WO2021159997A1 - 触控显示面板与触控显示装置 - Google Patents

触控显示面板与触控显示装置 Download PDF

Info

Publication number
WO2021159997A1
WO2021159997A1 PCT/CN2021/074861 CN2021074861W WO2021159997A1 WO 2021159997 A1 WO2021159997 A1 WO 2021159997A1 CN 2021074861 W CN2021074861 W CN 2021074861W WO 2021159997 A1 WO2021159997 A1 WO 2021159997A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
sub
metal wire
wire
wires
Prior art date
Application number
PCT/CN2021/074861
Other languages
English (en)
French (fr)
Inventor
郭大维
张君勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/799,572 priority Critical patent/US11861090B2/en
Priority to EP21753799.2A priority patent/EP4075247A4/en
Priority to JP2022543412A priority patent/JP7480850B2/ja
Publication of WO2021159997A1 publication Critical patent/WO2021159997A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens

Definitions

  • the present application relates to the field of touch display, and in particular to a touch display panel and a touch display device.
  • the touch structure in the touch display panel includes a plurality of sensing electrodes.
  • the area of the touch sensing electrode will affect To the corresponding capacitance value.
  • the capacitive load on the touch trace will increase with the overlap with the touch sensing electrode As a result, the driving load of the touch control module (touch sensing integrated circuit) connected to the touch trace increases.
  • embodiments of the present application provide a touch display panel and a touch display device with a lighter capacitive load.
  • the touch display panel includes an array substrate, a display medium layer, and a packaging substrate that are stacked in sequence, and the display medium layer cooperates with the packaging substrate on the array substrate.
  • the lower outgoing light shows the image.
  • the encapsulation layer includes a first surface and a second surface that are disposed oppositely, wherein the first surface is disposed adjacent to the display medium layer, and the second surface is away from the display medium layer.
  • the second surface is sequentially provided with a first metal layer and a second metal layer that are insulated from each other.
  • the second metal layer includes a plurality of conductive patterns arranged in a matrix along a first direction and a second direction, and the plurality of conductive patterns output a first sensing signal when a touch operation is sensed in a self-capacitive manner, the The first direction is perpendicular to the second direction, each of the conductive patterns includes a first area and a second area that do not overlap, and the first area includes a plurality of first sub-metals extending along the first direction
  • the second region includes at least one second sub-metal wire extending differently from the first direction, and the second sub-metal wire is electrically connected to the plurality of first sub-metal wires in the first region. Sexual connection.
  • the first metal layer is provided with a plurality of second metal wires extending along the second direction corresponding to the first region, and the second metal wires are not connected to the first sub-metal in the second direction.
  • the wires overlap, and any one of the second metal wires is electrically connected to one of the conductive patterns and is used to transmit the first sensing signal to the touch control module, and the touch control module is used according to the The first sensing signal identifies the position of the touch operation.
  • the second metal wire for transmitting the first sensing signal when the touch operation sensed by the conductive pattern is transmitted is only arranged in the first area of the conductive pattern, and is connected to the first sub-metal in the extension direction of the first area.
  • the wire crossing point does not overlap with the first sub-metal wire, thereby effectively reducing the overlapping area of the second metal wire and the conductive pattern, thereby reducing the capacitive load on the second sub-metal wire, so that the second metal wire
  • the driving load of the touch control module connected to receive the first sensing signal is relieved.
  • the array substrate includes a plurality of pixel regions arranged in a matrix, the display medium layer corresponds to each of the pixel regions to form a pixel unit, and adjacent pixel units include A light-shielding area, where the pixel unit is used to emit light to display an image, and in the first area, the plurality of first sub-metal wires and the plurality of second metal wires form a plurality of closed metal grids Each of the metal grids is facing the pixel unit and coincides with the shading area, and the shape of the metal grid is the same as the shape of the pixel unit.
  • the metal grid When the metal grid is directly opposite to the pixel unit and overlaps this area, it can prevent the metal grid from overlapping with the area where the light exits in the pixel area and affect the brightness of the light, thereby effectively ensuring the brightness of the image display.
  • the first sub-metal wire is a square wave-shaped metal wire extending along the first direction
  • the second metal wire is a straight line extending along the second direction. Shaped metal wires, two adjacent first sub-metal wires intersect with two adjacent second metal wires to form a metal grid.
  • the first sub-metal wire is a plurality of continuous trapezoidal-shaped metal wires extending along the first direction
  • the second wire is extending along the second direction.
  • the metal wire in the linear shape is formed by crossing two adjacent first sub-metal wires and two adjacent second metal wires to form a metal grid.
  • the first sub-metal wire is a triangular wave-shaped metal wire extending along the first direction
  • the second wire is a plurality of continuous wires extending along the second direction.
  • the trapezoid-shaped metal wires are formed by crossing two adjacent first sub-metal wires and two adjacent second metal wires to form a metal grid.
  • the first sub-metal wire In the first area, only the first sub-metal wire is provided in the first direction. Therefore, the second sub-metal wire only extends in the second direction.
  • the metal grid formed by the intersection of the two can accurately identify the touch operation. At the same time of positioning, the overlap area of the first sub-metal wire and the second metal wire can be effectively reduced.
  • the first sub-metal wire and the second wire are triangular-wave-shaped metal wires extending along the same extension, and the first sub-metal wire and the second metal wire are adjacent to each other.
  • the intersection forms one metal grid continuously arranged along the extending direction, and one metal grid is directly opposite to one pixel unit.
  • the first sub-metal wire is a triangular wave-shaped metal wire extending along the first direction
  • the second wire is a triangular wave-shaped metal wire extending along the second direction.
  • Metal wire; or the first sub-metal wire is a triangular wave-shaped metal wire extending along the second direction
  • the second wire is a triangular wave-shaped metal wire extending along the second direction.
  • two adjacent first sub-metal wires and two adjacent second metal wires intersect to form a plurality of metal grids, and one metal grid is directly opposite to one pixel unit;
  • the two first sub-metal wires intersect with two adjacent second metal wires to form four metal grids, and the four metal grids are arranged in a rectangular shape.
  • the first sub-metal wire and the second metal wire extend in the same direction, and the metal grid formed by the intersection of the two can effectively reduce the overlapping area of the two, and can also reduce the process complexity of the metal wire.
  • one metal grid corresponds to one pixel unit.
  • the second metal layer is located at a position corresponding to the second metal wire in addition to the first sub-metal wire, and the second metal layer is provided with a floating metal wire of the same material as the first sub-metal wire .
  • the second metal layer is located at a position corresponding to the second metal wire in addition to the first sub-metal wire, and the second metal layer is not provided with a metal wire of the same material as the first sub-metal wire.
  • the first sub-component wire at the intersection of the first sub-metal wire and the second metal wire is suspended, so that no conductive capacitance is formed at the intersection of the first sub-metal wire and the second metal wire, which further reduces The capacitive load on the second metal wire is reduced.
  • the first sub-metal wire is a metal wire that extends along the first direction and forms a plurality of closed grids, and the second wire is along the second direction.
  • An extended triangular wave-shaped metal wire, the second wire does not overlap with the metal grid in the second direction, and one metal grid is facing the four pixel units.
  • the first sub-metal wire is a metal wire extending along the first direction to form a plurality of closed metal grids
  • the second wire is a metal wire extending along the second A plurality of metal wires extending in the direction of the closed metal grid, the metal grid included in the second wire overlaps with the metal grid included in the first sub-metal wire, wherein one of the metal grids is directly opposite to the four metal grids. Said pixel unit.
  • the first metal wire and the second metal wire adopt a closed grid shape, which can further reduce the capacitance on the metal wire, that is, further reduce the capacitive load on the second metal wire.
  • the first sub-metal wire is a metal wire that extends along the first direction and forms a plurality of closed metal grids, and any two adjacent metal wires are adjacent to each other in the first direction.
  • a metal connection point is included between the metal grids
  • the second wire is a metal wire that forms a plurality of closed metal grids extending along the second direction
  • the metal grid on the second wire Surrounding one metal wire connection point, and any two adjacent second wires are separated by at least one metal connection point.
  • the first sub-metal wire is a metal wire that extends along the first direction and forms a plurality of closed metal grids, and any two adjacent metal wires are adjacent to each other in the first direction.
  • a metal connection point is included between the metal grids.
  • the second wire is a metal wire that forms a plurality of closed metal grids extending along the second direction, and the metal grid on the second wire surrounds one connection point of the metal wire, any Two adjacent second wires surround two adjacent metal connection points.
  • the second metal wire does not overlap with the grid lines constituting the metal grid in its extension direction, which effectively reduces the overlapping area of the signal transmission line and the metal wire in the conductive pattern.
  • the second metal wire is also used
  • the form of the metal grid further reduces the impedance generated for the transmitted first sensing signal, improves the accuracy of the first touch sensing signal transmission, and thereby reduces the driving load of the touch driving module.
  • the metal in the first sub-metal wire in the first region, at a position where the first sub-metal wire does not cross the second wire, the metal in the first sub-metal wire
  • the grid surrounds one of the pixel unit settings.
  • the second metal layer is provided with a floating metal wire of the same material as the first sub-metal wire, Or the second metal layer is not provided with the first sub-metal wire.
  • the second surface is not provided with the position of the first sub-metal wire and the second metal wire, and the second metal layer is provided with a floating ground and
  • the first sub-metal wire is a metal wire of the same material, or the second metal layer is not the first sub-metal wire.
  • a dielectric is provided between the second metal layer and the first metal layer. Material to prevent the first sensing signal transmitted by the second metal wire from being interfered.
  • the second metal layer is not provided with the metal wire material of the first sub-metal wires Or where the plurality of first sub-metal wires and the plurality of second metal wires cross, the second metal layer is provided with the suspended first sub-metal wires.
  • the first sub-component wire at the intersection of the first sub-metal wire and the second metal wire is suspended, so that no conductive capacitance is formed at the intersection of the first sub-metal wire and the second metal wire, which further reduces The capacitive load on the second metal wire is reduced.
  • the second area includes a plurality of second sub-metal wires, and the plurality of second sub-metal wires constitute a plurality of the metal grids.
  • the conductive pattern includes a plurality of metal grids, and the metal grids can effectively reduce the impedance of the conductive pattern and further reduce the load of the touch control module.
  • the first metal layer and the second metal layer include a first dielectric layer sandwiched therebetween; in the first region, the first dielectric layer includes a first dielectric layer.
  • the second metal wire is electrically connected to the conductive pattern through the first via hole.
  • the second metal wire is electrically connected to the conductive pattern accurately corresponding to the first via, so that the first sensing signal output by the conductive pattern is accurately transmitted to the touch control module.
  • a light-shielding area is included between adjacent pixel units, and the first metal wire, the second metal wire, and the second metal wire are all facing the light-shielding area.
  • the metal wire is directly opposite to the pixel unit and overlaps this area, it can prevent the area where the metal wire shields the light emitted from the pixel area from overlapping and affect the brightness of the light, thereby effectively ensuring the brightness of the image display.
  • the display medium layer is an organic electroluminescent material
  • the first metal layer and the second metal layer contain conductive patterns
  • the second metal wiring constitutes a touch sensing structure for touch sensing It is directly arranged on the surface of the organic electroluminescent material encapsulation layer, thereby effectively reducing the thickness of the touch display panel.
  • the touch display panel further includes a protective layer covering the first metal layer and the second metal layer provided on the second surface of the packaging substrate.
  • a touch display device in an implementation manner of the present application, includes the aforementioned touch display panel and the touch control module, and the touch control module is configured to respond to the received sensing The signal identifies the position of the touch operation received by the touch display panel.
  • the touch control module is located in an area outside the area where the conductive pattern is provided on the touch display panel, or is located in an area outside the touch display panel.
  • FIG. 1 is a schematic diagram of a planar structure of a touch display panel in an embodiment of the application
  • FIG. 2 is a schematic diagram of a cross-sectional structure of the touch display panel shown in FIG. 1 along the line II-II;
  • FIG. 3 is a schematic diagram of the planar structure of the pixel area of the array substrate shown in FIG. 1;
  • FIG. 4 is a schematic diagram of the planar structure of the touch sensing layer disposed on the packaging substrate as shown in FIG. 1;
  • FIG. 5 is a schematic diagram showing the side structure of one of the two adjacent conductive patterns as shown in FIG. 4 along the V-V line respectively;
  • FIG. 6 is a schematic diagram of the side structure along the V-V line in the other one of the two adjacent conductive patterns as shown in FIG. 4;
  • FIG. 7 is a schematic diagram of a planar structure in any conductive pattern shown in FIG. 4;
  • FIG. 8 is a schematic diagram of an enlarged structure along line xx in any one of the conductive patterns shown in FIG. 7 in the first embodiment of the application;
  • FIG. 9 is a schematic diagram of an enlarged structure along line XI in a second area of any conductive pattern shown in FIG. 7; FIG.
  • FIG. 10 is a schematic diagram of a cross-sectional structure along B-B in the conductive pattern shown in FIG. 8;
  • FIG. 11 is a schematic diagram of a cross-sectional structure along B-B in the conductive pattern shown in FIG. 8 in the second embodiment of the application;
  • FIG. 12 is a schematic diagram of an enlarged structure along line xx in any conductive pattern shown in FIG. 7 in the third embodiment of the application;
  • FIG. 13 is a schematic diagram of an exploded structure of a first sub-metal wire and a second metal wire in the conductive pattern shown in FIG. 12;
  • FIG. 14 is a schematic diagram of an enlarged structure along line xx in any conductive pattern shown in FIG. 7 in the fourth embodiment of the application;
  • FIG. 15 is a schematic diagram of an exploded structure of the first sub-metal wire and the second metal wire in the conductive pattern shown in FIG. 14;
  • 16 is a schematic diagram of an enlarged structure along line xx in any conductive pattern shown in FIG. 7 in the fifth embodiment of the application;
  • FIG. 17 is a schematic diagram of an exploded structure of the first sub-metal wire and the second metal wire in the conductive pattern shown in FIG. 16;
  • FIG. 18 is a schematic diagram of an enlarged structure along line xx in any conductive pattern shown in FIG. 7 in the sixth embodiment of the application;
  • FIG. 19 is a schematic diagram of an exploded structure of the first sub-metal wire and the second metal wire in the conductive pattern shown in FIG. 18;
  • FIG. 20 is a schematic diagram of an enlarged structure along line xx in any conductive pattern shown in FIG. 7 in the seventh embodiment of the application;
  • FIG. 21 is a schematic diagram of an exploded structure of a first sub-metal wire and a second metal wire in the conductive pattern shown in FIG. 20;
  • FIG. 22 is a schematic diagram of a decomposed planar structure of the conductive grid and the corresponding pixel unit shown in FIG. 20; FIG.
  • FIG. 23 is a schematic diagram of the planar structure of the conductive grid and the pixel unit shown in FIG. 20 after being overlapped;
  • FIG. 24 is a schematic diagram of the cross-sectional structure at III-III in the conductive pattern shown in FIG. 20;
  • FIG. 25 is a schematic diagram of a cross-sectional structure at III-III of the conductive pattern shown in FIG. 20 in another embodiment of the application;
  • FIG. 26 is a schematic diagram of a cross-sectional structure at IV-IV in the conductive pattern shown in FIG. 20;
  • FIG. 27 is a schematic diagram of a cross-sectional structure at IV-IV in the conductive pattern shown in FIG. 20 in other embodiments of the application;
  • FIG. 28 is a schematic diagram of an enlarged structure along line xx in any conductive pattern shown in FIG. 7 in the eighth embodiment of the application;
  • FIG. 29 is a schematic diagram of an exploded structure of the first sub-metal wire and the second metal wire in the conductive pattern shown in FIG. 28.
  • FIG. 30 is a schematic diagram of an enlarged structure along line xx in any conductive pattern shown in FIG. 7 in the ninth embodiment of the application;
  • FIG. 31 is a schematic diagram of an exploded structure of the first sub-metal wire and the second metal wire in the conductive pattern shown in FIG. 30;
  • FIG. 32 is a schematic diagram of an enlarged structure along line xx in any conductive pattern shown in FIG. 7 in the tenth embodiment of the application;
  • FIG. 33 is a schematic diagram of an exploded structure of the first sub-metal wire and the second metal wire in the conductive pattern shown in FIG. 32.
  • FIG. 1 is a schematic diagram of the planar structure of the touch display panel 10 in an embodiment of the application.
  • the touch display panel 10 includes a display area AA (active area) and a non-active area NA (non-active area).
  • the display area AA corresponds to the screen display area setting of the touch display panel 10 and is used to perform image display.
  • the non-display area NA is used to set up display drive control modules, touch drive control modules and other functional modules.
  • the touch display panel 10 can be applied to touch display devices, such as mobile phones, tablet computers, and other electronic devices capable of performing display and touch functions.
  • FIG. 2 is a schematic cross-sectional structure diagram of the touch display panel 10 shown in FIG. 1 along the line II-II.
  • the touch display panel 10 is used to realize image display and touch operation detection.
  • the touch display panel 10 includes an array substrate 11, a display medium layer 13, and a packaging substrate 15 which are sequentially stacked from bottom to top in the figure. Between 11 and the package substrate 15.
  • the display medium layer 13 is an organic light-emitting display material (Organic Light-Emitting Diode, OLED), the array substrate 11 is provided with pixel regions arranged in a matrix, and each pixel region is provided with a display medium layer 13 for driving the display medium layer 13 to emit light.
  • the package substrate 15 is used to package the display medium layer 13.
  • the driving circuit is used to drive the material of the display medium layer to emit light to perform image display.
  • the packaging substrate 15 includes two opposite first surfaces 151 and a second surface 152.
  • the first surface is adjacent to the display medium layer 13, and the second surface 152 is far away from the display medium layer 13.
  • the touch sensing layer 17 and the protective layer 19 are used to identify the touch position applied to the touch display panel 10, and the protective layer 19 is used to protect the touch sensing layer 17 and the packaging layer substrate 15 and other layers structure.
  • the touch display panel 10 when the display medium layer 13 is an organic light-emitting display material, the touch display panel 10 can be made into a flexible and bent panel structure, so that it can be applied to a flexible touch display device, such as a foldable mobile phone or tablet. In the computer.
  • FIG. 3 is a schematic diagram of the planar structure of the pixel area of the array substrate 11 shown in FIG. 1.
  • the surface of the array substrate 11 adjacent to the display medium layer 13 is provided with a plurality of pixel regions (not labeled) arranged in a matrix along the first direction X and the second direction Y, wherein:
  • Each pixel area is provided with a driving circuit, and the thin film transistors and capacitors included in the driving circuit can be formed by depositing and etching semiconductor materials on the surface of the array substrate.
  • the shape of the pixel area can be set according to actual needs, such as a square, a rhombus, a pentagon, a hexagon, etc.
  • the shape of the pixel area is only an example for illustration, and is not limited thereto.
  • the driving circuit in each pixel area can drive the luminescent material contained in the display medium layer 13 of the pixel area to emit light.
  • the driving circuit in the pixel area cooperates with the corresponding display medium layer 13 to form a pixel unit Pixel.
  • the luminescent materials contained in the display medium layer 13 corresponding to adjacent pixel units Pixel may be different to emit light of different colors.
  • a light shielding area (BM) is included between adjacent pixel units Pixel to prevent phase difference. The light rays emitted between adjacent pixel units Pixel interfere with each other.
  • the display drive circuit includes a data drive circuit for providing image data signals, a scan drive circuit for performing row scanning, and a timing controller (Tcon) that controls the operating timing of the data drive circuit and the scan drive circuit.
  • Tcon timing controller
  • FIG. 4 is a schematic plan view of the touch sensing layer 17 provided on the packaging substrate 15 as shown in FIG. 1.
  • the touch sensing layer 17 includes a plurality of conductive patterns P1 arranged in a matrix along the first direction X and the second direction Y, wherein each conductive pattern P1 passes along the second direction Y.
  • the signal transmission line L1 is electrically connected with the touch control module TC.
  • the conductive pattern P1 is used to sense the first sensing signal generated by the user's touch, and is transmitted to the touch control module TC through the signal transmission line L1, and the touch control module TC is based on the first sensing signal.
  • a sensing signal identifies the location of the touch operation.
  • the touch sensing layer 17 implements self-capacitive touch sensing through conductive patterns.
  • the conductive pattern is a grid shape composed of metal wires.
  • FIGS. 5 to 6 respectively show the side structure diagrams along the VV line in the two adjacent conductive patterns of the touch display panel as shown in FIG. 4, where FIG. 5 is as shown in FIG. A schematic diagram showing the side structure of one of the two adjacent conductive patterns along the VV line.
  • FIG. 6 is a schematic diagram showing the side structure of the other one of the two adjacent conductive patterns along the VV line as shown in FIG. 4.
  • the touch sensing layer 17 includes a first metal layer 171, an insulating dielectric layer 173, and a second metal layer 172 that are stacked in sequence, wherein the first metal layer 171 includes the one shown in FIG. As shown in the signal transmission line L1, the second metal layer 172 includes a plurality of conductive patterns P1 arranged in a matrix.
  • the first metal layer 171 and the second metal layer 172 belong to different layer structures, as shown in FIG.
  • the metal layer 171 and the second metal layer 172 are electrically connected through the conductive material in the first through hole H1.
  • the insulating dielectric layer 173 isolates the first metal layer 171 and the second metal layer 172 to prevent the two from being electrically connected.
  • the first conductive pattern P1 and the signal transmission line L1 may be formed by etching or printing using a patterned photomask.
  • FIG. 7 is a schematic diagram of a planar structure of any conductive pattern P1 shown in FIG. 4.
  • the area where each conductive pattern P is located includes a first area A1 and a second area A2 without overlap.
  • the first area A1 part of the metal wires in the conductive pattern P1 and the signal transmission line L1 are correspondingly provided, and the second area A2 only contains the metal wires of the conductive pattern and does not include the signal transmission line L1, that is, the signal transmission line L1 is only provided In the first area A1, it is not located in the second area A2, and does not overlap with the second area A2.
  • FIG. 8 is a schematic diagram of an enlarged structure along line xx in the first area A1 in any one of the conductive patterns shown in FIG. 7 in the first embodiment of the application.
  • a plurality of first sub-metal wires C11 extending along the first direction X are provided in the second metal layer 172, and the plurality of first metal wires C11 are spaced apart from each other
  • the preset distance setting means that a plurality of first sub-metal wires C11 are arranged side by side along the second direction Y, and two adjacent first sub-metal wires C11 are separated by a predetermined distance.
  • At least one second sub-metal wire C12 extending differently from the first direction X is provided, and the second sub-metal wire C12 is electrically connected to a plurality of first sub-metal wires C11 in the first area A1 , So that the first sub-metal wires C11 discretely arranged in the first area A1 are electrically connected and conducted with the metal wires in the second area A2, and further, all the metal wires in the first conductive pattern P1 are electrically connected and evenly connected. At the same potential.
  • the first metal layer 171 is provided with a plurality of second metal wires C2 extending along the second direction Y corresponding to the first area A1, and the second metal wires C2 are not connected to the first metal wire C2 in the extending direction (the second direction Y).
  • the sub-metal wires C11 continuously overlap, that is to say, the second metal wire C2 does not overlap with the first sub-metal wire C11 in the extension direction of the two.
  • Any second metal wire C2 is electrically connected to a conductive pattern.
  • the second metal wire C2 is used as the signal transmission line L1 as shown in FIG. A sensing signal is transmitted to the touch control module TC.
  • the first metal layer 171 there are a plurality of second metal wires C2 extending along the second direction Y, and when the first metal layer 171 and the second metal layer 172 are stacked, that is, the second When the multiple first sub-metal wires C11 on the metal layer 172 are projected on the first metal layer 171 along a direction perpendicular to the first metal layer 171, the multiple first sub-metal wires C11 and the multiple second metal wires C12 When crossing, multiple closed metal grids are formed.
  • each of the metal grids is facing one pixel unit Pixel, and the shape of the metal grid is the same as the shape of the pixel unit, so that the metal wires are located on the light-shielding layer to prevent the metal wires
  • the light-emitting area of the pixel unit Pixel is shielded to ensure the transmittance, light intensity and image brightness of the light emitted by the single pixel of the pixel.
  • the first dielectric layer includes a first via H1, and a second metal wire C2 is electrically connected to the conductive pattern P1 through the first via H1, that is, serves as a signal transmission line
  • the second metal wire C2 of L1 is electrically connected to the conductive pattern P1 through the first via H1.
  • FIG. 9 is a schematic diagram of an enlarged structure along the line XI in the second area A2 in any one of the conductive patterns shown in FIG. 7.
  • the second area A2 in addition to a plurality of first sub-metal wires C11 extending along the first direction X, it also includes a plurality of second sub-metal wires extending in the second direction Y.
  • the metal wires C12 wherein a plurality of second sub-metal wires C11 and a plurality of second sub-metal wires C12 are alternately arranged to form a pattern of a plurality of metal grids.
  • the plurality of second sub-metal wires C11 and the plurality of second sub-metal wires C12 are arranged in the same layer, and are electrically connected at staggered positions.
  • the pattern shape of the metal mesh in the second area A2 can be formed by continuous trapezoidal first sub-metal wires C11 extending along the first direction X as shown in (a) of FIG. 9, and A hexagonal shape formed by intersecting second metal wires C2 in a triangular wave shape extending along the second direction Y; or, as shown in FIG. 9(b) by a continuous trapezoid extending along the first direction X
  • the first sub-metal wire C11 and the linear second metal wire C2 extending along the second direction Y are intersecting irregular shapes; or, as shown in FIG.
  • the shape of the metal grid in the second area A2 is not limited to the shapes listed above, and it is only necessary to ensure that the shape of the metal grid is the same as the shape of the pixel area and exactly overlaps.
  • the metal mesh pattern constituting the second area A2 may be obtained by patterning the material of the second metal layer 172.
  • the first sub-metal wire C11, the second sub-metal wire C12, and the second metal wire are all disposed right on the light-shielding area BM, thereby effectively preventing the metal wire and the pixel area from affecting the display of the pixel unit Pixel. brightness.
  • the second metal layer 172 may be provided with a floating metal wire of the same material as the first sub-metal wire C11 except for the position of the first sub-metal wire C11 and corresponding to the second metal wire C2.
  • the first sub-metal wire C11 may not be provided.
  • FIG. 10 is a schematic diagram of the cross-sectional structure along B-B in the conductive pattern shown in FIG. 8.
  • the second metal layer 172 is provided with the same material as the first sub-metal wire C11 except for the position of the first sub-metal wire C11 and corresponding to the second metal wire C2.
  • Floating metal wire In this embodiment, the floating ground is a metal wire, and the part of the metal wire is not electrically connected to the ground terminal of the touch display panel.
  • this part of the metal wires will not be affected by the electrical properties of the grounding terminal, thereby further reducing the gap between the first sub-metal wires C11 and between the first sub-metal wires C11 and the second metal wires C2.
  • the signal interference therebetween allows the second metal wire C2 as the signal transmission line L1 to accurately transmit the first sensing signal sensed by the conductive pattern to the touch sensing side module TC.
  • FIG. 11 is a schematic diagram of a cross-sectional structure along BB in the conductive pattern shown in FIG. 8 in the second embodiment of the application.
  • the second metal layer 172 is not provided with the first sub-metal wire C11, thereby preventing the second metal wire C2 and the conductive pattern as the signal transmission line L1 It is electrically connected, and the electrical signal sensed by the conductive pattern is mistakenly transmitted to the touch-sensing side module TC to ensure the accuracy of the touch-sensing signal.
  • FIG. 12 is a schematic diagram of an enlarged structure along line xx in any conductive pattern shown in FIG. 7 in the third embodiment of the application
  • FIG. 13 is the first sub in the conductive pattern shown in FIG.
  • the first sub-metal wire C11 is a square-wave-shaped metal wire extending along the first direction X
  • the second metal wire C2 is a linear-shaped metal wire extending along the second direction Y
  • two adjacent first sub-metal wires C11 and two adjacent second metal wires C2 intersect to form a square metal grid
  • the shape and size of a metal grid is basically the same as the shape and size of the pixel unit Pixel. same.
  • the metal grids are arranged right on the light shielding area BM (FIG. 3) and surrounding the pixel unit Pixel, so as to effectively prevent the overlap of the metal wire and the pixel area from affecting the display brightness of the pixel unit Pixel.
  • FIG. 14 is a schematic diagram of an enlarged structure along line xx in any one of the conductive patterns shown in FIG. 7 in the fourth embodiment of the application.
  • the first sub-metal wire C11 is a plurality of continuous trapezoidal-shaped metal wires extending along the first direction X
  • the second metal wire C2 is a linear shape extending along the second direction Y
  • the metal wires of the two first sub-metal wires C11 and the two adjacent second metal wires C2 intersect to form an irregular polygonal metal grid, and the shape and size of the metal grid is the same as the shape of the pixel unit Pixel
  • the size is basically the same.
  • the metal grids are arranged directly on the light-shielding area BM and surrounding the pixel unit Pixel, thereby effectively preventing the display brightness of the pixel unit Pixel from being affected when the metal wire overlaps with the pixel area.
  • FIG. 16 is a schematic diagram of an enlarged structure along line xx in any one of the conductive patterns shown in FIG. 7 in the fifth embodiment of the application
  • FIG. 17 is the first sub in the conductive pattern shown in FIG.
  • the first sub-metal wire C11 is a triangular wave-shaped metal wire extending along the first direction X
  • the second metal wire C2 is a plurality of continuous trapezoidal shapes extending along the second direction Y Metal wire.
  • two first sub metal wires C11 and two adjacent second metal wires C2 intersect to form a hexagonal metal grid, and the shape and size of a metal grid are basically the same as the shape and size of the pixel unit Pixel .
  • the metal grids are arranged directly on the light-shielding area BM and surrounding the pixel unit Pixel, thereby effectively preventing the display brightness of the pixel unit Pixel from being affected when the metal wire overlaps with the pixel area.
  • the extension direction of the first sub-metal wire C11 and the extension direction of the second metal wire C2 can be interchanged, that is, the first sub-wire shown in FIG. 16
  • the metal wire C11 is a triangular wave-shaped metal wire extending along the second direction Y
  • the second metal wire C2 is a plurality of continuous trapezoidal-shaped metal wires extending along the first direction X
  • FIG. 18 is a schematic diagram of an enlarged structure along line xx in any of the conductive patterns shown in FIG. 7 in the sixth embodiment of the application, and FIG. 19 is the first sub in the conductive pattern shown in FIG. 18
  • the first sub-metal wire C11 and the second metal wire C2 are continuous Z-shaped metal wires extending in the same direction.
  • the first sub-metal wire C11 is a triangular-wave-shaped metal wire extending along the second direction Y
  • the second metal wire C2 is a triangular-wave-shaped metal wire extending along the second direction Y.
  • the first sub-metal wire C11 is a triangular wave-shaped metal wire extending along the first direction X
  • the second metal wire C2 is a triangular wave-shaped metal wire extending along the first direction X.
  • a second metal wire C2 is provided between two adjacent first metal wires C11, and a first metal wire C11 is provided between two adjacent second metal wires C2, so that one The first sub-metal wire C11 and one second metal wire C2 cross each other to form a quadrilateral metal grid arranged in sequence along the second direction Y.
  • two adjacent first sub-metal wires C11 are connected to two adjacent second metal wires.
  • the metal wires C2 cross to form a quadrilateral including four metal grids.
  • the metal grid is a rhombus arranged along the second direction Y, and four metal grids are arranged in a rhombus shape, wherein the shape and size of one metal grid are the same as the shape and size of the pixel unit Pixel.
  • the metal grids are all set right at the light-shielding area BM, so as to effectively prevent the metal wires from overlapping the pixel area from affecting the display brightness of the pixel unit Pixel.
  • FIG. 20 is a schematic diagram of an enlarged structure along the line xx in any conductive pattern shown in FIG. 7 in the seventh embodiment of the application.
  • FIG. 21 is the first sub in the conductive pattern shown in FIG. 20
  • the first sub-metal wire C11 is a metal wire that forms a plurality of closed grids extending along the first direction X
  • the second metal wire C2 is a triangular wave shape extending along the second direction Y Metal wires.
  • the closed grid is a quadrilateral, the diagonal of the quadrilateral is parallel to the first direction X, or the diagonal of the quadrilateral is perpendicular to the first direction X, that is, the first sub-metal wire C11 is along
  • the plurality of closed grids extending in the first direction X are rhombuses continuously arranged along the first direction X.
  • the second metal wire C2 does not overlap with the grid lines constituting the metal grid in its extension direction, thereby effectively reducing the overlapping area of the signal transmission line L1 and the metal wire in the conductive pattern, thereby effectively reducing the touch drive module TC's driving load.
  • one metal grid corresponds to four pixel units Pixel.
  • the number of pixel units corresponding to one metal grid is not limited to this.
  • one metal grid corresponds to eight pixels. Cell Pixel.
  • FIG. 22 is a schematic diagram of the decomposed planar structure of the conductive grid and the corresponding pixel unit shown in FIG. 20, and FIG. 23 is a diagram. The schematic diagram of the planar structure after the conductive grid and the pixel unit are overlapped as shown in 20.
  • each metal grid corresponds to four pixel units Pixel, and only the metal wires constituting the metal grid overlap with the edge area of the pixel unit Pixel, that is, the metal grids are directly shielding the light.
  • the area BM is set to effectively prevent the metal wire from affecting the display brightness of the pixel unit Pixel when the metal wire is overlapped with the pixel unit Pixel corresponding to the pixel area.
  • the second metal wire C2 may also be aligned with the metal mesh in the first sub-metal wire C11 along the second direction Y.
  • the edges are aligned and overlapped, thereby further enabling the first sub-metal wire C11 and the second metal wire C2 to be arranged in the light-shielding area BM between the pixel units Pixel and surrounding the pixel unit Pixel to prevent the metal grid from blocking the pixels.
  • the light-emitting area in the unit Pixel further improves the light transmittance of the image display panel 10 and the brightness of the displayed image.
  • FIG. 24 is a schematic cross-sectional structure diagram at III-III of the conductive pattern shown in FIG. 20, as shown in FIG. 24,
  • each metal grid corresponds to the position where the second metal wire C2 is provided, and the second metal layer 172 has a floating metal wire with the same material as the first sub-metal wire C11.
  • the floating ground is a metal wire, and the part of the metal wire is not electrically connected to the ground terminal of the touch display panel.
  • this part of the metal wires will not be affected by the electrical properties of the grounding terminal, thereby further reducing the gap between the first sub-metal wires C11 and between the first sub-metal wires C11 and the second metal wires C2.
  • the signal interference therebetween allows the second metal wire C2 as the signal transmission line L1 to accurately transmit the first sensing signal sensed by the conductive pattern to the touch sensing side module TC.
  • FIG. 25 is a schematic cross-sectional structure diagram at III-III in the conductive pattern shown in FIG. 20 in another embodiment of the application.
  • the second metal layer 172 is not provided with the first sub-metal wires C11, so as to reduce the complexity of the manufacturing process and further improve the light transmittance of the touch display panel and the brightness of image display.
  • FIG. 26 is a schematic cross-sectional structure diagram at IV-IV in the conductive pattern shown in FIG. 20, as shown in FIG. 24.
  • the second surface 152 is not provided with the positions of the first metal layer 171 and the second metal wire C2, and the second metal layer 172 is provided with a floating ground
  • the metal wire of the same material as the first sub-metal wire C11 is used to reduce the signal interference C between the first sub-metal wire C11 and between the first sub-metal wire C11 and the second metal wire C2.
  • FIG. 27 is a schematic cross-sectional structure diagram at IV-IV in the conductive pattern shown in FIG. 20 in another embodiment of the application.
  • the light shielding area BM adjacent to the corresponding adjacent pixel unit Pixel The second surface 152 is not provided with the positions of the first metal layer 171 and the second metal wire C2, the second metal layer 172 is not provided with the first sub-metal wire C11, and the first metal layer 171 is not provided
  • the second metal wire C2 reduces the complexity of the manufacturing process.
  • FIG. 28 is an enlarged schematic diagram of the structure along the line xx in any conductive pattern shown in FIG. 7 in the eighth embodiment of the application.
  • FIG. 29 is the first sub in the conductive pattern shown in FIG. 28.
  • the first sub-metal wire C11 is a metal wire that extends along the first direction X and forms multiple closed grids
  • the second metal wire C2 is a metal wire that extends along the second direction Y and forms multiple A closed grid of metal wires.
  • the closed grid is a quadrilateral, the diagonal of the quadrilateral is parallel to the first direction X, or the diagonal of the quadrilateral is perpendicular to the first direction X, that is, the first sub-metal wire C11 is along
  • the plurality of closed grids extending in the first direction X are rhombuses continuously arranged along the first direction X.
  • the extension direction of the second metal wire C2 coincides with the grid lines constituting the metal grid, thereby effectively reducing the overlapping area of the signal transmission line L1 and the metal wire in the conductive pattern, thereby effectively reducing the touch drive module TC The driving load.
  • FIG. 30 is a schematic diagram of an enlarged structure along line xx in any one of the conductive patterns shown in FIG. 7 in the ninth embodiment of the application, and FIG. 31 is the first sub in the conductive pattern shown in FIG. 30
  • the first sub-metal wire C11 is a metal wire that forms a plurality of closed grids extending along the first direction X
  • the second metal wire C2 is a triangular wave shape that extends along the second direction Y Metal wire.
  • the closed grid is a quadrilateral, the diagonal of the quadrilateral is parallel to the first direction X, or the diagonal of the quadrilateral is perpendicular to the first direction X, that is, the first sub-metal wire C11 is along
  • the plurality of closed grids extending in the first direction X are rhombuses continuously arranged along the first direction X.
  • a metal connection point CP is included between any two adjacent metal grids in the first direction X.
  • the second wire C2 is a metal wire that extends along the second direction Y and forms a plurality of closed metal grids.
  • the second wire C2 is overlapped with the first sub-component wire C11, except for the intersection point due to the different extension directions In addition, the two do not overlap.
  • each metal grid on the second wire C2 surrounds a metal wire connection point CP, and any two adjacent second wires C2 are separated by at least one metal connection point CP.
  • the second metal wire C2 does not overlap with the grid lines constituting the metal grid in its extension direction, thereby effectively reducing the overlapping area of the signal transmission line L1 and the metal wire in the conductive pattern, thereby effectively reducing the touch drive module The driving load of TC.
  • the shape and size of the metal grid in the first sub-metal wire C11 is substantially the same as that of a pixel unit Pixel, and the metal grids are arranged right on the shading area BM and surround the pixel unit Pixel, thereby effectively preventing When the metal wire overlaps the pixel area, the display brightness of the pixel unit Pixel is affected.
  • the shape and size of the metal grid in the first sub-metal wire C11 is substantially the same as that of a pixel unit Pixel, and the metal mesh
  • the grids are arranged directly on the light shielding area BM and surrounding the pixel unit Pixel.
  • any two adjacent second conductive lines C2 are separated by at least one metal connection point CP, then between any two adjacent second conductive lines C2, the first sub-metal search section C11
  • the metal grid does not cross the metal grid in the second metal wire C2, so for the metal grid on the first sub-metal wire C11 that does not cross the metal grid in the second metal wire C2, it
  • the shape and size of a pixel unit Pixel are basically the same, and the metal grids are arranged to surround a pixel unit Pixel, thereby effectively increasing the effective area of the first sub-metal wire C11 for performing touch sensing, and at the same time increasing the output of the first sensing
  • the number of signals ensures the accuracy of recognition for touch operations.
  • FIG. 32 is an enlarged schematic diagram of the structure along line xx in any one of the conductive patterns shown in FIG. 7 in the tenth embodiment of the application
  • FIG. 33 is the first conductive pattern shown in FIG. 32
  • the first sub-metal wire C11 is a metal wire that forms a plurality of closed grids extending along the first direction X
  • the second metal wire C2 is a triangular wave shape that extends along the second direction Y Metal wire.
  • the closed grid is a quadrilateral, the diagonal of the quadrilateral is parallel to the first direction X, or the diagonal of the quadrilateral is perpendicular to the first direction X, that is, the first sub-metal wire C11 is along
  • the plurality of closed grids extending in the first direction X are rhombuses continuously arranged along the first direction X.
  • a metal connection point CP is included between any two adjacent metal grids in the first direction X.
  • the second wire C2 is a metal wire that extends along the second direction Y and forms a plurality of closed metal grids.
  • the second wire C2 is overlapped with the first sub-component wire C11, except for the intersection point due to the different extension directions In addition, the two do not overlap.
  • each metal grid on the second wire C2 surrounds a metal wire connection point CP, and the metal connection points CP surrounded by any two adjacent second wires C2 are adjacent in the first direction X.
  • the second metal wire C2 does not overlap with the grid lines constituting the metal grid in its extension direction, thereby effectively reducing the overlapping area of the signal transmission line L1 and the metal wire in the conductive pattern, thereby effectively reducing the touch drive module TC's driving load.
  • the shape and size of the metal grid in the first sub-metal wire C11 and one pixel unit Pixel are basically the same, and one metal grid is directly opposite to one pixel unit Pixel.
  • One metal grid is facing one pixel unit Pixel, and the metal grids are all facing the light-shielding area BM and are arranged to surround the pixel unit Pixel, thereby effectively preventing the display brightness of the pixel unit Pixel from being affected when the metal wire overlaps the pixel area.
  • each metal grid corresponds to a position where the second metal wire C2 is provided, and the second metal layer 172 has a floating metal wire with the same material as the first sub-metal wire C11.
  • the floating ground is a metal wire and this part of the metal wire and the touch display panel There is no electrical connection to the ground terminal.
  • this part of the metal wires will not be affected by the electrical properties of the grounding terminal, thereby further reducing the gap between the first sub-metal wires C11 and between the first sub-metal wires C11 and the second metal wires C2.
  • the signal interference therebetween allows the second metal wire C2 as the signal transmission line L1 to accurately transmit the first sensing signal sensed by the conductive pattern to the touch sensing side module TC.
  • the area inside each metal grid corresponds to the position where the second metal wire C2 is provided, and the second metal layer 172 is not provided with the first sub-metal wire C11.
  • the first sub-metal wire C11 is not provided at this position, the complexity of the manufacturing process can be effectively reduced, and the light transmittance of the touch display panel and the brightness of the image display can be further improved.
  • each metal grid corresponds to a position where the second metal wire C2 is not provided, and the second metal layer 172 has a floating metal wire with the same material as the first sub-metal wire C11.
  • the second surface 152 is not provided with the positions of the first metal layer 171 and the second metal wire C2, and the second metal layer 172 is provided with floating ground and the same material as the first sub-metal wire C11 Metal wire.
  • FIG. 26 refers to FIG. 26 for the cross section along VII-VII shown in FIG. 30 and the position of IX-IX shown in FIG. 32.
  • this part of the metal wires will not be affected by the electrical properties of the grounding terminal, thereby further reducing the gap between the first sub-metal wires C11 and between the first sub-metal wires C11 and the second metal wires C2.
  • the signal interference therebetween allows the second metal wire C2 as the signal transmission line L1 to accurately transmit the first sensing signal sensed by the conductive pattern to the touch sensing side module TC.
  • each metal grid corresponds to the position where the second metal wire C2 is provided, and the second metal layer 172 is not provided with the first sub-metal wire C11.
  • the first sub-metal wire C11 and the second metal wire C2 are not provided, it can effectively reduce The complexity of the manufacturing process further improves the light transmittance of the touch display panel and the brightness of the image display.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供一种降低电容负载的触控显示面板与触控显示装置,触控显示面板中封装衬底表面包括相互绝缘的第一金属层与第二金属层。第二金属层包括多个沿着第一方向与第二方向矩阵排列的导电图案,多个导电图案采用自容方式在感测到触摸操作时输出第一感测信号。每一个导电图案包括无重叠的第一区域与第二区域,第一区域包括多条沿着第一方向延伸的第一子金属导线。第一金属层对应第一区域设置多条沿着第二方向延伸的第二金属导线,第二金属导线在第二方向上未与第一子金属导线重叠,任意一条第二金属导线电性连接于一个导电图案且用于将第一感测信号传输至触控控制模组,触控控制模组用于依据第一感测信号识别触摸操作的位置。

Description

触控显示面板与触控显示装置
本申请要求于2020年02月14日提交中国专利局、申请号为202010093991.8、申请名称为“触控显示面板与触控显示装置”以及于2020年04月16日提交中国专利局、申请号为202010302236.6、申请名称为“触控显示面板与触控显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及触控显示领域,尤其涉及一种触控显示面板与触控显示装置。
背景技术
目前可用于交互的电子装置中通常包括有触控显示面板,其中,触控显示面板中的触控结构包括多个感测电极,对于电容式触控结构,触控感测电极的面积会影响到对应的电容值。尤其对于自容式的触控结构,连接于每个触控感测电极与触控走线交叠时,会导致触控走线上的电容负载随着与触控感测电极的重叠而增加,从而导致与触控走线连接的触控控制模组(触控感测集成电路)的驱动负载增加。
发明内容
为解决前述技术问题,本申请实施例提供一种电容负载较轻的触控显示面板与触控显示装置,
第一方面,在本申请一种实现方式中,触控显示面板包括依次层叠设置的阵列衬底、显示介质层以及封装衬底,所述显示介质层在阵列衬底与所述封装衬底配合下出射光线显示图像。其中,所述封装层包括相对设置的第一表面与第二表面,其中,所述第一表面邻近所述显示介质层设置,所述第二表面远离所述显示介质层。所述第二表面依次设置有相互绝缘的第一金属层与第二金属层。所述第二金属层包括多个沿着第一方向与第二方向矩阵排列的导电图案,所述多个导电图案采用自容方式在感测到触摸操作时输出第一感测信号,所述第一方向与所述第二方向垂直,每一个所述导电图案包括无重叠的第一区域与第二区域,所述第一区域包括多条沿着所述第一方向延伸的第一子金属导线,所述第二区域包括至少一个不同于所述第一方向延伸的第二子金属线,所述第二子金属线与所述第一区域内的多条所述第一子金属导线电性连接。所述第一金属层对应所述第一区域设置多条沿着所述第二方向延伸的第二金属导线,所述第二金属导线在所述第二方向上未与所述第一子金属导线重叠,任意一条所述第二金属导线电性连接于一个所述导电图案且用于将所述第一感测信号传输至触控控制模组,所述触控控制模组用于依据所述第一感测信号识别所述触摸操作的位置。
用于传输导电图案感测到的触摸操作时输出第一感测信号的第二金属导线仅设置于导电图案的第一区域内,并且与第一区域在其延伸方向上除了与第一子金属导线交叉点外并不与第一子金属导线重叠,从而有效减小了第二金属导线与导电图案重叠的面积,进而减小了第二子金属导线上的电容负载,使得与第二金属导线连接以接收第一感测信号的触控 控制模组的驱动负载得到缓解。
在本申请一种实现方式中,所述阵列衬底包括多个矩阵排列的像素区域,所述显示介质层对应每一个所述像素区域构成一个像素单元,相邻的所述像素单元之间包括遮光区域,所述像素单元用于出射光线以显示图像,在所述第一区域,所述多条第一子金属导线与多条所述第二金属导线交叉时构成多个封闭的金属网格,每一个所述金属网格正对于所述像素单元且与所述遮光区域重合,且所述金属网格的形状与所述像素单元的形状相同。
金属网格与像素单元正对且与这个区域重合时,能够防止金属网格与像素区域内出射光线的区域重合而影响光线亮度,进而有效保证图像显示的亮度。
在本申请一种实现方式中,所述第一子金属导线为沿着所述第一方向延伸的方波形状的金属导线,所述第二金属导线为沿着所述第二方向延伸的直线形状的金属导线,相邻两条所述第一子金属导线与相邻的两条所述第二金属导线交叉构成一个所述金属网格。
在本申请一种实现方式中,所述第一子金属导线为沿着所述第一方向延伸的多个连续的梯形形状的金属导线,所述第二导线为沿着所述第二方向延伸的直线形状的金属导线,相邻两条所述第一子金属导线与相邻两条所述第二金属导线交叉构成一个所述金属网格。
在本申请一种实现方式中,所述第一子金属导线为沿着所述第一方向延伸的三角波形状的金属导线,所述第二导线为沿着所述第二方向延伸的多个连续的梯形形状的金属导线,相邻两条所述第一子金属导线与相邻两条所述第二金属导线交叉构成一个所述金属网格。
在第一区域内,仅在第一方向设置有第一子金属导线,因此,第二子金属导线仅在第二方向上延伸,二者交叉构成的金属网格则能够准确识别触控操作的位置的同时,还能够有效降低第一子金属导线与第二金属导线的重叠面积。
在本申请一种实现方式中,所述第一子金属导线与所述第二导线为沿着相同延伸的三角波形状的金属导线,相邻所述第一子金属导线与所述第二金属导线交叉构成一个沿着所述延伸方向连续排列的所述金属网格,一个所述金属网格正对于一个所述像素单元。
在本申请一种实现方式中,所述第一子金属导线为沿着所述第一方向延伸的三角波形状的金属导线,所述第二导线为沿着所述第二方向延伸的三角波形状的金属导线;或者所述第一子金属导线为沿着所述第二方向延伸的三角波形状的金属导线,所述第二导线为沿着所述第二方向延伸的三角波形状的金属导线。其中,相邻两条所述第一子金属导线与相邻两条所述第二金属导线交叉构成多个所述金属网格,一个所述金属网格正对于一个所述像素单元;相邻两条所述第一子金属导线与相邻两条所述第二金属导线交叉构成四个所述金属网格,且所述四个所述金属网格排列为矩形。
在第一区域内,第一子金属导线与第二金属导线沿着同一方向延伸,二者交叉构成的金属网格能够有效减小二者的重叠面积,还能够降低金属导线的制程复杂度。
在本申请一种实现方式中,一个所述金属网格正对于一个所述像素单元。所述第二金属层在除所述第一子金属导线之外且对应所述第二金属导线的位置处,所述第二金属层设置有浮地的第一子金属导线相同材料的金属导线。或者所述第二金属层在除所述第一子金属导线之外且对应所述第二金属导线的位置处,所述第二金属层未设置与第一子金属导线相同材料的金属导线。第一子金属导线与所述第二金属导线交叉位置处的第一子件导线悬空,那么就使得第一子金属导线与所述第二金属导线交叉位置处并未构成导电电容,更进 一步减小了第二金属导线上的电容负载。
在本申请一种实现方式中,所述第一子金属导线为沿着所述第一方向延伸的构成多个封闭的网格的金属导线,所述第二导线为沿着所述第二方向延伸的三角波形状的金属导线,所述第二导线在所述第二方向未与所述金属网格重叠,一个所述金属网格正对于四个所述像素单元。
在本申请一种实现方式中,所述第一子金属导线为沿着所述第一方向延伸的构成多个封闭的金属网格的金属导线,所述第二导线为沿着所述第二方向延伸的构成多个封闭的金属网格的金属导线,所述第二导线包括的金属网格与所述第一子金属导线包含金属网格重叠,其中,一个所述金属网格正对于四个所述像素单元。
第一子金属导线与第二金属导线采用封闭网格的形状,能够进一步减小金属导线上的电容,也即是更进一步减小了第二金属导线上的电容负载。
在本申请一种实现方式中,所述第一子金属导线为沿着所述第一方向延伸的构成多个封闭的金属网格的金属导线,在所述第一方向上任意相邻两个金属网格之间包括一个金属连接点,所述第二导线为沿着所述第二方向延伸的构成多个封闭的金属网格的金属导线,所述第二导线上的所述金属网格包围一个所述金属导线连接点,任意相邻两条所述第二导线间隔至少一个所述金属连接点。
在本申请一种实现方式中,所述第一子金属导线为沿着所述第一方向延伸的构成多个封闭的金属网格的金属导线,在所述第一方向上任意相邻两个金属网格之间包括一个金属连接点。所述第二导线为沿着所述第二方向延伸的构成多个封闭的金属网格的金属导线,所述述第二导线上的所述金属网格包围一个所述金属导线连接点,任意相邻两条所述第二导线包围相邻的两个所述金属连接点。
前述实现方式中,第二金属导线未在其延伸方向与构成金属网格的网格线重合,有效减小作为信号传输线与导电图案中金属导线的重合的面积,同时,第二金属导线也采用金属网格的形式,进一步减小了针对传输的第一感测信号产生的阻抗,提高第一触控感测信号传输的准确性,进而降低触控驱动模组的驱动负载。
在本申请一种实现方式中,在所述第一区域内,所述第一子金属导线中未与所述第二导线具有交叉的位置处,所述第一子金属导线中的所述金属网格包围一个所述像素单元设置。由此,第一子金属导线执行触控感测的有效面积有效增加,同时输出第一感测信号的数量得到有效提高,保证针对触摸操作识别的准确性。
在本申请一种实现方式中,在所述金属网格内对应所述第二金属导线位置,所述第二金属层设置有浮地的与所述第一子金属导线材料相同的金属导线,或者所述第二金属层未设置所述第一子金属导线。相邻像素单元之间所述遮光区域,所述第二表面上未设置有所述第一子金属导线与所述第二金属导线的位置,所述第二金属层设置有浮地的且与所述第一子金属导线相同材料的金属导线,或者述第二金属层未所述第一子金属导线。
在封闭的金属网格内对应像素单元出射光线的位置设置浮地的第一导线或者不设置金属导线,能够有效降低第一子金属导线与第二金属导线的重叠面积,还能够进一步降低金属导线之间的信号干扰,保证信号传输的准确性。
在本申请一种实现方式中,所述多条第一子金属导线与多条所述第二金属导线交叉的 位置处,所述第二金属层与所述第一金属层之间设置介电材料,防止第二金属导线传输的第一感测信号受到干扰。
在本申请一种实现方式中,所述多条第一子金属导线与多条所述第二金属导线交叉的位置处,所述第二金属层未设置有第一子金属导线的金属导线材料;或者所述多条第一子金属导线与多条所述第二金属导线交叉的位置处,所述第二金属层中设置有悬空的所述第一子金属导线。第一子金属导线与所述第二金属导线交叉位置处的第一子件导线悬空,那么就使得第一子金属导线与所述第二金属导线交叉位置处并未构成导电电容,更进一步减小了第二金属导线上的电容负载。
在本申请一种实现方式中,在所述第二区域内,包括多条第二子金属线,所述多条第二子金属线构成多个所述金属网格。在第二金属导线之外的区域,导电图案包括多个金属网格,金属网格能够有效降低导电图案的阻抗,进一步降低触控控制模组的负载。
在本申请一种实现方式中,所述第一金属层与所述第二金属层包括夹设有第一介电层;在所述第一区域内,所述第一介电层包括第一过孔,所述第二金属导线通过所述第一过孔电性连接于所述导电图案。第二金属导线通过第一过孔准确相应的导电图案电性连接,从而将导电图案输出的第一感测信号准确传输至触控控制模组。
在本申请一种实现方式中,相邻所述像素单元之间包括遮光区域,所述第一子金属导线、第二子金属导线以及所述第二金属导线均正对于所述遮光区域。金属导线与像素单元正对且与这个区域重合时,能够防止金属导线遮挡像素区域内出射光线的区域重合而影响光线亮度,进而有效保证图像显示的亮度。
在本申请一种实现方式中,所述显示介质层为有机电致发光材料,第一金属层与第二金属层包含的导电图案、第二金属走线构成的触控感测用触控结构直接设置在有机电致发光材料封装层的表面,从而有效降低了触控显示面板的厚度。
在本申请一种实现方式中,所述触控显示面板还包括保护层,所述保护层覆盖所述封装衬底第二表面设置的第一金属层与所述第二金属层。
第二方面,在本申请一种实现方式中,触控显示装置包括前述的触控显示面板与所述触控控制模组,所述触控控制模组用于依据接收到的所述感测信号识别所述触控显示面板接受到的所述触摸操作的位置。所述触控控制模组位于触控显示面板设置导电图案所在区域之外的区域,或者设置于所述触控显示面板之外的区域。
附图说明
图1为本申请一实施例中触控显示面板的平面结构示意图;
图2为如图1所示触控显示面板沿着II-II线的剖面结构示意图;
图3为如图1所示阵列衬底像素区域的平面结构示意图;
图4为如图1所示设置于封装衬底的触控感测层的平面结构示意图;
图5为如图4所示相邻两个导电图案中其中一个导电图案中分别沿着V-V线的侧面结构示意图;
图6为如图4所示邻两个导电图案中其中另外一个导电图案中分别沿着V-V线的侧面结构示意图;
图7为如图4所示任意一个导电图案中的平面结构示意图;
图8为本申请第一实施例中如图7所示任意一个导电图案中第一区域内沿着xx线的放大结构示意图;
图9为如图7所示任意一个导电图案中第二区域内沿着XI线的放大结构示意图;
图10为如图8所示导电图案中沿着B-B的剖面结构示意图;
图11为本申请第二实施例中如图8所示导电图案中沿着B-B的剖面结构示意图;
图12为本申请第三实施例中如图7所示任意一个导电图案中沿着xx线的放大结构示意图;
图13为图12所示导电图案中第一子金属导线与第二金属导线的分解结构示意图;
图14为本申请第四实施例中如图7所示任意一个导电图案中沿着xx线的放大结构示意图;
图15为图14所示导电图案中第一子金属导线与第二金属导线的分解结构示意图;
图16为本申请第五实施例中如图7所示任意一个导电图案中沿着xx线的放大结构示意图;
图17为图16所示导电图案中第一子金属导线与第二金属导线的分解结构示意图;
图18为本申请第六实施例中如图7所示任意一个导电图案中沿着xx线的放大结构示意图;
图19为图18所示导电图案中第一子金属导线与第二金属导线的分解结构示意图;
图20为本申请第七实施例中如图7所示任意一个导电图案中沿着xx线的放大结构示意图;
图21为图20所示导电图案中第一子金属导线与第二金属导线的分解结构示意图;
图22为图20所示导电网格与对应的像素单元的分解后的平面结构示意图;
图23为图20所示导电网格与像素单元重叠后的平面结构示意图;
图24为如图20所示导电图案中III-III处的剖面结构示意图;
图25为本申请另一实施例中如图20所示导电图案中III-III处的剖面结构示意图;
图26为如图20所示导电图案中IV-IV处的剖面结构示意图;
图27为本申请其他实施例中如图20所示导电图案中IV-IV处的剖面结构示意图;
图28为本申请第八实施例中如图7所示任意一个导电图案中沿着xx线的放大结构示意图;
图29为图28所示导电图案中第一子金属导线与第二金属导线的分解结构示意图。
图30为本申请第九实施例中如图7所示任意一个导电图案中沿着xx线的放大结构示意图;
图31为图30所示导电图案中第一子金属导线与第二金属导线的分解结构示意图;
图32为本申请第十实施例中如图7所示任意一个导电图案中沿着xx线的放大结构示意图;
图33为图32所示导电图案中第一子金属导线与第二金属导线的分解结构示意图。
具体实施方式
下面以具体的实施例对本申请进行说明。
请参阅图1,其为本申请一实施例中触控显示面板10的平面结构示意图。
触控显示面板10包括显示区AA(active area)与非显示区NA(non-active area),显示区AA对应触控显示面板10的画面显示区域设置,用于执行图像显示。非显示区NA用于设置显示驱动控制模组、触控驱动控制模组等功能模组。触控显示面板10可应用于触控显示装置中,例如手机、平板电脑等能够执行显示与触摸功能的电子装置。
请参阅图2,其为如图1所示触控显示面板10沿着II-II线的剖面结构示意图。
如图2所示,触控显示面板10用于实现图像显示与触控操作的检测。本实施例中,触控显示面板10包括沿着图中自下而上依次层叠设置的阵列衬底11、显示介质层13以及封装衬底15,其中,显示介质层13夹设于阵列很低11与封装衬底15之间。
本实施例中,显示介质层13为有机发光显示材料(OrganicLight-Emitting Diode,OLED),阵列衬底11上设置有矩阵排列的像素区域,每个像素区域内设置有用于驱动显示介质层13发光的驱动电路,封装衬底15用于封装显示介质层13。驱动电路用于驱动显示介质层的材料出射光线进而执行图像显示。
本实施例中,封装衬底15包括两个相对第一表面151与第二表面152,其中第一表面邻近显示介质层13,第二表面152远离显示介质层13,在第二表面152依次设置触控感测层17与保护层19,触控感测层17用于识别施加在触控显示面板10的触摸位置,保护层19用于保护触控感层17以及封装层衬底15等层结构。
本实施例中,显示介质层13为有机发光显示材料时,触控显示面板10可以制作为柔性、弯折的面板结构,从而能够应用于柔性触控显示装置中,例如可折叠的手机或者平板电脑中。
请参阅图3,其为如图1所示阵列衬底11像素区域的平面结构示意图。
如图3所示,对应显示区AA,阵列衬底11邻近显示介质层13的表面设置有多个沿着第一方向X与第二方向Y呈矩阵排列的像素区域(未标示),其中,每一个像素区域内均设置有驱动电路,驱动电路包括的薄膜晶体管、电容可以通过在阵列衬底的表面通过半导体材料沉积、蚀刻的方式形成。
本实施例中,像素区域的形状可以依据实际需求进行设定,例如正方形、菱形、五边形、六边形等,当然前述像素区域的形状仅为举例说明,并不以此为限。
每一个像素区域内的驱动电路能够驱动正对该像素区域的显示介质层13包含的发光材料出射光线。本实施例中,像素区域中的驱动电路与对应的显示介质层13配合构成一个像素单元Pixel。
其中,相邻像素单元Pixel对应的显示介质层13所包含的发光材料可以不相同以出射不同颜色的光线,较佳的,相邻像素单元Pixel之间包括遮光区域(BM),用于防止相邻像素单元Pixel之间出射的光线相互干扰。
对应非显示区NA,设置有用于驱动每个像素区域内驱动电路的显示驱动电路以及触控控制模组TC(图4)。显示驱动电路包括用于提供图像数据信号的数据驱动电路,执行行 扫描的扫描驱动电路,以及控制数据驱动电路与扫描驱动电路工作时序的时序控制器(Tcon)。
请参阅图4,其为如图1所示设置于封装衬底15的触控感测层17的平面结构示意图。
如图4所示,触控感测层17包括多个沿着第一方向X与第二方向Y呈矩阵排列的导电图案P1,其中,每一个导电图案P1通过沿着第二方向Y延伸的信号传输线L1与触控控制模组TC电性连接。
本实施例中,导电图案P1用于感测来自于用户的触摸而产生的第一感测信号,并且通过信号传输线L1传输至触控控制模组TC,触控控制模组TC依据所述第一感测信号识别所述触摸操作的位置。本实施例中,触控感测层17通过导电图案实现自容式的触控感测。本实施例中,导电图案为金属导线构成的网格形状。
更为具体地,请参阅图5-图6,其分别如图4所示触控显示面板相邻2个导电图案中分别沿着V-V线的侧面结构示意图,其中,图5为如图4所示相邻两个导电图案中其中一个导电图案沿着V-V线的侧面结构示意图,图6为如图4所示相邻两个导电图案中另外一个导电图案沿着V-V线的侧面结构示意图。
如图5与图6所示,触控感测层17包括依次层叠设置的第一金属层171、绝缘介电层173以及第二金属层172,其中,第一金属层171包含如图4所示的信号传输线L1,第二金属层172则包含矩阵排列的多个导电图案P1。
由于第一金属层171与第二金属层172属于不同的层结构,如图5所示,在信号传输线L1与导电图案电性连接的位置,绝缘介电层173设置有通孔H1,第一金属层171与第二金属层172通过第一通孔H1中的导电材料电性连接。如图6所示,在信号传输线L1未与导电图案P1电性连接的位置,绝缘介电层173将第一金属层171与第二金属层172隔离,防止二者电性连接。
本实施例中,第一导电图案P1与信号传输线L1可以采用图案化的光罩通过蚀刻或者印刷的方式形成。
请参阅图7,其为如图4所示任意一个导电图案P1中的平面结构示意图。
如图7所示,每一个导电图案P所在的区域内包括无重叠的第一区域A1与第二区域A2。第一区域A1中对应设置导电图案P1中的部分金属导线以及信号传输线L1,第二区域A2则仅包含导电图案的金属导线而并不包含信号传输线L1,也即是说,信号传输线L1仅设置于第一区域A1中,而并不会位于第二区域A2中,也不会与第二区域A2产生重叠。
请参阅图8,其为本申请第一实施例中如图7所示任意一个导电图案中第一区域A1内沿着xx线的放大结构示意图。
如图8所示,其中,在第一区域A1中,第二金属层172中设置有多条沿着第一方向X延伸的第一子金属导线C11,且多条第一金属导线C11相互间隔预设距离设置,也即是多条第一子金属导线C11沿着第二方向Y并列设置,且相邻两条第一子金属导线C11之间 间隔预设的距离。
在第二区域A2中,设置有至少一个不同于第一方向X延伸的第二子金属导线C12,第二子金属线C12与第一区域A1内的多条第一子金属导线C11电性连接,从而使得第一区域A1中离散设置的第一子金属导线C11与第二区域A2中的金属导线电性连接并导通,进一步使得第一导电图案P1中的全部金属导线电性连接且均处于相同的电位。
第一金属层171对应第一区域A1设置有多条沿着第二方向Y延伸的第二金属导线C2,第二金属导线C2在其延伸方向(第二方向Y)上未与所述第一子金属导线C11连续的重叠,也即是说,第二金属导线C2除了与第一子金属导线C11在二者的延伸方向有交叉点之外,其余位置并不会有重叠。任意一条第二金属导线C2电性连接于一个导电图案,本实施例中,第二金属导线C2即作为如图7所述的信号传输线L1,用于于其电性连接的导电图案提供的第一感测信号传输至触控控制模组TC。
同时,在第一金属层171中,多条沿着第二方向Y延伸设置的第二金属导线C2,且当第一金属层171与第二金属层172层叠设置后,也即是,第二金属层172上多条第一子金属导线C11沿着垂直于第一金属层171的方向投影于第一金属层171时,多条第一子金属导线C11与多条所述第二金属导线C12交叉时构成多个封闭的金属网格。
本申请一实施例中,每一个所述金属网格正对于一个像素单元Pixel,且所述金属网格的形状与所述像素单元的形状相同,以使得金属导线位于遮光层上,防止金属导线遮挡像素单元Pixel出光区域,保证像素单Pixel出射光线的透光率与光线强度以及图像亮度。
在第一区域A1内,所述第一介电层包括第一过孔H1,第二金属导线C2通过所述第一过孔H1电性连接于所述导电图案P1,也即是作为信号传输线L1的第二金属导线C2通过第一过孔H1与导电图案P1电性连接。
请参阅图9,其为如图7所示任意一个导电图案中第二区域A2内沿着XI线的放大结构示意图。
如图9所示,在所述第二区域A2内,除了多条沿着第一方向X延伸设置的第一子金属导线C11,还包括多条压着第二方向Y延伸设置的第二子金属导线C12,其中,多条第二子金属导线C11与多条第二子金属导线C12交错设置,从而构成多个金属网格的图案。多条第二子金属导线C11与多条第二子金属导线C12同层设置,且交错的位置电性连接。
本实施例中,第二区域A2中构成金属网格的图案形状可以分别由如图9中(a)所示的沿着第一方向X延伸的连续的梯形的第一子金属导线C11,以及沿着第二方向Y延伸的三角波形状的第二金属导线C2交叉构成的六边形形状;或者,由如图9中(b)所示的由沿着第一方向X延伸的连续的梯形的第一子金属导线C11,以及沿着第二方向Y延伸的直线形状的第二金属导线C2交叉构成的不规则形状;或者,由如图9中(c)所示的由沿着第一方向X延伸的连续的三角波形状的第一子金属导线C11,以及沿着第二方向Y延伸的连续的梯形形状的第二金属导线C2交叉构成的六边形形状。当然,第二区域A2内金属网格的形状并不以前述列举的形状为限,仅需保证金属网格的形状与像素区域的形状相同且正对重合即可。
第二区域A2中构成金属网格图案可以为通过第二金属层172的材料进行图案化获得。
本实施例中,第一子金属导线C11、第二子金属导线C12以及第二金属导线均正对于所述遮光区域BM设置,从而有效防止金属导线与像素区域叠合时影响像素单元Pixel的显示亮度。
其中,第二金属层172在除第一子金属导线C11所在位置之外且对应第二金属导线C2的位置处,可以设置与第一子金属导线C11材料相同的浮地的金属导线,当然,第二金属层172对应第二金属导线C2的位置处,也可以不设置第一子金属导线C11。
具体地,请参阅图10,其为如图8所示导电图案中沿着B-B的剖面结构示意图。如图10所示,本实施例中,第二金属层172在除第一子金属导线C11所在位置之外且对应第二金属导线C2的位置处,设置与第一子金属导线C11材料相同的浮地(floating)的金属导线。本实施例中,浮地为金属导线该部分金属导线与触控显示面板的接地端无电性连接。通过设置浮地的金属导线,从而使得该部分的金属导线不会受到接地端电性能的影响,从而进一步减小第一子金属导线C11之间以及第一子金属导线C11与第二金属导线C2之间的信号干扰,以便于作为信号传输线L1的第二金属导线C2准确将导电图案感测的第一感测信号传输至触控感侧模组TC。
请参阅图11,其为本申请第二实施例中如图8所示导电图案中沿着B-B的剖面结构示意图,如图11所示,本实施例中,第二金属层172在除第一子金属导线C11所在位置之外且对应第二金属导线C2的位置处,第二金属层172中未设置有第一子金属导线C11,从而防止作为信号传输线L1的第二金属导线C2与导电图案电性连接,而误将导电图案感测的电信号传输至触控感侧模组TC,保证触摸感测信号的准确性。
请参阅图12-图13,图12为本申请第三实施例中如图7所示任意一个导电图案中沿着xx线的放大结构示意图,图13为图12所示导电图案中第一子金属导线C11与第二金属导线C2的分解结构示意图。
如图12与图13所示,第一子金属导线C11为沿着第一方向X延伸的方波形状的金属导线,第二金属导线C2为沿着第二方向Y延伸的直线形状的金属导线。其中,相邻的两条第一子金属导线C11与相邻的两条第二金属导线C2交叉构成一个方形的金属网格,且一个金属网格的形状、大小与像素单元Pixel的形状大小基本相同。本实施例中,较佳地,金属网格均正对于所述遮光区域BM(图3)并环绕像素单元Pixel设置,从而有效防止金属导线与像素区域叠合时影响像素单元Pixel的显示亮度。
请参阅图14,其为本申请第四实施例中如图7所示任意一个导电图案中沿着xx线的放大结构示意图,图15为图14所示导电图案中第一子金属导线C11与第二金属导线C2的分解结构示意图。
如图14-图15所示,第一子金属导线C11为沿着第一方向X延伸的多个连续的梯形形状的金属导线,第二金属导线C2为沿着第二方向Y延伸的直线形状的金属导线,两条第一子金属导线C11与相邻的两条第二金属导线C2交叉构成一个不规则多边形形状的金 属网格,且一个金属网格的形状、大小与像素单元Pixel的形状大小基本相同。本实施例中,金属网格均正对于所述遮光区域BM并环绕像素单元Pixel设置,从而有效防止金属导线与像素区域叠合时影响像素单元Pixel的显示亮度。
请参阅图16-图17,图16为本申请第五实施例中如图7所示任意一个导电图案中沿着xx线的放大结构示意图,图17为图16所示导电图案中第一子金属导线C11与第二金属导线C2的分解结构示意图。
如图16-图17所示,第一子金属导线C11为沿着第一方向X延伸的三角波形状的金属导线,第二金属导线C2为沿着第二方向Y延伸的多个连续的梯形形状的金属导线。其中,两条第一子金属导线C11与相邻的两条第二金属导线C2交叉构成一个六边形的金属网格,且一个金属网格的形状、大小与像素单元Pixel的形状大小基本相同。本实施例中,金属网格均正对于所述遮光区域BM并环绕像素单元Pixel设置,从而有效防止金属导线与像素区域叠合时影响像素单元Pixel的显示亮度。
在本申请其他实施例中,相较于图16-图17所示,第一子金属导线C11的延伸方向与第二金属导线C2的延伸方向可以相互交换,即图16所示的第一子金属导线C11为沿着第二方向Y延伸的三角波形状的金属导线,第二金属导线C2为沿着第一方向X延伸的多个连续的梯形形状的金属导线,
请参阅图18-图19,图18为本申请第六实施例中如图7所示任意一个导电图案中沿着xx线的放大结构示意图,图19为图18所示导电图案中第一子金属导线C11与第二金属导线C2的分解结构示意图。
如图18-图19所示,第一子金属导线C11与第二金属导线C2为沿着相同方向延伸的连续的Z字型的金属导线。本实施例中,第一子金属导线C11为沿着第二方向Y延伸的三角波形状的金属导线,第二金属导线C2为沿着第二方向Y延伸的三角波形状的金属导线。在本申请其他实施例中,第一子金属导线C11为沿着第一方向X延伸的三角波形状的金属导线,第二金属导线C2为沿着第一方向X延伸的三角波形状的金属导线。
本实施例中,两条相邻第一子金属导线C11之间设置一条第二金属导线C2,相邻的两条第二金属导线C2之间设置一条第一子金属导线C11,由此,一条第一子金属导线C11与一条第二金属导线C2相互交叉构成沿着第二方向Y依次排列的四边形金属网格,同时,两条相邻第一子金属导线C11与相邻的两条第二金属导线C2交叉构成一个包含有四个金属网格的四边形。本实施例中,所述金属网格为沿着第二方向Y排列的菱形,四个金属网格排列呈菱形形状,其中,一个金属网格的形状、大小与像素单元Pixel的形状大小相同。
本实施例中,金属网格均正对于所述遮光区域BM设置,从而有效防止金属导线与像素区域叠合时影响像素单元Pixel的显示亮度。
请参阅图20-图21,图20为本申请第七实施例中如图7所示任意一个导电图案中沿着xx线的放大结构示意图,图21为图20所示导电图案中第一子金属导线C11与第二金属导线C2的分解结构示意图。
如图20-图21所示,第一子金属导线C11为沿着第一方向X延伸的构成多个封闭网 格的金属导线,第二金属导线C2为沿着第二方向Y延伸的三角波形状的金属导线。
本实施例中,封闭网格为四边形,所述四边形的对角线平行于第一方向X,或者四边形的对角线垂直于第一方向X,也即是,第一子金属导线C11沿着第一方向X延伸的构成多个封闭网格为沿着第一方向X连续排列的菱形。
其中,第二金属导线C2未在其延伸方向与构成金属网格的网格线重合,从而有效减小作为信号传输线L1与导电图案中金属导线的重合的面积,从而有效降低触控驱动模组TC的驱动负载。
本实施例中,一个金属网格对应四个像素单元Pixel,在本申请其他实施例中,一个金属网格对应的像素单元的数量并不以此为限,例如一个金属网格对应八个像素单元Pixel。
具体地,一个金属网格对应四个像素单元Pixel的情形可参阅图22-图23,图22为图20所示导电网格与对应的像素单元的分解后的平面结构示意图,图23为图20所示导电网格与像素单元重叠后的平面结构示意图。
如图22所示,每一个金属网格对应四个像素单元Pixel,且仅构成金属网格的金属导线与像素单元Pixel的边缘区域重合,也即是说,金属网格均正对于所述遮光区域BM设置,从而有效防止金属导线与像素区域对应的像素单元Pixel叠合时影响像素单元Pixel的显示亮度。
当然,在本申请其他实施例中,对于图22或者图23所示的金属网格图案,第二金属导线C2还可以沿着第二方向Y与第一子金属导线C11中的金属网格的边缘正对、重合,由此,能够进一步使得第一子金属导线C11与第二金属导线C2均正对于像素单元Pixel之间的在遮光区域BM并包围像素单元Pixel设置,防止金属网格遮挡像素单元Pixel内出光区域,更进一步提高图像显示面板10的透光率显示图像的亮度。
请参阅图24,其为如图20所示导电图案中III-III处的剖面结构示意图,如图24所示,
在每一个金属网格内部的区域对应设置有第二金属导线C2的位置,第二金属层172中有浮地、且与第一子金属导线C11材料相同的悬空的金属导线。本实施例中,浮地为金属导线该部分金属导线与触控显示面板的接地端无电性连接。通过设置浮地的金属导线,从而使得该部分的金属导线不会受到接地端电性能的影响,从而进一步减小第一子金属导线C11之间以及第一子金属导线C11与第二金属导线C2之间的信号干扰,以便于作为信号传输线L1的第二金属导线C2准确将导电图案感测的第一感测信号传输至触控感侧模组TC。
请参阅图25,其为本申请另一实施例中如图20所示导电图案中III-III处的剖面结构示意图,如图25所示,在每一个金属网格内部的区域对应设置有第二金属导线C2的位置,第二金属层172未设置有第一子金属导线C11,以降低制程的复杂程度,进一步提高触控显示面板的透光率与图像显示的亮度。
请参阅图26,其为如图20所示导电图案中IV-IV处的剖面结构示意图,如图24所示,
在对应的相邻像素单元Pixel邻接的遮光区域BM,所述第二表面152未设置有第一金属层171与所述第二金属导线C2的位置,所述第二金属层172设置有浮地的、且与所述第一子金属导线C11相同材料的金属导线,以减小第一子金属导线C11之间以及第一子金属导线C11与第二金属导线C2之间的信号干扰C。
请参阅图27,其为本申请另一实施例中如图20所示导电图案中IV-IV处的剖面结构示意图,如图27所示,在对应的相邻像素单元Pixel邻接的遮光区域BM,所述第二表面152未设置有第一金属层171与所述第二金属导线C2的位置,所述第二金属层172未设置有第一子金属导线C11,第一金属层171未设置第二金属导线C2,以降低制程的复杂程度。
请参阅图28与图29,图28为本申请第八实施例中如图7所示任意一个导电图案中沿着xx线的放大结构示意图,图29为图28所示导电图案中第一子金属导线C11与第二金属导线C2的分解结构示意图。
如图28-图29所示,第一子金属导线C11为沿着第一方向X延伸并构成多个封闭网格的金属导线,第二金属导线C2为沿着第二方向Y延伸并构成多个封闭网格的金属导线。
本实施例中,封闭网格为四边形,所述四边形的对角线平行于第一方向X,或者四边形的对角线垂直于第一方向X,也即是,第一子金属导线C11沿着第一方向X延伸的构成多个封闭网格为沿着第一方向X连续排列的菱形。
其中,第二金属导线C2在其延伸方向与构成金属网格的网格线重合,从而有效减小作为信号传输线L1与导电图案中金属导线的重合的面积,从而有效降低触控驱动模组TC的驱动负载。
请参阅图30-图31,图30为本申请第九实施例中如图7所示任意一个导电图案中沿着xx线的放大结构示意图,图31为图30所示导电图案中第一子金属导线C11与第二金属导线C2的分解结构示意图。
如图29-图30所示,第一子金属导线C11为沿着第一方向X延伸的构成多个封闭网格的金属导线,第二金属导线C2为沿着第二方向Y延伸的三角波形状的金属导线。
本实施例中,封闭网格为四边形,所述四边形的对角线平行于第一方向X,或者四边形的对角线垂直于第一方向X,也即是,第一子金属导线C11沿着第一方向X延伸的构成多个封闭网格为沿着第一方向X连续排列的菱形。
本实施例中,第一金属网格C11中,在第一方向X上任意相邻两个金属网格之间包括一个金属连接点CP。
第二导线C2为沿着第二方向Y延伸的构成多个封闭的金属网格的金属导线,第二导线C2与第一子件导线C11叠合时,除了由于延伸方向不同二具有的交叉点之外,二者并不重合。其中,第二导线C2上的每一个金属网格包围一个金属导线连接点CP,任意相邻两条所述第二导线C2间隔至少一个所述金属连接点CP。
其中,第二金属导线C2未在其延伸方向与构成金属网格的网格线重合,从而有效减小作为信号传输线L1与导电图案中金属导线的重合的面积,从而有效降低触控驱动模组TC 的驱动负载。
本实施例中,第一子金属导线C11中的金属网格与一个像素单元Pixel的形状大小基本相同,且金属网格均正对于所述遮光区域BM并呈包围像素单元Pixel设置,从而有效防止金属导线与像素区域叠合时影响像素单元Pixel的显示亮度。
在本实施例中,第一子金属导线C11中除了与第二导线C2具有交叉的位置处,第一子金属导线C11中的金属网格与一个像素单元Pixel的形状大小基本相同,且金属网格均正对于所述遮光区域BM并呈包围像素单元Pixel设置。即,由于任意相邻两条所述第二导线C2间隔至少一个所述金属连接点CP,那么任意相邻两条所述第二导线C2之间,第一子金属大搜西安C11中的部分金属网格未与第二金属导线C2中的金属网格具有交叉,则对于未与第二金属导线C2中的金属网格具有交叉的第一子金属导线C11上的金属网格而言,其与一个像素单元Pixel的形状大小基本相同,且金属网格均呈包围一个像素单元Pixel设置,从而有效增加第一子金属导线C11执行触控感测的有效面积,同时提高了输出第一感测信号的数量,保证针对触摸操作识别的准确性。
请参阅图32-图33,其中,图32为本申请第十实施例中如图7所示任意一个导电图案中沿着xx线的放大结构示意图,图33为图32所示导电图案中第一子金属导线C11与第二金属导线C2的分解结构示意图。
如图32-图33所示,第一子金属导线C11为沿着第一方向X延伸的构成多个封闭网格的金属导线,第二金属导线C2为沿着第二方向Y延伸的三角波形状的金属导线。
本实施例中,封闭网格为四边形,所述四边形的对角线平行于第一方向X,或者四边形的对角线垂直于第一方向X,也即是,第一子金属导线C11沿着第一方向X延伸的构成多个封闭网格为沿着第一方向X连续排列的菱形。
本实施例中,在第一方向X上任意相邻两个金属网格之间包括一个金属连接点CP。
第二导线C2为沿着第二方向Y延伸的构成多个封闭的金属网格的金属导线,第二导线C2与第一子件导线C11叠合时,除了由于延伸方向不同二具有的交叉点之外,二者并不重合。其中,第二导线C2上的每一个金属网格包围一个金属导线连接点CP,任意相邻两条第二导线C2所包围的金属连接点CP在第一方向X上相邻。
其中,第二金属导线C2未在其延伸方向与构成金属网格的网格线重合,从而有效减小作为信号传输线L1与导电图案中金属导线的重合的面积,从而有效降低触控驱动模组TC的驱动负载。
本实施例中,第一子金属导线C11中的金属网格与一个像素单元Pixel的形状大小基本相同,一个金属网格正对于一个像素单元Pixel。一个金属网格正对于一个像素单元Pixel,且金属网格均正对于所述遮光区域BM并呈包围像素单元Pixel设置,从而有效防止金属导线与像素区域叠合时影响像素单元Pixel的显示亮度。
在每一个金属网格内部的区域对应设置有第二金属导线C2的位置,第二金属层172中有浮地、且与第一子金属导线C11材料相同的悬空的金属导线。
例如,对于如图30所示沿着VI-VI的位置以及图32所示的VIII-VIII的剖面可参阅图24,本实施例中,浮地为金属导线该部分金属导线与触控显示面板的接地端无电性连接。 通过设置浮地的金属导线,从而使得该部分的金属导线不会受到接地端电性能的影响,从而进一步减小第一子金属导线C11之间以及第一子金属导线C11与第二金属导线C2之间的信号干扰,以便于作为信号传输线L1的第二金属导线C2准确将导电图案感测的第一感测信号传输至触控感侧模组TC。
在本申请另一实施例中,在每一个金属网格内部的区域对应设置有第二金属导线C2的位置,第二金属层172未设置有第一子金属导线C11,例如,对于如图30所示沿着VI-VI以及图32所述的VIII-VIII的位置的剖面可参阅图25。由于在该位置未设置第一子金属导线C11,能够有效降低制程的复杂程度,进一步提高触控显示面板的透光率与图像显示的亮度。
在每一个金属网格内部的区域对应未设置有第二金属导线C2的位置,第二金属层172中有浮地、且与第一子金属导线C11材料相同的金属导线。所述第二表面152未设置有第一金属层171与所述第二金属导线C2的位置,所述第二金属层172设置有浮地的、且与所述第一子金属导线C11相同材料的金属导线。例如,对于如图30所示沿着VII-VII以及图32所示的IX-IX的位置的剖面可参阅图26。
通过设置浮地的金属导线,从而使得该部分的金属导线不会受到接地端电性能的影响,从而进一步减小第一子金属导线C11之间以及第一子金属导线C11与第二金属导线C2之间的信号干扰,以便于作为信号传输线L1的第二金属导线C2准确将导电图案感测的第一感测信号传输至触控感侧模组TC。
在每一个金属网格内部的区域对应设置有第二金属导线C2的位置,第二金属层172未设置有第一子金属导线C11。例如,对于如图30所示沿着VII-VII以及图32所示的IX-IX的位置的剖面可参阅图27,由于未设置第一子金属导线C11以及第二金属导线C2,能够有效降低制程的复杂程度,进一步提高触控显示面板的透光率与图像显示的亮度。
以上所述是本申请的优选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (22)

  1. 触控显示面板,包括依次层叠设置的阵列衬底、显示介质层以及封装衬底,所述显示介质层在阵列衬底与所述封装衬底配合下出射光线显示图像;
    其中,所述封装层包括相对设置的第一表面与第二表面,其中,所述第一表面邻近所述显示介质层设置,所述第二表面远离所述显示介质层,
    所述第二表面依次设置有相互绝缘的第一金属层与第二金属层:
    所述第二金属层包括多个沿着第一方向与第二方向矩阵排列的导电图案,所述多个导电图案采用自容方式在感测到触摸操作时输出第一感测信号,所述第一方向与所述第二方向垂直,每一个所述导电图案包括无重叠的第一区域与第二区域,所述第一区域包括多条沿着所述第一方向延伸的第一子金属导线,所述第二区域包括至少一个不同于所述第一方向延伸的第二子金属线,所述第二子金属线与所述第一区域内的多条所述第一子金属导线电性连接;
    所述第一金属层对应所述第一区域设置多条沿着所述第二方向延伸的第二金属导线,所述第二金属导线在所述第二方向上未与所述第一子金属导线重叠,任意一条所述第二金属导线电性连接于一个所述导电图案且用于将所述第一感测信号传输至触控控制模组,所述触控控制模组用于依据所述第一感测信号识别所述触摸操作的位置。
  2. 根据权利要求1所述的触控显示面板,其特征在于,所述阵列衬底包括多个矩阵排列的像素区域,所述显示介质层对应每一个所述像素区域构成一个像素单元,相邻的所述像素单元之间包括遮光区域,所述像素单元用于出射光线以显示图像,
    在所述第一区域,所述多条第一子金属导线与多条所述第二金属导线交叉时构成多个封闭的金属网格,每一个所述金属网格正对于所述像素单元且与所述遮光区域重合,且所述金属网格的形状与所述像素单元的形状相同。
  3. 根据权利要求2所述的触控显示面板,其特征在于,所述第一子金属导线为沿着所述第一方向延伸的方波形状的金属导线,所述第二金属导线为沿着所述第二方向延伸的直线形状的金属导线,相邻两条所述第一子金属导线与相邻的两条所述第二金属导线交叉构成一个所述金属网格。
  4. 根据权利要求2所述的触控显示面板,其特征在于,所述第一子金属导线为沿着所述第一方向延伸的多个连续的梯形形状的金属导线,所述第二导线为沿着所述第二方向延伸的直线形状的金属导线,相邻两条所述第一子金属导线与相邻两条所述第二金属导线交叉构成一个所述金属网格。
  5. 根据权利要求2所述的触控显示面板,其特征在于,所述第一子金属导线为沿着所述第一方向延伸的三角波形状的金属导线,所述第二导线为沿着所述第二方向延伸的多个连续的梯形形状的金属导线,相邻两条所述第一子金属导线与相邻两条所述第二金属导线 交叉构成一个所述金属网格。
  6. 根据权利要求2所述的触控显示面板,其特征在于,所述第一子金属导线与所述第二导线为沿着相同延伸的三角波形状的金属导线,相邻所述第一子金属导线与所述第二金属导线交叉构成一个沿着所述延伸方向连续排列的所述金属网格,一个所述金属网格正对于一个所述像素单元。
  7. 根据权利要求6所述的触控显示面板,其特征在于,所述第一子金属导线为沿着所述第一方向延伸的三角波形状的金属导线,所述第二导线为沿着所述第二方向延伸的三角波形状的金属导线;或者
    所述第一子金属导线为沿着所述第二方向延伸的三角波形状的金属导线,所述第二导线为沿着所述第二方向延伸的三角波形状的金属导线;
    相邻两条所述第一子金属导线与相邻两条所述第二金属导线交叉构成多个所述金属网格,一个所述金属网格正对于一个所述像素单元;相邻两条所述第一子金属导线与相邻两条所述第二金属导线交叉构成四个所述金属网格,且所述四个所述金属网格排列为矩形。
  8. 根据权利要求2-7任意一项所述的触控显示面板,其特征在于,一个所述金属网格正对于一个所述像素单元;
    所述第二金属层在除所述第一子金属导线之外且对应所述第二金属导线的位置处,所述第二金属层设置有浮地的第一子金属导线相同材料的金属导线;或者,
    所述第二金属层在除所述第一子金属导线之外且对应所述第二金属导线的位置处,所述第二金属层未设置与第一子金属导线相同材料的金属导线。
  9. 根据权利要求2所述的触控显示面板,其特征在于,所述第一子金属导线为沿着所述第一方向延伸的构成多个封闭的网格的金属导线,所述第二导线为沿着所述第二方向延伸的三角波形状的金属导线,所述第二导线在所述第二方向未与所述金属网格重叠,一个所述金属网格正对于四个所述像素单元。
  10. 根据权利要求2所述的触控显示面板,其特征在于,所述第一子金属导线为沿着所述第一方向延伸的构成多个封闭的金属网格的金属导线,所述第二导线为沿着所述第二方向延伸的构成多个封闭的金属网格的金属导线,所述第二导线包括的金属网格与所述第一子金属导线包含金属网格重叠,其中,一个所述金属网格正对于四个所述像素单元。
  11. 根据权利要求2所述的触控显示面板,其特征在于,
    所述第一子金属导线为沿着所述第一方向延伸的构成多个封闭的金属网格的金属导线,在所述第一方向上任意相邻两个金属网格之间包括一个金属连接点,
    所述第二导线为沿着所述第二方向延伸的构成多个封闭的金属网格的金属导线,所述第二导线上的所述金属网格包围一个所述金属导线连接点,任意相邻两条所述第二导线间 隔至少一个所述金属连接点。
  12. 根据权利要求2所述的触控显示面板,其特征在于,
    所述第一子金属导线为沿着所述第一方向延伸的构成多个封闭的金属网格的金属导线,在所述第一方向上任意相邻两个金属网格之间包括一个金属连接点,
    所述第二导线为沿着所述第二方向延伸的构成多个封闭的金属网格的金属导线,所述述第二导线上的所述金属网格包围一个所述金属导线连接点,任意相邻两条所述第二导线包围相邻的两个所述金属连接点。
  13. 根据权利要求11或者12所述的触控显示面板,其特征在于,在在所述第一区域内,所述第一子金属导线中未与所述第二导线具有交叉的位置处,所述第一子金属导线中的所述金属网格包围一个所述像素单元设置。
  14. 根据权利要求9-13任意一项所述的触控显示面板,其特征在于,
    在所述金属网格内对应所述第二金属导线位置,所述第二金属层设置有浮地的与所述第一子金属导线材料相同的金属导线,或者所述第二金属层未设置所述第一子金属导线;
    相邻像素单元之间所述遮光区域,所述第二表面上未设置有所述第一子金属导线与所述第二金属导线的位置,所述第二金属层设置有浮地的且与所述第一子金属导线相同材料的金属导线,或者述第二金属层未所述第一子金属导线。
  15. 根据权利要求1-14任意一项所述的触控显示面板,其特征在于,所述多条第一子金属导线与多条所述第二金属导线交叉的位置处,所述第二金属层与所述第一金属层之间设置介电材料。
  16. 根据权利要求1-14任意一项所述的触控显示面板,其特征在于,所述多条第一子金属导线与多条所述第二金属导线交叉的位置处,所述第二金属层未设置有第一子金属导线的金属导线材料;或者
    所述多条第一子金属导线与多条所述第二金属导线交叉的位置处,所述第二金属层中设置有悬空的所述第一子金属导线。
  17. 根据权利要求1-16任意一项所述的触控显示面板,其特征在于,在所述第二区域内,包括多条第二子金属线,所述多条第二子金属线构成多个所述金属网格。
  18. 根据权利要求17所述的触控显示面板,其特征在于,所述第一金属层与所述第二金属层包括夹设有第一介电层;
    在所述第一区域内,所述第一介电层包括第一过孔,所述第二金属导线通过所述第一过孔电性连接于所述导电图案。
  19. 根据权利要求18所述的触控显示面板,其特征在于,相邻所述像素单元之间包括遮光区域,所述第一子金属导线、第二子金属导线以及所述第二金属导线均正对于所述遮光区域。
  20. 根据权利要求19所述的触控显示面板,其特征在于,所述显示介质层为有机电致发光材料。
  21. 根据权利要求1-20任意一项所述的触控显示面板,其特征在于,所述触控显示面板还包括保护层,所述保护层覆盖所述封装衬底第二表面设置的第一金属层与所述第二金属层。
  22. 一种触控显示装置,其特征在于,包括如权利要求1-21任意一项所述的触控显示面板与所述触控控制模组,所述触控控制模组用于依据接收到的所述感测信号识别所述触控显示面板接受到的所述触摸操作的位置。
PCT/CN2021/074861 2020-02-14 2021-02-02 触控显示面板与触控显示装置 WO2021159997A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/799,572 US11861090B2 (en) 2020-02-14 2021-02-02 Touch display panel and touch display apparatus
EP21753799.2A EP4075247A4 (en) 2020-02-14 2021-02-02 Touch-control display panel and touch-control display apparatus
JP2022543412A JP7480850B2 (ja) 2020-02-14 2021-02-02 タッチ表示パネルおよびタッチ表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010093991.8 2020-02-14
CN202010093991 2020-02-14
CN202010302236.6A CN113268152B (zh) 2020-02-14 2020-04-16 触控显示面板与触控显示装置
CN202010302236.6 2020-04-16

Publications (1)

Publication Number Publication Date
WO2021159997A1 true WO2021159997A1 (zh) 2021-08-19

Family

ID=77227596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074861 WO2021159997A1 (zh) 2020-02-14 2021-02-02 触控显示面板与触控显示装置

Country Status (5)

Country Link
US (1) US11861090B2 (zh)
EP (1) EP4075247A4 (zh)
JP (1) JP7480850B2 (zh)
CN (1) CN113268152B (zh)
WO (1) WO2021159997A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113904093A (zh) * 2021-09-30 2022-01-07 联想(北京)有限公司 显示面板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656965A (zh) * 2013-11-15 2015-05-27 胜华科技股份有限公司 触摸板与触摸屏
CN104699314A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 一种触控显示面板和显示装置
CN106325590A (zh) * 2015-06-30 2017-01-11 辛纳普蒂克斯公司 用于基于传感器的输入装置的规则通孔图案

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011111366A (ru) 2011-03-28 2012-10-10 Святослав Иванович Арсенич (RU) Матричный индикатор (варианты) и способ его изготовления
TWM454587U (zh) 2012-09-14 2013-06-01 Inv Element Inc 具使用金屬線連接觸控感應層電極之內嵌式觸控顯示面板系統
KR102193781B1 (ko) * 2013-10-29 2020-12-23 삼성디스플레이 주식회사 터치 스크린 패널 일체형 표시장치
EP3153956B1 (en) * 2014-05-30 2020-05-06 BOE Technology Group Co., Ltd. Capacitive touch structure, embedded touchscreen, display device and scanning method therefor
CN104020911A (zh) 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
KR102500994B1 (ko) 2014-10-17 2023-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 터치 패널
US11043543B2 (en) * 2015-07-07 2021-06-22 Semiconductor Energy Laboratory Co., Ltd. Touch sensor and touch panel
US10013101B2 (en) * 2016-01-08 2018-07-03 Atmel Corporation Touch sensor and associated control method for decreased capacitive loads
CN106293208B (zh) * 2016-07-29 2023-07-28 厦门天马微电子有限公司 集成触控显示面板和显示装置
KR101990343B1 (ko) 2017-03-06 2019-06-18 후지필름 가부시키가이샤 터치 패널, 터치 패널용 도전성 시트 및 터치 센서
WO2018168682A1 (ja) * 2017-03-17 2018-09-20 シャープ株式会社 位置入力機能付き表示装置
KR102464455B1 (ko) * 2017-06-21 2022-11-08 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
JP2019082536A (ja) * 2017-10-30 2019-05-30 シャープ株式会社 位置入力機能付き表示装置
KR102442801B1 (ko) 2017-12-08 2022-09-13 엘지디스플레이 주식회사 터치 스크린 패널 및 이를 포함하는 표시 장치
KR102493681B1 (ko) 2018-03-30 2023-01-31 엘지디스플레이 주식회사 터치 디스플레이 장치 및 터치 센싱 방법
US10452201B1 (en) 2018-03-30 2019-10-22 Sharp Kabushiki Kaisha Touch sensor for display with shield
CN110764636B (zh) * 2018-07-25 2021-09-21 京东方科技集团股份有限公司 一种触控模组、触控显示基板和触控显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656965A (zh) * 2013-11-15 2015-05-27 胜华科技股份有限公司 触摸板与触摸屏
CN104699314A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 一种触控显示面板和显示装置
CN106325590A (zh) * 2015-06-30 2017-01-11 辛纳普蒂克斯公司 用于基于传感器的输入装置的规则通孔图案

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4075247A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113904093A (zh) * 2021-09-30 2022-01-07 联想(北京)有限公司 显示面板
CN113904093B (zh) * 2021-09-30 2023-03-21 联想(北京)有限公司 显示面板

Also Published As

Publication number Publication date
EP4075247A1 (en) 2022-10-19
CN113268152B (zh) 2023-06-02
JP2023512921A (ja) 2023-03-30
JP7480850B2 (ja) 2024-05-10
US11861090B2 (en) 2024-01-02
EP4075247A4 (en) 2023-06-28
US20230068518A1 (en) 2023-03-02
CN113268152A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
US10474270B2 (en) Flat panel display with integrated touch screen panel
KR102570978B1 (ko) 터치 센서를 가지는 유기 발광 표시 장치
CN110349976B (zh) 阵列基板及其制备方法、显示面板和显示装置
EP3805895B1 (en) Display apparatus
EP3598283B1 (en) Touch display panel, touch display device, and driving method thereof
EP3839713A1 (en) Display device
US20230061413A1 (en) Display panel, methods for driving and manufacturing the same, and display apparatus
CN110737353B (zh) 具有触摸传感器的显示装置
KR102004820B1 (ko) 터치 패널 및 터치 패널 일체형 유기 발광 표시 장치
WO2021168646A1 (zh) 显示基板及显示装置
KR20210001535A (ko) 표시 장치
US20210357065A1 (en) Touch sensing device, touch display panel and touch display panel motherboard
KR20200108148A (ko) 표시 장치
KR20160077961A (ko) 터치 패널 일체형 유기발광 표시장치
KR20220012455A (ko) 표시 장치
CN114556277B (zh) 触控基板及显示面板
CN215494957U (zh) 触控面板及显示触控装置
WO2021159997A1 (zh) 触控显示面板与触控显示装置
KR102309172B1 (ko) 터치 패널 및 터치 패널 일체형 유기 발광 표시 장치
US11374066B2 (en) Touch panel and display device with shielding layer grounded through touch layer
WO2022179190A1 (zh) 触控面板及其制备方法、显示触控装置
KR102510942B1 (ko) 유기발광 표시장치
RU2804410C1 (ru) Сенсорная панель отображения и сенсорное устройство отображения
WO2022161246A1 (zh) 触控显示面板与触控显示装置
WO2024044894A1 (zh) 触控显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753799

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543412

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021753799

Country of ref document: EP

Effective date: 20220715

NENP Non-entry into the national phase

Ref country code: DE