WO2022052715A1 - 触控结构、触控显示基板和触控显示装置 - Google Patents

触控结构、触控显示基板和触控显示装置 Download PDF

Info

Publication number
WO2022052715A1
WO2022052715A1 PCT/CN2021/111814 CN2021111814W WO2022052715A1 WO 2022052715 A1 WO2022052715 A1 WO 2022052715A1 CN 2021111814 W CN2021111814 W CN 2021111814W WO 2022052715 A1 WO2022052715 A1 WO 2022052715A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
area
traces
layer
wire
Prior art date
Application number
PCT/CN2021/111814
Other languages
English (en)
French (fr)
Inventor
文平
张顺
张毅
刘庭良
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/789,020 priority Critical patent/US11921963B2/en
Publication of WO2022052715A1 publication Critical patent/WO2022052715A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/03Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays
    • G09G3/035Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays for flexible display surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]

Definitions

  • Embodiments of the present disclosure relate to a touch control structure, a touch display substrate, and a touch display device.
  • OLED organic light emitting diode
  • Capacitive touch screens are divided into mutual capacitive touch screens and self-capacitive touch screens.
  • lateral electrodes and vertical electrodes are usually fabricated on the surface of the substrate, and capacitors are formed where the lateral electrodes and the vertical electrodes intersect.
  • the finger touches the screen it affects the coupling between the two electrodes near the touch position, thus changing the capacitance between the two electrodes. According to the change of the capacitance, the coordinates of the touch position can be calculated.
  • An embodiment of the present disclosure provides a touch structure including: a touch area and a peripheral area surrounding the touch area, the touch area including a first side and a second side opposite, and a third side opposite and the fourth side; the first touch electrodes and the second touch electrodes, which are crossed and insulated from each other, are located in the touch area; and the first touch traces and the second touch traces are located in the peripheral area .
  • the first touch traces are connected to the first touch electrodes on the first side and the second side, respectively; the second touch traces are on the third side and the second side respectively.
  • the fourth side is connected to the second touch electrodes.
  • the touch control structure further includes a first wire gathering area and a second wire gathering area, and the first wire gathering area and the second wire gathering area are located away from the second side.
  • the first wiring convergence area and the second wiring convergence area are located between the third side and the fourth side
  • the second trace convergence area is located on the side of the first trace convergence area away from the third side, and part of the first touch traces and part of the second touch traces extend to The first wire gathering area, another part of the first touch wire and another part of the second touch wire extend to the second wire gathering area.
  • the first touch traces include: a first trace group and a second trace group connected to the first touch electrodes on the first side, the first trace group and the second wiring group is separated at a substantially middle position of the first side, and the first wiring group extends from one side of the third side to the first wiring convergence area; so the second wiring group extends from one side of the fourth side to the second wiring gathering area; and the third wiring group and the third wiring group connected to the first touch electrodes on the second side Four wire groups, the third wire group and the fourth wire group are separated at approximately the middle of the second side, and the third wire group extends to the convergence of the first wire area; the fourth wiring group extends to the second wiring gathering area.
  • the second touch traces include: a fifth trace group connected to the second touch electrodes at the third side, the fifth trace group extending from the third side The side where it is located extends to the first wire gathering area; and a sixth wire group connected to the second touch electrode on the fourth side, the sixth wire group starts from the fourth The side where the edge is located extends to the second wiring convergence area.
  • the fifth trace group is located between the first trace group and the third trace group; in the second trace aggregation area , the sixth wiring group is located between the second wiring group and the fourth wiring group.
  • the first touch traces and the second touch traces both include two layers of conductive traces, and the two layers of conductive traces of the first touch traces overlap and are electrically connected to each other. , the two layers of conductive traces of the second touch traces overlap each other and are electrically connected.
  • the touch control structure further includes an interlayer dielectric layer located between the two layers of conductive traces of the first touch trace and between the two layers of conductive traces of the second touch trace
  • the interlayer dielectric layer includes a plurality of first vias, the conductive traces of the two layers of the first touch traces are electrically connected through the first vias, and the two layers of the second touch traces are electrically connected through the first vias.
  • the conductive traces are electrically connected through the first via holes.
  • the first pass in the extending direction of the first touch trace or the second touch trace, is located between two layers of conductive traces of the first touch trace.
  • the holes are arranged at intervals, and the first via holes located between the two layers of conductive wires of the second touch wires are arranged at intervals.
  • the adjacent conductive traces between two layers of the first touch trace are located.
  • the distance between the first via holes is about 500-1000 ⁇ m
  • the distance between the adjacent first via holes located between the two layers of conductive traces of the second touch trace is about 500-1000 ⁇ m .
  • the first touch electrodes and the second touch electrodes include grid patterns on the touch grid layer and bridging lines on the bridging layer, and the bridging lines are configured to The intersection of a touch electrode and the second touch electrode is electrically connected to the grid pattern of the first touch electrode or the grid pattern of the second touch electrode.
  • One layer of the conductive traces of a touch trace is located on the bridge layer, and the other layer is located on the touch grid layer; one layer of the conductive traces of the second touch trace is located in the two layers The bridging layer and the other layer are located in the touch grid layer.
  • the touch control structure further includes a shielding wire located on a side of the first touch wire and the second touch wire away from the touch area.
  • the touch control structure further includes a ground wire located on a side of the shield wire away from the touch area.
  • An embodiment of the present disclosure further provides a touch display substrate, including the touch control structure described in any one of the above, and a display substrate.
  • the display substrate includes an organic light-emitting element and an encapsulation layer, and the touch control structure is located on the encapsulation layer.
  • the touch display substrate further includes a binding area located on a side of the second side away from the touch area, the first touch trace and the second touch trace connected to the binding area.
  • the touch display substrate further includes a bendable area located between the touch area and the binding area. Wherein, at least one of the first touch trace and the second touch trace is disconnected in the bendable area to form a first end close to the touch area and a first end close to the binding area the second end of the foldable area includes a first metal connection part and a second via on a different layer from the first touch trace and the second touch trace, and the first end and the second end are respectively connected to the first metal connection part through the second via hole.
  • the touch display substrate further includes a pixel driving circuit layer, the pixel driving circuit layer includes a thin film transistor, and the thin film transistor includes a source and drain electrodes and a gate electrode, and the first metal connection portion is connected to the The source and drain of the thin film transistor are located on the same layer.
  • the bendable region includes a second metal connection part and a third via at a different layer from the first metal connection part, and the second metal connection part is connected to the gate of the thin film transistor.
  • the first metal connection part is disconnected into two parts at a position corresponding to the second metal connection part, and the two disconnected parts of the first metal connection part pass through respectively
  • the third via hole is electrically connected to the second metal connection portion.
  • the first metal connection includes an opening along a layer perpendicular to the first metal connection.
  • the organic light-emitting element includes an anode, an electroluminescent layer, and a cathode that are stacked in sequence, and both the first touch electrode and the second touch electrode at least partially overlap with the cathode.
  • the touch display substrate further includes a wire transition area, located between the bendable area and the binding area; a power wire, electrically connected to the anode or the cathode, at least partially The power lines are located in the trace transition area, and the first touch traces and the second touch traces overlap with at least part of the power traces located in the trace transition area.
  • the touch display substrate further includes a detection line located on a side of the ground line away from the touch area.
  • An embodiment of the present disclosure further provides a touch display device including the touch display substrate described in any one of the above.
  • FIG. 1 is a schematic diagram of a touch control structure
  • FIG. 2A is a schematic diagram of a touch control structure according to an embodiment of the present disclosure.
  • FIG. 2B is an enlarged schematic view of the G region in FIG. 2A;
  • FIG. 3 is a schematic cross-sectional view of a first touch trace according to an embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional structure diagram of the first side T1 in FIG. 2A;
  • FIG. 5 is an enlarged schematic view of the R1 region in FIG. 2A;
  • Fig. 6 is the enlarged structural schematic diagram of R2 area in Fig. 2A;
  • Fig. 7 is the enlarged structure schematic diagram of R3 region in Fig. 2A;
  • FIG. 8 is an enlarged schematic view of the R4 region in FIG. 2A;
  • Fig. 9 is the enlarged structural representation of R5 area in Fig. 2A;
  • FIG. 10 is a schematic cross-sectional structural diagram of a display area of a touch display substrate according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a circuit principle of a display substrate according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic plan view of a touch display substrate according to an embodiment of the present disclosure.
  • Fig. 13 is a partial enlarged schematic view of the bendable area C in Fig. 12;
  • FIG. 14 is a schematic cross-sectional structural diagram of the bendable region C of the touch display substrate along the direction E-E in FIG. 13 ;
  • FIG. 15 is a schematic cross-sectional structure diagram of the bendable region C of another touch display substrate along the direction E-E in FIG. 13 .
  • FIG. 1 is a schematic diagram of a touch control structure.
  • the touch structure 10 includes touch electrodes 11 and touch traces 12 .
  • the touch electrodes 11 are located in the touch area T, and include a plurality of first touch electrodes 111 and a plurality of second touch electrodes 112 which are insulated from each other.
  • the first touch electrodes 111 and the second touch electrodes 112 are arranged to cross each other. As shown in the figure, the first touch electrodes 111 extend along the Y direction, and the second touch electrodes 112 extend along the X direction, and the X direction and the Y direction intersect.
  • the touch traces 12 are located in the peripheral area P (eg, surrounding the touch area T), and include a plurality of first touch traces 121 and a plurality of second touch traces 122 .
  • the first touch traces 121 are connected to the first touch electrodes 111
  • the second touch traces 122 are connected to the second touch electrodes 112 .
  • each first touch electrode 111 is respectively connected to a first touch trace 121
  • the left end of each second touch electrode 112 is connected to a second touch trace 122 .
  • the touch structure 10 further includes a binding area B located at the lower side of the touch area T, and the binding area B includes the touch driving chip 13 .
  • the first touch wiring 121 and the second touch wiring 122 are connected to the touch driving chip 13 .
  • the first touch electrodes 111 can be used as signal transmission channels, and the second touch electrodes 112 can be used as signal reception channels to realize the touch function.
  • Embodiments of the present disclosure provide a touch control structure and a manufacturing method thereof, a touch display substrate, and a touch display device.
  • the touch structure includes a touch area and a peripheral area surrounding the touch area, a first touch electrode and a second touch electrode that intersect and are insulated from each other, and a first touch wire and a second touch wire that are insulated from each other. Traces.
  • the touch area includes opposite first and second sides, and opposite third and fourth sides.
  • the first touch electrodes and the second touch electrodes are located in the touch area.
  • the first touch traces and the second touch traces are located in the peripheral area.
  • the first touch wires are connected to the first touch electrodes at the first side and the second side respectively, and the second touch wires are connected to the second touch electrodes at the third side and the fourth side respectively.
  • the touch structure can be applied to a large-size touch display panel to improve the signal transmission speed, thereby improving the refresh frequency and signal uniformity.
  • the touch control structure can be applied to a large-sized folding screen.
  • the diagonal length of the folding screen is greater than 8 inches, and its aspect ratio is about 8:7.
  • its folding axis can be parallel to the X direction and located near the central axis of the panel, and its folding axis can also be parallel to the Y direction and located near the central axis of the panel.
  • “About” or “approximately” as used herein essentially refers to a numerical value within an allowable range of process and measurement error, without strictly defining a limit.
  • the aspect ratio of the folding screen is 8:7.
  • FIG. 2A is a schematic diagram of the touch control structure.
  • the touch structure 20 includes a touch area T, a peripheral area P surrounding the touch area T, a first touch electrode 211 and a second touch electrode 212 that intersect and are insulated from each other, and are insulated from each other.
  • the first touch traces 221 and the second touch traces 222 .
  • the touch area T includes opposite first and second sides T1 and T2, and opposite third and fourth sides T3 and T4.
  • the first touch traces 221 and the second touch traces 222 are located in the peripheral region P. As shown in FIG.
  • the first touch traces 221 are connected to the first touch electrodes 211 on the first side T1 and the second side T2 respectively, and the second touch traces 222 are connected to the second touch electrodes on the third side T3 and the fourth side T4 respectively. Electrode 212 is connected.
  • first side T1 and the second side T2 are parallel to each other, and the third side T3 and the fourth side T4 are parallel to each other.
  • both the first touch electrodes and the second touch electrodes of the touch structure 20 can be connected with touch traces at both ends, so that the transmission of touch signals can be improved. speed, thereby improving refresh rate and signal uniformity.
  • the refresh rate of the touch display panel using the touch structure can be increased by more than 10%.
  • the materials of the first touch traces 221 and the second touch traces 222 may include metal materials or alloy materials, and may be single-layer metal or multi-layer metal stacks.
  • both the first touch traces 221 and the second touch traces 222 can be prepared by using titanium, aluminum and titanium three-layer metal stacks (Ti/Al/Ti).
  • the number of the first touch electrodes 211 , the second touch electrodes 212 , the first touch wires 221 and the second touch wires 222 may be one or more.
  • the embodiments of the present disclosure are described by taking as an example that the number of the first touch electrodes 211 , the second touch electrodes 212 , the first touch traces 221 and the second touch traces 222 is multiple.
  • FIG. 2A schematically shows some touch electrodes and touch traces.
  • the first touch electrodes 211 extend along the Y direction
  • the second touch electrodes 212 extend along the X direction
  • the X direction and the Y direction intersect.
  • the first touch electrodes 211 and the second touch electrodes 212 may also extend along directions having a certain angle with the X and Y directions, respectively.
  • first side T1 and the second side T2 extend in the X direction
  • third side T3 and the fourth side T4 extend in the Y direction.
  • the touch control structure 20 includes a first wire gathering area L1 and a second wire gathering area L2 .
  • the first wiring gathering area L1 and the second wiring gathering area L2 are located on the side of the second side T2 away from the first side T1, and in the extending direction of the second side T2, the first wiring gathering area L1 and the second wiring gathering area L1 and the second wiring
  • the convergence area L2 is located between the third side T3 and the fourth side T4, and the second wire convergence area L2 is located on a side of the first trace convergence area L1 away from the third side T3.
  • the first trace convergence area L1 is located between the end of the second side T2 close to the third side T3 and a substantially middle position of the second side T2
  • the second trace The line convergence area L2 is located between the end of the second side T2 close to the fourth side T4 and a substantially middle position of the second side T2.
  • part of the first touch traces 221 and part of the second touch traces 222 extend to the first trace convergence area L1 , and another part of the first touch traces 221 and another part of the second touch traces The line 222 extends to the second line gathering area L2.
  • the end of the second side T2 close to the third side T3 refers to the intersection of the second side T2 and the third side T3;
  • the approximate middle position of the second side T2 refers to the approximate midpoint of the second side, However, it is not limited to the absolute midpoint.
  • the first touch traces 221 converge to the left and right sides respectively.
  • FIG. 2A shows nine first touch electrodes 211 extending along the Y direction.
  • the first touch traces 221 located on one side of the second side T2 there are four first touch traces 221 on the left side.
  • the five first touch traces 221 on the right are converged to the second trace convergence area L2.
  • the roughly middle position of the second side T2 is located at the fourth first touch trace. between the lower end of the trace 221 and the lower end of the fifth first touch trace 221 .
  • FIG. 2A is only an example, and embodiments of the present disclosure are not limited thereto.
  • the substantially middle position of the second side T2 may also be located between the lower end of the third first touch wire 221 and the lower end of the fourth first touch wire 221 .
  • the number of the first touch electrodes 211 may be greater or less than nine.
  • the first touch traces 221 include a first trace group 2211 and a second trace group 2212 connected to the first touch electrodes 211 on the first side T1 .
  • the first wire group 2211 and the second wire group 2212 are separated at a substantially middle position of the first side T1.
  • the first wire group 2211 is located on the left side of the substantially middle position of the first side T1
  • the second wire group group 2212 is positioned on the right side of the substantially middle position of the first side T1 .
  • the first wiring group 2211 extends from the side where the third side T3 is located to the first wiring gathering area L1.
  • the second wiring group 2212 extends from the side where the fourth side T4 is located to the second wiring gathering area L2.
  • the substantially middle position of the first side T1 and the substantially middle position of the second side T2 have similar meanings, and will not be described here.
  • the first touch wire 221 further includes a third wire group 2213 and a fourth wire group 2214 connected to the first touch electrodes 211 on the second side T2 .
  • the third wire group 2213 and the fourth wire group 2214 are separated at a substantially middle position of the second side T2.
  • the third wire group 2213 is located on the left side of the substantially middle position of the second side T2
  • the fourth wire group group 2214 is positioned on the right side of the substantially middle position of the second side T2 .
  • the plurality of first touch traces 221 of the third trace group 2213 extend to the first trace convergence area L1
  • the plurality of first touch traces 221 of the fourth trace group 2214 extend to the second trace convergence area L2.
  • the third wiring group 2213 extends from the middle position of the second side T2 and the end of the second side T2 close to the third side T3 to the first wiring gathering area L1.
  • the fourth wire group 2214 extends from the middle position of the second side T2 and the end of the second side T2 close to the fourth side T4 to the second wire collecting area L2.
  • each wire group includes at least one touch wire.
  • the positions of the first wire gathering area L1 and the second wire gathering area L2 can be adjusted according to actual needs.
  • the first trace convergence area L1 may also be located at the end of the second side T2 close to the third side T3, and accordingly, the third trace group 2213 may extend from the middle of the second side T2 to the first trace convergence Area L1.
  • the second trace convergence area L2 may also be located at the end of the second side T2 close to the fourth side T4, and accordingly, the fourth trace group 2214 may extend from the middle position of the second side T2 to the second trace convergence Area L2. This disclosure does not limit this.
  • the second touch traces 222 include a fifth trace group 2221 connected to the second touch electrodes 212 at the third side T3, and the fifth trace group 2221 is close to the third side T3 along the third side T3.
  • the direction of the two sides T2 extends to the first wiring gathering area L1.
  • the second touch wire 222 further includes a sixth wire group 2222 connected to the second touch electrode 212 on the fourth side T4 , and the sixth wire group 2222 is close to the second touch electrode along the fourth side T4
  • the direction of the edge T2 extends to the second trace gathering area L2.
  • the fifth wiring group 2221 is located between the first wiring group 2211 and the third wiring group 2213 .
  • the sixth wire group 2222 is located between the second wire group 2212 and the fourth wire group 2214.
  • FIG. 2A is only an example, and the positions of the above-mentioned different wiring groups can also be interchanged, which is not limited in the present disclosure.
  • the first trace group 2211 is located between the fifth trace group 2221 and the third trace group 2213, or the third trace group 2213 is located between the first trace group 2211 and the third trace group 2213. Between five wiring groups 2221.
  • the second line group 2212 is located between the sixth line group 2222 and the fourth line group 2214, or the fourth line group 2214 is located between the second line group 2212 and the fourth line group 2214. Between six wiring groups 2222.
  • the space utilization rate of the first touch wire and the second touch wire is improved.
  • the touch control structure 20 further includes a binding area B, which is located on the lower side of the first wire gathering area L1 and the second wire gathering area L2 .
  • the first touch wire 221 and the second touch wire 222 are connected to the binding area B.
  • the first touch electrodes 211 can be used as signal transmission channels
  • the second touch electrodes 212 can be used as signal reception channels
  • the second touch electrodes 212 can be used as signal transmission channels
  • the first touch electrodes 211 can be used as signal reception channels. aisle.
  • the first touch electrodes 211 and/or the second touch electrodes 212 may be electrodes formed of metal meshes, and the materials of the first touch electrodes 211 and/or the second touch electrodes 212 It can be metal, such as silver (Ag), copper (Cu), and titanium, aluminum, and titanium three-layer metal stack (Ti/Al/Ti).
  • FIG. 2B is an enlarged schematic view of the structure of the G region in FIG. 2A , which schematically shows the structure at the intersection of the first touch electrodes 211 and the second touch electrodes 212 .
  • each first touch electrode 211 includes first touch electrode portions 2111 arranged in series along the Y direction
  • each second touch electrode 212 includes second touch electrodes 2111 arranged in series along the X direction.
  • Touch electrode part 2121 FIG. 2B only shows a part of each of the two first touch electrode parts 2111 and the two second touch electrode parts 2121 .
  • the outer contours of each of the first touch electrode portion 2111 and the second touch electrode portion 2121 are substantially rhombus-shaped. In other examples, the outer contours of the first touch electrode portion 2111 and the second touch electrode portion 2121 may also be other shapes, such as triangles, stripes, and the like.
  • the touch structure 20 further includes a first connection part 2112 and a second connection part 2122 , and the adjacent first touch electrode parts 2111 in the Y direction are electrically connected through the first connection part 2112 to form the first connection part 2112 .
  • a touch electrode 211, and the adjacent second touch electrode portions 2121 in the X direction are electrically connected to form the second touch electrode 212 through the second connection portion 2122.
  • FIG. 2B shows an enlarged schematic view of a touch control unit 200 . As shown in FIG.
  • each touch unit 200 includes each half area of the two first touch electrode parts 2111 adjacent to each other and each half area of the two second touch electrode parts 2121 adjacent to each other, that is, the average Including an area of the first touch electrode part 2111 and an area of the second touch electrode part 2121, the intersection of the first touch electrode part 2111 and the second touch electrode part 2121 in each touch unit 200 (also That is, the intersection of the first connecting portion and the second connecting portion) forms a reference point for calculating coordinates.
  • the coupling between the first touch electrode and the second touch electrode at the attachment point of the touch point is affected, thereby changing the mutual electricity between the two electrodes. capacity.
  • the coordinates of each touch point can be calculated based on the reference point.
  • the area of each touch unit 200 is equal to the area where a human finger contacts the touch panel. If the area of the touch unit is too large, it may cause touch blind spots on the panel, and if the area is too small, it may cause false touch signals.
  • the average side length of each touch unit 200 is S, which is called the pitch of the touch structure 20 .
  • the size range of the pitch S is about 3.7 mm-5 mm, for example, about 4 mm; this is because the diameter of a human finger in contact with the touch panel is about 4 mm.
  • the pitch is the same as the average side length of each first touch electrode portion 2111 and the average side length of each second touch electrode portion 2121 , and is also the same as that of the adjacent first touch electrode portions 2111 .
  • the center distance and the center distance of adjacent second touch electrode portions 2121 are the same.
  • the first touch electrode part 2111 and the second touch electrode part 2121 respectively include a main body part 241 and a plurality of interdigitated parts 242 protruding from the main body part 241 .
  • the first touch electrode part 2111 The plurality of interdigitated portions 242 of the adjacent second touch electrode portions 2121 are insulated in the same layer and arranged in a nested arrangement.
  • the edge of the diamond-shaped block has an interdigital structure, and two sides of the interdigital structure have gaps, and the gaps may be regular patterns or irregular patterns.
  • the interdigitated portion 242 can increase the perimeter of the first touch electrode portion 2111 and/or the second touch electrode portion 2121 under the condition that the touch electrode portion maintains the same area, so that the first touch electrode portion is not enlarged. And/or in the case of the self-capacitance (capacitive load) of the second touch electrode portion, the mutual capacitance can be effectively improved, thereby improving the touch sensitivity.
  • the shape of the body portion 241 may be a circle or a polygon (eg, a rectangle or a rhombus), and the shape of the interdigital portion 242 includes at least one of the following shapes: parallelogram (eg, rectangle), triangle, trapezoid, hexagon , semicircle; that is, the outer contour of the first touch electrode portion and/or the second touch electrode portion may be zigzag, wavy, or the like.
  • a plurality of interdigitated portions 242 are distributed on the periphery of the main body portion 241 of the first touch electrode portion and/or the second touch electrode portion.
  • the main body portion 241 is rectangular, and the number of interdigital portions 242 corresponding to each side is 3-10, for example, 6-10.
  • the main body portion may also be circular, and the plurality of interdigitated portions 242 are evenly distributed on the circumference of the circular shape.
  • At least one interdigitated portion 242 of the first touch electrode portion 2111 includes a first finger portion effective electrode 251 and a first finger portion dummy electrode 252 , the first finger portion dummy electrode 252 and the first finger portion dummy electrode 252
  • the finger portion effective electrodes 251 are insulated, and the first finger portion effective electrodes 251 are connected to the main body portion 241 of the first touch electrode portion 2111 .
  • the first finger effective electrode 251 is a part of the first touch electrode part 2111 that can be effectively electrically connected and play an effective detection role.
  • the first finger dummy electrode 252 is located inside the first finger effective electrode 251 .
  • the first finger dummy electrode 252 is completely surrounded by the first finger effective electrode 251; or the first finger dummy electrode 252 is partially surrounded by the first finger effective electrode 251, such as the first finger dummy electrode 251 At least one side of the electrode 252 may not be directly adjacent to the first finger effective electrode 251 , for example, at least one side of the first finger dummy electrode 252 may be adjacent to the main body portion 241 of the first touch electrode portion 2111 .
  • the first finger dummy electrodes 252 may also be connected to dummy electrodes located in the main body portion 241 of the first touch electrode portion 2111 . This embodiment of the present disclosure does not limit this.
  • the first finger portion dummy electrode 252 and the first finger portion effective electrode 251 are disposed in the same layer and insulated from each other. It is located in the hollow area and is spaced apart from the first finger effective electrode 251 .
  • the first finger dummy electrode 252 and the first finger effective electrode 251 respectively include a plurality of metal meshes, and the two are insulated from each other by the fractures on the metal wires.
  • disposed on the same layer in the present disclosure means that two or more structures are formed by the same film layer through the same or different patterning processes, and therefore the materials are the same.
  • the first finger dummy electrode 252 is spaced apart from the main body portion 241 .
  • the first finger dummy electrode 252 is in a floating state, that is, it is not electrically connected to other structures or does not receive any electrical signal.
  • the outer contour of the first finger dummy electrode 252 may be a regular shape (eg, a rectangle, a diamond, etc.) or an irregular shape.
  • the outer contour refers to a shape obtained by connecting the ends of the first finger dummy electrodes 252 with straight lines.
  • the present disclosure does not limit the structures of the first touch electrodes and the second touch electrodes.
  • the first touch electrodes 211 and/or the second touch electrodes 212 may also be a pattern formed by connecting a plurality of rectangular blocks, and the first touch electrodes 211 and/or the second touch electrodes 212
  • the material can be a transparent conductive material, such as ITO.
  • dummy electrodes may also be disposed inside the first touch electrode portion 2111 and/or the second touch electrode portion 2121 .
  • the dummy electrodes are insulated from the first touch electrode portion 2111 or the second touch electrode portion 2121 and are provided in the same layer and material.
  • the shape, size and outer contour of the dummy electrode can be made according to the design requirements.
  • the first touch traces 221 and the second touch traces 222 both include two layers of conductive traces.
  • the two layers of conductive traces of the first touch traces 221 overlap and are electrically connected to each other, and the two layers of conductive traces of the second touch traces 222 are also overlapped and electrically connected to each other.
  • the first touch trace and the second touch trace are connected in parallel by two layers of conductive traces, which can reduce signal attenuation on the touch trace and improve the touch effect.
  • the following description takes a cross-sectional view of the first touch trace as an example.
  • FIG. 3 is a schematic cross-sectional view of the first touch traces, showing three first touch traces 221 .
  • the touch control structure 20 further includes an interlayer dielectric layer 240 located between the two layers of conductive traces of the first touch traces 221 .
  • the interlayer dielectric layer 240 includes a plurality of first vias V1, and the two layers of the first touch traces 221 are electrically connected through the first vias V1.
  • the interlayer dielectric layer 240 can be an inorganic thin film, for example, the material thereof can be inorganic oxides such as SiN x , SiO x , SiC x N y , etc.
  • the first via hole V1 may be a via hole filled with titanium, aluminum, and a titanium three-layer metal stack (Ti/Al/Ti).
  • the cross-sectional structures of the second touch trace and the first touch trace are similar.
  • the two layers of the second touch traces are disposed on the same layer as the two layers of the first touch traces, that is, the interlayer dielectric layer 240 is also located between the two layers of conductive traces of the second touch traces 222 .
  • the two layers of the second touch traces 222 can also be electrically connected through the first via V1.
  • FIG. 4 is a schematic cross-sectional structure diagram of the first side T1 in FIG. 2A , showing the positional relationship between the two layers of the first touch traces 221 and the first touch electrodes 211 in a direction perpendicular to the touch structure.
  • the touch control structure 20 includes a touch grid layer 210 and a bridge layer 230 .
  • the grid patterns 2110 of the first touch electrodes 211 and the grid patterns 2120 of the second touch electrodes 212 are located on the touch grid layer 210 .
  • the grid pattern 2110 of the first touch electrodes 211 is a strip pattern composed of a plurality of rectangular grids, extending along the Y direction in FIG. 2A .
  • FIG. 4 is a schematic cross-sectional structure diagram of the first side T1 in FIG. 2A , showing the positional relationship between the two layers of the first touch traces 221 and the first touch electrodes 211 in a direction perpendicular to the touch structure.
  • the touch control structure 20 includes a touch grid layer 210
  • the grid pattern 2110 of the first touch electrodes 211 includes the first touch electrode parts 2111 .
  • the grid pattern 2120 of the second touch electrodes 212 is a strip pattern composed of a plurality of rectangular grids, extending along the X direction in FIG. 2A .
  • the grid pattern 2110 of the second touch electrodes 212 includes the second touch electrode parts 2121 .
  • the rectangular grids of the grid patterns 2110 of the first touch electrodes 211 or the grid patterns 2120 of the second touch electrodes 212 are disconnected at the intersections of the first touch electrodes 211 and the second touch electrodes 212 .
  • the bridging layer 230 includes bridging lines 231 configured to electrically connect the grid patterns 2110 of the first touch electrodes 211 or the second touch electrodes at intersections of the first touch electrodes 211 and the second touch electrodes 212 Grid pattern 2120 of 212.
  • the first connecting portion 2112 is located on the touch grid layer 210
  • the second connecting portion 2122 is located on the bridging layer 230
  • the second connecting portion 2122 can be used as the bridge wire 231
  • the second connecting portion 2122 is located on the touch grid layer 210
  • the first connection part 2112 is located on the bridge layer 230
  • the first connection part 2112 can be used as the bridge wire 231 .
  • the first touch electrodes 211 are disconnected at the intersections with the second touch electrodes 212 , the bridge layer 230 is provided with vias V, and the first touch electrodes 211 are located on both sides of the disconnection. They are respectively electrically connected to the bridge wires 231 through the via holes V, so as to realize the bridge function.
  • the second touch electrodes 212 may also be disconnected at the intersections with the first touch electrodes 211 , and the second touch electrodes 212 on both sides of the disconnection are electrically connected to the bridge lines 231 through vias V, respectively.
  • the bridge layer 230 is located between the touch mesh layer 210 and the substrate 10 .
  • the bridge layer 230 may also be located on the side of the touch grid layer 210 away from the substrate 10 . This disclosure does not limit this.
  • one of the two layers of the first touch traces 221 is located on the same layer as the bridge layer 230 , and the other layer is located on the same layer as the touch grid layer 210 .
  • the arrangement of the two layers of the second touch traces 222 can also refer to FIG. 4 .
  • One of the two layers of the second touch traces 222 is located on the same layer as the bridge layer 230 , and the other layer is located in the touch grid layer. 210 is on the same floor.
  • FIG. 2A shows eight regions R1 - R8 of the touch control structure 20
  • FIGS. 5 to 9 are respectively enlarged schematic structural diagrams of the regions R1 - R5 .
  • R2 for the structure of R6, reference to R5 for the structure of R7, and reference to R4 for the structure of R8, and the embodiments of the present disclosure will not be described in the accompanying drawings.
  • the first via holes V1 may be disposed at multiple positions of the first touch traces 221 and the second touch traces 222 .
  • FIGS. 5 , 8 and 9 respectively show the arrangement positions of some first via holes V1 .
  • the first vias V1 located between the two layers of conductive traces of the first touch traces 221 are arranged at intervals.
  • the first vias V1 located between the two layers of conductive traces of the second touch traces 222 are arranged at intervals.
  • the distance between adjacent first vias located between the two layers of conductive traces of the first touch trace 221 D may be about 500-1000 ⁇ m, and the distance between the adjacent first vias V1 between the two layers of conductive traces of the second touch traces 222 is about 500-1000 ⁇ m.
  • the upper and lower end points of the distance D are not strictly required to be 500 ⁇ m and 1000 ⁇ m, for example, the end values of 500 ⁇ m and 1000 ⁇ m can fluctuate by 10%.
  • the distance D between adjacent first vias is not limited to about 500-1000 ⁇ m, and its value can be determined according to actually needs to be set.
  • each of the first via holes V1 is in the shape of a long strip extending along the extending direction of the corresponding touch trace.
  • the adjacent first vias V1 located on different touch traces are arranged along a roughly oblique line, and the oblique line intersects the X direction and the Y direction respectively. Such arrangement is beneficial to prevent static electricity from being generated between adjacent first via holes.
  • the number and position of the first vias V1 can be set according to the spatial position on the touch trace, which is not limited in the present disclosure.
  • the first wiring group 2211 and the second wiring group 2212 respectively include only one first touch wiring 221 , which do not represent the first wiring group at the first side T1
  • the touch structure 20 further includes a shielding wire 261 located on a side of the first touch wire 221 and the second touch wire 222 away from the touch area T.
  • the shielding wire 261 is disposed around the first touch wire 221 and the second touch wire 222 and is close to the outermost sides of the first touch wire 221 and the second touch wire 222 .
  • the shielded wire can shield external signal interference to the first touch wire and the second touch wire, thereby improving touch performance.
  • the touch structure further includes a ground wire 262 located on a side of the shield wire 261 away from the touch area T.
  • the ground wire 262 is disposed around the first touch wire 221 and the second touch wire 222 .
  • the ground lines 262 may be provided in plural.
  • the ground wire can be connected to the circuit board in the binding area. The ground wire can shield the signal interference of the first touch wire and the second touch wire from external static electricity, thereby improving the touch performance.
  • the touch control structure further includes dummy lines 264 .
  • Dummy lines 264 may be provided in areas without metal traces.
  • An embodiment of the present disclosure further provides a touch display substrate.
  • the touch display substrate includes the touch control structure 20 provided in any of the above embodiments, and a display substrate 30 .
  • the display substrate includes a display area A and a peripheral area P surrounding the display area A.
  • the display area A overlaps with the touch area T of the touch structure 20
  • the peripheral area P overlaps with the peripheral area P of the touch structure 20 .
  • FIG. 10 is a schematic cross-sectional structure diagram of the display area of the touch display substrate.
  • the display substrate 30 includes at least one organic light-emitting element 520 and an encapsulation layer 700 , and the touch control structure 20 is formed on the encapsulation layer 700 .
  • the display substrate and the touch control structure can be integrated together. Therefore, the FMLOC (Flexible Multiple Layer On Cell) touch technology came into being.
  • the FMLOC touch technology is to directly fabricate various electrode layers and various traces of the touch structure on the packaging layer, so as to integrate the touch structure in the display. on the substrate. Therefore, the display device using the FMLOC touch technology can not only realize the lightness and thinness of the display device, but also realize the touch function based on the flexible display.
  • the touch display substrate provided by the embodiments of the present disclosure includes the FMLOC touch technology.
  • the display substrate 30 includes a base substrate 100 , and the base substrate 100 may be a flexible substrate, for example, polyimide (PI), but not limited thereto.
  • PI polyimide
  • each organic light emitting element 520 has a corresponding switching element 540 to control the organic light emitting element 520 to be turned on or off.
  • the switching element 540 is a thin film transistor 540 located in the pixel driving circuit layer 31 .
  • the thin film transistor 540 includes an active layer 543 on the base substrate 100, a gate 544 on the side of the active layer 543 away from the base substrate 100, and a source and drain 541 on the side of the gate 544 away from the base substrate.
  • the display substrate 30 further includes connection electrodes 580 .
  • the connection electrode is located between the thin film transistor and the light-emitting element, and is electrically connected to the drain of the thin-film transistor and the light-emitting element, respectively.
  • the display substrate 30 further includes a power supply line 550 , which is electrically connected to the anode 522 or the cathode 523 and is used to provide a driving voltage for the electroluminescent layer.
  • the power line 550 may be located on the same layer as the connection electrode 580 .
  • the organic light-emitting element 520 is located on the side of the thin film transistor 540 away from the base substrate 100 .
  • Each organic light-emitting element 520 includes an anode 522, an electroluminescent layer 521 and a cathode 523 stacked in a direction perpendicular to the substrate.
  • the electroluminescent layer 521 is located between the anode 522 and the cathode 523. Glows under the action.
  • the anodes 522 of each light-emitting element are insulated from each other.
  • the cathodes 523 of each light-emitting element are connected to each other to form a continuous cathode layer.
  • the anode 522 can act as a pixel electrode so that the brightness of each light-emitting element can be independently controlled for display.
  • the first touch electrodes 211 and the second touch electrodes 212 at least partially overlap with the cathodes 523 .
  • the cathode 523 can shield the signal interference of the pixel driving circuit layer 31 to the touch electrodes, so as to improve the touch performance.
  • the active layer of the thin film transistor 540 includes a source region and a drain region, and a channel region between the source region and the drain region.
  • the thin film transistor 540 includes a source electrode and a drain electrode 541, and the source electrode and the drain electrode are respectively electrically connected to the source electrode region and the drain electrode region through a via hole.
  • the gate electrode overlaps with a channel region located between the source region and the drain region in the active layer in a direction perpendicular to the base substrate 100 .
  • the display substrate 30 further includes a first planarization layer 570 located above the source and drain electrodes 541 for planarizing the surface of the thin film transistor on the side away from the base substrate.
  • the connection electrode 580 is formed on the first planarization layer 570 and overlaps the anode 522 in a direction perpendicular to the base substrate.
  • the display substrate 30 further includes a second planarization layer 590 located between the anode 522 and the connection electrode 580 for planarizing the side of the connection electrode 580 away from the base substrate. surface.
  • the connection electrode 580 is electrically connected to the source and drain electrodes 541 through the via hole, and the anode 522 is electrically connected to the connection electrode 580 through the via hole, so as to realize the electrical connection between the anode electrode 522 and the source drain electrode 541 .
  • the connection electrodes can avoid directly forming straight through holes with relatively large diameters in the first planarization layer and the second planarization layer, thereby improving the quality of the electrical connection of the through holes.
  • the display substrate 30 further includes a first buffer layer 130 located between the base substrate 100 and the active layer 543 .
  • the display substrate further includes a passivation layer 620 located between the first planarization layer 570 and the source and drain electrodes 541 .
  • the display substrate 30 may not include the connection electrode 580 and the second planarization layer 590, and the anode 522 and the source and drain electrodes 541 are electrically connected through via holes. In some embodiments, the display substrate 30 may not include the passivation layer 620 .
  • the material of the anode 522 may include at least one transparent conductive oxide material including indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), and the like.
  • the anode 522 may include a metal having high reflectivity, such as silver (Ag), as a reflective layer.
  • the material of the electroluminescent layer 521 may include small molecular organic materials or polymer molecular organic materials, may be fluorescent light-emitting materials or phosphorescent light-emitting materials, may emit red light, green light, blue light, or may emit white light; and, according to It is required that the electroluminescent layer may further include functional layers such as an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer.
  • cathode 523 may include various conductive materials.
  • the cathode 523 may include metallic materials such as lithium (Li), aluminum (Al), magnesium (Mg), silver (Ag).
  • the display substrate 30 further includes an encapsulation layer 700 covering the organic light-emitting element 520 .
  • the encapsulation layer 700 seals the organic light emitting element 520 so that deterioration of the organic light emitting element 520 caused by moisture or oxygen included in the environment can be reduced or prevented.
  • the encapsulation layer 700 may be a single-layer structure or a composite-layer structure, and the composite-layer structure includes a structure in which an inorganic layer and an organic layer are stacked.
  • the encapsulation layer 700 includes a first inorganic encapsulation layer 710 , an organic encapsulation layer 720 and a second inorganic encapsulation layer 730 which are stacked in sequence.
  • the materials of the first inorganic encapsulation layer and the second inorganic encapsulation layer may include insulating materials such as silicon nitride, silicon oxide, silicon oxynitride, and polymer resin.
  • Inorganic materials such as silicon nitride, silicon oxide, and silicon oxynitride have high compactness and can prevent the intrusion of water and oxygen;
  • the material of the organic encapsulation layer can be a polymer material containing a desiccant or a polymer material that can block water vapor, etc. , such as polymer resin, etc.
  • the display substrate to planarize the surface of the display substrate, and can relieve the stress of the first inorganic encapsulation layer and the second inorganic encapsulation layer, and can also include water-absorbing materials such as desiccants to absorb the water intruding inside, substances such as oxygen.
  • water-absorbing materials such as desiccants to absorb the water intruding inside, substances such as oxygen.
  • the first inorganic encapsulation layer and the second inorganic encapsulation layer can be fabricated by a chemical vapor deposition (Chemical Vapor Deposition, CVD) method, and the organic encapsulation layer can be fabricated by an ink jet printing (Ink Jet Printing, IJP) method.
  • CVD Chemical Vapor Deposition
  • IJP Ink Jet Printing
  • the display substrate 30 further includes a second buffer layer 740 located on a side of the second inorganic encapsulation layer 730 away from the base substrate 100 .
  • the display substrate further includes an insulating layer 750 located on a side of the second buffer layer 740 away from the base substrate 100 .
  • the insulating layer 750 may be a silicon nitride layer.
  • the insulating layer 750 may function to planarize.
  • the display substrate does not include the insulating layer 750 .
  • the display substrate further includes a protective layer 800 located on a side of the touch control structure 20 away from the base substrate 100 .
  • the protective layer 800 can protect the touch structure 20 .
  • the structure of the display substrate described above in conjunction with FIG. 10 is exemplary, and the touch control structure of the embodiment of the present disclosure may be formed on any suitable type of display substrate to form a touch display substrate.
  • FIG. 11 is a schematic diagram of the circuit principle of the display substrate.
  • the display substrate 30 includes a plurality of display devices L (ie, the organic light-emitting elements 520 in FIG. 10 ) located in the display area A, and pixel circuits 110 coupled to each display device L in a one-to-one correspondence.
  • 110 includes a drive transistor.
  • the display substrate may further include a plurality of voltage control circuits 120 located in the peripheral region P. As shown in FIG.
  • At least two pixel circuits 110 in a row share a voltage control circuit 120, and the first electrodes of the driving transistors in the pixel circuits 110 of a row are coupled to the shared voltage control circuit 120, and the second electrodes of each driving transistor are connected to the corresponding display Device L is coupled.
  • the voltage control circuit 120 is configured to output the initialization signal Vinit to the first electrode of the driving transistor in response to the reset control signal RE, to control the corresponding display device L to be reset; and to output the first power supply signal VDD in response to the light emission control signal EM to the first electrode of the driving transistor to drive the display device L to emit light.
  • the display substrate may further include a second power supply signal VSS located in the display area for inputting the second power supply signal to the display device L.
  • each voltage control circuit 120 is not completely the same, and the lighting control signals EM corresponding to each voltage control circuit 120 are also not completely different.
  • the structure of each pixel circuit in the display area A can be simplified, and the occupied area of the pixel circuit in the display area A can be reduced, so that more pixel circuits and display devices can be set in the display area A, and a high PPI can be realized.
  • Organic light emitting display substrate
  • the voltage control circuit 120 outputs the initialization signal Vinit to the first electrode of the driving transistor under the control of the reset control signal RE, and controls the corresponding display device to reset, so as to avoid the voltage pair applied to the display device when the previous frame emits light. The effect of the next frame's light emission, thereby improving the afterimage phenomenon.
  • the first power supply signal VDD is transmitted to the anode 522 of the organic light emitting element 520 through the drain electrode 541 of the thin film transistor 540 shown in FIG. 10
  • the second power supply signal VSS is passed through the power supply line shown in FIG. 10
  • 550 is transmitted to the cathode 523 of the organic light emitting element 520 .
  • FIG. 12 is a schematic plan view of the touch display substrate.
  • the touch display substrate further includes a binding area B, which is located on the side of the second side T2 away from the touch area T, and the first touch traces 221 and the second touch traces 222 are located on the first and second sides respectively.
  • the wiring convergence area L1 and the second wiring convergence area L2 are connected to the binding area B after being converged.
  • the binding area B includes the touch driving chip 40 .
  • the first touch wiring 221 and the second touch wiring 222 are connected to the touch driving chip 40 located in the binding area B.
  • the touch driving chip 40 includes a plurality of pins, each pin may correspond to a contact pad, and the first touch wiring 221 and the second touch wiring 222 are connected to the touch driving chip 40 through the contact pad.
  • the touch display substrate is a bendable display substrate, and further includes a bendable area C, located between the touch area T and the binding area B, or, along the Y direction, bendable The area C is located between the first wire gathering area L1 and the second wire gathering area L2 and the binding area B.
  • the touch display substrate further includes a wiring transition area F located between the bendable area C and the binding area B.
  • the routing directions of the first touch traces 221 and the second touch traces 222 in the trace transition area F may be changed to a certain extent so as to be connected to the pins of the touch driving chip 40 in the binding area.
  • the value range of the included angle ⁇ is 30°-90°.
  • FIG. 13 is a partial enlarged schematic view of the bendable area C
  • FIG. 14 is a schematic cross-sectional structural diagram of the bendable area along the direction E-E in FIG. 13 .
  • the bendable area C does not include the first touch traces 221 and the second touch traces 222 , or in other words, the first touch traces 221 and the second touch traces 222 are bendable Break at fold C.
  • the first touch traces 221 are disconnected in the bendable area C to form a first end 221a close to the touch area T and a second end 221b close to the binding area B.
  • the control wire 222 is disconnected at the bendable area C to form a first end 222a close to the touch area T and a second end 222b close to the binding area B.
  • the bendable area C includes a first metal connection portion 541 and a second via V2 located at different layers from the first touch traces 221 and the second touch traces 222 .
  • the first metal connection portion 541 includes a plurality of metal traces. String.
  • each first touch trace 221 and the first end 222a of each second touch trace 222 are on the side of the bendable area C close to the touch area T (ie, close to the first trace (one side of the line gathering area L1) are respectively electrically connected to one metal trace of the first metal connection portion 541 through the second via hole V2, the second end 221b of each first touch trace 221 and each second contact
  • the second ends 222b of the control traces 222 are electrically connected to a metal trace of the first metal connection portion 541 through the second vias V2 on the side of the bendable area C close to the binding area B, respectively.
  • FIG. 14 shows that the two layers of conductive traces of the first touch traces 221 have the same length at the first end 221a and the second end 221b, and the second via V2 is electrically connected to the conductive traces on the lower layer.
  • FIG. 14 is only an example, and embodiments of the present disclosure are not limited thereto.
  • the conductive trace on the upper layer of the two layers of the first touch trace 221 exceeds the conductive trace on the upper layer.
  • the second via holes V2 are electrically connected to the conductive traces on the upper layer.
  • FIG. 14 and FIG. 15 show that the touch display substrate further includes a dam 900 , which is disposed in the peripheral region P.
  • the dam 900 may be formed by stacking the first planarization layer 570 , the second planarization layer 590 , and the pixel defining layer 510 as shown in FIG. 10 .
  • the dam 900 can be disposed around the touch area T (ie, the display area), so as to prevent the organic light-emitting material in the display area from flowing out.
  • the first touch traces 221 and the second touch traces 222 can be connected from the touch area T to the bendable area C through the barrier dam 900 .
  • the first metal connection portion 541 and the source and drain electrodes 541 of the thin film transistor are located in the same layer, but the first metal connection portion 541 is not connected to the source and drain electrodes 541 of the thin film transistor. In this way, the number of metal layers of the touch display substrate can be reduced, thereby saving the manufacturing process.
  • the bendable region C includes a second metal connection portion 544 and a third via V3 located at a different layer from the first metal connection portion 541 .
  • the second metal connection portion 544 is located on the same layer as the gate electrode 544 of the thin film transistor, but the second metal connection portion 544 is not connected to the gate electrode 544 of the thin film transistor.
  • the first metal connecting portion 541 is disconnected into two parts at the position corresponding to the second metal connecting portion 544 , and the two disconnected parts of the first metal connecting portion 541 pass through the first metal connecting portion 541 respectively.
  • the three vias V3 are electrically connected to the second metal connection portion 544 .
  • the second metal connection portion 544 also includes a plurality of metal wires, and the plurality of metal wires of the second metal connection portion 544 are in one-to-one correspondence with the plurality of metal wires of the first metal connection portion 541 and are electrically connected. In this way, the stress concentration inside the bendable region C can be reduced, thereby improving the service life of the touch display substrate.
  • the first metal connection portion 541 includes an opening 5411 along a layer perpendicular to the layer where the first metal connection portion 541 is located.
  • the opening 5411 in the first metal connecting portion 541 the thickness of the first metal connecting portion 541 located in the bendable region C can be reduced, thereby further reducing the stress concentration inside the bendable region C, and improving the touch display substrate. service life.
  • the power line 550 of the touch display substrate is located in the line transition area F.
  • the first touch traces 221 and the second touch traces 222 overlap with at least part of the power traces 550 in the trace transition region F.
  • the signal interference from the pixel driving circuit layer can be reduced through the power line 550, thereby improving the touch performance of the touch display substrate.
  • the touch display substrate further includes a detection line 263 , which is located on a side of the ground line 262 away from the touch area T.
  • the detection line 263 is disposed around the first touch wiring 221 and the second touch wiring 222 .
  • the sense wires can be connected to the circuit board located in the bond area.
  • the detection line is used to detect cracks in the touch display substrate.
  • An embodiment of the present disclosure further provides a touch display device including the touch display substrate provided in any of the above embodiments.
  • the touch display device includes an FMLOC touch display substrate, but is not limited thereto.
  • the touch display device may be a display device such as a liquid crystal display, an electronic paper, an OLED (Organic Light-Emitting Diode, organic light-emitting diode) display, as well as a TV, digital camera, mobile phone, watch, tablet computer, notebook computer, navigation device including these display devices. Any product or component with touch and display functions, such as an instrument.
  • An embodiment of the present disclosure further provides a manufacturing method of the touch control structure as shown in FIG. 2A .
  • the manufacturing method includes: forming the touch structure 20 on the substrate 101 .
  • the touch structure 20 includes a touch area T and a peripheral area P surrounding the touch area T.
  • the touch area T includes opposite first and second sides T1 and T2, and opposite third and fourth sides T3 and T4.
  • the touch structure 20 further includes a first touch electrode 211 and a second touch electrode 212 which are intersected and insulated from each other, and are located in the touch area T.
  • the touch structure 20 further includes a first touch trace 221 and a second touch trace 222 located in the peripheral region P. As shown in FIG.
  • the first touch traces 221 are connected to the first touch electrodes 211 on the first side T1 and the second side T2 respectively; the second touch traces 222 are connected to the second touch electrodes on the third side T3 and the fourth side T4 respectively Electrode 212 is connected.
  • the first touch traces 221 and the second touch traces 222 of the touch structure 20 both include two layers of conductive traces, and the two layers of conductive traces of the first touch traces 221 intersect with each other. Stacked and electrically connected, the two layers of conductive traces of the second touch traces 222 are overlapped and electrically connected to each other.
  • forming the touch control structure 20 on the substrate 101 includes:
  • the bridging layer 230 includes a bridging wire 231 and a layer of conductive wires of the first touch wire 221 and the second touch wire 222 .
  • the interlayer dielectric layer 240 includes a plurality of first via holes V1.
  • the touch grid layer 210 includes grid patterns of the first touch electrodes 211 and the second touch electrodes 212 , and another layer of conductive traces of the first touch traces 221 and the second touch traces 222 .
  • the grid patterns 2110 of the first touch electrodes 211 or the grid patterns 2120 of the second touch electrodes 212 are electrically connected through the bridge wires 231 , and the conductive wires of the two layers of the first touch wires 221 are electrically connected through the first vias V1 .
  • the conductive traces of the two layers of the second touch traces 222 are electrically connected through the first via V1.
  • the substrate 101 can be the encapsulation layer 700 .
  • the formation order of the bridge layer 230 and the touch grid layer 210 may be interchanged, that is, the bridge layer 230 may be formed on the substrate 101 after the touch grid layer 210 is formed on the substrate 101 .
  • the above manufacturing method further includes: forming an insulating layer 750 on the substrate 101 before forming the bridging layer 230 on the substrate 101 .
  • the above manufacturing method further includes: forming a protective layer 800 on the touch grid layer 210 .
  • the manufacturing method of the touch control structure provided by the embodiment of the present disclosure can be used to manufacture the touch control structure provided by any of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控结构、触控显示基板和触控显示装置。该触控结构(20)包括触控区(T)和围绕触控区(T)的周边区(P)、相互交叉且相互绝缘的第一触控电极(211)和第二触控电极(212),以及相互绝缘的第一触控走线(221)和第二触控走线(222)。触控区(T)包括相对的第一边(T1)和第二边(T2)、以及相对的第三边(T3)和第四边(T4)。第一触控电极(211)和第二触控电极(212)位于触控区(T)。第一触控走线(221)和第二触控走线(222)位于周边区(P)。第一触控走线(221)分别在第一边(T1)和第二边(T2)与第一触控电极(211)连接,第二触控走线(222)分别在第三边(T3)和第四边(T4)与第二触控电极(212)连接。该触控结构可以应用于大尺寸触控显示面板中,以提高信号传输速度,从而提高刷新频率和信号均一性。

Description

触控结构、触控显示基板和触控显示装置
本申请要求于2020年9月8日递交的第202010934004.2号中国专利申请的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种触控结构、触控显示基板和触控显示装置。
背景技术
随着触控显示技术的发展,电容式触摸屏已经在有机发光二极管(OLED)显示装置中得到了广泛的应用。
电容式触摸屏分为互电容式触摸屏和自电容式触摸屏。在互电容式触摸屏中,通常在基板表面制作横向电极与纵向电极,在横向电极和纵向电极交叉的地方会形成电容器。当手指触摸到屏幕时,影响了触摸位置附近两个电极之间的耦合,从而改变了这两个电极之间的电容大小,根据电容的变化情况,可以计算出触摸位置的坐标。
发明内容
本公开一实施例提供一种触控结构,包括:触控区和围绕所述触控区的周边区,所述触控区包括相对的第一边和第二边、以及相对的第三边和第四边;相互交叉且相互绝缘的第一触控电极和第二触控电极,位于所述触控区;以及第一触控走线和第二触控走线,位于所述周边区。其中,所述第一触控走线分别在所述第一边和所述第二边与所述第一触控电极连接;所述第二触控走线分别在所述第三边和所述第四边与所述第二触控电极连接。
在一些示例中,所述触控结构还包括第一走线汇聚区和第二走线汇聚区,所述第一走线汇聚区和所述第二走线汇聚区位于所述第二边远离所述第一边的一侧,在所述第二边的延伸方向,所述第一走线汇聚区和所述第二走线汇聚区位于所述第三边和所述第四边之间,且所述第二走线汇聚区位于所述第一走线汇聚区远离所述第三边的一侧,部分所述第一触控走线和部分所述第二触控走线延伸到所述第一走线汇聚区,另一部分所述第一触控走线和另一部分所述 第二触控走线延伸到所述第二走线汇聚区。
在一些示例中,所述第一触控走线包括:在所述第一边与所述第一触控电极连接的第一走线组和第二走线组,所述第一走线组和所述第二走线组在所述第一边的大致中间位置分隔开,所述第一走线组从所述第三边的一侧延伸至所述第一走线汇聚区;所述第二走线组从所述第四边的一侧延伸至所述第二走线汇聚区;以及在所述第二边与所述第一触控电极连接的第三走线组和第四走线组,所述第三走线组和所述第四走线组在所述第二边的大致中间位置分隔开,所述第三走线组延伸至所述第一走线汇聚区;所述第四走线组延伸至所述第二走线汇聚区。
在一些示例中,所述第二触控走线包括:在所述第三边与所述第二触控电极连接的第五走线组,所述第五走线组从所述第三边所在的一侧延伸至所述第一走线汇聚区;以及在所述第四边与所述第二触控电极连接的第六走线组,所述第六走线组从所述第四边所在的一侧延伸至所述第二走线汇聚区。
在一些示例中,在所述第一走线汇聚区,所述第五走线组位于所述第一走线组和所述第三走线组之间;在所述第二走线汇聚区,所述第六走线组位于所述第二走线组和所述第四走线组之间。
在一些示例中,所述第一触控走线和所述第二触控走线均包括两层导电走线,所述第一触控走线的两层导电走线相互交叠且电连接,所述第二触控走线的两层导电走线相互交叠且电连接。
在一些示例中,所述触控结构还包括层间介质层,位于所述第一触控走线的两层导电走线之间和所述第二触控走线的两层导电走线之间,所述层间介质层包括多个第一过孔,两层所述第一触控走线的导电走线通过所述第一过孔电连接,两层所述第二触控走线的导电走线通过所述第一过孔电连接。
在一些示例中,在所述第一触控走线或所述第二触控走线的延伸方向,位于所述第一触控走线的两层导电走线之间的所述第一过孔间隔排列,位于所述第二触控走线的两层导电走线之间的所述第一过孔间隔排列。
在一些示例中,在所述第一触控走线或所述第二触控走线的延伸方向,位于所述第一触控走线的两层导电走线之间的相邻的所述第一过孔之间的距离为约500-1000μm,位于所述第二触控走线的两层导电走线之间的相邻的所述第一过孔之间的距离为约500-1000μm。
在一些示例中,所述第一触控电极和所述第二触控电极包括位于触控网格 层的网格图案和位于桥接层的桥接线,所述桥接线被配置为在所述第一触控电极和所述第二触控电极的交叉处电连接所述第一触控电极的所述网格图案或所述第二触控电极的所述网格图案,两层所述第一触控走线的导电走线中的一层位于所述桥接层,另一层位于所述触控网格层;两层所述第二触控走线的导电走线中的一层位于所述桥接层,另一层位于所述触控网格层。
在一些示例中,所述触控结构还包括屏蔽线,位于所述第一触控走线和所述第二触控走线远离所述触控区的一侧。
在一些示例中,所述触控结构还包括接地线,位于所述屏蔽线远离所述触控区的一侧。
本公开一实施例还提供一种触控显示基板,包括上述任一项所述的触控结构,以及显示基板。其中,所述显示基板包括有机发光元件以及封装层,所述触控结构位于所述封装层上。
在一些示例中,所述触控显示基板还包括绑定区,位于所述第二边远离所述触控区的一侧,所述第一触控走线和所述第二触控走线连接至所述绑定区。
在一些示例中,所述触控显示基板还包括可弯折区,位于所述触控区与所述绑定区之间。其中,所述第一触控走线和所述第二触控走线至少之一在所述可弯折区断开以形成靠近所述触控区的第一端和靠近所述绑定区的第二端,所述可弯折区包括与所述第一触控走线和所述第二触控走线位于不同层的第一金属连接部和第二过孔,所述第一端和所述第二端分别通过所述第二过孔与所述第一金属连接部连接。
在一些示例中,所述触控显示基板还包括像素驱动电路层,所述像素驱动电路层包括薄膜晶体管,所述薄膜晶体管包括源漏极和栅极,所述第一金属连接部与所述薄膜晶体管的源漏极位于同一层。
在一些示例中,所述可弯折区包括与所述第一金属连接部位于不同层的第二金属连接部和第三过孔,所述第二金属连接部与所述薄膜晶体管的栅极位于同一层,在所述可弯折区,所述第一金属连接部在对应所述第二金属连接部的位置断开为两部分,所述第一金属连接部断开的两部分分别通过所述第三过孔与所述第二金属连接部电连接。
在一些示例中,所述第一金属连接部包括沿垂直于所述第一金属连接部所在的层的开孔。
在一些示例中,所述有机发光元件包括依次层叠设置的阳极、电致发光层 和阴极,所述第一触控电极和所述第二触控电极均与所述阴极至少部分交叠。
在一些示例中,所述触控显示基板还包括走线过渡区,位于所述可弯折区与所述绑定区之间;电源线,与所述阳极或所述阴极电连接,至少部分所述电源线位于所述走线过渡区,所述第一触控走线和所述第二触控走线与位于所述走线过渡区的至少部分所述电源线交叠。
在一些示例中,所述触控显示基板还包括检测线,位于所述接地线远离所述触控区的一侧。
本公开一实施例还提供一种触控显示装置,包括上述任一项所述的触控显示基板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种触控结构的示意图;
图2A为根据本公开一实施例的触控结构的示意图;
图2B为图2A中G区域的放大结构示意图;
图3为根据本公开一实施例的第一触控走线的剖面示意图;
图4为图2A中第一边T1处的剖面结构示意图;
图5为图2A中R1区域的放大结构示意图;
图6为图2A中R2区域的放大结构示意图;
图7为图2A中R3区域的放大结构示意图;
图8为图2A中R4区域的放大结构示意图;
图9为图2A中R5区域的放大结构示意图;
图10为根据本公开一实施例的触控显示基板的显示区的剖面结构示意图;
图11为根据本公开一实施例的显示基板的电路原理示意图;
图12为根据本公开一实施例的触控显示基板的平面结构示意图;
图13为图12中可弯折区C的局部放大示意图;
图14为触控显示基板的可弯折区C的沿图13中E-E方向的剖面结构示意图;以及
图15为又一触控显示基板的可弯折区C的沿图13中E-E方向的剖面结构 示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1为一种触控结构的示意图。如图1所示,触控结构10包括触控电极11和触控走线12。触控电极11位于触控区T,包括相互绝缘的多条第一触控电极111和多条第二触控电极112。第一触控电极111和第二触控电极112交叉设置。如图所示,第一触控电极111沿Y方向延伸,第二触控电极112沿X方向延伸,X方向和Y方向相交。触控走线12位于周边区P(例如围绕触控区T),包括多条第一触控走线121和多条第二触控走线122。第一触控走线121与第一触控电极111连接,第二触控走线122与第二触控电极112连接。
如图1所示,每个第一触控电极111的上下两端分别与一条第一触控走线121连接,并且每个第二触控电极112的左端与一条第二触控走线122连接。触控结构10还包括绑定区B,位于触控区T的下侧,绑定区B包括触控驱动芯片13。第一触控走线121和第二触控走线122连接到触控驱动芯片13。第一触控电极111可以作为信号发射通道,第二触控电极112可以作为信号接收通道,以实现触控功能。
然而,在折叠屏等大尺寸触控显示面板中,由于触控走线的长度较长,其 上的信号衰减较为严重,从而影响触控显示面板的刷新频率和信号均一性,因此,上述触控结构已经无法满足大尺寸触控显示面板对触控性能的要求。
本公开的实施例提供一种触控结构及其制造方法、触控显示基板和触控显示装置。该触控结构包括触控区和围绕触控区的周边区、相互交叉且相互绝缘的第一触控电极和第二触控电极,以及相互绝缘的第一触控走线和第二触控走线。触控区包括相对的第一边和第二边、以及相对的第三边和第四边。第一触控电极和第二触控电极位于触控区。第一触控走线和第二触控走线位于周边区。第一触控走线分别在第一边和第二边与第一触控电极连接,第二触控走线分别在第三边和第四边与第二触控电极连接。该触控结构可以应用于大尺寸触控显示面板中,以提高信号传输速度,从而提高刷新频率和信号均一性。
例如,该触控结构可以应用于大尺寸的折叠屏。例如,如图1所示,折叠屏的对角线长度大于8寸,其长宽比大约为8:7。根据折叠需要,其折叠轴可以平行于X方向且位于面板的中心轴线附近,其折叠轴也可以平行于Y方向且位于面板的中心轴线附近。本文中的“大约”或“约”实质上是指不严格限定界限,允许工艺和测量误差范围内的数值。在一些实施例中,折叠屏的长宽比为8:7。
下面结合附图,对本公开实施例提供的触控结构及其制造方法、触控显示基板和触控显示装置进行描述。
本公开一实施例提供一种触控结构,图2A为该触控结构的示意图。如图2A所示,该触控结构20包括触控区T和围绕触控区T的周边区P、相互交叉且相互绝缘的第一触控电极211和第二触控电极212,以及相互绝缘的第一触控走线221和第二触控走线222。触控区T包括相对的第一边T1和第二边T2、以及相对的第三边T3和第四边T4。第一触控走线221和第二触控走线222位于周边区P。第一触控走线221分别在第一边T1和第二边T2与第一触控电极211连接,第二触控走线222分别在第三边T3和第四边T4与第二触控电极212连接。
例如,第一边T1与第二边T2彼此平行,第三边T3和第四边T4彼此平行。第一边T1和第二边T2的延伸方向与第三边T3和第四边T4的延伸方向彼此相交,例如,彼此垂直。
相比于图1所示的触控结构10,该触控结构20的第一触控电极和第二触控电极均可以在两端连接有触控走线,如此,可以提高触控信号传输速度,从 而提高刷新频率和信号均一性。例如,采用了该触控结构的触控显示面板的刷新率可提高10%以上。
例如,第一触控走线221和第二触控走线222的材料可以包括金属材料或者合金材料,可以为单层金属或多层金属叠层。例如第一触控走线221和第二触控走线222均可以采用钛、铝及钛三层金属叠层(Ti/Al/Ti)制备。
例如,第一触控电极211、第二触控电极212、第一触控走线221和第二触控走线222的数量均可以为一个或多个。本公开的实施例以第一触控电极211、第二触控电极212、第一触控走线221和第二触控走线222的数量均为多个为例进行描述。为了简化附图,图2A中示意性的示出了部分触控电极和触控走线。
例如,如图2A所示,第一触控电极211沿Y方向延伸,第二触控电极212沿X方向延伸,X方向和Y方向相交。需要说明的是,第一触控电极211和第二触控电极212也可以分别沿与X和Y方向均有一定夹角的方向延伸。
例如,上述第一边T1和第二边T2沿X方向延伸,上述第三边T3和第四边T4沿Y方向延伸。
例如,如图2A所示,触控结构20包括第一走线汇聚区L1和第二走线汇聚区L2。第一走线汇聚区L1和第二走线汇聚区L2位于第二边T2远离第一边T1的一侧,在第二边T2的延伸方向,第一走线汇聚区L1和第二走线汇聚区L2位于第三边T3和第四边T4之间,且第二走线汇聚区L2位于第一走线汇聚区L1远离第三边T3的一侧。在一些示例中,在第二边T2的延伸方向上,第一走线汇聚区L1位于第二边T2靠近第三边T3的端部与第二边T2的大致中间位置之间,第二走线汇聚区L2位于第二边T2靠近第四边T4的端部与第二边T2的大致中间位置之间。
如图2A所示,部分第一触控走线221和部分第二触控走线222延伸到第一走线汇聚区L1,另一部分第一触控走线221和另一部分第二触控走线222延伸到第二走线汇聚区L2。
需要说明的是:第二边T2靠近第三边T3的端部是指第二边T2与第三边T3的交点;第二边T2的大致中间位置是指第二边的大致中点处,但不限于绝对的中点,在第二边T2的大致中间位置,第一触控走线221分别向左右两侧汇聚。例如,图2A示出了9条沿Y方向延伸的第一触控电极211,在位于第二边T2一侧的第一触控走线221中,左侧4条第一触控走线221汇聚到第一 走线汇聚区L1,右侧5条第一触控走线221汇聚到第二走线汇聚区L2,此时,第二边T2的大致中间位置位于第4条第一触控走线221的下端与第5条第一触控走线221的下端之间。图2A仅为一种示例,本公开的实施例不限于此。例如,第二边T2的大致中间位置也可以位于第3条第一触控走线221的下端与第4条第一触控走线221的下端之间。或者,第一触控电极211的数量可以大于或小于9个。
例如,如图2A所示,第一触控走线221包括在第一边T1与第一触控电极211连接的第一走线组2211和第二走线组2212。第一走线组2211和第二走线组2212在第一边T1的大致中间位置分隔开。如图2A所示,第一走线组2211位于第一边T1的大致中间位置的左侧,第二走线组2212位于第一边T1的大致中间位置的右侧。第一走线组2211从第三边T3所在的一侧延伸至第一走线汇聚区L1。第二走线组2212从第四边T4所在的一侧延伸至第二走线汇聚区L2。第一边T1的大致中间位置与第二边T2的大致中间位置的含义类似,此处不再进行说明。
如图2A所示,第一触控走线221还包括在第二边T2与第一触控电极211连接的第三走线组2213和第四走线组2214。第三走线组2213和第四走线组2214在第二边T2的大致中间位置分隔开。如图2A所示,第三走线组2213位于第二边T2的大致中间位置的左侧,第四走线组2214位于第二边T2的大致中间位置的右侧。第三走线组2213的多条第一触控走线221延伸至第一走线汇聚区L1,第四走线组2214的多条第一触控走线221延伸至第二走线汇聚区L2。第三走线组2213从第二边T2的中间位置以及第二边T2靠近第三边T3的端部延伸至第一走线汇聚区L1。第四走线组2214从第二边T2的中间位置以及第二边T2靠近第四边T4的端部延伸至第二走线汇聚区L2。在本公开的实施例中,每个走线组包括至少一条触控走线。
需要说明的是,沿第二边T2的延伸方向,第一走线汇聚区L1和第二走线汇聚区L2的位置可以根据实际需要进行调整。例如,第一走线汇聚区L1也可以位于第二边T2靠近第三边T3的端部,相应地,第三走线组2213可以从第二边T2的中间位置延伸至第一走线汇聚区L1。例如,第二走线汇聚区L2也可以位于第二边T2靠近第四边T4的端部,相应地,第四走线组2214可以从第二边T2的中间位置延伸至第二走线汇聚区L2。本公开对此不做限定。
例如,如图2A所示,第二触控走线222包括在第三边T3与第二触控电 极212连接的第五走线组2221,第五走线组2221沿第三边T3靠近第二边T2的方向延伸至第一走线汇聚区L1。
如图2A所示,第二触控走线222还包括在第四边T4与第二触控电极212连接的第六走线组2222,第六走线组2222沿第四边T4靠近第二边T2的方向延伸至第二走线汇聚区L2。
例如,如图2A所示,在第一走线汇聚区L1,第五走线组2221位于第一走线组2211和第三走线组2213之间。在第二走线汇聚区L2,第六走线组2222位于第二走线组2212和第四走线组2214之间。当然,图2A仅为一种示例,上述不同的走线组的位置也可以互换,本公开对此不做限定。例如,在第一走线汇聚区L1,第一走线组2211位于第五走线组2221和第三走线组2213之间,或第三走线组2213位于第一走线组2211和第五走线组2221之间。例如,在第二走线汇聚区L2,第二走线组2212位于第六走线组2222和第四走线组2214之间,或第四走线组2214位于第二走线组2212和第六走线组2222之间。
通过设置第一走线汇聚区和第二走线汇聚区,提高了第一触控走线和第二触控走线的空间利用率。
例如,如图2A所示,触控结构20还包括绑定区B,位于第一走线汇聚区L1和第二走线汇聚区L2的下侧。第一触控走线221和第二触控走线222连接到绑定区B。例如,第一触控电极211可以作为信号发射通道,第二触控电极212可以作为信号接收通道,或者,第二触控电极212可以作为信号发射通道,第一触控电极211可以作为信号接收通道。
例如,如图2A所示,第一触控电极211和/或第二触控电极212可以为由金属网格形成的电极,第一触控电极211和/或第二触控电极212的材料可以为金属,例如可以采用银(Ag)、铜(Cu)以及钛、铝及钛三层金属叠层(Ti/Al/Ti)制备。
图2B为图2A中G区域的放大结构示意图,示意性地示出了第一触控电极211和第二触控电极212交叉处的结构。
如图2B所示,每条第一触控电极211包括沿Y方向依次布置且串联的第一触控电极部2111,每条第二触控电极212包括沿X方向依次布置且串联的第二触控电极部2121。图2B仅仅示出了两个第一触控电极部2111和两个第二触控电极部2121各自的一部分。如图2A所示,每个第一触控电极部2111和第二触控电极部2121的外轮廓均大致为菱形块状。在其它示例中,该第一 触控电极部2111和第二触控电极部2121的外轮廓也可以是其它形状,如三角形、条形等形状。
如图2B所示,该触控结构20还包括第一连接部2112和第二连接部2122,在Y方向上相邻的第一触控电极部2111通过第一连接部2112电连接形成该第一触控电极211,在X方向上相邻的第二触控电极部2121通过第二连接部2122电连接形成该第二触控电极212。
每条第一触控电极211和每条第二触控电极212彼此绝缘交叉并在交叉处形成多个触控单元200,每个触控单元200包括在交叉处连接的两个第一触控电极部2111的各一部分以及在该交叉处连接的两个第二触控电极部2121的各至少一部分。图2B示出了一个触控单元200的放大示意图。如图2B所示,每个触控单元200包括彼此邻接的两个第一触控电极部2111的各一半区域以及彼此邻接的两个第二触控电极部2121的各一半区域,也即平均包括一个第一触控电极部2111的区域和一个第二触控电极部2121区域,每个触控单元200中的第一触控电极部2111与第二触控电极部2121的交汇点(也即第一连接部与第二连接部的交叉处)形成用于计算坐标的基准点。当手指触摸到包含了该触控结构的触控显示屏时,影响了触摸点附件第一触控电极和第二触控电极之间的耦合,从而改变了这两个电极之间的互电容量。根据触控显示屏电容变化量数据,可以基于该基准点计算出每一个触摸点的坐标。例如,每个触控单元200的面积与人的手指与触控面板接触的面积相当,该触控单元的面积过大可能造成面板上出现触控盲点,过小则会造成误触信号。
如图2B所示,每个触控单元200的平均边长为S,称为该触控结构20的节距(Pitch)。例如,该节距S的大小范围为约3.7mm-5mm,例如为约4mm;这是因为人的手指与触控面板接触的直径为约4mm左右。例如,该节距的大小与每个第一触控电极部2111的平均边长以及每个第二触控电极部2121的平均边长相同,也与相邻的第一触控电极部2111的中心距离、相邻的第二触控电极部2121的中心距离相同。
例如,如图2B所示,第一触控电极部2111和第二触控电极部2121分别包括主体部241和从该主体部241突出的多个叉指部242,第一触控电极部2111的多个叉指部242与相邻的第二触控电极部2121的多个叉指部242同层绝缘设置,且彼此嵌套排列。在其它示例中,菱形块状的边缘有叉指结构,叉指结构的两侧有缺口,缺口可以为规则图形或不规则图形。
该叉指部242可以在触控电极部保持同等面积的情况下提高第一触控电极部2111和/或第二触控电极部2121的周长,因此在不增大第一触控电极部和/或第二触控电极部的自电容(电容负载)的情形下可以有效提高互电容量,从而提高触控灵敏度。例如,该主体部241的形状可以是圆形或多边形(例如为矩形或菱形),该叉指部242的形状包括如下形状至少之一:平行四边形(例如矩形)、三角形、梯形、六边形、半圆形;也即第一触控电极部和/或第二触控电极部的外轮廓可以是锯齿形、波浪形等。
例如,多个叉指部242分布在第一触控电极部和/或第二触控电极部的主体部241的周边。例如,该主体部241为矩形,每个边对应的叉指部242的数目为3-10,例如6-10。在另一些示例中,该主体部也可以是圆形,多个叉指部242均匀分布在该圆形的圆周上。
如图2B所示,该第一触控电极部2111的至少一个叉指部242包括第一指部有效电极251和第一指部虚设电极252,该第一指部虚设电极252与该第一指部有效电极251绝缘,该第一指部有效电极251与该第一触控电极部2111的主体部241连接。该第一指部有效电极251为该第一触控电极部2111中能够进行有效电连接并起到有效检测作用的部分。例如,该第一指部虚设电极252位于该第一指部有效电极251的内部。例如,该第一指部虚设电极252被该第一指部有效电极251完全包围;或者该第一指部虚设电极252被该第一指部有效电极251部分包围,例如该第一指部虚设电极252的至少一边可以不与该第一指部有效电极251直接相邻,例如该第一指部虚设电极252的至少一边可以与该第一触控电极部2111的主体部241相邻。例如,该第一指部虚设电极252还可以与位于该第一触控电极部2111的主体部241中的虚设电极连接。本公开实施例对此不作限制。例如,该第一指部虚设电极252和该第一指部有效电极251同层设置且彼此绝缘,可以看作该第一指部有效电极251中存在镂空区域,该第一指部虚设电极252位于该镂空区中并与该第一指部有效电极251间隔设置。
例如,该第一指部虚设电极252和该第一指部有效电极251分别包括多个金属网格,且二者通过金属线上的断口彼此绝缘。
需要说明的是,本公开中的“同层设置”是指两个或多个结构由同一膜层经相同或不同的构图工艺形成,因此材料相同。
例如,该第一指部虚设电极252与主体部241间隔。
例如,该第一指部虚设电极252为浮置(floating)状态,也即不与其它结构电连接或者不接收任何电信号。
例如,第一指部虚设电极252的外轮廓可以为规则形状(例如矩形、菱形等)或不规则形状。
例如,该外轮廓是指用直线将该第一指部虚设电极252的端部连接起来得到的形状。
本公开不限定第一触控电极和第二触控电极的结构。例如,在一些实施例中,第一触控电极211和/或第二触控电极212还可以为多个矩形块连接形成的图案,第一触控电极211和/或第二触控电极212的材料可以为透明导电材料,例如ITO。
在一些实施例中,第一触控电极部2111和/或第二触控电极部2121的内部也可以设置有虚设电极。虚设电极与第一触控电极部2111或第二触控电极部2121均绝缘且同层同材料设置。虚设电极的形状,大小,外轮廓可根据设计需求制作。
例如,第一触控走线221和第二触控走线222均包括两层导电走线。第一触控走线221的两层导电走线相互交叠且电连接,第二触控走线222的两层导电走线也相互交叠且电连接。第一触控走线和第二触控走线通过两层导电走线并联的结构,可以减少触控走线上的信号衰减,提高触控效果。下面以第一触控走线的剖面图为例进行描述。
图3为第一触控走线的剖面示意图,示出了三条第一触控走线221。如图3所示,触控结构20还包括层间介质层240,位于第一触控走线221的两层导电走线之间。层间介质层240包括多个第一过孔V1,两层第一触控走线221通过第一过孔V1电连接。
例如,层间介质层240可以为无机薄膜,例如其材料可以为SiN x、SiO x、SiC xN y等无机氧化物。例如,第一过孔V1可以为填充钛、铝及钛三层金属叠层(Ti/Al/Ti)的过孔。
第二触控走线和第一触控走线的剖面结构相似。例如,两层第二触控走线分别与两层第一触控走线同层设置,即层间介质层240也位于第二触控走线222的两层导电走线之间。两层第二触控走线222也可以通过第一过孔V1电连接。
图4为图2A中第一边T1处的剖面结构示意图,示出了在垂直于触控结 构的方向,两层第一触控走线221与第一触控电极211的位置关系。例如,如图4所示,触控结构20包括触控网格层210和桥接层230。第一触控电极211的网格图案2110和第二触控电极212的网格图案2120位于触控网格层210。例如,第一触控电极211的网格图案2110为多个矩形网格组成的条形图案,沿图2A中的Y方向延伸。例如,结合图2B,第一触控电极211的网格图案2110包括第一触控电极部2111。第二触控电极212的网格图案2120为多个矩形网格组成的条形图案,沿图2A中的X方向延伸。例如,结合图2B,第二触控电极212的网格图案2110包括第二触控电极部2121。例如,第一触控电极211的网格图案2110的矩形网格或第二触控电极212的网格图案2120在第一触控电极211和第二触控电极212的交叉处断开。桥接层230包括桥接线231,桥接线231被配置为在第一触控电极211和第二触控电极212的交叉处电连接第一触控电极211的网格图案2110或第二触控电极212的网格图案2120。例如,第一连接部2112位于触控网格层210,第二连接部2122位于桥接层230,第二连接部2122可以作为桥接线231;或者,第二连接部2122位于触控网格层210,第一连接部2112位于桥接层230,第一连接部2112可以作为桥接线231。
例如,如图4所示,第一触控电极211在与第二触控电极212的交叉处断开,桥接层230设置有过孔V,位于断开处两侧的第一触控电极211分别通过过孔V与桥接线231电连接,从而实现桥接作用。当然,也可以是第二触控电极212在与第一触控电极211的交叉处断开,位于断开处两侧的第二触控电极212分别通过过孔V与桥接线231电连接。
例如,如图4所示,桥接层230位于触控网格层210与基底10之间。当然,桥接层230也可以位于触控网格层210远离基底10的一侧。本公开对此不做限定。
例如,如图4所示,两层第一触控走线221中的一层与桥接层230位于同一层,另一层与触控网格层210位于同一层。
通过使两层第一触控走线221分别位于触控网格层210和桥接层230,可以不需要设置更多的金属层,从而减少触控结构的制造工艺。
同样地,两层第二触控走线222的设置也可以参考图4,两层第二触控走线222中的一层与桥接层230位于同一层,另一层与触控网格层210位于同一层。
图2A标示出了触控结构20的R1-R8八个区域,图5-图9分别为R1-R5区域的放大结构示意图。另外,R6的结构可参考R2,R7的结构可参考R5,R8的结构可参考R4,本公开的实施例不再进行附图描述。
第一过孔V1可以设置在第一触控走线221和第二触控走线222的多个位置。例如,图5、图8和图9分别示出了一些第一过孔V1的设置位置。
例如,如图8所示,在第一触控走线221的延伸方向,位于第一触控走线221的两层导电走线之间的第一过孔V1间隔排列。在第二触控走线222的延伸方向,位于第二触控走线222的两层导电走线之间的第一过孔V1间隔排列。例如,在第一触控走线221或第二触控走线222的延伸方向,位于第一触控走线221的两层导电走线之间的相邻的第一过孔之间的距离D可以为约500-1000μm,位于第二触控走线222的两层导电走线之间的相邻的第一过孔V1之间的距离为约500-1000μm。需要说明的是,距离D的上下端点值并不严格要求为500μm和1000μm,例如端点值500μm和1000μm可以上下浮动10%。在一些实施例中,在第一触控走线221或第二触控走线222的延伸方向,相邻的第一过孔之间的距离D并不限于约500-1000μm,其数值可以根据实际需要进行设定。
例如,如图5和图8所示,每个第一过孔V1呈沿对应的触控走线的延伸方向延伸的长条状。例如,如图5和图8所示,位于不同触控走线上的相邻的第一过孔V1沿一大致的斜线排布,该斜线与X方向和Y方向分别相交。如此排布,有利于防止相邻的第一过孔之间产生静电。
例如,如图9所示,对于位于第二走线汇聚区L2的第一触控走线221和第二触控走线222,仅有部分第一触控走线221和第二触控走线222上设置有第一过孔V1。在第二走线汇聚区L2,第一过孔V1的设置数量以及位置可以根据触控走线上的空间位置进行设置,本公开对此不做限定。
需要说明的是,在图6中,第一走线组2211和第二走线组2212分别仅包括一条第一触控走线221,并不表示在第一边T1处的第一走线组2211和第二走线组2212仅有一条,而是因为沿平行于第一边T1的方向,多条第一触控走线221靠近第一边T1的中间位置的端部具有一定的错位,R2处为第一边T1的大致中间位置,因此此处只示出了一条第一触控走线221。
例如,如图5-图9所示,触控结构20还包括屏蔽线261,位于第一触控走线221和第二触控走线222远离触控区T的一侧。例如,屏蔽线261围绕第 一触控走线221和第二触控走线222设置并靠近第一触控走线221和第二触控走线222的最外侧。屏蔽线可以屏蔽外界对第一触控走线和第二触控走线的信号干扰,从而提高触控性能。
例如,如图5-图9所示,触控结构还包括接地线262,位于屏蔽线261远离触控区T的一侧。例如,接地线262围绕第一触控走线221和第二触控走线222设置。例如,接地线262可以设置为多条。例如,在包括了该触控结构20的触控显示装置中,接地线可以连接到位于绑定区的电路板中。接地线可以屏蔽外界静电对第一触控走线和第二触控走线的信号干扰,从而提高触控性能。
例如,如图6和图7所示,触控结构还包括虚设线264。虚设线264可以设置在没有金属走线的区域。
本公开一实施例还提供一种触控显示基板。该触控显示基板包括上述任一实施例提供的触控结构20,以及显示基板30。显示基板包括显示区A和围绕显示区A的周边区P,显示区A与触控结构20的触控区T重合,周边区P与触控结构20的周边区P重合。
图10为该触控显示基板的显示区的剖面结构示意图。例如,如图10所示,显示基板30包括至少一个有机发光元件520以及封装层700,触控结构20形成在封装层700上。
在有机发光二极管(OLED)触控显示基板中,可将显示基板和触控结构集成在一起。因此,FMLOC(Flexible Multiple Layer On Cell)触控技术应运而生,FMLOC触控技术是直接在封装层上制作触控结构的各种电极层和各种走线,从而将触控结构集成在显示基板上。由此,采用FMLOC触控技术的显示装置不仅可实现显示装置的轻薄化,还可实现基于柔性显示的触控功能。例如,本公开实施例提供的触控显示基板包括了FMLOC触控技术。
如图10所示,显示基板30包括衬底基板100,衬底基板100可为柔性基板,例如,可为聚酰亚胺(Polyimide,PI),但不限于此。
例如,如图10所示,每个有机发光元件520都有对应的开关元件540,以控制有机发光元件520打开或关闭。
例如,如图10所示,开关元件540为薄膜晶体管540,位于像素驱动电路层31。薄膜晶体管540包括位于衬底基板100上的有源层543,位于有源层543远离衬底基板100一侧的栅极544,以及位于栅极544远离衬底基板一侧的源漏极541。
例如,如图10所示,显示基板30还包括连接电极580。连接电极位于薄膜晶体管和发光元件之间,分别与薄膜晶体管的漏极以及发光元件电连接。
例如,如图10所示,显示基板30还包括电源线550,与阳极522或阴极523电连接,用于为电致发光层提供驱动电压。例如,电源线550可以与连接电极580位于同一层。
例如,如图10所示,有机发光元件520位于薄膜晶体管540远离衬底基板100的一侧。每个有机发光元件520包括沿垂直于衬底基板方向层叠设置的阳极522、电致发光层521和阴极523,电致发光层521位于阳极522和阴极523之间,可以在阳极和阴极的共同作用下发光。例如,每个发光元件的阳极522相互绝缘。每个发光元件的阴极523相互连接,组成连续的阴极层。例如,阳极522可以作为像素电极,从而每个发光元件的亮度可以被独立控制,以进行显示。
例如,如图10所示,在垂直于衬底基板的方向,第一触控电极211和第二触控电极212与阴极523至少部分交叠。如此,阴极523可以屏蔽像素驱动电路层31对触控电极的信号干扰,以提高触控性能。
例如,如图10所示,薄膜晶体管540的有源层包括源极区和漏极区,以及位于源极区和漏极区之间的沟道区。薄膜晶体管540包括源极和漏极541,源极和漏极分别通过过孔与源极区和漏极区电连接。栅极在垂直于衬底基板100的方向上与有源层中位于源极区和漏极区之间的沟道区重叠。
例如,如图10所示,显示基板30还包括第一平坦化层570,第一平坦化层570位于源漏极541的上方,用于平坦化薄膜晶体管远离衬底基板一侧的表面。连接电极580形成在第一平坦化层570上,在垂直于衬底基板的方向,连接电极580与阳极522交叠。
例如,如图10所示,显示基板30还包括第二平坦化层590,第二平坦化层590位于阳极522和连接电极580之间,用于平坦化连接电极580远离衬底基板一侧的表面。连接电极580通过过孔与源漏极541电连接,阳极522通过过孔与连接电极580电连接,从而实现阳极522与源漏极541的电连接。连接电极可以避免直接在第一平坦化层和第二平坦化层中形成孔径比较大的直通过孔,从而改善过孔电连接的质量。
例如,如图10所示,显示基板30还包括第一缓冲层130,位于衬底基板100和有源层543之间。显示基板还包括钝化层620,位于第一平坦化层570 和源漏极541之间。
在一些实施例中,显示基板30可以不包括连接电极580和第二平坦化层590,阳极522与源漏极541通过过孔电连接。在一些实施例中,显示基板30可以不包括钝化层620。
例如,阳极522的材料可以包括至少一种透明导电氧化物材料,包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)等。此外,阳极522可以包括具有高反射率的金属作为反射层,诸如银(Ag)。
例如,电致发光层521的材料可以包括小分子有机材料或聚合物分子有机材料,可以为荧光发光材料或磷光发光材料,可以发红光、绿光、蓝光,或可以发白光;并且,根据需要电致发光层还可以进一步包括电子注入层、电子传输层、空穴注入层、空穴传输层等功能层。
例如,阴极523可以包括各种导电材料。例如,阴极523可以包括锂(Li)、铝(Al)、镁(Mg)、银(Ag)等金属材料。
例如,如图10所示,显示基板30还包括封装层700,覆盖有机发光元件520。封装层700将有机发光元件520密封,从而可以减少或防止由环境中包括的湿气或氧引起的有机发光元件520的劣化。封装层700可以为单层结构,也可以为复合层结构,该复合层结构包括无机层和有机层堆叠的结构。例如,如图10所示,封装层700包括依次层叠设置的第一无机封装层710、有机封装层720和第二无机封装层730。
例如,第一无机封装层和第二无机封装层的材料可以包括氮化硅、氧化硅、氮氧化硅、高分子树脂等绝缘材料。氮化硅、氧化硅、氮氧化硅等无机材料的致密性高,可以防止水、氧等的侵入;有机封装层的材料可以为含有干燥剂的高分子材料或可阻挡水汽的高分子材料等,例如高分子树脂等以对显示基板的表面进行平坦化处理,并且可以缓解第一无机封装层和第二无机封装层的应力,还可以包括干燥剂等吸水性材料以吸收侵入内部的水、氧等物质。
例如,第一无机封装层和第二无机封装层可采用化学气相沉积(Chemical Vapor Deposition,CVD)方法制作,有机封装层可采用喷墨打印(Ink Jet Printing,IJP)的方法制作。
例如,如图10所示,显示基板30还包括第二缓冲层740,位于第二无机封装层730远离衬底基板100的一侧。
例如,如图10所示,显示基板还包括绝缘层750,位于第二缓冲层740 远离衬底基板100的一侧。例如,绝缘层750可以为氮化硅层。绝缘层750可以起平坦化的作用。在一些实施例中,显示基板不包括绝缘层750。
例如,如图10所示,显示基板还包括保护层800,位于触控结构20远离衬底基板100的一侧。保护层800可以起保护触控结构20的作用。
需要说明的是,上述结合图10所描述的显示基板的结构是示例性的,本公开实施例的触控结构可以形成在任意合适类型的显示基板上以形成触控显示基板。
图11为显示基板的电路原理示意图。如图11所示,显示基板30包括位于显示区A中的多个显示器件L(即图10中的有机发光元件520)以及与各显示器件L一一对应耦接的像素电路110,像素电路110包括驱动晶体管。显示基板还可以包括位于周边区P的多个电压控制电路120。例如,一行中至少两个像素电路110共用一个电压控制电路120,且一行像素电路110中驱动晶体管的第一极与共用的电压控制电路120耦接,各驱动晶体管的第二极与对应的显示器件L耦接。电压控制电路120被配置为响应于复位控制信号RE,将初始化信号Vinit输出至驱动晶体管的第一极,控制对应的显示器件L复位;以及响应于发光控制信号EM,将第一电源信号VDD输出至驱动晶体管的第一极,以驱动显示器件L发光。显示基板还可以包括位于显示区的第二电源信号VSS,用于向显示器件L输入第二电源信号。需要说明的是,每个电压控制电路120对应的复位控制信号RE不完全相同,每个电压控制电路120对应的发光控制信号EM也不完全不同。通过共用电压控制电路120,可以简化显示区域A中各像素电路的结构,降低显示区A中像素电路的占用面积,从而可以使显示区A设置更多的像素电路和显示器件,实现高PPI的有机发光显示基板。并且,电压控制电路120在复位控制信号RE的控制下将初始化信号Vinit输出至驱动晶体管的第一极,控制对应的显示器件复位,从而可以避免上一帧发光时加载于显示器件上的电压对下一帧发光的影响,进而改善残影现象。
例如,结合图10和图11,第一电源信号VDD通过图10所示的薄膜晶体管540的漏极541传输到有机发光元件520的阳极522,第二电源信号VSS通过图10所示的电源线550传输到有机发光元件520的阴极523。
图12为该触控显示基板的平面结构示意图。如图12所示,触控显示基板还包括绑定区B,位于第二边T2远离触控区T的一侧,第一触控走线221和第二触控走线222分别在第一走线汇聚区L1和第二走线汇聚区L2汇聚后连接 至绑定区B。
例如,如图12所示,绑定区B包括触控驱动芯片40。第一触控走线221和第二触控走线222连接到位于绑定区B的触控驱动芯片40。例如,触控驱动芯片40包括多个引脚,每个引脚可对应一个接触垫,第一触控走线221和第二触控走线222通过接触垫连接到触控驱动芯片40。
例如,如图12所示,触控显示基板为可弯折的显示基板,还包括可弯折区C,位于触控区T与绑定区B之间,或者,沿Y方向,可弯折区C位于第一走线汇聚区L1和第二走线汇聚区L2与绑定区B之间。
例如,如图12所示,触控显示基板还包括走线过渡区F,位于可弯折区C与绑定区B之间。例如,第一触控走线221和第二触控走线222在走线过渡区F的走线方向可以具有一定改变,以与位于绑定区的触控驱动芯片40的引脚连接。例如,在走线过渡区F,第一触控走线221和第二触控走线222的延伸方向与X方向的夹角α与触控显示基板沿X方向的尺寸、触控驱动芯片40的尺寸以及其与触控显示基板的相对位置有关。例如,在一个示例中,夹角α的取值范围为30°-90°。
图13为可弯折区C的局部放大示意图,图14为可弯折区的沿图13中E-E方向的剖面结构示意图。如图14所示,可弯折区C不包括第一触控走线221和第二触控走线222,或者说,第一触控走线221和第二触控走线222在可弯折区C处断开。例如,如图14所示,第一触控走线221在可弯折区C断开,形成靠近触控区T的第一端221a和靠近绑定区B的第二端221b,第二触控走线222在可弯折区C断开,形成靠近触控区T的第一端222a和靠近绑定区B的第二端222b。可弯折区C包括与第一触控走线221和第二触控走线222位于不同层的第一金属连接部541和第二过孔V2,第一金属连接部541包括多条金属走线。每条第一触控走线221的第一端221a和每条第二触控走线222的第一端222a在可弯折区C靠近触控区T的一侧(即,靠近第一走线汇聚区L1的一侧)分别通过第二过孔V2与第一金属连接部541的一条金属走线电连接,每条第一触控走线221的第二端221b和每条第二触控走线222的第二端222b在可弯折区C靠近绑定区B的一侧分别通过第二过孔V2与第一金属连接部541的一条金属走线电连接。
图14示出了第一触控走线221的两层导电走线在第一端221a和第二端221b处的长度相同,第二过孔V2与位于下层的导电走线电连接。但图14仅 为一种示例,本公开的实施例不限于此。例如,如图15所示,在第一触控走线221的第一端221a和第二端221b处,第一触控走线221的两层导电走线中位于上层的导电走线超出位于下层的导电走线,第二过孔V2与位于上层的导电走线电连接。
在弯折时可弯折区C的内部会产生应力集中,如此设置,避免了在可弯折区C设置第一触控走线221和第二触控走线222,从而避免第一触控走线221和第二触控走线222在可弯折区C断裂,提高触控显示基板的触控稳定性。
例如,图14和图15示出了触控显示基板还包括挡坝900,设置在周边区P。例如,挡坝900可以由图10所示的第一平坦化层570、第二平坦化层590和像素限定层510等膜层叠加形成。挡坝900可以环绕触控区T(即显示区)设置,起到阻挡显示区内的有机发光材料流出的作用。第一触控走线221和第二触控走线222可以从触控区T越过挡坝900连接到可弯折区C。
例如,如图14和图15所示,第一金属连接部541与薄膜晶体管的源漏极541位于同一层,但第一金属连接部541与薄膜晶体管的源漏极541不连接。如此,可以减少触控显示基板的金属层数,从而节省制造工艺。
例如,可弯折区C包括与第一金属连接部541位于不同层的第二金属连接部544和第三过孔V3。例如,第二金属连接部544与薄膜晶体管的栅极544位于同一层,但第二金属连接部544与薄膜晶体管的栅极544不连接。如图14所示,在可弯折区C,第一金属连接部541在与第二金属连接部544对应的位置断开为两部分,第一金属连接部541断开的两部分分别通过第三过孔V3与第二金属连接部544电连接。例如,第二金属连接部544也包括多条金属走线,第二金属连接部544的多条金属走线与第一金属连接部541的多条金属走线一一对应且电连接。如此设置,可以减少可弯折区C内部的应力集中,从而提高触控显示基板的使用寿命。
例如,如图14和图15所示,第一金属连接部541包括沿垂直于第一金属连接部541所在的层的开孔5411。通过在第一金属连接部541内设置开孔5411,可以降低位于可弯折区C的第一金属连接部541的厚度,从而进一步减少可弯折区C内部的应力集中,提高触控显示基板的使用寿命。
如图14和图15所示,触控显示基板的电源线550的至少部分位于走线过渡区F。在垂直于衬底基板100的方向,第一触控走线221和第二触控走线222与位于走线过渡区F的至少部分电源线550交叠。如此设置,可以通过电源线 550来减少来自像素驱动电路层的信号干扰,从而提高触控显示基板的触控性能。
例如,如图5、图6、图8和图9所示,触控显示基板还包括检测线263,位于接地线262远离触控区T的一侧。例如,检测线263围绕第一触控走线221和第二触控走线222设置。检测线可以连接到位于绑定区的电路板中。检测线用于检测触控显示基板产生的裂纹。
本公开一实施例还提供一种触控显示装置,包括上述任一实施例提供的触控显示基板。
本公开的实施例中,触控显示装置包括FMLOC触控显示基板,但不限于此。触控显示装置可以为液晶显示器、电子纸、OLED(Organic Light-Emitting Diode,有机发光二极管)显示器等显示器件以及包括这些显示器件的电视、数码相机、手机、手表、平板电脑、笔记本电脑、导航仪等任何具有触控和显示功能的产品或者部件。
本公开一实施例还提供一种如图2A所示的触控结构的制造方法。参考图2A和图4,该制造方法包括:在基底101上形成触控结构20。触控结构20包括触控区T和围绕触控区T的周边区P,触控区T包括相对的第一边T1和第二边T2、以及相对的第三边T3和第四边T4。触控结构20还包括相互交叉且相互绝缘的第一触控电极211和第二触控电极212,位于触控区T。触控结构20还包括第一触控走线221和第二触控走线222,位于周边区P。第一触控走线221分别在第一边T1和第二边T2与第一触控电极211连接;第二触控走线222分别在第三边T3和第四边T4与第二触控电极212连接。
例如,在一些示例中,触控结构20的第一触控走线221和第二触控走线222均包括两层导电走线,第一触控走线221的两层导电走线相互交叠且电连接,第二触控走线222的两层导电走线相互交叠且电连接。
此时,在基底101上形成触控结构20包括:
S10:在基底101上形成桥接层230。桥接层230包括桥接线231以及第一触控走线221和第二触控走线222的一层导电走线。
S20:在桥接层230上形成层间介质层240。层间介质层240包括多个第一过孔V1。
S30:在层间介质层240上形成触控网格层210。触控网格层210包括第一触控电极211和第二触控电极212的网格图案,以及第一触控走线221和第二 触控走线222的另一层导电走线。第一触控电极211的网格图案2110或第二触控电极212的网格图案2120通过桥接线231电连接,两层第一触控走线221的导电走线通过第一过孔V1电连接,两层第二触控走线222的导电走线通过第一过孔V1电连接。
例如,对于如图10所示的OLED触控显示基板,基底101可以为封装层700。
需要说明的是,桥接层230与触控网格层210的形成顺序可以互换,即,也可以在基底101上形成触控网格层210之后,在基底101上形成桥接层230。
例如,参考图10,上述制造方法还包括:在基底101上形成桥接层230之前,在基底101上形成绝缘层750。
例如,参考图10,上述制造方法还包括:在触控网格层210上形成保护层800。
本公开实施例提供的触控结构的制造方法可用于制造上述任一实施例提供的触控结构。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种触控结构,包括:
    触控区和围绕所述触控区的周边区,所述触控区包括相对的第一边和第二边、以及相对的第三边和第四边;
    相互交叉且相互绝缘的第一触控电极和第二触控电极,位于所述触控区;以及
    第一触控走线和第二触控走线,位于所述周边区,
    其中,所述第一触控走线分别在所述第一边和所述第二边与所述第一触控电极连接;所述第二触控走线分别在所述第三边和所述第四边与所述第二触控电极连接。
  2. 根据权利要求1所述的触控结构,还包括第一走线汇聚区和第二走线汇聚区,
    其中,所述第一走线汇聚区和所述第二走线汇聚区位于所述第二边远离所述第一边的一侧,在所述第二边的延伸方向,所述第一走线汇聚区和所述第二走线汇聚区位于所述第三边和所述第四边之间,且所述第二走线汇聚区位于所述第一走线汇聚区远离所述第三边的一侧,部分所述第一触控走线和部分所述第二触控走线延伸到所述第一走线汇聚区,另一部分所述第一触控走线和另一部分所述第二触控走线延伸到所述第二走线汇聚区。
  3. 根据权利要求2所述的触控结构,其中,所述第一触控走线包括:
    在所述第一边与所述第一触控电极连接的第一走线组和第二走线组,所述第一走线组和所述第二走线组在所述第一边的大致中间位置分隔开,所述第一走线组从所述第三边的一侧延伸至所述第一走线汇聚区;所述第二走线组从所述第四边的一侧延伸至所述第二走线汇聚区;以及
    在所述第二边与所述第一触控电极连接的第三走线组和第四走线组,所述第三走线组和所述第四走线组在所述第二边的大致中间位置分隔开,所述第三走线组延伸至所述第一走线汇聚区;所述第四走线组延伸至所述第二走线汇聚区。
  4. 根据权利要求3所述的触控结构,其中,所述第二触控走线包括:
    在所述第三边与所述第二触控电极连接的第五走线组,所述第五走线组从所述第三边所在的一侧延伸至所述第一走线汇聚区;以及
    在所述第四边与所述第二触控电极连接的第六走线组,所述第六走线组从所述第四边所在的一侧延伸至所述第二走线汇聚区。
  5. 根据权利要求4所述的触控结构,其中,在所述第一走线汇聚区,所述第五走线组位于所述第一走线组和所述第三走线组之间;在所述第二走线汇聚区,所述第六走线组位于所述第二走线组和所述第四走线组之间。
  6. 根据权利要求1-5任一项所述的触控结构,其中,所述第一触控走线和所述第二触控走线均包括两层导电走线,所述第一触控走线的两层导电走线相互交叠且电连接,所述第二触控走线的两层导电走线相互交叠且电连接。
  7. 根据权利要求6所述的触控结构,还包括层间介质层,位于所述第一触控走线的两层导电走线之间和所述第二触控走线的两层导电走线之间,所述层间介质层包括多个第一过孔,两层所述第一触控走线的导电走线通过所述第一过孔电连接,两层所述第二触控走线的导电走线通过所述第一过孔电连接。
  8. 根据权利要求7所述的触控结构,其中,在所述第一触控走线或所述第二触控走线的延伸方向,位于所述第一触控走线的两层导电走线之间的所述第一过孔间隔排列,位于所述第二触控走线的两层导电走线之间的所述第一过孔间隔排列。
  9. 根据权利要求8所述的触控结构,其中,在所述第一触控走线或所述第二触控走线的延伸方向,位于所述第一触控走线的两层导电走线之间的相邻的所述第一过孔之间的距离为约500-1000μm,位于所述第二触控走线的两层导电走线之间的相邻的所述第一过孔之间的距离为约500-1000μm。
  10. 根据权利要求7-9任一项所述的触控结构,其中,所述第一触控电极和所述第二触控电极包括位于触控网格层的网格图案和位于桥接层的桥接线,所述桥接线被配置为在所述第一触控电极和所述第二触控电极的交叉处电连接所述第一触控电极的所述网格图案或所述第二触控电极的所述网格图案,
    两层所述第一触控走线的导电走线中的一层位于所述桥接层,另一层位于所述触控网格层;两层所述第二触控走线的导电走线中的一层位于所述桥接层,另一层位于所述触控网格层。
  11. 根据权利要求1-10任一项所述的触控结构,还包括屏蔽线,位于所述第一触控走线和所述第二触控走线远离所述触控区的一侧。
  12. 根据权利要求11所述的触控结构,还包括接地线,位于所述屏蔽线远离所述触控区的一侧。
  13. 一种触控显示基板,包括根据权利要求1-12任一项所述的触控结构,以及显示基板,其中,所述显示基板包括有机发光元件以及封装层,所述触控结构位于所述封装层上。
  14. 根据权利要求13所述的触控显示基板,还包括绑定区,位于所述第二边远离所述触控区的一侧,所述第一触控走线和所述第二触控走线连接至所述绑定区。
  15. 根据权利要求14所述的触控显示基板,还包括可弯折区,位于所述触控区与所述绑定区之间,
    其中,所述第一触控走线和所述第二触控走线至少之一在所述可弯折区断开以形成靠近所述触控区的第一端和靠近所述绑定区的第二端,所述可弯折区包括与所述第一触控走线和所述第二触控走线位于不同层的第一金属连接部和第二过孔,所述第一端和所述第二端分别通过所述第二过孔与所述第一金属连接部连接。
  16. 根据权利要求15所述的触控显示基板,还包括像素驱动电路层,所述像素驱动电路层包括薄膜晶体管,所述薄膜晶体管包括源漏极和栅极,所述第一金属连接部与所述薄膜晶体管的源漏极位于同一层。
  17. 根据权利要求16所述的触控显示基板,其中,所述可弯折区包括与所述第一金属连接部位于不同层的第二金属连接部和第三过孔,所述第二金属连接部与所述薄膜晶体管的栅极位于同一层,在所述可弯折区,所述第一金属连接部在对应所述第二金属连接部的位置断开为两部分,所述第一金属连接部断开的两部分分别通过所述第三过孔与所述第二金属连接部电连接。
  18. 根据权利要求15-17任一项所述的触控显示基板,其中,所述第一金属连接部包括沿垂直于所述第一金属连接部所在的层的开孔。
  19. 根据权利要求14-18任一项所述的触控显示基板,其中,所述有机发光元件包括依次层叠设置的阳极、电致发光层和阴极,所述第一触控电极和所述第二触控电极均与所述阴极至少部分交叠。
  20. 根据权利要求19所述的触控显示基板,还包括:
    走线过渡区,位于所述可弯折区与所述绑定区之间;
    电源线,与所述阳极或所述阴极电连接,至少部分所述电源线位于所述走线过渡区,所述第一触控走线和所述第二触控走线与位于所述走线过渡区的至少部分所述电源线交叠。
  21. 根据权利要求13-20任一项所述的触控显示基板,还包括检测线,位于所述接地线远离所述触控区的一侧。
  22. 一种触控显示装置,包括根据权利要求13-21任一项所述的触控显示基板。
PCT/CN2021/111814 2020-09-08 2021-08-10 触控结构、触控显示基板和触控显示装置 WO2022052715A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/789,020 US11921963B2 (en) 2020-09-08 2021-08-10 Touch structure, touch display structure, and touch display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010934004.2A CN114153336A (zh) 2020-09-08 2020-09-08 触控结构、触控显示基板和触控显示装置
CN202010934004.2 2020-09-08

Publications (1)

Publication Number Publication Date
WO2022052715A1 true WO2022052715A1 (zh) 2022-03-17

Family

ID=80460554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111814 WO2022052715A1 (zh) 2020-09-08 2021-08-10 触控结构、触控显示基板和触控显示装置

Country Status (3)

Country Link
US (1) US11921963B2 (zh)
CN (1) CN114153336A (zh)
WO (1) WO2022052715A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220143995A (ko) * 2021-04-16 2022-10-26 삼성디스플레이 주식회사 전자 장치
CN113282200B (zh) * 2021-05-17 2022-12-23 武汉华星光电半导体显示技术有限公司 显示面板
US20240310950A1 (en) * 2021-07-07 2024-09-19 Huawei Technologies Co., Ltd. Touch display apparatus and touch detection method
US11880536B2 (en) * 2021-10-21 2024-01-23 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch panel and mobile terminal
WO2024113222A1 (zh) * 2022-11-30 2024-06-06 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
KR20240107982A (ko) * 2022-12-30 2024-07-09 엘지디스플레이 주식회사 표시 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655378A (zh) * 2016-01-04 2016-06-08 京东方科技集团股份有限公司 一种阵列基板和oled显示面板、制备方法及显示装置
CN110502152A (zh) * 2019-08-29 2019-11-26 合肥维信诺科技有限公司 触控面板、触控显示面板及触控显示装置
CN110634411A (zh) * 2019-11-07 2019-12-31 京东方科技集团股份有限公司 一种显示模组及其封装检测方法
CN111048566A (zh) * 2019-12-20 2020-04-21 厦门天马微电子有限公司 一种有机发光显示面板及显示装置
CN111290661A (zh) * 2020-01-22 2020-06-16 武汉华星光电半导体显示技术有限公司 柔性触控显示装置
CN111596789A (zh) * 2020-04-20 2020-08-28 昆山国显光电有限公司 触控面板、触控显示面板及触控显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11145707B2 (en) * 2018-01-09 2021-10-12 Wuhan China Star Opotelectronics Semiconductor Display Technology Co., Ltd. Organic light emitting diode display panel, trace structure and organic light emitting diode display apparatus
KR20200145922A (ko) * 2019-06-20 2020-12-31 삼성디스플레이 주식회사 표시 장치
US11079879B1 (en) 2020-01-22 2021-08-03 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Flexible touch display device
CN112328113B (zh) * 2020-11-12 2024-07-09 京东方科技集团股份有限公司 触控面板及其修复方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655378A (zh) * 2016-01-04 2016-06-08 京东方科技集团股份有限公司 一种阵列基板和oled显示面板、制备方法及显示装置
CN110502152A (zh) * 2019-08-29 2019-11-26 合肥维信诺科技有限公司 触控面板、触控显示面板及触控显示装置
CN110634411A (zh) * 2019-11-07 2019-12-31 京东方科技集团股份有限公司 一种显示模组及其封装检测方法
CN111048566A (zh) * 2019-12-20 2020-04-21 厦门天马微电子有限公司 一种有机发光显示面板及显示装置
CN111290661A (zh) * 2020-01-22 2020-06-16 武汉华星光电半导体显示技术有限公司 柔性触控显示装置
CN111596789A (zh) * 2020-04-20 2020-08-28 昆山国显光电有限公司 触控面板、触控显示面板及触控显示装置

Also Published As

Publication number Publication date
CN114153336A (zh) 2022-03-08
US11921963B2 (en) 2024-03-05
US20220357816A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
CN212515770U (zh) 触控结构、触控显示基板和触控显示装置
WO2022052715A1 (zh) 触控结构、触控显示基板和触控显示装置
CN108054193B (zh) 柔性显示面板及柔性显示装置
KR102622089B1 (ko) 유기 발광 표시 장치
TWI731746B (zh) 觸控顯示裝置
JP7333841B2 (ja) タッチパネル及びタッチディスプレイ装置
WO2021147175A1 (zh) 触控显示面板及电子装置
CN112860095B (zh) 触摸显示装置
KR102709634B1 (ko) 표시 장치
US11231799B2 (en) Touch display device
JP2020013578A (ja) タッチディスプレイパネル、タッチディスプレイ装置、及びその駆動方法
WO2021196083A1 (zh) 触控结构、触控显示面板及电子装置
KR20210081701A (ko) 터치 스크린 일체형 발광 표시 장치
WO2021196076A1 (zh) 触控结构、触控显示面板及电子装置
WO2022156341A1 (zh) 触控面板及其制备方法、显示触控装置
US20240029629A1 (en) Display panel and mobile terminal
WO2022052777A1 (zh) 触控结构、显示面板及电子装置
WO2023141836A1 (zh) 触控结构、触控显示面板及显示装置
CN115268708A (zh) 一种触控面板及触控显示装置
WO2022179190A1 (zh) 触控面板及其制备方法、显示触控装置
WO2021196082A1 (zh) 触控结构、触控显示面板及电子装置
KR20220136547A (ko) 표시 장치
WO2022178817A1 (zh) 触控结构、触控显示面板和显示装置
US12130985B2 (en) Display panel
WO2022052778A1 (zh) 触控结构、显示面板及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21865771

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.11.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21865771

Country of ref document: EP

Kind code of ref document: A1