WO2022161246A1 - 触控显示面板与触控显示装置 - Google Patents

触控显示面板与触控显示装置 Download PDF

Info

Publication number
WO2022161246A1
WO2022161246A1 PCT/CN2022/072984 CN2022072984W WO2022161246A1 WO 2022161246 A1 WO2022161246 A1 WO 2022161246A1 CN 2022072984 W CN2022072984 W CN 2022072984W WO 2022161246 A1 WO2022161246 A1 WO 2022161246A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
sub
conductive pattern
touch
display panel
Prior art date
Application number
PCT/CN2022/072984
Other languages
English (en)
French (fr)
Inventor
陈泽升
郭大维
张君勇
田正
邓凯锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22745121.8A priority Critical patent/EP4261664A4/en
Publication of WO2022161246A1 publication Critical patent/WO2022161246A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present application relates to the field of touch display, and in particular, to a touch display panel and a touch display device.
  • electronic devices that can be used for interaction usually include a touch display panel, wherein the touch structure in the touch display panel includes a plurality of sensing electrodes.
  • the area of the sensing electrodes for touch will affect the corresponding capacitance value.
  • it has more sensing electrodes. Due to the large number of touch electrodes, the area of the touch electrodes facing the display electrodes for image display is larger. The electrodes and the display electrodes generate a large capacitive load, thereby increasing the driving load of the touch control module (touch sensing integrated circuit) connected to the touch traces.
  • embodiments of the present application provide a touch display panel and a touch display device with light capacitive load.
  • a touch display panel in an implementation manner of the present application, includes an array substrate, a display medium layer, and a packaging substrate that are stacked in sequence, and the display medium layer is located between the array substrate and the packaging substrate. Displaying an image in cooperation with the outgoing light; wherein, the packaging substrate includes a first surface and a second surface disposed opposite to each other, the first surface is disposed adjacent to the display medium layer, and the second surface is far away from the display medium layer .
  • the second surface includes a first metal layer and a second metal layer which are stacked in sequence and insulated from each other.
  • the first metal layer includes a plurality of first conductive patterns extending along a first direction, a plurality of the first conductive patterns are arranged at a predetermined distance along a second direction, the first direction and the second direction The direction is vertical; the second metal layer includes a plurality of second conductive patterns extending along the second direction, and the plurality of second conductive patterns are arranged along the first direction at a predetermined distance.
  • the first conductive pattern partially overlaps with the second conductive pattern and forms a sensing capacitance, and outputs a first sensing signal when a touch operation is sensed.
  • the first metal layer and the second metal layer are only provided with conductive patterns in some areas, and the first conductive patterns and the second conductive patterns in the conductive patterns are respectively used as electrodes for touch control, and the area covering the display substrate is relatively small.
  • the projected overlapping area of the plurality of conductive patterns on the array substrate provided with the display electrodes is relatively small, so the capacitive load and impedance generated by each of the first conductive patterns and each of the second conductive patterns and the display electrodes are relatively small , effectively reducing the capacitive load of the touch sensing layer.
  • the first conductive pattern includes a plurality of first sub-metal wires, and the plurality of first sub-metal wires constitute a plurality of metal meshes.
  • the shape of the metal grid is a diamond, a rectangle or a square.
  • the first conductive pattern includes a plurality of first sub-metal wires, and the plurality of first sub-metal wires are arranged in parallel with each other.
  • the first sub-metal wire is a triangular-wave-shaped metal wire extending along the first direction.
  • the first sub-metal wires are two parallel triangular-wave shaped metal wires extending along the first direction.
  • the first sub-metal wire is a square-wave-shaped metal wire extending along the first direction.
  • the second conductive pattern includes a plurality of second sub-metal wires, and the plurality of second sub-metal wires constitute a plurality of metal meshes.
  • the shape of the metal grid is a diamond, a rectangle or a square.
  • the second conductive pattern includes a plurality of second sub-metal wires, and the plurality of second sub-metal wires are arranged in parallel with each other.
  • the second sub-metal wire is a triangular-wave-shaped metal wire extending along the first direction.
  • the second sub-metal wires are two parallel triangular wave-shaped metal wires extending along the first direction.
  • the second sub-metal wire is a square-wave shaped metal wire extending along the first direction
  • the first sub-metal wire is a straight line extending along the second direction metal wire.
  • the adjacent two first sub-metal wires and the adjacent two second sub-metal wires intersect to form a square metal grid, and the shape and size of a metal grid are basically the same as the shape and size of the pixel unit Pixel .
  • the first sub-metal wire has at least one opening.
  • the openings provided at the positions where the first sub-metal wires and the second sub-metal wires overlap can effectively reduce the inductive capacitance of the first sub-metal wires and the second sub-metal wires in the vertical stacking direction, thereby further reducing the touch control mode. the driving load of the group.
  • the first metal layer further includes a plurality of vacant metal grids, the vacant metal grids are arranged between the adjacent first conductive patterns at intervals, and the vacant metal grids The grid and the first conductive pattern are insulated from each other; or the second metal layer further includes a plurality of vacant metal grids, the vacant metal grids are arranged at intervals between the adjacent second conductive patterns, and The dummy metal grid and the second conductive pattern are insulated from each other.
  • the metal mesh has a first size, and at the opening, the first sub-metal wire is spaced from the second sub-metal wire by a second size.
  • the second dimension is smaller than the first dimension.
  • the array substrate includes a plurality of pixel regions arranged in a matrix
  • the display medium layer forms a pixel unit corresponding to each of the pixel regions
  • a light-shielding region is included between the adjacent pixel units
  • the pixel unit is used to emit light to display an image
  • each of the metal grids is facing one of the pixel units and coincides with the light-shielding area
  • the shape of the metal grid is the same as the shape of the pixel unit same.
  • a metal grid is directly opposite to and surrounds a pixel unit, which can prevent the area where the metal wire shields the emitted light in the pixel area from overlapping and affecting the brightness of the light, thereby effectively ensuring the brightness of the image display.
  • the touch display device includes the aforementioned touch display panel and the touch control module, and the touch control module is used for receiving the sensing The signal identifies the position of the touch operation received by the touch display panel.
  • the touch control module is located in an area outside the touch display panel where the conductive patterns are arranged, or is arranged in an area outside the touch display panel.
  • FIG. 1 is a schematic plan view of a touch display panel according to a first embodiment of the present application
  • FIG. 2 is a schematic cross-sectional structure diagram of the touch display panel shown in FIG. 1 along the line II-II;
  • FIG. 3 is a schematic plan view of the pixel region of the array substrate as shown in FIG. 1;
  • FIG. 4 is a schematic plan view of a touch sensing layer disposed on a package substrate as shown in FIG. 2;
  • FIG. 5 is an enlarged schematic structural diagram of the overlapping region of the first conductive pattern and the second conductive pattern as shown in FIG. 4;
  • FIG. 6 is a schematic diagram of the exploded structure of the first conductive pattern and the second conductive pattern as shown in FIG. 5;
  • FIG. 7 is a schematic diagram of a cross-sectional structure along B-B in the conductive pattern shown in FIG. 5;
  • FIG. 8 is an enlarged schematic structural diagram of the overlapping area of the first conductive pattern and the second conductive pattern shown in FIG. 4 in the second embodiment of the present application;
  • FIG. 9 is a schematic diagram of an exploded structure of the first sub-metal wire and the second sub-metal wire shown in FIG. 8;
  • FIG. 10 is an enlarged schematic structural diagram of the overlapping area of the first conductive pattern and the second conductive pattern shown in FIG. 4 in the third embodiment of the present application;
  • FIG. 11 is a schematic diagram of an exploded structure of the first sub-metal wire and the second sub-metal wire shown in FIG. 10;
  • FIG. 12 is an enlarged schematic structural diagram of the overlapping area of the first conductive pattern and the second conductive pattern shown in FIG. 4 in the fourth embodiment of the present application;
  • FIG. 13 is a schematic diagram of an exploded structure of the first sub-metal wire and the second sub-metal wire shown in FIG. 12;
  • FIG. 14 is an enlarged schematic structural diagram of the overlapping area of the first conductive pattern and the second conductive pattern shown in FIG. 4 in the fifth embodiment of the present application;
  • FIG. 15 is a schematic diagram of an exploded structure of the first sub-metal wire and the second sub-metal wire shown in FIG. 12;
  • FIG. 16 is an enlarged schematic structural diagram of the overlapping area of the first conductive pattern and the second conductive pattern shown in FIG. 4 in the sixth embodiment of the present application;
  • FIG. 17 is a cross-sectional view of the touch display panel shown in FIG. 16 in a second position
  • FIG. 18 is a cross-sectional view of the touch display panel shown in FIG. 16 at a third position
  • FIG. 19 is an enlarged schematic structural diagram of the overlapping area of the first conductive pattern and the second conductive pattern shown in FIG. 4 in the seventh embodiment of the present application;
  • FIG. 20 is a schematic diagram of an exploded structure of the first sub-metal wire and the second sub-metal wire shown in FIG. 19;
  • FIG. 21 is a schematic structural diagram of the first conductive pattern shown in FIG. 16 in the eighth embodiment of the present application.
  • FIG. 22 is a schematic diagram illustrating the positions of the first conductive pattern and the second conductive conduction pattern and the distribution of the outputted first sensing signal.
  • FIG. 1 is a schematic plan view of the touch display panel 10 according to the first embodiment of the present application.
  • the touch display panel 10 includes a display area AA (active area) and a non-display area NA (non-active area).
  • the display area AA is set corresponding to the screen display area of the touch display panel 10 for performing image display.
  • the non-display area NA is used for setting functional modules such as a display driving control module and a touch driving control module.
  • the touch display panel 10 can be applied to touch display devices, such as mobile phones, tablet computers and other electronic devices capable of performing display and touch functions.
  • FIG. 2 is a schematic cross-sectional structure diagram of the touch display panel 10 along the line II-II shown in FIG. 1 .
  • the touch display panel 10 is used to realize image display and detection of touch operations.
  • the touch display panel 10 includes an array substrate 11 , a display medium layer 13 and a packaging substrate 15 that are stacked in sequence from bottom to top in the figure, wherein the display medium layer 13 is sandwiched between the array substrate Between 11 and the packaging substrate 15, the array substrate 11, the display medium layer 13 and the packaging substrate 15 constitute a display substrate.
  • the display medium layer 13 is an organic light-emitting display material (Organic Light-Emitting Diode, OLED), the array substrate 11 is provided with pixel regions arranged in a matrix, and each pixel region is provided with a drive display medium layer 13
  • the driving circuit and driving electrodes for emitting light, and the packaging substrate 15 is used for packaging the display medium layer 13 .
  • the driving circuit cooperates with the driving electrodes to drive the material of the display medium layer to emit light to perform image display.
  • the packaging substrate 15 is made of silicon nitride (SINx) or organic coating material.
  • the packaging substrate 15 includes two opposite first surfaces 151 and second surfaces 152 , wherein the first surface is adjacent to the display medium layer 13 , and the second surface 152 is far away from the display medium layer 13 , which are arranged in sequence on the second surface 152
  • the touch sensing layer 17 and the protective layer 19 are used to protect the touch sensing layer 17 and the packaging substrate 15 and other layer structures .
  • the manner in which the touch sensing layer 17 is disposed on the surface of the package substrate 15 is a touch on encapsulation (Touch On Encapsulation, TOE) manner.
  • the display panel is an Active-Matrix Organic Light-Emitting Diode (AMOLED) display panel.
  • AMOLED Active-Matrix Organic Light-Emitting Diode
  • the touch display panel 10 can be made into a flexible and bent panel structure, so that it can be applied to a flexible touch display device, such as a foldable mobile phone or a tablet computer.
  • FIG. 3 is a schematic plan view of the pixel region of the array substrate 11 shown in FIG. 1 .
  • the surface of the array substrate 11 adjacent to the display medium layer 13 is provided with a plurality of pixel areas (not marked) arranged in a matrix along the first direction X and the second direction Y, wherein, Each pixel area is provided with a driving circuit, and the thin film transistors and capacitors included in the driving circuit can be formed by deposition and etching of semiconductor materials on the surface of the array substrate.
  • the shape of the pixel area can be set according to actual requirements, such as square, rhombus, pentagon, hexagon, etc.
  • shape of the aforementioned pixel area is only an example, and is not limited thereto.
  • the driving circuit in each pixel area can drive the luminescent material contained in the display medium layer 13 facing the pixel area to emit light.
  • the driving circuit in the pixel area cooperates with the corresponding display medium layer 13 to form a pixel unit Pixel.
  • the luminescent materials contained in the display medium layer 13 corresponding to the adjacent pixel units Pixel may be different to emit light of different colors.
  • a light shielding area (BM) is included between the adjacent pixel units Pixel to prevent phase Light emitted from adjacent pixel units Pixel interferes with each other.
  • the display driving circuit includes a data driving circuit for providing image data signals, a scan driving circuit for performing row scanning, and a timing controller (Tcon) for controlling the operation timing of the data driving circuit and the scan driving circuit.
  • Tcon timing controller
  • FIG. 4 is a schematic plan view of the touch sensing layer 17 disposed on the package substrate 15 as shown in FIG. 2 .
  • the touch sensing layer 17 includes a plurality of first conductive patterns P1 extending along the first direction X and arranged in parallel with a predetermined distance in the second direction Y, and a plurality of first conductive patterns P1 along the second direction Y.
  • the second conductive patterns P2 extend in the first direction X and are arranged side by side at a predetermined distance in the first direction X.
  • the plurality of first conductive patterns P1 and the plurality of second conductive patterns P2 are respectively located in different layer structures and insulated from each other, and are electrically connected to the touch control module TC through signal transmission lines L.
  • the first conductive pattern P1 and the second conductive pattern P2 partially overlap in the extending direction to form a mutual capacitance sensing module for sensing the first sensing signal generated by the user's touch , and transmitted to the touch control module TC through the signal transmission line L.
  • the touch control module TC identifies the position of the touch operation according to the first sensing signal.
  • the plurality of first conductive patterns P1 can be used as touch driving electrodes TX, and the plurality of second conductive patterns P2 can be used as touch sensing electrodes RX. That is, the plurality of first conductive patterns P1 are used to receive touch driving signals provided by the touch control module TC, and the plurality of first conductive patterns P1 generate inductive capacitances through the touch driving signals and the plurality of second conductive patterns P2. , the plurality of second conductive patterns P2 can correspondingly output corresponding electrical signals as touch sensing signals.
  • the touch sensing signal output by the second conductive pattern P2 also changes correspondingly. By analyzing the specific position where the sensing signal changes The specific location of the touch operation can be identified.
  • the first conductive pattern P1 and/or the second conductive pattern P2 are in the shape of a mesh formed by metal wires.
  • the first conductive pattern P1 and the second conductive pattern P2 are uniform strips, and each includes a plurality of regular metal meshes, and the shape of the metal meshes can be square, rectangular, diamond or other types of polygons shape.
  • FIG. 5 is an enlarged schematic view of the overlapping area A1 of the first conductive pattern P1 and the second conductive pattern P2 shown in FIG. 4
  • FIG. 6 is the first conductive pattern shown in FIG. 5 .
  • the first conductive pattern P1 includes a plurality of metal meshes Me1 arranged continuously and square
  • the second conductive pattern P2 also includes a plurality of metal meshes arranged continuously and square.
  • the metal meshes Me1 in the first conductive pattern P1 and the second conductive pattern P2 are square, and the side length of the square metal mesh is the first dimension D1.
  • the overlapping area A1 includes a first metal sub-conductor C11 extending in the first direction X, and a second metal sub-conducting C12 extending along the second direction Y, wherein a plurality of second metal sub-conductors C11 It overlaps with the plurality of second metal sub-wires C12 alternately in the extending direction thereof.
  • the first sub-metal wire C11 is a square metal grid
  • the second sub-metal wire C12 is a square metal grid.
  • the metal grids are all set facing the light-shielding area BM, and each metal grid corresponds to surround a pixel unit Pixel, that is, the projection of the metal grid on the array substrate includes a pixel unit Pxiel, thereby effectively preventing metal grids
  • the wire overlaps with the pixel area it affects the display brightness of the pixel unit Pixel.
  • FIG. 7 is a schematic cross-sectional structure diagram of the conductive pattern shown in FIG. 5 along the line B-B.
  • the array substrate 11 includes display electrodes 111, and the display electrodes 111 are used for receiving The external display signal drives the display medium layer 13 to perform image display accordingly.
  • the display electrode 111 includes a cathode and an anode.
  • the touch sensing layer 17 includes a first metal layer 171 , a first insulating layer 173 , and a second metal layer 172 which are stacked in sequence.
  • the first metal layer 171 includes a plurality of first conductive patterns P1 extending along the first direction X as shown in FIG. 4
  • the second metal layer 172 includes a plurality of first conductive patterns P1 extending along the second direction Y as shown in FIG. 4 .
  • the first metal sub-conductors C11 in the first conductive pattern P1 and the second metal sub-conductors C12 in the second conductive pattern P2 are disposed directly opposite to each other, that is, the second metal sub-conductors C12 in the first metal
  • the projection on the layer 171 at least partially overlaps with the first sub-metal wire C11.
  • FIG. 8 is an enlarged schematic structural diagram of the overlapping area A of the first conductive pattern and the second conductive pattern shown in FIG. 4 in the second embodiment of the present application
  • FIG. 9 is the first conductive pattern shown in FIG. 8
  • the first sub-metal wire C11 is a metal wire of a diamond-shaped metal mesh extending along the first direction X
  • the second sub-metal wire C12 is a diamond-shaped metal mesh extending along the second direction Y grid metal wires.
  • the shape and size of a metal grid are basically the same as the shape and size of the pixel unit Pixel.
  • the metal grids are disposed facing and surrounding the pixel unit Pixel, so as to effectively prevent the display brightness of the pixel unit Pixel from being affected when the metal wire overlaps with the pixel area.
  • FIG. 10 is an enlarged schematic structural diagram of the overlapping area A1 of the first conductive pattern and the second conductive pattern shown in FIG. 4 in the third embodiment of the present application.
  • FIG. 11 is the first conductive pattern shown in FIG. 10 .
  • the first sub-metal wire C11 is a triangular-wave-shaped metal wire extending along the first direction X
  • the second sub-metal wire C12 is a triangular-wave-shaped metal wire extending along the second direction Y .
  • FIG. 12 is an enlarged schematic structural diagram of the overlapping area A1 of the first conductive pattern and the second conductive pattern shown in FIG. 4 in the fourth embodiment of the present application
  • FIG. 13 is the first conductive pattern shown in FIG.
  • the first sub-metal wire C11 is two parallel and parallel triangular-wave-shaped metal wires extending along the first direction X
  • the second sub-metal wire C12 is along the second direction Y Extend and parallel two triangular wave-shaped metal wires.
  • FIG. 14 is an enlarged schematic structural diagram of the overlapping area A1 of the first conductive pattern and the second conductive pattern shown in FIG. 4 in the fifth embodiment of the present application
  • FIG. 15 is the first conductive pattern shown in FIG.
  • the first sub-metal wire C11 is a triangular-wave-shaped metal wire extending along the first direction X
  • the second sub-metal wire C12 is a diamond-shaped metal mesh extending along the second direction Y metal wire.
  • the shape and size of a metal grid are basically the same as the shape and size of the pixel unit Pixel.
  • the metal grids are disposed facing and surrounding the pixel unit Pixel, so as to effectively prevent the display brightness of the pixel unit Pixel from being affected when the metal wire overlaps with the pixel area.
  • FIG. 16 is an enlarged schematic structural diagram of the overlapping area A1 of the first conductive pattern and the second conductive pattern shown in FIG. 4 in the sixth embodiment of the present application.
  • the first sub-metal wire C11 is a triangular-wave-shaped metal wire extending along the first direction X
  • the second sub-metal wire C12 is a diamond-shaped metal mesh metal wire extending along the second direction Y.
  • the shape and size of a metal grid are basically the same as the shape and size of the pixel unit Pixel.
  • the metal grids are disposed facing and surrounding the pixel unit Pixel, so as to effectively prevent the display brightness of the pixel unit Pixel from being affected when the metal wire overlaps with the pixel area.
  • the first metal sub-conductors C11 in the first conductive pattern P1 and the second metal sub-conductors C12 in the second conductive pattern P2 are disposed directly opposite to each other, that is, Referring to FIG. 6 , the projection of the second metal sub-conductor C12 on the first metal layer 171 at least partially overlaps with the first metal sub-conductor C11 .
  • FIG. 17 is a cross-sectional view of the touch display panel shown in FIG. 16 at the second position A12 .
  • the first sub-metal wire C11 in the first conductive pattern P1 and the first sub-metal wire C11 in the second conductive pattern P2 are disposed facing each other, and the first metal sub-conductors C11 have a first opening portion H1.
  • the interval between the metal wire C11 and the second sub-metal wire C12 is respectively a second dimension D2, wherein the second dimension D2 is smaller than the first dimension D1.
  • FIG. 18 is a cross-sectional view of the touch display panel at the third position A13 as shown in FIG. 16 .
  • the first metal sub-conductors C11 in the first conductive pattern P1 and the second metal sub-conductors C12 in the second conductive pattern P2 are disposed facing each other.
  • a metal sub-conductor C11 has a second opening portion H2. In the second opening portion H2, the first metal sub-conductor C11 and the second metal sub-conductor C12 are spaced apart by a second dimension D2, wherein the second dimension D2 is smaller than the first dimension D1.
  • the first sub-metal wire C11 and the second sub-metal wire C11 In the overlapping area A1, in order to ensure the conductivity of the first sub-metal wire C11 along the first direction, except for the necessary continuous portion, for example, at the first position A11, the first sub-metal wire C11 and the second sub-metal wire C11 When C12 overlaps, the first sub-metal wire C11 is continuous, and at the second position A12 and the third position A13 other than the first position A11, the first sub-metal wire C11 and the second sub-metal wire C12 have overlapping positions Openings are provided to reduce the induced capacitance of the first sub-metal wire C11 and the second sub-metal wire C12 in the vertical stacking direction, thereby reducing the driving load of the touch control module TC.
  • FIG. 19 is an enlarged schematic structural diagram of the overlapping area A1 of the first conductive pattern and the second conductive pattern shown in FIG. 4 in the seventh embodiment of the present application
  • FIG. 20 is the conductive pattern shown in FIG. 19 .
  • the first sub-metal wire C11 is a square-wave-shaped metal wire extending along the first direction X
  • the second sub-metal wire C12 is a linear-shaped metal wire extending along the second direction Y wire.
  • the adjacent two first sub-metal wires C11 and the adjacent two second sub-metal wires C12 intersect to form a square metal grid, and the shape and size of a metal grid are the same as the shape and size of the pixel unit Pixel basically the same.
  • the metal grids are arranged facing the light-shielding area BM ( FIG. 3 ) and surrounding the pixel unit Pixel, thereby effectively preventing the overlapping of the metal wire and the pixel area from affecting the display brightness of the pixel unit Pixel.
  • FIG. 21 is a schematic structural diagram of the first conductive pattern shown in FIG. 16 in the eighth embodiment of the present application.
  • the first metal layer 171 includes a first conductive pattern P1 composed of a dummy metal mesh Mu and a first sub-metal wire C11 .
  • the first sub-metal wire C11 is not connected to the dummy metal mesh Mu, that is, the first sub-metal wire C11 and the dummy metal mesh Mu are insulated from each other.
  • the first sub-metal wire C11 and the dummy metal grid Mu are spaced by a predetermined distance, and the dummy metal grid Mu is in a suspended state.
  • the shape of the vacant metal grid Mu is the same as the shape of the pixel unit Pixel, which can be in the shape of a diamond, a rectangle, a square, etc., and all of them are arranged around the light-shielding area BM and surrounding a pixel unit Pixel, so that the pixel unit can be improved.
  • the Pixel's display brightness is the same as the shape of the pixel unit Pixel, which can be in the shape of a diamond, a rectangle, a square, etc., and all of them are arranged around the light-shielding area BM and surrounding a pixel unit Pixel, so that the pixel unit can be improved.
  • the Pixel's display brightness is the same as the shape of the pixel unit Pixel, which can be in the shape of a diamond, a rectangle, a square, etc.
  • the first conductive pattern P1 formed by the first sub-metal wires C11 in the first metal layer 171 can be obtained by cutting and separating from the vacant metal mesh Mu.
  • the second metal layer 172 also includes a second conductive pattern P2 composed of a dummy metal grid and a second sub-metal wire C12 .
  • the second sub-metal wire C12 is not connected to the vacant metal grid, that is, the second sub-metal wire C12 and the vacant metal grid Mu are insulated from each other.
  • the second sub-metal wire C12 is spaced by a predetermined distance from the vacant metal grid, and the vacant metal grid is in a vacant state.
  • one of the first metal layer 171 or the second metal layer 172 may include a vacant metal mesh.
  • the first metal layer 171 and the second metal layer 172 are only provided with conductive patterns in some areas, and the first sub-metal wires C11 and the The two sub-metal wires C12 serve as the touch driving electrodes TX and the touch-sensing electrodes RX, and the area covering the display substrate is relatively small.
  • the first sub-metal wires C11 and the second sub-metal wires C12 When the projected area of the display electrode 111 is relatively small, that is, the area where the first sub-metal wire C11 and the second sub-metal wire C12 are facing and overlapped on the display electrode 111 is relatively small, then, each of the first conductive patterns P1 and the The capacitive load and impedance generated by each of the second conductive patterns P2 and the display electrodes 111 are relatively small, which effectively reduces the load on the touch sensing layer 17 .
  • the first conductive pattern corresponds to the capacitance of the display electrode 5.3pF
  • the second conductive pattern corresponds to the capacitance of the display electrode 5.6pF first conductive pattern resistance 8 ⁇ second conductive pattern resistance 8.5 ⁇
  • the ratio of the first conductive pattern covering the display electrodes 20% The ratio of the second conductive pattern covering the display electrodes 20%
  • FIG. 22 is a schematic diagram of the positions of the first conductive pattern P1 and the second conductive pattern P2 and the distribution of the output first sensing signal.
  • the first conductive pattern P1 and the first conductive pattern P2 The capacitance values formed by the two conductive patterns P2 at various positions are relatively uniform.
  • the values of the sensing signals output by the second conductive patterns P2 are basically the same, that is, in the touch sensing layer 17 In the area corresponding to the touch operation, the value of the sensing signal output by the second conductive pattern P2 is relatively uniform, so that the discrete degree of the sensing signal is smaller and the linearity is higher, thereby making the subsequent processing corresponding to the sensing signal simpler. Ensure that the position recognition of touch operations is more accurate.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种降低电容负载的触控显示面板(10)与触控显示装置,触控显示面板(10)包括依次层叠设置的阵列衬底(11)、显示介质层(13)及封装衬底(15)。封装衬底(15)包括相对设置的第一表面(151)与第二表面(152),第一表面(151)邻近显示介质层(13)设置,第二表面(152)远离显示介质层(13),第二表面(152)依次层叠设置相互绝缘的第一金属层与第二金属层。第一金属层包括多个沿着第一方向延伸的第一导电图案(P1),多个第一导电图案(P1)沿着第二方向间隔预设距离设置,第一方向与第二方向垂直。第二金属层包括多个沿着第二方向延伸的第二导电图案(P2),多个第二导电图案(P2)沿着第一方向间隔预设距离设置。第一导电图案(P1)与第二导电图案(P2)部分交叠形成互容式的感应电容,并在感测到触摸操作时输出第一感测信号。

Description

触控显示面板与触控显示装置
本申请要求于2021年1月27日提交中国专利局,申请号为202110113359.X、申请名称为“触控显示面板与触控显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及触控显示领域,尤其涉及一种触控显示面板与触控显示装置。
背景技术
目前可用于交互的电子装置中通常包括有触控显示面板,其中,触控显示面板中的触控结构包括多个感测电极,对于电容式触控结构,触控用的感测电极的面积会影响到对应的电容值。对于较大尺寸的触控显示面板而言,其具有较多的感测电极,由于触控电极数量较多,则触控电极正对图像显示用的显示电极的面积较大,由此触控电极与显示电极产生较大的电容负载,从而导致与触控走线连接的触控控制模组(触控感测集成电路)的驱动负载增加。
发明内容
为解决前述技术问题,本申请实施例提供一种电容负载较轻的触控显示面板与触控显示装置。
第一方面,在本申请一种实现方式中,触控显示面板,包括依次层叠设置的阵列衬底、显示介质层以及封装衬底,所述显示介质层在阵列衬底与所述封装衬底配合下出射光线显示图像;其中,所述封装衬底包括相对设置的第一表面与第二表面,所述第一表面邻近所述显示介质层设置,所述第二表面远离所述显示介质层。所述第二表面依次层叠设置且相互绝缘的第一金属层与第二金属层。所述第一金属层包括多个沿着第一方向延伸的第一导电图案,多个所述第一导电图案沿着第二方向间隔预设距离设置,所述第一方向与所述第二方向垂直;所述第二金属层包括多个沿着所述第二方向延伸的第二导电图案,多个所述第二导电图案沿着所述第一方向间隔预设距离设置。所述第一导电图案与所述第二导通图案部分交叠且形成感应电容,并在感测到触摸操作时输出第一感测信号。
第一金属层以及第二金属层仅部分区域设置有导电图案,而导电图案中第一导电图案与第二导电图案分别作为触控用的电极,覆盖显示基板的面积相对较小,由此两个导电图案在设置有显示电极的阵列衬底的投影交叠面积相对较小,那么,每一个第一导电图案与每一个第二导电导通图案与显示电极产生的电容负载和阻抗相对较小,有效降低触控感应层的电容负载。
在其中一实现方式中,所述第一导电图包括多个第一子金属导线,所述多个第一子金属导线构成多个金属网格。
其中,所述金属网格的形状为菱形、矩形或者方形等形状。
在其中一实现方式中,所述第一导电图包括多个第一子金属导线,所述多个第一子金属导线相互平行设置。
在本申请一种实现方式中,所述第一子金属导线为沿着所述第一方向延伸的一个三角波 形状的金属导线。
在本申请一种实现方式中,所述第一子金属导线为沿着所述第一方向延伸的两个平行的三角波形状的金属导线。
在本申请一种实现方式中,所述第一子金属导线为沿着所述第一方向延伸的方波形状的金属导线。
在其中一实现方式中,所述第二导电图包括多个第二子金属导线,所述多个第二子金属导线构成多个金属网格。其中,所述金属网格的形状为菱形、矩形或者方形等形状。
在其中一实现方式中,所述第二导电图包括多个第二子金属导线,所述多个第二子金属导线相互平行设置。
在本申请一种实现方式中,所述第二子金属导线为沿着所述第一方向延伸的一个三角波形状的金属导线。
在本申请一种实现方式中,所述第二子金属导线为沿着所述第一方向延伸的两个平行的三角波形状的金属导线。
在本申请一种实现方式中,所述第二子金属导线为沿着所述第一方向延伸的方波形状的金属导线,所述第一子金属导线为沿着第二方向延伸的直线形状的金属导线。其中,相邻的两条第一子金属导线与相邻的两条第二子金属导线交叉构成一个方形的金属网格,且一个金属网格的形状、大小与像素单元Pixel的形状大小基本相同。
在其中一实现方式中,在所述第一导电图案与所述第二导通图案交叠的区域,所述第一子金属导线与所述第二子金属导线重叠的位置,所述第一子金属导线具有至少一个开口部。
第一子金属导线与第二子金属导线有重叠的位置设置的开口部,能够有效降低第一子金属导线与第二子金属导线在垂直的层叠方向的感应电容,从而进一步降低触控控制模组的驱动负载。
在其中一实现方式中,所述第一金属层包括还包括多个空置金属网格,所述空置金属网格间隔设置于相邻的所述第一导电图案之间,且所述空置金属网格与所述第一导电图案相互绝缘;或者所述第二金属层包括还包括多个空置金属网格,所述空置金属网格间隔设置于相邻的所述第二导电图案之间,且所述空置金属网格与所述第二导电图案相互绝缘。
在其中一实现方式中,所述金属网格的具有第一尺寸,在所述开口部,所述第一子金属导线与所述第二子金属导线间隔第二尺寸。所述第二尺寸小于所述第一尺寸。
在其中一实现方式中,所述阵列衬底包括多个矩阵排列的像素区域,所述显示介质层对应每一个所述像素区域构成一个像素单元,相邻的所述像素单元之间包括遮光区域,所述像素单元用于出射光线以显示图像,每一个所述金属网格正对于一个所述像素单元且与所述遮光区域重合,且所述金属网格的形状与所述像素单元的形状相同。一个金属网格与一个像素单元正对且包围该一个像素单元,能够防止金属导线遮挡像素区域内出射光线的区域重合而影响光线亮度,进而有效保证图像显示的亮度。
第二方面,在本申请一种实现方式中,触控显示装置包括前述的触控显示面板与所述触控控制模组,所述触控控制模组用于依据接收到的所述感测信号识别所述触控显示面板接收到的所述触摸操作的位置。所述触控控制模组位于触控显示面板设置导电图案所在区域之外的区域,或者设置于所述触控显示面板之外的区域。
附图说明
图1为本申请第一实施例中触控显示面板的平面结构示意图;
图2为如图1所示触控显示面板沿着II-II线的剖面结构示意图;
图3为如图1所示阵列衬底像素区域的平面结构示意图;
图4为如图2所示设置于封装衬底的触控感测层的平面结构示意图;
图5为如图4所示第一导电图案与第二导通图案重叠区域的放大结构示意图;
图6为如图5所示第一导电图案与第二导通图案分解结构示意图;
图7为如图5所示导电图案中沿着B-B的剖面结构示意图;
图8为本申请第二实施例中如图4所示第一导电图案与第二导通图案重叠区域的放大结构示意图;
图9为图8所示第一子金属导线与第二子金属导线的分解结构示意图;
图10为本申请第三实施例中如图4所示第一导电图案与第二导通图案重叠区域的放大结构示意图;
图11为图10所示第一子金属导线与第二子金属导线的分解结构示意图;
图12为本申请第四实施例中如图4所示第一导电图案与第二导通图案重叠区域的放大结构示意图;
图13为图12所示第一子金属导线与第二子金属导线的分解结构示意图;
图14为本申请第五实施例中如图4所示第一导电图案与第二导通图案重叠区域的放大结构示意图;
图15为图12所示第一子金属导线与第二子金属导线的分解结构示意图;
图16为本申请第六实施例中如图4所示第一导电图案与第二导通图案重叠区域的放大结构示意图;
图17为如图16所示触控显示面板在第二位置的剖面图;
图18为如图16所示触控显示面板在第三位置的剖面图;
图19为本申请第七实施例中如图4所示第一导电图案与第二导通图案重叠区域的放大结构示意图;
图20为图19所示第一子金属导线与第二子金属导线的分解结构示意图;
图21为本申请第八实施例中如图16所示第一导电图案的结构示意图;
图22为第一导电图案与第二导电导通图案的位置与输出的第一感测信号的分布示意图。
具体实施方式
下面以具体的实施例对本申请进行说明。
请参阅图1,其为本申请第一实施例中触控显示面板10的平面结构示意图。
触控显示面板10包括显示区AA(active area)与非显示区NA(non-active area),显示区AA对应触控显示面板10的画面显示区域设置,用于执行图像显示。非显示区NA用于设置显示驱动控制模组、触控驱动控制模组等功能模组。触控显示面板10可应用于触控显示装置中,例如手机、平板电脑等能够执行显示与触摸功能的电子装置。
请参阅图2,其为如图1所示触控显示面板10沿着II-II线的剖面结构示意图。
如图2所示,触控显示面板10用于实现图像显示与触控操作的检测。本实施例中,触控显示面板10包括沿着图中自下而上依次层叠设置的阵列衬底11、显示介质层13以及封装衬底15,其中,显示介质层13夹设于阵列衬底11与封装衬底15之间,阵列衬底11、显示介质层13以及封装衬底15构成显示基板。
本实施例中,显示介质层13为有机发光显示材料(Organic Light-Emitting Diode,OLED),阵列衬底11上设置有矩阵排列的像素区域,每个像素区域内设置有用于驱动显示介质层13发光的驱动电路与驱动电极,封装衬底15用于封装显示介质层13。驱动电路与驱动电极配合驱动显示介质层的材料出射光线进而执行图像显示。本实施例中,封装衬底15为氮化硅(SINx)或者覆膜有机物(Organic Coating)材料。
本实施例中,封装衬底15包括两个相对第一表面151与第二表面152,其中第一表面邻近显示介质层13,第二表面152远离显示介质层13,在第二表面152依次设置触控感测层17与保护层19,触控感测层17用于识别施加在触控显示面板10的触摸位置,保护层19用于保护触控感层17以及封装衬底15等层结构。其中,触控感应层17设置于封装衬底15表面的方式为封装层上触控(Touch On Encapsulation,TOE)方式。
本实施例中,显示介质层13为有机发光显示材料时,即显示面板为众主动驱动式的机发光显示(Active-Matrix Organic Light-Emitting Diode,AMOLED)的显示面板。触控显示面板10可以制作为柔性、弯折的面板结构,从而能够应用于柔性触控显示装置中,例如可折叠的手机或者平板电脑中。
请参阅图3,其为如图1所示阵列衬底11像素区域的平面结构示意图。
如图3所示,对应显示区AA,阵列衬底11邻近显示介质层13的表面设置有多个沿着第一方向X与第二方向Y呈矩阵排列的像素区域(未标示),其中,每一个像素区域内均设置有驱动电路,驱动电路包括的薄膜晶体管、电容可以通过在阵列衬底的表面通过半导体材料沉积、蚀刻的方式形成。
本实施例中,像素区域的形状可以依据实际需求进行设定,例如正方形、菱形、五边形、六边形等,当然前述像素区域的形状仅为举例说明,并不以此为限。
每一个像素区域内的驱动电路能够驱动正对该像素区域的显示介质层13包含的发光材料出射光线。本实施例中,像素区域中的驱动电路与对应的显示介质层13配合构成一个像素单元Pixel。
其中,相邻像素单元Pixel对应的显示介质层13所包含的发光材料可以不相同以出射不同颜色的光线,较佳的,相邻像素单元Pixel之间包括遮光区域(BM),用于防止相邻像素单元Pixel之间出射的光线相互干扰。
对应非显示区NA,设置有用于驱动每个像素区域内驱动电路的显示驱动电路以及触控控制模组TC(图4)。显示驱动电路包括用于提供图像数据信号的数据驱动电路,执行行扫描的扫描驱动电路,以及控制数据驱动电路与扫描驱动电路工作时序的时序控制器(Tcon)。
请参阅图4,其为如图2所示设置于封装衬底15的触控感测层17的平面结构示意图。
如图4所示,触控感测层17包括多个沿着第一方向X延伸,并在第二方向Y上间隔预设距离并列设置的第一导电图案P1,以及多个沿着第二方向Y延伸,并在第一方向X上间隔预设距离并列设置的第二导电图案P2。其中,多个第一导电图案P1与多个第二导电图案 P2分别位于不同的层结构且相互绝缘,并均通过信号传输线L与触控控制模组TC电性连接。
本实施例中,第一导电图案P1与第二导通图案P2在延伸方向上部分重叠并构成互容式感测模组,用于感测来自于用户的触摸而产生的第一感测信号,并且通过信号传输线L传输至触控控制模组TC。触控控制模组TC依据所述第一感测信号识别所述触摸操作的位置。
本实施例中,多个第一导电图案P1可以作为触控驱动电极TX,多个第二导电图案P2可以作为触控感测电极RX。也即是,多个第一导电图案P1用于接收触控控制模组TC提供的触控驱动信号,多个第一导电图案P1通过触控驱动信号与多个第二导电图案P2产生感应电容,多个第二导电图案P2则可以对应输出相应的电信号作为触控感应信号。当第一导电图案P1与第二导电图案P2之间的电容由于用户的触摸操作发生变化时,第二导电图案P2输出的触控感应信号也对应发生变化,通过分析感应信号发生变化的具体位置即可识别触摸操作具体位置。
第一导电图案P1和/或者第二导电图案P2为金属导线构成的网格形状。本实施例中,第一导电图案P1和第二导电图案P2为均条状,且均包括多个规则的金属网格,金属网格的形状可以为方形、矩形、菱形或者其他类型的多边形的形状。
更为具体地,请参阅图5-图6,图5为如图4所示第一导电图案P1与第二导通图案P2重叠区域A1的放大结构示意图,图6为如图5所示第一导电图案P1与第二导通图案P2分解结构示意图。
如图5-图6所示,第一导电图案P1包括多个连续排列且呈方形的金属网格Me1,第二导电图案P2也包括多个连续排列且呈方形的金属网格。
本实施例中,第一导电图案P1与第二导电图案P2中的金属网格Me1为方形,所述方形的金属网格的边长为第一尺寸D1。
在所述重叠区域A1内,包括第一方向X延伸设置的第一子金属导线C11,以及沿着第二方向Y延伸设置的第二子金属导线C12,其中,多条第二子金属导线C11与多条第二子金属导线C12在其延伸方向交错重叠。
本实施例中,第一子金属导线C11为方形的金属网格,第二子金属导线C12为方形的金属网格。其中,金属网格均正对于所述遮光区域BM设置,且每一个金属网格对应包围一个像素单元Pixel,也即是金属网格在阵列衬底的投影包括一个像素单元Pxiel,从而有效防止金属导线与像素区域叠合时影响像素单元Pixel的显示亮度。
请参阅图7,其为如图5所示导电图案中沿着B-B线的剖面结构示意图,如图7所示,本实施例中,阵列衬底11包括显示电极111,显示电极111用于接收外部显示信号并据此驱动显示介质层13进行图像显示。其中,显示电极111包括阴极与阳极。
触控感应层17包括依次层叠设置的第一金属层171、第一绝缘层173、第二金属层172。第一金属层171包括如图4所示的多个沿着第一方向X延伸的第一导电图案P1,第二金属层172包括如图4所示的多个沿着第二方向Y延伸的第二导电图案P2。
如图7所示,第一导电图案P1中的第一子金属导线C11与第二导电图案P2中的第二子金属导线C12正对设置,也即是第二子金属导线C12在第一金属层171上的投影与第一子金属导线C11至少部分重叠。
请参阅图8-图9,图8为本申请第二实施例中如图4所示第一导电图案与第二导通图案重叠区域A的放大结构示意图,图9为图8所示第一子金属导线C11与第二子金属导线C12的分解结构示意图。
如图8-图9所示,第一子金属导线C11为沿着第一方向X延伸的菱形金属网格的金属导线,第二子金属导线C12为沿着第二方向Y延伸的菱形金属网格的金属导线。其中,一个金属网格的形状、大小与像素单元Pixel的形状大小基本相同。本实施例中,金属网格均正对于并环绕像素单元Pixel设置,从而有效防止金属导线与像素区域叠合时影响像素单元Pixel的显示亮度。
请参阅图10-图11,图10为本申请第三实施例中如图4所示第一导电图案与第二导通图案重叠区域A1的放大结构示意图,图11为图10所示第一子金属导线C11与第二子金属导线C12的分解结构示意图。
如图10-图11所示,第一子金属导线C11为沿着第一方向X延伸的三角波形状的金属导线,第二子金属导线C12为沿着第二方向Y延伸的三角波形状的金属导线。
请参阅图12-图13,图12为本申请第四实施例中如图4所示第一导电图案与第二导通图案重叠区域A1的放大结构示意图,图13为图12所示第一子金属导线C11与第二子金属导线C12的分解结构示意图。
如图12-图13所示,第一子金属导线C11为沿着第一方向X延伸,且并列且平行的两条三角波形状的金属导线,第二子金属导线C12为沿着第二方向Y延伸,且平行的两条三角波形状的金属导线。
请参阅图14-图15,图14为本申请第五实施例中如图4所示第一导电图案与第二导通图案重叠区域A1的放大结构示意图,图15为图12所示第一子金属导线C11与第二子金属导线C12的分解结构示意图。
如图14-图15所示,第一子金属导线C11为沿着第一方向X延伸的三角波形状的金属导线,第二子金属导线C12为沿着第二方向Y延伸的菱形金属网格的金属导线。其中,一个金属网格的形状、大小与像素单元Pixel的形状大小基本相同。本实施例中,金属网格均正对于并环绕像素单元Pixel设置,从而有效防止金属导线与像素区域叠合时影响像素单元Pixel的显示亮度。
请参阅图16,其中图16为本申请第六实施例中如图4所示第一导电图案与第二导通图案重叠区域A1的放大结构示意图。
如图16所示,第一子金属导线C11为沿着第一方向X延伸的三角波形状的金属导线,第二子金属导线C12为沿着第二方向Y延伸的菱形金属网格的金属导线。其中,一个金属网格的形状、大小与像素单元Pixel的形状大小基本相同。本实施例中,金属网格均正对于并环绕像素单元Pixel设置,从而有效防止金属导线与像素区域叠合时影响像素单元Pixel的显示亮度。
如图16所示,在重叠区域A的第一位置A11,第一导电图案P1中的第一子金属导线C11与第二导电图案P2中的第二子金属导线C12正对设置,也即是请参阅图6,第二子金属导线 C12在第一金属层171上的投影与第一子金属导线C11至少部分重叠。
请参阅图17,图17为如图16所示触控显示面板在第二位置A12的剖面图。
如图17所示,在第一导电图案P1与第二导电图案P2的重叠区域A1中的第二位置A12,第一导电图案P1中的第一子金属导线C11与第二导电图案P2中的第二子金属导线C12正对设置,且第一子金属导线C11具有第一开口部H1,在第一开口部H1,第二子金属导线C12正对所述第一开口H1,且第一子金属导线C11与第二子金属导线C12间隔分别为第二尺寸D2,其中,第二尺寸D2小于第一尺寸D1。
请参阅图18,图18为如图16所示触控显示面板在第三位置A13的剖面图。如图17所示,在重叠区域A1中的第三位置A13,第一导电图案P1中的第一子金属导线C11与第二导电图案P2中的第二子金属导线C12正对设置,且第一子金属导线C11具有第二开口部H2,在第二开口部H2,第一子金属导线C11与第二子金属导线C12间隔第二尺寸D2,其中,第二尺寸D2小于第一尺寸D1。在重叠区域A1中,为了保证第一子金属导线C11在沿着第一方向导电性,除了必要的连续部分之外,例如在第一位置A11,第一子金属线C11与第二子金属导线C12重叠时,第一子金属导线C11为连续,而在第一位位置A11之外的第二位置A12与第三位置A13,第一子金属导线C11与第二子金属导线C12有重叠的位置均设置开口部,以降低第一子金属导线C11与第二子金属导线C12在垂直的层叠方向的感应电容,从而降低触控控制模组TC的驱动负载。
请参阅图19-图20,图19为本申请第七实施例中如图4所示第一导电图案与第二导通图案重叠区域A1的放大结构示意图,图20为图19所示导电图案中第一子金属导线C11与第二子金属导线C12的分解结构示意图。
如图19-图20所示,第一子金属导线C11为沿着第一方向X延伸的方波形状的金属导线,第二子金属导线C12为沿着第二方向Y延伸的直线形状的金属导线。其中,相邻的两条第一子金属导线C11与相邻的两条第二子金属导线C12交叉构成一个方形的金属网格,且一个金属网格的形状、大小与像素单元Pixel的形状大小基本相同。本实施例中,较佳地,金属网格均正对于所述遮光区域BM(图3)并环绕像素单元Pixel设置,从而有效防止金属导线与像素区域叠合时影响像素单元Pixel的显示亮度。
请参阅图21,其为本申请第八实施例中如图16所示第一导电图案的结构示意图。
如图21所示,结合图7,第一金属层171包括由空置(Dummy)金属网格Mu和由第一子金属导线C11构成的第一导电图案P1。其中,第一子金属导线C11与空置金属网格Mu无连接关系,也即是第一子金属导线C11与空置金属网格Mu相互绝缘。本实施例中,第一子金属导线C11与空置金属网格Mu之间间隔预设距离,且空置金属网格Mu处于悬空空置的状态。
本实施例中,空置金属网格Mu的形状与像素单元Pixel的形状相同,可以为菱形、矩形、方形等形状,且均正对于所述遮光区域BM并环绕一个像素单元Pixel设置,提高像素单元Pixel的显示亮度。
可以理解,第一金属层171中的第一子金属导线C11构成的第一导电图案P1可以为自 空置金属网格Mu切割分离获得。
可变更的,第二金属层172也包括由空置(Dummy)金属网格和由第二子金属导线C12构成的第二导电图案P2。其中,第二子金属导线C12与空置金属网格无连接关系,也即是第二子金属导线C12与空置金属网格Mu相互绝缘。本实施例中,第二子金属导线C12与空置金属网格之间间隔预设距离,且空置金属网格处于悬空空置的状态。
优选地,为降低导电图案制作复杂度,第一金属层171或者第二金属层172其中之一包括空置金属网格即可。
相较于现有技术,如图4、图8-图21所示,第一金属层171以及第二金属层172仅部分区域设置有导电图案,而导电图案中第一子金属导线C11与第二子金属导线C12作为触控驱动电极TX与触控感测电极RX,覆盖显示基板的面积相对较小,由此,如表1所示,第一子金属导线C11与第二子金属导线C12在显示电极111的投影面积相对较小,也即是第一子金属导线C11和第二子金属导线C12正对交叠于显示电极111的面积较小,那么,每一个第一导电图案P1与每一个第二导电导通图案P2与显示电极111产生的电容负载和阻抗相对较小,有效降低触控感应层17的负载。
第一导电图案对应显示电极的电容 5.3pF
第二导电图案对应显示电极的电容 5.6pF
第一导电图案电阻
第二导电图案电阻 8.5Ω
第一导电图案覆盖显示电极的比值 20%
第二导电图案覆盖显示电极的比值 20%
表1
进一步,由于第一导电图案P1与第二导电导通图案P2为条形,也即是第一导电图案P1与第二导电导通图案P2中各个区域、尤其边缘位置的金属网格的形状较为规则,由此,如图22所示,其中,图22为第一导电图案P1与第二导电导通图案P2的位置与输出的第一感测信号的分布示意图,第一导电图案P1与第二导电导通图案P2在各个位置形成的电容值较为均匀,由此,当接收到触摸操作时,第二导电导通图案P2输出的感应信号的数值基本相同,也即是触摸感应层17中对应触摸操作的区域中,第二导电导通图案P2输出的感应信号的数值较为均匀,从而使得对感应信号的离散程度较小、线性度较高,进而使得后续对应感应信号的处理较为简单,保证触摸操作的位置识别更为准确。
以上所述是本申请的优选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (10)

  1. 一种触控显示面板,包括依次层叠设置的阵列衬底、显示介质层以及封装衬底,所述显示介质层在阵列衬底与所述封装衬底配合下出射光线显示图像;
    其中,所述封装衬底包括相对设置的第一表面与第二表面,所述第一表面邻近所述显示介质层设置,所述第二表面远离所述显示介质层,
    所述第二表面依次层叠设置且相互绝缘的第一金属层与第二金属层;
    所述第一金属层包括多个沿着第一方向延伸的第一导电图案,多个所述第一导电图案沿着第二方向间隔预设距离设置,所述第一方向与所述第二方向垂直;
    所述第二金属层包括多个沿着所述第二方向延伸的第二导电图案,多个所述第二导电图案沿着所述第一方向间隔预设距离设置;
    所述第一导电图案与所述第二导通图案部分交叠且形成感应电容,并在感测到触摸操作时输出第一感测信号。
  2. 根据权利要求1所述的触控显示面板,其特征在于,
    所述第一导电图包括多个第一子金属导线,所述多个第一子金属导线构成多个金属网格。
  3. 根据权利要求1所述的触控显示面板,其特征在于,
    所述第一导电图包括多个第一子金属导线,所述多个第一子金属导线相互平行设置。
  4. 根据权利要求1所述的触控显示面板,其特征在于,
    所述第二导电图包括多个第二子金属导线,所述多个第二子金属导线构成多个金属网格。
  5. 根据权利要求1所述的触控显示面板,其特征在于,
    所述第二导电图包括多个第二子金属导线,所述多个第二子金属导线相互平行设置。
  6. 根据权利要求1-5任意一项所述的触控显示面板,其特征在于,
    在所述第一导电图案与所述第二导通图案交叠的区域,所述第一子金属导线与所述第二子金属导线重叠的位置,所述第一子金属导线具有至少一个开口部。
  7. 根据权利要求1-6任意一项所述的触控显示面板,其特征在于,
    所述第一金属层包括还包括多个空置金属网格,所述空置金属网格间隔设置于相邻的所述第一导电图案之间,且所述空置金属网格与所述第一导电图案相互绝缘;或者,
    所述第二金属层包括还包括多个空置金属网格,所述空置金属网格间隔设置于相邻的所述第二导电图案之间,且所述空置金属网格与所述第二导电图案相互绝缘。
  8. 根据权利要求7所述的触控显示面板,其特征在于,
    所述金属网格的具有第一尺寸;
    在所述开口部,所述第一子金属导线与所述第二子金属导线间隔第二尺寸;
    所述第二尺寸小于所述第一尺寸。
  9. 根据权利要求8所述的触控显示面板,其特征在于,
    所述阵列衬底包括多个矩阵排列的像素区域,所述显示介质层对应每一个所述像素区域构成一个像素单元,相邻的所述像素单元之间包括遮光区域,所述像素单元用于出射光线以显示图像;
    每一个所述金属网格正对于一个所述像素单元且与所述遮光区域重合,且所述金属网格的形状与所述像素单元的形状相同。
  10. 一种触控显示装置,其特征在于,包括如权利要求1-9任意一项所述的触控显示面板与触控控制模组,所述触控控制模组用于依据接收到的所述感测信号识别所述触控显示面板接收到的所述触摸操作的位置。
PCT/CN2022/072984 2021-01-27 2022-01-20 触控显示面板与触控显示装置 WO2022161246A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22745121.8A EP4261664A4 (en) 2021-01-27 2022-01-20 TOUCH DISPLAY PANEL AND TOUCH DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110113359.X 2021-01-27
CN202110113359.XA CN114816098A (zh) 2021-01-27 2021-01-27 触控显示面板与触控显示装置

Publications (1)

Publication Number Publication Date
WO2022161246A1 true WO2022161246A1 (zh) 2022-08-04

Family

ID=82525003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072984 WO2022161246A1 (zh) 2021-01-27 2022-01-20 触控显示面板与触控显示装置

Country Status (3)

Country Link
EP (1) EP4261664A4 (zh)
CN (1) CN114816098A (zh)
WO (1) WO2022161246A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053751A (zh) * 2009-10-29 2011-05-11 爱特梅尔公司 触摸屏电极配置
US20160291725A1 (en) * 2015-04-01 2016-10-06 Shanghai Tianma Micro-electronics Co., Ltd. Touch display panel and display device
CN106708309A (zh) * 2015-11-17 2017-05-24 介面光电股份有限公司 具有透明天线的触控面板及触控显示设备
CN106940605A (zh) * 2017-05-05 2017-07-11 上海天马微电子有限公司 显示面板
CN109947294A (zh) * 2019-03-18 2019-06-28 昆山龙腾光电有限公司 一种触摸显示面板和触控显示模组

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108984038B (zh) * 2018-07-25 2022-04-05 京东方科技集团股份有限公司 一种显示基板、内嵌式触摸屏及显示装置
CN111124189B (zh) * 2020-01-02 2023-06-30 上海天马微电子有限公司 一种显示面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053751A (zh) * 2009-10-29 2011-05-11 爱特梅尔公司 触摸屏电极配置
US20160291725A1 (en) * 2015-04-01 2016-10-06 Shanghai Tianma Micro-electronics Co., Ltd. Touch display panel and display device
CN106708309A (zh) * 2015-11-17 2017-05-24 介面光电股份有限公司 具有透明天线的触控面板及触控显示设备
CN106940605A (zh) * 2017-05-05 2017-07-11 上海天马微电子有限公司 显示面板
CN109947294A (zh) * 2019-03-18 2019-06-28 昆山龙腾光电有限公司 一种触摸显示面板和触控显示模组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4261664A4

Also Published As

Publication number Publication date
EP4261664A1 (en) 2023-10-18
EP4261664A4 (en) 2024-05-29
CN114816098A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US11599153B2 (en) Flexible display device including touch sensor
KR102189313B1 (ko) 표시 장치
KR101050464B1 (ko) 디스플레이 패널 및 그 제조 방법
US20220334678A1 (en) Touch Structure, Touch Display Panel and Electronic Apparatus
WO2020118845A1 (zh) 触控显示面板及其制作方法、触控显示装置
US20230061413A1 (en) Display panel, methods for driving and manufacturing the same, and display apparatus
WO2022011784A1 (zh) 触控组件及触控显示装置
JP2020013578A (ja) タッチディスプレイパネル、タッチディスプレイ装置、及びその駆動方法
CN108089762B (zh) 一种触控显示面板及显示装置
CN111930262A (zh) 一种触控显示面板
WO2022062879A1 (zh) 触控基板及显示面板
US11374066B2 (en) Touch panel and display device with shielding layer grounded through touch layer
WO2022161246A1 (zh) 触控显示面板与触控显示装置
WO2021159997A1 (zh) 触控显示面板与触控显示装置
KR102573081B1 (ko) 터치 패널 및 터치전극을 포함하는 표시장치
WO2022178817A1 (zh) 触控结构、触控显示面板和显示装置
WO2024044894A1 (zh) 触控显示面板及显示装置
US20240012525A1 (en) Touch Control Substrate, Display Panel, and Electronic Device
US20240023407A1 (en) Electronic substrate and electronic device
WO2023206077A9 (zh) 显示装置、触控显示面板及其驱动方法
WO2024065411A1 (zh) 一种触控显示面板及显示装置
KR20240031501A (ko) 입력 센싱부 및 그것의 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022745121

Country of ref document: EP

Effective date: 20230711

NENP Non-entry into the national phase

Ref country code: DE