WO2022060084A1 - 이소부텐-이소프렌 공중합체의 할로겐화 방법 - Google Patents

이소부텐-이소프렌 공중합체의 할로겐화 방법 Download PDF

Info

Publication number
WO2022060084A1
WO2022060084A1 PCT/KR2021/012584 KR2021012584W WO2022060084A1 WO 2022060084 A1 WO2022060084 A1 WO 2022060084A1 KR 2021012584 W KR2021012584 W KR 2021012584W WO 2022060084 A1 WO2022060084 A1 WO 2022060084A1
Authority
WO
WIPO (PCT)
Prior art keywords
isobutene
isoprene copolymer
halogenating
mixed solution
halogenation
Prior art date
Application number
PCT/KR2021/012584
Other languages
English (en)
French (fr)
Inventor
백종열
정문곤
최경신
김원희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200120299A external-priority patent/KR20220037613A/ko
Priority claimed from KR1020200120663A external-priority patent/KR20220037783A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2022570411A priority Critical patent/JP7439303B2/ja
Priority to EP21869706.8A priority patent/EP4105244A4/en
Priority to US17/913,325 priority patent/US20230159673A1/en
Priority to CN202180026008.3A priority patent/CN115362183A/zh
Publication of WO2022060084A1 publication Critical patent/WO2022060084A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/24Haloalkylation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/08Butenes
    • C08F210/10Isobutene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens

Definitions

  • the present invention relates to a process for the halogenation of isobutene-isoprene copolymers.
  • butyl rubber is an isobutene-isoprene copolymer containing isobutene and about 1 to 6% isoprene, and has chemical resistance, moisture resistance, electrical insulation, etc. Because it is excellent, it is used for applications such as pressure-sensitive adhesive compositions and pressure-sensitive adhesive sheets. Isobutene, the main component of butyl rubber, exhibits excellent gas barrier properties, antioxidant properties, and thermal stability, but has a disadvantage that it cannot participate in the crosslinking reaction because there is no additional functional group in the polymer chain. To compensate for this, butyl rubber has unsaturated functional groups even after polymerization isoprene having a certain amount is included. However, since butyl rubber has a low isoprene content, there is still a disadvantage in that crosslinking reactivity is insufficient.
  • butyl rubber undergoes an additional bromination reaction on the double bond of isoprene to convert it to brominated butyl rubber, and is used by crosslinking/compounding with other rubbers.
  • Brominated butyl rubber has no gas permeability, so it is widely used as a main material for inner tubes and inner liners of tires.
  • an oxidizing agent such as hydrogen peroxide is used to oxidize hydrogen bromide back to bromine molecules to participate in the bromination reaction again.
  • the actual bromination level compared to the input amount of bromine molecules was still insignificant. Therefore, there is still a need to develop a method for further improving the economic efficiency and efficiency of the bromination reaction.
  • An object of the present invention is to suppress a side reaction in which a secondary allyl halogen functional group is rearranged with a primary allyl halogen functional group in a reaction for halogenating an isobutene-isoprene copolymer, thereby containing a secondary allyl halogen functional group having a terminal double bond in a high content It is to provide a method for producing a halogenated isobutene-isoprene copolymer.
  • the present invention provides a method comprising: (S1) preparing a mixed solution containing an isobutene-isoprene copolymer, an organic hypochlorite and a hydrocarbon solvent; and (S2) reacting the mixed solution with a halogenating agent to halogenate the isobutene-isoprene copolymer.
  • hydrogen halide a by-product
  • a halogenated isobutene-isoprene copolymer having a high content of secondary allyl halogen functional groups can be prepared by increasing the proportion of the halogenating agent participating in the reaction and suppressing rearrangement of secondary allyl halogen functional groups.
  • the halogenated isobutene-isoprene copolymer prepared according to the present invention can be effectively used for crosslinking reaction with other rubbers, so it is easy for industrial use.
  • the halogenation method of the isobutene-isoprene copolymer of the present invention comprises the steps of (S1) preparing a mixed solution containing the isobutene-isoprene copolymer, organic hypochlorite and a hydrocarbon solvent; and (S2) reacting the mixed solution with a halogenating agent to halogenate the isobutene-isoprene copolymer.
  • a bromine atom is inserted into a part of the isoprene repeating unit (Structure I) as follows, and a part of the isoprene repeating unit is present as it is, and the isoprene repeating unit is A repeating unit of secondary allyl bromide (structure II, exo-allylic bromide) and primary allyl bromide (structure III, endo-allylic bromide) is formed from the unit, and hydrogen bromide (HBr) is generated as a byproduct.
  • a halogenating agent such as a brominating agent
  • an oxidizing agent may be used in the bromination reaction system, and the oxidizing agent oxidizes hydrogen bromide (HBr) to HOBr, and then HOBr may be converted into bromine molecules by reacting with other hydrogen bromide molecules.
  • the thus formed bromine molecule can be used again as a bromination agent, thereby contributing to increasing the efficiency of the bromination reaction.
  • hydrogen peroxide an oxidizing agent that has been used in the past, has very low solubility in the organic layer, so it is located in the aqueous layer in the mixed solution, and the isobutene-isoprene copolymer and bromine molecules are located in the organic layer in the mixed solution, resulting in bromination Since hydrogen is also located in the organic layer, it is necessary for the hydrogen bromide to move into the aqueous layer in order for the oxidizing agent to contact and react with the hydrogen bromide. This inhibits the reactivity between the oxidizing agent and hydrogen bromide and acts as a factor preventing the regeneration of hydrogen bromide into bromine molecules.
  • the present inventors studied to further promote the regeneration of hydrogen bromide into bromine molecules in order to increase the bromination efficiency of the isobutene-isoprene copolymer, and organic hypochlorite, which is easily soluble in the organic layer, was used as an oxidizing agent. Through this, hydrogen bromide generated as a by-product can easily and quickly contact organic hypochlorite floating in the same organic layer, thereby promoting the regeneration reaction of hydrogen bromide. Through this, when the same amount of bromine molecules is used, the following bromine utilization (%), which indicates the degree to which the bromine molecules actually participate in the bromination reaction of the isobutene-isoprene copolymer and are combined, can be improved.
  • the step (S1) is to prepare a mixed solution including the isobutene-isoprene copolymer, organic hypochlorite, and a hydrocarbon solvent, and to prepare a reactant for the halogenation reaction.
  • the isobutene-isoprene copolymer contains 1 to 10 mol%, 1 to 8 mol%, or 1 to 5 mol%, or 1 to 3 mol% of isoprene-derived units compared to the isobutene-isoprene copolymer.
  • the present invention is not limited thereto, and any copolymer having an appropriate composition and molecular weight may be selected according to the purpose or use and may be applied to the present invention.
  • the step (S1) may be performed by first preparing an isobutene-isoprene copolymer solution (butyl rubber solution) by mixing an isobutene-isoprene copolymer and a hydrocarbon solvent, and then mixing organic hypochlorite. .
  • an isobutene-isoprene copolymer solution butyl rubber solution
  • a step of stirring to sufficiently dissolve the isobutene-isoprene copolymer may be further performed.
  • the step (S1) may include mixing isobutene-isoprene copolymer, organic hypochlorite and a hydrocarbon solvent and stirring for 10 seconds to 60 minutes, the stirring time is 10 seconds or more, 20 seconds or more, 30 seconds or more, 50 seconds or more, 60 minutes or less, 30 minutes or less, 20 minutes or less, 10 minutes or less, and 3 minutes or less.
  • step (S1) may be performed by preparing a butyl rubber solution in which an isobutene-isoprene copolymer and a hydrocarbon solvent are mixed, adding organic hypochlorite to prepare a mixed solution, and stirring for 10 seconds to 60 minutes.
  • the dispersibility of organic hypochlorite in the mixed solution can be enhanced by performing premixing by stirring the mixed solution in advance before reacting with the brominating agent. This helps the reaction between organic hypochlorite and hydrogen bromide to occur more smoothly after the bromination reaction, thereby promoting the regeneration of hydrogen bromide into bromine molecules, thereby improving the regeneration efficiency.
  • the organic hypochlorite may be a compound represented by the following formula (1).
  • R is an alkyl group having 1 to 10 carbon atoms.
  • R may be an alkyl group having 4 to 10 carbon atoms, and in terms of securing stability to light exposure, the carbon adjacent to the oxygen atom of Formula 1 is preferably a tertiary carbon.
  • R is tert-butyl (tert-butyl), tert-pentyl (tert-pentyl), 2-methylpentan-2-yl (2-methylpentan-2-yl), 2,3-dimethylbutan-2- yl (2,3-dimethylbutan-2-yl, 2-methylhexan-2-yl (2-methylhexan-2-yl), 2,4-dimethylpentan-2-yl (2,4-dimethylpentan-2-yl) ), 2,3-dimethylpentan-2-yl (2,3-dimethylpentan-2-yl) or 2,3,3-trimethylbutan-2-yl (2,3,3-trimethylbutan-2-yl), etc. can, but is not limited thereto.
  • the organic hypochlorite is 0.1 to 2.0 equivalents based on 1 equivalent of the halogenating agent, specifically 0.1 equivalents or more, 0.2 equivalents or more, 2.0 equivalents or less, 1.0 equivalents or less, 0.8 equivalents or less, 0.6 equivalents or less, less than 0.5 equivalents; It may be less than or equal to 0.4 equivalents.
  • the halogenating agent may be, for example, a brominating agent.
  • the chlorine-carbon bond has a higher binding energy than the bromine-carbon bond, so the leaving ability is lowered, so the crosslinking rate is lowered. It is difficult to obtain the physical properties of This causes a problem in that the cross-linking cannot be achieved as much as a target within a set time, leading to deterioration of physical properties.
  • organic hypochlorite can sufficiently perform a role as an oxidizing agent for converting hydrogen bromide into a brominating agent, and the bromine utilization or the bromination content of the brominated isobutene-isoprene copolymer can be significantly improved.
  • the mixed solution may contain 15 wt% or less, or 10 wt% or less of water based on the total weight of the mixed solution, preferably, less than 10 wt%, 5 wt% or less, 3 wt% or less, Preferably, it may contain less than 1% by weight.
  • oxidizing agents Materials that have been conventionally used as oxidizing agents are water-soluble, and therefore, an emulsion has to be formed by separately adding water to the mixed solution. If water is not used, the oxidizing agent is not sufficiently dispersed in the mixed solution, resulting in low reactivity with hydrogen bromide. Accordingly, the process of regenerating hydrogen bromide as a brominating agent did not proceed well, and eventually, the bromine utilization rate in the bromination reaction of the isobutene-isoprene copolymer was lowered.
  • organic hypochlorite used as an oxidizing agent in the present invention is easily dissolved in the organic layer, there is no need to form a separate emulsion to react it with hydrogen bromide. Accordingly, since water is not included in some reactants in the mixed solution except for the minimum amount of water included as an impurity, the water content of the mixed solution may be minimized. In the present invention, even if water is not used in the mixed solution, there is no problem in the dispersibility of organic hypochlorite, and precipitation of the isobutene-isoprene copolymer can be prevented while maintaining the bromine utilization at the same level.
  • the hydrocarbon solvent may be an aliphatic hydrocarbon solvent or an aromatic hydrocarbon solvent.
  • the aliphatic hydrocarbon solvent may be at least one selected from the group consisting of butane, pentane, neopentane, hexane, cyclohexane, methylcyclohexane, heptane and octane
  • the aromatic hydrocarbon solvent is benzene, toluene, xylene
  • it may be at least one selected from the group consisting of ethylbenzene, and more preferably, the hydrocarbon solvent may be hexane, but is not limited thereto.
  • the mixed solution may further include alcohol.
  • step (S1) it is important to quickly separate the hydrogen halide into a separate aqueous layer after halogenation of the isobutene-isoprene copolymer before further reaction with the hydrogen halide occurs. Therefore, it is preferable not to separately add water during the halogenation reaction, but to add alcohol into the reaction system before the halogenation starts as in step (S1).
  • the alcohol may be 0.1 to 20 parts by weight based on 100 parts by weight of the hydrocarbon solvent, specifically, 0.1 parts by weight or more, 0.5 parts by weight or more, 10 parts by weight or more, 20 parts by weight or less, 15 parts by weight or less. .
  • alcohol sufficiently implements the byproduct suppression effect to prevent rearrangement of the isobutene-isoprene copolymer, economic feasibility is not reduced, and excessive energy may not be consumed in the drying process after the halogenation reaction is terminated.
  • the type of the alcohol is not particularly limited, but in consideration of the ease of drying after the completion of the halogenation reaction of the isobutene-isoprene copolymer, it may be an alcohol having 1 to 4 carbon atoms, for example, methanol, ethanol, propanol, Isopropyl alcohol, 1-butanol, 2-butanol, tert-butanol, or mixtures thereof may be used.
  • the step (S2) is a step of halogenating the isobutene-isoprene copolymer by reacting the mixed solution prepared in step (S1) with a halogenating agent. hydrogen halide is produced.
  • the halogenating agent may be a bromine molecule (Br 2 ) or a chlorine molecule (Cl 2 ), specifically, a bromine molecule (Br 2 ).
  • the halogenating agent is 0.2 to 0.8 equivalents based on 1 equivalent of the isobutene-isoprene copolymer, specifically 0.2 equivalents or more, 0.3 equivalents or more, 0.4 equivalents or more, 0.8 equivalents or less, 0.7 equivalents or less, 0.6 equivalents or less, such as 0.5 may be equivalent.
  • the halogenating agent may be dissolved in a hydrocarbon solvent and used in the form of a composition
  • the hydrocarbon solvent may be an aliphatic hydrocarbon solvent or an aromatic hydrocarbon solvent.
  • the aliphatic hydrocarbon solvent may be at least one selected from the group consisting of butane, pentane, neopentane, hexane, cyclohexane, methylcyclohexane, heptane and octane
  • the aromatic hydrocarbon solvent is benzene, toluene, xylene
  • it may be at least one selected from the group consisting of ethylbenzene, and more preferably, hexane may be used, but is not limited thereto.
  • the hydrocarbon solvent for dissolving the halogenating agent may be the same as or different from the hydrocarbon solvent used for preparing the mixed solution in step (S1), and preferably hexane may be used in the same manner.
  • the composition including the halogenating agent may include 10 wt% or more, 15 wt% or more, 50 wt% or less, 30 wt% or less, such as 20 wt%, of the halogenating agent relative to the composition, but is not limited thereto.
  • the halogenation in step (S2) may be performed at 10 to 80°C, 10°C or more, 30°C or more, 40°C or more, 80°C or less, 60°C or less, such as 40°C.
  • the halogenation in step (S2) is 10 seconds to 60 minutes, specifically 10 seconds or more, 30 seconds or more, 3 minutes or more, 60 minutes or less, 30 minutes or less, 10 minutes or less, 7 minutes or less, such as 5 can be performed for minutes.
  • the halogenation reaction proceeds for a sufficient time, so that the degree of halogenation of the isobutene-isoprene copolymer is high, and the content of structure III in the halogenated isobutene-isoprene copolymer increases due to the halogenation overreaction, resulting in lowered physical properties can be prevented from becoming
  • the present invention may further include (S3) reacting with a basic material.
  • step (S2) Even if the above-described step (S2) is performed, since some hydrogen halide still remains, it can be reacted with a basic material to be neutralized by an acid-base reaction.
  • the basic material may use a pH of 10 to 14, specifically alkali metal hydroxide, alkaline earth metal hydroxide, alkali metal carbonate, alkaline earth metal carbonate, etc., for example, potassium hydroxide, sodium hydroxide, calcium hydroxide, carbonate It may be potassium, sodium carbonate, calcium carbonate, etc., but is not limited thereto.
  • the step (S3) may be carried out at 10 to 40 °C, specifically at 10 °C or more, 15 °C or more, 18 °C or more, 40 °C or less, 30 °C or less, 25 °C or less, such as at 20 °C can be performed.
  • the step (S3) may be performed for 3 minutes to 30 minutes, specifically 3 minutes or more, 5 minutes or more, 7 minutes or more, 30 minutes or less, 20 minutes or less, 15 minutes or less, for example, 10 minutes.
  • reaction time of the step (S3) is less than 3 minutes, the reaction cannot be sufficiently terminated, and there is a risk that the unreacted halogenating agent remains and acts as a toxic substance.
  • the hydrogen halide is converted into the halogenating agent by using organic hypochlorite as the oxidizing agent and reused in the reaction, the content of the remaining hydrogen halide after the reaction is very small. Accordingly, the alkali metal halide generated by the reaction of the hydrogen halide and the basic substance is also less generated, and the time or cost required for the disposal of the alkali metal halide can be reduced, and the toxicity problem can be solved.
  • a brominated isobutene-isoprene copolymer was prepared in the same manner as in Example 1 except that premixing was not performed.
  • a brominated isobutene-isoprene copolymer was prepared in the same manner as in Example 1, except that 0.28 g of water (10 parts by weight based on 100 parts by weight of hexane) was additionally included in the mixed solution.
  • a brominated isobutene-isoprene copolymer was prepared in the same manner as in Example 1, except that 0.28 g of water (10 parts by weight based on 100 parts by weight of hexane) was additionally included in the mixed solution and preliminary mixing was not performed.
  • a brominated isobutene-isoprene copolymer was prepared in the same manner as in Example 1, except that 4.4 mg (0.50 equivalents based on 1 equivalent of the brominating agent) was used as an oxidizing agent, organic hypochlorite, t-BuOCl.
  • Example except that 0.28 g of water (10 parts by weight based on 100 parts by weight of hexane) was additionally included in the mixed solution and 4.4 mg of t-BuOCl, an organic hypochlorite, as an oxidizing agent (0.50 equivalents based on 1 equivalent of brominating agent) was used.
  • t-BuOCl an organic hypochlorite, as an oxidizing agent (0.50 equivalents based on 1 equivalent of brominating agent) was used
  • a brominated isobutene-isoprene copolymer was prepared in the same manner as in 1.
  • a brominated isobutene-isoprene copolymer was prepared in the same manner as in Example 1, except that 0.28 g of methanol (10 parts by weight based on 100 parts by weight of hexane) was further added to the mixed solution.
  • a brominated isobutene-isoprene copolymer was prepared in the same manner as in Example 1, except that 0.28 g of ethanol (10 parts by weight based on 100 parts by weight of hexane) was further added to the mixed solution.
  • a brominated isobutene-isoprene copolymer was prepared in the same manner as in Example 1, except that 0.28 g of isopropyl alcohol (10 parts by weight based on 100 parts by weight of hexane) was further added to the mixed solution.
  • a brominated isobutene-isoprene copolymer was prepared in the same manner as in Example 1, except that 0.14 g of methanol (5 parts by weight based on 100 parts by weight of hexane) was further added to the mixed solution.
  • a brominated isobutene-isoprene copolymer was prepared in the same manner as in Example 1, except that the reaction conditions were changed as shown in Table 1 below.
  • Example 1 Bromine Utilization (%) Example 1 56 Example 2 48 Example 3 57 Example 4 49 Example 5 60 Example 6 61 Example 7 56 Example 8 57 Example 9 57 Example 10 56 Comparative Example 1 30 Comparative Example 2 30 Comparative Example 3 36 Comparative Example 4 36 Comparative Example 5 40 Comparative Example 6 27 Comparative Example 7 35 Comparative Example 8 40 Comparative Example 9 43 Comparative Example 10 44
  • the bromine utilization is an expression of the degree of bromination caused by actually being inserted into the isobutene-isoprene copolymer among the compounds used as the bromination agent.
  • Examples 1 to 10 in which the isobutene-isoprene copolymer was brominated according to the method presented in the present invention, Comparative Examples 1 and 2 without using an oxidizing agent, It was confirmed that compared to Comparative Examples 3 to 5 using hydrogen peroxide and Comparative Examples 6 to 10 using metal hypochlorite, higher bromine utilization was observed.
  • Comparative Examples 8 to 10 used an oxidizing agent in an equivalent amount of at least twice that of Example 4, but it was found that the degree of bromine actually inserted did not reach that level, resulting in lower bromine utilization.
  • the ratio of the internal structure was calculated through 1 H NMR (CDCl 3 ) analysis of the brominated isobutene-isoprene copolymer of the Examples and Comparative Examples.
  • the structure I content (mol%) represents the proportion of isoprene repeating units in which bromine is not inserted in one strand of the isobutene-isoprene copolymer chain.
  • the bromination content (mol %) represents the ratio of repeating units in which bromine is inserted in one isobutene-isoprene copolymer chain, and is an indicator indicating how far the bromination reaction has progressed in the isobutene-isoprene copolymer.
  • the chlorination content (mol%) represents the proportion of repeating units in which chlorine is inserted in one strand of the isobutene-isoprene copolymer chain.
  • the structure II ratio (%) indicates the proportion of structure II among the brominated repeating units (structures II and III).
  • Example 1 0.77 1.02 ⁇ 0.05 90
  • Example 2 0.92 0.87 ⁇ 0.05 91
  • Example 3 0.76 1.03 ⁇ 0.05 90
  • Example 4 0.90 0.89 ⁇ 0.05 90
  • Example 5 0.46 1.08 0.25 91
  • Example 6 0.45 1.10 0.25 90
  • Example 7 0.55 0.97 ⁇ 0.05 98
  • Example 8 0.53 0.96 ⁇ 0.05 97
  • Example 9 0.57 0.94 ⁇ 0.05 98
  • Example 10 0.58 0.94 ⁇ 0.05 98 Comparative Example 1 1.20 0.60 - 73 Comparative Example 2 1.18 0.61 - 92 Comparative Example 3 1.11 0.68 - 92 Comparative Example 4 1.10 0.69 - 91 Comparative Example 5 1.03 0.77 - 90 Comparative Example 6 1.25 0.53 ⁇ 0.05 90 Comparative Example 7 1.15 0.64 ⁇ 0.05 90 Comparative Example 8 1.08 0.70 ⁇ 0.05 91 Comparative Example 9 0.90 0.74 0.15 85 Comparative Example 10 0.74 0.75
  • an isobutene-isoprene copolymer having a higher bromination content than in Comparative Example could be prepared, which was obtained by using an organic hypochlorite as an oxidizing agent to prepare a brominated isobutene-isoprene copolymer having excellent crosslinking performance indicating that it can be done.
  • Example 4 using t-BuOCl as an oxidizing agent showed a higher bromination content than Comparative Example 3 using hydrogen peroxide as an oxidizing agent of the same equivalent.
  • Examples 2 and 4 in which t-BuOCl was used as an oxidizing agent had a higher bromination content compared to Comparative Examples 6 and 7 in which NaOCl was used as an oxidizing agent of the same equivalent.
  • Examples 1 and 3 in which pre-mixing was performed showed a higher bromination content compared to Examples 2 and 4 in which this was omitted.
  • the oxidizing agent equivalent was the highest, and thus the bromination content was the largest.
  • Comparative Example 4 in which the water content is less than 1% while using hydrogen peroxide, has a lower bromination content compared to Comparative Example 5, and the water content while using NaOCl Comparative Example 6, which was less than 1%, showed a lower bromination content than Comparative Example 7.
  • Comparative Examples 5 and 7 although the utilization of bromine was slightly increased due to the addition of water, it was visually observed that precipitates of the isobutene-isoprene copolymer occurred.

Abstract

본 발명은 이소부텐-이소프렌 공중합체의 할로겐화 방법에 관한 것이다. 본 발명의 방법을 이용함으로써 부산물인 할로겐화수소를 신속하게 할로겐화제로 재생시켜 다시 사용할 수 있다. 결과적으로는, 할로겐화제가 반응에 참여하는 비율을 높이고 2차 알릴 할로겐 작용기의 재정렬을 억제하여, 2차 알릴 할로겐 작용기의 함량이 높은 할로겐화 이소부텐-이소프렌 공중합체를 제조할 수 있다. 본 발명에 따라 제조된 할로겐화 이소부텐-이소프렌 공중합체는 다른 고무와의 가교 반응에 효과적으로 사용될 수 있어 산업상 이용에 용이하다.

Description

이소부텐-이소프렌 공중합체의 할로겐화 방법
관련 출원과의 상호 인용
본 출원은 2020년 9월 18일자 한국 특허 출원 2020-0120299 및 2020년 9월 18일자 한국 특허 출원 2020-0120663에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이소부텐-이소프렌 공중합체의 할로겐화 방법에 관한 것이다.
부틸고무(이소부텐-이소프렌 고무, isobutene-isoprene rubber, IIR)는 이소부텐과 약 1 내지 6%의 이소프렌이 함유되어 있는 이소부텐-이소프렌 공중합체로서, 내화학성, 내습성, 전기절연성, 등이 우수하여 점착 조성물, 점착 시트 등의 용도로 이용된다. 부틸고무의 주성분인 이소부텐은 뛰어난 기체 차단성과 항산화성, 열 안정성 등을 나타내지만, 고분자 사슬 내에 추가적인 작용기가 없어 가교 반응에 참여할 수 없는 단점이 있고, 이를 보완하기 위해 부틸고무에는 중합 후에도 불포화 작용기를 가지는 이소프렌이 일정 함량 포함된다. 그러나, 부틸고무에는 이소프렌 함량이 적기 때문에 여전히 가교 반응성이 부족한 단점이 있다.
이를 해결하기 위해 부틸고무는 이소프렌의 이중결합에 추가적인 브롬화 반응을 진행하여 브롬화 부틸고무로 전환함으로써 다른 고무와 가교/컴파운딩시켜 사용하고 있다. 브롬화 부틸고무는 기체 투과성이 없는 특징이 있어 타이어의 내부 튜브 및 내부 라이너 등의 주재료로 널리 이용되고 있다.
상기 브롬화 반응의 경우, 브롬화 과정에서 브로민화수소(HBr)가 발생하기 때문에 브롬화 반응에 사용한 브롬 분자(Br2) 대비 실제 이소부텐-이소프렌 공중합체가 브롬화되는 비율에는 한계가 있다. 또한, 브롬화 반응 후 생성된 부산물인 브로민화수소는 이후 염기성 물질로 중화시켜야 하는데, 중화 반응에 따라 다량의 알칼리 금속 브로민화물이 다량으로 폐기, 낭비되는 문제점이 있다.
종래에는 부틸고무의 브롬화 반응에서 브롬화도를 향상시키기 위해, 브로민화수소를 다시 브롬 분자로 산화시켜 브롬화 반응에 다시 참여시키기 위한 목적으로 과산화수소 등 산화제를 사용하였다. 그러나, 이를 사용하더라도 여전히 브롬 분자의 투입량 대비 실제 브롬화된 정도는 미미한 수준이었다. 따라서, 브롬화 반응의 경제성과 효율성을 더욱 향상시키기 위한 방법의 개발이 여전히 요구된다.
[선행기술문헌]
[특허문헌]
일본공개특허 2020-513055
본 발명의 목적은 이소부텐-이소프렌 공중합체를 할로겐화시키는 반응에서 2차 알릴 할로겐 작용기가 1차 알릴 할로겐 작용기로 재정렬되는 부반응을 억제함으로써, 말단 이중결합을 가지는 2차 알릴 할로겐 작용기를 고함량으로 함유하는 할로겐화 이소부텐-이소프렌 공중합체의 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위해, 본 발명은 (S1) 이소부텐-이소프렌 공중합체, 유기 하이포클로라이트 및 탄화수소 용매를 포함하는 혼합 용액을 준비하는 단계; 및 (S2) 상기 혼합 용액을 할로겐화제와 반응시켜 이소부텐-이소프렌 공중합체를 할로겐화하는 단계;를 포함하는 이소부텐-이소프렌 공중합체의 할로겐화 방법을 제공한다.
본 발명의 방법을 이용함으로써 부산물인 할로겐화수소를 신속하게 할로겐화제로 재생시켜 다시 사용할 수 있다. 결과적으로는, 할로겐화제가 반응에 참여하는 비율을 높이고, 2차 알릴 할로겐 작용기의 재정렬을 억제하여, 2차 알릴 할로겐 작용기의 함량이 높은 할로겐화 이소부텐-이소프렌 공중합체를 제조할 수 있다.
본 발명에 따라 제조된 할로겐화 이소부텐-이소프렌 공중합체는 다른 고무와의 가교 반응에 효과적으로 사용될 수 있어 산업상 이용에 용이하다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 이소부텐-이소프렌 공중합체의 할로겐화 방법은 (S1) 이소부텐-이소프렌 공중합체, 유기 하이포클로라이트 및 탄화수소 용매를 포함하는 혼합 용액을 준비하는 단계; 및 (S2) 상기 혼합 용액을 할로겐화제와 반응시켜 이소부텐-이소프렌 공중합체를 할로겐화하는 단계;를 포함하는 것을 특징으로 한다.
이소부텐-이소프렌 공중합체를 할로겐화제, 예컨대 브롬화제와 반응시켜 브롬화 반응을 진행할 경우, 아래와 같이 이소프렌 반복 단위(구조 I)의 일부에 브롬 원자가 삽입되어, 일부는 이소프렌 반복 단위 그대로 존재하고, 이소프렌 반복 단위로부터 2차 알릴 브로마이드(구조 II, exo-allylic bromide) 및 1차 알릴 브로마이드(구조 III, endo-allylic bromide)의 반복 단위가 생성되며, 부산물로는 브로민화수소(HBr)가 발생한다.
Figure PCTKR2021012584-appb-I000001
브로민화수소는 다른 물질로 전환되지 않는 한 혼합 용액 내 잔류하더라도 브롬화 반응에 참여할 수 없을 뿐 아니라, 독성을 나타낼 수 있고, 이를 제거하기 위해 염기성 물질로 중화시킬 경우 알칼리 금속 브로민화물이 발생하여 폐기물이 발생하는 문제가 있다.
또한, 브로민화수소가 용액 내 계속해서 잔존할 경우 브롬화가 진행된 이소부텐-이소프렌 공중합체와 추가적으로 반응을 일으킬 수 있다. 이 경우 구조 II에서 구조 III로 구조 재정렬이 일어나는 부반응을 일으켜 브롬화된 이소부텐-이소프렌 공중합체가 원하지 않는 가교성을 가지게 되는 문제가 나타날 수 있다. 할로겐화 이소부텐-이소프렌 공중합체의 가교 성능을 일정하게 유지하기 위해서는 이러한 구조 재정렬을 방지하는 것이 중요하다.
Figure PCTKR2021012584-appb-I000002
브로민화수소가 잔류함으로써 발생하는 부작용과 구조 재정렬을 억제하기 위해, 브로민화수소를 다시 브롬화제인 Br2로 재생시켜 브롬화 반응에 사용하는 것이 중요하다. 이를 위해서는 브롬화 반응계에 산화제를 함께 사용할 수 있는데, 산화제는 브로민화수소(HBr)를 HOBr로 산화시키고, 이후 HOBr은 다른 브로민화수소 분자와 반응함으로써 브롬 분자로 전환될 수 있다. 이와 같이 형성된 브롬 분자로 또다시 브롬화제로 사용될 수 있으므로 브롬화 반응의 효율성을 높이는데 기여한다.
Figure PCTKR2021012584-appb-I000003
다만, 기존에 사용되어 오던 산화제인 과산화수소 등은 유기층 용해도가 매우 낮아 혼합 용액 내에서 수성층에 위치하게 되고, 이소부텐-이소프렌 공중합체와 브롬 분자는 혼합 용액 내 유기층에 위치하여 이로부터 생성된 브로민화수소 또한 유기층에 위치하므로, 산화제가 브로민화수소와 접촉하여 반응하기 위해서는 브로민화수소가 수성층으로 이동하는 것이 필요하다. 이는 산화제와 브로민화수소의 반응성을 저해하여 브로민화수소가 브롬 분자로 재생되는 것을 방해하는 요인으로 작용한다.
본 발명자들은 이소부텐-이소프렌 공중합체의 브롬화 효율을 높이기 위해 브로민화수소가 브롬 분자로 재생되는 것을 더욱 촉진시키고자 연구하였고, 산화제로서 유기층에 쉽게 용해되는 유기 하이포클로라이트를 사용하였다. 이를 통해 부산물로 생성된 브로민화수소가 같은 유기층 내 부유하는 유기 하이포클로라이트와 쉽고 빠르게 접촉함으로써 브로민화수소의 재생 반응이 촉진될 수 있다. 이를 통해 같은 양의 브롬 분자를 사용하였을 때 브롬 분자가 이소부텐-이소프렌 공중합체의 브롬화 반응에 실제 참여하여 결합되는 정도를 나타내는, 하기 브롬 활용도(%)를 증진시킬 수 있다.
- 브롬 활용도(%) = (이소부텐-이소프렌 공중합체에 결합된 브롬 원자 수)/(브롬화 반응에 투입된 브롬 원자 수) × 100
단계 (S1)
상기 단계 (S1)은 이소부텐-이소프렌 공중합체, 유기 하이포클로라이트 및 탄화수소 용매를 포함하는 혼합 용액을 준비하는 단계로, 할로겐화 반응을 위한 반응물을 준비하는 것이다.
본 발명에서, 상기 이소부텐-이소프렌 공중합체는 이소부텐-이소프렌 공중합체 대비 1 내지 10몰%, 1 내지 8몰%, 또는 1 내지 5몰%, 또는 1 내지 3몰%의 이소프렌 유래 단위를 함유하는 것을 사용할 수 있지만 이에 제한되지 않고, 목적이나 용도에 따라 적절한 조성, 분자량의 공중합체를 선택하여 모두 본 발명에 적용할 수 있다.
본 발명에서, 상기 단계 (S1)은 이소부텐-이소프렌 공중합체 및 탄화수소 용매를 혼합하여 이소부텐-이소프렌 공중합체 용액(부틸고무 용액)을 먼저 제조한 후 유기 하이포클로라이트를 혼합함으로써 수행될 수 있다. 부틸고무 용액 제조 시 이소부텐-이소프렌 공중합체 및 탄화수소 용매를 혼합한 이후 이소부텐-이소프렌 공중합체를 충분히 용해시키기 위해 교반하는 단계를 더 수행할 수 있다.
또한, 상기 단계 (S1)은 이소부텐-이소프렌 공중합체, 유기 하이포클로라이트 및 탄화수소 용매를 혼합하고 10초 내지 60분 동안 교반하는 단계를 포함할 수 있고, 상기 교반 시간은 10초 이상, 20초 이상, 30초 이상, 50초 이상, 60분 이하, 30분 이하, 20분 이하, 10분 이하, 3분 이하일 수 있다.
예컨대, 이소부텐-이소프렌 공중합체 및 탄화수소 용매를 혼합한 부틸고무 용액을 제조하고 유기 하이포클로라이트를 투입하여 혼합 용액을 준비하고 10초 내지 60분 동안 교반함으로써 단계 (S1)을 수행할 수 있다.
상기와 같이 혼합 용액을 브롬화제와 반응시키기 이전 미리 교반하여 예비혼합(premix)을 수행함으로써 혼합 용액 내 유기 하이포클로라이트의 분산성을 강화시킬 수 있다. 이는 브롬화 반응 이후 유기 하이포클로라이트와 브로민화수소의 반응이 더욱 원활하게 일어나도록 도와주므로, 결국 브로민화수소가 브롬 분자로 재생되는 것을 촉진하여 재생 효율을 향상시키게 된다.
본 발명에서, 상기 유기 하이포클로라이트는 하기 화학식 1으로 표시되는 화합물일 수 있다.
[화학식 1]
Figure PCTKR2021012584-appb-I000004
상기 화학식 1에서,
R은 탄소수 1 내지 10의 알킬기이다.
구체적으로, 상기 R은 탄소수 4 내지 10의 알킬기일 수 있고, 빛 노출(light exposure)에 대한 안정성을 확보하기 위한 측면에서, 화학식 1의 산소 원자에 인접한 탄소는 3차 탄소인 것이 바람직하다. 예컨대, 상기 R은 tert-부틸(tert-butyl), tert-펜틸(tert-pentyl), 2-메틸펜탄-2-일(2-methylpentan-2-yl), 2,3-디메틸부탄-2-일(2,3-dimethylbutan-2-yl, 2-메틸헥산-2-일(2-methylhexan-2-yl), 2,4-디메틸펜탄-2-일(2,4-dimethylpentan-2-yl), 2,3-디메틸펜탄-2-일(2,3-dimethylpentan-2-yl) 또는 2,3,3-트리메틸부탄-2-일(2,3,3-trimethylbutan-2-yl) 등일 수 있으나, 이에 제한되지 않는다.
본 발명에서, 상기 유기 하이포클로라이트는 할로겐화제 1 당량 기준 0.1 내지 2.0 당량, 구체적으로 0.1 당량 이상, 0.2 당량 이상, 2.0 당량 이하, 1.0 당량 이하, 0.8 당량 이하, 0.6 당량 이하, 0.5 당량 미만, 0.4 당량 이하일 수 있다. 상기 할로겐화제는 예컨대 브롬화제일 수 있다.
상기 유기 하이포클로라이트가 과량일 경우, 유기 하이포클로라이트는 HCl과 반응하여 염소 분자(Cl2)를 생성시킬 수 있게 되며, 이는 미반응 이소부텐-이소프렌 공중합체와 반응하여 염소화를 진행시키는 부반응을 초래하게 된다.
Figure PCTKR2021012584-appb-I000005
브롬화 대신 일부 염소화가 될 경우, 염소-탄소 결합은 브롬-탄소 결합보다 결합 에너지가 높아 leaving 능력이 떨어지기 때문에 가교 속도가 낮아지며, 고무 제조 이후 배합제 가교(vulcanization) 특성이 달라져서 상업적으로 요구되는 최적의 물성 확보가 어렵게 된다. 이는 정해진 시간 내 목표한 만큼의 가교를 달성하지 못하여 물성 저하로 이어지게 되는 문제가 나타난다.
상기 범위 내에서, 유기 하이포클로라이트가 브로민화수소를 브롬화제로 전환시키는 산화제로서의 역할을 충분히 수행할 수 있고, 브롬 활용도나 브롬화 이소부텐-이소프렌 공중합체의 브롬화 함량이 현저히 향상될 수 있다.
본 발명에서, 상기 혼합 용액은 혼합 용액 총 중량 기준 물을 15 중량% 이하, 또는 10 중량% 이하로 포함할 수 있고, 바람직하게는, 10 중량% 미만, 5 중량% 이하, 3 중량% 이하, 바람직하게는 1 중량% 미만 포함하는 것일 수 있다.
종래 산화제로 사용되어 온 물질들은 수용성으로서 혼합 용액에 별도로 물을 첨가하여 에멀젼을 형성해야 했고, 물을 사용하지 않을 경우 산화제가 혼합 용액에 충분히 분산되지 못하여 브로민화수소와의 반응성이 낮아졌다. 그에 따라 브로민화수소를 브롬화제로 재생시키는 과정이 잘 진행되지 못하고, 결국 이소부텐-이소프렌 공중합체의 브롬화 반응에서 브롬 활용도가 낮아지게 되는 문제를 초래하였다. 그러나, 혼합 용액에 물을 사용할 경우, 이소부텐-이소프렌 공중합체의 용해도가 낮아지고 석출 가능성이 높아지는 또 다른 문제가 발생할 수 있어, 브롬 활용도 개선과 이소부텐-이소프렌 공중합체의 석출 방지를 모두 달성하는 것은 어려웠다.
한편, 본 발명에서 산화제로 사용하는 유기 하이포클로라이트는 유기층에 쉽게 용해되므로 이를 브로민화수소와 반응시키기 위해 별도의 에멀젼을 형성할 필요가 없다. 따라서 혼합 용액 내 일부 반응물에 불순물로 포함된 최소한의 물을 제외하고는 물이 포함되지 않으므로, 상기 혼합 용액은 물 함량을 최소화할 수 있다. 본 발명에서는 혼합 용액에 물을 사용하지 않더라도 유기 하이포클로라이트의 분산성에 문제가 없어, 브롬 활용도는 동등 수준으로 유지하면서 이소부텐-이소프렌 공중합체의 석출은 방지할 수 있다.
본 발명에서, 상기 탄화수소 용매는 지방족 탄화수소 용매 또는 방향족 탄화수소 용매일 수 있다. 예로서, 상기 지방족 탄화수소 용매는 부탄, 펜탄, 네오펜탄, 헥산, 사이클로헥산, 메틸사이클로헥산, 헵탄 및 옥탄으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 상기 방향족 탄화수소 용매는 벤젠, 톨루엔, 자일렌 및 에틸벤젠으로 이루어진 군으로부터 선택되는 1종 이상일 수 있고, 보다 바람직하게 상기 탄화수소 용매는 헥산일 수 있으나, 이에 제한되지 않는다.
본 발명에서, 상기 혼합 용액은 알코올을 더 포함할 수 있다.
상술한 바와 같이 할로겐화수소와 유기 하이포클로라이트를 반응시켜 할로겐화제로 재생시켜 사용하더라도, 일부 할로겐화수소가 여전히 유기층 내에 잔류하여 구조 II의 재정렬을 유도할 가능성을 완전히 제거할 수는 없다. 이에, 혼합 용액에 알코올을 더 포함함으로써, 할로겐화제로 재생되지 못한 할로겐화수소를 수성층에 용해시켜 유기층 내 할로겐화 이소부텐-이소프렌 공중합체와의 접촉을 물리적으로도 방지할 수 있다.
또한, 수성층 형성을 위해 물이 아닌 알코올을 사용하였는데, 옥소늄 이온의 고유 pKa가 작기 때문에 할로겐화수소의 이온화 경향성을 함께 낮출 수 있고, 결과적으로는 할로겐화 이온의 수를 감소시켜 구조 재정렬을 효과적으로 억제할 수 있다.
상기와 같이, 이소부텐-이소프렌 공중합체의 할로겐화 후 할로겐화수소와 추가 반응이 일어나기 전에 신속하게 할로겐화수소를 별도의 수성층으로 분리하는 것이 중요하다. 따라서 할로겐화 반응 도중 물을 별도로 첨가하는 것이 아니라, 상기 단계 (S1)와 같이 할로겐화가 개시되기 전부터 반응계 내에 알코올을 투입하는 것이 바람직하다.
본 발명에서, 상기 알코올은 탄화수소 용매 100 중량부 기준 0.1 내지 20 중량부일 수 있고, 구체적으로, 0.1 중량부 이상, 0.5 중량부 이상, 10 중량부 이상, 20 중량부 이하, 15 중량부 이하일 수 있다.
상기 범위 내에서, 알코올이 부산물 억제 효과를 충분히 구현하여 이소부텐-이소프렌 공중합체의 재정렬을 방지하고, 경제성이 저하되지 않고 할로겐화 반응의 종료 후 건조 공정에서 지나치게 많은 에너지가 소모되지 않을 수 있다.
본 발명에서, 상기 알코올의 종류는 크게 제한되지 않으나, 이소부텐-이소프렌 공중합체의 할로겐화 반응 종료 후 건조의 용이성을 고려한 측면에서는, 탄소수 1 내지 4의 알코올일 수 있고, 예컨대 메탄올, 에탄올, 프로판올, 이소프로필알코올, 1-부탄올, 2-부탄올, tert-부탄올, 또는 이들의 혼합물을 사용할 수 있다.
단계 (S2)
상기 단계 (S2)는 단계 (S1)에서 준비한 혼합 용액을 할로겐화제와 반응시켜 이소부텐-이소프렌 공중합체를 할로겐화하는 단계로, 이 때 이소부텐-이소프렌 공중합체의 수소 위치에 할로겐 원자가 위치하게 되면서 부산물로 할로겐화수소가 생성된다.
본 발명에서, 상기 할로겐화제는 브롬 분자(Br2) 또는 염소 분자(Cl2)일 수 있고, 구체적으로 브롬 분자(Br2)일 수 있다.
본 발명에서, 상기 할로겐화제는 이소부텐-이소프렌 공중합체 1 당량 기준 0.2 내지 0.8 당량, 구체적으로 0.2 당량 이상, 0.3 당량 이상, 0.4 당량 이상, 0.8 당량 이하, 0.7 당량 이하, 0.6 당량 이하, 예컨대 0.5 당량일 수 있다.
상기 범위 내에서, 이소부텐-이소프렌 공중합체의 할로겐화 반응이 충분히 진행되면서도, 재생하지 못한 할로겐화수소가 너무 많이 남게 되어 이소부텐-이소프렌 공중합체의 물성이 오히려 저하되는 것을 억제할 수 있다.
본 발명에서, 상기 할로겐화제는 탄화수소 용매에 용해하여 조성물 형태로 사용할 수 있고, 상기 탄화수소 용매는 지방족 탄화수소 용매 또는 방향족 탄화수소 용매일 수 있다. 예로서, 상기 지방족 탄화수소 용매는 부탄, 펜탄, 네오펜탄, 헥산, 사이클로헥산, 메틸사이클로헥산, 헵탄 및 옥탄으로 이루어진 군으로부터 선택되는 1종 이상일 수 있고, 상기 방향족 탄화수소 용매는 벤젠, 톨루엔, 자일렌 및 에틸벤젠으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 보다 바람직하게는 헥산을 사용할 수 있으나, 이에 제한되지 않는다.
상기 할로겐화제를 용해시키기 위한 탄화수소 용매는 단계 (S1)에서 혼합 용액의 준비에 사용되는 탄화수소 용매와 동일하거나 상이할 수 있고, 바람직하게는 동일하게 헥산을 사용할 수 있다.
상기 할로겐화제를 포함하는 조성물은, 조성물 대비 할로겐화제가 10 중량% 이상, 15 중량% 이상, 50 중량% 이하, 30 중량% 이하, 예컨대 20 중량% 포함될 수 있으나, 이에 제한되지 않는다.
본 발명에서, 상기 단계 (S2)의 할로겐화는 10 내지 80℃, 10℃ 이상, 30℃ 이상, 40℃ 이상, 80℃ 이하, 60℃ 이하, 예컨대 40℃에서 수행될 수 있다.
상기 범위 내에서, 이소부텐-이소프렌 공중합체의 할로겐화 반응이 수월하게 진행되면서도, 할로겐화 과반응으로 인해 할로겐화 이소부텐-이소프렌 공중합체 내 구조 III의 함량이 증가하게 되어 물성이 저하되는 것을 방지할 수 있다.
본 발명에서, 상기 단계 (S2)의 할로겐화는 10초 내지 60분, 구체적으로 10초 이상, 30초 이상, 3분 이상, 60분 이하, 30분 이하, 10분 이하, 7분 이하, 예컨대 5분 동안 수행될 수 있다.
상기 범위 내에서, 충분한 시간 동안 할로겐화 반응이 진행되어 이소부텐-이소프렌 공중합체의 할로겐화도가 높게 나타나고, 할로겐화 과반응으로 인해 할로겐화 이소부텐-이소프렌 공중합체 내 구조 III의 함량이 증가하게 되어 물성이 저하되는 것을 방지할 수 있다.
본 발명은, (S3) 염기성 물질과 반응시키는 단계;를 더 포함할 수 있다.
전술한 단계 (S2)를 수행하더라도 일부 할로겐화수소가 여전히 잔류하게 되므로, 이를 염기성 물질과 반응시켜 산-염기 반응으로 중화시킬 수 있다.
본 발명에서, 상기 염기성 물질은 pH 10 내지 14인 것을 사용할 수 있고, 구체적으로 알칼리 금속 수산화물, 알칼리 토금속 수산화물, 알칼리 금속 탄산염, 알칼리 토금속 탄산염 등일 수 있고, 예컨대, 수산화칼륨, 수산화나트륨, 수산화칼슘, 탄산칼륨, 탄산나트륨, 탄산칼슘 등일 수 있으나, 이에 제한되지 않는다.
본 발명에서, 상기 단계 (S3)는 10 내지 40℃에서 수행될 수 있고, 구체적으로 10℃ 이상, 15℃ 이상, 18℃ 이상, 40℃ 이하, 30℃ 이하, 25℃ 이하, 예컨대 20℃에서 수행될 수 있다. 또한, 상기 단계 (S3)는 3분 내지 30분, 구체적으로 3분 이상, 5분 이상, 7분 이상, 30분 이하, 20분 이하, 15분 이하, 예컨대 10분 동안 수행될 수 있다.
상기 온도 및 시간 조건에서 염기성 물질과 반응시킴으로써 남아있는 할로겐화수소와 미반응 할로겐화제를 충분히 제거하여 반응을 종결시키고 높은 순도의 할로겐화 이소부텐-이소프렌 공중합체를 제조할 수 있다. 상기 단계 (S3)의 반응 시간이 3분 미만일 경우 반응을 충분히 종결시키지 못하여 미반응 할로겐화제가 잔류하여 독성 물질로 작용하게 될 위험이 있다.
한편, 본 발명에서는 유기 하이포클로라이트를 산화제로 사용하여 할로겐화수소를 할로겐화제로 전환시키고 반응에 재사용하였기 때문에, 반응 후 남아있는 할로겐화수소의 함량이 매우 적다. 따라서 할로겐화수소와 염기성 물질의 반응으로 발생하는 알칼리 금속 할로겐화물 또한 적게 생성되고, 알칼리 금속 할로겐화물의 폐기에 소요되는 시간이나 비용을 절감하고 독성 문제를 해결할 수 있다.
실시예
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 이들만으로 본 발명의 범위가 한정되는 것은 아니다.
실시예 1
이소부텐-이소프렌 공중합체 0.5 g(이소프렌 함량 = 1.8 mol%), 헥산(n-Hexane) 2.8 g을 Shaker에 투입하고 12시간 이상 용해시킨 후, 반응 온도인 40℃로 맞춰진 히팅 맨틀(heating mantle)에서 30분 동안 교반하여 부틸고무 용액을 준비하였다. 이어서, 상기 부틸고무 용액에 산화제로서 유기 하이포클로라이트인 t-BuOCl 2.2 mg(브롬화제 1 당량 기준 0.25 당량)을 투입하여 혼합 용액을 제조하였다. 이후 1분 동안 교반하여 예비혼합(premix)을 수행하였다.
예비혼합 완료 후, 브롬화제인 Br2를 13.0 mg(이소부텐-이소프렌 공중합체 1 당량 기준 0.5 당량) 포함하는 브롬 용액(헥산 중 20 중량% 용액) 0.08 mL를 혼합 용액에 투입하여, 브롬화 반응을 40℃에서 5분 동안 진행하였다.
이후, 0.16 mL의 NaOH 수용액(1M)을 투입하여 20℃에서 10분간 중화시키고 진공 오븐을 통해 건조하여 브롬화 이소부텐-이소프렌 공중합체를 제조하였다.
실시예 2
예비혼합을 수행하지 않은 것을 제외하고는 실시예 1과 동일하게 브롬화 이소부텐-이소프렌 공중합체를 제조하였다.
실시예 3
혼합 용액에 물 0.28 g(헥산 100 중량부 기준 10 중량부)을 추가로 포함한 것을 제외하고는 실시예 1과 동일하게 브롬화 이소부텐-이소프렌 공중합체를 제조하였다.
실시예 4
혼합 용액에 물 0.28 g(헥산 100 중량부 기준 10 중량부)을 추가로 포함하고 예비혼합을 수행하지 않은 것을 제외하고는 실시예 1과 동일하게 브롬화 이소부텐-이소프렌 공중합체를 제조하였다.
실시예 5
산화제로서 유기 하이포클로라이트인 t-BuOCl을 4.4 mg(브롬화제 1 당량 기준 0.50 당량) 사용한 것을 제외하고는 실시예 1과 동일하게 브롬화 이소부텐-이소프렌 공중합체를 제조하였다.
실시예 6
혼합 용액에 물 0.28 g(헥산 100 중량부 기준 10 중량부)을 추가로 포함하고 산화제로서 유기 하이포클로라이트인 t-BuOCl을 4.4 mg(브롬화제 1 당량 기준 0.50 당량) 사용한 것을 제외하고는 실시예 1과 동일하게 브롬화 이소부텐-이소프렌 공중합체를 제조하였다.
실시예 7
혼합 용액에 메탄올 0.28g(헥산 100 중량부 기준 10 중량부)을 더 투입한 것을 제외하고는 실시예 1과 동일하게 브롬화 이소부텐-이소프렌 공중합체를 제조하였다.
실시예 8
혼합 용액에 에탄올 0.28g(헥산 100 중량부 기준 10 중량부)을 더 투입한 것을 제외하고는 실시예 1과 동일하게 브롬화 이소부텐-이소프렌 공중합체를 제조하였다.
실시예 9
혼합 용액에 이소프로필알코올 0.28g(헥산 100 중량부 기준 10 중량부)을 더 투입한 것을 제외하고는 실시예 1과 동일하게 브롬화 이소부텐-이소프렌 공중합체를 제조하였다.
실시예 10
혼합 용액에 메탄올 0.14g(헥산 100 중량부 기준 5 중량부)을 더 투입한 것을 제외하고는 실시예 1과 동일하게 브롬화 이소부텐-이소프렌 공중합체를 제조하였다.
비교예 1 내지 10
반응 조건을 하기 표 1과 같이 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 브롬화 이소부텐-이소프렌 공중합체를 제조하였다.
산화제 알코올(헥산 100 중량부 기준 중량부) 예비혼합 여부
종류 당량
실시예 1 t-BuOCl 0.25 - 1분 premix < 1%
실시예 2 t-BuOCl 0.25 - - < 1%
실시예 3 t-BuOCl 0.25 - 1분 premix 10%
실시예 4 t-BuOCl 0.25 - - 10%
실시예 5 t-BuOCl 0.50 - 1분 premix < 1%
실시예 6 t-BuOCl 0.50 - 1분 premix 10%
실시예 7 t-BuOCl 0.25 에탄올(10 중량부) 1분 premix < 1%
실시예 8 t-BuOCl 0.25 메탄올(10 중량부) 1분 premix < 1%
실시예 9 t-BuOCl 0.25 이소프로필알코올(10 중량부) 1분 premix < 1%
실시예 10 t-BuOCl 0.25 메탄올(5 중량부) 1분 premix < 1%
비교예 1 - - - - < 1%
비교예 2 - - - - 10%
비교예 3 과산화수소 0.25 - - 10%
비교예 4 과산화수소 0.50 - - < 1%
비교예 5 과산화수소 0.50 - - 10%
비교예 6 NaOCl 0.25 - - < 1%
비교예 7 NaOCl 0.25 - - 10%
비교예 8 NaOCl 0.50 - - 10%
비교예 9 NaOCl 1.00 - - 10%
비교예 10 NaOCl 2.00 - - 10%
실험예 1
하기 식에 의하여, 투입된 브롬 분자가 브롬화 반응에 실제 사용된 브롬 활용도(%)를 계산하였다.
- 브롬 활용도(%) = (이소부텐-이소프렌 공중합체에 결합된 브롬 원자 수)/(브롬화 반응에 투입된 브롬 원자 수) × 100
브롬 활용도(%)
실시예 1 56
실시예 2 48
실시예 3 57
실시예 4 49
실시예 5 60
실시예 6 61
실시예 7 56
실시예 8 57
실시예 9 57
실시예 10 56
비교예 1 30
비교예 2 30
비교예 3 36
비교예 4 36
비교예 5 40
비교예 6 27
비교예 7 35
비교예 8 40
비교예 9 43
비교예 10 44
상기 브롬 활용도는 브롬화제로서 사용한 화합물 중 실제로 이소부텐-이소프렌 공중합체에 삽입되어 브롬화를 일으킨 화합물의 정도를 표현한 것으로, 브롬 활용도가 높을수록 동일한 양의 브롬화제를 사용하였을 때 이소부텐-이소프렌 공중합체를 높은 수준으로 브롬화시킬 수 있음을 의미한다.본 발명에서 제시하는 방법에 따라 이소부텐-이소프렌 공중합체를 브롬화시킨 실시예 1 내지 10의 경우, 산화제를 사용하지 않은 비교예 1 및 2, 산화제로서 과산화수소를 사용한 비교예 3 내지 5, 금속 하이포클로라이트를 사용한 비교예 6 내지 10 대비 더 높은 브롬 활용도를 나타내는 것을 확인하였다.
특히, 산화제로 금속 하이포클로라이트를 사용하였을 때, 비교예 8 내지 10은 실시예 4 대비 산화제를 2배 이상 당량으로 사용하였지만 브롬이 실제 삽입된 정도는 그에 미치지 못하여 브롬 활용도가 더 낮게 나타난 것을 알 수 있었다.
또한, 유기 하이포클로라이트를 투입하고 예비혼합을 거친 실시예 1 및 3은 유기 하이포클로라이트와 브로민화수소의 반응이 보다 활발하게 진행되어 재생 효율이 증가함으로써, 예비혼합을 생략한 실시예 2 및 4 대비 각각 브롬 활용도가 향상되었다.
또한, 산화제로 유기 하이포클로라이트를 사용할 경우 물의 함량을 최소화할 수 있기 때문에, 실시예 1과 3, 실시예 2와 4의 브롬 활용도가 거의 동일하게 나타났다. 반면, 비교예 4와 5, 비교예 6과 7을 비교해보면 물을 < 1%로 적게 함유한 비교예 4 및 6에서 비교예 5 및 7 대비 각각 브롬 활용도가 떨어지는 것을 알 수 있었다.
실험예 2
상기 실시예 및 비교예의 브롬화 이소부텐-이소프렌 공중합체를 대상으로 1H NMR(CDCl3) 분석을 통해 내부 구조의 비율을 계산하였다.
Figure PCTKR2021012584-appb-I000006
(1) 구조 I(이소프렌 반복 단위) 함량(mol%)
- 구조 I 함량(mol%) = [(구조 I 몰수)/(구조 A 몰수 + 구조 I 몰수 + 구조 II 몰수 + 구조 III 몰수)] × 100
상기 구조 I 함량(mol%)은 이소부텐-이소프렌 공중합체 사슬 1가닥에서 브롬이 삽입되지 않고 그대로인 이소프렌 반복 단위의 비율을 나타내는 것이다.
(2) 브롬화 함량(mol%)
- 브롬화 함량(mol%) = [(구조 II 몰수 + 구조 III 몰수)/(구조 A 몰수 + 구조 I 몰수 + 구조 II 몰수 + 구조 III 몰수)] × 100
상기 브롬화 함량(mol%)은 이소부텐-이소프렌 공중합체 사슬 1가닥에서 브롬이 삽입된 반복 단위의 비율을 나타내는 것으로, 이소부텐-이소프렌 공중합체에 브롬화 반응이 얼마나 진행되었는지를 나타내는 지표이다.
(3) 염소화 함량(mol%)
Figure PCTKR2021012584-appb-I000007
- 염소화 함량(mol%) = [(구조 IV 몰수 + 구조 V 몰수)/(구조 A 몰수 + 구조 I 몰수 + 구조 II 몰수 + 구조 III 몰수)] × 100
상기 염소화 함량(mol%)은 이소부텐-이소프렌 공중합체 사슬 1가닥에서 염소가 삽입된 반복 단위의 비율을 나타내는 것이다.
(4) 구조 II 비율(%)
- 구조 II 비율(%) = [(구조 II 몰수)/(구조 II 몰수 + 구조 III 몰수)] × 100
상기 구조 II 비율(%)은 브롬화된 반복 단위(구조 II 및 구조 III) 중 구조 II의 비율을 나타내는 것이다.
구조 I 함량(mol%) 브롬화 함량(mol%) 염소화 함량(mol%) 구조 II 비율(%)
실시예 1 0.77 1.02 < 0.05 90
실시예 2 0.92 0.87 < 0.05 91
실시예 3 0.76 1.03 < 0.05 90
실시예 4 0.90 0.89 < 0.05 90
실시예 5 0.46 1.08 0.25 91
실시예 6 0.45 1.10 0.25 90
실시예 7 0.55 0.97 < 0.05 98
실시예 8 0.53 0.96 < 0.05 97
실시예 9 0.57 0.94 < 0.05 98
실시예 10 0.58 0.94 < 0.05 98
비교예 1 1.20 0.60 - 73
비교예 2 1.18 0.61 - 92
비교예 3 1.11 0.68 - 92
비교예 4 1.10 0.69 - 91
비교예 5 1.03 0.77 - 90
비교예 6 1.25 0.53 < 0.05 90
비교예 7 1.15 0.64 < 0.05 90
비교예 8 1.08 0.70 < 0.05 91
비교예 9 0.90 0.74 0.15 85
비교예 10 0.74 0.75 0.30 78
실시예 1 내지 10에서는 비교예 대비 높은 브롬화 함량을 가지는 이소부텐-이소프렌 공중합체를 제조할 수 있었으며, 이는 산화제로서 유기 하이포클로라이트를 사용함으로써 우수한 가교 성능을 가지는 브롬화 이소부텐-이소프렌 공중합체를 제조할 수 있음을 나타내는 것이다.
구체적으로, 산화제로서 t-BuOCl을 사용한 실시예 4는 동일 당량의 산화제로 과산화수소를 사용한 비교예 3 대비 브롬화 함량이 높게 나타났다. 또한, 산화제로서 t-BuOCl을 사용한 실시예 2 및 4는, 각각 동일 당량의 산화제로 NaOCl을 사용한 비교예 6 및 7 대비 브롬화 함량이 높은 것을 확인하였다.
또한, 실시예 중에서도, 예비혼합을 수행한 실시예 1 및 3에서는 이를 생략한 실시예 2 및 4 대비 각각 브롬화 함량이 높게 나타났다. 한편, 실시예 5 및 6에서는 산화제 당량이 가장 높아 브롬화 함량이 가장 크게 나타났고, 다만 이와 동시에 과량의 산화제로 인한 일부 염소화 반응이 진행되어 염소화 함량이 증가한 것을 알 수 있었다.
실시예에서 사용한 t-BuOCl은 에멀변화하지 않아도 혼합 용액에 잘 분산되기 때문에, 물의 함량을 다르게 한 실시예 1과 3, 실시예 2와 4를 비교하여도 브롬화 함량이 모두 유사 수준으로 우수하게 나타났고, 물의 함량이 1% 미만인 실시예 1과 2에서는 이소부텐-이소프렌 공중합체의 석출도 발생하지 않은 것을 관찰하였다. 반면, 비교예의 산화제는 물을 별도로 사용하지 않으면 혼합 용액에 분산되기 어려우므로, 과산화수소를 사용하면서 물의 함량이 1% 미만인 비교예 4는 비교예 5 대비 브롬화 함량이 낮게 나타나고, NaOCl을 사용하면서 물의 함량이 1% 미만인 비교예 6은 비교예 7 대비 브롬화 함량이 낮게 나타났다. 한편, 비교예 5와 비교예 7은 물 첨가로 인해 브롬 활용도는 다소 증가하였지만, 이소부텐-이소프렌 공중합체의 석출물이 발생한 것을 육안으로 관찰하였다.
한편, 실시예 6 내지 10의 경우, 산화제로 t-BuOCl을 사용하면서 동시에 알코올 또한 혼합 용액에 투입하였으므로, 구조 II의 재정렬을 억제하는 효과가 더욱 뛰어나게 나타나, 구조 II 비율이 매우 높은 브롬화 이소부텐-이소프렌 공중합체가 제조되었다.
상기 결과를 통해, 본 발명의 제조방법에 따라 유기 하이포클로라이트를 산화제로 사용하여 높은 브롬화 함량을 가지는 브롬화 이소부텐-이소프렌 공중합체를 제조할 수 있고, 반응 조건들을 조정하여 최적의 브롬화 반응을 진행시킬 수 있음을 확인하였다.

Claims (14)

  1. (S1) 이소부텐-이소프렌 공중합체, 유기 하이포클로라이트 및 탄화수소 용매를 포함하는 혼합 용액을 준비하는 단계; 및
    (S2) 상기 혼합 용액을 할로겐화제와 반응시켜 이소부텐-이소프렌 공중합체를 할로겐화하는 단계;를 포함하는 이소부텐-이소프렌 공중합체의 할로겐화 방법.
  2. 청구항 1에 있어서,
    상기 유기 하이포클로라이트는 하기 화학식 1로 표시되는 화합물인 이소부텐-이소프렌 공중합체의 할로겐화 방법:
    [화학식 1]
    Figure PCTKR2021012584-appb-I000008
    상기 화학식 1에서,
    R은 탄소수 1 내지 10의 알킬기이다.
  3. 청구항 2에 있어서,
    상기 화학식 1에서,
    R은 탄소수 4 내지 10의 알킬기이고,
    화학식 1의 산소 원자에 인접한 탄소는 3차 탄소인 것인 이소부텐-이소프렌 공중합체의 할로겐화 방법.
  4. 청구항 2에 있어서,
    상기 화학식 1에서,
    R은 tert-부틸(tert-butyl), tert-펜틸(tert-pentyl), 2-메틸펜탄-2-일(2-methylpentan-2-yl), 2,3-디메틸부탄-2-일(2,3-dimethylbutan-2-yl, 2-메틸헥산-2-일(2-methylhexan-2-yl), 2,4-디메틸펜탄-2-일(2,4-dimethylpentan-2-yl), 2,3-디메틸펜탄-2-일(2,3-dimethylpentan-2-yl) 또는 2,3,3-트리메틸부탄-2-일(2,3,3-trimethylbutan-2-yl)인 이소부텐-이소프렌 공중합체의 할로겐화 방법.
  5. 청구항 1에 있어서,
    상기 단계 (S1)은 이소부텐-이소프렌 공중합체, 유기 하이포클로라이트 및 탄화수소 용매를 혼합하고 10초 내지 60분 동안 교반하는 단계;를 포함하는 이소부텐-이소프렌 공중합체의 할로겐화 방법.
  6. 청구항 1에 있어서,
    상기 혼합 용액은 혼합 용액 총 중량 기준 물을 15 중량% 이하 포함하는 이소부텐-이소프렌 공중합체의 할로겐화 방법.
  7. 청구항 1에 있어서,
    상기 유기 하이포클로라이트는 할로겐화제 1 당량 기준 0.1 내지 2.0 당량인 이소부텐-이소프렌 공중합체의 할로겐화 방법.
  8. 청구항 1에 있어서,
    상기 할로겐화제는 이소부텐-이소프렌 공중합체 1 당량 기준 0.2 내지 0.8 당량인 이소부텐-이소프렌 공중합체의 할로겐화 방법.
  9. 청구항 1에 있어서,
    상기 단계 (S2) 이후, (S3) 염기성 물질과 반응시키는 단계;를 더 포함하는 이소부텐-이소프렌 공중합체의 할로겐화 방법.
  10. 청구항 9에 있어서,
    상기 단계 (S3)는 10 내지 40℃에서 3분 내지 30분 동안 수행되는 이소부텐-이소프렌 공중합체의 할로겐화 방법.
  11. 청구항 1에 있어서,
    상기 할로겐화제는 브롬 분자(Br2) 또는 염소 분자(Cl2)인 이소부텐-이소프렌 공중합체의 할로겐화 방법.
  12. 청구항 1에 있어서,
    상기 혼합 용액은 알코올을 더 포함하는 이소부텐-이소프렌 공중합체의 할로겐화 방법.
  13. 청구항 12에 있어서,
    상기 알코올은 메탄올, 에탄올, 프로판올, 이소프로필알코올, 1-부탄올, 2-부탄올 및 tert-부탄올로 이루어진 군에서 선택된 1종 이상인 이소부텐-이소프렌 공중합체의 할로겐화 방법.
  14. 청구항 12에 있어서,
    상기 알코올은 탄화수소 용매 100 중량부 기준 0.1 내지 20 중량부인 이소부텐-이소프렌 공중합체의 할로겐화 방법.
PCT/KR2021/012584 2020-09-18 2021-09-15 이소부텐-이소프렌 공중합체의 할로겐화 방법 WO2022060084A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022570411A JP7439303B2 (ja) 2020-09-18 2021-09-15 イソブテン-イソプレン共重合体のハロゲン化方法
EP21869706.8A EP4105244A4 (en) 2020-09-18 2021-09-15 PROCESS FOR HALOGENATION OF ISOBUTENE-ISOPRENE COPOLYMER
US17/913,325 US20230159673A1 (en) 2020-09-18 2021-09-15 Method for Halogenating Isobutene-Isoprene Copolymer
CN202180026008.3A CN115362183A (zh) 2020-09-18 2021-09-15 使异丁烯-异戊二烯共聚物卤化的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020200120299A KR20220037613A (ko) 2020-09-18 2020-09-18 이소부텐-이소프렌 공중합체의 브롬화 방법
KR1020200120663A KR20220037783A (ko) 2020-09-18 2020-09-18 이소부텐-이소프렌 공중합체의 할로겐화 방법
KR10-2020-0120663 2020-09-18
KR10-2020-0120299 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022060084A1 true WO2022060084A1 (ko) 2022-03-24

Family

ID=80777127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012584 WO2022060084A1 (ko) 2020-09-18 2021-09-15 이소부텐-이소프렌 공중합체의 할로겐화 방법

Country Status (5)

Country Link
US (1) US20230159673A1 (ko)
EP (1) EP4105244A4 (ko)
JP (1) JP7439303B2 (ko)
CN (1) CN115362183A (ko)
WO (1) WO2022060084A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246042B2 (ja) * 1983-06-06 1990-10-12 Mitsui Petrochemical Ind Harogenkaorefuinkeijugotainoseiho
US6232409B1 (en) * 1996-04-23 2001-05-15 Bayer Aktiengesellschaft Polymer bromination process in solution
KR20010052247A (ko) * 1998-04-10 2001-06-25 카알 제이. 밀러 산화제로서 차아염소산염을 사용하여히드록시페닐아민으로부터 퀴논이민을 제조하는 방법
KR20080066787A (ko) * 2005-11-12 2008-07-16 다우 글로벌 테크놀로지스 인크. 브롬화 부타디엔/비닐 방향족 공중합체, 당해 공중합체와비닐 방향족 중합체와의 블렌드 및 당해 블렌드로부터형성된 중합체성 발포체
KR20140041860A (ko) * 2011-07-20 2014-04-04 란세스 인터내쇼날 에스에이 브로민화 부틸 고무의 제조 방법
JP2020513055A (ja) 2017-04-12 2020-04-30 リライアンス、インダストリーズ、リミテッドReliance Industries Limited ハロゲン化ブチルゴムの調製工程

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226006A (ja) * 1983-06-06 1984-12-19 Miyoshi Oil & Fat Co Ltd キレ−ト樹脂の製造方法
US6420489B2 (en) * 1997-02-24 2002-07-16 Bayer Aktiengesellschaft Polymer bromination process in solution
RU2180337C1 (ru) * 2000-07-24 2002-03-10 Орлов Юрий Николаевич Способ получения бромбутилкаучука
EP2527373A1 (en) * 2011-05-26 2012-11-28 LANXESS International S.A. Process and apparatus for production of halogenated butyl rubber with reduced emissions
RU2497832C1 (ru) * 2012-02-28 2013-11-10 ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "СИБУР Холдинг" Способ получения бромбутилкаучука

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246042B2 (ja) * 1983-06-06 1990-10-12 Mitsui Petrochemical Ind Harogenkaorefuinkeijugotainoseiho
US6232409B1 (en) * 1996-04-23 2001-05-15 Bayer Aktiengesellschaft Polymer bromination process in solution
KR20010052247A (ko) * 1998-04-10 2001-06-25 카알 제이. 밀러 산화제로서 차아염소산염을 사용하여히드록시페닐아민으로부터 퀴논이민을 제조하는 방법
KR20080066787A (ko) * 2005-11-12 2008-07-16 다우 글로벌 테크놀로지스 인크. 브롬화 부타디엔/비닐 방향족 공중합체, 당해 공중합체와비닐 방향족 중합체와의 블렌드 및 당해 블렌드로부터형성된 중합체성 발포체
KR20140041860A (ko) * 2011-07-20 2014-04-04 란세스 인터내쇼날 에스에이 브로민화 부틸 고무의 제조 방법
JP2020513055A (ja) 2017-04-12 2020-04-30 リライアンス、インダストリーズ、リミテッドReliance Industries Limited ハロゲン化ブチルゴムの調製工程

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4105244A4

Also Published As

Publication number Publication date
EP4105244A4 (en) 2023-10-25
JP7439303B2 (ja) 2024-02-27
EP4105244A1 (en) 2022-12-21
US20230159673A1 (en) 2023-05-25
JP2023527289A (ja) 2023-06-28
CN115362183A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
WO2014065500A1 (ko) 하드마스크 조성물 및 이를 사용한 패턴형성방법
WO2019182277A1 (ko) 실리콘질화막 식각액 조성물
WO2017119793A2 (ko) 프탈로니트릴 수지
WO2022060084A1 (ko) 이소부텐-이소프렌 공중합체의 할로겐화 방법
WO2017123036A1 (ko) 과산화수소 분해용 고체상 촉매 및 이의 제조 방법
WO2022025555A1 (ko) 멀티체인형 에폭시 수지 유화제
WO2023121073A1 (ko) 제미니형 에폭시 수지 유화제 및 그 제조방법
WO2014193082A1 (ko) 시멘트 혼화제 제조용 마크로모노머, 이의 제조방법, 이 마크로모노머로부터 유도된 폴리카르복실산계 공중합체와 층상형 이중 수산화물을 포함하는 시멘트 혼화제, 및 이의 제조방법
WO2021133052A1 (ko) 저독성 난연 폴리올레핀계 절연 수지 조성물, 절연전선 및 절연전선의 제조방법
WO2021118003A1 (ko) 신규 혈관누출 차단제의 고수율 제조방법
WO2023033284A1 (ko) 불화알킬글리세린 유도체 및 계면활성제 용도
WO2020153707A1 (ko) 전지 포장재
WO2023033285A1 (ko) 하이브리드형 불소계 비이온 계면활성제의 제조방법
WO2019190289A1 (ko) 블록 공중합체 조성물
WO2022119070A1 (ko) 카보네이트 유도체 제조용 셀레늄계 촉매 시스템 및 그를 이용한 카보네이트 유도체의 제조방법
WO2022092833A1 (ko) 유기 황 화합물의 인시츄 제조방법
WO2020222410A1 (ko) 테트라알콕시실란의 연속 제조방법
WO2017007199A1 (ko) 비닐아세테이트-에틸렌 공중합체 에멀젼 및 이의 제조방법
WO2018194395A2 (ko) 화학적으로 개질된 음이온 교환막 및 그 제조 방법
KR20220037783A (ko) 이소부텐-이소프렌 공중합체의 할로겐화 방법
WO2020022833A1 (ko) 부텐 올리고머의 제조방법
WO2022092834A1 (ko) 환상 설폰산 에스테르 화합물의 제조방법
WO2020153714A1 (ko) 비닐 알코올계 공중합체, 이의 제조 방법 및 이를 포함하는 기체 차단성 필름
WO2017191899A1 (ko) 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체
WO2020040386A1 (ko) 절연막 식각액 조성물 및 이를 이용한 패턴 형성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021869706

Country of ref document: EP

Effective date: 20220915

ENP Entry into the national phase

Ref document number: 2022570411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE