WO2022057541A1 - 显示面板及其驱动方法和制备方法、显示装置 - Google Patents

显示面板及其驱动方法和制备方法、显示装置 Download PDF

Info

Publication number
WO2022057541A1
WO2022057541A1 PCT/CN2021/112691 CN2021112691W WO2022057541A1 WO 2022057541 A1 WO2022057541 A1 WO 2022057541A1 CN 2021112691 W CN2021112691 W CN 2021112691W WO 2022057541 A1 WO2022057541 A1 WO 2022057541A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrodes
shielding
units
display panel
Prior art date
Application number
PCT/CN2021/112691
Other languages
English (en)
French (fr)
Inventor
张贵玉
罗鸿强
蒋宜辰
易利祥
柴媛媛
闵航
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/789,188 priority Critical patent/US20230061413A1/en
Publication of WO2022057541A1 publication Critical patent/WO2022057541A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds

Definitions

  • the embodiments of the present disclosure belong to the field of display technology, and specifically relate to a display panel, a driving method and a manufacturing method thereof, and a display device.
  • the technology of flexible OLED (Organic Light-Emitting Diode, also known as organic electro-optical laser display) touch products can be basically divided into plug-in type and On-cell type. Therefore, the plug-in structure can be applied to products such as wearables, mobile phones, tablets, foldables, notebooks, etc. At the same time, there are corresponding touch chips that can support it at this stage.
  • the plug-in structure cannot really take advantage of OLED, and at the same time, it cannot meet the structural requirements of foldable products, so OLED products with On-Cell structure emerge as the times require.
  • Embodiments of the present disclosure provide a display panel, a driving method and a manufacturing method thereof, and a display device.
  • embodiments of the present disclosure provide a display panel, including a display substrate
  • the orthographic projection of the shielding electrodes on the display substrate at least partially overlaps the orthographic projection of the touch electrodes on the display substrate.
  • the shielding electrode includes a plurality of shielding units, and the plurality of shielding units are spaced apart from each other.
  • the plurality of shielding units are arranged in an array
  • the touch electrodes include a plurality of touch units; the plurality of touch units are arranged in an array;
  • the shielding units and the touch control units are distributed in one-to-one correspondence or one-to-many correspondence.
  • the number of shielding units is M, and the load value of a single shielding unit is x, then M*x ⁇ P;
  • the number of shielding units is N, and the load value of a single shielding unit is y, then N*y ⁇ P;
  • P is the maximum load capacity of the driver chip that provides signals to the shield electrodes.
  • a shielded signal line is further included, and the shielded signal line and the shielded electrode are arranged in the same layer;
  • Each of the shielding units is individually connected to one of the shielded signal lines, and the shielded signal lines of one or more rows of the shielding units are connected together and connected to the driving chip.
  • the shielded signal line includes a first signal line and a second signal line, the first signal line surrounds the periphery of the shielded unit array, and a part of the second signal line is distributed in the shielded unit array The periphery of , another part is distributed in the interval between the rows of the shielding unit array;
  • the second signal line is individually connected to each of the shielding units, the second signal line is connected to the first signal line, and the first signal line is connected to the driving chip.
  • the shielding electrodes and the touch electrodes are configured to input the same signal during touch control.
  • the display substrate includes a plurality of sub-pixels, and the sub-pixels are arranged in an array;
  • the shielding unit is in a grid shape, and the orthographic projection of the shielding unit on the display substrate does not overlap with the sub-pixels; the orthographic projection of the shielding signal lines on the display substrate does not overlap with the sub-pixels No overlap.
  • the touch control unit is in a grid shape, and the orthographic projection of the touch control unit on the display substrate does not overlap with the sub-pixels;
  • the grid density of the shielding unit is less than or equal to the grid density of the touch control unit; the grid density of the touch control unit is smaller than the distribution density of the sub-pixels.
  • a touch signal line is further included, the touch signal line is disposed on a side of the shielding electrode away from the display substrate, and is located on a side of the touch electrode close to the display substrate side;
  • Each of the touch units is individually connected to one of the touch signal lines; the orthographic projection of the touch signal lines on the display substrate overlaps with the orthographic projection of the touch electrodes on the display substrate .
  • a first insulating layer is further included, and the first insulating layer is disposed between the touch signal lines and the touch electrodes;
  • At least one first via hole is opened in the first insulating layer in a region corresponding to one of the touch control units, and the touch control unit is connected to the touch control signal line that provides signals for the touch control unit through the first via hole .
  • a plurality of first via holes are formed in the first insulating layer in a region corresponding to one of the touch units;
  • the plurality of first via holes are evenly distributed, and the plurality of first via holes are connected to each other through the touch signal lines.
  • one of the first via holes is formed in the first insulating layer in a region corresponding to one of the touch units
  • a row of the touch units is in a top-to-bottom direction, and the first via holes corresponding to each touch unit are sequentially arranged from the upper right corner of the touch unit to the lower left corner of the touch unit.
  • the number of touch units is A
  • the load value of a single touch unit is a, then A*a ⁇ P;
  • the number of touch units is B, and the load value of a single touch unit is b, then B*b ⁇ P;
  • P is the maximum load capacity of the touch drive chip that provides signals to the touch electrodes.
  • it further includes a suspended electrode, the suspended electrode is suspended in the air, the suspended electrode and the touch electrode are disposed in the same layer, and the orthographic projection of the suspended electrode on the display substrate is the same as that of the touch control electrode.
  • the orthographic projections of the electrodes on the display substrate do not overlap.
  • the floating electrodes are in a grid shape, and the orthographic projection of the floating electrodes on the display substrate does not overlap with the sub-pixels.
  • the suspended electrodes are distributed in the area where the touch control unit is located, and the distribution area of the suspended electrodes in the area where the touch control unit is located accounts for less than 40%.
  • an embodiment of the present disclosure further provides a display device including the above-mentioned display panel.
  • embodiments of the present disclosure further provide a method for manufacturing a display panel, including: preparing a display substrate;
  • Shield electrodes and touch electrodes are sequentially prepared on the display side of the display substrate;
  • the orthographic projection of the shielding electrodes on the display substrate at least partially overlaps the orthographic projection of the touch electrodes on the display substrate.
  • an embodiment of the present disclosure further provides a method for driving a display panel, where the display panel includes a display substrate,
  • touch electrodes and shield electrodes disposed on the display side of the display substrate; the shield electrodes and the touch electrodes are sequentially arranged away from the display substrate;
  • the orthographic projection of the shielding electrodes on the display substrate at least partially overlaps the orthographic projection of the touch electrodes on the display substrate;
  • the driving method includes: providing a touch driving signal to the touch electrode, while keeping the shielding electrode floating; or, providing the shielding electrode with the same signal as the touch driving signal.
  • FIG. 1 is a schematic top view of the structure of a touch structure based on a mutual capacitive touch control principle in the disclosed technology.
  • FIG. 2 is a schematic top view of the structure of the touch structure based on the self-capacitive touch principle in the disclosed technology.
  • FIG. 3 is a schematic top view of the arrangement of touch electrodes and touch signal lines in a display panel according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic cross-sectional view of the structure of the display panel in FIG. 3 along the BB section line.
  • FIG. 5 is a schematic top view of the structural arrangement of shield electrodes and shield signal lines in a display panel according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic top view of a one-to-one distribution of shielding units and touch units in a display panel according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic top view of a one-to-many corresponding distribution of shielding units and touch units in a display panel according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic top view of an arrangement structure of touch units and sub-pixels in a display panel according to an embodiment of the present disclosure.
  • FIG. 9 a is a schematic top view of the structure of the shielding unit with the same grid density as the touch unit.
  • FIG. 9b is a schematic top view of the structure of the shielding unit whose grid density is 75% of the grid density of the touch unit.
  • FIG. 9c is a schematic top view of the structure of the shielding unit whose grid density is 50% of the grid density of the touch unit.
  • FIG 10 is a schematic top view of the arrangement structure of the first via hole in the first insulating layer corresponding to the touch unit in the display panel according to the embodiment of the present disclosure.
  • FIG. 11 is a schematic cross-sectional view of the structure along the CC section in FIG. 10 .
  • FIG. 12 is a schematic top view of an arrangement structure of a suspended electrode in a display panel according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure are not limited to the embodiments shown in the drawings, but include modifications of configurations formed based on manufacturing processes. Accordingly, the regions illustrated in the figures are of schematic nature and the shapes of the regions shown in the figures are illustrative of the specific shapes of the regions and are not intended to be limiting.
  • touch electrodes are directly formed on the display substrate on which the OLED display structure is prepared.
  • the display noise of the display substrate will be coupled to the touch electrodes and the touch signal lines that provide touch drive signals for the touch electrodes, causing strong interference to the touch of the touch electrodes, resulting in reduced Touch performance of touch electrodes.
  • the coupling effect of display noise will have a more obvious impact on the touch performance of the touch electrodes, which seriously affects the touch performance of the touch electrodes.
  • small-sized OLED products with an On-Cell touch structure usually adopt a touch structure based on the principle of mutual capacitance touch with a multi-layer touch electrode design.
  • the touch structure is composed of an array of touch cells.
  • the control unit includes driving electrodes 23 and sensing electrodes 24.
  • the driving electrodes 23 arranged in the row direction in the touch structure are connected through bridges, and the sensing electrodes 24 arranged along the column direction in the touch structure are connected and turned on.
  • the driving electrodes 23 and the sensing electrodes 24 in the column direction are insulated from each other at the intersecting positions, so as to realize the touch function.
  • the driving electrodes 23 and the sensing electrodes 24 are both provided with hollow areas, and suspended electrodes are arranged in the hollow areas.
  • the hollow areas can reduce the load value of the driving electrodes 23 and the sensing electrodes 24 .
  • the load of a single touch unit is about 15pF.
  • the total load of the touch structure is about 600pF (excluding the wiring part).
  • the limit load driving capability of the driver chip is 1000pF, which can basically meet the driving requirements of small-sized touch products.
  • the total load of the touch structure is estimated to be about 1260pF.
  • the total load of the touch structure will be greater than 1500pF, which is far beyond the load driving capability of the touch driver chip, and will face a state where no touch driver chip is available.
  • touch structure solution for small-sized OLED products with On-Cell touch structure that is, a touch structure based on the self-capacitance touch principle of single-layer touch electrode design.
  • the touch structure It is composed of a touch unit array, and each touch unit is composed of a touch electrode pattern 25 and a touch electrode wiring 26.
  • the touch electrode pattern 25 and the touch electrode wiring 26 are located in the same layer and belong to a single-layer touch electrode. Design.
  • the main reason for adopting the single-layer touch electrode design scheme is that the area of the touch electrode pattern 25 in a single touch unit is small, so that the load of the entire touch structure is small (generally less than 50pF), even if the touch electrode traces are added 26, the load of the entire touch structure can also be controlled at about 100pF, and the current touch driver chips can basically meet the driving requirements for it.
  • the touch structure based on the self-capacitance touch principle of the single-layer touch electrode design has a smaller load than the touch structure based on the mutual capacitance touch principle of the multi-layer touch electrode design, it can match all current touch driving chips, but Its defects are also very obvious.
  • the touch structure based on the self-capacitance touch principle of the single-layer touch electrode design is filled with touch electrode traces 26 between the touch electrode patterns 25 , especially in the touch electrode patterns 25 .
  • touch electrode traces 26 Between the end (part A in FIG. 2 ), the greater the width occupied by the touch electrode traces 26 ; because the touch electrode traces 26 cannot be positioned, the greater the width of the touch electrode traces 26 , the better the touch performance.
  • the difference is reflected in the linearity and precision of the touch. This is what we often call the blind spot. In theory, we hope to eliminate the impact of the blind spot on the touch operation.
  • each touch unit is connected to a touch electrode line in the touch structure based on the self-capacitance touch principle of the single-layer touch electrode design, there will be a large number of touch electrode line lead-out ends at the end of the screen. It means that the bonding area will be very large, which requires the peripheral circuit area to be bonded to increase, and the cost will increase.
  • the touch structure based on the self-capacitance touch principle of the single-layer touch electrode design is applied to large-sized OLED products, on the one hand, there will be more touch electrode lines at the end of the screen, and the binding area will be larger; On the other hand, the blind area will be larger, and the touch performance of the product will be worse.
  • the touch structure scheme based on the mutual capacitance touch principle of the multi-layer touch electrode design for small-sized OLED products and the touch structure scheme based on the self-capacitance touch principle of the single-layer touch electrode design are simply impossible. Therefore, it is imperative to design a touch control structure suitable for large-size OLED products.
  • an embodiment of the present disclosure provides a display panel, as shown in FIG. 3 and FIG. 4 , including a display substrate 1 ; touch electrodes 2 and shielding electrodes disposed on the display substrate 1 6; the shield electrodes 6 and the touch electrodes 2 are arranged away from the display substrate 1 in sequence; the orthographic projection of the shield electrodes 6 on the display substrate 1 and the orthographic projection of the touch electrodes 2 on the display substrate 1 at least partially overlap.
  • the display substrate 1 includes a driving backplane, a light-emitting element disposed on the driving backplane, and an encapsulation layer for encapsulating the light-emitting element.
  • the light-emitting element may be an organic electroluminescent element (ie, an OLED light-emitting element).
  • OLED light-emitting element may also be other light-emitting elements, such as an LED light-emitting element.
  • the shielding electrodes 6 By disposing the shielding electrodes 6 between the display substrate 1 and the touch electrodes 2, the display noise of the display substrate 1 can be shielded, thereby reducing or avoiding the interference of the display noise coupling effect on the touch operation of the touch electrodes 2, and further Improve the touch performance of the display panel.
  • the shielding electrode 6 includes a plurality of shielding units 61 , and the plurality of shielding units 61 are spaced apart from each other.
  • the shield electrode 6 and the touch electrode 2 are configured to input the same signal during touch control.
  • the load value of the plurality of shielding units 61 will not exceed the maximum load capacity of the driver chip that provides the signals, thereby meeting the driving requirements of the driver chip for the shielding electrodes 6 .
  • a plurality of shielding units 61 are arranged in an array; the touch electrode 2 includes a plurality of touch units 21 ; the plurality of touch units 21 are arranged in an array; In the row direction and column direction of the array, the shielding units 61 and the touch units 21 are distributed in a one-to-one correspondence.
  • the row direction and the column direction of the array of touch units 21 are not limited to being perpendicular to each other, and the intersection angle between the row direction and the column direction may be any acute angle less than 90°.
  • the shielding units and the touch units are distributed in a one-to-one correspondence only along the row direction or the column direction of the array of touch units.
  • the shield units 61 are distributed in a one-to-many correspondence with the touch units 21 .
  • the shield units and the touch units are distributed in a one-to-many correspondence.
  • the number of shielding units 61 is M, and the load value of a single shielding unit 61 is x, then M*x ⁇ P; along the column direction of the array of shielding units 61 , the number of shielding units 61 is N, and the load value of a single shielding unit 61 is y, then N*y ⁇ P; where P is the maximum load capacity of the driving chip that provides signals to the shielding electrodes 6 .
  • the same signal as that of the touch control unit 21 is input to the shielding unit 61 during touch control.
  • the above structure of the shielding electrode 6 can, on the one hand, shield the display noise of the display substrate and prevent the display noise from being coupled to the touch electrodes, thereby avoiding the influence of the display noise on the touch performance of the touch electrodes; on the other hand, because the shielding unit 61 Consistent with the signal on the touch unit 21, there is no voltage difference, so that the capacitance formed by the shield unit 61 and the touch unit 21 does not need to be charged, so that the capacitive load of the touch unit 21 is minimized, and the requirements for the touch drive chip are the lowest;
  • the above-mentioned partition setting of the shielding electrodes 6 can ensure that the load value of each row of shielding units 61 and the load value of each column of shielding units 61 will not exceed the maximum load capacity of the touch driving chip, thereby satisfying the touch driving chip to shielding Drive requirements for electrode 6.
  • the display panel further includes a shielded signal line 8 , and the shielded signal line 8 and the shielding electrode 6 are arranged in the same layer; each shielding unit 61 is individually connected to a shielded signal line 8 , one or more The shielded signal lines 8 of the row shielding unit 61 are connected together and connected to the driving chip.
  • each shielding unit 61 can be realized, thereby ensuring that the driving chip provides the same signal as the touch driving signal to each shielding unit 61 during touch control, so that the capacitive load of the touch unit 21 is minimized, and the touch At the same time, the shielding unit 61 can better shield the display noise of the display substrate and prevent the display noise from being coupled to the touch electrodes, thereby avoiding the influence of the display noise on the touch performance of the touch electrodes.
  • the shielded signal line 8 includes a first signal line 81 and a second signal line 82 , the first signal line 81 surrounds the periphery of the array of shielding units 61 , and a part of the second signal line 82 is distributed On the periphery of the shielding unit 61 array, another part is distributed in the space between the rows of the shielding unit 61 array; the second signal line 82 is connected to each shielding unit 61 separately, and the second signal line 82 is connected to the first The signal line 81, the first signal line 81 is connected to the driving chip.
  • the first signal line 81 may be connected to the driver chip through one end, or may be connected to the driver chip through both ends.
  • the parallel connection of the shielding units 61 can be realized, and at the same time, the load value of the shielding units 61 in each row and the load value of the shielding units 61 in each column can not exceed the maximum load capacity of the touch driver chip, so as to satisfy the touch Control the driving requirements of the driving chip to the shielding electrode 6.
  • the display substrate includes a plurality of sub-pixels 10 , and the sub-pixels 10 are arranged in an array; the shielding unit 61 is in a grid shape, and the orthographic projection of the shielding unit 61 on the display substrate is the same as that of the sub-pixels 10 . No overlap; the orthographic projection of the shielded signal lines on the display substrate does not overlap with the sub-pixels 10 .
  • This arrangement on the one hand, can reduce the load value of the shielding electrode 6 while ensuring that the shielding electrode 6 shields the display noise of the display substrate, so that the driving chip can better drive the shielding electrode 6 and improve the touch sensitivity. , linearity and accuracy; on the other hand, the setting of the shielding electrode 6 will not affect the normal light output of the display panel, thereby ensuring the light transmittance of the display panel, thereby ensuring that the display panel can display normally.
  • the display substrate further includes a driving backplane, and the driving backplane is provided with a pixel circuit, and the pixel circuit may be a 2T1C pixel circuit, a 7T1C pixel circuit, or other pixel circuits.
  • the sub-pixels 10 are disposed on the driving backplane and are connected to the pixel circuits in the driving backplane.
  • the sub-pixel 10 includes red, green and blue sub-pixels, and the sub-pixel 10 is an OLED (organic electroluminescence) light-emitting element.
  • the OLED light-emitting element includes an anode, a light-emitting functional layer and a cathode sequentially arranged on the driving backplane, and the light-emitting functional layer includes a hole transport layer, a hole injection layer, a light-emitting layer, an electron injection layer, and an electron transport layer stacked in sequence.
  • the touch unit 21 is in a grid shape, and the orthographic projection of the touch unit 21 on the display substrate does not overlap with the sub-pixels 10 .
  • This arrangement on the one hand, can reduce the load value of the touch electrodes, so that the touch drive chip can better drive the touch electrodes and improve the linearity and accuracy of touch; on the other hand, the setting of the touch electrodes does not It will affect the normal light output of the display panel, thereby ensuring the light transmittance of the display panel, thereby ensuring that the display panel can be displayed normally; at the same time, the orthographic projection of the touch unit 21 on the display substrate does not overlap with the sub-pixels 10, which can also avoid Moiré appears, which improves the display effect of the display panel.
  • the touch unit may also be in the shape of a plane.
  • the touch unit is made of light-transmitting indium tin oxide material, as long as the load setting of the touch unit meets the driving requirements of the touch drive chip. .
  • the grid density of the shielding unit 61 is less than or equal to the grid density of the touch unit 21 ; the grid density of the touch unit 21 is smaller than the distribution of the sub-pixels 10 . density.
  • the grid density of the touch units 21 refers to the density of the grid-shaped touch units 21 in the area where one touch unit 21 is located (eg, the rectangular area 27 ).
  • the grid density of the shielding unit 61 refers to the density of the grid-like touch units 21 in the area where one touch unit 21 is located (such as the rectangular area 27).
  • the distribution density of the sub-pixels 10 refers to the density of the distribution of the sub-pixels 10 in an area where a touch unit 21 is located.
  • the load value of a single shielding unit 61 is related to its mesh density, the denser the mesh, the larger the load value of the shielding unit 61;
  • the density setting can reduce the load value of the shield electrode 6 while ensuring that the shield electrode 6 shields the display noise of the display substrate, so that the driver chip can better drive the shield electrode 6 and improve the touch sensitivity. , linearity and accuracy; on the other hand, the setting of the shielding electrode 6 will not affect the normal light output of the display panel, thereby ensuring the light transmittance of the display panel, thereby ensuring that the display panel can display normally.
  • the grid density of the shielding unit 61 can be set to be the same as the grid density of the touch unit 21 , and the grid density of the shield unit 61 can also be set to be the same as that of the touch unit 21 . 75% of the grid density, the grid density of the shielding unit 61 can also be set to 50% of the grid density of the touch unit 21 .
  • the display panel further includes a touch signal line 3 , and the touch signal line 3 is disposed on the side of the shielding electrode 6 away from the display substrate 1 and located on the touch electrode 2 The side close to the display substrate 1 ; a second insulating layer 7 is arranged between the shielding electrode 6 and the touch signal line 3 .
  • Each touch unit 21 is individually connected to a touch signal line 3 ; the orthographic projection of the touch signal line 3 on the display substrate 1 overlaps with the orthographic projection of the touch electrodes 2 on the display substrate 1 .
  • the touch signal line 3 can transmit the touch driving signal provided by the touch driving chip to the touch unit 21 .
  • the above arrangement can realize the mutual capacitive touch control of the touch electrodes 2 .
  • the touch unit 21 and the ground form a capacitance.
  • the capacitance of the finger will be superimposed on the capacitance formed by the touch unit 21 and the ground, so that the capacitance between the touch unit 21 and the ground increases. That is, the touch electrodes 2 in this embodiment can realize self-capacitance touch control of the display panel.
  • the horizontal and vertical touch units 21 in the array of touch units 21 are detected in sequence, and the horizontal and vertical coordinates of the touch are determined respectively according to the change in the capacitance of the touch units 21 before and after the touch, and then combined into a The touch coordinates of the plane.
  • the detection method of self-capacitive touch is equivalent to projecting the touch points on the touch screen to the X-axis and Y-axis directions respectively, then calculating the coordinates in the X-axis and Y-axis directions respectively, and finally combining them into the coordinates of the touch points .
  • the touch electrodes 2 and the touch signal lines 3 connected to the touch electrodes 2 are arranged on different layers, and the orthographic projection of the touch signal lines 3 on the display substrate 1 is the same as the touch electrodes. 2
  • the overlapping of the orthographic projections on the display substrate 1, on the one hand, can realize the self-capacitance touch of the touch electrodes 2.
  • the self-capacitance touch The touch control electrode 2 has a small area, which reduces the load on the touch electrode 2 and the touch signal line 3, so as to meet the driving requirements of the touch drive chip;
  • the touch structure of the self-capacitance touch principle based on the layered touch electrode design, the touch signal line 3 does not occupy any area of the surface where the touch electrode 2 is located, that is, the surface where the touch electrode 2 is located is entirely composed of touch sensors that can realize touch positioning.
  • the control electrodes 2 occupy, and there is no area in the plane where the touch electrodes 2 are located that cannot realize touch positioning, that is, there is no touch blind area caused by the arrangement of the touch signal lines 3 in the plane where the touch electrodes 2 are located.
  • the influence of the touch blind area on the touch operation is eliminated, and the sensitivity, linearity and accuracy of the touch operation of the display panel are improved; the display panel can not only meet the requirements of the touch driver chip for its touch load, but also avoid Because of the touch blind area caused by the arrangement of the touch signal lines 3 , the display panel can be not only a small-sized touch display panel, but also a large-sized touch display panel.
  • the display panel further includes a first insulating layer 4 , and the first insulating layer 4 is disposed between the touch signal lines 3 and the touch electrodes 2 ; At least one first via hole 5 is opened in the area, and the touch control unit 21 is connected to the touch signal line 3 for providing signals through the first via hole 5 .
  • the touch signal line 3 can transmit the touch driving signal provided by the touch driving chip to the touch electrode 2 .
  • a plurality of first via holes 5 are opened in the first insulating layer 4 in a region corresponding to one touch unit 21 ; the plurality of first via holes 5 are evenly distributed, And the plurality of first via holes 5 are connected to each other through the touch signal lines 3 .
  • the impedance of the touch signal line 3 can be reduced, thereby reducing the resistance-capacitance delay of the touch unit 21 and improving the touch performance of the touch electrodes; on the other hand, the touch unit 21 passes through a plurality of first pass The hole 5 is connected to the corresponding touch signal line 3, which can reduce the risk that the touch unit 21 and the touch signal line 3 are not connected through a certain first via 5 in the process, and ensure that the touch unit 21 and its corresponding touch The control signal lines 3 are connected reliably, thereby ensuring good touch performance of the touch electrodes.
  • a first via hole 5 is formed in the first insulating layer 4 in a region corresponding to one touch unit 21 ; a row of touch units 21 is in the direction from top to bottom, and each The first via holes 5 corresponding to the touch unit 21 are sequentially arranged from the upper right corner of the touch unit 21 to the lower left corner of the touch unit 21 .
  • This arrangement can not only satisfy the touch driving chip's requirements for the touch load of the touch electrodes 2 , but also avoid the touch blind area caused by the arrangement of the touch signal lines 3 .
  • the number of touch units 21 is A, and the load value of a single touch unit 21 is a, then A*a ⁇ P;
  • the number of touch units 21 is B, and the load value of a single touch unit 21 is b, then B*b ⁇ P; where P is the maximum load of the touch drive chip that provides signals to the touch electrodes ability.
  • the outline of the touch unit 21 includes a rectangle, and the size of the touch unit 21 ranges from 3.5*3.5 to 4.5*4.5mm. The size range setting of the touch unit 21 can ensure that the load value of each row of touch units 21 and the load value of each column of touch units 21 will not exceed the maximum load capacity of the touch driver chip, so as to satisfy the touch driver chip pair Driving requirements for touch electrodes.
  • the display panel further includes a display area 101 and a binding area 102 , the touch electrodes 2 and the shield electrodes 6 are located in the display area 101 , and the touch signal lines 3 and the shield signal lines are located in the display area 101 .
  • 8 extends from the display area 101 to the binding area 102 .
  • the binding area 102 is provided with lead electrodes 9 , a plurality of touch electrode binding ends 11 and at least one shielding electrode binding end 12 .
  • the touch electrode binding ends 11 and the shielding electrode binding ends 12 are on the same layer as the touch electrodes 2 .
  • the lead electrode 9 and the touch signal line 3 are arranged on the same layer; the touch signal line 3 is connected to the touch electrode binding end 11 through the second via hole 13 opened in the first insulating layer 4; the shield signal line 8 is opened through the The third via hole 14 in the second insulating layer 7 is connected to the lead electrode 9 , and the lead electrode 9 is connected to the shield electrode binding end 12 through the fourth via hole 15 opened in the first insulating layer 4 .
  • the control driving chip can provide touch driving signals for the touch control unit 21 and the shielding unit 61 .
  • the display panel further includes suspended electrodes 17 .
  • the suspended electrodes 17 are distributed in the display area.
  • the suspended electrodes 17 are suspended in the air.
  • the suspended electrodes 17 and the touch electrodes 2 are disposed on the same layer.
  • the orthographic projection on the display substrate does not overlap with the orthographic projection of the touch electrodes 2 on the display substrate. That is to say, the positions of the suspended electrodes 17 and the touch electrodes 2 on the same layer are different, and the suspended electrodes 17 are disposed on the same layer where the touch electrodes 2 are not distributed.
  • the touch electrodes 2 perform touch driving to improve the touch sensitivity, linearity and accuracy; on the other hand, the floating electrodes 17 are distributed in the same layer as the touch electrodes 2, and when the touch electrodes 2 are not distributed on the display surface of the display panel, When both the suspended electrodes 17 and the touch electrodes 2 are made of opaque metal materials, the distribution of the opaque areas of the display panel from the display side will tend to be uniform, and there is basically no difference in the distribution of opaque areas in terms of visual effects. , thereby improving the visual effect of the display panel.
  • the floating electrodes may not be provided.
  • the suspended electrodes 17 are in a grid shape, and the orthographic projection of the suspended electrodes 17 on the display substrate does not overlap with the sub-pixels 10 .
  • This arrangement on the one hand, can ensure that the distribution uniformity of the suspended electrodes 17 and the touch electrodes 2 is basically the same, thereby improving the visual effect of the display surface side of the display panel; It will not affect the light transmittance of the display panel.
  • the suspended electrodes 17 are distributed in the area where the touch unit 21 is located (eg, the rectangular area 27 ), and the distribution area of the suspended electrodes 17 in the area where the touch unit 21 is located accounts for less than 40%. That is, in the area where the touch control unit 21 is located, the area ratio of the orthographic projection area of the suspended electrodes 17 on the display substrate to the orthographic projection area of the touch control unit 21 on the display substrate is less than 40%. This arrangement can ensure that the touch control unit is 21 touch signal volume to improve touch performance. In some special application scenarios, such as a foldable display panel, the area ratio of the suspended electrode 17 can be increased, and its bending resistance performance can be improved.
  • the display panel further includes a selection switch circuit 18 (not shown in FIG. 4 ).
  • the selection switch circuit 18 is disposed in the binding area 102 , and the selection switch circuit 18 includes a plurality of input terminals and A plurality of output ends, the input ends are connected to the peripheral circuit; the plurality of output ends are respectively connected to the binding ends of the touch electrodes and the binding ends of the shielding electrodes. Since the touch electrodes adopt the principle of self-capacitance touch, for a large-size display panel, the number of touch electrode lines is very large, so there will be a large number of leads in the binding area 102, resulting in an increase in the area of the display panel binding area 102. A large number of leads are introduced into the selection switch circuit 18 , and the selection switch circuit 18 can selectively switch multiple touch electrode lines on and off, thereby reducing the number of touch electrode binding terminals and reducing the area of the display panel binding area 102 .
  • the display panel further includes a polarizer 19 and a cover plate 20 .
  • the polarizer 19 and the cover plate 20 are sequentially stacked on the side of the touch electrode 2 away from the display substrate 1 .
  • a third insulating layer 22 is also disposed between 19 and the touch electrodes 2 .
  • the polarizer 19 enables the display panel to realize color display.
  • the cover plate 20 can protect the touch electrodes 2 .
  • an embodiment of the present disclosure further provides a driving method for the display panel.
  • the display panel includes a display substrate, touch electrodes and shield electrodes disposed on the display side of the display substrate; the shield electrodes and the touch electrodes are sequentially away from each other.
  • the display substrate is arranged; the orthographic projection of the shielding electrode on the display substrate and the orthographic projection of the touch electrode on the display substrate at least partially overlap;
  • the driving method of the display panel includes: providing a touch driving signal to the touch electrode, while maintaining The shielding electrode is left floating; or, the same signal as the touch driving signal is provided to the shielding electrode.
  • the touch driving signal is provided to the shielding electrode through the shielding signal line while the touch driving signal is provided to the touch electrode.
  • the touch drive chip provides touch drive signals of the same size to the shield electrodes, so that there is no voltage difference between the shield electrodes and the touch electrodes, so that the capacitance formed by the shield electrodes and the touch electrodes does not need to be charged, thereby making the touch
  • the capacitive load of the control electrode is the smallest, and the requirements for the touch drive chip are the lowest; at the same time, the shield electrode can better shield the display noise of the display substrate, and prevent the display noise from being coupled to the touch electrode lines, thereby preventing the display noise from affecting the touch electrodes. Impact on touch performance.
  • an embodiment of the present disclosure further provides a method for manufacturing the display panel, including: step S1 , preparing a display substrate.
  • step S2 shield electrodes and touch electrodes are sequentially prepared on the display side of the display substrate.
  • the orthographic projection of the shielding electrodes on the display substrate at least partially overlaps the orthographic projection of the touch electrodes on the display substrate.
  • the shield electrodes and the touch electrodes are prepared.
  • the specific process steps are:
  • Step S21 forming a shielding electrode film layer by magnetron sputtering.
  • step S22 a pattern including shield electrodes and shield signal lines is formed through exposure and etching processes.
  • Step S23 forming a second insulating layer through a chemical vapor deposition process; dry etching the second insulating layer at a corresponding position of the bonding region to form a third via hole.
  • Step S24 forming a touch signal line film layer by magnetron sputtering.
  • step S25 a pattern including touch signal lines and lead electrodes is formed through exposure and etching processes.
  • Step S26 forming a first insulating layer through a chemical vapor deposition process; dry etching the first insulating layer at a corresponding position in the display area to form a first via hole; via and fourth via.
  • Step S27 forming a touch electrode film layer by magnetron sputtering.
  • step S28 a pattern including touch electrodes, floating electrodes, binding ends of the touch electrodes, and binding ends of the shielding electrodes is formed through exposure and etching processes.
  • the manufacturing method of the display panel further includes: step S3 , forming a third insulating layer through a chemical vapor deposition process.
  • Step S4 attaching a polarizer and a cover plate on the third insulating layer.
  • the display noise of the display substrate can be shielded, thereby reducing or avoiding the display noise coupling effect on the touch operation of the touch electrodes.
  • the touch electrodes and the touch signal lines connected to the touch electrodes are arranged on different layers, and the touch signal lines and the touch electrodes are on the display substrate.
  • the self-capacitance touch of the touch electrodes can be realized.
  • the touch electrode area of the self-capacitance touch Smaller, the load on the touch electrodes and the touch signal lines is reduced, so as to meet the driving requirements of the touch drive chip;
  • the principle of the touch structure the touch signal lines do not occupy any area of the surface where the touch electrodes are located, and there is no touch blind area caused by the arrangement of the touch signal lines in the surface where the touch electrodes are located, thus eliminating touch
  • the influence of the blind area on the touch operation improves the sensitivity, linearity and accuracy of the touch operation of the display panel; the display panel can not only meet the requirements of the touch driver chip for its touch load, but also avoid the touch signal line Therefore, the display panel can be not only a small-sized touch display panel, but also a large-sized touch display panel.
  • Embodiments of the present disclosure also provide a display device, including the display panel in the above-mentioned embodiments.
  • the display noise of the display substrate in the display panel can be shielded, thereby improving the touch performance of the display device; at the same time, the display device can satisfy the touch load of the touch drive chip on its touch control. It can also avoid the touch blind area, so that the display device can be not only a small-sized touch display device, but also a large-sized touch display device.
  • the display device may be any product or component with a display function, such as an OLED panel, an OLED TV, a display, a mobile phone, and a navigator.
  • a display function such as an OLED panel, an OLED TV, a display, a mobile phone, and a navigator.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种显示面板,包括显示基板(1);设置于所述显示基板(1)上的触控电极(2)和屏蔽电极(6);所述屏蔽电极(6)和所述触控电极(2)依次远离所述显示基板(1)排布;所述屏蔽电极(6)在所述显示基板(1)上的正投影与所述触控电极(2)在所述显示基板(1)上的正投影至少部分交叠。

Description

显示面板及其驱动方法和制备方法、显示装置 技术领域
本公开实施例属于显示技术领域,具体涉及一种显示面板及其驱动方法和制备方法、显示装置。
背景技术
目前柔性OLED(Organic Light-Emitting Diode,又称为有机电激光显示)触控产品的技术基本可以分为外挂式和On-cell式,外挂式触控产品因触控膜层距离显示器件阴极较远,显示噪音对触控操作的影响较小,因此,外挂式结构可适用于穿戴、手机、平板、折叠、Notebook等产品,同时现阶段也有相应的触控芯片可以支持。但是外挂式结构因为其厚度的原因,无法真正发挥OLED的优势,同时也没法满足折叠产品的结构要求,故On-Cell结构的OLED产品应运而生。
发明内容
本公开实施例提供一种显示面板及其驱动方法和制备方法、显示装置。
第一方面,本公开实施例提供一种显示面板,包括显示基板;
设置于所述显示基板上的触控电极和屏蔽电极;所述屏蔽电极和所述触控电极依次远离所述显示基板排布;
所述屏蔽电极在所述显示基板上的正投影与所述触控电极在所述显示基板上的正投影至少部分交叠。
在一些实施例中,所述屏蔽电极包括多个屏蔽单元,所述多个屏蔽单元彼此间隔分布。
在一些实施例中,所述多个屏蔽单元呈阵列排布;
所述触控电极包括多个触控单元;所述多个触控单元呈阵列排布;
沿所述触控单元的阵列的行方向和/或列方向,所述屏蔽单元与所述触控单元一对一对应分布或者一对多对应分布。
在一些实施例中,沿所述屏蔽单元的阵列的行方向,所述屏蔽单元的 数量为M,单个所述屏蔽单元的负载值为x,则M*x≤P;
沿所述屏蔽单元的阵列的列方向,所述屏蔽单元的数量为N,单个所述屏蔽单元的负载值为y,则N*y≤P;
其中,P为向所述屏蔽电极提供信号的驱动芯片的最大负载能力。
在一些实施例中,还包括屏蔽信号线,所述屏蔽信号线与所述屏蔽电极同层设置;
每个所述屏蔽单元单独连接一根所述屏蔽信号线,一行或多行所述屏蔽单元的所述屏蔽信号线连接在一起,并接入所述驱动芯片。
在一些实施例中,所述屏蔽信号线包括第一信号线和第二信号线,所述第一信号线围绕于屏蔽单元阵列的外围,所述第二信号线一部分分布于所述屏蔽单元阵列的外围,另一部分分布于所述屏蔽单元阵列的行与行之间的间隔内;
所述第二信号线与各个所述屏蔽单元分别单独连接,且所述第二信号线连接至所述第一信号线,所述第一信号线连接至所述驱动芯片。
在一些实施例中,所述屏蔽电极和所述触控电极被配置为在触控时输入相同的信号。
在一些实施例中,所述显示基板包括多个子像素,所述子像素呈阵列排布;
所述屏蔽单元呈网格状,所述屏蔽单元在所述显示基板上的正投影与所述子像素无交叠;所述屏蔽信号线在所述显示基板上的正投影与所述子像素无交叠。
在一些实施例中,所述触控单元呈网格状,所述触控单元在所述显示基板上的正投影与所述子像素无交叠;
所述屏蔽单元的网格密度小于或等于所述触控单元的网格密度;所述触控单元的网格密度小于所述子像素的分布密度。
在一些实施例中,还包括触控信号线,所述触控信号线设置于所述屏 蔽电极的背离所述显示基板的一侧,且位于所述触控电极的靠近所述显示基板的一侧;
每个所述触控单元单独连接一根所述触控信号线;所述触控信号线在所述显示基板上的正投影与所述触控电极在所述显示基板上的正投影交叠。
在一些实施例中,还包括第一绝缘层,所述第一绝缘层设置于所述触控信号线与所述触控电极之间;
所述第一绝缘层中在对应一个所述触控单元的区域开设有至少一个第一过孔,所述触控单元通过所述第一过孔连接为其提供信号的所述触控信号线。
在一些实施例中,所述第一绝缘层中在对应一个所述触控单元的区域开设有多个第一过孔;
所述多个第一过孔均匀分布,且所述多个第一过孔通过所述触控信号线彼此连接。
在一些实施例中,所述第一绝缘层中在对应一个所述触控单元的区域开设有一个所述第一过孔;
一列所述触控单元沿从上至下的方向,各个所述触控单元对应的所述第一过孔依次由所述触控单元的右上角向所述触控单元的左下角排布。
在一些实施例中,沿所述触控单元的阵列的行方向,所述触控单元的数量为A,单个所述触控单元的负载值为a,则A*a≤P;
沿所述触控单元的阵列的列方向,所述触控单元的数量为B,单个所述触控单元的负载值为b,则B*b≤P;
其中,P为向所述触控电极提供信号的触控驱动芯片的最大负载能力。
在一些实施例中,还包括悬空电极,所述悬空电极悬空设置,所述悬空电极与所述触控电极同层设置,所述悬空电极在所述显示基板上的正投影与所述触控电极在所述显示基板上的正投影无交叠。
在一些实施例中,所述悬空电极呈网格状,所述悬空电极在所述显示基板上的正投影与所述子像素无交叠。
在一些实施例中,所述悬空电极分布于所述触控单元所在区域内,所述悬空电极在所述触控单元所在区域内的分布面积占比小于40%。
第二方面,本公开实施例还提供一种显示装置,包括上述显示面板。
第三方面,本公开实施例还提供一种显示面板的制备方法,包括:制备显示基板;
在所述显示基板的显示侧依次制备屏蔽电极和触控电极;
所述屏蔽电极在所述显示基板上的正投影与所述触控电极在所述显示基板上的正投影至少部分交叠。
第四方面,本公开实施例还提供一种显示面板的驱动方法,所述显示面板包括显示基板,
设置于所述显示基板显示侧的触控电极和屏蔽电极;所述屏蔽电极和所述触控电极依次远离所述显示基板排布;
所述屏蔽电极在所述显示基板上的正投影与所述触控电极在所述显示基板上的正投影至少部分交叠;
所述驱动方法包括:向所述触控电极提供触控驱动信号,同时,保持所述屏蔽电极悬空;或者,向所述屏蔽电极提供与所述触控驱动信号相同的信号。
附图说明
附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。通过参考附图对详细示例实施例进行描述,以上和其它特征和优点对本领域技术人员将变得更加显而易见,在附图中:
图1为公开技术中互电容触控原理的触控结构的结构俯视示意图。
图2为公开技术中自电容触控原理的触控结构的结构俯视示意图。
图3为本公开实施例提供的显示面板中触控电极和触控信号线的设置俯视示意图。
图4为图3中显示面板沿BB剖切线的结构剖视示意图。
图5为本公开实施例提供的显示面板中屏蔽电极及屏蔽信号线的结构设置俯视示意图。
图6为本公开实施例提供的显示面板中屏蔽单元与触控单元一对一对应分布的俯视示意图。
图7为本公开实施例提供的显示面板中屏蔽单元与触控单元一对多对应分布的俯视示意图。
图8为本公开实施例提供的显示面板中触控单元与子像素的排布结构俯视示意图。
图9a为与触控单元的网格密度相同的屏蔽单元的结构俯视示意图。
图9b为网格密度为触控单元网格密度的75%的屏蔽单元的结构俯视示意图。
图9c为网格密度为触控单元网格密度的50%的屏蔽单元的结构俯视示意图。
图10为本公开实施例提供的显示面板中触控单元对应的第一绝缘层中第一过孔的设置结构俯视示意图。
图11为图10中沿CC剖切线的结构剖视示意图。
图12为本公开实施例提供的显示面板中悬空电极的设置结构俯视示意图。
其中附图标记为:
1、显示基板;10、子像素;101、显示区;102、绑定区;2、触控电极;21、触控单元;3、触控信号线;4、第一绝缘层;5、第一过孔;6、屏蔽电极;61、屏蔽单元;7、第二绝缘层;8、屏蔽信号线;81、第一信号线;82、第二信号线;9、引线电极;11、触控电极绑定端;12、屏蔽电 极绑定端;13、第二过孔;14、第三过孔;15、第四过孔;16、外围电路;17、悬空电极;18、选择开关电路;19、偏光片;20、盖板;22、第三绝缘层;23、驱动电极;24、感应电极;25、触控电极图案;26、触控电极走线;27、矩形区域。
具体实施方式
为使本领域技术人员更好地理解本公开实施例的技术方案,下面结合附图和具体实施方式对本公开实施例提供的一种显示面板及其驱动方法和制备方法、显示装置作进一步详细描述。
在下文中将参考附图更充分地描述本公开实施例,但是所示的实施例可以以不同形式来体现,且不应当被解释为限于本公开阐述的实施例。反之,提供这些实施例的目的在于使本公开透彻和完整,并将使本领域技术人员充分理解本公开的范围。
本公开实施例不限于附图中所示的实施例,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了区的具体形状,但并不是旨在限制性的。
公开技术中,On-Cell式触控结构的小尺寸OLED产品中,在制备完成OLED显示结构的显示基板上直接形成触控电极。由于小尺寸的OLED产品中,显示基板的显示噪音会耦合到触控电极以及为触控电极提供触控驱动信号的触控信号线上,对触控电极的触控造成强烈的干扰,以致降低触控电极的触控性能。
特别是对于大尺寸的触控OLED产品,显示噪音的耦合效应对触控电极触控性能的影响会更加明显,严重影响触控电极的触控性能。
另外,On-Cell式触控结构的小尺寸OLED产品通常采用多层触控电极设计的互电容触控原理的触控结构,如图1所示,触控结构由触控单元阵列构成,触控单元包括驱动电极23和感应电极24,触控结构中沿行方向排布的驱动电极23通过架桥连接导通,触控结构中沿列方向排布的感应电极 24连接导通,行方向的驱动电极23和列方向的感应电极24在相交位置彼此绝缘,从而实现触控功能。驱动电极23和感应电极24上均设置有镂空区,镂空区内设置有悬空电极,镂空区能降低驱动电极23和感应电极24的负载值。从互电容触控结构的仿真结果来看,单个触控单元的负载约为15pF,依据常规手机产品尺寸评估,触控结构的总负载约为600pF(不包含走线部分),现有触控驱动芯片的极限负载驱动能力为1000pF,基本能够满足小尺寸触控产品的驱动要求。若要将此种方案应用到大尺寸触控OLED产品中,按照常规15.6寸的笔记本产品尺寸评估,预估其触控结构的总负载约为1260pF,如果再加上走线部分的影响,其触控结构的总负载将会大于1500pF,这远远超出了触控驱动芯片的负载驱动能力,将会面临无触控驱动芯片可用的状态。
On-Cell式触控结构的小尺寸OLED产品还有另外一种触控结构方案,即单层触控电极设计的自电容触控原理的触控结构,如图2所示,该触控结构由触控单元阵列构成,各触控单元均由触控电极图案25和触控电极走线26组成,触控电极图案25和触控电极走线26位于同一层中,属于单层触控电极设计方案。采用单层触控电极设计方案的主要原因在于其单个触控单元中触控电极图案25的面积小,使整个触控结构的负载较小(一般小于50pF),即使加上触控电极走线26的影响,整个触控结构的负载也可以控制在100pF左右,目前触控驱动芯片基本都可以满足对其的驱动要求。虽然单层触控电极设计的自电容触控原理的触控结构相对多层触控电极设计的互电容触控原理的触控结构具有很小的负载,可以匹配目前所有触控驱动芯片,但是其缺陷也非常明显,单层触控电极设计的自电容触控原理的触控结构,在触控电极图案25之间充满了触控电极走线26,尤其在触控电极图案25排布的末端(如图2中的A部分),触控电极走线26占据的宽度越大;因为触控电极走线26无法实现定位,所以触控电极走线26宽度越大,触控的性能越差,具体体现在触控的线性度和精准度,这就是我们 常说的盲区,理论上我们希望消除盲区对触控操作的影响。
另外,因为单层触控电极设计的自电容触控原理的触控结构中每个触控单元都连接一条触控电极线,故在屏体末端会出现大量的触控电极线引出端,这意味着绑定区将会非常大,这就要求要绑定的外围电路面积增加,成本将会增加。
如果将单层触控电极设计的自电容触控原理的触控结构应用到大尺寸的OLED产品中,一方面在屏体末端触控电极线引出端会更多,绑定区会更大;另一方面,盲区也会更大,产品的触控性能更差。
综上所述,适用于小尺寸OLED产品的多层触控电极设计的互电容触控原理的触控结构方案和单层触控电极设计的自电容触控原理的触控结构方案,根本无法应用到大尺寸OLED产品中,因此设计一种适用于大尺寸OLED产品的触控结构势在必行。
基于OLED触控产品所存在的上述技术问题,本公开实施例提供一种显示面板,如图3和图4所示,包括显示基板1;设置于显示基板1上的触控电极2和屏蔽电极6;屏蔽电极6和触控电极2依次远离显示基板1排布;屏蔽电极6在显示基板1上的正投影与触控电极2在显示基板1上的正投影至少部分交叠。
其中,显示基板1包括驱动背板、设置于驱动背板上的发光元件以及对发光元件进行封装的封装层。发光元件可以是有机电致发光元件(即OLED发光元件),当然,发光元件也可以是其他发光元件,如LED发光元件等。
通过在显示基板1与触控电极2之间设置屏蔽电极6,能够对显示基板1的显示噪声形成屏蔽,从而减少或避免显示噪声耦合效应对触控电极2的触控操作造成的干扰,进而提升显示面板的触控性能。
在一些实施例中,如图5所示,屏蔽电极6包括多个屏蔽单元61,多个屏蔽单元61彼此间隔分布。在一些实施例中,屏蔽电极6和触控电极2 被配置为在触控时输入相同的信号。通过将屏蔽电极6分割为多个彼此间隔的屏蔽单元61,实现了对屏蔽电极6整体的分区设置,如此分区,使屏蔽单元61的负载值小于屏蔽电极6整体的负载值,从而能够确保在对多个屏蔽单元61输入信号时,多个屏蔽单元61的负载值不会超出为其提供信号的驱动芯片的最大负载能力,进而满足驱动芯片对屏蔽电极6的驱动要求。
在一些实施例中,如图6所示,多个屏蔽单元61呈阵列排布;触控电极2包括多个触控单元21;多个触控单元21呈阵列排布;沿触控单元21的阵列的行方向和列方向,屏蔽单元61与触控单元21一对一对应分布。其中,触控单元21的阵列的行方向和列方向不局限于相互垂直的情况,行方向和列方向相交的夹角可以为小于90°的任意锐角夹角。
在一些实施例中,仅在沿触控单元的阵列的行方向或列方向,屏蔽单元与触控单元一对一对应分布。
在一些实施例中,如图7所示,沿触控单元21的阵列的行方向和列方向,屏蔽单元61与触控单元21一对多对应分布。
在一些实施例中,仅在沿触控单元的阵列的行方向或列方向,屏蔽单元与触控单元一对多对应分布。
在一些实施例中,沿屏蔽单元61的阵列的行方向,屏蔽单元61的数量为M,单个屏蔽单元61的负载值为x,则M*x≤P;沿屏蔽单元61的阵列的列方向,屏蔽单元61的数量为N,单个屏蔽单元61的负载值为y,则N*y≤P;其中,P为向屏蔽电极6提供信号的驱动芯片的最大负载能力。其中,触控时屏蔽单元61上输入与触控单元21上相同的信号。屏蔽电极6的上述结构设置,一方面,能够屏蔽显示基板的显示噪声,防止显示噪声耦合至触控电极,从而避免显示噪声对触控电极触控性能的影响;另一方面,因为屏蔽单元61与触控单元21上的信号一致,没有压差,使得由屏蔽单元61和触控单元21形成的电容无需充电,从而使触控单元21的电容负载 最小,对触控驱动芯片的要求最低;另外,屏蔽电极6的上述分区设置,能够确保每行屏蔽单元61的负载值以及每列屏蔽单元61的负载值均不会超出触控驱动芯片的最大负载能力,从而满足触控驱动芯片对屏蔽电极6的驱动要求。
在一些实施例中,如图5所示,显示面板还包括屏蔽信号线8,屏蔽信号线8与屏蔽电极6同层设置;每个屏蔽单元61单独连接一根屏蔽信号线8,一行或多行屏蔽单元61的屏蔽信号线8连接在一起,并接入驱动芯片。如此设置,能够实现各屏蔽单元61的并联连接,从而能够确保触控时驱动芯片向各个屏蔽单元61提供与触控驱动信号大小相同的信号,从而使触控单元21的电容负载最小,对触控驱动芯片的要求最低;同时,能使屏蔽单元61更好地屏蔽显示基板的显示噪声,防止显示噪声耦合至触控电极,从而避免显示噪声对触控电极触控性能的影响。
在一些实施例中,如图5所示,屏蔽信号线8包括第一信号线81和第二信号线82,第一信号线81围绕于屏蔽单元61阵列的外围,第二信号线82一部分分布于屏蔽单元61阵列的外围,另一部分分布于屏蔽单元61阵列的行与行之间的间隔内;第二信号线82与各个屏蔽单元61分别单独连接,且第二信号线82连接至第一信号线81,第一信号线81连接至驱动芯片。其中,第一信号线81可以通过一端连接至驱动芯片,也可以通过两端连接至驱动芯片。如此设置,能够实现各屏蔽单元61的并联连接,同时还能确保每行屏蔽单元61的负载值以及每列屏蔽单元61的负载值均不会超出触控驱动芯片的最大负载能力,从而满足触控驱动芯片对屏蔽电极6的驱动要求。
在一些实施例中,如图8所示,显示基板包括多个子像素10,子像素10呈阵列排布;屏蔽单元61呈网格状,屏蔽单元61在显示基板上的正投影与子像素10无交叠;屏蔽信号线在显示基板上的正投影与子像素10无交叠。如此设置,一方面,在确保屏蔽电极6对显示基板的显示噪声形成 屏蔽的情况下,能够降低屏蔽电极6的负载值,从而使驱动芯片能够更好地驱动屏蔽电极6,提高触控的灵敏度、线性度和精确度;另一方面,屏蔽电极6的设置不会影响显示面板的正常出光,从而确保了显示面板的透光率,进而确保显示面板能够正常显示。
在一些实施例中,显示基板还包括驱动背板,驱动背板中设置有像素电路,该像素电路可以是2T1C像素电路,也可以是7T1C像素电路,也可以是其他的像素电路。子像素10设置于驱动背板上,且与驱动背板中的像素电路连接。子像素10包括红、绿、蓝子像素,子像素10为OLED(有机电激发光)发光元件。OLED发光元件包括依次设置于驱动背板上的阳极、发光功能层和阴极,发光功能层包括依次叠置的空穴传输层、空穴注入层、发光层、电子注入层、电子传输层。
在一些实施例中,如图8所示,触控单元21呈网格状,触控单元21在显示基板上的正投影与子像素10无交叠。如此设置,一方面,能够降低触控电极的负载值,从而使触控驱动芯片能够更好地驱动触控电极,提高触控的线性度和精确度;另一方面,触控电极的设置不会影响显示面板的正常出光,从而确保了显示面板的透光率,进而确保显示面板能够正常显示;同时,触控单元21在显示基板上的正投影与子像素10无交叠,还能避免出现摩尔纹,提升显示面板的显示效果。
在一些实施例中,触控单元也可以为面状,如触控单元由能透光的氧化铟锡材料构成,只要确保触控单元的负载设置满足触控驱动芯片对其的驱动要求即可。
在一些实施例中,如图8、图9a-9c所示,屏蔽单元61的网格密度小于或等于触控单元21的网格密度;触控单元21的网格密度小于子像素10的分布密度。其中,触控单元21的网格密度指在一个触控单元21所在的区域(如矩形区域27)内,网格状触控单元21分布的密集程度。屏蔽单元61的网格密度指在一个触控单元21所在的区域(如矩形区域27)内,网 格状触控单元21分布的密集程度。子像素10的分布密度指在一个触控单元21所在的区域内,子像素10分布的密集程度。由于单个屏蔽单元61的负载值与其网格密度相关,网格越密,则屏蔽单元61负载值越大;网格越疏,则屏蔽单元61负载值越小,所以通过上述屏蔽单元61网格密度设置,一方面,在确保屏蔽电极6对显示基板的显示噪声形成屏蔽的情况下,能够降低屏蔽电极6的负载值,从而使驱动芯片能够更好地驱动屏蔽电极6,提高触控的灵敏度、线性度和精确度;另一方面,屏蔽电极6的设置不会影响显示面板的正常出光,从而确保了显示面板的透光率,进而确保显示面板能够正常显示。
在一些实施例中,如图9a-9c所示,屏蔽单元61的网格密度可以设置为与触控单元21的网格密度相同,屏蔽单元61的网格密度也可以设置为触控单元21网格密度的75%,屏蔽单元61的网格密度也可以设置为触控单元21网格密度的50%。
在一些实施例中,如图3和图4所示,显示面板还包括触控信号线3,触控信号线3设置于屏蔽电极6的背离显示基板1的一侧,且位于触控电极2的靠近显示基板1的一侧;屏蔽电极6与触控信号线3之间设置有第二绝缘层7。每个触控单元21单独连接一根触控信号线3;触控信号线3在显示基板1上的正投影与触控电极2在显示基板1上的正投影交叠。触控信号线3能够将触控驱动芯片提供的触控驱动信号传输至触控单元21。上述设置,能够实现触控电极2的互电容触控。即触控单元21与地构成电容,当手指触摸到显示面板时,手指的电容将会叠加到触控单元21与地构成的电容上,使触控单元21与地之间的电容量增加,即本实施例中触控电极2能够实现对该显示面板的自电容触控。在触控检测时,依次分别检测触控单元21阵列中横向与纵向的触控单元21,根据触控前后触控单元21电容的变化,分别确定触控的横向坐标和纵向坐标,然后组合成平面的触控坐标。自电容触控的检测方式,相当于把触控屏上的触控点分别投影到X 轴和Y轴方向,然后分别在X轴和Y轴方向计算出坐标,最后组合成触控点的坐标。
在有一些实施例中,通过将触控电极2和与触控电极2连接的触控信号线3分设于不同层上,且触控信号线3在显示基板1上的正投影与触控电极2在显示基板1上的正投影交叠,一方面能够实现触控电极2的自电容触控,相对于公开技术中多层触控电极设计的互电容触控原理的触控结构,自电容触控的触控电极2面积较小,使触控电极2和触控信号线3的负载减小,从而能够满足触控驱动芯片对其驱动的要求;另一方面,相对于公开技术中单层触控电极设计的自电容触控原理的触控结构,触控信号线3并未占据触控电极2所在面的任何区域,即触控电极2所在面全部由能实现触控定位的触控电极2占据,触控电极2所在面内不存在无法实现触控定位的区域,也即触控电极2所在面内不存在由触控信号线3的排布所导致的触控盲区,从而消除了触控盲区对触控操作的影响,提高了显示面板触控操作的灵敏度、线性度和精准度;该显示面板由于既能满足触控驱动芯片对其触控负载的要求,又能避免触控信号线3的排布所导致的触控盲区,所以该显示面板不仅可以是小尺寸的触控显示面板,而且可以是大尺寸的触控显示面板。
在一些实施例中,显示面板还包括第一绝缘层4,第一绝缘层4设置于触控信号线3与触控电极2之间;第一绝缘层4中在对应一个触控单元21的区域开设有至少一个第一过孔5,触控单元21通过第一过孔5连接为其提供信号的触控信号线3。触控信号线3能够将触控驱动芯片提供的触控驱动信号传输至触控电极2。
在一些实施例中,如图10-图11所示,第一绝缘层4中在对应一个触控单元21的区域开设有多个第一过孔5;多个第一过孔5均匀分布,且多个第一过孔5通过触控信号线3彼此连接。如此设置,一方面,能够降低触控信号线3的阻抗,从而降低触控单元21的阻容延迟,提升触控电极的 触控性能;另一方面,触控单元21通过多个第一过孔5连接与其对应的触控信号线3,能够降低工艺制程中通过某个第一过孔5未实现触控单元21与触控信号线3连接的风险,确保触控单元21与其对应的触控信号线3可靠连接,从而确保了触控电极的良好触控性能。
在一些实施例中,如图3所示,第一绝缘层4中在对应一个触控单元21的区域开设有一个第一过孔5;一列触控单元21沿从上至下的方向,各个触控单元21对应的第一过孔5依次由触控单元21的右上角向触控单元21的左下角排布。如此设置,既能满足触控驱动芯片对触控电极2触控负载的要求,又能避免触控信号线3的排布所导致的触控盲区。
在一些实施例中,沿触控单元21的阵列的行方向,触控单元21的数量为A,单个触控单元21的负载值为a,则A*a≤P;沿触控单元21的阵列的列方向,触控单元21的数量为B,单个触控单元21的负载值为b,则B*b≤P;其中,P为向触控电极提供信号的触控驱动芯片的最大负载能力。在一些实施例中,触控单元21的外形轮廓包括矩形,触控单元21的尺寸范围为3.5*3.5~4.5*4.5mm。触控单元21的尺寸范围设置,能够确保每行触控单元21的负载值以及每列触控单元21的负载值均不会超出触控驱动芯片的最大负载能力,从而满足触控驱动芯片对触控电极的驱动要求。
在一些实施例中,如图3和图4所示,显示面板还包括显示区101和绑定区102,触控电极2和屏蔽电极6位于显示区101,触控信号线3和屏蔽信号线8由显示区101延伸至绑定区102。绑定区102设置有引线电极9、多个触控电极绑定端11和至少一个屏蔽电极绑定端12,触控电极绑定端11和屏蔽电极绑定端12与触控电极2同层设置,引线电极9与触控信号线3同层设置;触控信号线3通过开设在第一绝缘层4中的第二过孔13连接触控电极绑定端11;屏蔽信号线8通过开设在第二绝缘层7中的第三过孔14连接引线电极9,引线电极9通过开设在第一绝缘层4中的第四过孔15连接屏蔽电极绑定端12。通过设置在绑定区102的触控电极绑定端11和屏 蔽电极绑定端12,能够实现触控单元21和屏蔽单元61与外围电路16的绑定连接,从而使外围电路16中的触控驱动芯片能够为触控单元21和屏蔽单元61提供触控驱动信号。
在一些实施例中,如图12所示,显示面板还包括悬空电极17,悬空电极17分布于显示区,悬空电极17悬空设置,悬空电极17与触控电极2同层设置,悬空电极17在所述显示基板上的正投影与触控电极2在所述显示基板上的正投影无交叠。即悬空电极17与触控电极2在同一层上的设置位置不同,悬空电极17设置于同一层上未分布触控电极2的区域,如此设置,一方面,由于悬空电极17占据了一部分区域,所以能够在确保触控电极2实现对显示面板整面触控的情况下,减小触控电极2的分布面积,从而减小触控电极2的负载,进而使触控驱动芯片更好地对触控电极2进行触控驱动,提高触控灵敏度、线性度和精确度;另一方面,悬空电极17与触控电极2同层分布,当触控电极2在显示面板的显示面上分布不均匀且悬空电极17与触控电极2都采用不透光金属材料时,能使显示面板从显示侧看上去不透光区域的分布趋于均匀,视觉效果上基本不存在不透光区域分布差异的情况,从而提升了显示面板的视觉效果。
需要说明的是,如果触控电极2在整个显示面板的显示面上均匀分布,且触控电极2的负载能够满足触控驱动芯片的驱动要求,则也可以不设置悬空电极。
在一些实施例中,悬空电极17呈网格状,悬空电极17在显示基板上的正投影与子像素10无交叠。如此设置,一方面能确保悬空电极17与触控电极2的分布均匀度基本相同,提升显示面板显示面侧的视觉效果;另一方面,确保悬空电极17的设置不会遮挡子像素10,从而不会影响显示面板的透光率。
在一些实施例中,悬空电极17分布于触控单元21所在区域(如矩形区域27)内,悬空电极17在触控单元21所在区域内的分布面积占比小于 40%。即在触控单元21所在区域内,悬空电极17在显示基板上的正投影面积与触控单元21在显示基板上的正投影面积的面积占比小于40%,如此设置,可以保证触控单元21的触控信号量,提升触控性能。在某些特殊的应用场景下,如能折叠的显示面板,可以提升悬空电极17的面积占比,提升其耐弯折性能。
在一些实施例中,如图3所示,显示面板还包括选择开关电路18(图4中未示出),选择开关电路18设置于绑定区102,选择开关电路18包括多个输入端和多个输出端,输入端连接外围电路;多个输出端分别与各个触控电极绑定端、各个屏蔽电极绑定端连接。由于触控电极采用自容式触控原理,所以对于大尺寸显示面板,触控电极线数量非常多,因此在绑定区102会有大量引线,导致显示面板绑定区102面积增加,通过将大量引线引入选择开关电路18,通过选择开关电路18能够选择切换多条触控电极线的开启和关闭,从而减少触控电极绑定端的数量,减小显示面板绑定区102的面积。
在一些实施例中,如图4所示,显示面板还包括偏光片19和盖板20,偏光片19和盖板20依次叠置于触控电极2背离显示基板1的一侧,且偏光片19与触控电极2之间还设置有第三绝缘层22。偏光片19能使该显示面板实现彩色显示。盖板20能对触控电极2形成保护。
基于显示面板的上述结构,本公开实施例还提供一种该显示面板的驱动方法,显示面板包括显示基板,设置于显示基板显示侧的触控电极和屏蔽电极;屏蔽电极和触控电极依次远离显示基板排布;屏蔽电极在显示基板上的正投影与触控电极在显示基板上的正投影至少部分交叠;显示面板的驱动方法包括:向触控电极提供触控驱动信号,同时,保持屏蔽电极悬空;或者,向屏蔽电极提供与触控驱动信号相同的信号。
在一些实施例中,向触控电极提供触控驱动信号的同时,通过屏蔽信号线向屏蔽电极提供触控驱动信号。触控时触控驱动芯片向屏蔽电极提供 大小相同的触控驱动信号,使屏蔽电极与触控电极之间没有压差,从而使得由屏蔽电极和触控电极形成的电容无需充电,进而使触控电极的电容负载最小,对触控驱动芯片的要求最低;同时,能使屏蔽电极更好地屏蔽显示基板的显示噪声,防止显示噪声耦合至触控电极线,从而避免显示噪声对触控电极触控性能的影响。
基于显示面板的上述结构,本公开实施例还提供一种该显示面板的制备方法,包括:步骤S1,制备显示基板。
步骤S2,在显示基板的显示侧依次制备屏蔽电极和触控电极。屏蔽电极在显示基板上的正投影与触控电极在显示基板上的正投影至少部分交叠。
在一些实施例中,在完成显示基板制备工艺的基础上,进行屏蔽电极和触控电极的制备,具体工艺步骤为:
步骤S21,通过磁控溅射方式形成屏蔽电极膜层。
步骤S22,通过曝光、刻蚀工艺形成包括屏蔽电极和屏蔽信号线的图形。
步骤S23,通过化学气相沉积工艺形成第二绝缘层;干刻第二绝缘层位于绑定区的相应位置处形成第三过孔。
步骤S24,通过磁控溅射方式形成触控信号线膜层。
步骤S25,通过曝光、刻蚀工艺形成包括触控信号线和引线电极的图形。
步骤S26,通过化学气相沉积工艺形成第一绝缘层;干刻第一绝缘层位于显示区的相应位置处形成第一过孔;干刻第一绝缘层位于绑定区的相应位置处形成第二过孔和第四过孔。
步骤S27,通过磁控溅射方式形成触控电极膜层。
步骤S28,通过曝光、刻蚀工艺形成包括触控电极、悬空电极、触控电极绑定端、屏蔽电极绑定端的图形。
在一些实施例中,显示面板的制备方法还包括:步骤S3,通过化学气相沉积工艺形成第三绝缘层。
步骤S4,在第三绝缘层上贴设偏光片和盖板。
显示面板中各膜层的制备均采用传统工艺,这里不再赘述。
本公开实施例所提供的显示面板,通过在显示基板与触控电极之间设置屏蔽电极,能够对显示基板的显示噪声形成屏蔽,从而减少或避免显示噪声耦合效应对触控电极的触控操作造成的干扰,进而提升显示面板的触控性能;另外,通过将触控电极和与触控电极连接的触控信号线分设于不同层上,且触控信号线与触控电极在显示基板上的正投影交叠,一方面能够实现触控电极的自电容触控,相对于公开技术中多层触控电极设计的互电容触控原理的触控结构,自电容触控的触控电极面积较小,使触控电极和触控信号线的负载减小,从而能够满足触控驱动芯片对其驱动的要求;另一方面,相对于公开技术中单层触控电极设计的自电容触控原理的触控结构,触控信号线并未占据触控电极所在面的任何区域,触控电极所在面内不存在由触控信号线的排布所导致的触控盲区,从而消除了触控盲区对触控操作的影响,提高了显示面板触控操作的灵敏度、线性度和精准度;该显示面板由于既能满足触控驱动芯片对其触控负载的要求,又能避免触控信号线的排布所导致的触控盲区,所以该显示面板不仅可以是小尺寸的触控显示面板,而且可以是大尺寸的触控显示面板。
本公开实施例还提供一种显示装置,包括上述实施例中的显示面板。
通过采用上述实施例中的显示面板,能够对显示面板中显示基板的显示噪声形成屏蔽,从而提升显示装置的触控性能;同时,使该显示装置既能满足触控驱动芯片对其触控负载的要求,又能避免触控盲区,从而使该显示装置不仅可以是小尺寸的触控显示装置,而且可以是大尺寸的触控显示装置。
本公开实施例所提供的显示装置可以为OLED面板、OLED电视、显示器、手机、导航仪等任何具有显示功能的产品或部件。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (20)

  1. 一种显示面板,其特征在于,包括显示基板;
    设置于所述显示基板上的触控电极和屏蔽电极;所述屏蔽电极和所述触控电极依次远离所述显示基板排布;
    所述屏蔽电极在所述显示基板上的正投影与所述触控电极在所述显示基板上的正投影至少部分交叠。
  2. 根据权利要求1所述的显示面板,其特征在于,所述屏蔽电极包括多个屏蔽单元,所述多个屏蔽单元彼此间隔分布。
  3. 根据权利要求2所述的显示面板,其特征在于,所述多个屏蔽单元呈阵列排布;
    所述触控电极包括多个触控单元;所述多个触控单元呈阵列排布;
    沿所述触控单元的阵列的行方向和/或列方向,所述屏蔽单元与所述触控单元一对一对应分布或者一对多对应分布。
  4. 根据权利要求3所述的显示面板,其特征在于,沿所述屏蔽单元的阵列的行方向,所述屏蔽单元的数量为M,单个所述屏蔽单元的负载值为x,则M*x≤P;
    沿所述屏蔽单元的阵列的列方向,所述屏蔽单元的数量为N,单个所述屏蔽单元的负载值为y,则N*y≤P;
    其中,P为向所述屏蔽电极提供信号的驱动芯片的最大负载能力。
  5. 根据权利要求4所述的显示面板,其特征在于,还包括屏蔽信号线,所述屏蔽信号线与所述屏蔽电极同层设置;
    每个所述屏蔽单元单独连接一根所述屏蔽信号线,一行或多行所述屏蔽单元的所述屏蔽信号线连接在一起,并接入所述驱动芯片。
  6. 根据权利要求5所述的显示面板,其特征在于,所述屏蔽信号线包括第一信号线和第二信号线,所述第一信号线围绕于屏蔽单元阵列的外围,所述第二信号线一部分分布于所述屏蔽单元阵列的外围,另一部分分布于所述屏蔽单元阵列的行与行之间的间隔内;
    所述第二信号线与各个所述屏蔽单元分别单独连接,且所述第二信号线连接至所述第一信号线,所述第一信号线连接至所述驱动芯片。
  7. 根据权利要求1-6任意一项所述的显示面板,其特征在于,所述屏蔽电极和所述触控电极被配置为在触控时输入相同的信号。
  8. 根据权利要求5所述的显示面板,其特征在于,所述显示基板包括多个子像素,所述子像素呈阵列排布;
    所述屏蔽单元呈网格状,所述屏蔽单元在所述显示基板上的正投影与所述子像素无交叠;所述屏蔽信号线在所述显示基板上的正投影与所述子像素无交叠。
  9. 根据权利要求8所述的显示面板,其特征在于,所述触控单元呈网格状,所述触控单元在所述显示基板上的正投影与所述子像素无交叠;
    所述屏蔽单元的网格密度小于或等于所述触控单元的网格密度;所述触控单元的网格密度小于所述子像素的分布密度。
  10. 根据权利要求9所述的显示面板,其特征在于,还包括触控信号线,所述触控信号线设置于所述屏蔽电极的背离所述显示基板的一侧,且 位于所述触控电极的靠近所述显示基板的一侧;
    每个所述触控单元单独连接一根所述触控信号线;所述触控信号线在所述显示基板上的正投影与所述触控电极在所述显示基板上的正投影交叠。
  11. 根据权利要求10所述的显示面板,其特征在于,还包括第一绝缘层,所述第一绝缘层设置于所述触控信号线与所述触控电极之间;
    所述第一绝缘层中在对应一个所述触控单元的区域开设有至少一个第一过孔,所述触控单元通过所述第一过孔连接为其提供信号的所述触控信号线。
  12. 根据权利要求11所述的显示面板,其特征在于,所述第一绝缘层中在对应一个所述触控单元的区域开设有多个第一过孔;
    所述多个第一过孔均匀分布,且所述多个第一过孔通过所述触控信号线彼此连接。
  13. 根据权利要求11所述的显示面板,其特征在于,所述第一绝缘层中在对应一个所述触控单元的区域开设有一个所述第一过孔;
    一列所述触控单元沿从上至下的方向,各个所述触控单元对应的所述第一过孔依次由所述触控单元的右上角向所述触控单元的左下角排布。
  14. 根据权利要求3所述的显示面板,其特征在于,沿所述触控单元的阵列的行方向,所述触控单元的数量为A,单个所述触控单元的负载值为a,则A*a≤P;
    沿所述触控单元的阵列的列方向,所述触控单元的数量为B,单个所述触控单元的负载值为b,则B*b≤P;
    其中,P为向所述触控电极提供信号的触控驱动芯片的最大负载能力。
  15. 根据权利要求9所述的显示面板,其特征在于,还包括悬空电极,所述悬空电极悬空设置,所述悬空电极与所述触控电极同层设置,所述悬空电极在所述显示基板上的正投影与所述触控电极在所述显示基板上的正投影无交叠。
  16. 根据权利要求15所述的显示面板,其特征在于,所述悬空电极呈网格状,所述悬空电极在所述显示基板上的正投影与所述子像素无交叠。
  17. 根据权利要求16所述的显示面板,其特征在于,所述悬空电极分布于所述触控单元所在区域内,所述悬空电极在所述触控单元所在区域内的分布面积占比小于40%。
  18. 一种显示装置,其特征在于,包括权利要求1-17任意一项所述的显示面板。
  19. 一种显示面板的制备方法,其特征在于,包括:制备显示基板;
    在所述显示基板的显示侧依次制备屏蔽电极和触控电极;
    所述屏蔽电极在所述显示基板上的正投影与所述触控电极在所述显示基板上的正投影至少部分交叠。
  20. 一种显示面板的驱动方法,其特征在于,所述显示面板包括显示基板,
    设置于所述显示基板显示侧的触控电极和屏蔽电极;所述屏蔽电极和所述触控电极依次远离所述显示基板排布;
    所述屏蔽电极在所述显示基板上的正投影与所述触控电极在所述显示基板上的正投影至少部分交叠;
    所述驱动方法包括:向所述触控电极提供触控驱动信号,同时,保持所述屏蔽电极悬空;或者,向所述屏蔽电极提供与所述触控驱动信号相同的信号。
PCT/CN2021/112691 2020-09-16 2021-08-16 显示面板及其驱动方法和制备方法、显示装置 WO2022057541A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/789,188 US20230061413A1 (en) 2020-09-16 2021-08-16 Display panel, methods for driving and manufacturing the same, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010973427.5 2020-09-16
CN202010973427.5A CN112114707B (zh) 2020-09-16 2020-09-16 显示面板及其驱动方法和制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2022057541A1 true WO2022057541A1 (zh) 2022-03-24

Family

ID=73803553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112691 WO2022057541A1 (zh) 2020-09-16 2021-08-16 显示面板及其驱动方法和制备方法、显示装置

Country Status (3)

Country Link
US (1) US20230061413A1 (zh)
CN (1) CN112114707B (zh)
WO (1) WO2022057541A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112114707B (zh) * 2020-09-16 2024-09-03 京东方科技集团股份有限公司 显示面板及其驱动方法和制备方法、显示装置
CN112711347B (zh) * 2020-12-28 2023-03-24 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
US11550414B2 (en) 2020-12-30 2023-01-10 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch display screen and touch display device
CN112711349B (zh) * 2020-12-30 2023-06-27 武汉华星光电半导体显示技术有限公司 触控显示屏、触控显示装置
CN113687147B (zh) * 2021-08-17 2024-06-14 Oppo广东移动通信有限公司 电容感应组件、电子设备
CN113835559B (zh) * 2021-09-26 2023-07-25 武汉华星光电半导体显示技术有限公司 显示面板
CN114047836A (zh) * 2021-11-02 2022-02-15 云谷(固安)科技有限公司 一种显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793803A (zh) * 2015-05-11 2015-07-22 京东方科技集团股份有限公司 触控基板及其制备方法、触控显示装置
CN204731755U (zh) * 2015-06-15 2015-10-28 上海天马微电子有限公司 一种阵列基板和一种触控显示装置
US20160266677A1 (en) * 2014-05-30 2016-09-15 Boe Technology Group Co., Ltd. In-cell touch panel and display device
CN106932942A (zh) * 2017-03-24 2017-07-07 厦门天马微电子有限公司 触控显示装置
CN112114707A (zh) * 2020-09-16 2020-12-22 京东方科技集团股份有限公司 显示面板及其驱动方法和制备方法、显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107092400B (zh) * 2017-06-27 2019-10-01 上海天马微电子有限公司 触控显示面板及包含其的触控显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160266677A1 (en) * 2014-05-30 2016-09-15 Boe Technology Group Co., Ltd. In-cell touch panel and display device
CN104793803A (zh) * 2015-05-11 2015-07-22 京东方科技集团股份有限公司 触控基板及其制备方法、触控显示装置
CN204731755U (zh) * 2015-06-15 2015-10-28 上海天马微电子有限公司 一种阵列基板和一种触控显示装置
CN106932942A (zh) * 2017-03-24 2017-07-07 厦门天马微电子有限公司 触控显示装置
CN112114707A (zh) * 2020-09-16 2020-12-22 京东方科技集团股份有限公司 显示面板及其驱动方法和制备方法、显示装置

Also Published As

Publication number Publication date
US20230061413A1 (en) 2023-03-02
CN112114707B (zh) 2024-09-03
CN112114707A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
WO2022057541A1 (zh) 显示面板及其驱动方法和制备方法、显示装置
CN110321029B (zh) 用于显示器的触摸传感器
US20210397320A1 (en) Touch sensing device and touch control display panel
KR101693132B1 (ko) 인-셀 터치 패널 및 디스플레이 디바이스
KR101470607B1 (ko) 컬러 필터 기판 및 용량성 터치 스크린
US10963105B2 (en) In-cell touch display panel, manufacturing method thereof, display device
US10649562B2 (en) In-cell touch screen and a display device
CN108509093B (zh) 触控显示面板和触控显示装置
TW201705575A (zh) 內嵌式觸控面板
JP7007258B2 (ja) タッチスクリーン、表示装置及びタッチパネル
CN110471569B (zh) 基板及其制备方法、显示装置
WO2022052715A1 (zh) 触控结构、触控显示基板和触控显示装置
US11216144B2 (en) Touch structure, touch display panel and driving method
CN113010042B (zh) 一种触控显示面板
US12026335B2 (en) Touch display panel with reduced impedance of touch signal line
CN113900536A (zh) 触摸显示装置
CN111158533B (zh) 检测基板和显示装置
WO2022142633A1 (zh) 显示基板及显示装置
JP3183253U (ja) タッチ表示装置
CN110174968B (zh) 一种显示装置
US12073049B2 (en) Display panel and display apparatus with additional electrode layer for improving mutual capacitance variation
WO2021159997A1 (zh) 触控显示面板与触控显示装置
CN115586843A (zh) 触摸显示装置
CN114546183A (zh) 触摸显示装置
KR102573081B1 (ko) 터치 패널 및 터치전극을 포함하는 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21868369

Country of ref document: EP

Kind code of ref document: A1