的导电性能, 例如第二金属层的材料为Cu。
S42、图案化金属层,得到多条连接引线4;所述多条连接引线4中的每条连接引线4由所述背板的第一主表面1a依次经过所述选定侧表面1cc的第一过渡子表面1c2以及侧子表面1c1,与所述多个第一电极3中的一个第一电极3电连接。
在一些示例中,采用工艺精度较高激光刻蚀工艺,图案化所述金属层,得到多条连接引线4。
在一些实施例中,对于上述采用激光刻蚀工艺对金属层进行图案化的方式,在S41之前,还包括:S40:在背板的第一主表面1a上形成能量吸收膜,示例性地,采用沉积工艺形成能量吸收膜,能量吸收膜的材料例如可以包括SnO 2和ZnO中的至少一种。能量吸收膜能够吸收至少一部分激光刻蚀过程中的激光能量,以避免激光能量过高而造成背板的第二主表面1b上的结构出现鼓包的情况,降低激光刻蚀对背板的第二主表面1b的不良影响。
在另一些示例中,采用湿法刻蚀工艺,图案化所述金属层,得到多条连接引线4。
示例性地,采用移印工艺,在金属层的表面移印绝缘油墨,以形成具有图案的保护层,保护金属层中不需要被刻蚀掉的部分,通过自动光学检测设备观察并调整保证绝缘油墨形成的保护层与多个第一电极对位一致,对金属层进行刻蚀处理,保留金属层中被绝缘油墨中覆盖的部分,形成多条连接引线4。
在一些示例中,还可以在背板的选定侧表面1cc上形成能量吸收膜,以避免激光刻蚀工艺对背板的其他结构的影响。
在一些情况下,如图18A~图18F,显示面板的制备方法可以为,在S2在初始背板1’的第二主表面1b上形成多个第一电极3之前,先在初始背板1’的第一主表面1a、第二主表面1b和选定侧面1c’上形成金属层4’,该金属层4’覆盖初始背板1’的选定侧面1c’的表面,且覆盖初始背板1’的第一主表面1a和第二主表面1b的靠近选定侧面1c’的一部分表面,在形成金属层之后,进行S2:在初始背板1’的第二主表面1b上形成多个第一电极3,所述多个第一电极3靠近所述多个侧面1c’中的选定侧面1c’,且多个第一电极3与金属层接触。示例性地,多个第一电极3可以覆盖金属层的一部分,以使二者具有更大的接触面积,也就是说多个第一电极3位于金属层远离初始背板1’的一侧。在一些示例中,多个第一电极3可以与位于第二主表面1b上的驱动电路层采用同一次成膜工艺或者同一次构图工艺制成。
在一些实施例中,在显示面板还包括设置在背板1的第一主表面1a上的多个第二电极5的情况下,在形成多个第二电极5之前,在初始背板1’的第一主表面1a、第二主表面1b和选定侧面1c’上形成金属层4’,在形成金属层之后,进行S2’:在初始背板1’的第一主表面1a上形成多个第二电极5;所述多个第二电极5靠近所述多个侧面1c’中的至少一个侧面1c’,在垂直于所述第一主表面1a的方向上,所述多个第二电极5的位置与所述多个第一电极3的位置一一对应,且多个第二电极5与金属层接触。示例性地,多个第二电极5可以覆盖金属层的一部分,以使二者具有更大的接触面积,也就是说多个第二电极5位于金属层远离初始背板1’的一侧。
在一些实施例中,如图18B和图18C所示,在形成金属层4’之前,还包括S3,对初始背板1’的第一主表面1a与选定侧面1c’的交界边进行处理,在交界边处形成第一过渡子表面1c2,选定侧面1c’形成侧子表面1c1,得到背板1。从而金属层4’形成在背板1的第一主表面1a、第二主表面1b和选定侧表面1cc上。
在得到多个第一电极3和多个第二电极5之后,进行S42、图案化金属层4’,得到多条连接引线4;所述多条连接引线4中的每条连接引线4由所述背板1的第一主表面1a依次经过所述选定侧表面1cc的第一过渡子表面1c2以及侧子表面1c1,与所述多个第一电极3中的一个第一电极3电连接。或者,每条连接引线4还与一个第二电极5电连接。图案化金属层4’的方式可以采用上述介绍的激光刻蚀方式或者湿法刻蚀方式,此处不再赘述。
示例性地,参见图18E和图18F,采用上述方法,所得到的显示面板中,每个第一电极3位于其所电连接的连接引线4远离背板1的一侧,每个第二电极5位于其所电连接的连接引线4远离背板1的一侧。
在另一些实施例中,如图20所示,S4中形成多条连接引线4的步骤包括:形成多条连接引线4的位于背板1的选定侧表面上的部分的步骤和形成多条连接引线4的位于背板1的第一主表面1a(以及第二主表面1b)上的部分的步骤。
其中,形成多条连接引线4的位于背板的选定侧表面上的部分的步骤包括:
S41’:在背板的所述选定侧表面1cc上形成金属层。
S42’、图案化金属层,得到多条连接引线4的位于背板1的所述选定侧表面1cc上的部分。
关于S41’和S42’的具体实施方式可参考上面关于S41和S42的描述,此处不再赘述。
形成多条连接引线4的位于背板1的第一主表面1a(以及第二主表面1b)上的部分的步骤包括:
S41”:在背板的第一主表面1a上设置掩模板,该掩模板被配置为暴露出背板的第一主表面1a上需要设置多条连接引线4的区域。
上述掩模板例如为磁控溅射mask,例如,掩模板的材料包括聚酰亚胺或者铁氟龙材料。掩模板所具有的图案能够遮挡背板的第一主表面1a上不需要形成金属层的区域,掩模板例如可以贴附在背板的第一主表面1a上,第一主表面1a上所暴露出的区域即为后续形成多条连接引线4的区域。第一主表面1a上所暴露出的区域与多条连接引线4的位于背板的选定侧表面上的部分相对应。
S42”:在背板的第一主表面1a沉积金属,形成金属层。
示例性地,可以采用电镀工艺、蒸镀工艺、移印银胶、溅镀工艺(例如为多弧磁控溅射工艺)等进行金属层的沉积,以在背板的第一主表面1a上形成金属层,该金属层覆盖背板的第一主表面1a被掩模板所暴露出的区域。
示例性地,图21A和图21B示意出两种上述掩模板11的结构,掩模板11具有多个开口11a,多个开口11a暴露出背板的第一主表面1a上需要沉积金属的区域,图21A所示的掩模板11不带边框11b,图21B所示的掩模板11具有边框11b,在S42”中利用溅镀工艺形成金属层的情况下,图21A所示的掩模板11可以适用于多种溅射角度,图21A所示的掩模板11可以适用于将背板1水平放置进而溅镀金属的情况,同时带边框11a的掩模板11有助于提高所形成的金属层整体的平整度。
可以理解的是,掩模板11的开口11a的形状为多条连接引线4位于背板1的第一主表面1a上的部分的图案的形状,利用图21A和图21B示意出的两种掩模板11,所得到的金属层的图案与图10B所示的多条连接引线4位于背板1的第一主表面1a上的部分的图案一致。
在一些实施例中,金属层包括第一金属层、第二金属层和第三金属层,具体内容可参见上面的描述,此处不再赘述。
S43”:去除掩模板11,形成多条连接引线4位于背板1的第一主表面1a上的部分。
在一些实施例中,在多条连接引线4还包括设置在背板的第二主表面1b上的部分的情况下,也可以通过在背板的第二主表面1b上设置具有相应图案 的掩模板,再沉积金属,以形成多条连接引线4位于背板1的第二主表面1b上的部分,具体步骤可参考上述S41”、S42”和S43”的描述,此处不再赘述。
需要说明的是,上述S41’和S42’、S41”、S42”和S43”的先后顺序不做限定,例如可将S41’(在背板的所述至少一个侧表面1c(选定侧表面)上形成金属层)与S42”(在背板的第一主表面1a沉积金属,形成金属层)同步进行,以提高制备效率。
最终,所形成的多条连接引线4的位于背板1的选定侧表面1cc上的部分与多条连接引线4位于背板1的第一主表面1a上的部分相接触,还与多条连接引线4位于背板1的第二主表面1b上的部分相接触,得到多条连接引线。所述多条连接引线4中的每条连接引线4由所述背板的第一主表面1a依次经过所述侧表面1c的第一过渡子表面1c2以及侧子表面1c1,与所述多个第一电极3中的一个第一电极3电连接。
上述利用掩模板形成形成多条连接引线4的位于背板1的第一主表面1a(以及第二主表面1b)上的部分的方法,无需使用激光刻蚀工艺,这样就能避免使用激光刻蚀工艺时由于激光能量过高对背板的第二主表面1b以及第一主表面1a上的结构不良影响。
在另一些实施例中,如图22所示,S4中形成多条连接引线4的步骤包括:
S4-1:在背板1的第一主表面1a和所述选定侧表面1cc上设置柔性掩模板12,该柔性掩模板12被配置为暴露出背板的第一主表面1a和选定侧表面1cc上需要设置多条连接引线4的区域。
如图23所示,柔性掩模板12包括第一部分P1、第二部分P2和第三部分P3,柔性掩模板12能够贴附在背板1的表面上。示例性地,第一部分P1设置于背板1的第一主表面1a,第二部分P2设置于背板1的第一主表面1a和所述至少一个侧表面1c(例如背板的相对的两个侧表面1c),第三部分P3设置于背板1的第二主表面1b,第二部分P2可弯折,从而第二部分P2能够贴附在背板1的第一主表面1a、选定侧表面1cc的第一过渡子表面1c2和侧子表面1c1(或者还贴附在选定侧表面1cc的第二过渡子表面1c3)上,并使第三部分P3能够贴附至背板的第二主表面1b上。第二部分P2具有多个开口12a,多个开口12a暴露出背板的第一主表面1a和所述至少一个侧表面1c上需要沉积金属的区域。
S4-2:在背板的第一主表面1a和选定侧表面1cc上沉积金属,形成金属层。
示例性地,可以采用电镀工艺、蒸镀工艺、移印银胶、溅镀工艺(例如 为多弧磁控溅射工艺)等进行金属层的沉积,以同时在背板的第一主表面1a和所述至少一个侧表面1c上形成金属层,该金属层覆盖背板的第一主表面1a所述至少一个侧表面1c被柔性掩模板12所暴露出的区域。
在一些实施例中,金属层包括第一金属层、第二金属层和第三金属层,具体内容可参见上面的描述,此处不再赘述。
S4-3:去除柔性掩模板,形成多条连接引线4。所形成的多条连接引线4中的每条连接引线4由所述背板的第一主表面1a依次经过所述选定侧表面1cc的第一过渡子表面1c2以及侧子表面1c1,与所述多个第一电极3中的一个第一电极3电连接。
例如,采用UV灯照射柔性掩模板,使柔性掩模板12与背板1粘接的材料的粘性降低,从而将柔性掩模板12从背板1上去除。
在一些实施例中,在多条连接引线4还包括设置在背板的第二主表面1b上的部分的情况下,该柔性掩模板12还被配置为暴露出背板的第二主表面1b上需要设置多条连接引线4的区域。例如,柔性掩模板12的第二部分P2能够贴附在背板1的第一主表面1a、第二主表面1b、选定侧表面1cc的第一过渡子表面1c2和侧子表面1c1上,多个开口12a暴露出背板的第一主表面1a、所述至少一个侧表面1c和第二主表面1b上需要沉积金属的区域。从而所形成的多条连接引线4中的每条连接引线4由所述背板的第一主表面1a依次经过所述侧表面1c的第一过渡子表面1c2以及侧子表面1c1,延伸至背板1的第二主表面1b上,与所述多个第一电极3中的一个第一电极3电连接。
上述利用柔性掩模板形成形成多条连接引线4的方法,无需使用激光刻蚀工艺,这样就能避免使用激光刻蚀工艺时由于激光能量过高对背板的第二主表面1b以及第一主表面1a上的结构不良影响,并且,由于柔性掩模板可弯折,能够贴附在背板的选定侧表面1cc上,因此能够一次性形成多条连接引线4的位于背板的第一主表面1a上、至少一个侧表面1c和第二主表面1b上的各部分,提高了制备效率。
在一些实施例中,如图16A和图16B所示,显示面板的制备方法还包括:
S5:测试所形成的多条连接引线4是否发生短路或者断路,若发生短路,则去除造成连接引线4短路的多余的金属层,示例性地,可以采用激光刻蚀工艺去除该多余的金属层。若发生断路,则在发生断路的位置处补充金属,以使该连接引线4连通。示例性地,可采用银印刷的方式,修复发生断路的连接引线4。
S6、在多条连接引线4背向背板的一侧形成第一保护胶层6,所述第一保护胶层6覆盖所述多条连接引线4。
第一保护胶层6被配置为保护多条连接引线4,并起到电气绝缘、以及防水氧腐蚀的作用。在一些示例中,第一保护胶层6的材料为耐腐蚀性能以及粘附力较高的绝缘材料,示例性地,第一保护胶层66为OC(over coating)胶或者为油墨层。在一些示例中,可以采用喷涂工艺、沉积工艺等方法形成第一保护胶层6。
在一些实施例中,如图5A、图7A和图8A所示,显示面板还包括设置在背板的第一主表面1a上的多个第二电极5,基于此,如图16B所示,上述显示面板的制备方法还包括:在S3之前,S2’:在初始背板1’的第一主表面1a上形成多个第二电极5;所述多个第二电极5靠近所述多个侧面1c’中的至少一个侧面1c’,在垂直于所述第一主表面1a的方向上,所述多个第二电极5的位置与所述多个第一电极3的位置一一对应。
示例性地,在初始背板1’的四个侧面1c’中有一个侧面1c’为选定侧面1c’,则多个第一电极3和多个第二电极5均靠近该选定侧表面1cc,即在初始背板1’的第一主表面1a上靠近选定侧面1c’的位置形成多个第二电极5。每个第一电极3在第一主表面1a的正投影与相对应的第二电极5在第一主表面1a上的正投影至少部分重合。
示例性地,如图17B所示,每个第二电极5靠近选定侧面1c’的一端与初始背板1’的第二主表面1b的靠近选定侧面1c’的侧边之间具有第二预设距离A4,由于第二电极5设置在初始背板1’的第二主表面1b上,也就是设置在所制备的显示面板的背面,多个第二电极5被配置为绑定驱动芯片或者柔性线路板,无需考虑多个第二电极5的位置对显示面板的显示区的面积的影响,因此多个第二电极5距离第二主表面1b的侧边的距离可以设计得长一些,例如每个第二电极5靠近选定侧面1c’的一端与初始背板1’的第二主表面1b的靠近选定侧面1c’的侧边之间的第二预设距离A4为400μm~600μm。在一些情况下,在垂直于背板1的第一主表面1a的方向上,多个第二电极5与多个第一电极3的位置基本一一对应,第二预设距离A4可以与第一预设距离A3相等或大致相等,例如第二预设距离A4为50μm~80μm。
在初始背板1’的第一主表面1a上形成多个第二电极5的情况下,在S4中形成多条连接引线4的步骤中,S41包括:在背板的第一主表面1a和所述至少一个侧表面1c上形成金属层,该金属层与所述多个第一电极3以及所述多个第二电极5接触。S42’包括:在背板的第一主表面1a和所述至少一个侧 表面1c上,以及遮挡层表面形成金属层,金属层与所述多个第一电极3以及所述多个第二电极5接触。如图17E所示,最终所形成的多条连接引线4中的每条连接引线4还与一个第二电极5电连接。
需要说明的是,S2中形成多个第一电极3的步骤,与S2’中形成多个第二电极5的步骤不限定先后顺序。
以下介绍显示面板中多个发光器件的制备,以多个发光器件为迷你发光二极管为例,通常称迷你发光二极管为mini LED芯片。
在一些实施例中,多个发光器件的制备顺序位于多条侧面1c’引线的制备顺序之后,即在背板的第一主表面1a和至少一个侧表面1c上形成多条连接引线4之后,在背板的第二主表面1b上形成多个发光器件,所述多个发光器件与所述多个第一电极3电连接,例如将多个mini LED芯片转移至背板的第二主表面1b上。这样可以避免在形成多条连接引线4的过程中,对多个发光器件可能造成的损伤。
在另一些实施例中,多个发光器件的制备顺序位于多条侧面1c’引线的制备顺序之前,示例性地,在S3(以下简称S3为磨倒角的步骤)之前,在初始背板1’的第二主表面1b上形成多个发光器件,所述多个发光器件与所述多个第一电极3电连接。
在这种情况下,显示面板的制备工艺还包括:在多个第一电极3和多个发光器件背向初始背板1’的一侧形成第二保护胶层9。
例如,上述形成第二保护胶层9的方式为:在初始背板1’的第二主表面1b上涂覆第二保护胶层的材料,在并对所形成的第二保护胶层9的表面进行磨平处理,使得在初始背板1’的第二主表面1b的整面上形成第二保护胶层9,第二保护胶层9覆盖多个发光器件2和多个第一电极3,且填充多个发光器件2的间隙区域,以及填充多个第一电极3的间隙区域。或者,在初始背板1’的第二主表面1b上贴附整张第二保护胶层9,并对第二保护胶层的表面进行磨平处理,以使第二保护胶层9覆盖多个发光器件2和多个第一电极3,且填充多个发光器件2的间隙区域,以及填充多个第一电极3的间隙区域。如图7A和图8A所示,第二保护胶层9能够保护多个发光器件2和多个第一电极3,避免多个发光器件2和多个第一电极3在后续工艺制程中受到损坏,例如制备第二保护层所在的腔室与切割第二保护层所在的请示不是同一个腔室,第二保护胶层9能够在腔室转移过程中,避免多个发光器件2和多个第一电极3受到损伤,以及在形成多条连接引线4的过程中,避免多个发光器 件2受到损伤。
在S4中形成多条连接引线4时,所形成的多条连接引线4需要与多个第一电极3电连接,因此在S4之前,需要对第二保护胶层进行切割,以暴露出多个第一电极3的一部分。示例性地,在初始背板1’存在工艺边的情况下,沿多个第一电极3朝向初始背板1’的选定侧面1c的一端的位置处,对初始背板1’和第二保护胶层9进行切割,以切除初始背板1’的工艺边,并暴露出多个第一电极3的朝向初始背板1’的选定侧面1c的一端,此时,多个第一电极3暴露出的一端与第二保护胶层齐平或大致齐平,同时多个第一电极3暴露出的一端与初始背板1’切割后的侧边齐平或者大致齐平。在初始背板1’没有工艺边的情况下,对第二保护胶层9进行切割,暴露出多个第一电极3的朝向初始背板1’的选定侧面1c的一端。
在一些实施例中,可选用黑色胶材涂覆在多个发光器件2的间隙区域,选用高透光性的胶材涂覆在多个发光器件2背向背板1的表面上,以形成第二保护胶层9,在避免多个发光器件2在后续工艺制程中受到损坏的同时,提高显示面板的对比度,并保证多个发光器件2的出光效率。
或者,第二保护胶层9的材料可以为黑色硅胶或者黑色树脂,例如将黑色硅胶涂覆多个发光器件2和多个第一电极3背向背板1的一侧,使黑色硅胶覆盖多个发光器件2和多个第一电极3,并对黑色硅胶的表面做磨平处理,将黑色硅胶覆盖在多个发光器件2的表面上的部分研磨至很薄,例如小于1mm,从而黑色硅胶能够保护多个发光器件2和多个第一电极3,还能保证覆盖在多个发光器件2的表面上的部分的透光性,从而不影响发光器件2的出光效果。
作为一种可能的设计,在本公开的一些实施例中,对于S4中形成多条连接引线4的方式中通过沉积金属形成金属层的方法,本公开提供了一种高效率的金属沉积方法,该高效率的金属沉积方法适用于图19中的S41、图20中的S41’和S42”、以及图22中的S4-2。以显示面板的制备方法还包括在初始背板1’的第一主表面1a上形成多个第二电极5,最终形成的显示面板还包括多个第二电极5为例进行说明。为方便描述,以下将背板1、多个第一电极3和多个第二电极5作为一个整体,称为背板整体21,背板整体21的第一主表面1a和第二主表面1b分别为背板1的第一主表面1a和第二主表面1b。该多条连接引线4的高效率的制备方法包括:
S411、如图24A和图24B所示,在背板整体21的第一主表面1a和第二 主表面1b分别贴附第一保护膜22和第二保护膜23,并对第一保护膜22和第二保护膜23进行切割,使第一保护膜22覆盖多个第二电极5的一部分,使多个第二电极5的靠近选定侧表面1cc的一部分暴露,第二保护膜23覆盖多个第一电极3的一部分,使多个第一电极3的靠近选定侧表面1cc的一部分或一端暴露。
其中,第一电极3和第二电极5所暴露出的部分的长度可以根据实际情况进行设计,在一些示例中,如图20所示,第一电极3和第二电极5均被遮挡2/3长度的部分,暴露出另外1/3长度的部分。
对于前边描述的显示面板的制备工艺中,多个发光器件的制备顺序位于多条侧面1c’引线的制备顺序之前的情况,即在S3(磨倒角的步骤)之前,在初始背板1’的第二主表面1b上形成多个发光器件,所述多个发光器件与所述多个第一电极3电连接。
在这种情况下,如前所述,显示面板的制备工艺还包括:在多个第一电极3和多个发光器件背向初始背板1’的一侧形成第二保护胶层9,例如该第二保护胶层9为黑色树脂。如图24B所示,第二保护胶层9可复用为第二保护膜23,无需重新贴附第二保护膜,这样,在图24B中,第一电极3例如被遮挡2/3长度的部分,暴露出另外1/3长度的部分,第二电极5仅暴露出朝向背板的选定侧面1c’的端面。
需要说明的是,图24A和图24B中,所示意出的第一保护膜22与背板之间有间隙,第二保护膜23与背板1之间有间隙,实际上多个第一电极3和多个第二电极5的厚度非常小,第一保护膜22和第二保护膜23均与背板接触,贴附在背板的表面。
通过设置第一保护膜22和第二保护膜23,多个第二电极5的靠近选定侧表面1cc的一部分暴露,以及多个第一电极3的靠近选定侧表面1cc的一部分,这样在后续沉积金属层的过程中,金属层可以覆盖第一电极3和第二电极5所暴露出的部分上,形成电接触,防止多余的金属大面积覆盖在多个第一电极3和多个第二电极5上,造成短路等问题。
S412、对贴附有第一保护膜22和第二保护膜23的背板整体21进行铺层结构设计,形成单一工装模块27。示例性地,如图25~图26B所示,将下盖板25设置在第二保护膜23的远离背板整体21的一侧,将上盖板24设置在第一保护膜22的远离背板整体21的一侧,从而第一保护膜22、第二保护膜23、背板整体21、上盖板24和下盖板25形成单一工装模块27。
示例性地,图26A和图26B为图25中单一工装模块27的区域G1的局 部放大图,如图26A所示,下盖板25与第二保护膜23保持大致齐平。上盖板24相对于第一保护膜22向内缩进0.5mm~1mm。示例性地如图26B所示,对于第二保护胶层9(例如为黑色树脂)复用为第二保护膜23的情况,下盖板25相对于第二保护膜22向外伸长1mm~2mm,上盖板24相对于第一保护膜22向内缩进0.5mm~1mm。这样设计,可以保证在后续溅射金属层的步骤中,所形成的金属层的具有一定的厚度,还能避免金属离子进入背板整体21与第一保护膜22或第二保护膜23之间存在的微小缝隙中而导致短路状况。
S413、将多个单一工装模块27装配成整体工装模块28,并对该整体工装模块28溅镀金属层。
示例性地,如图25所示,通过定位柱26将多个单一工装模27块进行组装,形成整体工装模块28,将该整体工装模块28放置于转台31上,从而整体工装模块28在转台31的作用下进行旋转,对整体工装模块28溅镀金属。示例性地,金属靶材位于整体工装模块28的侧面位置处,在金属靶材溅镀金属的过程中,整体工装模块处于旋转中,这样就会同时在多个单一工装模块中的背板的选定侧表面1cc和第一主表面1a所暴露出的区域上形成金属层,并且,多个单一工装模块中的背板1的表面上所形成的金属层的厚度大致相同。
由于金属靶材位于整体工装模块28的侧面位置处,因此溅射至背板1的选定侧表面1cc的金属相对较多,背板的选定侧表面1cc上形成金属层较厚,为提高金属层整体厚度的均一性,可以通过调整金属靶材与整体工装模块的相对位置,提高所形成的金属层的厚度的均一性。例如,使背板的第一主表面1a上所暴露出的区域上形成金属层的厚度,与背板的选定侧表面1cc上形成金属层的厚度之比在0.6-1.6之间取值,以使不同位置的厚度差异不至于过大。
在一些实施例中,若只需在背板的一个或两个侧表面1c上形成金属层,即所形成的显示面板只包括一个或两个选定侧表面1cc的情况,在进行对该整体工装模块溅镀金属层之前,需要将背板的其他侧表面1c遮挡,以避免其他侧表面1c被金属层覆盖。
通过本公开的一些实施例介绍的显示面板的制备方法得到显示面板之后,将驱动芯片或者柔性线路板绑定在背板的第一主表面上,可得到超窄边框的显示装置。
示例性地,可通过将驱动芯片或者柔性线路板与多个第二电极进行绑定,或者将驱动芯片或者柔性线路板与多条连接引线位于背板的第一主表面上的 部分进行绑定,实现将驱动芯片或者柔性线路板设置在显示面板的背面。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种显示面板,包括:
    背板,所述背板包括相对的第一主表面和第二主表面,及连接所述第一主表面和所述第二主表面的多个侧表面;所述多个侧表面中的至少一个侧表面为选定侧表面;
    设置于所述背板的第二主表面上的多个发光器件;
    设置于所述背板的第二主表面上的多个第一电极;所述多个第一电极相对于所述多个发光器件靠近所述选定侧表面,所述多个第一电极与所述多个发光器件电连接;
    设置于所述背板的第一主表面和所述选定侧表面上的多条连接引线;所述多条连接引线中的每条连接引线包括位于所述第一主表面上的第一部分和位于所述选定侧表面上的第二部分,所述第一部分的厚度与所述第二部分的厚度之比在0.6-1.6之间取值;所述连接引线由所述第一主表面依次经过所述选定侧表面,与所述多个第一电极中的一个第一电极电连接。
  2. 根据权利要求1所述的显示面板,其中,所述选定侧表面包括与所述第一主表面和所述第二主表面垂直或大致垂直的侧子表面,以及连接所述第一主表面和所述侧子表面的第一过渡子表面;
    在所述背板沿垂直于所述第一主表面且垂直于所述侧子表面所在背板边界的方向的截面中,所述第一过渡子表面上任一点处的切线与所述第一主表面之间的夹角大于90°,且与所述侧子表面之间的夹角大于90°;
    所述连接引线由所述第一主表面依次经过所述选定侧表面的第一过渡子表面以及侧子表面,与所述多个第一电极中的一个第一电极电连接。
  3. 根据权利要求2所述的显示面板,其中,在垂直于所述第一主表面的方向上,所述第一电极靠近所述选定侧表面的一端与所述第二主表面靠近所述选定侧表面的侧边齐平或大致齐平;
    所述连接引线由所述第一主表面依次经过所述选定侧表面的第一过渡子表面以及侧子表面,延伸至所述第二主表面靠近所述选定侧表面的侧边,并与所述第一电极电连接。
  4. 根据权利要求2所述的显示面板,其中,所述第一电极靠近所述选定侧表面的一端与所述第二主表面靠近所述选定侧表面的侧边之间具有间距;
    所述连接引线还包括位于所述第二主表面上的第三部分,所述第三部分的厚度与所述第二部分的厚度之比在0.6-1.6之间取值;
    所述连接引线由所述第一主表面依次经过所述选定侧表面的第一过渡子 表面以及侧子表面,延伸至所述第二主表面,并与所述第一电极电连接。
  5. 根据权利要求2~4中任一项所述的显示面板,其中,所述选定侧表面还包括连接所述侧子表面与所述第二主表面的第二过渡子表面;
    在所述背板沿垂直于所述第一主表面且垂直于所述侧子表面所在背板边界的方向的截面中,所述第二过渡子表面上任一点处的切线与所述第二主表面之间的夹角大于90°,且与所述侧子表面之间的夹角大于90°;
    所述连接引线由所述第一主表面依次经过所述选定侧表面的第一过渡子表面、侧子表面以及第二过渡子表面,与所述第一电极电连接。
  6. 根据权利要求2~5中任一项所述的显示面板,其中,所述第一过渡子表面为平面或弧面;
    在所述选定侧表面还包括第二过渡子表面的情况下,所述第二过渡子表面为平面或弧面。
  7. 根据权利要求1~6中任一项所述的显示面板,还包括:设置于所述第一主表面上的多个第二电极;所述多个第二电极被配置为与驱动芯片或者柔性线路板实现电气连接;
    所述多条连接引线中的每条连接引线与所述多个第二电极中的一个第二电极电连接。
  8. 根据权利要求7所述的显示面板,其中,同一条所述连接引线电连接的第一电极和第二电极在所述第一主表面上的正投影至少部分重合。
  9. 根据权利要求1~6中任一项所述的显示面板,其中,所述多条连接引线位于所述第一主表面上的部分被配置为绑定驱动芯片或者柔性线路板。
  10. 根据权利要求9所述的显示面板,其中,所述背板的第一主表面具有绑定区;所述多条连接引线位于所述第一主表面上的部分延伸至所述绑定区内,被配置为在所述绑定区内绑定所述驱动芯片或者所述柔性线路板。
  11. 根据权利要求10所述的显示面板,其中,所述绑定区的长度等于或大致等于所述第一主表面的靠近所述选定侧表面的侧边长度;
    沿由所述第一主表面靠近所述选定侧表面的侧边指向所述绑定区的方向,所述多条连接引线位于所述第一主表面上的部分延伸至所述绑定区内;
    或者,所述绑定区的长度小于所述第一主表面的靠近所述选定侧表面的侧边长度;
    沿由所述第一主表面靠近所述选定侧表面的侧边指向所述绑定区的方向,所述多条连接引线位于所述第一主表面上的部分收拢在所述绑定区内。
  12. 根据权利要求1~11中任一项所述的显示面板,其中,所述背板中设 置有多条信号线;所述多个第一电极通过所述多条信号线与所述多个发光器件电连接;
    所述第一电极的宽度与其所电连接的信号线的宽度相同或者大致相同;
    在所述连接引线还包括位于所述第二主表面上的第三部分的情况下,所述第三部分的宽度与其所电连接的信号线的宽度相同或者大致相同。
  13. 根据权利要求12所述的显示面板,其中,所述连接引线的第一部分的宽度与其第三部分的宽度相同或大致相同;
    所述连接引线的第二部分的宽度大于其第一部分的宽度,且大于其第三部分的宽度。
  14. 根据权利要求1~13中任一项所述的显示面板,其中,所述多条连接引线中位于同一选定侧表面上的部分,沿平行于该选定侧表面的侧子表面所在背板边界的方向等间隔布置;
    位于不同所述选定侧表面上的多条连接引线中相邻两条连接引线的间距不同。
  15. 根据权利要求1~14中任一项所述的显示面板,其中,所述多条连接引线通过激光刻蚀工艺制备得到,所述显示面板还包括能量吸收膜;所述能量吸收膜设置于所述背板与所述多条连接引线之间。
  16. 根据权利要求15所述的显示面板,其中,所述能量吸收膜的材料包括二氧化锡和氧化锌中的至少一种。
  17. 根据权利要求1~16中任一项所述的显示面板,其中,所述多条连接引线中的每条连接引线包括依次层叠设置的第一缓冲导电图案、主导电图案和第二缓冲导电图案,所述第一缓冲导电图案相对于所述主导电图案靠近所述背板;
    所述第一缓冲导电图案与所述背板之间的粘附性大于所述主导电图案与所述背板之间的粘附性;
    所述第二缓冲导电图案的抗氧化性优于所述主导电图案的抗氧化性。
  18. 根据权利要求17所述的显示面板,其中,所述第一缓冲导电图案的材料与所述第二缓冲导电图案的材料相同,所述第一缓冲导电图案和第二缓冲导电图案的材料包括钛、铬、钼和钼铌合金中的至少一种。
  19. 根据权利要求1~18中任一项所述的显示面板,其中,所述显示面板还包括第一保护胶层,所述第一保护胶层覆盖所述多条连接引线。
  20. 根据权利要求1~19中任一项所述的显示面板,其中,所述显示面板还包括设置于所述多个发光器件背向所述背板一侧的第二保护胶层;
    所述第二保护胶层覆盖所述多个发光器件与所述多个第一电极,且填充所述多个发光器件与所述多个第一电极的间隙区域。
  21. 一种显示装置,包括:
    如权利要求1~20中任一项所述的显示面板;和
    驱动芯片;所述驱动芯片设置于所述显示面板的背板的第一主表面上,所述驱动芯片通过所述显示面板的多条连接引线与所述显示面板的多个第一电极电连接。
  22. 根据权利要求19所述的显示装置,其中,
    在所述显示面板还包括多个第二电极的情况下,所述驱动芯片与所述多个第二电极电连接,以通过所述多个第二电极与所述多条连接引线电连接;
    或者,所述驱动芯片与所述多条连接引线位于在背板的第一主表面上的部分电连接。
  23. 一种拼接显示装置,包括:多个如权利要求21或22所述的显示装置,所述多个显示装置拼接组装。
  24. 一种显示面板的制备方法,包括:
    提供初始背板;所述初始背板包括相对的第一主表面和第二主表面,及连接所述第一主表面和所述第二主表面的多个侧面;所述多个侧面与所述第一主表面和所述第二主表面垂直或大致垂直;
    在所述初始背板的第二主表面上形成多个第一电极;所述多个第一电极靠近所述多个侧面中的至少一个侧面,所述至少一个侧面为选定侧面;
    对所述初始背板的第一主表面与选定侧面的交界边进行处理,在所述交界边处形成第一过渡子表面,所述选定侧面形成侧子表面,得到背板;所述背板包括连接第一主表面和第二主表面的多个侧表面,所述多个侧表面中的至少一个侧表面为选定侧表面,所述选定侧表面包括与所述第一主表面和所述第二主表面垂直或大致垂直的侧子表面,以及连接所述第一主表面和所述侧子表面的第一过渡子表面;在所述背板沿垂直于所述第一主表面且垂直于所述侧子表面所在背板边界的方向的截面中,所述第一过渡子表面上任一点处的切线与所述第一主表面之间的夹角大于90°,且与所述侧子表面之间的夹角大于90°;
    在所述背板的第一主表面和选定侧表面上形成多条连接引线;所述多条连接引线中的每条连接引线包括位于所述第一主表面上的第一部分和位于所述选定侧表面上的第二部分,所述第一部分的厚度与所述第二部分的厚度之比在0.6-1.6之间取值;所述连接引线由所述第一主表面依次经过所述选定侧 表面的第一过渡子表面以及侧子表面,与所述多个第一电极中的一个第一电极电连接。
  25. 根据权利要求24所述的制备方法,其中,在所述背板的第一主表面和选定侧表面上形成多条连接引线,包括:
    在所述第一主表面和所述选定侧表面上形成金属层,所述金属层与所述多个第一电极接触;
    图案化所述金属层,形成多条连接引线;所述多条连接引线中的每条连接引线由所述第一主表面依次经过所述选定侧表面的第一过渡子表面以及侧子表面,与所述多个第一电极中的一个第一电极电连接。
  26. 根据权利要求24所述的制备方法,其中,所述多条连接引线包括位于所述选定侧表面上的部分和位于所述第一主表面上的部分,在所述背板的第一主表面和选定侧表面上形成多条连接引线,包括:
    在所述选定侧表面上形成金属层;
    图案化所述金属层,得到所述多条连接引线位于所述选定侧表面上的部分;
    以及,
    在所述第一主表面上设置掩模板,所述掩模板被配置为暴露出所述第一主表面上需要设置所述多条连接引线的区域;
    在所述第一主表面沉积金属,形成金属层;
    去除所述掩模板,形成所述多条连接引线位于所述第一主表面上的部分;所述多条连接引线位于所述第一主表面上的部分与所述多条连接引线位于所述选定侧表面上的部分电连接;
    得到多条连接引线,所述多条连接引线包括位于所述选定侧表面上的部分和位于所述第一主表面上的部分;所述多条连接引线中的每条连接引线由所述第一主表面依次经过所述选定侧表面的第一过渡子表面以及侧子表面,与所述多个第一电极中的一个第一电极电连接。
PCT/CN2021/111259 2020-09-24 2021-08-06 显示面板及其制备方法、显示装置及拼接显示装置 WO2022062723A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/926,791 US20230207733A1 (en) 2020-09-24 2021-08-06 Display panel and method for manufacturing the same, display apparatus, and tiled display apparatus
EP21871100.0A EP4187610A4 (en) 2020-09-24 2021-08-06 DISPLAY SCREEN, PREPARATION METHOD THEREFOR, DISPLAY DEVICE AND SPLICING DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011020278.7A CN114255665A (zh) 2020-09-24 2020-09-24 显示面板及其制备方法、显示装置及拼接显示装置
CN202011020278.7 2020-09-24

Publications (2)

Publication Number Publication Date
WO2022062723A1 WO2022062723A1 (zh) 2022-03-31
WO2022062723A9 true WO2022062723A9 (zh) 2023-02-16

Family

ID=80790220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111259 WO2022062723A1 (zh) 2020-09-24 2021-08-06 显示面板及其制备方法、显示装置及拼接显示装置

Country Status (5)

Country Link
US (1) US20230207733A1 (zh)
EP (1) EP4187610A4 (zh)
CN (1) CN114255665A (zh)
TW (1) TWI788749B (zh)
WO (1) WO2022062723A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220042562A (ko) * 2020-09-28 2022-04-05 엘지디스플레이 주식회사 표시 장치 및 다중 패널 표시 장치
TWI806538B (zh) * 2022-04-07 2023-06-21 友達光電股份有限公司 顯示裝置
CN115019655B (zh) * 2022-06-21 2024-04-02 Tcl华星光电技术有限公司 显示面板及其制备方法
WO2024011646A1 (zh) * 2022-07-15 2024-01-18 京东方科技集团股份有限公司 显示面板、显示装置、拼接显示装置
EP4451337A1 (en) * 2022-08-11 2024-10-23 Boe Technology Group Co., Ltd. Display panel, display device and tiled display device
CN118522840A (zh) * 2023-02-20 2024-08-20 京东方晶芯科技有限公司 显示面板、显示装置及显示面板的制备方法
CN118553759A (zh) * 2023-02-27 2024-08-27 京东方晶芯科技有限公司 显示面板及其制备方法、显示装置、拼接显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723445A (zh) * 2012-07-02 2012-10-10 广东威创视讯科技股份有限公司 Oled显示单元及带该显示单元的oled拼接显示屏
JP2014157400A (ja) * 2013-02-14 2014-08-28 Dainippon Printing Co Ltd 画像表示装置
CN106887468B (zh) * 2016-10-25 2021-01-15 京东方科技集团股份有限公司 薄膜晶体管、阵列基板及其制造方法和显示面板
KR102582059B1 (ko) * 2016-12-30 2023-09-21 엘지디스플레이 주식회사 표시 장치 및 이를 이용한 멀티 스크린 표시 장치
EP3644166A4 (en) * 2017-08-31 2020-07-15 Huawei Technologies Co., Ltd. DISPLAY SCREEN AND MOBILE TERMINAL
EP3633658B1 (en) * 2018-02-28 2022-10-05 Kyocera Corporation Display device, glass substrate, and method for manufacturing glass substrate
US10950685B2 (en) * 2018-03-29 2021-03-16 Innolux Corporation Tiled electronic device
CN110610658B (zh) * 2018-06-15 2022-04-01 群创光电股份有限公司 拼接式电子装置
CN108957878B (zh) * 2018-07-19 2022-03-11 武汉天马微电子有限公司 显示模组及其制备方法和显示装置
US10993347B2 (en) * 2018-11-20 2021-04-27 Innolux Corporation Electronic device and tiled electronic system comprising the same
CN109658831B (zh) * 2018-12-20 2021-05-04 厦门天马微电子有限公司 一种显示面板及显示装置
CN209728710U (zh) * 2019-05-14 2019-12-03 广州视源电子科技股份有限公司 触控屏的预备结构和触控屏
CN110211973B (zh) * 2019-06-12 2021-08-27 京东方科技集团股份有限公司 一种显示面板及制作方法
CN110164901B (zh) * 2019-06-25 2021-10-22 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板和显示装置
CN110503898A (zh) * 2019-08-28 2019-11-26 京东方科技集团股份有限公司 微发光二极管显示面板及制备方法、拼接显示面板、装置
CN110928004A (zh) * 2019-12-12 2020-03-27 武汉华星光电技术有限公司 显示屏及显示装置
CN212256800U (zh) * 2020-09-24 2020-12-29 京东方科技集团股份有限公司 显示面板、显示装置及拼接显示装置

Also Published As

Publication number Publication date
US20230207733A1 (en) 2023-06-29
TW202213308A (zh) 2022-04-01
WO2022062723A1 (zh) 2022-03-31
CN114255665A (zh) 2022-03-29
EP4187610A1 (en) 2023-05-31
EP4187610A4 (en) 2024-01-31
TWI788749B (zh) 2023-01-01

Similar Documents

Publication Publication Date Title
CN212256800U (zh) 显示面板、显示装置及拼接显示装置
WO2022062723A9 (zh) 显示面板及其制备方法、显示装置及拼接显示装置
TWI283378B (en) Electrooptic device, method for producing the same, and electronic apparatus
KR20200004751A (ko) 디스플레이 패널 및 이를 이용한 대형 디스플레이 장치
US11069721B2 (en) Display device and method of manufacturing the same
KR20070056553A (ko) 게이트 인 패널 구조 액정표시장치 및 그 제조 방법
JP2013205839A (ja) ラインオンガラス型液晶表示装置及びその製造方法
KR20190044015A (ko) 표시 장치 및 표시 장치 제조 방법
US6970225B2 (en) Electrooptic device, method for manufacturing the same, and electronic apparatus
CN113380779A (zh) 驱动基板、发光装置及其制备方法
CN113270457A (zh) 显示面板及其制备方法、显示装置及拼接显示装置
US20210366936A1 (en) Display substrate and manufacturing method thereof, display panel
WO2021022692A1 (zh) 显示面板及液晶显示器
TW202133138A (zh) 透明顯示裝置
CN103534643B (zh) 液晶显示装置以及其制造方法
CN114999338B (zh) 显示面板及制作方法、拼接显示装置
US20220393087A1 (en) Led display substrate and method for manufacturing the same, display panel
WO2022088534A1 (zh) 驱动背板及其制备方法和显示面板
JP2007250616A (ja) フレキシブル回路基板、フレキシブル回路基板の製造方法、及び電気光学装置、並びに電子機器
WO2011096244A1 (ja) 透明導電性基板の製造方法、透明導電性基板および表示素子
US20230168551A1 (en) Display panel, manufacturing method thereof, and display device
WO2023142155A1 (zh) 显示面板及显示装置
KR20050083433A (ko) 수평 전계형 액정 표시 장치 및 그 제조 방법
WO2024113143A1 (zh) 显示基板和显示装置
KR20060001702A (ko) 부식방지를 위한 액정표시소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021871100

Country of ref document: EP

Effective date: 20230222

NENP Non-entry into the national phase

Ref country code: DE