WO2022052778A1 - 触控结构、显示面板及电子装置 - Google Patents

触控结构、显示面板及电子装置 Download PDF

Info

Publication number
WO2022052778A1
WO2022052778A1 PCT/CN2021/113560 CN2021113560W WO2022052778A1 WO 2022052778 A1 WO2022052778 A1 WO 2022052778A1 CN 2021113560 W CN2021113560 W CN 2021113560W WO 2022052778 A1 WO2022052778 A1 WO 2022052778A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
touch
electrodes
row
electrode
Prior art date
Application number
PCT/CN2021/113560
Other languages
English (en)
French (fr)
Inventor
谢宏康
仝可蒙
何帆
樊聪
董向丹
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/024,413 priority Critical patent/US20230315237A1/en
Publication of WO2022052778A1 publication Critical patent/WO2022052778A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • At least one embodiment of the present disclosure relates to a touch control structure, a display panel, and an electronic device.
  • the touch structure for realizing the touch function includes a touch electrode structure, and the arrangement of the touch electrode structure is an important factor affecting user experience.
  • At least one embodiment of the present disclosure provides a touch control structure including a first metal mesh layer and a second metal mesh layer, wherein the first metal mesh layer and the second metal mesh layer are between the first metal mesh layer and the second metal mesh layer.
  • An insulating layer is arranged therebetween, the first metal mesh layer includes a plurality of first metal meshes defined by a plurality of first metal lines, and the second metal mesh layer includes a plurality of first metal meshes defined by a plurality of second metal lines a second metal mesh, each of the plurality of first metal meshes and each of the second metal meshes is a polygon;
  • the first metal mesh layer includes a plurality of A first touch sub-electrode and a plurality of first connection electrodes, the plurality of first touch sub-electrodes and the plurality of first connection electrodes are alternately distributed one by one and are electrically connected in sequence to form a first touch control sub-electrode extending along the first direction.
  • the first metal mesh layer further includes a plurality of second touch sub-electrodes arranged in sequence along a second direction and spaced apart from each other, and the first direction intersects with the second direction;
  • Each of the first touch sub-electrodes and each of the second touch sub-electrodes are spaced apart from each other and respectively include a plurality of first metal meshes;
  • the second metal mesh layer includes a plurality of first metal meshes spaced apart from each other second connection electrodes, each of the plurality of second connection electrodes is electrically connected to the adjacent second touch sub-electrodes through a plurality of via holes in the insulating layer, so as to connect the adjacent second touch electrodes
  • the sub-electrodes are electrically connected to form second touch electrodes extending in the second direction; each of the plurality of second connection electrodes includes: a first metal grid row and a second metal grid along the second direction Row.
  • the first metal mesh row includes a plurality of the second metal meshes arranged along the first direction; the second metal mesh row is adjacent to and connected to the first metal mesh row, and includes a plurality of the second metal meshes arranged along the first direction; at least one of the second metal grids arranged in the first direction; the number of the second metal grids in the second metal grid row is less than or equal to the second metal grid in the first metal grid row.
  • the number of metal meshes, and all the second metal lines of the second metal meshes in the second metal mesh row close to the first metal mesh row are the same as the first metal meshes A second metal line shared by the second metal grids in the metal grid row.
  • the first metal grid row is electrically connected to the adjacent second touch sub-electrodes, and the first metal grid row is electrically connected to the second touch sub-electrode adjacent thereto.
  • the orthographic projections of the second metal lines shared by the second metal meshes in the first metal mesh layer overlap the first metal lines.
  • the number of the second metal grids in the first metal grid row is 2, and the number of the second metal grids in the second metal grid row is 2 is 1.
  • the plurality of via holes include first via holes, and the first metal grid row passes through the first via holes and is adjacent to the second connection electrode where it is located.
  • One of the two second touch sub-electrodes is electrically connected.
  • the orthographic projections of the plurality of second metal lines of the second metal grid of the first metal grid row on the first metal grid layer are respectively It overlaps with a plurality of first metal lines of the first metal grid of the second touch sub-electrode, so that the second metal grid has a plurality of vertices overlapping with the first metal grid, and the plurality of vertices overlap with the first metal grid.
  • the vertices include a plurality of connection vertices, and the first via holes are correspondingly disposed at the plurality of connection vertices.
  • each of the plurality of first metal meshes and each of the second metal meshes are hexagonal; the first metal mesh The plurality of second metal lines of the second metal grid in the grid row and the four first metal lines of the first metal grid at the edges of the adjacent second touch sub-electrodes are perpendicular to the second metal grid.
  • the layers are respectively overlapped in the direction, so that the edge first metal mesh has five vertices that overlap with the second metal mesh; the four first metal lines connect the five vertices in sequence, forming a W shape , the four first metal lines intersect with the first direction and the second direction respectively, and at least one of the five vertices is the connection vertex.
  • the plurality of second metal grids in the first metal grid row are second metal grids on the first edge of the second connection electrode,
  • the first end of the second connection electrode in the second direction is electrically connected to the first metal grid at the edge of the second touch sub-electrode adjacent thereto.
  • each of the plurality of second connection electrodes further includes: a third metal grid row and a fourth metal grid row along the second direction.
  • the third metal grid row is located on a side of the second metal grid row away from the first metal grid row, and includes a plurality of the second metal grids arranged along the first direction;
  • Four metal grid rows are located on one side of the third metal grid row close to the second metal grid row and are adjacent to and connected to the third metal grid row, including being arranged along the first direction at least one of the second metal meshes;
  • the number of the second metal meshes in the fourth metal mesh row is less than or equal to the number of the second metal meshes in the third metal mesh row number, and all the second metal lines of the second metal grid in the fourth metal grid row adjacent to the third metal grid row are the same as the third metal grid row
  • the second metal wire shared by the second metal grid in the third metal grid row is the second metal grid on the second edge of the second connection electrode, located in The second end
  • the second direction is opposite to the first end; the plurality of via holes includes a second via hole, and the third metal grid row passes through the second via hole and is adjacent to the second connection electrode where it is located The other one of the two second touch sub-electrodes is electrically connected.
  • the second metal line shared with the second metal grid in the third metal grid row is in the first metal grid layer
  • the orthographic projection on does not overlap with the first metal line, or, the second metal line shared with the second metal grid in the third metal grid row is in the first metal grid
  • the orthographic projection on the layer overlaps the first metal line.
  • the number of the second metal grids in the third metal grid row is 2, and the number of the second metal grids in the fourth metal grid row is 2 is 1.
  • the second connection electrode further includes: at least one middle metal grid row located between the second metal grid row and the fourth metal grid row In between, each row of the at least one intermediate metal grid row includes at least one of the second metal grids.
  • the number of the second metal grids in each row of the at least one middle metal grid row is one.
  • each of the plurality of second connection electrodes further includes a third metal grid row along the second direction.
  • a third metal grid row is adjacent to the second metal grid row on a side of the second metal grid row away from the first metal grid row, and includes along the first direction a plurality of the second metal meshes arranged; the number of the second metal meshes in the second metal mesh row is less than or equal to the second metal meshes in the third metal mesh row and all the second metal lines of the second metal grid in the second metal grid row close to the third metal grid row are the same as the third metal grid a second metal wire shared by the second metal grids in the row; the second metal grid of the third metal grid row is a second metal grid on the second edge of the second connection electrode, located at the The second end of the second connection electrode in the second direction is electrically connected to the edge of the second touch sub-electrode adjacent to the first metal grid, and the second end is Opposite to the first end in the second
  • the pattern of each of the plurality of second connection electrodes is symmetric with respect to an axis of symmetry along the first direction.
  • each of the second metal grids includes at least two vertical edges along the second direction, and the at least two vertical edges The orthographic projection on the first metal mesh layer does not overlap the first metal line.
  • the adjacent second touch control sub-electrodes are electrically connected through two second connection electrodes, and the two second connection electrodes are arranged at intervals from each other;
  • the orthographic projection of each of the plurality of first connection electrodes on the second metal mesh layer is located in a gap between the two second connection electrodes connecting the adjacent second touch sub-electrodes .
  • each of the plurality of first touch control sub-electrodes is connected to at least one first connection line formed by a plurality of first metal lines connected end to end in sequence.
  • the adjacent first connection electrodes are electrically connected; the orthographic projections of the first connection lines on the second metal mesh layer respectively overlap with the plurality of second metal lines in the second connection electrodes, and at least partially overlapping with the orthographic projection of the shared second metal line on the first metal mesh layer.
  • the plurality of first metal lines located in the boundary area between the adjacent first touch sub-electrodes and the second touch sub-electrodes respectively include a plurality of fractures, each of the plurality of fractures divides the first metal line where it is located into two first metal line segments, one of the two first metal line segments belongs to the first touch sub-electrode, and the other One belongs to the second touch sub-electrodes, so that the adjacent first touch sub-electrodes and the second touch sub-electrodes are insulated.
  • At least one embodiment of the present disclosure further provides a touch control structure including a plurality of touch control sub-electrodes and dummy electrodes spaced apart from each other.
  • the dummy electrode is embedded in at least one touch sub-electrode among the plurality of touch sub-electrodes and is spaced apart from the touch sub-electrode where it is located to be insulated from each other;
  • the at least one touch sub-electrode comprises a strip-shaped a channel and a main body part surrounding the dummy electrode and the channel, the strip-shaped channel penetrates the dummy electrode, and both ends of the strip-shaped channel in the extending direction are connected to the main body part .
  • the channel includes at least one narrow portion and at least one wide portion which are alternately arranged in the extending direction and connected in sequence, and the narrow portion of each narrow portion is perpendicular to
  • the width in the extending direction of the channel is smaller than the width of each of the wide portions in the extending direction perpendicular to the channel.
  • the ratio of the length of the narrow portion in the extending direction of the channel to the width of the narrow portion is greater than that of the wide portion in the The ratio of the length in the extending direction of the channel to the width of the wide portion.
  • the plurality of wide portions are arranged at equal intervals, and the lengths of the plurality of narrow portions are equal to each other.
  • the at least one touch control sub-electrode includes a plurality of strip-shaped channels, and the plurality of strip-shaped channels include: a strip-shaped first channel and bar-shaped second channel.
  • the strip-shaped first channel extends substantially along the first extension direction; the strip-shaped second channel extends substantially along the second extension direction and intersects the first channel; the dummy electrode includes the first channel and the At least four portions of the second channel spaced apart from each other.
  • the at least one touch control sub-electrode includes a plurality of the strip-shaped channels
  • the plurality of strip-shaped channels include: a plurality of strip-shaped first channels.
  • the plurality of strip-shaped first channels respectively extend substantially along the first extension direction and are spaced apart from each other;
  • the plurality of strip-shaped second channels respectively extend substantially along the second extension direction and are spaced apart from each other, and the plurality of strip-shaped second channels respectively extend along the second extension direction and are spaced apart from each other.
  • the dummy electrode includes a plurality of strip-shaped first channels spaced from each other by the plurality of strip-shaped first channels and the plurality of strip-shaped second channels part.
  • the first extending direction is perpendicular to the second extending direction.
  • the plurality of strip-shaped first channels include two first channels
  • the plurality of strip-shaped second channels include two second channels
  • the dummy electrode includes at least nine portions separated from each other by the two first channels and the two second channels.
  • the at least one touch sub-electrode includes a communication portion, the plurality of strip-shaped channels are electrically connected to each other through the communication portion, and the plurality of dummy electrodes are connected to each other.
  • a portion surrounds the communicating portion.
  • each of the plurality of channels includes a plurality of narrow portions and a plurality of wide portions that are alternately arranged in the extending direction and connected in sequence, and each of the plurality of channels When the width of the narrow part in the extension direction perpendicular to the channel is smaller than the width of each of the wide parts in the extension direction perpendicular to the channel, the narrow part of the first channel and the second The narrow parts of the channels intersect.
  • the narrow portion of the first channel and the narrow portion of the second channel have an intersection point
  • the first channel includes two sides of the intersection and the a first wide portion and a second wide portion adjacent to the intersection
  • the second channel includes a third wide portion and a fourth wide portion located on both sides of the intersection and adjacent to the intersection
  • the first wide portion and the fourth wide portion are adjacent to the intersection
  • the wide portion, the second wide portion, the third wide portion and the fourth wide portion have equal distances from the intersection point.
  • the shape of the overall outer contour formed by the dummy electrodes and the strip-shaped channel is a first polygon; the two ends of the channel are respectively close to two adjacent sides of the first polygon, or the two ends of the channel are respectively close to two opposite sides of the first polygon, or the The two ends are respectively close to two non-adjacent vertices of the first polygon.
  • the shape of the outer contour of the main body portion is a second polygon, and the second polygon and the first polygon are similar polygons.
  • the strip-shaped channel is a straight strip-shaped; the shape of the overall outer contour formed by the dummy electrode and the channel is a first polygon, The channel is parallel to at least one side of the first polygon, or the channel is not parallel to any side of the first polygon.
  • the strip-shaped channel is a curved strip-shaped or the strip-shaped channel is in the shape of a folded line.
  • At least one of the strip-shaped channels includes: a first segment and a second segment arranged along the extending direction of the at least one strip-shaped channel, the first segment One segment and the second segment are substantially parallel to each other, and the first segment and the second segment are electrically connected by metal connecting wires.
  • the ratio of the area spanned by the entire dummy electrode to the largest dimension of the touch sub-electrode where the dummy electrode is located in the same direction is greater than or equal to 0.4 less than or equal to 0.6; the ratio of the minimum width of the channel to the maximum dimension of the region spanned by the entire dummy electrode is greater than or equal to 0.03 and less than or equal to 0.1.
  • the at least one touch control sub-electrode further includes a plurality of interdigitated structures connected to the main body, and the plurality of interdigitated structures are distributed on the main body the periphery of the main body part and protruding from the main body part in a direction away from the main body part; the extending direction of the channel is parallel to the extending direction of at least part of the interdigitated structures in the plurality of interdigitated structures, or the The extending direction of the channel of the touch sub-electrode is not parallel to the extending direction of at least part of the interdigitated structures in the plurality of interdigitated structures; the at least part of the interdigitated structures approaches the channel from the outer contour of the main body part The edges of the two ends protrude.
  • both ends of the strip-shaped channel protrude from the sides of the main body portion close to both ends of the channel
  • the interdigitated structures at least partially overlap, and at least a portion of the edge of the channel along its extending direction is parallel to a portion of the edge of the interdigitated structure.
  • the touch control structure includes a first electrode layer and a second electrode layer, wherein a space between the first electrode layer and the second electrode layer is provided. an insulating layer; the plurality of touch sub-electrodes include a plurality of first touch sub-electrodes and a plurality of second touch sub-electrodes, and the touch structure further includes a plurality of first connection electrodes and a plurality of second connection electrodes ; the plurality of first touch sub-electrodes and the plurality of first connection electrodes are located in the first electrode layer and arranged along the first direction, the plurality of first touch sub-electrodes and the plurality of first touch sub-electrodes
  • the connection electrodes are alternately distributed and electrically connected in sequence to form first touch electrodes extending along the first direction; the plurality of second touch sub-electrodes are located in the first electrode layer and are arranged in sequence along the second direction and spaced apart
  • the shape of the overall outer contour formed by the dummy electrode and the channel is an irregular polygon;
  • the outer contour of the dummy electrode is in the second direction
  • the first end and the second end opposite to each other are respectively opposite to the second connection electrode adjacent in the second direction, and have a first groove and a second groove respectively;
  • the first groove Concave towards the second end of the outer contour of the dummy electrode, the second groove is concave towards the first end of the outer contour of the dummy electrode;
  • the outer contours of the dummy electrode are opposite each other in the first direction
  • the third end and the fourth end are respectively opposite to the first connection electrode, and have a third groove and a fourth groove respectively;
  • the third groove is concave toward the fourth end, and the fourth The groove is concave towards the third end.
  • the outer contour of the dummy electrode includes a first protrusion located in the first groove and a second protrusion located in the second groove , a third protrusion located in the third groove, a fourth protrusion located in the fourth groove;
  • the first protrusion is convex toward the direction away from the second end of the outer contour of the dummy electrode
  • the second protrusion protrudes in a direction away from the first end of the outer contour of the dummy electrode;
  • the third protrusion protrudes in a direction away from the fourth end, and the fourth protrusion protrudes in a direction away from the first end
  • the direction of the three ends protrudes.
  • the plurality of touch sub-electrodes and the dummy electrodes are located in the same metal mesh layer, and the metal mesh layer includes a plurality of metal meshes defined by a plurality of metal lines.
  • the metal mesh layer includes a plurality of metal meshes defined by a plurality of metal lines.
  • Each of the main body, the channel, and the dummy electrode includes a plurality of the metal meshes, respectively.
  • the plurality of touch sub-electrodes and the dummy electrodes are located in the same metal mesh layer, and the metal mesh layer includes a plurality of metal meshes defined by a plurality of metal lines. a plurality of metal meshes, and the communicating portion includes a plurality of the metal meshes.
  • each part of the dummy electrode has a corresponding connection to the touch sub-electrode.
  • the boundary area of the electrode, the plurality of metal wires located in the boundary area respectively include a plurality of fractures, and each of the plurality of fractures divides the metal wire where it is located into two metal wire segments, and the two metal wire segments One of them belongs to the touch sub-electrode, and the other of the two metal line segments belongs to the dummy electrode, so that the dummy electrode is insulated from the touch sub-electrode.
  • the channel includes at least two conductive lines formed by a plurality of the metal lines connected to each other, and the conductive lines pass through the dummy electrodes and extend therefrom Both ends of the direction are respectively connected with the main body part.
  • each of the channels includes at least one of the metal grids arranged in a width direction thereof, and the width direction is perpendicular to an extension direction of the channels.
  • each of the channels includes a plurality of the metal grids in series arranged along the extending direction thereof; or, each of the channels includes a plurality of the metal grids along the extending direction thereof.
  • a plurality of the metal grids are arranged and metal connecting lines connecting at least two adjacent metal grids.
  • the touch control structure when the touch control structure includes a first electrode layer and a second electrode layer, the first electrode layer is a first metal mesh layer, and the first electrode layer is a first metal mesh layer.
  • the second electrode layer is a second metal mesh layer; the first metal mesh layer includes a plurality of first metal meshes defined by a plurality of first metal lines, and the second metal mesh layer includes a plurality of first metal meshes A plurality of second metal meshes defined by two metal wires, each of the plurality of first metal meshes and each of the second metal meshes is a polygon; the main body, the channel and all the Each part of the dummy electrode includes a plurality of the first metal meshes respectively; and each of the plurality of second connection electrodes includes a plurality of the second metal meshes respectively.
  • At least one embodiment of the present disclosure further provides a display panel, which includes a base substrate, a display structure stacked on the base substrate, and any one of the touch structures provided in the embodiments of the present disclosure.
  • At least one embodiment of the present disclosure further provides an electronic device, and the electronic device includes any one of the touch structures provided by the embodiments of the present disclosure or any one of the touch display panels provided by the embodiments of the present disclosure.
  • FIG. 1 is a schematic diagram of the working principle of a touch control structure
  • FIG. 2 is a schematic diagram of a touch control structure according to an embodiment of the present disclosure
  • Fig. 3 is a kind of enlarged schematic diagram of the part in the box in Fig. 2;
  • Fig. 4A is the enlarged schematic diagram of area A in Fig. 3;
  • Figure 4B is a cross-sectional view of Figure 4A along section line B-B';
  • 4C is a schematic diagram of a vertex not provided with a via hole and a vertex provided with a via hole of the second metal mesh;
  • Figure 4D is a cross-sectional view of Figure 4A along section line D-D';
  • FIG. 5 shows the first touch electrode layer in FIG. 4A
  • FIG. 6A shows the second touch electrode layer in FIG. 4A
  • 6B is a schematic diagram of another second touch electrode layer according to an embodiment of the disclosure.
  • 6C is a schematic diagram of still another second touch electrode layer provided by an embodiment of the disclosure.
  • Fig. 7A and Fig. 7B respectively show two examples of the enlarged schematic diagram of the B area in Fig. 2;
  • FIG. 7C is a schematic diagram of another first touch electrode layer according to an embodiment of the disclosure.
  • FIG. 7D is a schematic diagram of still another first touch electrode layer according to an embodiment of the disclosure.
  • FIG. 8A is a first structural schematic diagram of a dummy electrode embedded in a touch self-electrode according to an embodiment of the disclosure
  • FIG. 8B is a second structural schematic diagram of a dummy electrode embedded in a touch self-electrode according to an embodiment of the present disclosure
  • 8C is a third structural schematic diagram of a dummy electrode embedded in a touch self-electrode according to an embodiment of the present disclosure
  • 8D is a fourth schematic structural diagram of a dummy electrode embedded in a touch self-electrode according to an embodiment of the present disclosure
  • 8E is a fifth structural schematic diagram of a dummy electrode embedded in a touch self-electrode according to an embodiment of the disclosure.
  • 8F is a sixth structural schematic diagram of a dummy electrode embedded in a touch self-electrode according to an embodiment of the present disclosure.
  • 8G is a seventh structural schematic diagram of a dummy electrode embedded in a touch self-electrode according to an embodiment of the present disclosure.
  • FIG. 8H is an enlarged schematic view of part C in FIG. 8G;
  • 8I is a schematic structural diagram eight of a dummy electrode embedded in a touch self-electrode according to an embodiment of the present disclosure
  • FIG. 8J is an enlarged schematic view of part F in FIG. 8I;
  • 9A is a schematic diagram of dummy electrodes and channels located in the first grid layer
  • FIG. 9B is an enlarged schematic diagram of part D in FIG. 9A;
  • Fig. 9C is a further enlarged schematic diagram of part E in Fig. 9B;
  • FIG. 9D is an enlarged schematic diagram of a part including a dummy electrode in FIG. 9A;
  • FIG. 10 is a schematic diagram of a touch display panel provided by at least one embodiment of the present disclosure.
  • 11A is a schematic plan view of a touch display panel provided by at least one embodiment of the present disclosure.
  • Fig. 11B is a cross-sectional view taken along the section line II-II' in Fig. 11A.
  • OLED display panels have the characteristics of self-luminescence, high contrast ratio, low energy consumption, wide viewing angle, fast response speed, can be used for flexible panels, wide operating temperature range, simple manufacturing, etc., and have broad development prospects.
  • various functions in the display panel such as a touch function, a fingerprint recognition function, and the like.
  • forming an on-cell touch control structure in an OLED display panel is an implementation method. In this way, the touch control function of the display panel is realized by forming the touch control structure on the packaging film of the OLED display panel. .
  • the mutual capacitive touch structure includes a plurality of touch electrodes, and the plurality of touch electrodes include touch driving electrodes and touch sensing electrodes extending in different directions.
  • the touch driving electrodes Tx and the touch sensing electrodes Rx are in Mutual capacitances for touch sensing are formed at the intersections with each other.
  • the touch driving electrodes Tx are used for inputting excitation signals (touch driving signals), and the touch sensing electrodes Rx are used for outputting touch sensing signals.
  • the capacitance value reflecting the coupling points (for example, intersections) of the horizontal and vertical electrodes can be obtained.
  • a finger touches a touch screen (such as a cover glass)
  • the coupling between the touch driving electrodes and the touch sensing electrodes near the touch point is affected, thereby changing the mutual capacitance between the two electrodes at the intersection point. capacitance, resulting in changes in touch sensing signals.
  • the coordinates of the touch point can be calculated according to the data of the two-dimensional capacitance change of the touch screen based on the touch sensing signal.
  • FIG. 1 shows a schematic diagram of a mutual capacitive touch structure.
  • the touch driving electrodes Tx are applied with touch driving signals, thereby generating electric field lines E, which are received by the touch sensing electrodes Rx to form a reference capacitance.
  • a finger touches the touch screen 110, since the human body is a conductor, a part of the electric field lines E generated by the touch driving electrodes Tx are guided to the finger to form a finger capacitance (Finger Capacitance), which reduces the electric field lines E received by the touch sensing electrodes Rx , so the capacitance value between the touch driving electrodes Tx and the touch sensing electrodes Rx decreases.
  • Finger Capacitance finger Capacitance
  • the touch driving circuit 130 obtains the above-mentioned capacitance value through the touch sensing electrode RX, and compares it with the reference capacitance to obtain the capacitance value change amount. According to the data of the capacitance value change amount and the position coordinates of each touch capacitance, The coordinates of the touch point can be calculated.
  • the touch driving electrodes Tx include a plurality of sub-electrodes electrically connected by bridges, an insulating layer is formed between the bridges and the touch sensing electrodes Rx, and the bridges are perpendicular to the touch sensing electrodes Rx.
  • At least one embodiment of the present disclosure provides a touch control structure including a first metal mesh layer and a second metal mesh layer, wherein the first metal mesh layer and the second metal mesh layer are between the first metal mesh layer and the second metal mesh layer.
  • An insulating layer is arranged therebetween, the first metal mesh layer includes a plurality of first metal meshes defined by a plurality of first metal lines, and the second metal mesh layer includes a plurality of first metal meshes defined by a plurality of second metal lines a second metal mesh, each of the plurality of first metal meshes and each of the second metal meshes is a polygon;
  • the first metal mesh layer includes a plurality of A first touch sub-electrode and a plurality of first connection electrodes, the plurality of first touch sub-electrodes and the plurality of first connection electrodes are alternately distributed one by one and are electrically connected in sequence to form a first touch control sub-electrode extending along the first direction.
  • the first metal mesh layer further includes a plurality of second touch sub-electrodes arranged in sequence along a second direction and spaced apart from each other, and the first direction intersects with the second direction;
  • Each of the first touch sub-electrodes and each of the second touch sub-electrodes are spaced apart from each other and respectively include a plurality of first metal meshes;
  • the second metal mesh layer includes a plurality of first metal meshes spaced apart from each other second connection electrodes, each of the plurality of second connection electrodes is electrically connected to the adjacent second touch sub-electrodes through a plurality of via holes in the insulating layer, so as to connect the adjacent second touch electrodes
  • the sub-electrodes are electrically connected to form second touch electrodes extending in the second direction; each of the plurality of second connection electrodes includes: a first metal grid row and a second metal grid along the second direction Row.
  • the first metal mesh row includes a plurality of the second metal meshes arranged along the first direction; the second metal mesh row is adjacent to and connected to the first metal mesh row, and includes a plurality of the second metal meshes arranged along the first direction; at least one of the second metal grids arranged in the first direction; the number of the second metal grids in the second metal grid row is less than or equal to the second metal grid in the first metal grid row.
  • the number of metal meshes, and all the second metal lines of the second metal meshes in the second metal mesh row close to the first metal mesh row are the same as the first metal meshes A second metal line shared by the second metal grids in the metal grid row.
  • the touch structure provided by the embodiment of the present disclosure can reduce the overlap area of the first metal line and the second metal line by sharing the second metal line, and reduce the overlap area of the first touch electrode and the second touch electrode, thereby reducing the overlap area of the first touch electrode and the second touch electrode.
  • the mutual capacitance value between the first touch electrode and the second touch electrode is reduced, and the power consumption of the touch circuit is reduced.
  • FIG. 2 is a schematic diagram of a touch control structure 40 provided by an embodiment of the present disclosure.
  • the touch electrode structure 40 includes a plurality of first touch electrodes 410 extending along the first direction D1 (a first touch electrode 410 is a position indicated by the corresponding dotted line in FIG. 2 ) and a plurality of first touch electrodes 410 extending along the first direction D1 A plurality of second touch electrodes 420 extending in the second direction D2 (a second touch electrode 420 is a position indicated by a corresponding dotted line in FIG. 2 ).
  • the first touch electrodes 410 are touch sensing electrodes Rx
  • the second touch electrodes 420 are touch driving electrodes Tx.
  • the embodiments of the present disclosure do not limit this.
  • the first touch electrodes 410 may be touch driving electrodes Tx
  • the second touch electrodes 420 may be touch sensing electrodes Rx.
  • Each of the first touch electrodes 410 includes first touch sub-electrodes 411 arranged in sequence along the first direction D1 and connected to each other, and each of the second touch electrodes 420 includes second touch electrodes 411 arranged in sequence along the second direction D2 and connected to each other Touch sub-electrodes 421 .
  • the outlines of the main bodies of each of the first touch sub-electrodes 411 and the second touch sub-electrodes 421 are rhombus-shaped.
  • the first touch sub-electrodes 411 and the second touch sub-electrodes 421 may also have other shapes, such as triangles, stripes, and the like.
  • Adjacent first touch sub-electrodes 411 in the first direction D1 are electrically connected through the first connection electrodes 412 to form the first touch electrodes 410 , and adjacent second touch sub-electrodes 421 in the second direction D2 pass through The second connection electrodes (not shown) are electrically connected to form the second touch electrodes 420 .
  • Each of the first touch electrodes 410 and each of the second touch electrodes 420 are insulated and intersected with each other, and a plurality of touch units 400 are formed at the intersections, and each touch unit includes two first touch electrodes connected at the intersections each part of the part and each at least part of each of the two second touch electrode parts connected at the intersection.
  • the right side of FIG. 2 shows an enlarged schematic view of a touch unit 400 .
  • each touch unit 400 includes each half area of the two first touch sub-electrodes 411 adjacent to each other and each half area of the two second touch sub-electrodes 421 adjacent to each other, that is, the average area includes One area of the first touch sub-electrode 411 and one area of the second touch sub-electrode 421, the intersection of the first touch sub-electrode 411 and the second touch sub-electrode 421 in each touch unit 400 (also That is, the intersection of the first connection electrode and the second connection electrode) forms a reference point for calculating coordinates.
  • each touch unit 400 is equivalent to the area where a human finger contacts the touch panel. If the area of the touch unit is too large, it may cause touch blind spots on the panel, and if the area is too small, it may cause false touch signals.
  • the average side length of each touch unit 400 is P, which is called the pitch of the touch structure.
  • the size of the pitch P ranges from 3.7 mm to 5 mm, for example, about 4 mm; this is because the diameter of a human finger in contact with the touch panel is about 4 mm.
  • the size of the pitch is the same as the average side length of each first touch sub-electrode 411 and the average side length of each second touch sub-electrode 421 , and is also the same as that of the adjacent first touch sub-electrodes 411 .
  • the center distance and the center distance of adjacent second touch sub-electrodes 421 are the same.
  • the first touch sub-electrodes 411 and the second touch sub-electrodes 421 respectively include a main body and a plurality of interdigitated structures 440 extending from the main body.
  • the adjacent second touch sub-electrodes 421 are nested with each other in the first metal grid 50 through the interdigital structure 440 to form a mutual capacitance.
  • the interdigital structure can increase the perimeter of the touch sub-electrodes with the same area, thus effectively improving the mutual capacitance without increasing the self-capacitance (capacitive load) of the touch sub-electrodes, thereby improving the touch sensitivity.
  • the shape of the main body portion may be a circle or a rectangle
  • the shape of the interdigital structure includes at least one of the following shapes: a parallelogram (eg, a rectangle), a triangle, a trapezoid, and a hexagon.
  • a plurality of interdigitated structures 440 are distributed around the main body of the touch sub-electrode.
  • the main body is rectangular, and the number of the second interdigital structures 112 corresponding to each side is 3-10, for example, 6-10.
  • the main body portion may also be circular, and the plurality of interdigitated structures 440 are evenly distributed on the circumference of the circular shape.
  • FIG. 2 shows an enlarged schematic view of a touch control unit 400 on the right side.
  • the adjacent first touch sub-electrodes 411 in the first direction D1 are connected by the first connection electrodes 412 to form the first touch electrodes 410 extending in the first direction D1, and in the second direction D2
  • the adjacent second touch sub-electrodes 421 are connected by second connection electrodes (not shown in FIG. 2 ) to form second touch electrodes 420 extending along the second direction D2 .
  • FIG. 3 is an enlarged schematic view of the part in the box in FIG. 2 .
  • the touch structure 40 includes a first metal mesh layer 50 and a second metal mesh layer 60 .
  • An insulating layer is provided between the first metal mesh layer 50 and the second metal mesh layer 60 .
  • the first metal mesh layer 50 includes a plurality of first touch sub-electrodes 411 and a plurality of first connection electrodes 412 arranged along the first direction D1, and a plurality of first touch sub-electrodes 411 and The plurality of first connection electrodes 412 are alternately distributed and electrically connected in sequence to form the first touch electrodes 410 extending along the first direction D1, that is, the adjacent first touch sub-electrodes 4111 and 4112 along the first direction D1
  • the first touch electrodes 410 located in the first metal mesh layer 50 shown in FIG. 2 are formed by being electrically connected to each other through the first connection electrodes 412 .
  • the first metal mesh layer 50 further includes a plurality of second touch sub-electrodes 421 arranged in sequence along the second direction D2 and spaced apart from each other, and the first direction D1 and the second direction intersect D2.
  • Each of the plurality of first touch sub-electrodes 411 and each of the second touch sub-electrodes 421 are spaced apart from each other, and respectively include a plurality of first metal meshes.
  • the second metal mesh layer 60 includes a plurality of second connection electrodes 422 spaced apart from each other, each of the plurality of second connection electrodes 422 passes through a plurality of via holes in the insulating layer and the second touch sub-electrodes 4211 adjacent thereto and 4212 are electrically connected to electrically connect the adjacent second touch sub-electrodes 4211 and 4212 to form the second touch electrodes 420 extending in the second direction D2 as shown in FIG. 2 .
  • the first touch sub-electrodes 411 and the second touch sub-electrodes 421 are nested and isolated from each other in the first metal mesh layer 50 through the interdigitated structure 440 .
  • the boundary between the first touch sub-electrodes 411 and the second touch sub-electrodes 421 is zigzag due to the existence of the interdigitated structure.
  • FIG. 4A shows an enlarged schematic view of the area A in FIGS. 2 and 3 , where the area A is the intersection of the first touch sub-electrode 411 and the second touch sub-electrode 421, that is, a bridge area.
  • the light-colored grid in FIG. 4A shows the first metal grid 52 in the first metal grid layer 50 , and the first metal grid layer 50 includes the first touch electrodes 410 (including the first touch sub-electrodes 411 ). and the first connection electrode 412) and the second touch sub-electrode 421, the first touch sub-electrode 411, the first connection electrode 412 and the second touch sub-electrode 421 respectively comprise a plurality of first metal meshes 52 connected to each other ;
  • the dark grid in FIG. 4A shows the second metal grid 62 in the second metal grid layer 60, the second metal grid layer 60 includes a second connection electrode 422, and the second connection electrode 422 includes a plurality of The second metal meshes 62 are connected to each other.
  • FIG. 4B is a cross-sectional view of FIG. 4A along the section line B-B'
  • FIG. 5 shows the first touch electrode layer in FIG. 4A
  • FIG. 6A shows the second touch electrode layer in FIG. 4A .
  • the touch control structure 40 includes a first metal mesh layer 50 and a second metal mesh layer 60, between the first metal mesh layer 50 and the second metal mesh layer 60
  • An insulating layer 70 is provided.
  • the first metal mesh layer 50 includes a plurality of first metal meshes 52 defined by a plurality of first metal lines 51
  • the second metal mesh layer 60 includes a plurality of second metal meshes defined by a plurality of second metal lines 61 .
  • each of the plurality of first metal meshes 52 and each of the second metal meshes 62 are polygonal.
  • each of the plurality of first metal meshes 52 and each of the second metal meshes 62 shown in the above figure are hexagons.
  • the shapes may also be other polygons.
  • a quadrilateral, a pentagon, a triangle, etc. can be specifically designed as required.
  • the embodiment of the present disclosure does not limit the shape of each first metal grid 52 and each second metal grid 62, as long as the shape of each first metal grid 52 and each second metal grid 62 is satisfied corresponding features.
  • each of the plurality of second connection electrodes 422 includes a first metal mesh row 1 and a second metal mesh row 2 along the second direction.
  • the first metal mesh row 1 includes a plurality of second metal meshes 62 arranged along the first direction D1.
  • the second metal mesh row 2 is adjacent to and connected to the first metal mesh row 1 , and includes at least one second metal mesh 62 arranged along the first direction D1 .
  • the number of the second metal meshes 62 in the second metal mesh row 2 is smaller than the number of the second metal meshes 62 in the first metal mesh row 1 , and the second metal meshes in the second metal mesh row 2 All the second metal lines 61 of the grid 62 close to the first metal grid row 1 are second metal lines 611 shared with the second metal grids 62 in the first metal grid row 1 .
  • the number of the second metal meshes 62 in the second metal mesh row 2 is equal to the number of the second metal meshes 62 in the first metal mesh row 1 .
  • all the second metal lines 61 of the second metal meshes 62 in the second metal mesh row 2 close to the first metal mesh row 1 are the same as the second metal meshes in the first metal mesh row 1 62 shared second metal line 611 .
  • the touch control structure 40 provided by the embodiment of the present disclosure, since all the second metal lines 61 of the second metal grid 62 in the second metal grid row 2 close to the first metal grid row 1 are the same as the first metal grid row 1
  • the second metal line 611 shared by the second metal grid 62 in the metal grid row 1 so that, in addition to the second metal wire 61 shared with the first metal grid row
  • There is no additional second metal line that overlaps with the first metal line 51 in the row 1 of the first metal grid so that the overlapping area of the first metal line 51 and the second metal line 61 is reduced, and the first metal line 51 is reduced.
  • the overlapping area of the touch electrodes 410 and the second touch electrodes 420 reduces the mutual capacitance value between the first touch electrodes 410 and the second touch electrodes 420, improves the touch performance, and reduces false alarms , the occurrence of false touches, and reduce the power consumption of the touch circuit; at the same time, although there is an insulating layer between the first metal layer and the second metal layer, in the manufacturing process, there are still some places where the insulating layer is missing.
  • reducing the overlapping area of the first metal line 51 and the second metal line 61 can also reduce the risk of the first metal line 51 and the second metal line 62 being connected, reducing the risk of the first metal line 51 and the second metal line 62 being connected
  • the probability of a short circuit between the metal lines 61 is beneficial to the stability of the touch function of the entire touch control structure, and solves the problem of poor touch performance caused by an excessively large overlapping area of the first metal line 51 and the second metal line 61 .
  • the problems of false alarms, false touches, and excessive power consumption of the touch circuit can be solved, and at the same time, during the process of manufacturing the touch control structure, the first metal line and the second metal line are easily connected to each other due to the absence of the insulating layer. cause short circuit problems.
  • the first metal grid row 1 is electrically connected to the adjacent second touch sub-electrodes 4211, and the second metal line 611 shared with the second metal grid 62 in the first metal grid row 1 is in the first metal grid row 1.
  • the orthographic projection on the metal mesh layer 50 overlaps with the first metal line 51 , so that on the basis of reducing the overlapping area of the first metal line 51 and the second metal line 62 as much as possible, the display panel or The display device has a high aperture ratio.
  • the number of the second metal meshes 62 in the first metal mesh row 1 is 2, and the number of the second metal meshes in the second metal mesh row 2 is 1, so as to ensure the Under the condition that the second grid row 2 provides at least two electrical signal conduction channels along the second direction D2, the second connection electrode 422 includes as few second metal grids as possible, so that the first metal lines 51 and the second metal The overlap of lines 62 is minimal.
  • the at least two electrical signal conduction channels are, for example, the first channel 621 and the second channel 622 indicated by the gray lines in Fig. 6A.
  • the above-mentioned plurality of vias include first vias 71 , and the first metal grid row 1 passes through the first vias 71 and two second touches adjacent to the second connection electrodes 422 where it is located.
  • One 4211 of the sub-electrodes 4211/4212 is electrically connected.
  • a plurality of second metal lines 61 of the second metal meshes 62 (eg, at least two metal meshes 62 ) of the first metal mesh row 1 are in the first metal mesh layer
  • the orthographic projections on 50 respectively overlap with the plurality of first metal lines 51 of the first metal grid 52 of the second touch sub-electrodes 421 , so that the second metal grid 62 has a plurality of first metal grids 52 overlapping with the first metal grid 52 .
  • vertex For example, in this embodiment, the number of the plurality of vertices is 5, which are the first vertex 01 , the second vertex 02 , the third vertex 03 , the fourth vertex 04 and the fifth vertex 05 respectively.
  • the first vias 71 are correspondingly arranged at the plurality of first connection vertices, that is, the plurality of vias 71 are arranged in a one-to-one correspondence with the plurality of connection vertices, and the second The vertex of the metal mesh 62 where the first via hole 71 is provided is called the first connection vertex.
  • first metal wire/second metal wire in the present disclosure refers to a metal wire connected between two adjacent vertices of the first metal mesh/second metal mesh, that is, each The first metal line/second metal line corresponds to one edge of the first metal mesh/second metal mesh.
  • each of the plurality of first metal meshes 52 and each of the second metal meshes 62 are hexagonal.
  • a plurality of second metal lines 61a (for example, four second metal lines 61a) of the second metal mesh 62 of the first metal mesh row 1 and the edge first metal mesh in the adjacent second touch sub-electrodes 4211
  • the four first metal lines 51a of the grid 52 (the first metal grid of the second touch sub-electrode 4211 close to the edge of the second connection electrode 422) are respectively overlapped in the direction perpendicular to the second metal grid layer 60, such that
  • the first metal mesh 52 at the edge has the above-mentioned five vertices overlapping with the second metal mesh 62; four first metal wires 51 connect the five vertices in sequence, forming a W shape;
  • a direction D1 and the second direction D2 intersect, and at least one of the five vertices is a connecting vertex.
  • the first vertex 01, the second vertex 02, the fourth vertex 04 and the fifth vertex 05 are connection vertices; in other embodiments, the first vertex 01 and the second vertex 02 may also be , the third vertex 03, the fourth vertex 04 and the fifth vertex 05 are all connected vertices; or, in some embodiments, non-adjacent vertices are connected vertices, such as the first vertex 01, the third vertex 03 and the fifth vertex Vertex 05 is the connecting vertex.
  • the plurality of second metal meshes 62 in the first metal mesh row 1 are second metal meshes at the first edge of the second connection electrode, located at the first end of the second connection electrode 422 in the second direction D2 part, and is electrically connected to the first metal grid at the edge of the adjacent second touch sub-electrode 4211 . That is, the edge of the second metal line 61a of the second metal grid 62 of the first metal grid row 1 and the edge of the adjacent second touch sub-electrode 4211 closest to the first metal grid row 1 are the first The wire 51a is connected.
  • This arrangement can minimize the overlap between the second touch sub-electrodes 4211 and the second connection electrodes 422 , thereby reducing the capacitive load on the touch sub-electrodes and improving the touch sensitivity.
  • the first metal mesh layer 50 is closer to the viewer, so as to prevent more first metal meshes from being close to the pixel structure of the display structure and thus affecting the operation of the pixel structure. Therefore, the edge second metal line 61a is blocked by the edge first metal line 51a, and the edge second metal line 61a and the edge first metal line 51a can be distinguished with reference to FIG. 5 and FIG. 6A .
  • FIG. 4C is a schematic diagram of the vertexes of the second metal mesh without via holes and the vertexes provided with via holes
  • FIG. 4D is a cross-sectional view of FIG. 4A along the section line DD', and the illustration is omitted in FIG. 4C and FIG. 4D specific details of the structure.
  • FIG. 4C shows an example of the vertex 03 (corresponding to the vertex 53 of the first mesh layer) where the second metal mesh 62 is not provided with via holes
  • the right side shows that the second metal mesh 62 corresponds to An example of vertices 63a (corresponding to vertices 53a of the first mesh layer) where vias 71 are provided.
  • the second metal mesh layer 60 is located at the vertex 01/02/04/ A metal contact pad 65 with a larger area will be formed at 05, so that the occupied area of this vertex is larger than that of the original vertex 03.
  • the first metal mesh layer 50 also forms a metal contact pad with a larger area at the vertex 53a.
  • the shape of the metal contact pad is a rectangle or a circle, and the size (average side length or diameter) of the metal contact pad is more than twice that of the first metal wire 51 or the second metal wire 61 . Therefore, the arrangement of the via hole 71 will cause the overlapping area of the first metal line 51 and the second metal line 62 to increase.
  • each connection vertex can generate an effective channel, thereby minimizing the arrangement of the metal contact pads and reducing the area of the metal layer.
  • the self-capacitance of the second connection electrode 422 can be reduced, and on the other hand, the overlap between the first metal wire 51 and the second metal wire 52 can be reduced, and the touch sub-electrode can be reduced from these two aspects at least. Capacitive load improves touch sensitivity.
  • the effective channel can be understood as a first metal wire that is directly connected to the vertex 53a and that enables the via hole 71 corresponding to the vertex 53a to transmit the touch signal in the second touch sub-electrode 421 to the second connection electrode 422 . 51. Therefore, the first metal line 51 connected between two adjacent vertices 53a is not an effective channel, because the touch signal can be transmitted to the via hole 71 corresponding to the vertex 53a when it reaches any vertex 53a. The two connecting electrodes 422 do not need to pass through the optional first metal wire 51 .
  • the number of vertices at which the second metal grid of the first metal grid row 1 overlaps with the edge first metal grid 52a is not less than 5, and the number of the connection vertices is not less than 5. less than 3.
  • the first metal wire 51 directly connected to the vertex of the first metal wire 51 corresponding to each connection vertex is complete, that is, connected between two vertices of the first metal mesh 52 without a fracture in the middle .
  • the first metal mesh 52 where the vertex of the first metal wire 51 corresponding to each connection vertex is located is complete, that is, all the first metal wires 51 in the first metal mesh 52 are complete. This arrangement can improve the transmission efficiency and effectiveness of the touch signal input from the second touch sub-electrode 421 to the second connection electrode 422 .
  • the average line width X1 of the first metal line 51 is greater than the average line width X2 of the second metal line 61 .
  • the orthographic projection of the second metal line 61 on the base substrate 21 is located within the orthographic projection of the first metal line 51 on the base substrate 21, which can effectively improve the opening of the display substrate Rate.
  • each of the plurality of second connection electrodes 422 further includes: a third metal mesh row 3 and a fourth metal mesh row 4 along the second direction D2 .
  • the third metal mesh row 3 is located on the side of the second metal mesh row 4 away from the first metal mesh row 1, and includes a plurality of second metal meshes 62 arranged along the first direction D1; the fourth metal mesh
  • the grid row 4 is located on the side of the third metal grid row 3 close to the second metal grid row 2 and is adjacent to and connected to the third metal grid row 3, and includes at least one second metal grid arranged along the first direction D1 grid 62.
  • the number of the second metal meshes 62 in the fourth metal mesh row 4 is smaller than the number of the second metal meshes in the third metal mesh row 3, and the second metal meshes in the fourth metal mesh row 4 All the second metal lines 612 of the grid 62 close to the third metal grid row 3 are second metal lines 612 shared with the second metal grids 62 in the third metal grid row 3 .
  • the number of second metal meshes 62 in the fourth metal mesh row 4 is equal to the number of second metal meshes in the third metal mesh row 3 , and all the second metal lines 612 of the second metal mesh 62 in the fourth metal mesh row 4 close to the third metal mesh row 3 are the same as the second metal mesh in the third metal mesh row 3
  • the second metal line 612 shared by the lattices 62 is correspondingly designed for the second metal mesh shown in FIG. 6C , as long as the same conditions as in the previous embodiment are satisfied.
  • the touch control structure 40 provided by the embodiment of the present disclosure, since all the second metal lines 61 of the second metal grid 62 in the fourth metal grid row 4 are close to the third metal grid row 3
  • the second metal line 612 shared by the second metal mesh 62 in the metal mesh row 3 thus, in addition to the second metal wire 61 shared with the third metal mesh row 3, the fourth metal mesh row 4
  • There is no additional second metal line that overlaps with the first metal line 51 in the row 1 of the first metal grid so that the overlapping area of the first metal line 51 and the second metal line 61 is reduced, and the first metal line 51 is reduced.
  • the overlapping area of the touch electrodes 410 and the second touch electrodes 420 can further reduce the mutual capacitance value between the first touch electrodes 410 and the second touch electrodes 420 and reduce the power consumption of the touch circuit. And the technical effect of reducing the probability of short circuit between the first metal line 51 and the second metal line 61 .
  • the second metal mesh 62 of the third metal mesh row 3 is a second metal mesh at the second edge of the second connection electrode 422 , located at the second end of the second connection electrode 422 in the second direction , and is electrically connected to the first metal grid at the edge of the adjacent second touch sub-electrode 4212 , and the second end portion is opposite to the first end portion in the second direction D2 . That is, the edge of the second metal line 61b of the second metal grid 62 of the third metal grid row 3 and the first metal wire 61b of the adjacent second touch sub-electrode 4212 that is closest to the edge of the third metal grid row 3 Line 51b is connected.
  • This arrangement can minimize the overlap between the second touch sub-electrodes 4212 and the second connection electrodes 422, thereby reducing the capacitive load on the touch sub-electrodes and improving the touch sensitivity.
  • the first plurality of vias further includes second vias 72 , and the third metal grid row 3 passes through the second vias and two second contacts adjacent to the second connection electrodes 422 where it is located.
  • the other one of the sub-electrodes 4212 is electrically connected.
  • the orthographic projections of the plurality of second metal lines 61 of the second metal grid 62 of the third metal grid row 3 on the first metal grid layer 50 are respectively corresponding to the second touch sub-electrodes.
  • the plurality of first metal lines 51 of the first metal mesh 52 of 421 overlap, so that the second metal mesh 62 has a plurality of vertices overlapping the first metal mesh 52 .
  • the number of the plurality of vertices in the third metal mesh row 3 is 5, which are the sixth vertex 01', the seventh vertex 02', the eighth vertex 03', and the ninth vertex 04 respectively. ' and the tenth vertex 05'.
  • the plurality of vertices include a plurality of second connection vertices, and the second via holes 72 are correspondingly disposed at the plurality of connection vertices, that is, the plurality of second via holes 72 and the plurality of second connection vertices are set in one-to-one correspondence.
  • the vertex of the second metal mesh 62 where the second via hole 72 is provided is called the second connection vertex.
  • the arrangement manner and position of the second via hole 72 are similar to those of the first via hole 71 , and reference may be made to the description of the relevant features of the first via hole 71 .
  • the orthographic projection of the second metal line 612 shared with the second metal mesh 62 in the third metal mesh row 3 on the first metal mesh layer 50 is the same as the first metal line 51 No overlap, that is, the first metal line 51 is not provided at the position of the first metal layer 50 corresponding to the shared second metal line 612, so as to minimize the overlapping area of the first metal line 51 and the second metal line 62, Avoid the problems caused by the large overlapping area of the two.
  • the orthographic projection of the shared second metal line 612 on the first metal mesh layer 50 may also overlap with the first metal line 51, so as to minimize the difference between the first metal line 51 and the first metal line 51.
  • the display panel or the display device using the touch control structure 40 has a higher aperture ratio.
  • each second electrode 422 includes at least two electrical signal conduction channels.
  • the second connection electrode 422 further includes at least one intermediate metal mesh row located between the second metal mesh row 2 and the fourth metal mesh row 4 , each row of the at least one intermediate metal mesh row includes at least one The second metal mesh 62 .
  • the number of at least one middle metal grid row is 1 row, that is, the fifth grid row is 5 .
  • the fifth grid row 5 is adjacent to and connected to the second metal grid row 2 and the fourth metal grid row 4 .
  • the number of second metal grids for each row of the at least one middle metal grid row is one.
  • the fifth grid row 5 has only one second metal grid, so as to ensure that the fifth grid row 5 provides at least two electrical signal conduction channels along the second direction D2, the second connection electrode 422 includes as few second metal meshes as possible, so that the overlap of the first metal lines 51 and the second metal lines 62 is minimized.
  • the pattern of each of the plurality of second connection electrodes 422 is symmetrical with respect to the symmetry axis along the first direction D1 to facilitate the uniformity of the conduction of touch signals conducted through the second connection electrodes 422 .
  • each second metal grid 62 includes at least two vertical sides 61c along the second direction D2 to ensure that each row of the second metal grid can provide at least two electrical signal conduction channels along the second direction D2 In this way, when there is a risk of disconnection of one of the vertical sides 61c, the occurrence of touch failures can be prevented, and the reliability of the touch function can be ensured.
  • the orthographic projections of the at least two vertical sides 61 c on the first metal mesh layer 50 do not overlap with the first metal lines 51 , so as to reduce the overlap between the first metal lines 51 and the second metal lines 62 as much as possible.
  • the adjacent second touch sub-electrodes 4211 and 4212 pass through two second connection electrodes 422 , namely, one second connection electrode 422 on the left side and one second connection electrode 422 on the right side in FIG. 6A .
  • the two second connection electrodes 422 are spaced apart from each other.
  • the orthographic projection of each of the plurality of first connection electrodes 412 on the second metal mesh layer 60 is located at the two second connection electrodes 422 connecting the adjacent second touch sub-electrodes 4211 and 4212 in the gap between.
  • each of the plurality of first touch sub-electrodes 421 is connected to the adjacent first connection line 464 formed by at least one first metal line 51 connected end to end.
  • the connection electrodes 412 are electrically connected.
  • the orthographic projections of the first connection lines 461 on the second metal mesh layer 60 respectively overlap with the plurality of second metal lines in the second connection electrodes 422 , and at least partially share the second metal lines 611 on the first metal mesh.
  • the orthographic projections on the grid layer 50 overlap. For example, in the embodiments shown in FIG. 4A , FIG. 5 and FIG.
  • the first touch sub-electrode 411 on the left side is electrically connected to the first connection electrode 412 through three first connection lines 4611 , 4612 and 4613 .
  • a part of the orthographic projection of the first connection line 4611 on the second metal mesh layer 60 is shared with the first metal mesh row 1 and the second metal mesh row 2 of the second connection electrode 422 on the left side of the figure.
  • the metal lines 611 overlap, so as to reduce the overlapping area of the first metal line 51 and the second metal line 62 as much as possible, so as to avoid the problem caused by the large overlapping area of the two.
  • the first touch sub-electrodes 411 on the right side of the figure are electrically connected to the first connection electrodes 412 through a plurality of second connection lines 462, and each second connection line consists of at least one first metal line connected end to end. 51 is formed, similar to each of the first connecting lines.
  • the first touch sub-electrode 411 on the right is electrically connected to the first connection electrode 412 through three second connection lines 4621 , 4622 and 4623 , and the orthographic projection of the second connection line 4621 on the second metal mesh layer 60 is A part overlaps with the second metal wire 611 shared by the first metal grid row 1 and the second metal grid row 2 of the second connection electrode 422 on the right side of the figure, so as to reduce the number of the first metal wire 51 and the second metal wire as much as possible.
  • the overlapping area of the metal lines 62 avoids the problem caused by the large overlapping area of the two.
  • the first connection line and the second connection do not exist at the position of the first metal layer 50 corresponding to the shared second metal line 612 of the third metal grid row 3 of the second connection electrode 422
  • the lines are overlapped therewith, so as to reduce the overlapping amount of the first metal line 51 and the second metal line 62 as much as possible.
  • the orthographic projections of the first connection line and the second connection line and the shared second metal line 612 on the first metal layer 50 may at least partially overlap.
  • a, b, c, d, e, and f respectively represent multiple sides of different second metal meshes 62 .
  • the length relationship of these sides is: a ⁇ e ⁇ c, f ⁇ d ⁇ b.
  • the second grid lines of the second metal grid layer 402 in FIG. 6A that overlap with the first metal lines are the grid lines a, b, c, d, e, and f marked in the figure, respectively.
  • the position of the second metal grid 62 is designed in a way with the smallest overlap length, so that on the basis of satisfying the previously described conditions, the The sum of the lengths of the second grid lines overlapping the first metal lines is the smallest.
  • the position of the second grid line overlapping the first metal line may be different from that in FIG. 4A , but the design of the second grid line overlapping the first metal line can still satisfy the requirement of The sum of the lengths is the smallest.
  • the plurality of first metal lines located in the boundary area between the adjacent first touch sub-electrodes and the second touch sub-electrodes respectively include a plurality of fractures, and each of the plurality of fractures divides the corresponding first metal wire into Two first metal line segments, one of the two first metal line segments belongs to the first touch sub-electrode, and the other one belongs to the second touch sub-electrode, so that the adjacent first touch sub-electrodes and the second touch sub-electrodes are adjacent to each other.
  • the touch sub-electrodes are insulated.
  • FIG. 7A and FIG. 7B respectively show two examples of the enlarged schematic diagram of the B area in FIG. 2 , where the B area involves two first touch sub-electrodes 411 that are adjacent and insulated in the second direction D2.
  • the B region is an isolation region of the four touch sub-electrodes 421 adjacent to and insulated from the two second touch sub-electrodes 421 in the first direction D1.
  • the metal meshes shown in FIG. 7A are all located in the first metal mesh layer, that is, they are all first metal meshes, wherein the light-colored meshes represent the first metal meshes in the adjacent first touch sub-electrodes 411
  • the dark grids represent the first metal grids in the adjacent two second touch sub-electrodes 421 .
  • the first touch sub-electrodes 411 and the second touch sub-electrodes 421 are adjacent to each other, and the plurality of first metal lines 51 located in the boundary area between the two include a plurality of spaces 510, each
  • the fracture 510 is located in the middle of the first metal wire 51 where it is located, that is, each fracture 510 is located in the middle of one side of the first metal grid 52 where it is located, and the first metal wire 51 where it is located is divided into two first metal wires 51.
  • first metal line segment belongs to the touch sub-electrode in the embodiment of the present disclosure means that there is an electrical connection between the first metal line segment and the touch sub-electrode.
  • between adjacent and insulated touch sub-electrodes are insulated by the fractures formed by the disconnection of the metal wire;
  • the dummy electrodes are insulated, and this setting can maximize the setting area of the touch electrodes, improve the density of the touch electrodes, and thus improve the touch sensitivity.
  • the edge metal meshes of each touch sub-electrode are incomplete, that is, they all include a part of the first metal mesh, and the edge metal meshes in adjacent touch sub-electrodes are mutually match to define the first metal grid.
  • the at least one first metal mesh includes three first metal mesh parts insulated from each other, the three first metal mesh parts respectively belong to one first touch sub-electrode and adjacent ones in the first direction D1 Two second touch sub-electrodes.
  • the first metal mesh is hexagonal, and at least two of the first metal meshes include the above-mentioned insulated three first metal mesh parts.
  • each of the two first metal meshes 52 c in the dotted circle includes three first metal mesh parts insulated from each other, the three first metal meshes
  • the metal mesh part respectively belongs to three touch sub-electrodes insulated from each other, and the three touch sub-electrodes include two first touch sub-electrodes 411 adjacent to each other in the second direction D2 and two One second touch sub-electrode 421 between the control sub-electrodes (as shown in FIG.
  • the three touch sub-electrodes include two adjacent second touch sub-electrodes 421 in the first direction D1 and A first touch sub-electrode 411 located between the two second touch sub-electrodes 421 (as shown in FIG. 7B ).
  • This design enables effective insulation between the touch sub-electrodes and a more compact arrangement, thereby improving the touch sensitivity.
  • each metal mesh 52c has a fracture 510 on the three sides, so that the metal mesh is divided into three parts.
  • the first metal mesh 52c is a polygon, such as a hexagon, the hexagon includes two sides parallel to the second direction D2 and opposite to each other, the first metal mesh 52c is a polygon.
  • the first metal wire 51 located on at least one side of the grid 52c has a fracture, and the first metal wire is divided into two first metal wire segments 51f.
  • the two first metal line segments 51f belong to two adjacent first touch sub-electrodes 411 in the second direction, respectively.
  • the two first metal line segments 51f belong to the adjacent first touch sub-electrodes 411 and second touch sub-electrodes 421 respectively.
  • the polygons of the two first metal meshes 52c share an edge, that is, the two first metal meshes 52c share a first metal line 51g, the first metal line There is a fracture 520 on 51g that separates the first metal wire 51g into two spaced apart first metal wire segments.
  • the two first metal grids 52c are arranged along the first direction D1, and the shared first metal line 51g is parallel to the second direction D2.
  • the two first metal line segments in the shared first metal line 51g respectively belong to the two adjacent first touch sub-electrodes 411 in the second direction D2; that is, the two adjacent first touch sub-electrodes 411 in the second direction D2
  • the first touch sub-electrodes 411 are directly adjacent to each other through the fractures or separated from each other by the fractures.
  • the two adjacent second touch sub-electrodes 421 in the first direction D1 are separated from each other by a part of the two adjacent first touch sub-electrodes 411 in the second direction D2.
  • the arrangement direction of the two first metal grids 52c is neither parallel nor perpendicular to the second direction D2, and the shared first metal line 51g is neither parallel to the second direction D2 Not vertical either.
  • the two first metal line segments in the shared first metal line 51g belong to the two adjacent second touch sub-electrodes 421 in the first direction D1 respectively; that is, the two adjacent touch sub-electrodes 421 in the first direction D1
  • the second touch sub-electrodes 421 are directly adjacent to each other through the fractures or separated from each other by the fractures.
  • the two adjacent first touch sub-electrodes 411 in the second direction D2 are separated from each other by a part of the two adjacent second touch sub-electrodes 421 in the first direction D1.
  • each of the three first metal mesh portions of one of the first metal meshes 52c of the two first metal meshes 52c includes a complete first metal line 51;
  • the numbers of the first metal lines included in the three first metal mesh portions of the other first metal mesh 52c are different from each other, for example, the numbers are 0, 1, and 2, respectively.
  • each first metal mesh portion includes two first metal line segments 51f, or only includes two first metal line segments 51f; or includes a complete first metal line 51 and two first metal line segments 51f, the first metal line 51 is connected between the two first metal line segments; or two complete first metal lines 51 and two first metal line segments 51f, the two first metal line segments 51f A metal wire 51 is connected between the two first metal wire segments 51f.
  • a first metal grid is not necessarily a complete closed pattern.
  • one side of a part of the first metal mesh 52 b has a fracture 530 .
  • one edge of a part of the first metal mesh 52 c is missing.
  • a second metal grid is not necessarily a complete closed pattern.
  • a second touch sub-electrode 421 one side of a part of the second metal mesh 62 has a fracture 620 .
  • a portion of the second metal grid 62 is missing one edge.
  • the second grid row 2 provides at least two electrical signal conduction channels along the second direction D2, such as at least two electrical signal conduction channels. These are the first channel 621 and the second channel 622 indicated by the gray lines in FIG. 7D .
  • the at least two electrical signal conduction channels are not unique, and are not limited to the situation shown in FIG. 7D .
  • FIG. 6B is a schematic diagram of another second touch electrode layer according to an embodiment of the disclosure.
  • the second connection electrode shown in FIG. 6B is different from that in FIGS. 4A and 6A as follows.
  • Each of the plurality of second connection electrodes further includes a third metal grid row 3 along the second direction, and the third metal grid row 33 is located at a distance of the second metal grid row 2 away from the first metal grid row 1 .
  • the number of the second metal meshes 62 in the three metal mesh row 3, and all the second metal lines 612 of the second metal mesh 62 in the second metal mesh row 2 close to the third metal mesh row 3 are the second metal lines 612 shared with the second metal grids 62 in the third metal grid row 3; the second metal grids 62 in the third metal grid row 3 are the second edges of the second connection electrodes 422
  • the second metal mesh is located at the second end of the second connection electrode 422 in the second direction D2, and is electrically connected to the first metal mesh at the edge of the second touch sub-electrode 412 adjacent thereto.
  • the two end portions are opposite to the first end portion in the second direction D2; the plurality of via holes include second via holes, and the third metal grid row 3 passes through the second via holes and adjacent to the second connection electrode 422 where it is located.
  • the other one of the two second touch sub-electrodes 421 is electrically connected.
  • Other features of the second connection electrode shown in FIG. 6B such as the features and corresponding technical effects of the first metal grid row, the second metal grid row, etc., are the same as those in the obtained embodiment shown in FIG. 4A and FIG. 6A , Refer to the previous description.
  • the second metal mesh layer 60 adopts the second connection electrode shown in FIG. 6B , the pattern of the first metal mesh layer 50 can be changed accordingly.
  • At least one embodiment of the present disclosure further provides a touch control structure including a plurality of touch control sub-electrodes and dummy electrodes spaced apart from each other.
  • the dummy electrode is embedded in at least one touch sub-electrode among the plurality of touch sub-electrodes and is spaced apart from the touch sub-electrode where it is located to be insulated from each other;
  • the at least one touch sub-electrode comprises a strip-shaped a channel and a main body part surrounding the dummy electrode and the channel, the strip-shaped channel penetrates the dummy electrode, and both ends of the strip-shaped channel in the extending direction are connected to the main body part .
  • the touch control structure 40 includes a dummy electrode 430 .
  • the dummy electrode 430 is embedded in at least one touch sub-electrode among the plurality of touch sub-electrodes and is spaced apart from the touch sub-electrode where it is located to be insulated from each other.
  • the plurality of touch sub-electrodes are spaced apart from each other.
  • the dummy electrodes 430 are embedded in each touch sub-electrode, or some of the plurality of touch sub-electrodes are embedded with dummy electrodes 430 .
  • the at least one touch sub-electrode is the second touch sub-electrode 421 .
  • the at least one touch sub-electrode may also be the first touch sub-electrode 411 .
  • the dummy electrodes 430 By arranging the dummy electrodes 430 that are spaced apart from the touch sub-electrodes and not electrically connected, the electrode area (effective area) of the touch electrodes is reduced, the capacitive load (self-capacitance) on the touch electrodes is reduced, and thus the touch electrodes are reduced
  • the load on the device improves the touch sensitivity.
  • the dummy electrode 430 is in a floating state, that is, it is not electrically connected to other structures or does not receive any electrical signals.
  • the first touch sub-electrode includes a strip-shaped channel 281 and surrounding virtual The electrode 430 and the main body portion 282 of the channel 281, the strip-shaped channel 281 runs through the dummy electrode, and both ends 281a/281b of the strip-shaped channel 281 in the extending direction thereof are connected to the main body portion 282, and the dummy electrode 430 includes the strip
  • the shaped channel 281 separates the first portion 431 and the second portion 432.
  • Both the first portion 431 and the second portion 432 are spaced apart from the first touch sub-electrodes 411 to be insulated from the first touch sub-electrodes 411 .
  • the white area surrounding the first part 431 and the second part 432 of the dummy electrode 430 is the interval between the first part 431 and the second part 432 and the first touch sub-electrode 411 .
  • the channel 281 runs through the dummy electrode 430, it can avoid touch blind spots caused by the continuous arrangement of the dummy electrodes; at the same time, the channel 281 passing through the dummy electrode 430 forms an effective signal channel inside the dummy electrode, reducing touch
  • the channel 281 running through the dummy electrode 430 increases the touch signal amount in the area where the dummy electrode 430 is arranged, improves the touch precision of the area, and thus improves the electronic device using the touch control structure, such as The touch performance of the display panel.
  • the shape of the outer contour of the whole body 28 formed by the dummy electrodes 430 and the strip-shaped channels 281 is a first polygon
  • the first polygon is a regular polygon, such as a rectangle, a square, a parallelogram, a regular hexagon, and the like.
  • the shape of the first polygon is not limited to the kind listed above.
  • the whole 28 formed by the dummy electrode 430 and the strip-shaped channel 281 is a polygon as a whole, which means that the edge is blurred, and the edge is allowed to be uneven, and each side of the first polygon is not required to be a strict straight line segment.
  • the shape of the outer contour of the whole body 28 formed by the dummy electrodes 430 and the strip-shaped channels 281 may also be other shapes such as a circle, which is not limited in this embodiment of the present disclosure.
  • two ends 281a/281b of the channel 281 are respectively close to two adjacent sides of the first polygon.
  • the two ends 281a/281b of the channel 281 are respectively close to two opposite sides of the first polygon, so that the channel 281 more fully penetrates the dummy electrode 430, The technical effect of better improving the touch precision of the area where the dummy electrodes 430 are arranged is achieved.
  • Other unmentioned features of the first touch sub-electrodes shown in FIG. 8B are the same as those in FIG. 8A , please refer to the description of FIG. 8A .
  • the two ends 281a/281b of the channel 281 are respectively close to two non-adjacent vertices of the first polygon.
  • Other unmentioned features of the first touch sub-electrodes shown in FIG. 8C are the same as those in FIG. 8A , please refer to the description of FIG. 8A .
  • the shape of the outer contour of the main body portion 280 is a second polygon, and the second polygon and the first polygon are similar polygons. That is, the second polygon and the first polygon have the same number of sides and substantially equal corresponding angles, and the corresponding sides are substantially proportional.
  • the shape of the whole body 28 formed by the dummy electrodes 430 and all the channels can be consistent with the shape of the outer contour of the main body portion 280, so that the touch performance of the entire touch structure has better uniformity, and it is convenient for patterning and reduces the Template production cost.
  • the shape of the outer contour of the whole 28 formed by the dummy electrode 430 and all the channels is a first polygon, such as a rectangle, and the channel 281 is parallel to the first polygon, that is, the two sides of the rectangle .
  • the strip-shaped channel 281 is a straight strip as a whole, such as a strip extending along a straight line as a whole, and the width of the straight strip can be consistent in the extending direction of the straight strip, for example As shown in FIG. 8I, the parts may also be kept consistent, for example, as shown in FIG. 8G.
  • at least part of the channel in the bar shape is a curved bar shape, for example, the entire channel is a curved bar shape or at least one channel is a curved bar shape when there are multiple channels as described below.
  • At least part of the strip-shaped channel is in the shape of a zigzag line, for example, the entire channel is in the shape of a zigzag line or at least one channel is in the shape of a zigzag line when there are multiple channels as described below.
  • one first touch sub-electrode 411 includes a plurality of strip-shaped channels
  • the plurality of strip-shaped channels include: a strip-shaped first channel 281 and a strip-shaped first channel 281 .
  • the strip-shaped first channel 281 generally extends along the first extending direction (eg, the third direction D3 ); the strip-shaped second channel 282 generally extends along the second extending direction (eg, the fourth direction D4 ) and is connected with the first channel. 281 intersect.
  • the dummy electrode 430 includes four parts, which are the first part 281 , the second part 282 , the third part 283 and the fourth part 284 , spaced apart from each other by the first channel 281 and the second channel 282 . It should be noted that different parts of a channel may not be in a straight line, and an entire channel may not necessarily be a straight line segment with a uniform width.
  • the case where one first touch sub-electrode 411 includes the first channel 281 and the second channel 282 crossing each other can further be
  • the amount of touch signals in the area where the dummy electrodes 430 are arranged is increased in the direction, and the touch precision of the area is improved, thereby improving the touch performance of an electronic device such as a display panel using the touch structure.
  • first channel 281 and the second channel 282 intersecting with each other are in the shape of a "cross", and the first extending direction and the second extending direction are both related to the first direction D1 (the arrangement direction of the first touch sub-electrodes 411 ) and the second extending direction.
  • the two directions D2 (arrangement directions of the second touch sub-electrodes 421 ) respectively form an included angle of 45 degrees, so that the area where the dummy electrodes 430 are disposed has a relatively uniform touch precision.
  • the two ends 281a/281b of the first channel 281 are respectively close to two opposite sides of the first polygon (rectangle), and the two ends 282a/282b of the second channel 282 are respectively close to the first polygon (rectangle)
  • the other two opposite sides; the first part 281 , the second part 282 , the third part 283 and the fourth part 284 have the same size and shape as each other, so as to further enable the area where the dummy electrodes 430 are disposed to have more uniform touch precision.
  • Other unmentioned features of the first touch sub-electrodes shown in FIG. 8D are the same as those in FIG. 8A , please refer to the description of FIG. 8A .
  • the first portion 281, the second portion 282, the third portion 283, and the fourth portion 284 are all rectangular in shape, eg, square.
  • the shape of the overall outer contour formed by the dummy electrode 430 and the strip-shaped channel is an irregular pattern; the shapes of the first part 281 , the second part 282 , the third part 283 and the fourth part 284 are all It includes at least two strip portions extending in different directions, for example, both are irregular patterns.
  • At least one first touch sub-electrode 411 includes a plurality of strip-shaped channels
  • the plurality of strip-shaped channels include: a plurality of strip-shaped first channels and a plurality of strip-shaped channels Second Channel
  • the plurality of strip-shaped first channels respectively extend substantially along the first extending direction and are spaced apart from each other; the plurality of strip-shaped second channels respectively extend substantially along the second extending direction and are spaced apart from each other.
  • Each of the second channels intersects each of the plurality of strip-shaped first channels.
  • the dummy electrode includes a plurality of portions spaced apart from each other by the plurality of strip-shaped first channels and the plurality of strip-shaped second channels.
  • At least one first touch sub-electrode 411 includes two strip-shaped first channels 281 and two strip-shaped second channels 282 , that is, the plurality of strip-shaped first channels 282 .
  • One channel includes two first channels 281
  • the plurality of strip-shaped second channels includes two second channels 282 .
  • the dummy electrode 430 includes at least nine parts separated from each other by the two first channels 281 and the two second channels 282 , namely the first part 431 , the second part 432 , the third part 433 , the fourth part 434 , the fifth part Section 435 , sixth section 436 , seventh section 437 , eighth section 438 and ninth section 439 .
  • the area spanned by the entire dummy electrode 430 (for example, including the first part to the ninth part in this embodiment) and the first touch sub-electrode 411 where the dummy electrode is located in the same direction is the largest
  • the size ratio l/L1 is greater than or equal to 0.4 and less than or equal to 0.6. Tests have shown that if the value of l/L1 is too large, it will occupy too much space and reduce the effective touch area; if the value of l/L1 is too small, it cannot effectively reduce the load on the touch electrodes and improve the touch sensitivity.
  • the outer contour of the main body portion 280 of the dummy electrode 430 is a rectangle, and the outer contour of the main body portion 280 includes a first side 291a and a second side 291b that cross each other, and the first side 291a and the second side 291b are respectively along the third direction D3 and the fourth direction D4 extend, and the third direction D3 and the fourth direction D4 are different, for example, they are orthogonal.
  • the third direction D3 is different from the first direction D1 or the second direction D2; the fourth direction D4 is different from the first direction D1 or the second direction D2.
  • the third direction D3 forms an angle of 45 degrees with both the first direction D1 and the second direction D2
  • the fourth direction D4 forms an angle of 45 degrees with both the first direction D1 and the second direction D2.
  • the same direction among the largest dimensions in the same direction is the third direction D3, or the same direction may be the fourth direction D4.
  • the area spanned by the entire dummy electrode 430 and the maximum size L1 of the first touch sub-electrode 411 where the dummy electrode is located in the third direction D3 are respectively equal to the maximum size L2 of the two in the fourth direction D4.
  • the outer contour of the main body portion 280 is square, so as to obtain uniform touch precision in the third direction D3 and the fourth direction D4, thereby improving the touch precision uniformity of the entire touch structure.
  • the width of each second channel 282 is substantially uniform, and the minimum width of the second channel 282 is basically a fixed value.
  • the width of the second channel 282 is inconsistent along the extending direction thereof, and the minimum width of one second channel 282 is the minimum value among a plurality of different widths.
  • the direction of the width of the channel at a certain position is perpendicular to the extending direction of the channel at this position.
  • l 1411 ⁇ m
  • d 78 ⁇ m
  • the embodiments of the present disclosure do not limit the specific numerical values of the above dimensions, which can be designed according to specific needs.
  • the effective area accounts for 52%-64% of the total area of the touch sub-electrode, that is, the area of the dummy electrode 430 accounts for 36%-48% of the total area of the touch sub-electrode . If the area ratio of the dummy electrodes 430 is too large, the resistance of the touch electrodes will increase, and if the area ratio of the dummy electrodes is too small, the touch performance of the touch structure in the weak ground state cannot be effectively improved.
  • one first touch sub-electrode 411 further includes a plurality of interdigitated structures 440 connected to the main body portion 280 , and the plurality of interdigitated structures 242 are distributed around the main body portion 280 and extend from the main body portion. 280 protrudes in a direction away from the main body portion 280 .
  • FIG. 8A-8F one first touch sub-electrode 411 further includes a plurality of interdigitated structures 440 connected to the main body portion 280 , and the plurality of interdigitated structures 242 are distributed around the main body portion 280 and extend from the main body portion. 280 protrudes in a direction away from the main body portion 280 .
  • the extending direction of each channel is parallel to the extending direction of a part of the interdigitated structures 440 in the plurality of interdigitated structures 440 , and the partial interdigitated structure extends from the edge of the outer contour of the main body part 280 close to both ends of the channel Protruding is convenient for patterning, and the pattern of the formed touch sub-pixels and dummy electrodes is regular, which is beneficial to improve the uniformity of touch performance of the entire touch structure.
  • one first channel 281 is taken as an example here, and the same is true for at least one second channel 282 .
  • interdigitated structure 440 is parallel to the extension direction of some interdigitated structures 440 of the plurality of interdigitated structures 440 , and the partial interdigitated structures are approaching the first channel from the outer contour of the main body portion 280 respectively. Two sides 291a/291b of both ends 281a/281b of 281 protrude.
  • the interdigitated structure 440 may be disposed on each edge of the outer contour of the main body portion 280 , or may be disposed only on a part of the outer contour of the main body portion 280 .
  • the extending direction of at least one channel of one first touch sub-electrode 411 may also be non-parallel with the extending direction of the at least part of the interdigitated structure 440 , which is not limited in the present disclosure.
  • the two ends 281a/281b of the strip-shaped channel 281 are connected to the two sides 291a/291a/281b from the main body 280 close to the two ends of the first channel 281.
  • the protruding interdigital structures 440 of 291b at least partially overlap (meaning having parts facing each other), and the edges 281c/281d of the first channel 281 along the extending direction thereof are parallel to the edges 441/442 of the at least part of the interdigital structures 440 .
  • the edge 281c and the edge 281d of the first channel 281 along the extending direction thereof are opposed to each other, and the edge 441 and the edge 442 of the one interdigitated structure 440 are opposed to each other.
  • the shape of the overall outer contour formed by the dummy electrode 430 and the plurality of first channels 281 and the plurality of second channels 282 is an irregular polygon to avoid the dummy electrode 430
  • the overall pattern is a regular pattern, which avoids the shape of the display pixel unit of the display panel adopting the touch control structure, and is beneficial to eliminate moiré.
  • the first and second ends of the outer contour of the dummy electrode 430 opposite to each other in the second direction D2 are respectively opposite to the second connection electrodes adjacent in the second direction D2 (refer to FIG. 2 ), and have first and second ends respectively.
  • first groove 4301 and second groove 4303 are respectively opposite to the first connection electrode (refer to FIG. 2 ), and have a third groove 4305 and a fourth groove 4307 respectively;
  • the third groove 4305 is concave toward the fourth end, and the fourth groove 4307 is concave toward the third end.
  • the outer contour of the dummy electrode 430 includes a first protrusion 4302 located in the first groove 4301 , a second protrusion 4304 located in the second groove 4303 , and a third protrusion 4306 located in the third groove 4305 and a fourth protrusion 4308 located in the fourth groove 4307.
  • the first protrusion 4302 protrudes in a direction away from the second end of the outer contour of the dummy electrode 430
  • the second protrusion 4304 protrudes in a direction away from the first end of the outer contour of the dummy electrode 430
  • the third protrusion 4306 protrudes away from the first end of the outer contour of the dummy electrode 430
  • the direction of the fourth end is convex
  • the fourth protrusion 4308 is convex toward the direction away from the third end.
  • At least one touch sub-electrode includes a plurality of strip-shaped channels
  • the plurality of strip-shaped channels include: a plurality of strip-shaped first channels 281 and a plurality of strip-shaped second channels 282 .
  • the plurality of strip-shaped first channels 281 respectively extend substantially along the first extending direction (eg, the third direction D3 ) and are spaced apart from each other.
  • the plurality of bar-shaped second channels 282 respectively extend substantially along the second extending direction (eg, the fourth direction D4 ) and are spaced apart from each other, and each of the plurality of bar-shaped second channels 282 is associated with the plurality of bar-shaped first channels 282 .
  • Each of the channels 281 intersects; the dummy electrode 430 includes a plurality of portions separated from each other by a plurality of strip-shaped first channels 281 and a plurality of strip-shaped second channels 282 .
  • a first channel 281 includes a plurality of narrow portions 2811 and a plurality of wide portions 2810 which are alternately arranged in the extending direction and connected in sequence, and each narrow portion 2811 is perpendicular to the first channel.
  • the width w1 in the extending direction of the first channel 281 is smaller than the width w2 of each wide portion 2810 in the extending direction perpendicular to the first channel 281, so as to avoid the possible damage caused by the continuous channel with the same width disconnecting the entire dummy electrode 430. shadow problem.
  • a second channel 282 includes a plurality of narrow portions 2821 and a plurality of wide portions 2820 which are alternately arranged in the extending direction thereof and connected in sequence, and the width of each narrow portion 2821 is perpendicular to the extending direction of the second channel 282
  • the width of each wide portion 2820 in the direction perpendicular to the extending direction of the second channel 282 is smaller than the width of each wide portion 2820 , so as to further avoid the extinction problem that may be caused by disconnecting the entire dummy electrode 430 by continuous channels with the same width.
  • width w1 here refers to the average width of the narrow portion 2811
  • width w2 refers to the average width of the wide portion 2810
  • width of the narrow portion and the wide portion of the second channel 282 refers to the width of the narrow portion and the wide portion of the second channel 282 .
  • the alternate arrangement of a plurality of narrow portions and a plurality of wide portions of a first channel 281 means that the plurality of narrow portions include a first narrow portion, a second narrow portion, and a third narrow portion, and the plurality of wide portions include The first wide part and the second wide part; the first wide part and the second wide part are respectively located on both sides of the first narrow part and are adjacent to the first narrow part, and the second narrow part is located away from the first wide part.
  • One side of the narrow portion is adjacent to the first wide portion, and the third narrow portion is adjacent to the second wide portion on the side of the second wide portion away from the first narrow portion.
  • the alternate arrangement of the plurality of narrow portions and the plurality of wide portions of the second channel 282 is the alternate arrangement of the plurality of narrow portions and the plurality of wide portions of the second channel 282 .
  • the narrow portion 2811 of the first channel 281 intersects the narrow portion 2821 of the second channel 282 .
  • the size of the channel at the intersection of the first channel 281 and the second channel 282 can be prevented from being too large, so as to avoid the phenomenon that the channel at the intersection is too wide and the narrow portion is too thin. This avoids uneven touch precision in the entire region where the dummy electrodes 430 are arranged.
  • the narrow portion 2811 of the first channel 281 and the narrow portion 2821 of the second channel 282 have an intersection (ie, the position indicated by the dashed circle in FIG. 8H ), and the first channel 281 includes respectively A first wide portion 2810a and a second wide portion 2810b located on both sides of and adjacent to the intersection, the second channel 282 includes a third wide portion 2820a and a fourth wide portion located on both sides of and adjacent to the intersection.
  • the distances from the first wide portion 2810a, the second wide portion 2810b, the third wide portion 2820a, and the fourth wide portion 2820b to the intersection are equal, so as to improve the uniformity of touch precision in the entire area where the dummy electrodes 430 are arranged and reliability, so that the entire touch structure has more uniform and stable touch performance.
  • the ratio of the length l1 of the narrow portion 2811 in the extending direction of the first channel 281 to the width w1 of the narrow portion 2811 is greater than the length l2 of the wide portion 2810 in the extending direction of the first channel 281 The ratio to the width w2 of the wide portion 2810.
  • the ratio of the length of the narrow portion 2821 in the extending direction of the second channel 282 to the width of the narrow portion 2821 is greater than the length and width of the wide portion 2820 in the extending direction of the second channel 282 The ratio of the width of the section 2820.
  • the length of the narrow part 2811 is equal to or not equal to the length of the wide part 2810. In both cases, the above-mentioned aspect ratio of the narrow part and the wide part of the first channel 281 can be satisfied. Conditions; similarly, for example, for the second channel 282, the length of the narrow portion 2821 is equal or unequal to the length of the wide portion 2820, in both cases, the above-mentioned narrow and wide portions of the second channel 282 can be satisfied condition of the aspect ratio.
  • the plurality of wide parts 2810 are arranged at equal intervals, and the lengths of the plurality of narrow parts 2811 are equal to each other; for the second channel 282 , the plurality of wide parts 2820 are arranged at equal intervals , the lengths of the plurality of narrow portions 2821 are equal to each other.
  • the touch control structure 40 provided by the embodiment of the present disclosure includes a first electrode layer and a second electrode layer.
  • An insulating layer is disposed between the first electrode layer and the second electrode layer;
  • the plurality of touch sub-electrodes include a plurality of first touch sub-electrodes 411 and a plurality of second touch sub-electrodes 421
  • the touch structure 40 further includes a plurality of A plurality of first connection electrodes 412 and a plurality of second connection electrodes (not shown in FIG.
  • connection electrodes 412 are all located in the first electrode layer and arranged along the first direction D1.
  • the plurality of first touch sub-electrodes 411 and the plurality of first connection electrodes 412 are alternately distributed one by one and are electrically connected in sequence to form an extension along the first direction D1.
  • the first touch electrodes 410 of the Each of the control sub-electrodes 411 and each of the second touch sub-electrodes 421 are spaced apart from each other; the plurality of second connection electrodes are located in the second electrode layer and are spaced apart from each other, and each of the plurality of second connection electrodes passes through the insulating layer.
  • the via holes are electrically connected to the adjacent second touch sub-electrodes, so as to electrically connect the adjacent second touch sub-electrodes 421 to form the second touch electrodes 421 extending in the second direction D2.
  • the dummy electrodes 430 are embedded in the first touch sub-electrodes 411 and/or embedded in the second touch sub-electrodes 421 .
  • the dummy electrode 430 may be any dummy electrode in the above embodiments.
  • the first touch sub-electrodes 411 shown in FIGS. 8A-8G may be located in the touch control structure 40 provided in any of the above embodiments.
  • FIG. 8I is a schematic structural diagram eight of a dummy electrode embedded in a touch self-electrode according to an embodiment of the disclosure
  • FIG. 8J is an enlarged schematic diagram of part F in FIG. 8I .
  • the difference between the embodiment shown in FIG. 8I and the embodiment shown in FIG. 8F is that, as shown in FIG.
  • At least one touch sub-electrode includes a communication portion 285 , and the plurality of strip-shaped channels 281 / 282 are connected to each other through the communication portion 285 Electrically connected, portions of the dummy electrode, such as first portion 431, second portion 432, third portion 433, fourth portion 434, fifth portion 435, sixth portion 436, seventh portion 437, and eighth portion 438, The communicating portion 285 is surrounded. In this way, compared with the case where the communication portion is not provided, the connectivity between the plurality of channels 281/282 is better, which is beneficial to improve the accuracy and reliability of touch control.
  • the first electrode layer and the second electrode layer are the aforementioned first metal mesh layer and second metal mesh layer, respectively.
  • the plurality of touch sub-electrodes and the dummy electrodes 430 are located in the first metal mesh layer, that is, the plurality of touch sub-electrodes and the dummy electrodes are located in the same metal mesh layer.
  • the main body part 280 , each channel 281 / 282 , and each part of the dummy electrode 430 respectively include a plurality of first metal meshes 52 .
  • each of the plurality of portions of the dummy electrode 430 separated from each other by the channels includes a plurality of first metal meshes 52 connected to each other.
  • the communication portion 285 also includes the plurality of first metal meshes 52 .
  • the first metal meshes 52 of the plurality of strip-shaped channels 281 / 282 and the first metal meshes 52 of the communication portion 285 are connected to each other, so that the plurality of strip-shaped channels 281 / 282 are electrically connected to each other through the communication portion 285 .
  • each part of the dummy electrode 430 has a boundary area with the first touch sub-electrode 411 .
  • the regions are the white areas surrounding each portion of the dummy electrode 430 in Figures 8A-8H.
  • FIG. 9B is an enlarged schematic diagram of part D in FIG. 9A
  • FIG. 9C is an enlarged schematic diagram of part E in FIG. 9B .
  • the plurality of first metal lines 52 located in the boundary area respectively include a plurality of fractures 4300, and each of the plurality of fractures 4300 separates the first metal wire 52 where it is located into two metal line segments, two One of the metal line segments belongs to the channel 282 of the first touch sub-electrode 411 (taking the second channel 282 as an example), and the other of the two metal line segments belongs to the dummy electrode 430, so that the dummy electrode 430 and the first touch sub-electrode are connected
  • the channel 282 of the electrode 411 is insulated.
  • FIG. 9C takes the enlargement of the second channel 282 as an example for illustration, and the same is true for the first channel 281 .
  • each part of the dummy electrode 430 is separated from the main body part 280 by a plurality of similar fractures so as to insulate the two. .
  • each fracture 4300 is located at the midpoint of the first metal line segment it is disconnected from (that is, an edge of the first grid disconnected by the fracture 4300), so that the position of the fracture is relatively regular, so as to reduce the difficulty of composition. It is very important to improve the yield of products, and it can save the cost of masks.
  • each of the first channels 281 and each of the second channels 282 includes at least two conductive lines composed of a plurality of first metal lines 51 connected to each other, exemplarily, the two conductive lines are respectively are the first conductive line 283a and the second conductive line 283b.
  • the first conductive line 283a and the second conductive line 283b penetrate through the dummy electrode 430 and are respectively connected to the main body 280 of the first touch sub-electrode 411 at both ends in the extending direction, so as to ensure that each first channel 281 and each The second channel 282 can provide at least two electrical signal conduction channels, thereby solving the problem of affecting signal conduction in the first channel 281 or the second channel 282 when a single signal conduction channel is disconnected, and ensuring the reliability of signal conduction.
  • each of the first channels 281 and each of the second channels 282 includes at least one first metal mesh 52 arranged in the width direction thereof, and the width direction of the first channel 281 is perpendicular to The extending direction of the first channel 281 and the width direction of the first channel 282 are perpendicular to the extending direction of the second channel 282 .
  • each channel 281/282 includes a plurality of metal meshes arranged in series along its extending direction; alternatively, each channel 281/282 includes a plurality of said metal meshes arranged along its extending direction and connecting at least Metal connecting line of two adjacent metal grids.
  • FIG. 9D is an enlarged schematic diagram of a part including the dummy electrodes in FIG. 9A .
  • the at least one bar-shaped channel 282 includes: a first segment 2821 and a second segment 2822 arranged along the extending direction of the at least one bar-shaped channel 282 , and the first segment 2821 and the second segment 2822 are mutually Substantially parallel, that is, the first segment 2821 and the second segment 2822 are not located on the same straight line, and the first segment 2821 and the second segment 2822 are electrically connected by the above-mentioned first metal connection line 51 .
  • Embodiments of the present disclosure further provide a touch panel, including any one of the above touch structures.
  • FIG. 10 is a schematic diagram of a touch panel provided by at least one embodiment of the present disclosure.
  • the touch panel 80 includes a touch area 301 and a non-touch area 302 located outside the touch area 301 , and the touch structure 40 is located in the touch area 301 .
  • the first touch electrodes 410 extend along the width direction of the rectangle
  • the second touch electrodes 420 extend along the length direction of the rectangle.
  • the structures of the first touch electrodes and the second touch electrodes are not shown in detail in the figures.
  • the first touch electrodes 410 may also extend along the length direction of the rectangle
  • the second touch electrodes 420 may extend along the width direction of the rectangle.
  • the touch panel 80 further includes a plurality of signal lines 450 located in the non-touch area 302 .
  • Each of the first touch electrodes 410 and each of the second touch electrodes 420 are electrically connected to a signal line 450 respectively, and are connected to a touch controller or a touch integrated circuit (not shown in the figure) through the signal line.
  • the first touch electrodes 410 are touch driving electrodes
  • the second touch electrodes 420 are touch sensing electrodes, but the embodiments of the present disclosure are not limited thereto.
  • the touch integrated circuit is, for example, a touch chip, and is used for providing touch driving signals to the second touch electrodes 420 in the touch panel 80 , receiving touch sensing signals from the first touch electrodes 410 , and for pairing
  • the touch sensing signal is processed, for example, the processed data/signal is provided to the system controller, so as to realize the touch sensing function.
  • one end of the plurality of signal lines 450 connected to the touch integrated circuit may be arranged on the same side of the touch control area 301 (eg, the lower side in FIG. 10 ), which can facilitate the connection with the touch control area 301 . Connection of touch integrated circuits.
  • a signal can be set at both ends of a first touch electrode 410 respectively.
  • the touch integrated circuit simultaneously inputs a touch driving signal (bilateral driving) to a second touch electrode 420 through two signal lines 450 during operation, so that the speed of signal loading on the second touch electrode 420 is increased. , which can improve the detection speed.
  • the material of the first metal mesh layer 50 or the second metal mesh layer 60 includes metal materials such as aluminum, molybdenum, copper, and silver, or alloy materials of these metal materials, such as silver-palladium-copper (APC) material.
  • metal materials such as aluminum, molybdenum, copper, and silver, or alloy materials of these metal materials, such as silver-palladium-copper (APC) material.
  • APC silver-palladium-copper
  • each fracture dimension along the length of the wire where it is located
  • the width of each fracture is 5.2 microns.
  • the material of the insulating layer 70 can be an inorganic insulating material, for example, the inorganic insulating material is a transparent material.
  • the inorganic insulating material is silicon oxide, silicon nitride, or silicon oxynitride such as silicon oxide, silicon nitride, and silicon oxynitride, or an insulating material including metal oxynitride, such as aluminum oxide and titanium nitride.
  • the material of the insulating layer 70 can also be an organic insulating material to obtain good bending resistance.
  • the organic insulating material is a transparent material.
  • the organic insulating material is OCA optical glue.
  • the organic insulating material may include polyimide (PI), acrylate, epoxy, polymethyl methacrylate (PMMA), and the like.
  • FIG. 11A shows a schematic plan view of the touch display panel 30 provided by at least one embodiment of the present disclosure
  • FIG. 11B shows a cross-sectional view along the section line II-II' of FIG. 11A .
  • the touch display panel 30 includes a base substrate 31 , a display structure 32 and the aforementioned touch control structure 40 stacked on the base substrate 31 in sequence.
  • the touch control structure 40 is located on the side of the display structure 32 away from the base substrate 31 , and is closer to the user side during use.
  • the display panel is an OLED display panel as an example.
  • the display panel may also be a liquid crystal display panel, such as an On-cell or In-cell touch display panel.
  • the embodiment of the present disclosure does not limit the specific type of the display panel using the touch control structure provided by the embodiment of the present disclosure.
  • the display structure 32 includes a plurality of sub-pixels arranged along an array, eg, the pixel array is arranged along a first direction D1 and a second direction D2.
  • the touch display panel is an OLED display panel
  • the plurality of sub-pixels include green sub-pixels (G), red sub-pixels (R) and blue sub-pixels (B).
  • Each sub-pixel includes a light-emitting element 23 and a pixel driving circuit that drives the light-emitting element 23 to emit light.
  • the embodiments of the present disclosure do not limit the type and specific composition of the pixel driving circuit.
  • the pixel driving circuit may be a current driving type or a voltage driving type, and may be a 2T1C (that is, two transistors and one capacitor, the two Each transistor includes a drive transistor and a data write transistor) drive circuit, which can be a drive circuit that further includes a compensation circuit (compensation transistor), a light-emitting control circuit (light-emitting control transistor), a reset circuit (reset transistor), etc. on the basis of 2T1C.
  • FIG. 11B only shows the first transistor 24 in the pixel driving circuit that is directly electrically connected to the light-emitting element 23 .
  • the first transistor 24 may be a driving transistor configured to operate in a saturated state and control the driving to emit light. The magnitude of the current that the element 23 emits light.
  • the first transistor 24 may also be a light-emitting control transistor for controlling whether the current for driving the light-emitting element 23 to emit light flows.
  • the embodiment of the present disclosure does not limit the specific type of the first transistor.
  • the light-emitting element 23 is an organic light-emitting diode, and includes a first electrode 231 , a light-emitting layer 233 and a second electrode 232 .
  • One of the first electrode 231 and the second electrode 232 is an anode and the other is a cathode; for example, the first electrode 231 is an anode and the second electrode 232 is a cathode.
  • the light-emitting layer 233 is an organic light-emitting layer or a quantum dot light-emitting layer.
  • the light-emitting element 23 may further include auxiliary functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer.
  • the light emitting element 23 is a top emission structure
  • the first electrode 231 is reflective and the second electrode 232 is transmissive or semi-transmissive.
  • the first electrode 231 is a high work function material to act as an anode, such as an ITO/Ag/ITO stack structure
  • the second electrode 232 is a low work function material to act as a cathode, such as a semi-transmissive metal or metal alloy
  • the material is, for example, an Ag/Mg alloy material.
  • the first transistor 24 includes a gate electrode 341 , a gate insulating layer 342 , an active layer 343 , a first electrode 344 and a second electrode 345 , and the second electrode 345 is electrically connected to the first electrode 231 of the light emitting element 23 .
  • the embodiments of the present disclosure do not limit the type, material, and structure of the first transistor 24, for example, it may be a top-gate type, a bottom-gate type, etc., and the active layer 343 of the first transistor 24 may be amorphous silicon, polysilicon (low temperature polysilicon and high temperature polysilicon), oxide semiconductors (eg, indium gallium tin oxide (IGZO)), etc., and the first transistor 24 may be of N type or P type.
  • the transistors used in the embodiments of the present disclosure may all be thin film transistors, field effect transistors, or other switching devices with the same characteristics, and the thin film transistors are used as examples for description in the embodiments of the present disclosure.
  • the source and drain of the transistor used here may be symmetrical in structure, so the source and drain of the transistor may be indistinguishable in structure.
  • one pole is directly described as the first pole, and the other pole is the second pole.
  • the display structure 32 further includes a pixel definition layer 320, the pixel definition layer 320 is disposed on the first electrode 231 of the light-emitting element 23, and a plurality of openings 321 are formed therein, respectively exposing a plurality of sub-pixels
  • the first electrode 231 of each sub-pixel defines the pixel opening area of each sub-pixel
  • the light-emitting layer of the sub-pixel is formed in the pixel opening area
  • the second electrode 232 is formed as a common electrode (that is, shared by multiple sub-pixels); in FIG. 11A
  • the pixel opening area 310 of the green sub-pixel, the pixel opening area 320 of the red sub-pixel, and the pixel opening area 330 of the blue sub-pixel are illustrated.
  • the pattern in the second touch electrode layer 402 is not shown in FIG. 11B .
  • the second touch electrode layer 402 is located on the side of the first touch electrode layer 401 close to the base substrate 31 .
  • the orthographic projections of the plurality of first metal lines 51 in the first touch electrode layer 401 and the plurality of second metal lines 61 in the second touch electrode layer 402 on the base substrate 31 are located in the pixel openings of the plurality of sub-pixels
  • the area is outside the orthographic projection of the base substrate 31 , that is, the pixel separation area falling between the pixel opening areas is within the orthographic projection of the base substrate 31 , and the pixel separation area is also the non-opening area of the pixel defining layer 320 322.
  • the pixel separation area is used to separate the pixel opening areas of a plurality of sub-pixels, and separate the light-emitting layers of each sub-pixel to prevent cross-color.
  • the meshes of the first metal mesh 52 or the second metal mesh 62 cover at least one pixel opening area.
  • the meshes of the first metal mesh 52 or the second metal mesh 62 cover the pixel opening areas 310 of the two green sub-pixels, and the pixel opening areas 310 of the two green sub-pixels are arranged in pairs and are arranged in a second direction. Arranged side by side on D2.
  • the display structure 32 further includes an encapsulation layer 33 located between the light emitting element 23 and the touch control structure 20 , and the encapsulation layer 33 is configured to seal the light emitting element 23 to prevent external moisture and Oxygen penetrates into the light-emitting element and the driving circuit, causing damage to devices such as the light-emitting element 23 .
  • the encapsulation layer 33 may be a single-layer structure or a multi-layer structure, for example, including an organic thin film, an inorganic thin film, or a multi-layer structure including alternately stacked organic thin films and inorganic thin films.
  • the touch display panel 30 further includes a buffer layer 22 between the display structure 32 and the touch structure 20 .
  • the buffer layer 22 is formed on the encapsulation layer 33 to improve the adhesion between the touch control structure 40 and the display structure 32 .
  • the buffer layer 22 is an inorganic insulating layer.
  • the material of the buffer layer 22 can be silicon nitride, silicon oxide or silicon oxynitride.
  • the buffer layer 22 may also include a structure in which silicon oxide layers and silicon nitride layers are alternately stacked.
  • different side lengths of the first metal grids 52 of the first touch electrode layer 401 are different, and similarly, different side lengths of the second metal grids 62 of the second touch electrode layer 402 are different.
  • the sum of the lengths of the second metal lines of the second metal mesh 62 overlapping the first metal lines 51 is the smallest.
  • the sides marked with sides a, b, c, d, e, and f in FIG. 11A represent the first metal wires 51 overlapping with the second metal wires, and the number of the first metal wires 51 overlapping with the second metal wires is equal.
  • the sum of the lengths of the first metal lines 51 overlapping with the second metal lines in the embodiment of the present disclosure is the smallest.
  • At least one embodiment of the present disclosure further provides an electronic device including the above-mentioned touch display panel 30 .
  • the electronic device is a display device, such as an OLED display device or a liquid crystal display device.
  • the electronic device can be any product or component with display function and touch function, such as display, OLED panel, OLED TV, electronic paper, mobile phone, tablet computer, notebook computer, digital photo frame, navigator, etc.
  • display OLED panel
  • OLED TV electronic paper
  • mobile phone tablet computer
  • notebook computer digital photo frame, navigator, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控结构(40)、显示面板(30)及电子装置。该触控结构(40)中,第一网格层包括第一金属线(51)定义的多个第一金属网格(52),第二网格层包括第二金属线(61)定义的多个第二金属网格(62);第一网格层的多个第一触控子电极(411)和多个第一连接电极(412)交替分布且依次连接而形成第一触控电极(410);第一网格层的多个第二触控子电极(421)与第一触控子电极(411)间隔,两者分别包括多个第一金属网格(52);第二网格层的多个第二连接电极的将相邻的第二触控子电极(421)连接而形成沿第二方向延伸的第二触控电极(420);每个第二连接电极的第一网格行包括沿第一方向排列的多个第二金属网格(62),其第二网格行与第一网格行相邻且包括沿第一方向排列的至少一个第二金属网格(62);第二网格行的靠近第一网格行的全部第二金属线(61)均为与第一网格行共享的第二金属线(61)。

Description

触控结构、显示面板及电子装置
本申请要求于2020年09月09日递交的中国专利申请第202010941621.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一实施例涉及一种触控结构、显示面板及电子装置。
背景技术
具有触控功能的用户界面被广泛地应用在各类电子装置中,例如显示装置。用于实现触控功能的触控结构包括触控电极结构,触控电极结构的设置是影响用户体验的重要因素。
发明内容
本公开至少一实施例提供一种触控结构,该触控结构包括第一金属网格层和第二金属网格层,所述第一金属网格层和所述第二金属网格层之间设置有绝缘层,所述第一金属网格层包括多条第一金属线定义的多个第一金属网格,所述第二金属网格层包括多条第二金属线定义的多个第二金属网格,所述多个第一金属网格的每个和所述第二金属网格的每个均为多边形;所述第一金属网格层包括沿第一方向布置的多个第一触控子电极和多个第一连接电极,所述多个第一触控子电极和多个第一连接电极一一交替分布且依次电连接,形成沿所述第一方向延伸的第一触控电极;所述第一金属网格层还包括沿第二方向依次布置且彼此间隔的多个第二触控子电极,所述第一方向与所述第二方向相交;所述多个第一触控子电极的每个和所述第二触控子电极的每个彼此间隔,且分别包括多个第一金属网格;所述第二金属网格层包括彼此间隔的多个第二连接电极,所述多个第二连接电极的每个通过所述绝缘层中的多个过孔和与其相邻的第二触控子电极电连接,从而将相邻的第二触控 子电极电连接,形成在所述第二方向上延伸的第二触控电极;所述多个第二连接电极的每个沿第二方向包括:第一金属网格行和第二金属网格行。第一金属网格行包括沿所述第一方向排列的多个所述第二金属网格;第二金属网格行与所述第一金属网格行相邻且连接,且包括沿所述第一方向排列的至少一个所述第二金属网格;所述第二金属网格行中的所述第二金属网格的数量小于等于所述第一金属网格行中的所述第二金属网格的数量,并且,所述第二金属网格行中的所述第二金属网格的靠近所述第一金属网格行的全部所述第二金属线均为与所述第一金属网格行中的第二金属网格共享的第二金属线。
例如,本公开至少一实施例提供的触控结构中,所述第一金属网格行和与其相邻的所述第二触控子电极电连接,所述与所述第一金属网格行中的第二金属网格共享的第二金属线在所述第一金属网格层上的正投影与第一金属线重叠。
例如,本公开至少一实施例提供的触控结构中,所述第一金属网格行的第二金属网格的数量为2,所述第二金属网格行的第二金属网格的数量为1。
例如,本公开至少一实施例提供的触控结构中,所述多个过孔包括第一过孔,所述第一金属网格行通过第一过孔和与其所在的第二连接电极相邻的两个所述第二触控子电极中的一者电连接。
例如,本公开至少一实施例提供的触控结构中,所述第一金属网格行的第二金属网格的多条第二金属线在所述第一金属网格层上的正投影分别与所述第二触控子电极的第一金属网格的多条第一金属线重叠,使得所述第二金属网格具有与所述第一金属网格重叠的多个顶点,所述多个顶点包括多个连接顶点,所述第一过孔对应设置于所述多个连接顶点处。
例如,本公开至少一实施例提供的触控结构中,所述多个第一金属网格的每个和所述第二金属网格的每个均为六边形;所述第一金属网格行的第二金属网格的多条第二金属线和与其相邻的第二触控子电极中的边缘第一金属网格的四条第一金属线在垂直于所述第二金属网格层的方向上分别重叠,使得所述边缘第一金属网格具有与所述第二金属网格重叠的五个顶点;所述四条第一金属线将所述五个顶点依次连接,呈W状,所述四条第一金属线分别 与所述第一方向以及所述第二方向相交,所述五个顶点中的至少之一为所述连接顶点。
例如,本公开至少一实施例提供的触控结构中,所述第一金属网格行的多个所述第二金属网格为所述第二连接电极的第一边缘第二金属网格,位于所述第二连接电极的在所述第二方向上的第一端部,且与与之相邻的所述第二触控子电极的边缘第一金属网格电连接。
例如,本公开至少一实施例提供的触控结构中,所述多个第二连接电极的每个沿所述第二方向还包括:第三金属网格行和第四金属网格行。第三金属网格行位于所述第二金属网格行的远离所述第一金属网格行的一侧,且包括沿所述第一方向排列的多个所述第二金属网格;第四金属网格行位于所述第三金属网格行的靠近所述第二金属网格行的一侧且与所述第三金属网格行相邻且连接,包括沿所述第一方向排列的至少一个所述第二金属网格;所述第四金属网格行中的所述第二金属网格的数量小于等于所述第三金属网格行中的所述第二金属网格的数量,并且,所述第四金属网格行中的所述第二金属网格的靠近所述第三金属网格行的全部所述第二金属线均为与所述第三金属网格行中的所述第二金属网格共享的第二金属线;所述第三金属网格行的第二金属网格为所述第二连接电极的第二边缘第二金属网格,位于所述第二连接电极的在所述第二方向上的第二端部,且与与之相邻的所述第二触控子电极的边缘第一金属网格电连接,所述第二端部在所述第二方向上与所述第一端部相对;所述多个过孔包括第二过孔,所述第三金属网格行通过第二过孔和与其所在的第二连接电极相邻的两个第二触控子电极中的另一者电连接。
例如,本公开至少一实施例提供的触控结构中,所述与所述第三金属网格行中的所述第二金属网格共享的第二金属线在所述第一金属网格层上的正投影与所述第一金属线不重叠,或者,所述与所述第三金属网格行中的所述第二金属网格共享的第二金属线在所述第一金属网格层上的正投影与所述第一金属线重叠。
例如,本公开至少一实施例提供的触控结构中,所述第三金属网格行的第二金属网格的数量为2,所述第四金属网格行的第二金属网格的数量为1。
例如,本公开至少一实施例提供的触控结构中,所述第二连接电极还包括:至少一个中间金属网格行,位于所述第二金属网格行与所述第四金属网格行之间,所述至少一个中间金属网格行的每一行包括至少一个所述第二金属网格。
例如,本公开至少一实施例提供的触控结构中,所述至少一个中间金属网格行的每一行的第二金属网格的数量为1。
例如,本公开至少一实施例提供的触控结构中,所述多个第二连接电极的每个沿所述第二方向还包括第三金属网格行。第三金属网格行,于所述第二金属网格行的远离所述第一金属网格行的一侧,与所述第二金属网格行相邻,且包括沿所述第一方向排列的多个所述第二金属网格;所述第二金属网格行中的所述第二金属网格的数量小于等于所述第三金属网格行中的所述第二金属网格的数量,并且,所述第二金属网格行中的所述第二金属网格的靠近所述第三金属网格行的全部所述第二金属线均为与所述第三金属网格行中的所述第二金属网格共享的第二金属线;所述第三金属网格行的第二金属网格为所述第二连接电极的第二边缘第二金属网格,位于所述第二连接电极的在所述第二方向上的第二端部,且与与之相邻的所述第二触控子电极的边缘第一金属网格电连接,所述第二端部在所述第二方向上与所述第一端部相对;所述多个过孔包括第二过孔,所述第三金属网格行通过第二过孔和与其所在的第二连接电极相邻的两个第二触控子电极中的另一者电连接。
例如,本公开至少一实施例提供的触控结构中,所述多个第二连接电极的每个的图案相对于沿所述第一方向的对称轴对称。
例如,本公开至少一实施例提供的触控结构中,每个所述第二金属网格包括至少两条沿所述第二方向的竖直边,所述至少两条竖直边在所述第一金属网格层上的正投影与所述第一金属线不重叠。
例如,本公开至少一实施例提供的触控结构中,相邻的所述第二触控子电极通过两个所述第二连接电极电连接,所述两个第二连接电极彼此间隔设置;所述多个第一连接电极的每个在所述第二金属网格层的正投影位于连接所述相邻的第二触控子电极的所述两个第二连接电极之间的间隙内。
例如,本公开至少一实施例提供的触控结构中,所述多个第一触控子电 极的每个通过至少一条由首尾依次相接的多条第一金属线构成的第一连接线与相邻的第一连接电极电连接;所述第一连接线在所述第二金属网格层上的正投影分别与所述第二连接电极中的多条第二金属线重叠,且至少部分与所述共享的第二金属线在所述第一金属网格层上的正投影重叠。
例如,本公开至少一实施例提供的触控结构中,位于相邻的所述第一触控子电极与所述第二触控子电极的分界区的多条所述第一金属线分别包括多个断口,所述多个断口的每个将所在的第一金属线分为两条第一金属线段,所述两条第一金属线段中的一条属于所述第一触控子电极,另一条属于所述第二触控子电极,从而使得相邻的所述第一触控子电极和所述第二触控子电极绝缘。
本公开至少一实施例还提供一种触控结构,该触控结构包括:彼此间隔开的多个触控子电极以及虚拟电极。虚拟电极嵌设于所述多个触控子电极中的至少一个触控子电极中且与其所在的所述触控子电极间隔开以彼此绝缘;所述至少一个触控子电极包括条形的通道以及围绕所述虚拟电极和所述通道的主体部,所述条形的通道贯穿所述虚拟电极,且所述条形的通道的在其延伸方向上的两端均与所述主体部连接。
例如,本公开至少一实施例提供的触控结构中,所述通道包括在其延伸方向上交替排列且依次连接的至少一个窄部和至少一个宽部,每个所述窄部的在垂直于所述通道的延伸方向上的宽度小于每个所述宽部的在垂直于所述通道的延伸方向上的宽度。
例如,本公开至少一实施例提供的触控结构中,所述窄部的在所述通道的延伸方向上的长度与所述窄部的所述宽度的比值大于所述宽部的在所述通道的延伸方向上的长度与所述宽部的所述宽度的比值。
例如,本公开至少一实施例提供的触控结构中,所述多个宽部等间距排列,所述多个窄部的长度彼此相等。
例如,本公开至少一实施例提供的触控结构中,所述至少一个触控子电极包括多个所述条形的通道,并且所述多个条形的通道包括:条形的第一通道和条形的第二通道。条形的第一通道大致沿第一延伸方向延伸;条形的第二通道大致沿第二延伸方向延伸且与所述第一通道相交;所述虚拟电极包括 被所述第一通道和所述第二通道彼此间隔开的至少四个部分。
例如,本公开至少一实施例提供的触控结构中,所述至少一个触控子电极包括多个所述条形的通道,并且所述多个条形的通道包括:多个条形的第一通道和多个条形的第二通道。多个条形的第一通道分别大致沿第一延伸方向延伸且彼此间隔开;多个条形的第二通道分别大致沿第二延伸方向延伸且彼此间隔开,多个条形的第二通道的每个与多个条形的第一通道的每个相交;所述虚拟电极包括被所述多个条形的第一通道和所述多个条形的第二通道彼此间隔开的多个部分。
例如,本公开至少一实施例提供的触控结构中,所述第一延伸方向与所述第二延伸方向垂直。
例如,本公开至少一实施例提供的触控结构中,所述多个条形的第一通道包括两个第一通道,所述多个条形的第二通道包括两个第二通道,所述虚拟电极包括被所述两个第一通道和所述两个第二通道彼此间隔开的至少九个部分。
例如,本公开至少一实施例提供的触控结构中,所述至少一个触控子电极包括连通部分,所述多个条形的通道通过所述连通部分彼此电连接,所述虚拟电极的多个部分围绕所述连通部分。
例如,本公开至少一实施例提供的触控结构中,在所述多个通道的每个包括在其延伸方向上交替排列且依次连接的多个窄部和多个宽部,每个所述窄部的在垂直于所述通道的延伸方向上的宽度小于每个所述宽部的在垂直于所述通道的延伸方向上的宽度时,所述第一通道的窄部与所述第二通道的窄部相交。
例如,本公开至少一实施例提供的触控结构中,所述第一通道的窄部与所述第二通道的窄部具有交点,所述第一通道包括分别位于所述交点两侧且与所述交点相邻的第一宽部和第二宽部,所述第二通道包括位于所述交点两侧且与所述交点相邻的第三宽部和第四宽部;所述第一宽部、所述第二宽部、所述第三宽部和所述第四宽部到所述交点的距离相等。
例如,本公开至少一实施例提供的触控结构中,所述虚拟电极与所述条形的通道构成的整体的外轮廓的形状呈第一多边形;所述通道的所述两端分 别靠近所述第一多边形的相邻的两条边,或者,所述通道的所述两端分别靠近所述第一多边形的相对的两条边,或者,所述通道的所述两端分别靠近所述第一多边形的两个不相邻的顶点。
例如,本公开至少一实施例提供的触控结构中,所述主体部的外轮廓的形状为第二多边形,所述第二多边形与所述第一多边形是相似多边形。
例如,本公开至少一实施例提供的触控结构中,所述条形的通道为直的条形;所述虚拟电极与所述通道构成的整体的外轮廓的形状呈第一多边形,所述通道与所述第一多边形的至少一条边平行,或者,所述通道与所述第一多边形的任意一条边均不平行。
例如,本公开至少一实施例提供的触控结构中,所述条形的通道为弯曲的条形或所述条形的通道呈折线状。
例如,本公开至少一实施例提供的触控结构中,至少一个所述条形的通道包括:沿所述至少一个条形的通道的延伸方向排列的第一段和第二段,所述第一段和所述第二段彼此基本平行,所述第一段和所述第二段通过金属连接线电连接。
例如,本公开至少一实施例提供的触控结构中,整个所述虚拟电极所跨过的区域与所述虚拟电极所在的所述触控子电极在同一方向上的最大尺寸之比大于等于0.4小于等于0.6;所述通道的最小宽度与所述整个所述虚拟电极所跨过的区域的所述最大尺寸的比例大于等于0.03小于等于0.1。
例如,本公开至少一实施例提供的触控结构中,所述至少一个触控子电极还包括与所述主体部连接的多个叉指结构,所述多个叉指结构分布在所述主体部的周边且从所述主体部沿远离所述主体部的方向凸出;所述通道的延伸方向与所述多个叉指结构中的至少部分叉指结构的延伸方向平行,或者,所述触控子电极的通道的延伸方向与所述多个叉指结构中的至少部分叉指结构的延伸方向不平行;所述至少部分叉指结构从所述主体部的外轮廓的靠近所述通道的两端的边凸出。
例如,本公开至少一实施例提供的触控结构中,在所述通道的延伸方向上,所述条形的通道的两端与从所述主体部的靠近所述通道的两端的边凸出的叉指结构至少部分重叠,所述通道的沿其延伸方向的边缘的至少部分与所 述叉指结构的部分边缘平行。
例如,本公开至少一实施例提供的触控结构中,所述触控结构包括第一电极层和第二电极层,其中,所述第一电极层和所述第二电极层之间设置有绝缘层;所述多个触控子电极包括多个第一触控子电极和多个第二触控子电极,所述触控结构还包括多个第一连接电极和多个第二连接电极;所述多个第一触控子电极和所述多个第一连接电极均位于所述第一电极层且沿第一方向布置,所述多个第一触控子电极和多个第一连接电极一一交替分布且依次电连接,形成沿所述第一方向延伸的第一触控电极;所述多个第二触控子电极位于所述第一电极层,沿第二方向依次布置且彼此间隔,所述第一方向与所述第二方向相交,所述多个第一触控子电极的每个和所述第二触控子电极的每个彼此间隔;所述多个第二连接电极位于所述第二电极层且彼此间隔,所述多个第二连接电极的每个通过所述绝缘层中的过孔与相邻的第二触控子电极电连接,从而将所述相邻的第二触控子电极电连接,形成在所述第二方向上延伸的第二触控电极;所述虚拟电极嵌设于所述第一触控子电极中和/或嵌设于所述第二触控子电极中。
例如,本公开至少一实施例提供的触控结构中,所述虚拟电极与所述通道构成的整体的外轮廓的形状为不规则多边形;所述虚拟电极的外轮廓在所述第二方向上的彼此相对的第一端和第二端分别与在所述第二方向上相邻的所述第二连接电极相对,且分别具有第一凹槽和第二凹槽;所述第一凹槽朝向所述虚拟电极的外轮廓的第二端凹入,所述第二凹槽朝向虚拟电极的外轮廓的第一端凹入;所述虚拟电极的外轮廓在所述第一方向上彼此相对的第三端和第四端分别与所述第一连接电极相对,且分别具有第三凹槽和第四凹槽;所述第三凹槽朝向所述第四端凹入,所述第四凹槽朝向所述第三端凹入。
例如,本公开至少一实施例提供的触控结构中,所述虚拟电极的外轮廓包括位于所述第一凹槽中的第一凸起、位于所述第二凹槽中的第二凸起,位于所述第三凹槽中的第三凸起、位于所述第四凹槽中的第四凸起;所述第一凸起朝向远离所述虚拟电极的外轮廓的第二端的方向凸出,所述第二凸起朝向远离虚拟电极的外轮廓的第一端的方向凸出;所述第三凸起朝向远离所述第四端的方向凸出,所述第四凸起朝向远离第三端的方向凸出。
例如,本公开至少一实施例提供的触控结构中,所述多个触控子电极和所述虚设电极位于同一金属网格层,所述金属网格层包括由多条金属线定义的多个金属网格,所述主体部、所述通道、所述虚拟电极的每个部分分别包括多个所述金属网格。
例如,本公开至少一实施例提供的触控结构中,所述多个触控子电极和所述虚设电极位于同一金属网格层,所述金属网格层包括由多条金属线定义的多个金属网格,所述连通部分包括多个所述金属网格。
例如,本公开至少一实施例提供的触控结构中,在嵌设有所述虚拟电极的所述至少一个触控子电极中,所述虚拟电极的每个部分分别具有与所述触控子电极的分界区,位于所述分界区的多条所述金属线分别包括多个断口,所述多个断口的每个将其所在的金属线分隔为两条金属线段,所述两条金属线段中的一条属于所述触控子电极,所述两条金属线段中的另一条属于所述虚拟电极,从而使得所述虚拟电极与所述触控子电极绝缘。
例如,本公开至少一实施例提供的触控结构中,所述通道包括至少两条由彼此连接的多条所述金属线构成的导电线,所述导电线贯穿所述虚拟电极且在其延伸方向的两端分别与所述主体部连接。
例如,本公开至少一实施例提供的触控结构中,每个所述通道包括在其宽度方向上排列的至少一个所述金属网格,所述宽度方向垂直于所述通道的延伸方向。
例如,本公开至少一实施例提供的触控结构中,每个所述通道包括沿其延伸方向排布的多个串联的所述金属网格;或者,每个所述通道包括沿其延伸方向排布的多个所述金属网格和连接至少两个相邻的所述金属网格的金属连接线。
例如,本公开至少一实施例提供的触控结构中,在所述触控结构包括第一电极层和第二电极层时,所述第一电极层为第一金属网格层,所述第二电极层为第二金属网格层;所述第一金属网格层包括由多条第一金属线定义的多个第一金属网格,所述第二金属网格层包括由多条第二金属线定义的多个第二金属网格,所述多个第一金属网格的每个和所述第二金属网格的每个均为多边形;所述主体部、所述通道和所述虚拟电极的每个部分分别包括多个 所述第一金属网格;所述多个第二连接电极的每个分别包括多个所述第二金属网格。
本公开至少一实施例还提供一种显示面板,该显示面板包括衬底基板以及层叠设置于所述衬底基板上的显示结构和本公开实施例提供的任意一种触控结构。
本公开至少一实施例还提供一种电子装置,该电子装置包括本公开实施例提供的任意一种触控结构或本公开实施例提供的任意一种触控显示面板。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种触控结构的工作原理示意图;
图2为本公开一实施例提供的一种触控结构的示意图;
图3为图2中方框内的局部的一种放大示意图;
图4A为图3中区域A的放大示意图;
图4B为图4A沿剖面线B-B’的剖视图;
图4C为第二金属网格的未设置有过孔的顶点和设置有过孔的顶点的示意图;
图4D为图4A沿剖面线D-D’的剖视图;
图5示出了图4A中的第一触控电极层;
图6A示出了图4A中的第二触控电极层;
图6B为本公开一实施例提供的另一种第二触控电极层的示意图;
图6C为本公开一实施例提供的又一种第二触控电极层的示意图;
图7A和图7B分别示出了图2中B区的放大示意图的两个示例;
图7C为本公开一实施例提供的另一种第一触控电极层的示意图;
图7D为本公开一实施例提供的再一种第一触控电极层的示意图;
图8A为本公开一实施例提供的嵌设于触控自电极中的虚拟电极的结构示意图一;
图8B为本公开一实施例提供的嵌设于触控自电极中的虚拟电极的结构示意图二;
图8C为本公开一实施例提供的嵌设于触控自电极中的虚拟电极的结构示意图三;
图8D为本公开一实施例提供的嵌设于触控自电极中的虚拟电极的结构示意图四;
图8E为本公开一实施例提供的嵌设于触控自电极中的虚拟电极的结构示意图五;
图8F为本公开一实施例提供的嵌设于触控自电极中的虚拟电极的结构示意图六;
图8G为本公开一实施例提供的嵌设于触控自电极中的虚拟电极的结构示意图七;
图8H为图8G中的局部C的放大示意图;
图8I为本公开一实施例提供的嵌设于触控自电极中的虚拟电极的结构示意图八;
图8J为图8I中的局部F的放大示意图;
图9A为虚拟电极和通道位于第一网格层的示意图;
图9B为图9A中的局部D的放大示意图;
图9C为图9B中的局部E的进一步放大示意图;
图9D为图9A中的包括虚拟电极的局部的放大示意图;
图10为本公开至少一实施例提供的触控显示面板的示意图;
图11A为本公开至少一实施例提供的触控显示面板的平面示意图;
图11B为沿图11A中的剖面线II-II’的剖视图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其它实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开中的附图并不是严格按实际比例绘制,触控结构中的第一触控电极、第二触控电极、第一触控子电极、第二触控子电极、第一金属网格和第二金属网格的个数也不是限定为图中所示的数量,各个结构的具体地尺寸和数量可根据实际需要进行确定。本公开中所描述的附图仅是结构示意图。
有机发光二极管(OLED)显示面板具有自发光、对比度高、能耗低、视角广、响应速度快、可用于挠曲性面板、使用温度范围广、制造简单等特点,具有广阔的发展前景。为了满足用户多样化的需求,在显示面板中集成多种功能,如触控功能、指纹识别功能等具有重要的意义。例如,在OLED显示面板中形成外挂式(on-cell)触控结构是一种实现方式,该方式通过将触控结构形成于OLED显示面板的封装膜之上,从而实现显示面板的触控功能。
例如,互容式触控结构包括多个触控电极,该多个触控电极包括不同方向延伸的触控驱动电极和触控感测电极,触控驱动电极Tx和触控感测电极Rx在彼此交叉处形成用于触控感测的互电容。触控驱动电极Tx用于输入激励信号(触控驱动信号),触控感测电极Rx用于输出触控感测信号。通过向例如纵向延伸的触控驱动电极输入激励信号,从例如横向延伸的触控感测电极接收触控感测信号,这样可以得到反映横向和纵向电极耦合点(例如交叉点)的电容值大小的检测信号。当手指触摸到触摸屏(例如盖板玻璃)时,影响了触摸点附近的触控驱动电极和触控感测电极之间的耦合,从而改变了这两个电极之间在交叉点处互电容的电容量,从而导致触控感测信号出现变 化。根据基于触控感测信号的触摸屏二维电容变化量的数据,可以计算出触摸点的坐标。
图1示出了一种互容式触控结构的原理图。如图1所示,在触控驱动电路130的驱动下,触控驱动电极Tx被施加触控驱动信号,并由此产生电场线E,该电场线E被触控感测电极Rx接收形成参考电容。当手指触摸到触摸屏110上,由于人体是导体,触控驱动电极Tx产生的一部分电场线E被引导至手指形成手指电容(Finger Capacitance),减少了触控感测电极Rx所接收的电场线E,因此触控驱动电极Tx和触控感测电极Rx之间的电容值减小。触控驱动电路130通过触控感测电极RX来获得上述的电容值大小,并与参考电容比较从而获得电容值变化量,根据该电容值变化量的数据以及结合各个触控电容的位置坐标,可以计算出触摸点的坐标。
在一些触控结构中,触控驱动电极Tx包括通过桥电连接的多个子电极,该桥与触控感测电极Rx之间有绝缘层,该桥与触控感测电极Rx之间在垂直于衬底的方向上具有交叠部分,该交叠部分的面积较大会增大桥与触控感测电极Rx之间发生电导通而使触控驱动电极Tx与触控感测电极Rx发生短路的几率,且会造成触摸效果不佳,例如增加误报点、误触发生的几率,同时,会增大触控电路的功耗。
本公开至少一实施例提供一种触控结构,该触控结构包括第一金属网格层和第二金属网格层,所述第一金属网格层和所述第二金属网格层之间设置有绝缘层,所述第一金属网格层包括多条第一金属线定义的多个第一金属网格,所述第二金属网格层包括多条第二金属线定义的多个第二金属网格,所述多个第一金属网格的每个和所述第二金属网格的每个均为多边形;所述第一金属网格层包括沿第一方向布置的多个第一触控子电极和多个第一连接电极,所述多个第一触控子电极和多个第一连接电极一一交替分布且依次电连接,形成沿所述第一方向延伸的第一触控电极;所述第一金属网格层还包括沿第二方向依次布置且彼此间隔的多个第二触控子电极,所述第一方向与所述第二方向相交;所述多个第一触控子电极的每个和所述第二触控子电极的每个彼此间隔,且分别包括多个第一金属网格;所述第二金属网格层包括彼此间隔的多个第二连接电极,所述多个第二连接电极的每个通过所述绝缘层 中的多个过孔和与其相邻的第二触控子电极电连接,从而将相邻的第二触控子电极电连接,形成在所述第二方向上延伸的第二触控电极;所述多个第二连接电极的每个沿第二方向包括:第一金属网格行和第二金属网格行。第一金属网格行包括沿所述第一方向排列的多个所述第二金属网格;第二金属网格行与所述第一金属网格行相邻且连接,且包括沿所述第一方向排列的至少一个所述第二金属网格;所述第二金属网格行中的所述第二金属网格的数量小于等于所述第一金属网格行中的所述第二金属网格的数量,并且,所述第二金属网格行中的所述第二金属网格的靠近所述第一金属网格行的全部所述第二金属线均为与所述第一金属网格行中的第二金属网格共享的第二金属线。
本公开实施例提供的触控结构通过共享的第二金属线能够减小第一金属线与第二金属线的重叠面积,减少第一触控电极与第二触控电极的交叠面积,从而减少第一触控电极与第二触控电极之间的互容值的大小,降低触控电路的功耗,同时,能够降低第一金属线与第二金属线发生连接的风险,减少第一金属线与第二金属线之间发生短路的几率。
示例性地,图2是本公开实施例提供的一种触控结构40的示意图。如图2所示,该触控电极结构40包括沿第一方向D1延伸的多条第一触控电极410(一条第一触控电极410为图2中相应的虚线所指示的位置)和沿第二方向D2延伸的多条第二触控电极420(一条第二触控电极420为图2中相应的虚线所指示的位置)。例如,该第一触控电极410为触控感测电极Rx,第二触控电极420为触控驱动电极Tx。然而,本公开实施例并不对此进行限制。在其它示例中,第一触控电极410可以是触控驱动电极Tx,而第二触控电极420为触控感测电极Rx。
每条第一触控电极410包括沿第一方向D1依次布置且彼此连接的第一触控子电极411,每条第二触控电极420包括沿第二方向D2依次布置且彼此连接的第二触控子电极421。如图3所示,每个第一触控子电极411和第二触控子电极421的主体轮廓均为菱形。在其它示例中,该第一触控子电极411和第二触控子电极421也可以是其它形状,如三角形、条形等形状。
在第一方向D1上相邻的第一触控子电极411通过第一连接电极412电 连接形成该第一触控电极410,在第二方向D2上相邻的第二触控子电极421通过第二连接电极(未示出)电连接形成该第二触控电极420。
每条第一触控电极410和每条第二触控电极420彼此绝缘交叉并在交叉处形成多个触控单元400,每个触控单元包括在交叉处连接的两个第一触控电极部的各一部分以及在该交叉处连接的两个第二触控电极部的各至少一部分。图2的右侧示出了一个触控单元400的放大示意图。如图所示,每个触控单元400包括彼此邻接的两个第一触控子电极411的各一半区域以及彼此邻接的两个第二触控子电极421的各一半区域,也即平均包括一个第一触控子电极411的区域和一个第二触控子电极421的区域,每个触控单元400中的第一触控子电极411与第二触控子电极421的交汇点(也即第一连接电极与第二连接电极的交叉处)形成用于计算坐标的基准点。当手指触摸到电容屏时,影响了触摸点附近第一触控电极和第二触控电极之间的耦合,从而改变了这两个电极之间的互电容量。触控感测信号根据触摸屏电容变化量而该改变,由此可以基于该基准点计算出每一个触摸点的坐标。例如,每个触控单元400的面积与人的手指与触控面板接触的面积相当,该触控单元的面积过大可能造成面板上出现触控盲点,过小则会造成误触信号。
每个触控单元400的平均边长为P,称为该触控结构的节距(Pitch)。例如,该节距P的大小范围为3.7mm-5mm,例如为约4mm;这是因为人的手指与触控面板接触的直径为约4mm左右。例如,该节距的大小与每个第一触控子电极411的平均边长以及每个第二触控子电极421的平均边长相同,也与相邻的第一触控子电极411的中心距离、相邻的第二触控子电极421的中心距离相同。
如图2所示,第一触控子电极411和第二触控子电极421分别包括主体部和由该主体部延伸出的多个叉指结构440,该第一触控子电极411与相邻的第二触控子电极421通过该叉指结构440在该第一金属网格50中彼此嵌套形成互电容。该叉指结构可以在同等面积下提高触控子电极的周长,因此在不增大触控子电极的自电容(电容负载)的情形下有效提高互电容量,从而提高触控灵敏度。例如,该主体部的形状可以是圆形或矩形,该叉指结构的形状包括如下形状至少之一:平行四边形(例如矩形)、三角形、梯形、六 边形。
例如,多个叉指结构440分布在触控子电极的主体部的周边。例如,该主体部为矩形,每个边对应的第二叉指结构112的数目为3-10,例如6-10。在另一些示例中,该主体部也可以是圆形,多个叉指结构440均匀分布在该圆形的圆周上。
图2在右侧示出了一个触控单元400的放大示意图。如图2所示,在第一方向D1上相邻的第一触控子电极411通过第一连接电极412连接从而形成沿第一方向D1延伸的第一触控电极410,在第二方向D2上相邻的第二触控子电极421通过第二连接电极(图2未示出)连接从而形成沿第二方向D2延伸的第二触控电极420。
图3为图2中方框内的局部的一种放大示意图。触控结构40包括第一金属网格层50和第二金属网格层60。第一金属网格层50和第二金属网格层60之间设置有绝缘层。结合图2和图3,第一金属网格层50包括沿第一方向D1布置的多个第一触控子电极411和多个第一连接电极412,多个第一触控子电极411和多个第一连接电极412一一交替分布且依次电连接,形成沿第一方向D1延伸的第一触控电极410,即沿第一方向D1,相邻的第一触控子电极4111和4112通过第一连接电极412彼此电连接从而形成图2所示的位于第一金属网格层50的第一触控电极410。第一金属网格层50还包括沿第二方向D2依次布置且彼此间隔的多个第二触控子电极421,第一方向D1与第二方向相交D2。多个第一触控子电极411的每个和第二触控子电极421的每个彼此间隔,且分别包括多个第一金属网格。第二金属网格层60包括彼此间隔的多个第二连接电极422,多个第二连接电极422的每个通过绝缘层中的多个过孔和与其相邻的第二触控子电极4211和4212电连接,从而将相邻的第二触控子电极4211和4212电连接,从而形成图2所示的在第二方向D2上延伸的第二触控电极420。如图3所示,第一触控子电极411与第二触控子电极421通过叉指结构440在第一金属网格层50中彼此嵌套且隔离。如图4B所示,该第一触控子电极411和第二触控子电极421的分界线由于叉指结构的存在为锯齿状。
图4A示出了图2和图3中A区的放大示意图,该A区为该第一触控子 电极411与第二触控子电极421的交汇点,也即桥接区。图4A中浅色网格示意出了第一金属网格层50中的第一金属网格52,该第一金属网格层50包括第一触控电极410(包括第一触控子电极411以及第一连接电极412)以及第二触控子电极421,第一触控子电极411、第一连接电极412和第二触控子电极421分别包括多个彼此连接的第一金属网格52;图4A中深色网格示意出了第二金属网格层60中的第二金属网格62,该第二金属网格层60包括第二连接电极422,第二连接电极422包括多个彼此连接的第二金属网格62。
图4B为图4A沿剖面线B-B’的剖视图,图5示出了图4A中的第一触控电极层,图6A示出了图4A中的第二触控电极层。结合图4A-4B、图5和图6A,触控结构40包括第一金属网格层50和第二金属网格层60,第一金属网格层50和第二金属网格层60之间设置有绝缘层70。第一金属网格层50包括多条第一金属线51定义的多个第一金属网格52,第二金属网格层60包括多条第二金属线61定义的多个第二金属网格62,多个第一金属网格52的每个和第二金属网格62的每个均为多边形。例如上图中所示的多个第一金属网格52的每个和第二金属网格62的每个均为六边形,当然,在其他实施例中,其形状也可以为其他多边形,例如四边形、五边形、三角形等,具体可根据需要进行设计,本公开实施例对每个第一金属网格52和每个第二金属网格62的形状不作限定,只要满足权利要求中的相应特征即可。
如图4A和图6A所示,多个第二连接电极422的每个沿第二方向包括:第一金属网格行1和第二金属网格行2。第一金属网格行1包括沿第一方向D1排列的多个第二金属网格62。第二金属网格行2与第一金属网格行1相邻且连接,且包括沿第一方向D1排列的至少一个第二金属网格62。第二金属网格行2中的第二金属网格62的数量小于第一金属网格行1中的第二金属网格62的数量,并且,第二金属网格行2中的第二金属网格的62靠近第一金属网格行1的全部第二金属线61均为与第一金属网格行1中的第二金属网格62共享的第二金属线611。
在另一些实施例中,例如如图6C所示,第二金属网格行2中的第二金属网格62的数量等于第一金属网格行1中的第二金属网格62的数量,并且,第二金属网格行2中的第二金属网格的62靠近第一金属网格行1的全部第二 金属线61均为与第一金属网格行1中的第二金属网格62共享的第二金属线611。
在本公开实施例提供的触控结构40中,由于第二金属网格行2中的第二金属网格的62靠近第一金属网格行1的全部第二金属线61均为与第一金属网格行1中的第二金属网格62共享的第二金属线611,从而,除了与第一金属网格行1共享的第二金属线61之外,第二金属网格行2的靠近第一金属网格行1中不存在额外的与第一金属线51重叠的第二金属线,从而,减小了第一金属线51与第二金属线61的重叠面积,减少了第一触控电极410与第二触控电极420的交叠面积,从而减小了第一触控电极410与第二触控电极420之间的互容值的大小,提高触控性能,减少误报、误触的发生,以及降低触控电路的功耗;同时,由于虽然第一金属层与第二金属层之间存在绝缘层,但在制作工艺中,依然在部分位置依然存在绝缘层缺失的可能性,因此,减小第一金属线51与第二金属线61的重叠面积还能够降低第一金属线51与第二金属线62发生连接的风险,减小第一金属线51与第二金属线61之间发生短路的机率,利于整个触控结构的触控功能的稳定性,解决了第一金属线51与第二金属线61的重叠面积过大造成的触控性能较差,发生误报、误触,以及触控电路的功耗过大的问题,同时能够解决在制作该触控结构的过程中,由于绝缘层缺失而第一金属线与第二金属线容易彼此导通而造成短路的问题。
例如,第一金属网格行1和与其相邻的第二触控子电极4211电连接,与第一金属网格行1中的第二金属网格62共享的第二金属线611在第一金属网格层50上的正投影与第一金属线51重叠,从而在尽量减小第一金属线51与第二金属线62重叠面积的基础上,使得采用该触控结构40的显示面板或显示装置具有较高的开口率。
例如,在本实施例中,第一金属网格行1中的第二金属网格62的数量为2,第二金属网格行2中的第二金属网格的数量为1,以在保证第二网格行2提供沿第二方向D2的至少两条电信号传导通道的情况下,使第二连接电极422包括尽量少的第二金属网格,从而第一金属线51与第二金属线62的重叠量最小。至少两条电信号传导通道例如为图6A中灰色线条所表示的第一 通道621和第二通道622。
结合图4A和图4B,上述多个过孔包括第一过孔71,第一金属网格行1通过第一过孔71和与其所在的第二连接电极422相邻的两个第二触控子电极4211/4212中的一者4211电连接。
例如,如图4A和图4B所示,第一金属网格行1的第二金属网格62(例如至少两个金属网格62)的多条第二金属线61在第一金属网格层50上的正投影分别与第二触控子电极421的第一金属网格52的多条第一金属线51重叠,使得第二金属网格62具有与第一金属网格52重叠的多个顶点。例如,在本实施例中,该多个顶点的个数为5,分别为第一顶点01、第二顶点02、第三顶点03、第四顶点04和第五顶点05。为该多个顶点包括多个第一连接顶点,第一过孔71对应设置于多个第一连接顶点处,也即该多个过孔71与多个连接顶点一一对应设置,该第二金属网格62的设置有第一过孔71的顶点称为第一连接顶点。
需要说明的是,本公开中的第一金属线/第二金属线指的是连接于第一金属网格/第二金属网格的相邻的两个顶点之间的金属线,也即每条第一金属线/第二金属线对应于第一金属网格/第二金属网格的一条边。
例如,如图4A所示,多个第一金属网格52的每个和第二金属网格62的每个均为六边形。第一金属网格行1的第二金属网格62的多条第二金属线61a(例如四条第二金属线61a)和与其相邻的第二触控子电极4211中的边缘第一金属网格52(第二触控子电极4211的靠近第二连接电极422的边缘的第一金属网格)的四条第一金属线51a在垂直于第二金属网格层60的方向上分别重叠,使得边缘第一金属网格52具有与第二金属网格62重叠的上述五个顶点;四条第一金属线51将所述五个顶点依次连接,呈W状;四条第一金属线51分别与第一方向D1以及所述第二方向D2相交,上述五个顶点中的至少之一为连接顶点。例如,在本实施例中,第一顶点01、第二顶点02、第四顶点04和第五顶点05为连接顶点;在另一些实施例中,也可以是第一顶点01、第二顶点02、第三顶点03、第四顶点04和第五顶点05均为连接顶点;或者,在一些实施例中,不相邻的顶点为连接顶点,例如第一顶点01、第三顶点03和第五顶点05为连接顶点。
例如,第一金属网格行1的多个第二金属网格62为第二连接电极的第一边缘第二金属网格,位于第二连接电极422的在第二方向D2上的第一端部,且与与之相邻的第二触控子电极4211的边缘第一金属网格电连接。即,第一金属网格行1的第二金属网格62的边缘第二金属线61a与与之相邻的第二触控子电极4211的最靠近第一金属网格行1的边缘第一金属线51a连接。这种设置可以尽量减小该第二触控子电极4211与该第二连接电极422的重叠,从而降低触控子电极上的电容负载,提高触控灵敏度。
需要说明的是,在图4A中,第一金属网格层50更靠近观看者,从而避免较多的第一金属网格靠近显示结构的像素结构而对像素结构的工作造成影响。因此,边缘第二金属线61a被边缘第一金属线51a遮挡,可结合图5和图6A对边缘第二金属线61a和边缘第一金属线51a进行区分。
图4C为第二金属网格的未设置有过孔的顶点和设置有过孔的顶点的示意图,图4D为图4A沿剖面线D-D’的剖视图,图4C和图4D中省略了显示结构的具体细节。
例如,图4C左边示出了第二金属网格62未设置有过孔的顶点03(对应于第一网格层的顶点53)的一种示例,右边示出了第二金属网格62对应设置有过孔71的顶点63a(对应于第一网格层的顶点53a)的一种示例。如图4C所示,为了使得第二金属线61在连接顶点01处通过过孔71与第一金属线51形成良好的接触,该第二金属网格层60在该顶点01/02/04/05处会形成一个面积较大的金属接触垫65,导致该顶点的占用面积大于原顶点03的占用面积。类似地,该第一金属网格层50在顶点53a处也会形成一个面积较大的金属接触垫。例如,该金属接触垫的形状为矩形或圆形,该金属接触垫的尺寸(平均边长或直径)是第一金属线51或第二金属线61的两倍以上。因此,过孔71的设置会导致第一金属线51与第二金属线62的重叠面积变大。
通过上述设置,可以使得每个连接顶点都可以产生有效通道,从而尽量减少该金属接触垫的设置,降低金属层的面积。如此,一方面可以降低该第二连接电极422自身的自电容的大小,另一方面可以减少第一金属线51与第二金属线52的重叠,至少从该两方面降低了触控子电极的电容负载,提高了触控灵敏度。
该有效通道可以理解为与顶点53a直接连接且使得顶点53a所对应的过孔71将该第二触控子电极421中的触控信号传输至该第二连接电极422所必须的第一金属线51。因此,连接于两个相邻的顶点53a之间的第一金属线51不是有效通道,因为该触控信号在到达该任一顶点53a时即可以经该顶点53a所对应的过孔71传输至该二连接电极422,而无须再经过该非必须经过的第一金属线51。
例如,对于每个第二连接电极422,第一金属网格行1的第二金属网格与边缘第一金属网格52a重叠的顶点的数目不少于5个,且该连接顶点的数目不小于3个。
例如,与每个连接顶点对应的第一金属线51的顶点直接连接的第一金属线51都是完整的,也即连接于第一金属网格52的两个顶点之间而中间不存在断口。例如,每个连接顶点对应的第一金属线51的顶点所在的第一金属网格52都是完整的,也即该第一金属网格52中的所有第一金属线51都是完整的。这种设置可以提高触控信号由该第二触控子电极421输入该第二连接电极422的传输效率和有效性。
例如,如图4D所示,第一金属线51的平均线宽X1大于第二金属线61的平均线宽X2。例如,在金属线的宽度方向上,第二金属线61在衬底基板21上的正投影上位于第一金属线51在衬底基板21上的正投影内,这样可以有效提高显示基板的开口率。
例如,如图4A、图5和图6A所示,多个第二连接电极422的每个沿第二方向D2还包括:第三金属网格行3和第四金属网格行4。第三金属网格行3位于第二金属网格行4的远离第一金属网格行1的一侧,且包括沿第一方向D1排列的多个第二金属网格62;第四金属网格行4位于第三金属网格行3的靠近第二金属网格行2的一侧且与第三金属网格行3相邻且连接,包括沿第一方向D1排列的至少一个第二金属网格62。第四金属网格行4中的第二金属网格62的数量小于第三金属网格行3中的第二金属网格的数量,并且,第四金属网格行4中的第二金属网格62的靠近第三金属网格行3的全部第二金属线612均为与第三金属网格行3中的第二金属网格62共享的第二金属线612。
例如,在其他一些实施例中,例如如图6C所示,第四金属网格行4中的第二金属网格62的数量等于第三金属网格行3中的第二金属网格的数量,并且,第四金属网格行4中的第二金属网格62的靠近第三金属网格行3的全部第二金属线612均为与第三金属网格行3中的第二金属网格62共享的第二金属线612。针对图6C所示的第二金属网格相应地设计第一金属网格的图案,只要满足与之前实施例中相同的条件即可。
在本公开实施例提供的触控结构40中,由于第四金属网格行4中的第二金属网格的62靠近第三金属网格行3的全部第二金属线61均为与第三金属网格行3中的第二金属网格62共享的第二金属线612,从而,除了与第三金属网格行3共享的第二金属线61之外,第四金属网格行4的靠近第一金属网格行1中不存在额外的与第一金属线51重叠的第二金属线,从而,减小了第一金属线51与第二金属线61的重叠面积,减少了第一触控电极410与第二触控电极420的交叠面积,从而进一步达到减小第一触控电极410与第二触控电极420之间的互容值的大小,降低触控电路的功耗以及减小第一金属线51与第二金属线61之间发生短路的机率的技术效果。
例如,第三金属网格行3的第二金属网格62为该第二连接电极422的第二边缘第二金属网格,位于第二连接电极422的在第二方向上的第二端部,且与与之相邻的第二触控子电极4212的边缘第一金属网格电连接,该第二端部在第二方向D2上与上述第一端部相对。即第三金属网格行3的第二金属网格62的边缘第二金属线61b与与之相邻的第二触控子电极4212的最靠近第三金属网格行3的边缘第一金属线51b连接。这种设置可以尽量减小该第二触控子电极4212与该第二连接电极422的重叠,从而降低触控子电极上的电容负载,提高触控灵敏度。
例如,如图4A所示,第多个过孔还包括第二过孔72,第三金属网格行3通过第二过孔和与其所在的第二连接电极422相邻的两个第二触控子电极中的另一者4212电连接。
例如,如图4A所示,第三金属网格行3的第二金属网格62的多条第二金属线61在第一金属网格层50上的正投影分别与第二触控子电极421的第一金属网格52的多条第一金属线51重叠,使得第二金属网格62具有与第一 金属网格52重叠的多个顶点。例如,在本实施例中,第三金属网格行3的该多个顶点的个数为5,分别为第六顶点01’、第七顶点02’、第八顶点03’、第九顶点04’和第十顶点05’。该多个顶点包括多个第二连接顶点,第二过孔72对应设置于多个连接顶点处,也即该多个第二过孔72与多个第二连接顶点一一对应设置点,该第二金属网格62的设置有第二过孔72的顶点称为第二连接顶点。
第二过孔72的设置方式和位置与第一过孔71的相似,可参考对第一过孔71相关特征的描述。
结合图4A和图5,例如,与第三金属网格行3中的第二金属网格62共享的第二金属线612在第一金属网格层50上的正投影与第一金属线51不重叠,即,在第一金属层50的对应于共享的第二金属线612的位置处不设置第一金属线51,以尽量减小第一金属线51与第二金属线62重叠面积,避免两者重叠面积大导致的问题。
当然,在其他一些实施例中,共享的第二金属线612在第一金属网格层50上的正投影也可以与第一金属线51重叠,以在尽量减小第一金属线51与第二金属线62重叠面积的基础上,使得采用该触控结构40的显示面板或显示装置具有较高的开口率。
第三金属网格行的第二金属网格的数量为2,所述第四金属网格行的第二金属网格的数量为1,以在保证信号能够通过第二连接电极422传输的基础上,尽量使第一金属线51与第二金属线62的重叠量最小。这种情况下,沿第二方向D2,每个第二电极422包括至少两条电信号传导通道。
例如,第二连接电极422还包括位于第二金属网格行2与第四金属网格行4之间的至少一个中间金属网格行,该至少一个中间金属网格行的每一行包括至少一个第二金属网格62。例如,在本实施例中,至少一个中间金属网格行的个数为1行,即第五网格行5。第五网格行5与第二金属网格行2与第四金属网格行4相邻且连接。
例如,至少一个中间金属网格行的每一行的第二金属网格的数量为1。例如,第五网格行5只具有1个第二金属网格,以在保证第五网格行5提供沿第二方向D2的至少两条电信号传导通道的情况下,使第二连接电极422 包括尽量少的第二金属网格,从而第一金属线51与第二金属线62的重叠量最小。
例如,多个第二连接电极422的每个的图案相对于沿第一方向D1的对称轴对称,以利于通过第二连接电极422传导的触控信号传导的均匀性。
例如,每个第二金属网格62包括至少两条沿第二方向D2的竖直边61c,以保证每行第二金属网格均能够提供沿第二方向D2的至少两条电信号传导通道,如此,当某一条竖直边61c发生断线风险时,能够防止出现触控坏点,保证触控功能的可靠性。例如,至少两条竖直边61c在第一金属网格层50上的正投影与第一金属线51不重叠,以尽可能地减少第一金属线51与第二金属线62的重叠量。
例如,如图4A和图6A所示,相邻的第二触控子电极4211和4212通过两个第二连接电极422,即图6A中的左侧的一个第二连接电极422和右侧的一个第二连接电极422,电连接。该两个第二连接电极422彼此间隔设置。结合图4A和图5,多个第一连接电极412的每个在第二金属网格层60的正投影位于连接相邻的第二触控子电极4211和4212的两个第二连接电极422之间的间隙内。
结合图4A和图5,例如,多个第一触控子电极421的每个通过至少一条由首尾依次相接的多条第一金属线51构成的第一连接线464与相邻的第一连接电极412电连接。第一连接线461在第二金属网格层60上的正投影分别与第二连接电极422中的多条第二金属线重叠,且至少部分与共享的第二金属线在611第一金属网格层50上的正投影重叠。例如,在图4A、图5和图6A所示的实施例中,图中左侧的第一触控子电极411通过三条第一连接线4611、4612、4613与第一连接电极412电连接,第一连接线4611在第二金属网格层60上的正投影的一部分与图中左侧的第二连接电极422的第一金属网格行1和第二金属网格行2共享的第二金属线611重叠,以尽可能地减少第一金属线51与第二金属线62的重叠面积,避免两者重叠面积大导致的问题。图中右侧的第一触控子电极411通过多条第二连接线462与第一连接电极412电连接,每条第二连接线由至少一条由首尾依次相接的多条第一金属线51构成,类似于每条第一连接线。例如,右侧的第一触控子电极411通过三条 第二连接线4621、4622、4623与第一连接电极412电连接,第二连接线4621在第二金属网格层60上的正投影的一部分与图中右侧的第二连接电极422的第一金属网格行1和第二金属网格行2共享的第二金属线611重叠,以尽可能地减少第一金属线51与第二金属线62的重叠面积,避免两者重叠面积大导致的问题。
例如,在本实施例中,第一金属层50的对应于第二连接电极422的第三金属网格行3的共享的第二金属线612的位置处不存在第一连接线和第二连接线与之重叠,以尽可能地减少第一金属线51与第二金属线62的重叠量。当然,在其他实施例中,也可以设置有第一连接线和第二连接线与共享的第二金属线612在第一金属层50上的正投影至少部分重叠。
例如,如6A所示,a、b、c、d、e、f分别代表不同的第二金属网格62的多个边。例如这些边的长度关系为:a<e<c,f<d<b。例如,图6A中的第二金属网格层402的与第一金属线重叠的第二网格线分别为图中所标示的网格线a、b、c、d、e、f,在与第一金属线51重叠的第二金属线61的条数相等的情况下,本公开实施例中的这些与第一金属线重叠的第二网格线的长度之和最小。预先根据第二金属网格62和第一金属网格52的各个边长,选择重叠长度最小的方式进行设计第二金属网格62的位置,使得在满足之前所述的条件的基础上,使得与第一金属线重叠的第二网格线的长度之和最小。当然,在其他实施例中,当与第一金属线重叠的第二网格线的位置可以与图4A中的不同,但仍然可以通过设计满足与第一金属线重叠的第二网格线的长度之和最小。
例如,位于相邻的第一触控子电极与第二触控子电极的分界区的多条第一金属线分别包括多个断口,多个断口的每个将所在的第一金属线分为两条第一金属线段,两条第一金属线段中的一条属于第一触控子电极,另一条属于第二触控子电极,从而使得相邻的第一触控子电极和所述第二触控子电极绝缘。
示例性地,图7A和图7B分别示出了图2中B区的放大示意图的两个示例,该B区涉及在第二方向D2上相邻且绝缘的两个第一触控子电极411与在第一方向D1上相邻且绝缘的两个第二触控子电极421,该B区为该四 个触控子电极的隔离区。
图7A所示的金属网格均位于第一金属网格层,也即均为第一金属网格,其中浅色网格表示该相邻的第一触控子电极411中的第一金属网格,深色网格表示该相邻的两个第二触控子电极421中的第一金属网格。
如图7A所示,第一触控子电极411与第二触控子电极421彼此相邻,位于二者分界区的多条第一金属线51分别包括多个断口(space)510,每个断口510例如位于所在的第一金属线51的中部,即每个断口510位于其所在的第一金属网格52的一条边的中部,将其所在的第一金属线51分隔为两条第一金属线段51f,该两条第一金属线段51f中的一条属于该第一触控子电极411,另一条属于该第二触控子电极421,从而使得相邻的第一触控子电极411和第二触控子电极421绝缘。
需要说明的是,本公开实施例中的第一金属线段属于触控子电极表示该第一金属线段与所述的触控子电极之间存在电连接关系。
在本公开至少一实施例提供的该触控结构中,相邻且绝缘的触控子电极之间(例如相邻的第一触控子电极和第二触控子电极之间、在第一方向相邻的两个第二触控子电极之间、在第二方向相邻的两个第一触控子电极之间)通过金属线断线所形成的断口进行绝缘;相较于通过设置虚拟(dummy)电极进行绝缘,这种设置可以尽量提高触控电极的设置面积,提高了触控电极的密度,从而提高了触控灵敏度。
例如,如图7A所示,每个触控子电极的边缘金属网格都是残缺的,也即都包括第一金属网格的一部分,相邻的触控子电极中的边缘金属网格彼此匹配,界定出该第一金属网格。
例如,至少一个第一金属网格包括彼此绝缘的三个第一金属网格部分,该三个第一金属网格部分分别属于一个第一触控子电极以及在第一方向D1上相邻的两个第二触控子电极。例如,该第一金属网格为六边形,至少两个第一金属网格包括上述绝缘的三个第一金属网格部分。
如图7A和图7B所示,图7A和图7B中,虚线圈中的两个第一金属网格52c中的每个包括彼此绝缘的三个第一金属网格部分,该三个第一金属网格部分分别属于彼此绝缘的三个触控子电极,该三个触控子电极包括在第二 方向D2上相邻的两个第一触控子电极411以及位于该两个第一触控子电极之间的一个第二触控子电极421(如图7A所示),或者该三个触控子电极包括在第一方向D1上相邻的两个第二触控子电极421以及位于该两个第二触控子电极421之间的一个第一触控子电极411(如图7B所示)。这种设计使得触控子电极之间有效绝缘的同时排布更加紧凑,从而提高了触控灵敏度。
例如,如图7A和图7B所示,每个金属网格52c的三条边上分别存在一个断口510,从而将该金属网格分为三部分。
例如,如图7A和图7B所示,该第一金属网格52c为多边形,例如为六边形,该六边形包括与第二方向D2平行且彼此相对的两条边,该第一金属网格52c的位于其中至少一个边上的第一金属线51存在断口,将该第一金属线分隔为两条第一金属线段51f。例如,如图7A所示,该两条第一金属线段51f分别属于在第二方向上相邻的两个第一触控子电极411。例如,如图7B所示,该两条第一金属线段51f分别属于相邻的第一触控子电极411和第二触控子电极421。
例如,如图7A和图7B所示,该两个第一金属网格52c的多边形共享一条边,也即该两个第一金属网格52c共享一条第一金属线51g,该第一金属线51g上存在断口520,该断口将该第一金属线51g分离为间隔的两条第一金属线段。
例如,如图7A所示,该两个第一金属网格52c沿第一方向D1排列,该共享的第一金属线51g与该第二方向D2平行。该共享的第一金属线51g中的两条第一金属线段分别属于在该第二方向D2上相邻的两个第一触控子电极411;也即该第二方向D2上相邻的两个第一触控子电极411直接通过断口相邻或者通过断口彼此间隔。例如,在第一方向D1上相邻的两个第二触控子电极421由该第二方向D2上相邻的两个第一触控子电极411的一部分彼此间隔。
例如,如图7B所示,该两个第一金属网格52c的排列方向与该第二方向D2既不平行也不垂直,该共享的第一金属线51g与该第二方向D2既不平行也不垂直。该共享的第一金属线51g中的两条第一金属线段分别属于在该第一方向D1上相邻的两个第二触控子电极421;也即该第一方向D1上相邻 的两个第二触控子电极421直接通过断口相邻或者通过断口彼此间隔。例如,在第二方向D2上相邻的两个第一触控子电极411由该第一方向D1上相邻的两个第二触控子电极421的一部分彼此间隔。
例如,如图7A和图7B所示,该两个第一金属网格52c中的一个第一金属网格52c的三个第一金属网格部分的每个均包括一条完整的第一金属线51;另一个第一金属网格52c的三个第一金属网格部分所包括的第一金属线的数目彼此不相同,例如该数目分别为0、1、2。
如图7A和图7B所示,每个第一金属网格部分包括两条第一金属线段51f,或者是仅包括两条第一金属线段51f;或者是包括一条完整的第一金属线51和两条第一金属线段51f,该第一金属线51连接于该两条第一金属线段之间;或者包括两条完整的第一金属线51和两条第一金属线段51f,该两条第一金属线51连接于该两条第一金属线段51f之间。
另外,在一个第一触控子电极中,一个第一金属网格也不一定是完整的封闭图形。例如如图5所示,在至少一个第一触控子电极411中,一部分第一金属网格52b的一条边具有断口530。或者,如图7C所示,在至少一个第一触控子电极411中,一部分第一金属网格52c的一条边缺失。
类似地,在一个第二触控子电极中,一个第二金属网格也不一定是完整的封闭图形。例如如图7D所示,在一个第二触控子电极421中,一部分第二金属网格62的一条边具有断口620。或者,在一些实施例中,一部分第二金属网格62的一条边缺失。只要保证不影响实现第二触控子电极的功能,以及在一些实施例中保证第二网格行2提供沿第二方向D2的至少两条电信号传导通道,至少两条电信号传导通道例如为图7D中灰色线条所表示的第一通道621和第二通道622。当然,至少两条电信号传导通道不唯一,不限于是图7D所示的情形。
图6B为本公开一实施例提供的另一种第二触控电极层的示意图。图6B所示的第二连接电极与图4A和图6A中具有以下区别。多个第二连接电极的每个沿所述第二方向还包括第三金属网格行3,第三金属网格行33位于第二金属网格行2的远离第一金属网格行1的一侧且与第二金属网格行2相邻,包括沿第一方向D1排列的多个第二金属网格62;第二金属网格行2中的第 二金属网格62的数量小于第三金属网格行3中的第二金属网格62的数量,并且,第二金属网格行2中的第二金属网格62的靠近第三金属网格行3的全部第二金属线612均为与第三金属网格行3中的第二金属网格62共享的第二金属线612;第三金属网格行3的第二金属网格62为第二连接电极422的第二边缘第二金属网格,位于第二连接电极422的在第二方向D2上的第二端部,且与与之相邻的第二触控子电极412的边缘第一金属网格电连接,第二端部在第二方向D2上与第一端部相对;多个过孔包括第二过孔,第三金属网格行3通过第二过孔和与其所在的第二连接电极422相邻的两个第二触控子电极421中的另一者电连接。图6B所示的第二连接电极的其他特征例如其第一金属网格行、第二金属网格行等的特征和相应技术效果均与图4A和图6A所示得到实施例中的相同,可参考之前的描述。当第二金属网格层60采用图6B所示的第二连接电极时,第一金属网格层50的图案可相应改变。
本公开至少一实施例还提供一种触控结构,该触控结构包括:彼此间隔开的多个触控子电极以及虚拟电极。虚拟电极嵌设于所述多个触控子电极中的至少一个触控子电极中且与其所在的所述触控子电极间隔开以彼此绝缘;所述至少一个触控子电极包括条形的通道以及围绕所述虚拟电极和所述通道的主体部,所述条形的通道贯穿所述虚拟电极,且所述条形的通道的在其延伸方向上的两端均与所述主体部连接。
在本公开至少一实施例中,例如,结合图2和图8A,触控结构40包括虚拟电极430。虚拟电极430嵌设于多个触控子电极中的至少一个触控子电极中且与其所在的触控子电极间隔开以彼此绝缘。多个触控子电极是彼此间隔开的。例如,每个触控子电极中均嵌设有虚拟电极430,或者,多个触控子电极中的一些触控子电极中嵌设有虚拟电极430。在图2中,例如,该至少一个触控子电极是第二触控子电极421。在其他实施例中,例如,如图8A所示,该至少一个触控子电极也可以是第一触控子电极411。
通过设置与触控子电极间隔开而不电连接的虚拟电极430,降低了触控电极的电极面积(有效面积),降低了触控电极上的电容负载(自电容),从而降低触控电极上的负载,提高了触控灵敏度。例如,该虚拟电极430为浮置(floating)状态,也即不与其它结构电连接或者不接收任何电信号。但 是,在图2所示的虚拟电极430中,不存在触控子电极的金属走线,从而在设置有虚拟电极430的区域中触控信号量偏小,这导致该区域的触控精度下降,影响采用该触控结构的电子装置例如显示面板的触控性能。
例如,在本公开至少一实施例提供的触控结构中,如图8A所示,以一个第一触控子电极411为例,该第一触控子电极包括条形的通道281以及围绕虚拟电极430和通道281的主体部282,条形的通道281贯穿虚拟电极,且条形的通道281的在其延伸方向上的两端281a/281b均与主体部282连接,虚拟电极430包括被条形的通道281间隔开的第一部分431和第二部分432。第一部分431和第二部分432均与第一触控子电极411间隔开以与第一触控子电极411绝缘。图8A中,围绕虚拟电极430的第一部分431和第二部分432的白色区域是第一部分431和第二部分432与第一触控子电极411之间的间隔。在该触控结构中,由于通道281贯穿虚拟电极430,因此,可以避免虚拟电极连续设置而造成触控盲点;同时,贯穿虚拟电极430的通道281在虚拟电极的内部形成有效信号通道,降低触控电极的电阻;并且,贯穿虚拟电极430的通道281增大了设置有虚拟电极430的区域的触控信号量,提高了该区域的触控精度,从而提高采用该触控结构的电子装置例如显示面板的触控性能。
如图8A所示,例如,虚拟电极430与条形的通道281构成的整体28的外轮廓的形状(即虚拟电极430与条形的通道281构成的整体28的平面形状)呈第一多边形;例如,第一多边形为规则多边形,例如矩形、正方形、平行四边形、正六边等。当然,第一多边形的形状不限于上述列举种类。虚拟电极430与条形的通道281构成的整体28整体呈多边形是指模糊了边缘的参差状,允许边缘是参差不齐的,不要求第一多边形的每条边是严格的直线段。例如,在其他一些实施例中,虚拟电极430与条形的通道281构成的整体28的外轮廓的形状还可以为圆形等其他形状,本公开实施例对此不作限定。
例如,在一些实施例中,如图8A所示,通道281的两端281a/281b分别靠近第一多边形的相临的两条边。
或者,在一些实施例中,如图8B所示,通道281的所述两端281a/281b分别靠近第一多边形的相对的两条边,如此,通道281更全面地贯穿虚拟电 极430,达到更好的提高设置有虚拟电极430的区域的触控精度的技术效果。图8B所示的第一触控子电极的未提及的其他特征均与图8A中的相同,请参考对于图8A的描述。
或者,在一些实施例中,如图8C所示,通道281的两端281a/281b分别靠近第一多边形的两个不相邻的顶点。图8C所示的第一触控子电极的未提及的其他特征均与图8A中的相同,请参考对于图8A的描述。
例如,如图8A所示,主体部280的外轮廓的形状为第二多边形,第二多边形与第一多边形是相似多边形。即,第二多边形与第一多边形边数相同且对应角基本相等,对应边基本成比例。如此,可以使虚拟电极430与所有的通道构成的整体28的形状与主体部280的外轮廓的形状一致,以使整个触控结构的触控性能具有更好的均匀性,并且便于构图,降低模板制作成本。
例如,如图8A所示,虚拟电极430与所有的通道构成的整体28的外轮廓的形状呈第一多边形,例如矩形,通道281与第一多边形即该矩形的两条边平行。
例如,条形的通道281整体上为直的条形,例如整体上为沿直线延伸的条形,在直的条形的延伸方向上,该直的条形的宽度可以是保持一致的,例如如图8I,也可以部是保持一致的,例如如图8G。在其他实施例中,至少部分条形的通道为弯曲的条形,例如整条通道为弯曲的条形或者在下述存在多条通道的情况下,至少一条通道为弯曲的条形。或者,在一些实施例中,至少部分条形的通道呈折线状,例如整条通道呈折线状或者在下述存在多条通道的情况下,至少一条通道呈折线状。
在一些实施例中,例如,如图8D所示,一个第一触控子电极411包括多个条形的通道,并且多个条形通道包括:条形的第一通道281和条形的第二通道282。条形的第一通道281大致沿第一延伸方向(例如为第三方向D3)延伸;条形的第二通道282大致沿第二延伸方向(例如为第四方向D4)延伸且与第一通道281相交。即,第一通道281的延伸方向和第二通道282的延伸方向与第一触控子电极411的排列方向以及第二触控子电极421的排列方向相交。虚拟电极430包括被第一通道281和第二通道282彼此间隔开的四个部分,分别是第一部分281、第二部分282、第三部分283和第四部分284。 需要说明的是,一个通道的不同部分可能不在一条直线上,一整个通道不一定是宽度均匀的直线段。相比于一个第一触控子电极411包括一个条形的通道的情况,一个第一触控子电极411包括彼此交叉的第一通道281和第二通道282的情况能够更进一步地在多个方向上增大设置有虚拟电极430的区域的触控信号量,提高该区域的触控精度,从而提高采用该触控结构的电子装置例如显示面板的触控性能。
例如,彼此交叉的第一通道281和第二通道282呈“十”字形,且第一延伸方向以及第二延伸方向均与第一方向D1(第一触控子电极411的排列方向)以及第二方向D2(第二触控子电极421的排列方向)分别成45度夹角,以使设置有虚拟电极430的区域具有较为均匀的触控精度。例如,第一通道281的两端281a/281b分别靠近第一多边形(矩形)的相对的两条边,第二通道282的两端282a/282b分别靠近第一多边形(矩形)的另外相对的两条边;第一部分281、第二部分282、第三部分283和第四部分284的大小和形状彼此相同,以进一步使设置有虚拟电极430的区域具有更加均匀的触控精度。图8D所示的第一触控子电极的未提及的其他特征均与图8A中的相同,请参考对于图8A的描述。
例如,在图8D中,第一部分281、第二部分282、第三部分283和第四部分284的形状均为矩形,例如正方形。例如,如图8E所示,虚拟电极430与条形的通道构成的整体的外轮廓的形状呈不规则图形;第一部分281、第二部分282、第三部分283和第四部分284的形状均包括分别沿不同的方向延伸的至少两个条形部,例如均为不规则图形。
例如,在另一些实施例中,至少一个第一触控子电极411包括多个条形的通道,并且该多个条形的通道包括:多个条形的第一通道和多个条形的第二通道多个条形的第一通道分别大致沿第一延伸方向延伸且彼此间隔开;多个条形的第二通道分别大致沿第二延伸方向延伸且彼此间隔开,多个条形的第二通道的每个与多个条形的第一通道的每个相交。虚拟电极包括被所多个条形的第一通道和多个条形的第二通道彼此间隔开的多个部分。
示例性地,如图8F所示,例如至少一个第一触控子电极411包括两个条形的第一通道281和两个条形的第二通道282,即所述多个条形的第一通 道包括两个第一通道281,所述多个条形的第二通道包括两个第二通道282。虚拟电极430包括被两个第一通道281和两个第二通道282彼此间隔开的至少九个部分,分别为第一部分431、第二部分432、第三部分433、第四部分434、第五部分435、第六部分436、第七部分437、第八部分438和第九部分439。
例如,如图8F所示,整个虚拟电极430(例如在本实施例中包括第一部分至第九部分)所跨过的区域与虚拟电极所在的第一触控子电极411在同一方向上的最大尺寸之比l/L1大于等于0.4小于等于0.6。试验证明,l/L1的值过大会占据过大的空间,减小有效触控面积;l/L1的值过小不能起到有效的降低触控电极上的负载以及提高触控灵敏度的效果,当l/L1的值大于等于0.4小于等于0.6时,可以达到最佳的兼顾提高触控精度和降低触控电极上的负载的效果。例如,虚拟电极430的主体部280的外轮廓为矩形,主体部280的外轮廓包括彼此交叉的第一边291a和第二边291b,该第一边291a和第二边291b分别沿第三方向D3和第四方向D4延伸,第三方向D3和第四方向D4不同,例如二者正交。例如,第三方向D3与第一方向D1或第二方向D2不同;第四方向D4与第一方向D1或第二方向D2不同。
例如,第三方向D3与第一方向D1和第二方向D2均成45度角,第四方向D4与第一方向D1和第二方向D2均成45度角。
例如上述同一方向上的最大尺寸中的同一方向为第三方向D3,或者,该同一方向也可以为第四方向D4。例如,整个虚拟电极430所跨过的区域与虚拟电极所在的第一触控子电极411在第三方向D3上的最大尺寸L1分别与两者在第四方向D4上的最大尺寸L2相等,此时,例如主体部280的外轮廓为正方形,以在第三方向D3和第四方向D4上获得均匀的触控精度,从而提高整个触控结构的触控精度均匀性。
例如,每个通道(例如每个第一通道281),的最小宽度d与整个虚拟电极430(例如在本实施例中包括第一部分至第九部分)所跨过的区域的最大尺寸l的比例大于等于0.03小于等于0.1。例如,每个第二通道282的宽度基本均匀一致,该第二通道282的最小宽度基本为以固定值。又例如,在其他实施例中,对于至少一个第二通道282,沿其延伸方向,第二通道282 的宽度不一致,一个第二通道282的最小宽度为其多个不同的宽度中的最小值。
需要说明的是,通道在某位置处的宽度的方向与通道在此位置的延伸方向垂直。
例如,在一些实施例中,l=1411μm,d=78μm,L1=L2=3308μm。当然,本公开实施例对上述尺寸的具体数值不作限定,可根据具体需要进行设计。
例如,对于每个触控子电极,有效面积占该触控子电极的总面积的52%-64%,也即虚拟电极430的面积占该触控子电极的总面积的36%-48%。虚拟电极430面积占比过大将导致触控电极的电阻增高,虚拟电极面积占比过小则不能有效提高弱接地状态下触控结构的触控性能。
例如,如图8A-8F所示,一个第一触控子电极411还包括与主体部280连接的多个叉指结构440,多个叉指结构242分布在主体部280的周边且从主体部280沿远离主体部280的方向凸出。如图8F所示,每个通道的延伸方向与多个叉指结构440中的部分叉指结构440的延伸方向平行,该部分叉指结构从主体部280的外轮廓的靠近通道的两端的边凸出,以便于构图,形成的触控子像素和虚拟电极的图案规整,利于提高整个触控结构的触控性能的均匀性。例如,此处以一个第一通道281为例,对于至少一个第二通道282也是如此。图8F中的一个第一通道281的延伸方向与多个叉指结构440中的部分叉指结构440的延伸方向平行,该部分叉指结构分别从主体部280的外轮廓的靠近该第一通道281的两端281a/281b的两条边291a/291b凸出。当然,叉指结构440可以设置于主体部280的外轮廓的每一条边上,也可以仅设置于主体部280的外轮廓的一部分边上。或者,在其他实施例中,一个第一触控子电极411的至少一个通道的延伸方向也可以与所述至少部分叉指结构440的延伸方向不平行,本公开对此不作限定。
例如,如图8F所示,在一个第一通道281的延伸方向上,条形的通道281的两端281a/281b与从主体部280的靠近该第一通道281的两端的两条边291a/291b凸出的叉指结构440至少部分重叠(指具有彼此正对的部分),该第一通道281的沿其延伸方向的边缘281c/281d与该至少部分叉指结构440的边缘441/442平行。该第一通道281的沿其延伸方向的边缘281c与边缘 281d彼此相对,该一个叉指结构440的边缘441与边缘442彼此相对。
在一些实施例中,例如,如图8F所示,虚拟电极430与多个第一通道281和多个第二通道282构成的整体的外轮廓的形状为不规则多边形,以避免虚拟电极430的整体图案为规整的图形,避免与采用该触控结构的显示面板的显示像素单元的形状,利于消除摩尔纹。虚拟电极430的外轮廓在第二方向D2上的彼此相对的第一端和第二端分别与在第二方向D2上相邻的第二连接电极相对(参考图2),且分别具有第一凹槽4301和第二凹槽4303;第一凹槽4301朝向虚拟电极430的外轮廓的第二端凹入,第二凹槽4303朝向虚拟电极430的外轮廓的第一端凹入。虚拟电极430的外轮廓在第一方向D1上彼此相对的第三端和第四端分别与第一连接电极相对(参考图2),且分别具有第三凹槽4305和第四凹槽4307;第三凹槽4305朝向第四端凹入,第四凹槽朝4307向第三端凹入。例如,虚拟电极430的外轮廓包括位于第一凹槽4301中的第一凸起4302、位于第二凹槽4303中的第二凸起4304、位于第三凹槽4305中的第三凸起4306、位于第四凹槽4307中的第四凸起4308。第一凸起4302朝向远离虚拟电极430的外轮廓的第二端的方向凸出,第二凸起4304朝向远离虚拟电极430的外轮廓的第一端的方向凸出;第三凸起4306朝向远离第四端的方向凸出,第四凸起4308朝向远离第三端的方向凸出。该虚拟电极430的外轮廓的凹槽和凸起的设计可获得较好的消除摩尔纹的技术效果。
在另一些实施例中,例如,如图8G所示,至少一个触控子电极包括多个所述条形的通道,并且所述多个条形的通道包括:多个条形的第一通道281和多个条形的第二通道282。多个条形的第一通道281分别大致沿第一延伸方向(例如为第三方向D3)延伸且彼此间隔开。多个条形的第二通道282分别大致沿第二延伸方向(例如为第四方向D4)延伸且彼此间隔开,多个条形的第二通道282的每个与多个条形的第一通道281的每个相交;虚拟电极430包括被多个条形的第一通道281和多个条形的第二通道282彼此间隔开的多个部分。
结合图8G和图8H,一个第一通道281通道包括在其延伸方向上交替排列且依次连接的多个窄部2811和多个宽部2810,每个窄部2811的在垂直于 该第一通道281的延伸方向上的宽度w1小于每个宽部2810的在垂直于该第一通道281的延伸方向上的宽度w2,以避免连续的宽度相同的通道将整个虚拟电极430断开可能造成的消影问题。一个第二通道282通道包括在其延伸方向上交替排列且依次连接的多个窄部2821和多个宽部2820,每个窄部2821的在垂直于该第二通道282的延伸方向上的宽度小于每个宽部2820的在垂直于该第二通道282的延伸方向上的宽度,以进一步避免连续的宽度相同的通道将整个虚拟电极430断开可能造成的消影问题。需要说明的是,这里的宽度w1指窄部2811的平均宽度,宽度w2指宽部2810的平均宽度,同样,对于第二通道282的窄部和宽部的宽的也是如此。
需要说明的是,一个第一通道281的多个窄部和多个宽部交替排列是指:多个窄部包括第一窄部、第二窄部、第三窄部,多个宽部包括第一宽部和第二宽部;第一宽部和第二宽部分别位于第一窄部的两侧且均与第一窄部相邻,第二窄部位于第一宽部的远离第一窄部的一侧且与第一宽部相邻,第三窄部于第二宽部的远离第一窄部的一侧其与第二宽部相邻。对于第二通道282的多个窄部和多个宽部交替排列,也是如此。
例如,第一通道281的窄部2811与第二通道282的窄部2821相交。如此,可以使得在第一通道281与第二通道282的交点处的通道的尺寸不会过大,从而可避免由此导致的在交点处的通道过宽以及在窄部的位置过细的现象,从而避免使整个设置虚拟电极430的区域的触控精度不均匀。
例如,如图8G和图8H所示,第一通道281的窄部2811与第二通道282的窄部2821具有交点(即图8H中的虚线圆圈所示意的位置),第一通道281包括分别位于该交点两侧且与该交点相邻的第一宽部2810a和第二宽部2810b,第二通道282包括位于该交点两侧且与该交点相邻的第三宽部2820a和第四宽部2820b;第一宽部2810a、第二宽部2810b、第三宽部2820a和所述第四宽部2820b到该交点的距离相等,以提高整个设置虚拟电极430的区域的触控精度均匀性和可靠性,使整个触控结构具有更均匀稳定的触控性能。
例如,对于第一通道281,窄部2811的在第一通道281的延伸方向上的长度l1与窄部2811的宽度w1的比值大于宽部2810的在第一通道281的延伸方向上的长度l2与宽部2810的宽度w2的比值。类似地,对于第二通道 282,窄部2821的在第二通道282的延伸方向上的长度与窄部2821的宽度的比值大于宽部2820的在第二通道282的延伸方向上的长度与宽部2820的宽度的比值。
例如,对于第一通道281,窄部2811的长度与宽部2810的长度相等或不相等,在这两情况下,均可以满足上述关于第一通道281的窄部和宽部的长宽比的条件;类似地,例如,对于第二通道282,窄部2821的长度与宽部2820的长度相等或不相等,在这两情况下,均可以满足上述关于第二通道282的窄部和宽部的长宽比的条件。
例如,如图8G和图8H所示,对于第一通道281,多个宽部2810等间距排列,多个窄部2811的长度彼此相等;对于第二通道282,多个宽部2820等间距排列,多个窄部2821的长度彼此相等。
例如,如图2所示,本公开实施例提供的触控结构40包括第一电极层和第二电极层。第一电极层和第二电极层之间设置有绝缘层;多个触控子电极包括多个第一触控子电极411和多个第二触控子电极421,触控结构40还包括多个第一连接电极412和多个第二连接电极(图2未示出,其位置与之前的实施例中的第二连接电极相同);多个第一触控子电极411和多个第一连接电极412均位于第一电极层且沿第一方向D1布置,多个第一触控子电极411和多个第一连接电极412一一交替分布且依次电连接,形成沿第一方向D1延伸的第一触控电极410;多个第二触控子电极421位于第一电极层,沿第二方向D2依次布置且彼此间隔,第一方向D1与第二方向D2相交,多个第一触控子电极411的每个和第二触控子电极421的每个彼此间隔;多个第二连接电极位于第二电极层且彼此间隔,多个第二连接电极的每个通过绝缘层中的过孔与相邻的第二触控子电极电连接,从而将相邻的第二触控子电极421电连接,形成在第二方向D2上延伸的第二触控电极421。虚拟电极430嵌设于第一触控子电极411中和/或嵌设于第二触控子电极421中。例如该虚拟电极430可以为上述实施例中的任意一种虚拟电极。并且,需要说明的是,图8A-8G所示的第一触控子电极411可位于上述任一实施例提供的触控结构40中。
图8I为本公开一实施例提供的嵌设于触控自电极中的虚拟电极的结构 示意图八,图8J为图8I中的局部F的放大示意图。图8I所示的实施例与图8F所示的实施例的区别在于,如图8I所示,至少一个触控子电极包括连通部分285,多个条形的通道281/282通过连通部分285彼此电连接,虚拟电极的多个部分,例如第一部分431、第二部分432、第三部分433、第四部分434、第五部分435、第六部分436、第七部分437和第八部分438,围绕连通部分285。如此,相对于不设置该连通部分的情形相比,多个通道281/282之间的连通性更好,利于提高触控的准确性和可靠性。
在一些实施例中,例如,如图9A所示,第一电极层和第二电极层分别为上述的第一金属网格层和第二金属网格层。如此,多个触控子电极和虚设电极430位于第一金属网格层,即多个触控子电极和所述虚设电极位于同一金属网格层。主体部280、每个通道281/282、虚拟电极430的每个部分分别包括多个第一金属网格52。例如,虚拟电极430的被通道彼此间隔开的多个部分中的每个部分均包括彼此连接的多个第一金属网格52。
例如,如图8I所示,连通部分285也包括多个第一金属网格52。例如,多个条形的通道281/282的第一金属网格52与连通部分285的第一金属网格52彼此连接,从而使多个条形的通道281/282通过连通部分285彼此电连接。
例如,如图9A所示,在嵌设有虚拟电极430的至少一个触控子电极中,虚拟电极430的每个部分分别具有与第一触控子电极411的分界区,示意性地,分界区为图8A-8H中围绕虚拟电极430的每个部分的白色区域。图9B为图9A中的局部D的放大示意图,图9C为图9B中的局部E的放大示意图。结合图9B和图9C,位于分界区的多条第一金属线52分别包括多个断口4300,多个断口4300的每个将其所在的第一金属线52分隔为两条金属线段,两条金属线段中的一条属于第一触控子电极411的通道282(以第二通道282为例),两条金属线段中的另一条属于虚拟电极430,从而使得虚拟电极430与第一触控子电极411的通道282绝缘。图9C以放大第二通道282为例进行说明,对于第一通道281也是如此。在虚拟电极430的每个部分与第一触控子电极411的主体部280的边界区也是通过类似的多个断口使虚拟电极430的每个部分与主体部280间隔开从而使两者绝缘的。
例如,每个断口4300位于其所断开的第一金属线段(即被断口4300断 开的第一网格的一条边)的中点,从而使断口的位置比较规整,以降低构图难度,这对于提高产品的合格率非常重要,且能够节省掩膜成本。
例如,如图9C所示,每个第一通道281和每个第二通道282包括至少两条由彼此连接的多条第一金属线51构成的导电线,示例性地,两条导电线分别为第一导电线283a和第二导电线283b。第一导电线283a和第二导电线283b贯穿虚拟电极430且在其延伸方向的两端分别与第一触控子电极411的主体部280连接,以在保证每个第一通道281和每个第二通道282能够提供至少两条电信号传导通道,从而解决当单一信号传导通道发生断路而影响信号在第一通道281或第二通道282中的传导的问题,保证信号传导的可靠性。
例如,如图9B和图9C所示,每个第一通道281和每个第二通道282包括在其宽度方向上排列的至少一个第一金属网格52,第一通道281的宽度方向垂直于该第一通道281的延伸方向,第一通道282的宽度方向垂直于该第二通道282的延伸方向。
例如,每个通道281/282包括沿其延伸方向排布的多个串联的金属网格;或者,每个通道281/282包括沿其延伸方向排布的多个所述金属网格和连接至少两个相邻的金属网格的金属连接线。
图9D为图9A中的包括虚拟电极的局部的放大示意图。如图9D所示,例如,至少一个条形的通道282包括:沿至少一个条形的通道282的延伸方向排列的第一段2821和第二段2822,第一段2821和第二段2822彼此基本平行,即,第一段2821和第二段2822不位于同一直线上,第一段2821和第二段2822通过上述第一金属连接线51电连接。
本公开实施例还提供一种触控面板,包括上述任意一种触控结构。
图10为本公开至少一实施例提供的触控面板的示意图。如图10所示,该触控面板80包括触控区301和位于该触控区301以外的非触控区302,该触控结构40位于该触控区301。例如,该第一触控电极410沿该矩形的宽度方向延伸,该第二触控电极420沿该矩形的长度方向延伸。为了清楚起见,图中并未详细示出该第一触控电极和第二触控电极的结构。在其他实施例中,也可以是第一触控电极410沿该矩形的长度方向延伸,该第二触控电极420沿该矩形的宽度方向延伸。
例如,如图10所示,该触控面板80还包括位于该非触控区302的多条信号线450。每条第一触控电极410和每条第二触控电极420分别与一条信号线450电连接,并通过该信号线连接至触控控制器或触控集成电路(图中未示出)。例如,第一触控电极410为触控驱动电极,第二触控电极420为触控感测电极,然而本公开实施例并不对此进行限制。
该触控集成电路例如为触控芯片,用于为向该触控面板80中的第二触控电极420提供触控驱动信号并从该第一触控电极410接收触控感测信号以及对该触控感测信号进行处理,例如将处理的数据/信号提供给系统控制器,以实现触控感应功能。
例如,如图10所示,该多条信号线450与该触控集成电路连接的一端可以均布置在该触控区301的同一侧(例如图10中的下侧),这样可以便于与该触控集成电路的连接。
例如,如图10所示,由于第二触控电极420比第一触控电极410长,负载更大,为了提高信号传输速度,可以在一条第一触控电极410的两端分别设置一条信号线450,在工作时该触控集成电路同时通过两条信号线450向一条第二触控电极420双向输入触控驱动信号(双边驱动),使得第二触控电极420上信号加载的速度提高,从而可以提高检测速度。
例如,该第一金属网格层50或第二金属网格层60的材料包括铝、钼、铜、银等金属材料或者这些金属材料的合金材料,例如为银钯铜合金(APC)材料。
例如,每个断口的宽度(沿所在金属线长度方向的尺寸)为5.2微米。
例如,该绝缘层70的材料可以为无机绝缘材料,例如该无机绝缘材料为透明材料。例如该无机绝缘材料为氧化硅、氮化硅、氮氧化硅等硅的氧化物、硅的氮化物或硅的氮氧化物,或者氧化铝、氮化钛等包括金属氮氧化物绝缘材料。
例如,该绝缘层70的材料也可以是有机绝缘材料,以获得良好的耐弯折性。例如,该有机绝缘材料为透明材料。例如,该有机绝缘材料为OCA光学胶。例如,该有机绝缘材料可以包括聚酰亚胺(PI)、丙烯酸酯、环氧树脂、聚甲基丙烯酸甲酯(PMMA)等。
图11A示出了本公开至少一实施例提供的触控显示面板30的平面示意图,图11B示出了沿图11A的剖面线II-II’的剖视图。
结合参考图11A和图11B,该触控显示面板30包括衬底基板31以及依次层叠设置于衬底基板31上的显示结构32和上述触控结构40。触控结构40位于显示结构32远离衬底基板31的一侧,并且在使用过程中更接近用户一侧。
例如,本实施例以显示面板为OLED显示面板为例。当然,在其他实施例中,该显示面板也可以为液晶显示面板,例如为On-cell或In-cell触控显示面板。本公开实施例对采用本公开实施例提供的触控结构的显示面板的具体类型不作限定。
例如,该显示结构32包括沿阵列排布的多个子像素,例如该像素阵列沿第一方向D1和第二方向D2布置。例如,例如该触控显示面板为OLED显示面板,该多个子像素包括绿色子像素(G)、红色子像素(R)和蓝色子像素(B)。每个子像素包括发光元件23以及驱动该发光元件23发光的像素驱动电路。本公开的实施例对于像素驱动电路的类型以及具体组成不作限制,例如,该像素驱动电路可以是电流驱动型也可以是电压驱动驱动型,可以是2T1C(即两个晶体管和一个电容,该两个晶体管包括驱动晶体管以及数据写入晶体管)驱动电路,可以是在2T1C的基础进一步包括补偿电路(补偿晶体管)、发光控制电路(发光控制晶体管)、复位电路(复位晶体管)等的驱动电路。
为了清楚起见,图11B仅示出了该像素驱动电路中与该发光元件23直接电连接的第一晶体管24,该第一晶体管24可以是驱动晶体管,配置为工作在饱和状态下并控制驱动发光元件23发光的电流的大小。例如,该第一晶体管24也可以为发光控制晶体管,用于控制驱动发光元件23发光的电流是否流过。本公开的实施例对第一晶体管的具体类型不作限制。
例如,发光元件23为有机发光二极管,包括第一电极231、发光层233和第二电极232。第一电极231和第二电极232之一为阳极,另一个为阴极;例如,第一电极231为阳极,第二电极232为阴极。例如,发光层233为有机发光层或量子点发光层。例如,发光元件23除了发光层233之外还可以包 括空穴注入层、空穴传输层、电子注入层、电子传输层等辅助功能层。例如,发光元件23为顶发射结构,第一电极231具有反射性而第二电极232具有透射性或半透射性。例如,第一电极231为高功函数的材料以充当阳极,例如为ITO/Ag/ITO叠层结构;第二电极232为低功函数的材料以充当阴极,例如为半透射的金属或金属合金材料,例如为Ag/Mg合金材料。
第一晶体管24包括栅极341、栅极绝缘层342、有源层343、第一极344和第二极345,该第二极345与发光元件23的第一电极231电连接。本公开的实施例对于第一晶体管24类型、材料、结构不作限制,例如其可以为顶栅型、底栅型等,第一晶体管24的有源层343可以为非晶硅、多晶硅(低温多晶硅与高温多晶硅)、氧化物半导体(例如,氧化铟镓锡(IGZO))等,且第一晶体管24可以为N型或P型。
本公开的实施例中采用的晶体管均可以为薄膜晶体管或场效应晶体管或其他特性相同的开关器件,本公开的实施例中均以薄膜晶体管为例进行说明。这里采用的晶体管的源极、漏极在结构上可以是对称的,所以其源极、漏极在结构上可以是没有区别的。在本公开的实施例中,为了区分晶体管除栅极之外的两极,直接描述了其中一极为第一极,另一极为第二极。
结合图11A和图11B所示,该显示结构32还包括像素界定层320,该像素界定层320设置于该发光元件23的第一电极231上,其中形成多个开口321,分别暴露多个子像素的第一电极231,从而定义出每个子像素的像素开口区,子像素的发光层形成在该像素开口区,而第二电极232形成为公共电极(即为多个子像素共享);图11A中示意出了绿色子像素的像素开口区310、红色子像素的像素开口区320、以及蓝色子像素的像素开口区330。
图11B中未示出第二触控电极层402中的图案。例如,该第二触控电极层402位于第一触控电极层401靠近衬底基板31的一侧。
该第一触控电极层401中的多条第一金属线51和第二触控电极层402中的多条第二金属线61在衬底基板31上的正投影位于多个子像素的像素开口区在衬底基板31的正投影之外,也即落入像素开口区之间的像素分隔区在衬底基板31的正投影内,该像素分隔区也即该像素界定层320的非开口区322。该像素分隔区用于将多个子像素的像素开口区分隔开,将各个子像素的 发光层分隔开,防止串色。
例如,第一金属网格52或第二金属网格62的网孔覆盖至少一个像素开口区。例如,第一金属网格52或第二金属网格62的网孔覆盖两个绿色子像素的像素开口区310,该两个绿色子像素的像素开口区310成对设置,并在第二方向D2上并列排布。
如图11B所示,该显示结构32还包括位于该发光元件23与该触控结构20之间的封装层33,该封装层33配置为对发光元件23进行密封,以防止外界的湿气和氧向该发光元件及驱动电路的渗透,而造成对例如发光元件23等器件的损坏。例如,封装层33可以是单层结构或多层结构,例如包括有机薄膜、无机薄膜或者包括有机薄膜及无机薄膜交替层叠的多层结构。
例如,如图11B所示,该触控显示面板30还包括位于显示结构32和触控结构20之间的缓冲层22。例如,该缓冲层22形成于该封装层33上,用于提高触控结构40和显示结构32之间的粘合力。例如,该缓冲层22为无机绝缘层,例如,该缓冲层22的材料可以是氮化硅、氧化硅或者硅的氮氧化物。例如,该缓冲层22也可以包括氧化硅层和氮化硅层交替堆叠的结构。
例如,第一触控电极层401的第一金属网格52的不同的边长不同,同样,第二触控电极层402的不同的第二金属网格62的边长不同。例如,第二金属网格62的与第一金属线51重叠的第二金属线的长度总和最小。例如图11A中标注边a、b、c、d、e、f的边代表与第二金属线重叠的第一金属线51,在与第二金属线重叠的第一金属线51的条数相等的情况下,本公开实施例中的这些与第二金属线重叠的第一金属线51的长度之和最小。
本公开至少一实施例还提供一种电子装置,包括上述触控显示面板30。例如该电子装置为显示装置,例如为OLED显示装置或液晶显示装置。
例如,该电子装置可以为显示器、OLED面板、OLED电视、电子纸、手机、平板电脑、笔记本电脑、数码相框、导航仪等任何具有显示功能和触控功能的产品或部件。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (21)

  1. 一种触控结构,包括第一金属网格层和第二金属网格层,所述第一金属网格层和所述第二金属网格层之间设置有绝缘层,所述第一金属网格层包括多条第一金属线定义的多个第一金属网格,所述第二金属网格层包括多条第二金属线定义的多个第二金属网格,所述多个第一金属网格的每个和所述第二金属网格的每个均为多边形;
    其中,所述第一金属网格层包括沿第一方向布置的多个第一触控子电极和多个第一连接电极,所述多个第一触控子电极和多个第一连接电极一一交替分布且依次电连接,形成沿所述第一方向延伸的第一触控电极;所述第一金属网格层还包括沿第二方向依次布置且彼此间隔的多个第二触控子电极,所述第一方向与所述第二方向相交;所述多个第一触控子电极的每个和所述第二触控子电极的每个彼此间隔,且分别包括多个第一金属网格;
    所述第二金属网格层包括彼此间隔的多个第二连接电极,所述多个第二连接电极的每个通过所述绝缘层中的多个过孔和与其相邻的第二触控子电极电连接,从而将相邻的第二触控子电极电连接,形成在所述第二方向上延伸的第二触控电极;
    所述多个第二连接电极的每个沿第二方向包括:
    第一金属网格行,包括沿所述第一方向排列的多个所述第二金属网格;以及
    第二金属网格行,与所述第一金属网格行相邻且连接,且包括沿所述第一方向排列的至少一个所述第二金属网格,其中,所述第二金属网格行中的所述第二金属网格的数量小于等于所述第一金属网格行中的所述第二金属网格的数量,并且,所述第二金属网格行中的所述第二金属网格的靠近所述第一金属网格行的全部所述第二金属线均为与所述第一金属网格行中的第二金属网格共享的第二金属线。
  2. 根据权利要求1所述的触控结构,其中,所述第一金属网格行和与其相邻的所述第二触控子电极电连接,所述与所述第一金属网格行中的第二金属网格共享的第二金属线在所述第一金属网格层上的正投影与第一金属线重 叠。
  3. 根据权利要求1或2所述的触控结构,其中,所述第一金属网格行的第二金属网格的数量为2,所述第二金属网格行的第二金属网格的数量为1。
  4. 根据权利要求1-3任一所述的触控结构,其中,所述多个过孔包括第一过孔,所述第一金属网格行通过第一过孔和与其所在的第二连接电极相邻的两个所述第二触控子电极中的一者电连接。
  5. 根据权利要求4所述的触控结构,其中,所述第一金属网格行的第二金属网格的多条第二金属线在所述第一金属网格层上的正投影分别与所述第二触控子电极的第一金属网格的多条第一金属线重叠,使得所述第二金属网格具有与所述第一金属网格重叠的多个顶点,所述多个顶点包括多个连接顶点,所述第一过孔对应设置于所述多个连接顶点处。
  6. 根据权利要求5所述的触控结构,其中,
    所述多个第一金属网格的每个和所述第二金属网格的每个均为六边形;
    所述第一金属网格行的第二金属网格的多条第二金属线和与其相邻的第二触控子电极中的边缘第一金属网格的四条第一金属线在垂直于所述第二金属网格层的方向上分别重叠,使得所述边缘第一金属网格具有与所述第二金属网格重叠的五个顶点;
    所述四条第一金属线将所述五个顶点依次连接,呈W状,所述四条第一金属线分别与所述第一方向以及所述第二方向相交,所述五个顶点中的至少之一为所述连接顶点。
  7. 根据权利要求6所述的触控结构,其中,所述第一金属网格行的多个所述第二金属网格为所述第二连接电极的第一边缘第二金属网格,位于所述第二连接电极的在所述第二方向上的第一端部,且与与之相邻的所述第二触控子电极的边缘第一金属网格电连接。
  8. 根据权利要求4-7任一所述的触控结构,其中,所述多个第二连接电极的每个沿所述第二方向还包括:
    第三金属网格行,位于所述第二金属网格行的远离所述第一金属网格行的一侧,且包括沿所述第一方向排列的多个所述第二金属网格;以及
    第四金属网格行,位于所述第三金属网格行的靠近所述第二金属网格行 的一侧且与所述第三金属网格行相邻且连接,包括沿所述第一方向排列的至少一个所述第二金属网格,其中,所述第四金属网格行中的所述第二金属网格的数量小于等于所述第三金属网格行中的所述第二金属网格的数量,并且,所述第四金属网格行中的所述第二金属网格的靠近所述第三金属网格行的全部所述第二金属线均为与所述第三金属网格行中的所述第二金属网格共享的第二金属线,
    其中,所述第三金属网格行的第二金属网格为所述第二连接电极的第二边缘第二金属网格,位于所述第二连接电极的在所述第二方向上的第二端部,且与与之相邻的所述第二触控子电极的边缘第一金属网格电连接,所述第二端部在所述第二方向上与所述第一端部相对;
    所述多个过孔包括第二过孔,所述第三金属网格行通过第二过孔和与其所在的第二连接电极相邻的两个第二触控子电极中的另一者电连接。
  9. 根据权利要求8所述的触控结构,其中,所述与所述第三金属网格行中的所述第二金属网格共享的第二金属线在所述第一金属网格层上的正投影与所述第一金属线不重叠,或者,
    所述与所述第三金属网格行中的所述第二金属网格共享的第二金属线在所述第一金属网格层上的正投影与所述第一金属线重叠。
  10. 根据权利要求8或9所述的触控结构,其中,所述第三金属网格行的第二金属网格的数量为2,所述第四金属网格行的第二金属网格的数量为1。
  11. 根据权利要求8-10任一所述的触控结构,其中,
    所述第二连接电极还包括:至少一个中间金属网格行,位于所述第二金属网格行与所述第四金属网格行之间,
    所述至少一个中间金属网格行的每一行包括至少一个所述第二金属网格。
  12. 根据权利要求11所述的触控结构,其中,所述至少一个中间金属网格行的每一行的第二金属网格的数量为1。
  13. 根据权利要求4-12任一所述的触控结构,其中,所述多个第二连接电极的每个沿所述第二方向还包括:
    第三金属网格行,位于所述第二金属网格行的远离所述第一金属网格行的一侧,与所述第二金属网格行相邻,且包括沿所述第一方向排列的多个所述第二金属网格,其中,所述第二金属网格行中的所述第二金属网格的数量小于等于所述第三金属网格行中的所述第二金属网格的数量,并且,所述第二金属网格行中的所述第二金属网格的靠近所述第三金属网格行的全部所述第二金属线均为与所述第三金属网格行中的所述第二金属网格共享的第二金属线,
    其中,所述第三金属网格行的第二金属网格为所述第二连接电极的第二边缘第二金属网格,位于所述第二连接电极的在所述第二方向上的第二端部,且与与之相邻的所述第二触控子电极的边缘第一金属网格电连接,所述第二端部在所述第二方向上与所述第一端部相对;
    所述多个过孔包括第二过孔,所述第三金属网格行通过第二过孔和与其所在的第二连接电极相邻的两个第二触控子电极中的另一者电连接。
  14. 根据权利要求1-13任一所述的触控结构,其中,所述多个第二连接电极的每个的图案相对于沿所述第一方向的对称轴对称。
  15. 根据权利要求1-14任一所述的触控结构,其中,每个所述第二金属网格包括至少两条沿所述第二方向的竖直边,所述至少两条竖直边在所述第一金属网格层上的正投影与所述第一金属线不重叠。
  16. 根据权利要求1-15任一所述的触控结构,其中,
    相邻的所述第二触控子电极通过两个所述第二连接电极电连接,所述两个第二连接电极彼此间隔设置;
    所述多个第一连接电极的每个在所述第二金属网格层的正投影位于连接所述相邻的第二触控子电极的所述两个第二连接电极之间的间隙内。
  17. 根据权利要求16所述的触控结构,其中,所述多个第一触控子电极的每个通过至少一条由首尾依次相接的多条第一金属线构成的第一连接线与相邻的第一连接电极电连接;
    所述第一连接线在所述第二金属网格层上的正投影分别与所述第二连接电极中的多条第二金属线重叠,且至少部分与所述共享的第二金属线在所述第一金属网格层上的正投影重叠。
  18. 根据权利要求1-17任一所述的触控结构,其中,位于相邻的所述第一触控子电极与所述第二触控子电极的分界区的多条所述第一金属线分别包括多个断口,所述多个断口的每个将所在的第一金属线分为两条第一金属线段,所述两条第一金属线段中的一条属于所述第一触控子电极,另一条属于所述第二触控子电极,从而使得相邻的所述第一触控子电极和所述第二触控子电极绝缘。
  19. 一种触控显示面板,包括衬底基板以及层叠设置于所述衬底基板上的显示结构和权利要求1-18任一所述的触控结构。
  20. 根据权利要求19所述的触控显示面板,其中,
    所述显示结构包括多个子像素,所述多个子像素的每个包括像素开口区;
    所述多条第一金属线和所述多条第二金属线在所述衬底基板上的正投影均位于所述多个子像素的多个像素开口区在所述衬底基板的正投影之外。
  21. 一种电子装置,包括权利要求1-18任一所述的触控结构或权利要求19-20任一所述的触控显示面板。
PCT/CN2021/113560 2020-09-09 2021-08-19 触控结构、显示面板及电子装置 WO2022052778A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/024,413 US20230315237A1 (en) 2020-09-09 2021-08-19 Touch structure, display panel, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010941621.5A CN114237411B (zh) 2020-09-09 2020-09-09 触控结构、显示面板及电子装置
CN202010941621.5 2020-09-09

Publications (1)

Publication Number Publication Date
WO2022052778A1 true WO2022052778A1 (zh) 2022-03-17

Family

ID=80630252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113560 WO2022052778A1 (zh) 2020-09-09 2021-08-19 触控结构、显示面板及电子装置

Country Status (3)

Country Link
US (1) US20230315237A1 (zh)
CN (1) CN114237411B (zh)
WO (1) WO2022052778A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170147116A1 (en) * 2014-11-07 2017-05-25 Lg Display Co., Ltd. Touch panel, method of manufacturing the same and touch panel integrated organic light emitting display device
CN109614007A (zh) * 2018-12-12 2019-04-12 武汉华星光电半导体显示技术有限公司 显示面板
CN110034168A (zh) * 2019-03-29 2019-07-19 上海天马微电子有限公司 显示面板及显示装置
CN110764636A (zh) * 2018-07-25 2020-02-07 京东方科技集团股份有限公司 一种触控模组、触控显示基板和触控显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107957821B (zh) * 2018-01-02 2021-04-20 京东方科技集团股份有限公司 触控基板及其制备方法、显示装置
CN108762542B (zh) * 2018-03-30 2021-05-14 上海天马微电子有限公司 显示面板及显示装置
KR102587732B1 (ko) * 2018-05-28 2023-10-12 삼성디스플레이 주식회사 표시 장치 및 그의 제조 방법
US10845934B2 (en) * 2018-12-03 2020-11-24 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED display panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170147116A1 (en) * 2014-11-07 2017-05-25 Lg Display Co., Ltd. Touch panel, method of manufacturing the same and touch panel integrated organic light emitting display device
CN110764636A (zh) * 2018-07-25 2020-02-07 京东方科技集团股份有限公司 一种触控模组、触控显示基板和触控显示装置
CN109614007A (zh) * 2018-12-12 2019-04-12 武汉华星光电半导体显示技术有限公司 显示面板
CN110034168A (zh) * 2019-03-29 2019-07-19 上海天马微电子有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
US20230315237A1 (en) 2023-10-05
CN114237411B (zh) 2024-03-01
CN114237411A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2021147175A1 (zh) 触控显示面板及电子装置
WO2022052777A1 (zh) 触控结构、显示面板及电子装置
WO2021196076A1 (zh) 触控结构、触控显示面板及电子装置
WO2021196083A1 (zh) 触控结构、触控显示面板及电子装置
CN114556277B (zh) 触控基板及显示面板
WO2022000263A1 (zh) 触控结构及触控显示面板
WO2021196082A1 (zh) 触控结构、触控显示面板及电子装置
WO2022052778A1 (zh) 触控结构、显示面板及电子装置
WO2022178817A1 (zh) 触控结构、触控显示面板和显示装置
WO2022183438A1 (zh) 触控电极结构、显示面板及电子设备
WO2022222615A1 (zh) 触控基板、显示面板及电子设备
WO2023273388A1 (zh) 触控基板、显示面板及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21865834

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.11.2023)