WO2021133052A1 - 저독성 난연 폴리올레핀계 절연 수지 조성물, 절연전선 및 절연전선의 제조방법 - Google Patents

저독성 난연 폴리올레핀계 절연 수지 조성물, 절연전선 및 절연전선의 제조방법 Download PDF

Info

Publication number
WO2021133052A1
WO2021133052A1 PCT/KR2020/018979 KR2020018979W WO2021133052A1 WO 2021133052 A1 WO2021133052 A1 WO 2021133052A1 KR 2020018979 W KR2020018979 W KR 2020018979W WO 2021133052 A1 WO2021133052 A1 WO 2021133052A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
low
parts
flame
retardant
Prior art date
Application number
PCT/KR2020/018979
Other languages
English (en)
French (fr)
Inventor
성찬용
김동훈
김경진
배환철
남유진
김동욱
이조은
조동기
Original Assignee
(주)티에스씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)티에스씨 filed Critical (주)티에스씨
Publication of WO2021133052A1 publication Critical patent/WO2021133052A1/ko
Priority to US17/805,132 priority Critical patent/US20220289964A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/24Sheathing; Armouring; Screening; Applying other protective layers by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the present invention relates to a low-toxic flame-retardant polyolefin-based insulating resin composition and wires and cables using the same, and to a low-toxic flame-retardant cross-linked polyolefin-based insulating resin composition using a halogen-free flame retardant, an insulated wire using the same, and a manufacturing method thereof.
  • An insulated wire refers to a wire coated with lead-free heat-resistant polyvinyl chloride (PVC) or low-toxic polyolefin as an insulation material on a conductor.
  • PVC lead-free heat-resistant polyvinyl chloride
  • low-toxic polyolefin as an insulation material on a conductor.
  • the so-called low-toxic flame-retardant cross-linked polyolefin insulated wire is an insulated wire that meets the quality standards of KS C3341. These wires are insulated wires used for wiring general electrical works or electrical devices of 450V to 750V. It is an insulated wire with low toxicity and low ductility that can be used for wiring inside buildings and confined spaces that require minimization.
  • Halogen-based synthetic resins such as polyvinyl chloride (PVC), which have been conventionally used in accordance with the demand for low-toxic flame retardancy in relation to electric wires and cables, have been excluded, and flame retardants containing halogen elements as flame retardants, for example, polybrominated biphenyl, poly Brominated diphenyl ether and the like were excluded.
  • PVC polyvinyl chloride
  • polyethylene and ethylene-vinyl acetate (EVA) were mainly used as base resins, and metal hydroxides such as magnesium hydroxide and aluminum hydroxide were used as flame retardants.
  • metal hydroxide which is a halogen-free flame retardant
  • metal hydroxide which is a halogen-free flame retardant
  • scratches easily remain on the surface of the wire during extrusion, causing a problem that reduces the commercial value of the wire, and may cause a problem of lowering the productivity of the wire by slowing the production speed during wire extrusion.
  • Korean Patent Publication No. 10-2017-0068091 discloses 20 to 40 parts by weight of high-density polyethylene as a base resin, 20 to 40 parts by weight of polyolefin elastomer, 10 to 30 parts by weight of ethylene vinyl acetate, and linear low-density polyethylene grafted with maleic anhydride.
  • an insulating composition comprising 15 to 35 parts by weight, which has abrasion resistance and high temperature water resistance satisfying LV-112, a European automobile integrated standard, and is described as having excellent flexibility, flame retardancy, and cold resistance.
  • the flame retardant may include a metal hydroxide such as aluminum hydroxide or magnesium hydroxide, and the metal hydroxide may be coated with vinyl silane and the like and the surface may be modified to be hydrophobic.
  • Korean Patent Registration No. 10-1256800 discloses 20 to 40 parts by weight of ethylene vinyl acetate, 30 to 40 parts by weight of ethylene methyl acrylate, 20 to 30 parts by weight of linear low-density polyethylene, and ethylene vinyl acetate grafted with maleic anhydride.
  • An object of the present invention is to provide an insulating resin composition capable of improving electrical insulation while implementing low toxic flame retardancy, and providing an extruded product having excellent scratch resistance and appearance quality, while improving the production rate during extrusion.
  • Another object of the present invention is to provide a method for manufacturing a low-toxic flame-retardant cross-linked polyolefin-based insulated wire that has excellent appearance quality of the extruded product and can improve the production rate during extrusion.
  • Another object of the present invention is to provide a low-toxic flame-retardant cross-linked polyolefin-based insulated wire having excellent electrical insulation, excellent scratch resistance, excellent appearance quality, and low toxic flame retardancy.
  • It provides a low-toxic flame-retardant polyolefin-based insulating resin composition
  • a low-toxic flame-retardant polyolefin-based insulating resin composition comprising 120 to 140 parts by weight of magnesium hydroxide surface-treated with a silane coupling agent as a flame retardant.
  • a specific embodiment of the present invention is 100 parts by weight of a base resin comprising 20 to 40% by weight of polyethylene ethyl acrylate, 20 to 40% by weight of polyolefin elastomer and 30 to 40% by weight of a linear low-density polyethylene resin grafted with maleic anhydride ; And a primary compound composition comprising 120 to 140 parts by weight of magnesium hydroxide surface-treated with a silane coupling agent as a flame retardant; and
  • the polyolefin elastomer may include an ethylene-octene-based copolymer, an ethylene-butene-based copolymer, or a mixture thereof.
  • the crosslinking agent may include a mixture of vinyltrimethoxysilane (VTMOS) and dicumyl peroxide.
  • the crosslinking agent is a mixture of 1 to 2 parts by weight of vinyltrimethoxysilane (VTMOS) and 0.1 to 0.12 parts by weight of dicumyl peroxide based on 100 parts by weight of the primary compound composition may include.
  • the present invention also provides 100 parts by weight of a base resin comprising 20 to 40% by weight of polyethylene ethyl acrylate, 20 to 40% by weight of polyolefin elastomer and 30 to 40% by weight of a linear low density polyethylene resin grafted with maleic anhydride; And it provides a low-toxic flame-retardant polyolefin-based insulated wire comprising a crosslinked product of a primary compound composition comprising 120 to 140 parts by weight of magnesium hydroxide surface-treated with a silane coupling agent as a flame retardant.
  • the polyolefin elastomer may include an ethylene-octene-based copolymer, an ethylene-butene-based copolymer, or a mixture thereof.
  • the crosslinked product may be obtained by using a mixture of vinyltrimethoxysilane (VTMOS) and dicumyl peroxide as a crosslinking agent, and more preferably, the crosslinked product is a crosslinking agent As such, it may be obtained by using a mixture of 1 to 2 parts by weight of vinyl trimethoxysilane (VTMOS) and 0.1 to 0.12 parts by weight of dicumyl peroxide based on 100 parts by weight of the first compound composition.
  • VTMOS vinyltrimethoxysilane
  • dicumyl peroxide dicumyl peroxide
  • Another embodiment of the present invention 20 to 40% by weight of polyethylene ethyl acrylate, 20 to 40% by weight of polyolefin elastomer and 30 to 40% by weight of a linear low-density polyethylene resin grafted with maleic anhydride 100% by weight of a base resin part; and a process for preparing a primary compound by compounding a composition comprising 120 to 140 parts by weight of magnesium hydroxide surface-treated with a silane coupling agent as a flame retardant; and
  • a method for manufacturing a low-toxic flame-retardant polyolefin-based insulated wire is provided.
  • the polyolefin elastomer may include an ethylene-octene-based copolymer, an ethylene-butene-based copolymer, or a mixture thereof.
  • the reaction extrusion may be performed using a mixture of vinyltrimethoxysilane (VTMOS) and dicumyl peroxide as a crosslinking agent.
  • VTMOS vinyltrimethoxysilane
  • the reaction extrusion is a mixture of 1 to 2 parts by weight of vinyl trimethoxysilane (VTMOS) and 0.1 to 0.12 parts by weight of dicumyl peroxide based on 100 parts by weight of the primary compound as a crosslinking agent. It can be done using
  • the present invention can provide an insulating resin composition that can improve electrical insulation while implementing low toxic flame retardancy, and can provide an extrudate having excellent scratch resistance and appearance quality, while improving the production rate during extrusion, Using this, it is possible to provide a method of manufacturing a low-toxic flame retardant cross-linked polyolefin-based insulated wire that has excellent external appearance quality and can improve the production rate during extrusion through cross-linking through reactive extrusion, and ultimately has excellent electrical insulation. It is possible to provide a low-toxic flame-retardant cross-linked polyolefin-based insulated wire having excellent scratch resistance and appearance quality and realizing low-toxic flame retardancy.
  • the present invention provides 100 parts by weight of a base resin comprising 20 to 40% by weight of polyethylene ethyl acrylate, 20 to 40% by weight of polyolefin elastomer, and 30 to 40% by weight of a linear low-density polyethylene resin grafted with maleic anhydride; It provides a low-toxic flame-retardant polyolefin-based insulating resin composition comprising 120 to 140 parts by weight of magnesium hydroxide surface-treated with a silane coupling agent as a flame retardant.
  • KS C 3341 related to low-toxic flame retardant cross-linked polyolefin insulated wire requires the following performance
  • HOT/SET 175 or less / 15 or less
  • High-temperature electrical insulation resistance 3.67m ⁇ km or more.
  • the low-toxic flame-retardant polyolefin-based insulating resin composition of the present invention does not contain ethylene vinyl acetate (EVA), low-density polyethylene (LDPE), low-density linear polyethylene (LLDPE) or high-density polyethylene (HDPE) as a base resin, and does not contain polyethylene ethyl acrylate ( EEA), polyolefin elastomer (POE) and a linear low density polyethylene resin grafted with maleic anhydride.
  • EVA ethylene vinyl acetate
  • LDPE low-density polyethylene
  • LLDPE low-density linear polyethylene
  • HDPE high-density polyethylene
  • a polyolefin elastomer When included as a base resin, it can exhibit excellent insulation, which can satisfy high-temperature electrical insulation prescribed in KS C 3341.
  • the polyolefin elastomer is not limited thereto, but may include an ethylene-octene-based copolymer, an ethylene-butene-based copolymer, or a mixture thereof, preferably an ethylene-octene-based copolymer.
  • the content of the polyolefin elastomer is 20 to 40% by weight based on 100 parts by weight of the base resin in terms of improving electrical insulation.
  • polyethylene ethyl acrylate contained as a base resin is a copolymer of ethylene and ethyl acrylate, which has a higher thermal decomposition initiation temperature compared to ethylene vinyl acetate and thermal stability such as low density polyethylene. It has the characteristic that it does not corrode the molding machine even when it is thermally decomposed. Due to these characteristics, when polyethylene ethyl acrylate is included as a base resin, sufficient flame retardancy can be exhibited, and in particular, sufficient flame retardancy can be obtained in a vertical arrangement test (Cable Vertical ignition) in a flame retardancy test of an electric cable.
  • a vertical arrangement test Cable Vertical ignition
  • polyethylene ethyl acrylate as the base resin may be advantageous in terms of reducing the amount of smoke generated in case of a fire.
  • the base resin when polyethylene ethyl acrylate is included as the base resin, it may be advantageous in that the amount of smoke can be significantly reduced compared to the case of using a conventional base resin such as ethylene vinyl acetate resin.
  • the polyethylene ethyl acrylate may preferably have a content of ethylene acrylate (EA), a comonomer, of 10 to 15% by weight of the total resin.
  • EA ethylene acrylate
  • the content of polyethylene ethyl acrylate is preferably 20 to 40% by weight based on 100 parts by weight of the base resin.
  • the insulating resin composition of the present invention includes a linear low-density polyethylene resin grafted with maleic anhydride as a base resin, which has a strong polar group property compared to other resins and has a very high affinity with inorganic materials, thereby improving the bonding strength with the resin. and, thereby, can serve to improve tensile strength and elongation in terms of physical properties.
  • the maleic anhydride graft ratio may be preferably 0.3 to 0.6% by weight, and the content of the maleic anhydride-grafted linear low-density polyethylene resin in the total base resin In terms of physical properties, it may be preferable that the amount is 30 to 40% by weight based on 100 parts by weight of the total base resin.
  • the insulating resin composition of the present invention includes a halogen-free flame retardant, and the flame retardant may preferably be magnesium hydroxide surface-treated with a silane coupling agent.
  • the scratch resistance of the electric wire can be easily scratched on the outside of the electric wire in the course of distribution or other handling during field input work, which not only adversely affects the marketability but also reduces durability, ultimately impairing various properties including insulation. For this reason, scratch resistance is one of the very important properties.
  • magnesium hydroxide surface-treated with a silane coupling agent is used as a flame retardant, scratch resistance is remarkably improved and durability can be improved.
  • magnesium hydroxide surface-treated with a silane coupling agent and the flame retardant not only improve scratch resistance, but also improve the wire speed during extrusion.
  • the wire speed can be a problem directly related to productivity.
  • the wire extruder generally used by wire companies is a 100mm extruder, and the most common screw source for the extruder is a Length/Diameter ratio of 20/1 to 26/1 and a Compression Ratio of 1.5 to 2.5. are using
  • the main wire size is 1.5SQ to 6SQ, and since it is a generalized evaluation that the length of the wire manufactured per minute in such a device must be 150m or more for excellent productivity, it may be desirable to have a wire speed of 150m/min or more. have.
  • magnesium hydroxide surface-treated with a silane coupling agent when magnesium hydroxide surface-treated with a silane coupling agent is used as a flame retardant as a flame retardant in the present invention, even if the amount used is high enough to exhibit sufficient flame retardancy, there is an advantage in that the above-described line speed can be sufficiently exhibited.
  • magnesium hydroxide surface-treated with a silane coupling agent it gives slip property to the surface of magnesium hydroxide due to the silane coupling agent used for the surface treatment, so that even in a resin containing a large amount of it, scratch resistance can be improved on the surface of the product. , it is possible to increase the line speed during extrusion.
  • the content is preferably 120 to 140 parts by weight based on 100 parts by weight of the base resin in consideration of flame retardancy, scratch resistance and extrudability.
  • a halogen-free flame retardant such as magnesium hydroxide or aluminum hydroxide whose surface is not treated may be further included.
  • the insulating resin composition of the present invention may further include additives such as lubricants and antioxidants.
  • compositions may be obtained as a primary compound composition by processing using a kneader or the like in order to be manufactured into a crosslinked product, and an ultimate insulating resin may be obtained by extruding the composition by mixing a crosslinking agent with the composition.
  • the resin composition of the present invention includes a crosslinking agent, which is for the purpose of improving strength or heat resistance through crosslinking of the base resin.
  • Crosslinking of polyolefins can be considered silane crosslinking or crosslinking by peroxide, and the speed behavior of crosslinking may vary depending on the crosslinking conditions and thermal properties of the crosslinked product may change.
  • the crosslinking agent includes a mixture of vinyltrimethoxysilane and dicumyl peroxide as a crosslinking agent in order to use silane crosslinking and peroxide crosslinking together.
  • the crosslinking agent in order to satisfy the crosslinking properties of Hot elongation (%) / Permanent Set (%) of 175/115 or less, is preferably based on 100 parts by weight of the primary compound composition. It contains a mixture of 1 to 2 parts by weight of vinyl trimethoxysilane (VTMOS) and 0.1 to 0.12 parts by weight of dicumyl peroxide.
  • VTMOS vinyl trimethoxysilane
  • the method of manufacturing an insulated wire using such an insulated resin composition is,
  • a base resin comprising 20 to 40% by weight of polyethylene ethyl acrylate, 20 to 40% by weight of polyolefin elastomer, and 30 to 40% by weight of a linear low-density polyethylene resin grafted with maleic anhydride; and a process for preparing a primary compound by compounding a composition comprising 120 to 140 parts by weight of magnesium hydroxide surface-treated with a silane coupling agent as a flame retardant;
  • It includes a process of preparing a crosslinked product by reaction-extrusion of the primary compound.
  • the reaction extrusion is a crosslinking reaction of the primary compound obtained by compounding the resin composition excluding the crosslinking agent, which is carried out at the same time as the extrusion and chemical reaction.
  • vinyltrimethoxysilane (VTMOS) and die as a crosslinking agent
  • a mixture with cumyl peroxide, more preferably a mixture of 1 to 2 parts by weight of vinyltrimethoxysilane (VTMOS) and 0.1 to 0.12 parts by weight of dicumyl peroxide based on 100 parts by weight of the primary compound as a crosslinking agent. can be performed.
  • the first compound composition is kneaded in a kneader until it reaches 120 to 140 ° C., and then melted and kneaded at 120 to 150 ° C. using a single screw extruder and cooled to prepare a first compound,
  • This primary extrudate can be prepared into pellets by strand cutting.
  • a crosslinking agent mixture vinyltrimethoxysilane and dicumyl peroxide, is added to the pellet, and dry blended at 50 to 90° C. for about 5 minutes, and a secondary extrudate is prepared using an extruder to form a wire.
  • the crosslinking agent is added together when the base resin and the flame retardant are added, it can be simplified in terms of the work process, but the extrusion appearance is not good and it can cause various problems such as lowering the crosslinking stability and tensile strength characteristics, so that the base resin and It may be preferable to prepare a primary compound with a composition including a flame retardant, and to add a crosslinking agent thereto to obtain a crosslinked product.
  • the present invention provides 100 parts by weight of a base resin comprising 20 to 40% by weight of polyethylene ethyl acrylate, 20 to 40% by weight of polyolefin elastomer, and 30 to 40% by weight of a linear low-density polyethylene resin grafted with maleic anhydride; And it may provide a low-toxic flame-retardant polyolefin-based insulated wire comprising a crosslinked product of a primary compound composition comprising 120 to 140 parts by weight of magnesium hydroxide surface-treated with a silane coupling agent as a flame retardant.
  • the obtained insulated wire can realize low toxic flame retardancy, exhibit excellent room temperature properties, meet excellent high temperature insulation resistance, and have excellent scratch resistance and excellent appearance quality. It is industrially useful in that it can be produced in production.
  • EEA Co., Ltd. Polyethylene ethyl acrylate resin with EA content of 15%, MI (190°C, 2.16Kg) (g/10Min) 0.5 to 1.0, Japan Polyethylene Corporation, A1150
  • POE DSC melting point 58°C ⁇ 98°C, MI (190°C, 2.16Kg) (g/10Min) 1 ⁇ 2 polyethylene elastomer (specifically, ethylene-1-octene copolymer), LG company, POE LC-170
  • Graft Resin LLDPE BASE MALEIC ACID 0.5% Grafted Resin, MI (190°C) 0.7 ⁇ 1.5, Lotte Chemical, EM-510M
  • Si-MDH Magnesium hydroxide flame retardant surface treated with silane coupling agent, average particle size 1.0 ⁇ m ⁇ 1.1 ⁇ m, Konoshima S-6
  • Antioxidant Phenol-based antioxidant, Songwon Industries, AO 1076
  • VTMOS Vinyltrimethoxysilane, WACKER, OFS-6300
  • Tensile strength Tensile strength was measured using IEC 60502.
  • Hydrogen chloride gas generation Refers to a standard value of 0.5 or less hydrogen chloride gas generation according to the test method of IEC 60754-1.
  • the scratch resistance was compared with the results of the abrasion resistance test.
  • the abrasion resistance test was a needle scrape test, and a 310 g weight was placed on a 0.45 SQ needle on an extruded specimen with a thickness of 1 mm, a width of 2 mm, and a length of 100 mm, and reciprocally moved so that the needle scratched the specimen. At this time, even if it reciprocates more than 100 times, there should be no hole in the specimen.
  • the scratch resistance was judged to be good or bad based on the 100 times of the abrasion resistance test result.
  • An extrudate was prepared in the same manner as in Example 1, except that the composition was prepared as shown in Table 3 below. Specific examples of use for the remaining raw materials except for EVA are the same as those used in the above examples.
  • EVA Co., Ltd. Vinyl acetate (VA) content 22% by weight, M.I (190°C, 2.16Kg) (g/10Min) 2-3, ethylene vinyl acetate, Hanwha Total Petrochemical, E220F
  • the content of the graft resin is preferably in the range of 30 to 40% by weight of the total base resin.
  • An extrudate was prepared in the same manner as in Example 1, except that the composition was prepared as shown in Table 5 below. Specific usage examples for the raw materials are the same as those used in the above examples.
  • An extrudate was prepared in the same manner as in Example 1, except that the composition was prepared as shown in Table 7 below. Specific examples of use for the remaining raw materials except for some of the flame retardants are the same as those used in the above examples.
  • MDH Co., Ltd. Magnesium hydroxide flame retardant, average particle size 3 ⁇ m ⁇ 4 ⁇ m, Shandong company , YB-1A
  • ATH Aluminum hydroxide, average particle size 1.2 ⁇ m ⁇ 1.5 ⁇ m, KC, KH-101LC
  • An extrudate was prepared in the same manner as in Example 1, except that the composition was prepared as shown in Table 9 below. Specific usage examples for the raw materials are the same as those used in the above examples.
  • the fracture of the extruded appearance was judged by the presence or absence of protrusions having a diameter of 0.1 mm or more after cutting the wire to a length of 1 m, and the absence of tearing or foaming was evaluated as good.
  • An extrudate was prepared in the same manner as in Example 1, except that the composition was prepared as shown in Table 11 below. Specific usage examples for the raw materials are the same as those used in the above examples.
  • An extrudate was prepared in the same manner as in Example 1, except that the composition was prepared as shown in Table 13 below. Specific usage examples for the raw materials are the same as those used in the above examples.
  • the comparative example is to determine the effect of polyethylene ethyl acrylate as a base resin on smoke generation in case of fire, and only the smoke density evaluation was performed, and the results are shown in Table 14 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

본 발명은 저독성 난연 폴리올레핀계 절연 수지 조성물, 절연전선 및 절연전선의 제조방법에 관한 것으로, 폴리에틸렌에틸아크릴레이트 20 내지 40중량%, 폴리올레핀 엘라스토머 20 내지 40중량% 및 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지 30 내지 40중량%를 포함하는 베이스 수지 100중량부; 및 난연제로서 실란 커플링제로 표면 처리된 수산화마그네슘 120 내지 140중량부를 포함하는 저독성 난연 폴리올레핀계 절연 수지 조성물을 제공하여, 궁극적으로 전기절연성이 우수하면서 내스크래치성 및 외관 품질이 우수하고 저독성 난연을 구현한 저독성 난연 가교 폴리올레핀계 절연전선을 제공할 수 있는 발명을 개시한다.

Description

저독성 난연 폴리올레핀계 절연 수지 조성물, 절연전선 및 절연전선의 제조방법
본 발명은 저독성 난연 폴리올레핀계 절연 수지 조성물 및 이를 사용한 전선 및 케이블에 관한 것으로서, 할로겐-프리 난연제를 사용하는 저독성 난연 가교 폴리올레핀계 절연 수지 조성물과 이를 사용한 절연전선 및 그 제조방법에 관한 것이다.
절연전선은 도체 위에 납이 없는 내열 폴리염화비닐(PVC) 내지 저독성 폴리올레핀을 절연 재료로 하여 피복한 전선을 일컫는다.
이른바 저독성 난연 가교 폴리올레핀 절연 전선은 KS C3341의 품질 기준에 적합한 절연 전선으로, 이러한 전선은 450V 내지 750V의 일반 전기 공작물이나 전기기기의 배선에 사용되는 절연 전선으로, 화재시 부식성 유독가스 및 연기발생의 극소화가 필요한 건물내부 및 밀폐공간 배선에 사용할 수 있는 저독성 내지 저연성을 갖는 절연 전선이다.
전선케이블과 관련하여 저독성 난연에 대한 요구에 따라 종래 사용되어 온 폴리염화비닐수지(PVC) 등 할로겐계 합성수지를 배제하게 되었으며, 난연제로도 할로겐 원소를 포함하는 난연제, 일예로 폴리브롬화바이페닐, 폴리브롬화다이페닐에테르 등을 배제하게 되었다.
이에 베이스 수지로는 폴리에틸렌과 에틸렌-비닐아세테이트(EVA) 등을 주요하게 사용하게 되었으며, 난연제로는 수산화 마그네슘이나 수산화알루미늄 등 의 금속수산화물을 사용하게 되었다.
그런데 이와 같은 할로겐-프리 난연제인 금속수산화물을 사용하는 경우 목적하는 난연성을 충족하기 위해서는 다량의 금속수산화물을 사용하는 것이 불가피한데, 이와 같이 다량의 금속수산화물의 사용은 전선의 전기절연성을 떨어뜨리는 요인으로 작용하게 된다. 또한 압출시에 전선 표면에 스크래치가 쉽게 남아 전선의 상품가치를 떨어뜨리는 문제를 발생시키며, 전선의 압출 작업시 생산속도가 느려져 전선의 생산성을 저하시키는 문제를 발생시킬 수 있다.
관련하여 국내특허공개 10-2017-0068091호에는 베이스 수지로 고밀도 폴리에틸렌 20 내지 40중량부, 폴리올레핀 엘라스토머 20 내지 40중량부, 에틸렌비닐아세테이트 10 내지 30중량부 및 말레산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 15 내지 35중량부를 포함하는 절연 조성물을 개시하고 있는데, 이는 유럽형 자동차 통합 규격인 LV-112를 만족하는 내마모성 및 고온내수성을 보유하며 유연성, 난연성, 내한성 등이 우수한 것으로 기재하고 있다. 여기서는 난연제로서 수산화알루미늄, 수산화마그네슘 등의 금속수산화물을 포함할 수 있으며, 이러한 금속수산화물은 비닐 실란 등에 의해 코팅되어 표면이 소수성으로 개질된 것일 수 있음에 대해 기재하고 있다.
또 다른 선행기술로 국내 등록특허 10-1256800호에는 에틸렌비닐아세테이트 20 내지 40중량부, 에틸렌메틸아크릴레이트 30 내지 40중량부, 선형 저밀도 폴리에티렌 20 내지 30중량부, 무수말레인산 그라프트 에틸렌비닐아세테이트 10 내지 20중량부를 베이스 수지로 하고, 실란 화합물 코팅처리된 수산화마그네슘 150 내지 180중량부, 1차 산화방지제 3 내지 5중량부, 2차 산화방지제 1 내지 2중량부, 1차 내후성방지제 0.5 내지 2중량부, 2차 내후성방지제 0.5 내지 2중량부, 압출가공향상제 2 내지 5중량부, 가교조제 2 내지 5중량부 및 가교제 5 내지 8중량부로 이루어진 저독성 난연 가교 폴리올레핀 절연전선용 피복절연체 조성물과 이를 이용하여 제조된 전선에 대해 개시하고 있으며, 이러한 조성물은 연속압출가교방식에 의한 전선의 제조가 가능하고 HFIX(Halogen Free Flame-retardant Crosslinked Polyolefin Insulation Wire; KS C 3341 규격) 전선이 요구하는 제반 특성을 만족하는 것으로 기재하고 있다.
본 발명은 저독성 난연을 구현하면서도 전기절연성을 향상시킬 수 있고, 내스크래치성과 외관 품질이 우수한 압출물을 제공할 수 있도록 하면서 압출시 생산속도를 향상시킬 수 있는 절연 수지 조성물을 제공하고자 한다.
본 발명은 또한 압출물의 외관 품질이 우수하고 압출시 생산속도를 향상시킬 수 있는 저독성 난연 가교 폴리올레핀계 절연 전선의 제조방법을 제공하고자 한다.
본 발명은 또한 전기절연성이 우수하면서 내스크래치성이 우수하고 외관 품질이 우수하며 저독성 난연을 구현한 저독성 난연 가교 폴리올레핀계 절연 전선을 제공하고자 한다.
본 발명의 일 구현예는, 폴리에틸렌에틸아크릴레이트 20 내지 40중량%, 폴리올레핀 엘라스토머 20 내지 40중량% 및 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지 30 내지 40중량%를 포함하는 베이스 수지 100중량부; 및
난연제로서 실란 커플링제로 표면 처리된 수산화마그네슘 120 내지 140중량부를 포함하는, 저독성 난연 폴리올레핀계 절연 수지 조성물을 제공한다.
본 발명의 구체적인 일 구현예는, 폴리에틸렌에틸아크릴레이트 20 내지 40중량%, 폴리올레핀 엘라스토머 20 내지 40중량% 및 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지 30 내지 40중량%를 포함하는 베이스 수지 100중량부; 및 난연제로서 실란 커플링제로 표면 처리된 수산화마그네슘 120 내지 140중량부를 포함하는 1차 컴파운드 조성물; 및
가교제를 포함하는, 저독성 난연 폴리올레핀계 절연 수지 조성물을 제공한다.
본 발명의 일 구현예에 따른 절연 수지 조성물에 있어서, 폴리올레핀 엘라스토머는 에틸렌-옥텐계 공중합체, 에틸렌-부텐계 공중합체 또는 이들의 혼합물을 포함할 수 있다.
본 발명의 일 구현예에 따른 절연 수지 조성물에 있어서 가교 특성 및 압출외관을 고려하여 바람직하기로는, 가교제는 비닐트리메톡시실란(VTMOS)과 다이큐밀 퍼옥사이드와의 혼합물을 포함할 수 있다.
보다 바람직한 일 구현예에 따른 절연 수지 조성물에 있어서, 가교제는 1차 컴파운드 조성물 100중량부에 대하여 비닐트리메톡시실란(VTMOS) 1 내지 2중량부와 다이큐밀 퍼옥사이드 0.1 내지 0.12중량부와의 혼합물을 포함할 수 있다.
본 발명은 또한 폴리에틸렌에틸아크릴레이트 20 내지 40중량%, 폴리올레핀 엘라스토머 20 내지 40중량% 및 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지 30 내지 40중량%를 포함하는 베이스 수지 100중량부; 및 난연제로서 실란 커플링제로 표면 처리된 수산화마그네슘 120 내지 140중량부를 포함하는 1차 컴파운드 조성물의 가교화물을 포함하는, 저독성 난연 폴리올레핀계 절연 전선을 제공한다.
본 발명의 일 구현예에 의한 절연 전선에 있어서, 폴리올레핀 엘라스토머는 에틸렌-옥텐계 공중합체, 에틸렌-부텐계 공중합체 또는 이들의 혼합물을 포함하는 것일 수 있다.
본 발명의 일 구현예에 따른 절연 전선에 있어서, 가교화물은 가교제로써 비닐트리메톡시실란(VTMOS)과 다이큐밀 퍼옥사이드와의 혼합물을 사용하여 얻어진 것일 수 있으며, 보다 바람직하기로는 가교화물은 가교제로써 1차 컴파운드 조성물 100중량부에 대하여 비닐트리메톡시실란(VTMOS) 1 내지 2중량부와 다이큐밀 퍼옥사이드 0.1 내지 0.12중량부와의 혼합물을 사용하여 얻어진 것일 수 있다.
본 발명의 또 다른 일 구현예는, 폴리에틸렌에틸아크릴레이트 20 내지 40중량%, 폴리올레핀 엘라스토머 20 내지 40중량% 및 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지 30 내지 40중량%를 포함하는 베이스 수지 100중량부; 및 난연제로서 실란 커플링제로 표면 처리된 수산화마그네슘 120 내지 140중량부를 포함하는 조성물을 컴파운딩하여 1차 컴파운드를 제조하는 공정; 및
1차 컴파운드를 반응압출하여 가교화물을 제조하는 공정을 포함하는,
저독성 난연 폴리올레핀계 절연 전선의 제조방법을 제공한다.
본 발명의 일 구현예에 의한 절연 전선의 제조방법에 있어서, 폴리올레핀 엘라스토머는 에틸렌-옥텐계 공중합체, 에틸렌-부텐계 공중합체 또는 이들의 혼합물을 포함할 수 있다.
본 발명의 일 구현예에 의한 절연 전선의 제조방법에 있어서, 반응압출은 가교제로써 비닐트리메톡시실란(VTMOS)과 다이큐밀 퍼옥사이드와의 혼합물을 사용하여 수행될 수 있다. 보다 바람직한 절연 전선의 제조방법에 있어서, 반응압출은 가교제로써 1차 컴파운드 100중량부에 대하여 비닐트리메톡시실란(VTMOS) 1 내지 2중량부와 다이큐밀 퍼옥사이드 0.1 내지 0.12중량부와의 혼합물을 사용하여 수행될 수 있다.
본 발명은 저독성 난연을 구현하면서도 전기절연성을 향상시킬 수 있고, 내스크래치성 및 외관 품질이 우수한 압출물을 제공할 수 있도록 하면서 압출시 생산속도를 향상시킬 수 있는 절연 수지 조성물을 제공할 수 있고, 이를 이용하여 반응압출을 통한 가교를 통해 압출물의 외관 품질이 우수하고 압출시 생산속도를 향상시킬 수 있는 저독성 난연 가교 폴리올레핀계 절연 전선을 제조하는 방법을 제공할 수 있어서, 궁극적으로 전기절연성이 우수하면서 내스크래치성 및 외관 품질이 우수하고 저독성 난연을 구현한 저독성 난연 가교 폴리올레핀계 절연전선을 제공할 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 발명은 폴리에틸렌에틸아크릴레이트 20 내지 40중량%, 폴리올레핀 엘라스토머 20 내지 40중량% 및 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지 30 내지 40중량%를 포함하는 베이스 수지 100중량부; 난연제로서 실란 커플링제로 표면 처리된 수산화마그네슘 120 내지 140중량부를 포함하는, 저독성 난연 폴리올레핀계 절연 수지 조성물을 제공한다.
저독성 난연 가교 폴리올레핀 절연 전선과 관련한 KS C 3341의 규격은 다음과 같은 성능을 요구하고 있다;
인장강도 9N/㎟(92Kgf/㎠)이상, 신장율(%) : 125% 이상,
열 노화 후(135℃×168hr) 인장강도 변화율: ±40% 이내,
열 노화 후(135℃×168hr) 신장율 변화율: ±40% 이내,
HOT/SET; 175 이하/ 15이하
고온 전기절연 저항 : 3.67mΩ·km 이상.
본 발명의 저독성 난연 폴리올레핀계 절연 수지 조성물은 베이스 수지로서 에틸렌비닐아세테이트(EVA), 저밀도 폴리에틸렌(LDPE), 저밀도 선형폴리에틸렌(LLDPE) 또는 고밀도 폴리에틸렌(HDPE) 등을 포함하지 않으며, 폴리에틸렌에틸아크릴레이트(EEA), 폴리올레핀 엘라스토머(POE) 및 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지를 포함한다.
폴리올레핀 엘라스토머를 베이스 수지로 포함하는 경우 KS C 3341에 규정한 고온 전기절연성을 충족할 수 있는, 우수한 절연성을 나타낼 수 있다.
폴리올레핀 엘라스토머는 그 한정이 있는 것은 아니나, 에틸렌-옥텐계 공중합체, 에틸렌-부텐계 공중합체 또는 이들의 혼합물을 포함할 수 있으며, 좋기로는 에틸렌-옥텐계 공중합체일 수 있다.
전기절연성 향상의 측면에서 바람직하게는 폴리올레핀 엘라스토머의 함량은 베이스 수지 100중량부에 대해 20 내지 40중량%이다.
또한, 본 발명의 절연 수지 조성물에 있어서 베이스 수지로 포함되는 폴리에틸렌에틸아크릴레이트는 에틸렌과 에틸아크릴레이트와의 공중합체로서, 이는 에틸렌비닐아세테이트와 대비하여 열분해 개시온도가 높고 저밀도 폴리에틸렌과 같은 열안정성을 가지고 있으며, 열분해된 경우에도 성형 기계를 부식시키지 않는 특징을 갖는다. 이와 같은 특성으로 인해 폴리에틸렌에틸아크릴레이트를 베이스 수지로 포함하는 경우 충분한 난연성을 발휘할 수 있으며, 특히 전기 케이블의 난연성 시험에 있어서 수직 배치 시험(Cable Vertical 점화)에서 충분한 난연성을 얻을 수 있다.
또한 폴리에틸렌에틸아크릴레이트를 베이스 수지로 포함하는 것은 화재발생시 연기발생량을 줄일 수 있는 측면에서 유리할 수 있다.
화재가 발생하게 되면 재산피해뿐만 아니라 큰 인명 피해를 초래한다. 화재발생 시 가연물 연소에 의해 발생하는 연기와 유독 가스가 인명피해를 일으키는 주요 원인으로 보고되어 있다. 국가화재정보센터(National Fire Data System)에 따르면 화재발생에 따른 인명피해의 가장 큰 원인이 연기 및 유독가스에 의한 사망이다.
화재가 발생하여 다량의 연기가 발생하게 되면 빛의 투과가 저하되어 화재환경에서의 피난활동 및 소화활동에 커다란 장해를 초래하여 큰 인명피해가 발생하게된다. 또한, 화염은 화재가 발생한 특정구역에 제한되어 진행되는 반면 연기는 그 인접한 공간뿐만 아니라 멀리 멀리 떨어진 구역까지 확산되기 때문에 열보다 연기에 의한 노출이 쉽게 이루어져 인명피해가 커지게 된다.
본 발명에서 베이스 수지로 폴리에틸렌에틸아크릴레이트를 포함하는 경우 종래의 에틸렌비닐아세테이트 수지 등의 베이스 수지를 사용한 경우와 대비하여 연기발생량을 현저히 줄여줄 수 있는 점에서 유리할 수 있다.
본 발명에 있어서 폴리에틸렌에틸아크릴레이트는 공단량체인 에틸렌아크릴레이트(EA)의 함량이 전체 수지 중 10 내지 15중량%인 것이 바람직할 수 있다.
난연성 측면에서 폴리에틸렌에틸아크릴레이트의 함량은 베이스 수지 100중량부에 대해 20 내지 40중량%인 것이 바람직하다.
한편, 본 발명의 절연 수지 조성물은 베이스 수지로 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지를 포함하는데, 이는 다른 수지와 대비하여 극성기가 강한 특성을 가져 무기물과의 친화력이 매우 높아 수지와의 결합력을 높여주며, 이로써 물성적 측면에서 인장강도 및 신장율을 향상시키는 역할을 할 수 있다.
본 발명에 있어서 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지에 있어서 말레인산 무수물의 그라프트율은 바람직하게는 0.3 내지 0.6중량%인 것일 수 있으며, 전체 베이스 수지 중 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지의 함량은 물성적 측면에서 전체 베이스 수지 100중량부에 대해 30 내지 40중량%인 것이 바람직할 수 있다.
한편, 본 발명의 절연 수지 조성물은 할로겐-프리 난연제를 포함하는데, 난연제는 실란 커플링제로 표면 처리된 수산화마그네슘이 바람직할 수 있다.
전선의 내스크래치성은 전선의 유통과정 또는 현장 투입 작업 중 기타의 취급에 있어서 전선 외부에 스크래치가 쉽게 나면 상품성에 악영향을 줄 뿐만 아니라 내구성을 저하시켜 궁극적으로 절연성을 포함한 여러 물성을 해치게 될 수 있다. 이와 같은 이유로 내스크래치성은 매우 중요한 물성 중 하나이다.
실란 커플링제로 표면 처리된 수산화마그네슘을 난연제로 사용하는 경우 내스크래치성이 현저히 개선되어 내구성을 향상시킬 수 있다.
또한 실란 커플링제로 표면 처리된 수산화마그네슘을 난연제는 내스크래치성 향상 뿐만 아니라 압출시 선속을 향상시키는 역할을 한다. 전선의 압출 작업에서 선속은 생산성과 직결되는 문제일 수 있다.
통상 전선회사에서 범용으로 사용하는 전선압출기는 100mm 익스트루더(Extruder)이며, 압출기의 스크류 재원은 Length/Diameter 비율이 20/1 내지 26/1, 압축비(Compression Ratio) 1.5 내지 2.5인 것을 가장 많이 사용하고 있다. 주요 전선 사이즈는 1.5SQ 내지 6SQ로 제조하는데, 이와 같은 기기에서 1분당 제조되는 전선의 길이가 150m 이상은 되어야 생산성이 우수하다는 것이 일반화된 평가이기 때문에 선속이 150m/min 이상은 되는 것이 바람직할 수 있다.
본 발명에서 난연제로서 실란 커플링제로 표면 처리된 수산화마그네슘을 난연제로 사용하는 경우 그 사용량이 충분한 난연성을 발휘하는 정도의 고함량이라고 하더라도 상술한 선속을 충분히 발휘할 수 있는 장점이 있다. 이는 실란 커플링제로 표면 처리된 수산화마그네슘에 있어서 그 표면 처리에 사용된 실란 커플링제로 인해 수산화마그네슘의 표면에 슬립성을 줌으로써 이를 다량 포함하는 수지에 있어서도 제품 표면에 내스크래치성을 향상시킬 수 있으며, 압출시 선속을 증가시킬 수 있다.
본 발명의 절연 수지 조성물에 있어서 실란 커플링제로 표면 처리된 수산화마그네슘을 적용할 경우 그 함량은 베이스 수지 100중량부에 대해 120 내지 140중량부인 것이 난연성, 내스크래치성 및 압출성을 고려하여 바람직할 수 있다.
난연제로서 상기한 실란 커플링제로 표면 처리된 수산화마그네슘 이외에, 그 표면이 처리되지 않은 수산화마그네슘이나 수산화알루미늄과 같은 할로겐-프리 난연제를 더 포함할 수 있음은 물론이다.
그밖에도 본 발명의 절연 수지 조성물은 활제나 산화방지제 등과 같은 첨가제를 더 포함할 수 있음은 물론이다.
이와 같은 조성물들은 가교화물로 제조되기 위해서는 니더(kneader) 등을 이용하여 가공함으로써 1차 컴파운드 조성물로 얻어질 수 있으며, 이러한 조성물에 가교제를 배합하여 압출함으로써 궁극적인 절연 수지를 얻을 수 있다.
본 발명의 수지 조성물은 가교제를 포함하는데, 이는 베이스 수지의 가교를 통해 강도 내지 내열성을 향상시키고자 하는 목적에 따른 것이다.
폴리올레핀류의 가교는 실란 가교 또는 과산화물에 의한 가교를 고려할 수 있는데, 그 가교조건에 따라 가교의 속도거동이 달라질 수 있고 또한 가교화물의 열적특성이 변화할 수 있다.
이러한 점을 고려하여 본 발명의 절연 수지 조성물에 있어서 가교제는 실란 가교와 과산화물 가교를 병용하고자 비닐트리메톡시실란과 다이큐밀 퍼옥사이드의 혼합물을 가교제로 포함한다.
특히 가교 특성에 있어서 IEC 60502의 Hot Set 테스트에 있어서 Hot elongation(%)/Permanent Set(%)가 175/115 이하인 가교특성을 충족하는 데 있어서 바람직하기로는 가교제는 1차 컴파운드 조성물 100중량부에 대하여 비닐트리메톡시실란(VTMOS) 1 내지 2중량부와 다이큐밀 퍼옥사이드 0.1 내지 0.12중량부와의 혼합물을 포함하는 것이다.
이와 같은 절연 수지 조성물을 이용하여 절연 전선을 제조하는 방법은,
폴리에틸렌에틸아크릴레이트 20 내지 40중량%, 폴리올레핀 엘라스토머 20 내지 40중량% 및 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지 30 내지 40중량%를 포함하는 베이스 수지 100중량부; 및 난연제로서 실란 커플링제로 표면 처리된 수산화마그네슘 120 내지 140중량부를 포함하는 조성물을 컴파운딩하여 1차 컴파운드를 제조하는 공정; 및
1차 컴파운드를 반응압출하여 가교화물을 제조하는 공정을 포함한다.
여기서 반응압출은 가교제를 제외한 수지 조성물을 컴파운딩하여 얻어진 1차 컴파운드의 가교반응이 압출과 동시에 화학적 반응을 수행하여 이루어지는 것으로, 이러한 반응압출을 고려하여 가교제로써 비닐트리메톡시실란(VTMOS)과 다이큐밀 퍼옥사이드와의 혼합물, 보다 바람직하기로는 1차 컴파운드 100중량부에 대하여 비닐트리메톡시실란(VTMOS) 1 내지 2중량부와 다이큐밀 퍼옥사이드 0.1 내지 0.12중량부와의 혼합물을 가교제로써 사용하여 수행될 수 있다.
보다 구체적인 일예로 1차 컴파운드 조성물을 니더(kneader)에서 120 내지 140℃에 도달할 때까지 혼련한 후에 일축 압출기를 사용하여 120 내지 150℃에서 용융 및 혼련하여 냉각한 후 1차 컴파운드를 제조하고, 이 1차 압출물을 스트랜드 컷팅하여 펠렛으로 제조할 수 있다.
그 다음 상기 펠렛에 가교제 혼합물인 비닐트리메톡시실란 및 다이큐밀 퍼옥사이드를 첨가하고 50 내지 90℃에서 약 5분 동안 드라이 블렌드(Dry Blend)하고 압출기를 사용하여 2차 압출물을 제조함으로써 전선을 얻을 수 있다.
이때 가교제를 베이스 수지와 난연제 첨가시에 함께 넣고 작업하게 되면 작업공정상으로는 단순해질 수 있지만, 압출외관이 좋지 못하게 되며 가교 안정성 및 인장강도 특성을 저하하는 등 여러 가지 문제를 초래할 수 있으므로, 베이스 수지 및 난연제를 포함하는 조성물로 1차 컴파운드를 제조하고, 여기에 가교제를 첨가하여 가교화물을 얻는 것이 바람직할 수 있다.
이와 같은 방법을 통해 본 발명은 폴리에틸렌에틸아크릴레이트 20 내지 40중량%, 폴리올레핀 엘라스토머 20 내지 40중량% 및 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지 30 내지 40중량%를 포함하는 베이스 수지 100중량부; 및 난연제로서 실란 커플링제로 표면 처리된 수산화마그네슘 120 내지 140중량부를 포함하는 1차 컴파운드 조성물의 가교화물을 포함하는, 저독성 난연 폴리올레핀계 절연 전선을 제공할 수 있다.
얻어진 절연 전선은 저독성의 난연성을 구현해낼 수 있고, 우수한 상온 물성을 나타낼 뿐만 아니라, 우수한 고온 절연저항을 충족하면서, 내스크래치성이 우수하고 외관품질이 우수할 뿐만 아니라, 이러한 우수한 품질의 전선을 고생산량으로 생산할 수 있는 점에서 산업적으로 유용하다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하는 바, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 이러한 실시예들에 의해 한정되는 것이 아님은 물론이다.
<실시예 1 내지 실시예 4>
다음 표 1에 나타낸 바와 같은 성분을 니더(kneader)에서 120 내지 140℃에 도달할 때까지 혼련한 후에 일축 압출기를 사용하여 120 내지 150℃에서 용융 및 혼련하여 냉각한 후 1차 컴파운드를 제조하고, 이 1차 압출물을 스트랜드 컷팅하여 펠렛을 제조하였다.
그 다음 상기 펠렛에 비닐트리메톡시실란 및 다이큐밀 퍼옥사이드를 50 내지 90℃에서 약 5분 동안 드라이 블렌드(Dry Blend)하고 압출기를 사용하여 2차 압출물을 제조하였다.
Figure PCTKR2020018979-appb-img-000001
㈜ EEA : EA함량 15%, MI(190℃, 2.16Kg)(g/10Min) 0.5 ~ 1.0인 폴리에틸렌에틸아크릴레이트 수지, Japan Polyethylene Corporation, A1150
POE : DSC 융점 58℃ ~ 98℃, MI(190℃, 2.16Kg)(g/10Min) 1 ~ 2인 폴리에틸렌 엘라스토머(구체적으로, 에틸렌-1-옥텐 공중합체), LG社, POE LC-170
Graft Resin : LLDPE BASE에 MALEIC ACID 0.5% GRAFT 된 수지, MI(190℃) 0.7 ~ 1.5, 롯데케미칼社, EM-510M
Si-MDH : 실란 커플링제로 표면 처리된 수산화마그네슘 난연제, 평균입자 SIZE 1.0㎛ ~ 1.1㎛, Konoshima社 S-6
PE Wax : Lion Chemtech, LC-102N
산화방지제 : Phenol계 산화방지제, 송원산업, AO 1076
VTMOS : 비닐트리메톡시실란, WACKER사, OFS-6300
DCP : 다이큐밀 퍼옥사이드, AKZO NOBEL사 제품
상기와 같이 얻어진 2차 압출물에 대해 다음과 같은 방법으로 인장강도 및 신장율, 고온 절연저항, 가열노화특성, 가교특성, 난연성을 평가하여 그 결과를 다음 표 2에 나타내었다.
(1) 인장강도 : IEC 60502를 이용하여 인장강도를 측정하였다.
(2) 고온 절연저항 : IEC 60502를 이용하여 절연저항을 측정하였다.
(3) 염화수소 가스발생량 : IEC 60754-1의 시험 방법에 따른 기준치 염화수소 가스 발생량 0.5이하를 나타내는 것을 말한다.
(4) 가교 특성 (Hot / Set (%)): IEC 60502를 이용하여 측정하였다.
(5) 난연성 : UL94에 따라 시험하여 V0등급 이상을 만족
(6) 내스크래치성 : 내스크래치성은 내마모 시험 결과로 비교 진행 하였다. 내 마모 실험은 Needle scrape 실험으로 두께 1mm , 폭 2mm, 길이 100mm 크기의 압출 시편위에 0.45SQ 바늘에 무게가 310g추를 올려 왕복 운동하여 바늘이 시편을 긁도록 하였다. 이때 100회 이상 왕복하여도 시편에 구멍이 나지 않아야 한다.
100회 미만에서 시편에 구멍이 나는 경우 마모성이 좋은 않은 것으로 보며 그 이상일 때 마모성이 우수하다 할 수 있다.
시험 결과 100회 이상 왕복 수치가 나올 경우 전선에서의 스크래치성에 대한 문제가 발생하지 않았는바, 이에 따라 내마모 시험 결과 100회를 기준으로 내스크래치성이 좋고 나쁨을 판단하였다.
Figure PCTKR2020018979-appb-img-000002
상기 표 2의 결과로부터, 폴리에틸렌에틸아크릴레이트 수지를 베이스 수지 중 20 내지 40중량%로 포함하는 경우 절연저항이 상승하여 전기절연성을 향상시키는 데 바람직함을 알 수 있다. 또한 폴리에틸렌에틸아크릴레이트 수지 20 내지 40중량%와 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지 30 내지 40중량%를 포함하는 것이 난연성에 있어서 우수한 결과를 보여주었다.
<비교예 1 내지 4>
상기 실시예 1과 동일한 방법으로 압출물을 제조하되, 다만 다음 표 3에 나타낸 바와 같은 조성으로 제조하였다. EVA를 제외하고 나머지 원료들에 대한 구체적인 사용예는 상기 실시예에서 사용된 것들과 동일하다.
Figure PCTKR2020018979-appb-img-000003
㈜ EVA : 비닐아세테이트(VA) 함량 22중량%, M.I(190℃, 2.16Kg)(g/10Min) 2 ~ 3, 에틸렌 비닐아세테이트, 한화토탈社, E220F
상기와 같이 얻어진 압출물에 대해 상기 실시예 1 내지 4에 기재된 평가방법으로 평가를 수행하여 그 결과를 다음 표 4로 나타내었다.
Figure PCTKR2020018979-appb-img-000004
상기 표 4의 결과로부터, 폴리에틸렌에틸아크릴레이트 수지가 베이스 수지 중 20 내지 40중량% 범위를 벗어난 경우 난연성이 충분하지 않아 Cable Vertical 시험시 시편이 전부 전소되는 결과를 보여주었으며, 그라프트 수지의 함량이 줄어드는 경우는 인장강도 및 신장율이 현저히 떨어지는 결과를 보여주었다.
따라서 그라프트 수지의 함량은 전체 베이스 수지 중 30 내지 40중량% 범위인 것이 바람직함을 알 수 있다.
또한, 폴리올레핀 엘라스토머를 적용하지 않는 경우에는 고온 절연저항값이 현저하게 저하됨을 알 수 있다.
<실시예 5 내지 6>
상기 실시예 1과 동일한 방법으로 압출물을 제조하되, 다만 다음 표 5에 나타낸 바와 같은 조성으로 제조하였다. 원료들에 대한 구체적인 사용예는 상기 실시예에서 사용된 것들과 동일하다.
Figure PCTKR2020018979-appb-img-000005
상기와 같이 얻어진 압출물에 대해 상기 실시예 1 내지 4에 기재된 평가방법으로 평가를 수행하여 그 결과를 다음 표 6으로 나타내었다.
Figure PCTKR2020018979-appb-img-000006
상기 표 6의 결과로부터, 실란 커플링제로 표면 처리된 수산화마그네슘의 함량이 증가할수록 내스크래치성이 향상됨을 확인할 수 있다.
<비교예 6 내지 11>
상기 실시예 1과 동일한 방법으로 압출물을 제조하되, 다만 다음 표 7에 나타낸 바와 같은 조성으로 제조하였다. 난연제 중 일부를 제외하고 나머지 원료들에 대한 구체적인 사용예는 상기 실시예에서 사용된 것들과 동일하다.
Figure PCTKR2020018979-appb-img-000007
㈜ MDH : 수산화마그네슘 난연제, 평균입자 SIZE 3㎛ ~ 4㎛, Shandong社 , YB-1A
ATH : 수산화알루미늄, 평균입자 SIZE 1.2㎛ ~ 1.5㎛, 케이씨社, KH-101LC
상기와 같이 얻어진 압출물에 대해 상기 실시예 1 내지 4에 기재된 평가방법으로 평가를 수행하여 그 결과를 다음 표 8로 나타내었다.
Figure PCTKR2020018979-appb-img-000008
상기 표 8의 결과로부터, 난연제로서 수산화알루미늄을 사용할 경우 내스크래치성은 양호하나 선속을 저하시키고 신장율을 저하시킴을 알 수 있다. 압출시 선속을 개선하고, 표면 내스크래치성 향상, 안정된 신장율을 만족하기 위해서는 실란커플링제로 표면처리된 수산화마그네슘을 난연제로 적용하는 것이 바람직하고, 그 함량은 베이스 수지 100중량부에 대해 120 내지 140중량부 범위 이내인 것이 바람직함을 알 수 있다.
<실시예 7 내지 11>
상기 실시예 1과 동일한 방법으로 압출물을 제조하되, 다만 다음 표 9에 나타낸 바와 같은 조성으로 제조하였다. 원료들에 대한 구체적인 사용예는 상기 실시예에서 사용된 것들과 동일하다.
Figure PCTKR2020018979-appb-img-000009
상기 실시예는 가교제가 가교특성 및 압출성에 미치는 영향을 파악하기 위한 것으로, 이에 가교특성 및 압출 외관 평가만을 수행하였다.
이때 압출외관의 파정은 전선을 1m 길이로 자른 후 지름이 0.1mm 이상인 돌기가 발생되는 유무로 판단하였으며, 찢어지거나 발포현상 또한 없는 것을 양호로 평가하였다.
그 결과는 다음 표 10으로 나타내었다.
Figure PCTKR2020018979-appb-img-000010
<참조예 1 내지 4>
상기 실시예 1과 동일한 방법으로 압출물을 제조하되, 다만 다음 표 11에 나타낸 바와 같은 조성으로 제조하였다. 원료들에 대한 구체적인 사용예는 상기 실시예에서 사용된 것들과 동일하다.
Figure PCTKR2020018979-appb-img-000011
상기 실시예는 가교제가 가교특성 및 압출성에 미치는 영향을 파악하기 위한 것으로, 이에 가교특성 및 압출 외관 평가만을 수행하였다.
그 결과는 다음 표 12로 나타내었다.
Figure PCTKR2020018979-appb-img-000012
참조예1의 경우는 가교가 압출기 내에서 빠르게 진행되어 스코치(Scotch) 발생의 우려가 있으며 압출 및 외관 안정성 측면에서 다소 불리한 점이 있었으며, 참조예2와 참조예 3의 경우는 케이블 압출 공정을 고속으로 운용하는 경우 스코치(Scotch) 발생 우려가 있어서 고속 압출로는 다소 불리한 점이 있었다.
참조예 4의 경우는 가교특성이 다소 불안정하여 스크류 조합 및 압출기 내부 체류 시간 등을 조절하는 것이 필요하였다.
<비교예 12>
상기 실시예 1과 동일한 방법으로 압출물을 제조하되, 다만 다음 표 13에 나타낸 바와 같은 조성으로 제조하였다. 원료들에 대한 구체적인 사용예는 상기 실시예에서 사용된 것들과 동일하다.
Figure PCTKR2020018979-appb-img-000013
상기 비교예는 베이스 수지로서 폴리에틸렌에틸아크릴레이트가 화재시 연기발생에 미치는 영향을 파악하기 위한 것으로, 이에 연기밀도 평가만을 수행하여 그 결과를 다음 표 14로 나타내었다.
연기밀도의 평가는 ASTM E662(Flame mode) 시험방법에 근거하여 시험하였다.
Figure PCTKR2020018979-appb-img-000014
저독성 난연 폴리올레핀 절연 케이블의 경우는 주 사용처가 건물 옥내배선인데, 화재가 발생되었을 경우 이러한 케이블로부터 연기가 발생되어 건물내부에 있는 사람들의 시야를 가리는 문제가 발생할 수 있다.
폴리에틸렌에틸아크릴레이트를 베이스 수지 중에 포함하는 경우 에틸렌비닐아세테이트를 사용하는 경우와 대비하여 현저하게 연기밀도가 낮은 값을 보임을 확인할 수 있는바, 이로써 본 발명의 절연 케이블의 경우 화재 발생시 연기의 발생량을 현저히 줄여줄 수 있을 것으로 기대할 수 있다.

Claims (13)

  1. 폴리에틸렌에틸아크릴레이트 20 내지 40중량%, 폴리올레핀 엘라스토머 20 내지 40중량% 및 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지 30 내지 40중량%를 포함하는 베이스 수지 100중량부; 및
    난연제로서 실란 커플링제로 표면 처리된 수산화마그네슘 120 내지 140중량부를 포함하는,
    저독성 난연 폴리올레핀계 절연 수지 조성물.
  2. 제 1 항에 있어서, 폴리에틸렌에틸아크릴레이트 20 내지 40중량%, 폴리올레핀 엘라스토머 20 내지 40중량% 및 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지 30 내지 40중량%를 포함하는 베이스 수지 100중량부; 및 난연제로서 실란 커플링제로 표면 처리된 수산화마그네슘 120 내지 140중량부를 포함하는 1차 컴파운드 조성물; 및
    가교제를 포함하는 것을 특징으로 하는,
    저독성 난연 폴리올레핀계 절연 수지 조성물.
  3. 제 1 항 또는 제 2 항에 있어서, 폴리올레핀 엘라스토머는 에틸렌-옥텐계 공중합체, 에틸렌-부텐계 공중합체 또는 이들의 혼합물을 포함하는 것을 특징으로 하는,
    저독성 난연 폴리올레핀계 절연 수지 조성물.
  4. 제 2 항에 있어서, 가교제는 비닐트리메톡시실란(VTMOS)과 다이큐밀 퍼옥사이드와의 혼합물을 포함하는 것을 특징으로 하는,
    저독성 난연 폴리올레핀계 절연 수지 조성물.
  5. 제 2 항 또는 제 4 항에 있어서, 가교제는 1차 컴파운드 조성물 100중량부에 대하여 비닐트리메톡시실란(VTMOS) 1 내지 2중량부와 다이큐밀 퍼옥사이드 0.1 내지 0.12중량부와의 혼합물을 포함하는 것을 특징으로 하는,
    저독성 난연 폴리올레핀계 절연 수지 조성물.
  6. 폴리에틸렌에틸아크릴레이트 20 내지 40중량%, 폴리올레핀 엘라스토머 20 내지 40중량% 및 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지 30 내지 40중량%를 포함하는 베이스 수지 100중량부; 및 난연제로서 실란 커플링제로 표면 처리된 수산화마그네슘 120 내지 140중량부를 포함하는 1차 컴파운드 조성물의 가교화물을 포함하는,
    저독성 난연 폴리올레핀계 절연 전선.
  7. 제 6 항에 있어서, 폴리올레핀 엘라스토머는 에틸렌-옥텐계 공중합체, 에틸렌-부텐계 공중합체 또는 이들의 혼합물을 포함하는 것을 특징으로 하는,
    저독성 난연 폴리올레핀계 절연 전선.
  8. 제 6 항에 있어서, 가교화물은 가교제로써 비닐트리메톡시실란(VTMOS)과 다이큐밀 퍼옥사이드와의 혼합물을 사용하여 얻어진 것을 특징으로 하는,
    저독성 난연 폴리올레핀계 절연 전선.
  9. 제 6 항 또는 제 8 항에 있어서, 가교화물은 가교제로써 1차 컴파운드 조성물 100중량부에 대하여 비닐트리메톡시실란(VTMOS) 1 내지 2중량부와 다이큐밀 퍼옥사이드 0.1 내지 0.12중량부와의 혼합물을 사용하여 얻어진 것을 특징으로 하는,
    저독성 난연 폴리올레핀계 절연 전선.
  10. 폴리에틸렌에틸아크릴레이트 20 내지 40중량%, 폴리올레핀 엘라스토머 20 내지 40중량% 및 말레인산 무수물이 그라프트된 선형 저밀도 폴리에틸렌 수지 30 내지 40중량%를 포함하는 베이스 수지 100중량부; 및 난연제로서 실란 커플링제로 표면 처리된 수산화마그네슘 120 내지 140중량부를 포함하는 조성물을 컴파운딩하여 1차 컴파운드를 제조하는 공정; 및
    1차 컴파운드를 반응압출하여 가교화물을 제조하는 공정을 포함하는,
    저독성 난연 폴리올레핀계 절연 전선의 제조방법.
  11. 제 10 항에 있어서, 폴리올레핀 엘라스토머는 에틸렌-옥텐계 공중합체, 에틸렌-부텐계 공중합체 또는 이들의 혼합물을 포함하는 것을 특징으로 하는,
    저독성 난연 폴리올레핀계 절연 전선의 제조방법.
  12. 제 10 항에 있어서, 반응압출은 가교제로써 비닐트리메톡시실란(VTMOS)과 다이큐밀 퍼옥사이드와의 혼합물을 사용하여 수행되는 것을 특징으로 하는,
    저독성 난연 폴리올레핀계 절연 전선의 제조방법.
  13. 제 10 항 또는 제 12 항에 있어서, 반응압출은 가교제로써 1차 컴파운드 100중량부에 대하여 비닐트리메톡시실란(VTMOS) 1 내지 2중량부와 다이큐밀 퍼옥사이드 0.1 내지 0.12중량부와의 혼합물을 사용하여 수행되는 것을 특징으로 하는,
    저독성 난연 폴리올레핀계 절연 전선의 제조방법.
PCT/KR2020/018979 2019-12-24 2020-12-23 저독성 난연 폴리올레핀계 절연 수지 조성물, 절연전선 및 절연전선의 제조방법 WO2021133052A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/805,132 US20220289964A1 (en) 2019-12-24 2022-06-02 Low-toxicity flame-retardant polyolefin-based insulating resin composition, insulated electric cable, and method of manufacturing insulated electric cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190174380A KR102286151B1 (ko) 2019-12-24 2019-12-24 저독성 난연 폴리올레핀계 절연 수지 조성물, 절연전선 및 절연전선의 제조방법
KR10-2019-0174380 2019-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/805,132 Continuation US20220289964A1 (en) 2019-12-24 2022-06-02 Low-toxicity flame-retardant polyolefin-based insulating resin composition, insulated electric cable, and method of manufacturing insulated electric cable

Publications (1)

Publication Number Publication Date
WO2021133052A1 true WO2021133052A1 (ko) 2021-07-01

Family

ID=76575607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018979 WO2021133052A1 (ko) 2019-12-24 2020-12-23 저독성 난연 폴리올레핀계 절연 수지 조성물, 절연전선 및 절연전선의 제조방법

Country Status (3)

Country Link
US (1) US20220289964A1 (ko)
KR (1) KR102286151B1 (ko)
WO (1) WO2021133052A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102674248B1 (ko) * 2021-07-30 2024-06-12 한국생산기술연구원 수소상용차에 적용 가능한 고전압 경량 케이블 소재 및 이의 제조방법
CN116285089A (zh) * 2023-04-18 2023-06-23 镇江明德新材料科技有限公司 一种阻水型低烟无卤阻燃电缆料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110067040A (ko) * 2008-09-16 2011-06-20 유니온 카바이드 케미칼즈 앤드 플라스틱스 테크날러지 엘엘씨 내균열성 난연성 할로겐-무함유 케이블 조립체 및 코팅 조성물
KR20150058307A (ko) * 2012-09-12 2015-05-28 아르끄마 프랑스 가교 개시제와 촉진제의 프라이머 혼합물
KR101711636B1 (ko) * 2015-08-25 2017-03-02 주식회사 디와이엠 솔루션 상온가교형 할로겐프리 난연성 수지 조성물 및 그 제조방법
KR101845532B1 (ko) * 2016-11-04 2018-04-04 주식회사 위스컴 옥내 절연전선의 압출피복용 친환경 무독성 난연 실란가교 조성물 및 절연전선의 제조방법
KR101914869B1 (ko) * 2017-06-19 2018-11-02 엘에스전선 주식회사 비할로겐계 난연성 폴리올레핀 절연 조성물 및 이로부터 형성된 절연층을 포함하는 전선

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110067040A (ko) * 2008-09-16 2011-06-20 유니온 카바이드 케미칼즈 앤드 플라스틱스 테크날러지 엘엘씨 내균열성 난연성 할로겐-무함유 케이블 조립체 및 코팅 조성물
KR20150058307A (ko) * 2012-09-12 2015-05-28 아르끄마 프랑스 가교 개시제와 촉진제의 프라이머 혼합물
KR101711636B1 (ko) * 2015-08-25 2017-03-02 주식회사 디와이엠 솔루션 상온가교형 할로겐프리 난연성 수지 조성물 및 그 제조방법
KR101845532B1 (ko) * 2016-11-04 2018-04-04 주식회사 위스컴 옥내 절연전선의 압출피복용 친환경 무독성 난연 실란가교 조성물 및 절연전선의 제조방법
KR101914869B1 (ko) * 2017-06-19 2018-11-02 엘에스전선 주식회사 비할로겐계 난연성 폴리올레핀 절연 조성물 및 이로부터 형성된 절연층을 포함하는 전선

Also Published As

Publication number Publication date
KR20210082317A (ko) 2021-07-05
US20220289964A1 (en) 2022-09-15
KR102286151B1 (ko) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2021133052A1 (ko) 저독성 난연 폴리올레핀계 절연 수지 조성물, 절연전선 및 절연전선의 제조방법
EP2941776B1 (en) Fire and water resistant cable cover
WO2013022206A2 (ko) 가교 폴리에틸렌 조성물
KR102424674B1 (ko) 논할로겐 난연성 수지조성물을 사용한 절연전선 및 케이블
WO2010110559A2 (en) Uncrosslinked polyethylene composition for power cable
CN111393773A (zh) 环保高阻燃聚氯乙烯电缆护套料及其制备方法
WO2018182094A1 (ko) 비할로겐계 난연성 폴리올레핀 절연 조성물 및 이로부터 형성된 절연층을 포함하는 전선
CN112574493A (zh) 一种耐油无卤低烟阻燃电缆护套料及其制备方法
KR100239581B1 (ko) 전선 케이블 피복용 난연 수지 조성물
JPH02251572A (ja) 難燃性組成物
EP0966000B1 (en) A polyethylene crosslinkable composition
JP3723025B2 (ja) ノンハロゲン難燃性樹脂組成物
GB2190384A (en) Halogen free flame retardant compositions
JP6053641B2 (ja) 難燃性シラン架橋性樹脂組成物、その製造方法、成形品、電線・ケーブルおよびその製造方法
WO2020145738A1 (ko) 고난연 케이블
JP2000007852A (ja) 電線被覆用樹脂組成物および絶縁電線
WO2022108208A1 (ko) 비가교 절연 케이블
CN112080084A (zh) 一种阻燃绝缘护套材料
JP3164485B2 (ja) 絶縁電線
WO2022098155A1 (ko) 비가교 절연 조성물 및 이로부터 형성된 절연층을 갖는 전력 케이블
WO2021150042A1 (ko) 자동차 케이블용 절연 조성물 및 이를 이용하여 제조된 자동차 케이블
KR100191657B1 (ko) 비할로겐계 열가소성 난연 수지 조성물
JP3139683B2 (ja) 難燃性ケーブル
WO2022139374A1 (ko) 데코시트 및 그 제조 방법
WO2021210945A1 (ko) 절연 조성물 및 이로부터 형성된 절연층을 갖는 전력 케이블

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904334

Country of ref document: EP

Kind code of ref document: A1