WO2022057313A1 - 钢网避让设计方法、设计装置、电子设备及存储介质 - Google Patents

钢网避让设计方法、设计装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2022057313A1
WO2022057313A1 PCT/CN2021/097211 CN2021097211W WO2022057313A1 WO 2022057313 A1 WO2022057313 A1 WO 2022057313A1 CN 2021097211 W CN2021097211 W CN 2021097211W WO 2022057313 A1 WO2022057313 A1 WO 2022057313A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening pattern
stencil
stencil opening
pattern
graphic
Prior art date
Application number
PCT/CN2021/097211
Other languages
English (en)
French (fr)
Inventor
苏盼
李杜娟
钱胜杰
刘继硕
Original Assignee
上海望友信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海望友信息科技有限公司 filed Critical 上海望友信息科技有限公司
Priority to EP21868150.0A priority Critical patent/EP4145331A4/en
Priority to JP2022567149A priority patent/JP7479616B2/ja
Priority to US18/009,804 priority patent/US11775731B2/en
Publication of WO2022057313A1 publication Critical patent/WO2022057313A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/392Floor-planning or layout, e.g. partitioning or placement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0005Apparatus or processes for manufacturing printed circuits for designing circuits by computer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing
    • H05K3/1225Screens or stencils; Holders therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2115/00Details relating to the type of the circuit
    • G06F2115/12Printed circuit boards [PCB] or multi-chip modules [MCM]

Definitions

  • the invention belongs to the technical field of printed circuit boards, and in particular relates to a design method, design device, electronic equipment and storage medium for stencil avoidance.
  • the traditional manual avoidance method mainly has the following problems: 1. It takes a long time, because it needs to manually find which openings need to be avoided; 2. The coverage rate is low, because the manual manual avoidance method cannot guarantee the stencil after avoidance. The opening data all meet the SMT process requirements; 3.
  • the present invention provides a design method, design device, electronic equipment and storage medium for stencil avoidance.
  • the technical problem to be solved by the present invention is realized by the following technical solutions:
  • a steel mesh avoidance design method comprising:
  • the first area ratio, width-to-thickness ratio, second area ratio, size ratio of the third stencil opening pattern, the area of the third stencil opening pattern and the corresponding area of the second stencil opening pattern relationship to get the final stencil opening pattern.
  • obtaining a third graph according to the second graph includes:
  • a third graphic is obtained by expanding or contracting the second graphic that meets the preset threshold range along a preset direction, where the preset direction is a direction toward the opening graphic of the second steel mesh.
  • cutting the second stencil opening pattern to obtain a third stencil opening pattern including:
  • the third stencil opening pattern is obtained by cutting the collision part of the second stencil opening pattern.
  • the first area ratio is the ratio of the area of the opening pattern of the third stencil to the area of the hole wall
  • the second area ratio is the area of the opening pattern of the third stencil and the corresponding area of the opening pattern of the second steel mesh.
  • the area of the third stencil opening pattern and the corresponding second The relationship between the area of the stencil opening pattern obtains the final stencil opening pattern, including:
  • Step 1.51 Determine whether the third stencil opening pattern satisfies the first condition, the second condition and the third condition, wherein the first condition is that the first area ratio is greater than the first threshold, and the width-thickness ratio is greater than The second threshold, the second condition is that the ratio of the area of the third stencil opening pattern to the area of the corresponding second stencil opening pattern is less than a third threshold, and the third condition is that the first The area ratio is greater than the fourth threshold, and the size ratio is greater than the fifth threshold;
  • Step 1.52 if it cannot be satisfied at the same time, process the third stencil opening pattern according to the preset method to obtain the third stencil opening pattern after the pattern processing;
  • Step 1.53 Step 1.51 and Step 1.52 are cyclically performed on the third stencil opening pattern after the graphic processing.
  • the total number of times N of graphic processing in the third stencil opening pattern is less than or equal to the preset number of times threshold, and after N
  • the final stencil opening pattern is obtained.
  • the total number of graphics processing N is equal to the preset number of times threshold, and the third stencil opening graphics after N graphics processing cannot meet the first condition, the second condition and the third condition at the same time, then obtain The fourth stencil opening pattern;
  • Step 1.54 Obtain the modified fourth stencil opening pattern to obtain the final stencil opening pattern.
  • the preset manner includes at least one of a size adjustment manner, a position adjustment manner, and a shape adjustment manner.
  • the third stencil opening pattern is processed according to a preset method to obtain the third stencil opening pattern after the pattern processing, including:
  • the third stencil opening pattern is processed according to the preset method to obtain the third stencil opening pattern after the graphic processing, and the preset order is the priority of the size adjustment method Higher than the position adjustment method, the position adjustment method has a higher priority than the shape adjustment method.
  • the first pattern includes at least one of a through hole pattern, a solder resist pattern, an outer frame pattern, and a device body pattern.
  • An embodiment of the present invention also provides a stencil avoidance design device, comprising:
  • an acquisition module for acquiring several first graphics and several first stencil opening graphics
  • the first analysis module is used to judge whether the preset distance between the first graphic and the first stencil opening graphic is within a preset threshold range, if the preset distance satisfies the preset threshold range conditions, then obtain the second graphic and the second stencil opening graphic that meet the preset threshold range;
  • a graphic processing module configured to obtain a third graphic according to the second graphic, and the third graphic is used for collision processing with the second stencil opening graphic;
  • the second analysis module is used for judging the collision relationship between the third figure and the second stencil opening figure, and if a collision occurs, the second stencil opening figure is cut to obtain a third stencil opening figure;
  • the detection module is used for the first area ratio, the width-to-thickness ratio, the second area ratio of the third stencil opening pattern, the area of the third stencil opening pattern and the corresponding second stencil opening pattern The area relationship of the final stencil opening pattern is obtained.
  • An embodiment of the present invention also provides an electronic device, including a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory communicate with each other through the communication bus;
  • the processor is configured to implement the stencil avoidance design method described in any one of the above embodiments when executing the computer program.
  • An embodiment of the present invention further provides a storage medium, where a computer program is stored in the storage medium, and when the computer program is executed by a processor, the steps of the stencil avoidance design method described in any of the foregoing embodiments are implemented.
  • the method of the invention determines the preset distance between all elements on the PCB that need to keep a certain distance from the opening of the steel mesh and all the openings of the steel mesh, so as to obtain the opening of the steel mesh that may need to be avoided from some elements. , and then obtain the cut stencil opening through collision treatment, and finally based on the first area ratio, width-to-thickness ratio, second area ratio, size ratio of the stencil opening and the area of the stencil opening and its size before cutting The relationship of the area of the stencil openings yields the final stencil opening pattern. This method can improve the efficiency, accuracy, coverage and comprehensiveness of stencil avoidance design.
  • the method of the present invention has considerable advantages in terms of personnel requirements and operation methods. It is the current trend of various industries to replace manual labor with automation. The present invention also responds to this trend.
  • the design time of the stencil opening is greatly shortened, and the design quality of the stencil is improved, thereby improving the printing quality of the PCB board.
  • FIG. 1 is a schematic flowchart of a design method for stencil avoidance provided by an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of another stencil avoidance design method provided by an embodiment of the present invention.
  • 3a to 3h are schematic diagrams of a process of avoiding design of stencils involving through holes according to an embodiment of the present invention
  • 4a to 4h are schematic diagrams of a process of avoiding design of a steel mesh involving an outer frame according to an embodiment of the present invention
  • 5a to 5h are schematic diagrams of a process of designing a stencil avoidance involving a solder mask pattern according to an embodiment of the present invention
  • 6a to 6h are schematic diagrams of a process of designing a stencil avoidance involving a device body according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a stencil avoidance design device provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention.
  • This embodiment provides a stencil avoidance design method, which may specifically include:
  • Step 1.1 obtain several first graphics and several first stencil opening graphics
  • Step 1.2 determine whether the preset distance between the first graphic and the first stencil opening graphic is within the preset threshold range, if the conditions of the preset threshold range are met, then the second graphic and the preset threshold range are obtained.
  • the second stencil opening pattern
  • Step 1.3 obtaining the third graphic according to the second graphic
  • Step 1.4 determine the collision relationship between the third figure and the second stencil opening figure, if a collision occurs, cut the second stencil opening figure to obtain the third stencil opening figure;
  • Step 1.5 according to the relationship between the first area ratio, the width-to-thickness ratio, the second area ratio, the size ratio, the area of the third stencil opening pattern and the area of the corresponding second stencil opening pattern of the third stencil opening pattern.
  • the final stencil opening pattern according to the relationship between the first area ratio, the width-to-thickness ratio, the second area ratio, the size ratio, the area of the third stencil opening pattern and the area of the corresponding second stencil opening pattern of the third stencil opening pattern.
  • the first pattern and the first stencil opening pattern are obtained first.
  • the first pattern can be any pattern on the PCB board that may collide with the stencil opening, and the first stencil opening pattern is the steel mesh on the stencil. Net opening graphic.
  • the preset threshold range is that the first stencil opening pattern needs to The range of a pattern to be avoided, so if the preset distance does not meet the preset threshold range, it means that the first stencil opening pattern does not need to avoid any first pattern, and the first stencil opening pattern can be directly used as the final pattern.
  • the preset distance meets the preset threshold range, it means that the first stencil opening graphic needs to be avoided, and the first graphic that meets the preset threshold range is used as the second graphic and the first steel mesh.
  • the mesh opening pattern is used as the second stencil opening pattern, wherein the preset threshold range is, for example, 0 to 0.2 mm, that is, when 0 ⁇ preset distance ⁇ 0.2mm, the preset distance satisfies the preset threshold range.
  • the second graphic needs to be processed to obtain the third graphic, so that the third graphic and the second stencil opening graphic whose distance satisfies the preset threshold range are subjected to collision processing.
  • the third stencil opening pattern obtained after cutting the second stencil opening pattern does not necessarily satisfy The requirements of the final stencil opening, in order to further determine whether the third stencil opening pattern satisfies the conditions, the first area ratio, width-to-thickness ratio, second area ratio, size ratio, third The relationship between the area of the mesh opening pattern and the area of the corresponding second stencil opening pattern determines whether it is necessary to adjust the third stencil opening pattern to obtain the final stencil opening pattern, wherein the first area ratio is The ratio of the area of the third stencil opening pattern to the hole wall area, and the second area ratio is the area of the third stencil opening pattern and the area of the corresponding second stencil opening pattern.
  • the area of the third stencil opening pattern is the area of the stencil opening, the hole wall area is the total area of the hole walls of the third stencil opening pattern, and the second stencil opening pattern corresponding to the third stencil opening pattern is the third stencil opening pattern.
  • the second stencil opening pattern before the stencil opening pattern is cut, the third stencil opening pattern is taken as the first smallest rectangular frame that can contain the third stencil opening pattern, and the second stencil opening pattern is taken as the The second smallest rectangular frame of the second stencil opening pattern, the width-to-thickness ratio is the ratio of the width of the first smallest rectangular frame to the thickness of the third stencil opening pattern, and the size ratio is the length of the first smallest rectangular frame and the second smallest rectangular frame.
  • the ratio of the long side of the smallest rectangle, the ratio of the wide side of the first smallest rectangle to the wide side of the second smallest rectangle, and the wide side is the side of the rectangle whose length is less than the long side.
  • the first area ratio the area of the opening pattern of the third steel mesh/the area of the hole wall.
  • Aspect ratio W 1 /D 1 , where W 1 is the broad side of the first smallest rectangular frame, and D 1 is the thickness of the third stencil opening pattern.
  • the second area ratio the area of the third stencil opening pattern and/the area of the second stencil opening pattern, and the area of the third stencil opening pattern is the cut-out pattern corresponding to the second stencil opening pattern.
  • Size ratio W 1 /W 2 , L 1 /L 2 , where W 1 and L 1 are the width and length of the first minimum rectangular frame, respectively, and W 2 and L 2 are the width of the second minimum rectangular frame, respectively side and long side.
  • the first pattern includes at least one of a through hole pattern, a solder mask pattern, an outer frame pattern, and a device body pattern.
  • the graphic data of the PCB board is obtained, such as the through hole data (via hole) of the PCB board, the solder mask pattern data (solder mask layer), the Profile (the outer frame of the PCB board) data, Device body data, device coordinate data, device packaging data, etc., first generate solder paste layer data according to device packaging data, and then create (design) corresponding stencil opening patterns for different device types through the solder paste layer data. Aperture), these stencil opening patterns are the first stencil opening patterns, that is, the completed stencil opening pattern data used for avoidance is obtained.
  • step 1.2 of this embodiment takes the first pattern as a through hole as an example, please refer to FIG. 3a.
  • all through holes include through holes A1 to A5
  • all the first steel meshes The opening patterns include the first stencil opening pattern B 1 to the first stencil opening pattern B 8 , then the through hole A 1 to the through hole A 5 and the first stencil opening pattern B 1 to the first stencil opening pattern B 8 are calculated.
  • the preset distance between the through hole and the first stencil opening pattern is recorded as the AB spacing. If 0 ⁇ AB spacing ⁇ 0.2mm, it means that the preset distance between the through hole and the first stencil opening pattern satisfies the preset distance.
  • the opening pattern B 3 and the opening pattern B 5 of the first steel mesh are patterns that meet the preset threshold range, as shown in FIG.
  • the mesh opening pattern B 1 , the first stencil opening pattern B 3 and the first stencil opening pattern B 5 are respectively denoted as through hole A1 1 , through hole A1 2 , through hole A1 3 and first stencil opening pattern B1 1 , The first stencil opening pattern B1 3 and the first stencil opening pattern B1 5 .
  • step 1.3 may specifically include: expanding or shrinking the second graphic that meets the preset threshold range along a preset direction to obtain a third graphic, and the preset direction is the graphic opening toward the second steel mesh direction.
  • the second graphic needs to be expanded or contracted toward the second stencil opening graphic whose distance between the second graphic and the second graphic meets the preset threshold range. , and take the second graphic after expanding or shrinking as the third graphic.
  • the second pattern is a through-hole pattern, a solder mask pattern or a device body pattern, it is processed by expanding outward, and when the second pattern is an outer frame pattern, it is processed by shrinking inward. If the second pattern is a through hole, see Fig.
  • the through hole A1 1 , the through hole A1 2 , and the through hole A1 3 need to be expanded, that is, adding the set distance to the original radius of the through hole to obtain
  • the expanded hole A1 1 , the through hole A1 2 , and the through hole A1 3 if the set distance is 0.2 mm, and the radius of the unexpanded through hole is 0.1 mm, the expanded radius is 0.3 mm.
  • the set distance is any value in the preset threshold range.
  • step 1.4 may specifically include: judging the collision relationship between the third pattern and the second stencil opening pattern, and if a collision occurs, cutting the collision part of the second stencil opening pattern to obtain the third steel mesh Net opening graphic.
  • the third graphic and the second stencil opening graphic are subjected to collision processing. If a collision occurs between the third graphic and the second stencil opening graphic, it is necessary to collide the second stencil opening graphic with the third graphic.
  • the part of the stencil is cut, and the cut second stencil opening pattern is used as the third stencil opening pattern.
  • step 1.5 may specifically include:
  • Step 1.51 Determine whether the opening pattern of the third stencil satisfies the first condition, the second condition and the third condition, wherein the first condition is that the first area ratio is greater than the first threshold, the width-thickness ratio is greater than the second threshold, and the second condition is The ratio of the area of the third stencil opening pattern to the area of the corresponding second stencil opening pattern is less than the third threshold, and the third condition is that the second area ratio is greater than the fourth threshold and the size ratio is greater than the fifth threshold.
  • the first condition is that the first area ratio is greater than the first threshold
  • the width-thickness ratio is greater than the second threshold
  • the second condition is The ratio of the area of the third stencil opening pattern to the area of the corresponding second stencil opening pattern is less than the third threshold
  • the third condition is that the second area ratio is greater than the fourth threshold and the size ratio is greater than the fifth threshold.
  • Step 1.52 If it cannot be satisfied at the same time, the third stencil opening pattern is processed according to the preset method to obtain the third stencil opening pattern after the pattern processing.
  • the third stencil opening pattern will replace the originally designed first stencil opening pattern, and it will be used as the final stencil opening pattern; if If any one of the first condition, the second condition and the third condition cannot be satisfied, it means that the third stencil opening pattern and the pattern in the PCB cannot meet the distance requirement, and avoidance processing is needed, then the preset method can be used.
  • Adjusting the third stencil opening pattern for example, adjusting the size, shape or position of the third stencil opening pattern; wherein, the first threshold is, for example, 0.66, the second threshold is 1.5, the third threshold is 20%, and the fourth threshold is 50 %, the fifth threshold is 50%.
  • the The mesh opening pattern B2 5 has a first area ratio>0.66, a width-to-thickness ratio>1.5, a second area ratio>50%, a size ratio>50%, and the area of the third stencil opening pattern and/or the area of the second stencil opening pattern Area ⁇ 20%.
  • the preset method includes at least one of a size adjustment method, a position adjustment method, and a shape adjustment method. Then when the third stencil opening pattern cannot satisfy the first condition, the second condition and the third condition, the third stencil opening pattern can be adjusted by the size adjustment method and/or the position adjustment method and/or the shape adjustment method. Adjustment.
  • the size adjustment method can be performed by reducing, for example, the overall opening pattern of the third stencil is reduced by 0.05 times
  • the position adjustment method can be performed by making the third stencil opening pattern deviate from the pattern that needs to be avoided
  • the shape adjustment method can be done by Adjust the wide side or long side of the third stencil opening pattern.
  • processing the opening pattern of the third stencil in a preset manner to obtain the third stencil opening pattern after the graphic processing includes: opening the third stencil in a preset manner based on a preset sequence
  • the graphics are processed to obtain the third stencil opening graphics after the graphics processing.
  • the preset order is that the size adjustment method has a higher priority than the position adjustment method, and the position adjustment method has a higher priority than the shape adjustment method.
  • the adjustment can be performed only according to the size adjustment method, or only according to the position adjustment method, or only according to the shape adjustment method, and at the same time, two adjustment methods or three adjustment methods can be selected.
  • Adjustment in order to improve the processing efficiency, when selecting the adjustment method, you can choose the adjustment method according to the preset order, that is, when using an adjustment method, the size adjustment method has a higher priority than the position adjustment method, and the position adjustment method has a higher priority than the shape adjustment.
  • the priority of the size adjustment method and then the position adjustment method is higher than that of the position adjustment method and the shape adjustment method.
  • the size adjustment method is preferred. Then use the position adjustment method, and then use the shape adjustment method.
  • the third stencil opening pattern B2 3 and the third stencil opening pattern B2 5 in FIG. 3d both satisfy the first condition, the second condition and the third condition, then use the third stencil opening pattern B2 3 that satisfies the conditions .
  • the third stencil opening pattern B2 5 replaces the first stencil opening pattern B3 and the first stencil opening pattern B5 that did not meet the avoidance requirements, and the third stencil opening pattern B2 3 , the third stencil opening pattern B2 5
  • new steel mesh openings, B12 3 and B12 5 are shown in Figure 3e.
  • the third stencil opening pattern B2 1 in Fig. 3d is too close to the through hole, so that the gap is too large, so that the width-to-thickness ratio requirement is not satisfied, then the third stencil opening pattern B2 1 that does not meet the condition is subjected to pattern modification processing. , first modify the size of the third stencil opening pattern B2 1 (for example, reduce it by 0.05 times), and then modify the position of the third stencil opening pattern B2 1 (for example, offset the direction away from the through hole A1 1 by a specified distance, such as the pattern offset 0.001 mm), and then modify the shape of the third stencil opening pattern B21 (such as fine-tuning the length, width, etc.
  • pattern modification processing first modify the size of the third stencil opening pattern B2 1 (for example, reduce it by 0.05 times), and then modify the position of the third stencil opening pattern B2 1 (for example, offset the direction away from the through hole A1 1 by a specified distance, such as the pattern offset 0.001 mm), and then modify the shape of the third stencil
  • the stencil opening B3 1 is the third stencil opening pattern B2 1 by offsetting away from the through-hole direction by a specified distance to modify the position of the third stencil opening pattern B2 1 , and
  • the operation of increasing the size of the width portion of the third stencil opening pattern B21 to meet the threshold range of 0.5%-10% of the size before fine-tuning is implemented in a manner of increasing the aspect ratio.
  • Step 1.53 Circularly execute steps 1.51 and 1.52 on the third stencil opening pattern after graphic processing, and the total number N of graphics processing in the third stencil opening pattern is less than or equal to the preset number of times threshold, and after N graphics processing.
  • the third stencil opening pattern simultaneously satisfies the first condition, the second condition and the third condition, the final stencil opening pattern is obtained, and the total number of times N of graphic processing in the third stencil opening pattern is equal to the preset number of times threshold, and
  • a fourth stencil opening pattern is obtained.
  • steps 1.51 to 1.52 are repeatedly executed in the manner of steps 1.51 to 1.52.
  • the third stencil opening pattern after several times of pattern processing replaces the initial stencil opening pattern, and takes it as
  • the stencil opening pattern Bi 1 is the stencil opening pattern after i graphics processing.
  • the preset number of times threshold is, for example, 20 times.
  • it is the final opening pattern of the steel mesh obtained after i times.
  • Step 1.54 Obtain the modified fourth stencil opening pattern to obtain the final stencil opening pattern.
  • the method of the invention determines the preset distance between all elements on the PCB that need to keep a certain distance from the opening of the steel mesh and all the openings of the steel mesh, so as to obtain the opening of the steel mesh that may need to be avoided from some elements. , and then obtain the cut stencil opening through collision treatment, and finally based on the first area ratio, width-to-thickness ratio, second area ratio, size ratio of the stencil opening and the area of the stencil opening and its size before cutting.
  • the relationship between the area of the opening of the stencil determines whether the opening of the stencil needs to be graphically processed, and then further judges whether the opening of the stencil after graphic processing meets the requirements according to the method of the present invention, until the final opening pattern of the stencil is obtained.
  • This method can improve the design efficiency, accuracy, coverage and comprehensiveness of stencil opening avoidance. It can reduce manual intervention, avoid manual mistakes or omission of the stencil opening to be avoided, and the problem of no or less avoidance, and the repeated modification of the stencil opening after avoidance does not meet the process requirements.
  • the method of the present invention has considerable advantages in terms of personnel requirements and operation methods. It is the current trend of various industries to replace manual labor with automation. The present invention also responds to this trend.
  • the design time of the stencil opening is greatly shortened, and the design quality of the stencil is improved, thereby improving the printing quality of the PCB board.
  • FIGS. 4a to 4h are schematic diagrams of the process of designing the stencil avoidance of the outer frame according to the embodiment of the present invention.
  • the present invention uses the first pattern as the pattern of the PCB
  • the outer frame (Profile) is taken as an example to illustrate the specific process of avoiding the outer frame and the opening of the steel mesh by using the design method for avoiding the outer frame and the steel mesh provided by the present invention.
  • the process specifically includes:
  • Step 2.1 by reading the PCB design data and preprocessing, to obtain PCB board graphic data, such as PCB board through hole data (via hole), solder mask graphic data (solder mask layer), Profile (PCB board outer frame) ) data, device body (Body) data, device coordinate data, device packaging data, etc., first generate solder paste layer data according to device packaging data, and then make (design) corresponding stencil openings for different device types through the solder paste layer data. Graphics, that is, to obtain the completed stencil opening graphic data used for avoidance. As shown in Fig.
  • first stencil opening patterns including the first stencil opening pattern B 1 , the first stencil opening pattern B 2 , the first stencil opening pattern B 2 , the first stencil opening pattern Stencil opening pattern B 3 , first stencil opening pattern B 4 ).
  • Step 2.2 determine the distance between each frame of the outer frame and each of the stencil opening pattern B 1 , the stencil opening pattern B 2 , the stencil opening pattern B 3 , and the stencil opening pattern B 4 .
  • the preset distance is determined whether it meets the preset threshold range, that is, 0 ⁇ AB spacing ⁇ 0.2mm (where the AB spacing refers to the shortest distance between each frame of the outer frame and the edge of the first stencil opening pattern).
  • Step 2.3 If the preset threshold range is satisfied, that is, 0 ⁇ AB spacing ⁇ 0.2mm, the first stencil opening pattern that satisfies the preset threshold range is used as the second stencil opening pattern, and the outer frame remains unchanged.
  • the preset distance (ie d3) between the first stencil opening pattern B 3 and the right side of the first stencil opening pattern B 3 all meet the preset threshold range, then as shown in FIG. 4c , the first stencil opening pattern B 1 and the first stencil opening pattern B 2 and the first stencil opening pattern B 3 serve as the second stencil opening pattern B1 1 , the second stencil opening pattern B1 2 and the second stencil opening pattern B1 3 , respectively.
  • Step 2.4 If the preset threshold range is not met, keep the edges corresponding to the openings of the steel mesh that do not meet the preset threshold range unchanged. As shown in Fig. 4b , the left and lower sides of the outer frame and the first stencil opening pattern B4, the upper side of the outer frame and the first stencil opening pattern B1 , the outer frame and the lower side of the first stencil opening pattern B2, and the outer frame and the first stencil opening pattern B1.
  • Step 2.5 For the part of the outer frame that satisfies the preset threshold range in step 2.3, indent should be performed towards the second stencil opening pattern that meets the preset threshold range (the indent here refers to the indent, here The meaning of the indentation is the same as that of the outward expansion in other cases, both are the approximation of the second stencil opening towards the preset threshold range.
  • the reason why the indentation is used here is because the outer frame has an inclusive relationship with the stencil opening. , and other cases are independent of each other, and there is no inclusion relationship, so use external expansion.) to move to a specified distance (such as 0.2mm), and the part of the outer frame that meets the preset threshold range is only the outer frame and the second steel mesh opening.
  • the black vertical lines in the second stencil opening pattern B1 1 , the second stencil opening pattern B1 2 and the second stencil opening pattern B1 3 are the moved patterns.
  • the moved graphics are respectively collided with the second stencil opening figure B1 1 , the second stencil opening figure B1 2 and the second stencil opening figure B1 3 .
  • Step 2.6 If there is a collision, cut out the collision part in the second stencil opening pattern as the third stencil opening pattern, as shown in Figures 4c and 4d, the left side of the second stencil opening pattern B1 1
  • the third stencil opening pattern B2 1 is obtained by partially cutting it, the right part of the second stencil opening pattern B1 2 is cut out to obtain the third stencil opening pattern B2 2 , and the right part of the second stencil opening pattern B1 3 is made
  • the third stencil opening pattern B2 3 is obtained by cutting.
  • Step 2.7 for the third stencil opening pattern B2 1 , the third stencil opening pattern B2 2 , and the third stencil opening pattern B2 3 , determine the third stencil opening pattern B2 1 and the third stencil opening pattern B2 2 respectively , Whether the third stencil opening pattern B2 3 all satisfy the first area ratio>0.66, the width-thickness ratio>1.5, the second area ratio>50%, the size ratio>50%, the third stencil opening pattern and its corresponding second The ratio of the area of the stencil opening pattern is less than 20%.
  • Step 2.8 If the conditions in step 2.7 are all satisfied, replace the first stencil opening pattern before modification with the third stencil opening pattern that satisfies the conditions. As shown in Figure 4e, the third stencil opening pattern B2 2 , the first stencil opening pattern The three stencil opening patterns B2 3 all meet the conditions in step 2.7, then the third stencil opening pattern B2 2 is used as the new stencil opening pattern B12 2 to replace the first stencil opening pattern B 2 , and the third stencil opening pattern B 2 is The pattern B2 3 replaces the first stencil opening pattern B 3 as a new stencil opening pattern B12 3 .
  • Step 2.9 If one of the conditions in step 2.7 is not satisfied, it is regarded as not meeting the conditions, as shown in Figure 4e, the third stencil opening pattern B2 1
  • the gap is too large because the distance between the opening and the outer frame is too close, which does not meet the width-to-thickness ratio. requirements, it is necessary to modify the graphics of the third stencil openings that do not meet the conditions. For example, first modify the size of the opening pattern of the third stencil (for example, reduce it by 0.05 times), and then modify the position of the opening pattern of the third stencil (for example, offset a specified distance away from the direction of the outer frame, such as offset by 0.001mm), and then modify the third stencil opening pattern.
  • the shape of the stencil opening pattern (fine-tuning the length and width of a certain side, such as the ratio of the fine-tuning size to the size before fine-tuning is within the threshold range of 0.5%-10%), generate a new stencil opening pattern, as shown in Figure 4f
  • the stencil opening pattern B3 1 is the third stencil opening pattern B2 1.
  • the position of the third stencil opening pattern B2 1 is modified by offsetting a specified distance away from the direction of the outer frame, and the size of the enlarged opening width part meets the size before fine-tuning Operation within the 0.5%-10% threshold range is achieved in a manner that increases the aspect ratio.
  • Step 2.10 Repeat step 2.7 for all the stencil opening patterns that have undergone the graphic processing in step 2.9. If the conditions are still not met, continue to repeat step 2.9, and repeat step 2.7 to step 2.9 until a new stencil is generated.
  • Step 2.11 If the conditions in step 2.7 are all satisfied, replace the stencil opening B 1 with Bi, as shown in the stencil opening pattern B1i 1 in Figure 4h.
  • FIGS. 5a to 5h are schematic diagrams of the process of the stencil avoidance design involving the solder mask pattern provided by the embodiment of the present invention.
  • the present invention uses the first pattern as the solder mask. Take an example to illustrate the specific process of using the welding mask pattern and the stencil avoidance design method provided by the present invention to avoid the welding mask and the opening of the stencil.
  • the process specifically includes:
  • Step 3.1 by reading the PCB design data and preprocessing, to obtain PCB board graphic data, such as PCB board through hole data (via hole), solder mask data (solder mask layer), Profile (PCB board outer frame) Data, device body (Body) data, device coordinate data, device packaging data, etc., first generate solder paste layer data according to device packaging data, and then use the solder paste layer data to make (design) corresponding stencil opening patterns for different device types .
  • PCB board graphic data such as PCB board through hole data (via hole), solder mask data (solder mask layer), Profile (PCB board outer frame) Data, device body (Body) data, device coordinate data, device packaging data, etc.
  • first generate solder paste layer data according to device packaging data and then use the solder paste layer data to make (design) corresponding stencil opening patterns for different device types .
  • 5 solder masks including solder mask S 1 , solder mask S 2 , solder mask S 3 , solder mask S 4 , solder mask S 5
  • Opening patterns including
  • Step 3.2 determine the solder mask S 1 , the solder mask S 2 , the solder mask S 3 , the solder mask S 4 , the solder mask S 5 and the first stencil opening pattern B 1 and the first stencil opening pattern B 2 , the first stencil opening pattern B 3 , the first stencil opening pattern B 4 , and the first stencil opening pattern B 5 is the pre-distance between each of them, and it is judged whether it satisfies the preset threshold range, that is, 0 ⁇ AB Spacing ⁇ 0.2mm (here AB spacing refers to the shortest distance between the solder mask and the first stencil opening pattern).
  • Step 3.3 If the preset threshold range is satisfied, that is, 0 ⁇ AB spacing ⁇ 0.2mm, the first stencil opening pattern satisfying the preset threshold range is used as the second stencil opening pattern.
  • d4 represents the distance between the solder mask S 4 and the first stencil opening pattern B 4
  • the distance measurement value of d4 0.35mm;
  • first stencil opening pattern B 1 , the first stencil opening pattern B 2 , and the first stencil opening pattern B 3 that satisfy the preset threshold range can be used as the second stencil opening pattern B1 1 , the first stencil opening pattern B 1 in FIG.
  • the second stencil opening pattern B1 2 and the second stencil opening pattern B1 3 can be used as the second stencil opening pattern B1 1 , the first stencil opening pattern B 1 in FIG.
  • the second stencil opening pattern B1 2 and the second stencil opening pattern B1 3 can be used as the second stencil opening pattern B1 1 , the first stencil opening pattern B 1 in FIG.
  • Step 3.4 if the preset threshold range is not met, the first stencil opening pattern remains unchanged, such as the preset distance between the solder mask S 4 and the first stencil opening pattern B 4 in FIG. If the preset distance between 5 and the first stencil opening pattern B 5 does not meet the distance requirement, the openings of the first stencil opening pattern B 4 and the first stencil opening pattern B 5 remain unchanged.
  • Step 3.5 for the solder mask that meets the preset threshold range in step 3.2, expand the part that meets the preset threshold range to a specified distance (such as 0.2) in the direction of the second stencil opening pattern that meets the preset threshold range.
  • the expansion here refers to the edge of the second stencil opening pattern in the solder mask that is close to the second stencil opening pattern that meets the preset threshold range, and the edge expands a specified distance toward the second stencil opening pattern, and then meets the preset threshold.
  • solder mask S1 1 , solder mask S1 2 , and solder mask S1 3 are solder mask S 1 , solder mask S 2 , and solder mask S 3 The part that collides with the second stencil opening pattern B1 1 , the second stencil opening pattern B1 2 , and the second stencil opening pattern B1 3 after the outward expansion.
  • Step 3.6 If there is a collision, cut the part of the second stencil opening pattern where the collision occurs, as the third stencil opening pattern. As shown in Figures 5c and 5d, the second stencil opening pattern B1 1 is cut.
  • the third stencil opening pattern B2 1 is obtained by processing, the second stencil opening pattern B1 2 is cut to obtain the third stencil opening pattern B2 2 , and the second stencil opening pattern B1 3 is cut to obtain the third stencil opening pattern. B2 3 .
  • Step 3.7 for the third stencil opening pattern B2 1 , the third stencil opening pattern B2 2 , and the third stencil opening pattern B2 3 , determine the third stencil opening pattern B2 1 and the third stencil opening pattern B2 2 respectively , Whether the third stencil opening pattern B2 3 all satisfy the first area ratio>0.66, the width-thickness ratio>1.5, the second area ratio>50%, the size ratio>50%, the third stencil opening pattern and its corresponding second The ratio of the area of the stencil opening pattern is less than 20%.
  • Step 3.8 If the conditions in step 3.7 are all satisfied, replace the first stencil opening pattern before modification with the third stencil opening pattern that satisfies the conditions, as shown in Figure 5e, the third stencil opening pattern B2 2 , the first stencil opening pattern The three stencil opening patterns B2 3 all meet the conditions in step 3.7, then the third stencil opening pattern B2 2 is used as the new stencil opening pattern B12 2 to replace the first stencil opening pattern B 2 , and the third stencil opening pattern B 2 is The pattern B2 3 replaces the first stencil opening pattern B 3 as a new stencil opening pattern B12 3 .
  • Step 3.9 If one of the conditions in step 3.7 is not satisfied, it is regarded as not meeting the conditions. As shown in Figure 5e, the third stencil opening pattern B2 1 is too close to the solder mask, so the gap is too large and does not meet the width-to-thickness ratio. requirements, it is necessary to modify the graphics of the third stencil openings that do not meet the conditions. For example, first modify the size of the opening pattern of the third stencil opening (for example, reduce it by 0.05 times), and then modify the position of the opening pattern of the third stencil (for example, offset the specified distance away from the welding mask direction, such as offset 0.001mm), and then modify the three steel mesh.
  • the size of the opening pattern of the third stencil opening for example, reduce it by 0.05 times
  • the position of the opening pattern of the third stencil for example, offset the specified distance away from the welding mask direction, such as offset 0.001mm
  • the shape of the mesh opening pattern (fine-tuning the size of a certain side such as length and width, such as the ratio of the fine-tuning size to the size before fine-tuning is within the threshold range of 0.5%-10%) to generate a new stencil opening pattern, as shown in Figure 5f.
  • the mesh opening pattern B3 1 is the third stencil opening pattern B2 1 .
  • the position of the third stencil opening pattern B2 1 is modified by offsetting a specified distance away from the direction of the outer frame, and the size of the enlarged opening width part meets the size before fine-tuning. Operation within the 0.5%-10% threshold range is achieved in a manner that increases the aspect ratio.
  • Step 3.10 Repeat step 3.7 for all the stencil opening patterns that have undergone the graphic processing in step 3.9. If the conditions are still not met, continue to repeat step 3.9, and cycle from step 3.7 to step 3.9 until a new stencil is generated.
  • Step 3.11 If the conditions in step 3.7 are all satisfied, replace the stencil opening B 1 with Bi, as shown in the stencil opening pattern B1i 1 in Figure 5h.
  • FIGS. 6a to 6h are schematic diagrams of the process of designing the stencil avoidance involving the device body according to the embodiment of the present invention.
  • the present invention uses the first pattern as the device body as the The specific process of avoiding the device body and the stencil opening by using the device body and stencil avoidance design method provided by the present invention is illustrated by example, and the process specifically includes:
  • Step 4.1 By reading the PCB design data and preprocessing, obtain the graphic data of the PCB board, such as the through hole data (via hole), solder mask data (solder mask layer), and Profile (outer frame of the PCB board) of the PCB board.
  • Data, device body (Body) data, device coordinate data, device packaging data, etc. first generate solder paste layer data according to device packaging data, and then use the solder paste layer data to make (design) corresponding stencil opening patterns for different device types .
  • five device bodies including device body P 1 , device body P 2 , device body P 3 , device body P 4 , device body P 5
  • Opening patterns including the first stencil opening pattern B 1 , the first stencil opening pattern B 2 , the first stencil opening pattern B 3 , the first stencil opening pattern B 4 , and the first stencil opening pattern B 5 ).
  • Step 4.2 determine the device body P 1 , the device body P 2 , the device body P 3 , the device body P 4 , the device body P 5 and the first stencil opening pattern B 1 and the first stencil opening pattern B 2 , the pre-distance between the first stencil opening pattern B 3 , the first stencil opening pattern B 4 , and the first stencil opening pattern B 5 , determine whether it satisfies the preset threshold range, that is, 0 ⁇ AB spacing ⁇ 0.2mm (here AB spacing refers to the shortest distance between the device body and the opening pattern of the first stencil).
  • Step 4.3 If the preset threshold range is satisfied, that is, 0 ⁇ AB spacing ⁇ 0.2mm, the first stencil opening pattern satisfying the preset threshold range is used as the second stencil opening pattern.
  • first stencil opening pattern B 1 , the first stencil opening pattern B 2 , and the first stencil opening pattern B 3 that satisfy the preset threshold range can be used as the second stencil opening pattern B1 1 , the first stencil opening pattern B 1 , the first stencil opening pattern B 3 in FIG. 6 c .
  • the second stencil opening pattern B1 2 and the second stencil opening pattern B1 3 can be used as the second stencil opening pattern B1 1 , the first stencil opening pattern B 1 , the first stencil opening pattern B 3 in FIG. 6 c .
  • Step 4.4 If the preset threshold range is not met, the first stencil opening pattern remains unchanged, such as the preset distance between the device body P4 and the first stencil opening pattern B4 as shown in Figure 6b, the device body P5 If the preset distance from the first stencil opening pattern B 5 does not meet the distance requirement, the openings of the first stencil opening pattern B 4 and the first stencil opening pattern B 5 remain unchanged.
  • Step 4.5 for the device body that satisfies the preset threshold range in step 4.2, expand the part that satisfies the preset threshold range to a specified distance (such as 0.2 mm), the expansion here refers to the edge of the device body that is close to the second stencil opening pattern that satisfies the preset threshold range, and the edge expands a specified distance toward the second stencil opening pattern, and then meets the preset threshold.
  • the device body P1 1 , the device body P1 2 , and the device body P1 3 are the device body P 1 , the device body P 2 , and the device body P 3 .
  • Step 4.6 If there is a collision, cut the part of the second stencil opening pattern where the collision occurs, as the third stencil opening pattern, as shown in Figures 6c and 6d, the second stencil opening pattern B1 1 is cut.
  • the third stencil opening pattern B2 1 is obtained by processing, the second stencil opening pattern B1 2 is cut to obtain the third stencil opening pattern B2 2 , and the second stencil opening pattern B1 3 is cut to obtain the third stencil opening pattern. B2 3 .
  • Step 4.7 for the third stencil opening pattern B2 1 , the third stencil opening pattern B2 2 , and the third stencil opening pattern B2 3 , determine the third stencil opening pattern B2 1 and the third stencil opening pattern B2 2 respectively , Whether the third stencil opening pattern B2 3 all satisfy the first area ratio>0.66, the width-thickness ratio>1.5, the second area ratio>50%, the size ratio>50%, the third stencil opening pattern and its corresponding second The ratio of the area of the stencil opening pattern is less than 20%.
  • Step 4.8 If the conditions in step 4.7 are all satisfied, replace the first stencil opening pattern before modification with the third stencil opening pattern that satisfies the conditions, as shown in Figure 6e, the third stencil opening pattern B2 2 , the first stencil opening pattern The three stencil opening patterns B2 3 all meet the conditions in step 4.7, then the third stencil opening pattern B2 2 is used as the new stencil opening pattern B12 2 to replace the first stencil opening pattern B 2 , and the third stencil opening pattern B 2 is The pattern B2 3 replaces the first stencil opening pattern B 3 as a new stencil opening pattern B12 3 .
  • Step 4.9 If one of the conditions in step 4.7 is not satisfied, it is considered to be not satisfied, as shown in Figure 6e, the third stencil opening pattern B2 1
  • the gap is too large because the distance between the opening and the device body is too close, and the width-to-thickness ratio is not satisfied. requirements, it is necessary to modify the graphics of the third stencil openings that do not meet the conditions. For example, first modify the size of the opening pattern of the third stencil opening (for example, reduce it by 0.05 times), then modify the position of the opening pattern of the third stencil (for example, offset the direction away from the device body by a specified distance, such as offset 0.001mm), and then modify the three steel mesh.
  • the shape of the mesh opening pattern (fine-tuning the length and width of a certain side size, such as the ratio of the fine-tuning size to the size before fine-tuning is within the threshold range of 0.5%-10%) to generate a new stencil opening pattern, such as the steel mesh in Figure 6f.
  • the mesh opening pattern B3 1 is the third stencil opening pattern B2 1 .
  • the position of the third stencil opening pattern B2 1 is modified by offsetting a specified distance away from the direction of the outer frame, and the size of the enlarged opening width part meets the size before fine-tuning. Operation within the 0.5%-10% threshold range is achieved in a manner that increases the aspect ratio.
  • Step 4.10 Repeat step 4.7 for all the stencil opening patterns that have undergone the graphic processing in step 4.9. If there are still unsatisfactory conditions, continue to repeat step 4.9, and cycle from step 4.7 to step 4.9 until a new stencil is generated.
  • Step 4.11 If the conditions in step 4.7 are all satisfied, replace the opening B 1 of the stencil with Bi, as shown in the opening pattern B1i 1 of the stencil in Figure 6h.
  • FIG. 7 is a schematic structural diagram of a stencil avoidance design device according to an embodiment of the present invention.
  • the stencil avoidance design device includes:
  • an acquisition module for acquiring several first graphics and several first stencil opening graphics
  • the first analysis module is used for judging whether the preset distance between the first pattern and the first stencil opening pattern is within the preset threshold range, and if the preset distance satisfies the conditions of the preset threshold range, it is obtained that the preset distance is satisfied a second graph of the threshold range and a second stencil opening graph;
  • a graphics processing module for acquiring a third graphic according to the second graphic, and the third graphic is used for collision processing with the second stencil opening graphic;
  • the second analysis module is used for judging the collision relationship between the third figure and the second stencil opening figure, and if a collision occurs, the second stencil opening figure is cut to obtain the third stencil opening figure;
  • the detection module is used to obtain the final stencil according to the relationship between the first area ratio, the width-to-thickness ratio, the second area ratio, the area of the third stencil opening pattern and the area of the corresponding second stencil opening pattern. stencil opening graphic.
  • the stencil avoidance design device provided in this embodiment can implement the above method embodiments, and the implementation principle and technical effect thereof are similar, and are not repeated here.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention.
  • the electronic device 1100 includes: a processor 1101, a communication interface 1102, a memory 1103, and a communication bus 1104, wherein the processor 1101, the communication interface 1102, and the memory 1103 communicate with each other through the communication bus 1104;
  • memory 1103 for storing computer programs
  • the processor 1101 is configured to implement the above method steps when executing the computer program.
  • Step 1.1 obtain several first graphics and several first stencil opening graphics
  • Step 1.2 determine whether the preset distance between the first graphic and the first stencil opening graphic is within the preset threshold range, if the conditions of the preset threshold range are met, then the second graphic and the preset threshold range are obtained.
  • the second stencil opening pattern
  • Step 1.3 obtain a third graphic according to the second graphic, and the third graphic is used for collision processing with the second stencil opening graphic;
  • Step 1.4 determine the collision relationship between the third figure and the second stencil opening figure, if a collision occurs, cut the second stencil opening figure to obtain the third stencil opening figure;
  • Step 1.5 according to the relationship between the first area ratio, the width-to-thickness ratio, the second area ratio, the size ratio, the area of the third stencil opening pattern and the area of the corresponding second stencil opening pattern of the third stencil opening pattern.
  • the final stencil opening pattern according to the relationship between the first area ratio, the width-to-thickness ratio, the second area ratio, the size ratio, the area of the third stencil opening pattern and the area of the corresponding second stencil opening pattern of the third stencil opening pattern.
  • the electronic device provided by the embodiments of the present invention can execute the above method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • This embodiment provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • Step 1.1 obtain several first graphics and several first stencil opening graphics
  • Step 1.2 determine whether the preset distance between the first graphic and the first stencil opening graphic is within the preset threshold range, if the conditions of the preset threshold range are met, then the second graphic and the preset threshold range are obtained.
  • the second stencil opening pattern
  • Step 1.3 obtain a third graphic according to the second graphic, and the third graphic is used for collision processing with the second stencil opening graphic;
  • Step 1.4 determine the collision relationship between the third figure and the second stencil opening figure, if a collision occurs, cut the second stencil opening figure to obtain the third stencil opening figure;
  • Step 1.5 according to the relationship between the first area ratio, the width-to-thickness ratio, the second area ratio, the size ratio, the area of the third stencil opening pattern and the area of the corresponding second stencil opening pattern of the third stencil opening pattern.
  • the final stencil opening pattern according to the relationship between the first area ratio, the width-to-thickness ratio, the second area ratio, the size ratio, the area of the third stencil opening pattern and the area of the corresponding second stencil opening pattern of the third stencil opening pattern.
  • the computer-readable storage medium provided by the embodiments of the present invention can execute the above-mentioned method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • the embodiments of the present application may be provided as a method, an apparatus (apparatus), or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects, all of which are collectively referred to herein as "modules" or “systems.” Furthermore, the present application may take the form of a computer program product embodied on one or more computer-readable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein. The computer program is stored/distributed in a suitable medium, provided with or as part of other hardware, or may take other forms of distribution, such as over the Internet or other wired or wireless telecommunication systems.
  • first and second are only used for description purposes, and cannot be interpreted as indicating or implying relative importance or the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • “plurality” means two or more, unless otherwise expressly and specifically defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Architecture (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

一种钢网避让设计方法、设计装置、电子设备及存储介质,该方法包括:获取若干第一图形和若干第一钢网开口图形;判断第一图形和第一钢网开口图形之间的预设距离是否在预设阈值范围之内,对满足预设阈值范围的条件的,进一步获取第二图形和第二钢网开口图形,再获取第三图形,需要碰撞处理的,进行碰撞等步骤,获取最终钢网开口图形。上述方法可以提高钢网避让设计的效率、准确率、覆盖率以及全面性。

Description

钢网避让设计方法、设计装置、电子设备及存储介质 技术领域
本发明属于印制电路板技术领域,具体涉及一种钢网避让设计方法、设计装置、电子设备及存储介质。
背景技术
随着行业电子产品发展,智能工厂这些理念已经进入整个制造业。迅速高效的方式会给制造带来革命性的变化。随着人们对电子产品的要求越来越高,电子产品的功能越来越智能,电子产品的PCB(Printed Circuit Board,印制电路板)电路板也越来越复杂,即电子产品PCB电路板上的器件也越来越多,因此,对PCB电路板的印刷工艺和印刷质量也有了更高的要求。尤其是SMT(Surface Mounted Technology,表面贴装技术)生产中作为辅助工艺材料的钢网,其开口质量的好坏直接关系到PCB电路板的印刷质量。
据统计,SMT工艺中,由于印刷原因引起的SMT缺陷已超过60%。其中仅由钢网设计不良,即钢网开口设计的不合理而引起的缺陷占比在35%以上。因此,钢网的设计对SMT的品质、生产效率起着至关重要的作用。而在钢网设计中,因为工艺不同,需求场景的不同,需要根据实际情况来设计符合要求的钢网开口。实际中,当钢网开口设计出来时,要求钢网的开口和PCB板的通孔、阻焊图形、Profile(PCB板的外框)、器件本体(Body)等需要保持一定的距离,这时就需要对钢网开口做避让处理,以达到SMT工艺要求的距离范围。目前电子制造行业内几乎都是人工用肉眼查看,手动查找、选择开口做避让处理,这样特别容易遗漏需要做避让处理的钢 网开口,从而使其在后续使用中出错率较高,且这种方式会浪费大量时间。因此,传统人工手动避让的方式主要会产生以下问题:1、耗时长,因为其需要人工查找哪些位置的开口需要避让;2、覆盖率低,因为人工手动避让的方式无法保证避让后的钢网开口数据全部满足SMT工艺要求;3、容易遗漏,人工手动避让的方式无法保证数据避让时不会出现遗漏问题。以上问题的出现,会影响到钢网开口设计的性能,比如容易出现连锡、少锡、漏锡等情况,以及因为漏锡而引起的虚焊问题等,进而影响PCB电路板的印刷质量。
因此,设计一种能够有效实现钢网避让的方法成为了亟待解决的问题。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种钢网避让设计方法、设计装置、电子设备及存储介质。本发明要解决的技术问题通过以下技术方案实现:
一种钢网避让设计方法,包括:
获取若干第一图形和若干第一钢网开口图形;
判断所述第一图形和所述第一钢网开口图形之间的预设距离是否在预设阈值范围之内,若满足所述预设阈值范围的条件,则得到满足所述预设阈值范围的第二图形和第二钢网开口图形;
根据所述第二图形获取第三图形;
判断所述第三图形与所述第二钢网开口图形的碰撞关系,若产生碰撞,则对所述第二钢网开口图形进行裁剪得到第三钢网开口图形;
根据所述第三钢网开口图形的第一面积比、宽厚比、第二面积比、尺寸比、所述第三钢网开口图形的面积和与其对应的所述第二钢网开口图形 的面积的关系得到最终的钢网开口图形。
在本发明的一个实施例中,根据所述第二图形得到第三图形,包括:
将所述满足所述预设阈值范围的第二图形沿预设方向进行外扩或内缩得到第三图形,所述预设方向为朝向所述第二钢网开口图形的方向。
在本发明的一个实施例中,对所述第二钢网开口图形进行裁剪得到第三钢网开口图形,包括:
对所述第二钢网开口图形的碰撞部分进行裁剪得到所述第三钢网开口图形。
在本发明的一个实施例中,所述第一面积比为所述第三钢网开口图形的面积与孔壁面积的比值,所述第二面积比为所述第三钢网开口图形的面积和与其对应的所述第二钢网开口图形的面积。
在本发明的一个实施例中,根据所述第三钢网开口图形的第一面积比、宽厚比、第二面积比、所述第三钢网开口图形的面积和与其对应的所述第二钢网开口图形的面积的关系得到最终的钢网开口图形,包括:
步骤1.51、判断所述第三钢网开口图形是否满足第一条件、第二条件和第三条件,其中,所述第一条件为所述第一面积比大于第一阈值、所述宽厚比大于第二阈值,所述第二条件为所述第三钢网开口图形的面积和与其对应的所述第二钢网开口图形的面积的比值小于第三阈值,所述第三条件为所述第二面积比大于第四阈值、所述尺寸比大于第五阈值;
步骤1.52、若不能同时满足,则按照预设方式对所述第三钢网开口图形进行处理以获取图形处理后的第三钢网开口图形;
步骤1.53、对所述图形处理后的第三钢网开口图形循环执行步骤1.51和步骤1.52,在所述第三钢网开口图形的图形处理总次数N小于或者等于预设 次数阈值,且经过N次图形处理的第三钢网开口图形同时满足所述第一条件、所述第二条件和所述第三条件时,则得到最终的钢网开口图形,在所述第三钢网开口图形的图形处理总次数N等于所述预设次数阈值,且经过N次图形处理的第三钢网开口图形不能同时满足所述第一条件、所述第二条件和所述第三条件时,则得到第四钢网开口图形;
步骤1.54、获取经过修改后的所述第四钢网开口图形,以得到最终的钢网开口图形。
在本发明的一个实施例中,所述预设方式包括尺寸调整方式、位置调整方式、形状调整方式中的至少一项。
在本发明的一个实施例中,按照预设方式对所述第三钢网开口图形进行处理以获取图形处理后的第三钢网开口图形,包括:
基于预设顺序,按照所述预设方式对所述第三钢网开口图形进行处理以获取所述图形处理后的第三钢网开口图形,所述预设顺序为所述尺寸调整方式优先级高于所述位置调整方式,所述位置调整方式优先级高于所述形状调整方式。
在本发明的一个实施例中,所述第一图形包括通孔图形、阻焊图形、外框图形、器件本体图形中的至少一种。
本发明的一个实施例还提供一种钢网避让设计装置,包括:
获取模块,用于获取若干第一图形和若干第一钢网开口图形;
第一分析模块,用于判断所述第一图形和所述第一钢网开口图形之间的预设距离是否在预设阈值范围之内,若所述预设距离满足所述预设阈值范围的条件,则得到满足所述预设阈值范围的第二图形和第二钢网开口图形;
图形处理模块,用于根据所述第二图形获取第三图形,所述第三图形用于与所述第二钢网开口图形做碰撞处理;
第二分析模块,用于判断所述第三图形与所述第二钢网开口图形的碰撞关系,若产生碰撞,则对所述第二钢网开口图形进行裁剪得到第三钢网开口图形;
检测模块,用于根据所述第三钢网开口图形的第一面积比、宽厚比、第二面积比、所述第三钢网开口图形的面积和与其对应的所述第二钢网开口图形的面积的关系得到最终的钢网开口图形。
本发明的一个实施例还提供一种电子设备,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时,实现上述任一项实施例所述的钢网避让设计方法。
本发明的一个实施例还提供一种存储介质,所述存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项实施例所述的钢网避让设计方法步骤。
本发明的有益效果:
本发明的方法通过对PCB上所有需要和钢网开口保持一定距离的元素与所有钢网开口之间的预设距离进行判断,从而得到可能与某些元素之间需要做避让处理的钢网开口,之后再通过碰撞处理得到经过裁剪之后的钢网开口,最后再基于该钢网开口的第一面积比、宽厚比、第二面积比、尺寸比以及该钢网开口的面积和其裁剪之前的钢网开口的面积的关系得到最 终的钢网开口图形。这种方式可以提高钢网避让设计效率、准确率、覆盖率以及全面性。可以减少人工干预,避免人工因错看或遗漏待避让的钢网开口,而产生没避让或少避让的问题,以及避让后钢网开口不满足工艺要求等带来的反复修改问题。相比目前人工肉眼查看,本发明的方法对人员要求及作业方式都具有相当大的优势,用自动化代替人工,已经是目前各个行业的趋势,本发明也正是响应了此趋势的发展,大大地缩短了钢网开口设计时间,并且提高了钢网设计质量,进而提高了PCB板的印刷质量。
以下将结合附图及实施例对本发明做进一步详细说明。
附图说明
图1是本发明实施例提供的一种钢网避让设计方法的流程示意图;
图2是本发明实施例提供的另一种钢网避让设计方法的流程示意图;
图3a~图3h是本发明实施例提供的涉及通孔的钢网避让设计的过程示意图;
图4a~图4h是本发明实施例提供的涉及外框的钢网避让设计的过程示意图;
图5a~图5h是本发明实施例提供的涉及阻焊图形的钢网避让设计的过程示意图;
图6a~图6h是本发明实施例提供的涉及器件本体的钢网避让设计的过程示意图;
图7是本发明实施例提供的一种钢网避让设计装置的结构示意图;
图8是本发明实施例提供的一种电子设备的结构示意图。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施 方式不限于此。
实施例一
请参见图1和图2理解本实施例的技术方案。本实施例提供了一种钢网避让设计方法,具体可以包括:
步骤1.1、获取若干第一图形和若干第一钢网开口图形;
步骤1.2、判断第一图形和第一钢网开口图形之间的预设距离是否在预设阈值范围之内,若满足预设阈值范围的条件,则得到满足预设阈值范围的第二图形和第二钢网开口图形;
步骤1.3、根据第二图形获取第三图形;
步骤1.4、判断第三图形与第二钢网开口图形的碰撞关系,若产生碰撞,则对第二钢网开口图形进行裁剪得到第三钢网开口图形;
步骤1.5、根据第三钢网开口图形的第一面积比、宽厚比、第二面积比、尺寸比、第三钢网开口图形的面积和与其对应的第二钢网开口图形的面积的关系得到最终的钢网开口图形。
在本实施例中,首先获取第一图形和第一钢网开口图形,该第一图形可以为PCB板上可能与钢网开口产生碰撞的任意图形,第一钢网开口图形为钢网上的钢网开口图形。然后通过判断每个第一图形和每个第一钢网开口图形之间的最短距离(即预设距离)是否满足预设阈值范围,该预设阈值范围为第一钢网开口图形需要对第一图形做避让处理的范围,因此如果预设距离不满足预设阈值范围,则说明该第一钢网开口图形不需要避让任意一个第一图形,可以直接将该第一钢网开口图形作为最终的钢网开口图形,如果预设距离满足预设阈值范围,则说明需要对该第一钢网开口图形做避让处理,并将满足预设阈值范围的第一图形作为第二图形、第一钢网开口图 形作为第二钢网开口图形,其中,预设阈值范围例如为0至0.2mm,即当0<预设距离<0.2mm时,则预设距离满足预设阈值范围。在确定了第二图形之后,就需要对第二图形进行处理以得到第三图形,以使该第三图形和与其之间距离满足预设阈值范围的第二钢网开口图形做碰撞处理,如果产生碰撞,则需要对产生碰撞的第二钢网开口图形做裁剪处理,以得到第三钢网开口图形;因为,裁剪第二钢网开口图形后所得到的第三钢网开口图形不一定满足最终的钢网开口的要求,为了进一步确定该第三钢网开口图形是否满足条件,可以通过第三钢网开口图形的第一面积比、宽厚比、第二面积比、尺寸比、第三钢网开口图形的面积和与其对应的第二钢网开口图形的面积的关系确定是否需要对该第三钢网开口图形做出调整,以得到最终的钢网开口图形,其中,第一面积比为第三钢网开口图形的面积与孔壁面积的比值,第二面积比为第三钢网开口图形的面积和与其对应的第二钢网开口图形的面积。第三钢网开口图形的面积为钢网开口的面积,孔壁面积为该第三钢网开口图形孔壁的总面积,与第三钢网开口图形对应的第二钢网开口图形为第三钢网开口图形裁剪之前的第二钢网开口图形,以第三钢网开口图形取能够包含该第三钢网开口图形的第一最小矩形框,以第二钢网开口图形取能够包含该第二钢网开口图形的第二最小矩形框,宽厚比为第一最小矩形框的宽边与该第三钢网开口图形的厚度的比值,尺寸比为第一最小矩形框的长边与第二最小矩形框的长边的比值、第一最小矩形框的宽边与第二最小矩形框的宽边的比值,宽边为矩形框中长度小于长边的边。
第一面积比=第三钢网开口图形的面积/孔壁面积。
宽厚比=W 1/D 1,其中,W 1为第一最小矩形框的宽边,D 1为第三钢网开口图形的厚度。
第二面积比=第三钢网开口图形的面积和/第二钢网开口图形的面积,该第三钢网开口图形的面积为该第二钢网开口图形对应裁剪后的图形。
尺寸比=W 1/W 2,L 1/L 2,其中,W 1和L 1分别为第一最小矩形框的宽边和长边,W 2和L 2分别为第二最小矩形框的宽边和长边。
在一个实施例中,第一图形包括通孔图形、阻焊图形、外框图形、器件本体图形中的至少一种。
通过读取PCB设计数据并进行预处理,获取PCB板图形数据,如PCB板的通孔数据(导通孔)、阻焊图形数据(阻焊层)、Profile(PCB板的外框)数据、器件本体(Body)数据、器件坐标数据、器件封装数据等,先根据器件封装数据生成锡膏层数据,再通过锡膏层数据针对不同器件类型制作(设计)出相应的钢网开口图形(Stencil Aperture),这些钢网开口图形即为第一钢网开口图形,即得到避让所用的已完成的钢网开口图形数据。另外,也可以为通过选择对应的待避让钢网开口数据Gerber文件(*.gbr),通过导入该文件数据提取钢网开口层,以得到第一钢网开口图形。
为了更清楚的说明本实施例的步骤1.2,以第一图形为通孔为例进行说明,请参见图3a,如所有通孔包括通孔A 1至通孔A 5,所有的第一钢网开口图形包括第一钢网开口图形B 1至第一钢网开口图形B 8,则计算通孔A 1至通孔A 5与第一钢网开口图形B 1至第一钢网开口图形B 8两两之间的预设距离,如如图3b,d1表示通孔A 1与第一钢网开口图形B 1间的距离测量值,d1=0.07mm;d2表示通孔A 2与第一钢网开口图形B 3间的距离测量值,d2=0.12mm;d3表示通孔A 3与第一钢网开口图形B 5间的距离测量值,d3=0.18mm;d4表示通孔A 4与第一钢网开口图形B 7间的距离测量值,d4=0.3mm;d5表示通孔A 5与第一钢网开口图形B 8间的距离测量值, d5=0.33mm。将通孔与第一钢网开口图形之间的预设距离记为AB间距,若0<AB间距<0.2mm,则说明该通孔和第一钢网开口图形之间的预设距离满足预设阈值范围,因为,d1=0.07mm,d2=0.12mm,d3=0.18mm,则通孔A 1、通孔A 2、通孔A 3和第一钢网开口图形B 1、第一钢网开口图形B 3和第一钢网开口图形B 5为满足预设阈值范围的图形,如图3c所示,此时则将通孔A 1、通孔A 2、通孔A 3和第一钢网开口图形B 1、第一钢网开口图形B 3和第一钢网开口图形B 5分别记为通孔A1 1、通孔A1 2、通孔A1 3和第一钢网开口图形B1 1、第一钢网开口图形B1 3和第一钢网开口图形B1 5
在一种具体实施方式中,步骤1.3可以具体包括:将满足预设阈值范围的第二图形沿预设方向进行外扩或内缩得到第三图形,预设方向为朝向第二钢网开口图形的方向。
具体地,本实施例在确定了第二图形后,需要将第二图形向朝向与该第二图形之间的距离满足预设阈值范围的第二钢网开口图形进行外扩处理或者内缩处理,并将外扩或者内缩后的第二图形作为第三图形。例如当第二图形为通孔图形、阻焊图形或者器件本体图形时,通过外扩的方式进行处理,当第二图形为外框图形时,则通过内缩方式进行处理。如第二图形为通孔时,请参见图3c,则通孔A1 1、通孔A1 2、通孔A1 3需要做外扩处理,即在通孔原始半径的基础上加上设定距离得到外扩后的孔A1 1、通孔A1 2、通孔A1 3,如设定距离为0.2mm,未外扩的通孔半径为0.1mm,则外扩后的半径为0.3mm。
优选地,设定距离为预设阈值范围中的任意数值。
在一种具体实施方式中,步骤1.4可以具体包括:判断第三图形与第二钢网开口图形的碰撞关系,若产生碰撞,则对第二钢网开口图形的碰撞部 分进行裁剪得到第三钢网开口图形。
具体地,将第三图形与第二钢网开口图形进行碰撞处理,若第三图形与第二钢网开口图形之间产生碰撞,则需要将第二钢网开口图形上与第三图形产生碰撞的部分进行裁剪,并将裁剪后的第二钢网开口图形作为第三钢网开口图形。例如图3d,第一钢网开口图形B2 1、第一钢网开口图形B2 3、第一钢网开口图形B2 5分别为第一钢网开口图形B1 1、第一钢网开口图形B1 3和第一钢网开口图形B1 5裁剪后的图形,图3d中的第一钢网开口图形B2 1、第一钢网开口图形B2 3和第一钢网开口图形B2 5为的缺口部分即为裁剪部分。
在一种具体实施方式中,步骤1.5可以具体包括:
步骤1.51、判断第三钢网开口图形是否满足第一条件、第二条件和第三条件,其中,第一条件为第一面积比大于第一阈值、宽厚比大于第二阈值,第二条件为第三钢网开口图形的面积和与其对应的第二钢网开口图形的面积的比值小于第三阈值,第三条件为所述第二面积比大于第四阈值、尺寸比大于第五阈值。
步骤1.52、若不能同时满足,则按照预设方式对第三钢网开口图形进行处理以获取图形处理后的第三钢网开口图形。
在本实施例中,以第一条件、第二条件和第三条件为基准,当第三钢网开口图形同时满足第一条件、第二条件和第三条件时,说明该第三钢网开口图形与PCB中的图形均满足了距离要求,不需要再做避让处理,则将该第三钢网开口图形替代最初设计的第一钢网开口图形,将其作为最终的钢网开口图形;若第一条件、第二条件和第三条件中有任意一个条件不能满足,则说明该第三钢网开口图形与PCB中的图形不能满足距离要求,还需要做避让处理,则可以按照预设方式调整第三钢网开口图形,例如调整第三 钢网开口图形的大小、形状或者位置;其中,第一阈值例如为0.66,第二阈值为1.5,第三阈值为20%,第四阈值为50%,第五阈值为50%。例如对于第一钢网开口图形B2 1、第一钢网开口图形B2 3、第一钢网开口图形B2 5,第一钢网开口图形B2 1、第一钢网开口图形B2 3、第一钢网开口图形B2 5的第一面积比>0.66、宽厚比>1.5、第二面积比>50%、尺寸比>50%、且第三钢网开口图形的面积和/第二钢网开口图形的面积<20%。
进一步地,预设方式包括尺寸调整方式、位置调整方式、形状调整方式中的至少一项。则当第三钢网开口图形不能满足第一条件、第二条件和第三条件时,则可以通过尺寸调整方式和/或位置调整方式和/或形状调整方式对该第三钢网开口图形进行调整。其中尺寸调整方式可以通过缩小的方式进行,例如将第三钢网开口图形整体缩小0.05倍,位置调整方式可以通过使第三钢网开口图形背离需要避让的图形的方式进行,形状调整方式可以通过调整第三钢网开口图形宽边或者长边的方式进行。
在一个具体实施例中,按照预设方式对第三钢网开口图形进行处理以获取图形处理后的第三钢网开口图形,包括:基于预设顺序,按照预设方式对第三钢网开口图形进行处理以获取图形处理后的第三钢网开口图形,预设顺序为尺寸调整方式优先级高于位置调整方式,位置调整方式优先级高于形状调整方式。
具体地,在实际中,可以仅按照尺寸调整方式进行调整,也可以仅按照位置调整方式进行调整,还可以仅按照形状调整方式进行调整,同时还可以选择两种调整方式或者三种调整方式进行调整,为了提高处理效率,在选择调整方式时可以按照预设顺序选择调整方式,即在使用一种调整方式时,尺寸调整方式优先级高于位置调整方式,位置调整方式优先级高于 形状调整方式,在使用两种调整方式时,先进行尺寸调整方式再进行位置调整方式的优先级高于先进行位置调整方式再进行形状调整方式,在使用三种调整方式时,优先使用尺寸调整方式,再使用位置调整方式,再使用形状调整方式。
例如,若图3d中第三钢网开口图形B2 3、第三钢网开口图形B2 5均满足第一条件、第二条件和第三条件,则用满足条件的第三钢网开口图形B2 3、第三钢网开口图形B2 5替代原来不满足避让要求的第一钢网开口图形B3和第一钢网开口图形B5,将第三钢网开口图形B2 3、第三钢网开口图形B2 5作为新的钢网开口,如图3e中B12 3、B12 5
若图3d中第三钢网开口图形B2 1因开口与通孔距离过近使得缺口太大,使得不满足宽厚比要求,则对不满足条件的第三钢网开口图形B2 1做图形修改处理,先修改第三钢网开口图形B2 1的尺寸(如缩小0.05倍),再修改第三钢网开口图形B2 1的位置(如背离通孔A1 1方向偏移指定距离,如图形偏移0.001mm),再修改第三钢网开口图形B2 1的形状(如微调长、宽等某一边尺寸,如微调尺寸与微调前尺寸的比值在0.5%-10%阈值范围内即可),从而产生如图3f中新的钢网开口B3 1,该钢网开口B3 1是第三钢网开口图形B2 1通过背离通孔方向偏移指定距离来修改第三钢网开口图形B2 1的位置,并使增大第三钢网开口图形B2 1的宽度部分尺寸满足微调前尺寸的0.5%-10%阈值范围内的操作以增大宽厚比的方式实现。
步骤1.53、对图形处理后的第三钢网开口图形循环执行步骤1.51和步骤1.52,在第三钢网开口图形的图形处理总次数N小于或者等于预设次数阈值,且经过N次图形处理的第三钢网开口图形同时满足第一条件、第二条件和第三条件时,则得到最终的钢网开口图形,在第三钢网开口图形的图形处理 总次数N等于预设次数阈值,且经过N次图形处理的第三钢网开口图形不能同时满足第一条件、第二条件和第三条件时,则得到第四钢网开口图形。
具体地,针对图形处理后的第三钢网开口图形,按照步骤1.51至1.52的方式重复执行步骤1.51至1.52,在重复执行过程中,当执行次数小于或者等于预设次数阈值,且经过图形处理后的第三钢网开口图形能够满足第一条件、第二条件和第三条件时,则将此经过若干次图形处理后的第三钢网开口图形替代初始的钢网开口图形,将其作为最终的钢网开口图形,若执行次数小于等于预设次数阈值时,说明上述调整方式不能得到满足要求的钢网开口图形,则将该不能满足要求的钢网开口图形作为第四钢网开口图形。例如图3g,钢网开口图形Bi 1为经过i次图形处理后的钢网开口图形。预设次数阈值例如为20次。如图3h所表示的为经过i次得到的最终的钢网开口图形。
步骤1.54、获取经过修改后的第四钢网开口图形,以得到最终的钢网开口图形。
具体地,将不满足要求的第四钢网开口图形一一统计出来,以报告形式返回至避让检查窗口,将其相应的坐标位置显示出来,供人工进行查看和修改,经人工修改后得到符合设计要求的第四钢网开口图形,从而可以得到符合设计要求的最终的钢网开口图形。
应该明白的是,本实施例将第一图形修改为第三图形仅为用于判断钢网开口图形是否需要进行避让处理,在利用本发明方法确定最终的钢网开口图形后,PCB板的通孔、阻焊图形、外框、器件本体应不做任何更改,保持原有设计。
本发明的方法通过对PCB上所有需要和钢网开口保持一定距离的元素与所有钢网开口之间的预设距离进行判断,从而得到可能与某些元素之间 需要做避让处理的钢网开口,之后再通过碰撞处理得到经过裁剪之后的钢网开口,最后再基于该钢网开口的第一面积比、宽厚比、第二面积比、尺寸比以及该钢网开口的面积和其裁剪之前的钢网开口的面积的关系判断是否需要对该钢网开口进行图形处理,然后再依照本发明的方法进一步判断经图形处理后的钢网开口是否满足要求,直至得到最终的钢网开口图形。这种方式可以提高钢网开口避让设计效率、准确率、覆盖率以及全面性。可以减少人工干预,避免人工因错看或遗漏待避让的钢网开口,而产生没避让或少避让的问题,以及避让后钢网开口不满足工艺要求等带来的反复修改问题。相比目前人工肉眼查看,本发明的方法对人员要求及作业方式都具有相当大的优势,用自动化代替人工,已经是目前各个行业的趋势,本发明也正是响应了此趋势的发展,大大地缩短了钢网开口设计时间,并且提高了钢网设计质量,进而提高了PCB板的印刷质量。
实施例二
请参见图4a~图4h,图4a~图4h是本发明实施例提供的涉及外框的钢网避让设计的过程示意图,本发明在上述实施例的基础上,以第一图形为PCB板的外框(Profile)为例举例说明利用本发明所提供的外框与钢网避让设计方法对外框与钢网开口做避让的具体过程,该过程具体包括:
步骤2.1、通过读取PCB设计数据并进行预处理,获取PCB板图形数据,如PCB板的通孔数据(导通孔)、阻焊图形数据(阻焊层)、Profile(PCB板的外框)数据、器件本体(Body)数据、器件坐标数据、器件封装数据等,先根据器件封装数据生成锡膏层数据,再通过锡膏层数据针对不同器件类型制作(设计)出相应的钢网开口图形,即得到避让所用的已完成的钢网开口图形数据。如图4a所示,需要做避让处理的PCB板的外框(Profile)、4个第一钢网开 口图形(包括第一钢网开口图形B 1、第一钢网开口图形B 2、第一钢网开口图形B 3、第一钢网开口图形B 4)。
步骤2.2、如图4b所示,判断外框的各个边框分别与钢网开口图形B 1、钢网开口图形B 2、钢网开口图形B 3、钢网开口图形B 4每两者之间的预设距离,判断其是否满足预设阈值范围,即0<AB间距<0.2mm(此处AB间距指外框的各个边框和第一钢网开口图形的边的最短距离)。
步骤2.3、若满足预设阈值范围,即满足0<AB间距<0.2mm,则将满足预设阈值范围的第一钢网开口图形作为第二钢网开口图形,外框不变。如图4b所示,d1表示外框与第一钢网开口图形B 1间的距离测量值,d1=0.07mm;d2表示外框与第一钢网开口图形B 2间的距离测量值,d2=0.13mm;d3表示外框与第一钢网开口图形B 3间的距离测量值,d3=0.18mm;d4表示外框与第一钢网开口图形B 4间的距离测量值,d4=0.4mm;d5表示外框与第一钢网开口图形B 1间的距离测量值,d5=0.21mm;d6表示外框与第一钢网开口图形B 2间的距离测量值,d6=0.38mm;d7表示外框与第一钢网开口图形B 3间的距离测量值,d7=0.3mm;d8表示外框与第一钢网开口图形B 4间的距离测量值,d8=0.36mm。因此,外框与第一钢网开口图形B 1左边之间的预设距离(即d1)、外框与第一钢网开口图形B 2右边之间的预设距离(即d3)、外框与第一钢网开口图形B 3右边之间的预设距离(即d3)均满足预设阈值范围,则如图4c所示,将第一钢网开口图形B 1、第一钢网开口图形B 2和第一钢网开口图形B 3分别作为第二钢网开口图形B1 1、第二钢网开口图形B1 2和第二钢网开口图形B1 3
步骤2.4、若不满足预设阈值范围,则保持不满足预设阈值范围的钢网开口相对应的边不变。如图4b所示,外框与第一钢网开口图形B 4左边和下边、外框与第一钢网开口图形B 1上边、外框与第一钢网开口图形B 2下边、 外框与第一钢网开口图形B 3上边,外框与第一钢网开口图形B 4、外框与第一钢网开口图形B 1上边、外框与第一钢网开口图形B 2下边、外框与第一钢网开口图形B 3上边均不满足距离要求,则第一钢网开口图形B 4、第一钢网开口图形B 1上边、第一钢网开口图形B 2下边、第一钢网开口图形B 3上边的开口保持不变。
步骤2.5、针对步骤2.3中满足预设阈值范围的外框部分,应向朝向与其满足预设阈值范围的第二钢网开口图形做内缩处理(此处的内缩指向内缩进,此处的内缩与其它情况的外扩表述的意义是一致的,均是朝向预设阈值范围的第二钢网开口图形逼近,此处之所以使用内缩是因为外框与钢网开口存在包含关系,而其他情况相互独立,不存在包含关系,因此使用外扩。),以移动至指定距离(如0.2mm),满足预设阈值范围的外框部分仅为外框中与第二钢网开口图形满足预设阈值范围的边的一部分,该部分边的长度应该满足不与其它钢网开口图形产生碰撞。如图4c中第二钢网开口图形B1 1、第二钢网开口图形B1 2和第二钢网开口图形B1 3中的黑色竖线即为移动后的图形。将移动后的图形分别与第二钢网开口图形B1 1、第二钢网开口图形B1 2和第二钢网开口图形B1 3做碰撞处理。
步骤2.6、若产生碰撞,则对第二钢网开口图形中产生碰撞的部分做裁剪处理,作为第三钢网开口图形,如图4c和4d所示,第二钢网开口图形B1 1的左边部分做裁剪处理得到第三钢网开口图形B2 1,第二钢网开口图形B1 2的右边部分做裁剪处理得到第三钢网开口图形B2 2、第二钢网开口图形B1 3的右边部分做裁剪处理得到第三钢网开口图形B2 3
步骤2.7、针对第三钢网开口图形B2 1、第三钢网开口图形B2 2、第三钢网开口图形B2 3,分别判断第三钢网开口图形B2 1、第三钢网开口图形B2 2、 第三钢网开口图形B2 3是否均满足第一面积比>0.66、宽厚比>1.5、第二面积比>50%、尺寸比>50%、第三钢网开口图形和与其对应的第二钢网开口图形的面积的比值小于20%。
步骤2.8、若步骤2.7中条件均满足,则用满足条件的第三钢网开口图形替代未修改之前的第一钢网开口图形,如图4e所示,第三钢网开口图形B2 2、第三钢网开口图形B2 3均满足步骤2.7中的条件,则将第三钢网开口图形B2 2作为新的钢网开口图形B12 2替换第一钢网开口图形B 2,将第三钢网开口图形B2 3作为新的钢网开口图形B12 3替换第一钢网开口图形B 3
步骤2.9、若步骤2.7中有一个条件不满足,视为不满足条件,如图4e中的第三钢网开口图形B2 1因开口与外框距离过近使得缺口太大,不满足宽厚比的要求,则需要对不满足条件的第三钢网开口图形做图形修改处理。如先修改第三钢网开口图形的尺寸(如缩小0.05倍),再修改第三钢网开口图形的位置(如背离外框方向偏移指定距离,如偏移0.001mm),再修改第三钢网开口图形的形状(微调长宽等某一边尺寸,如微调尺寸与微调前尺寸的比值在0.5%-10%阈值范围内即可),产生新的钢网开口图形,如图4f中的钢网开口图形B3 1,是第三钢网开口图形B2 1通过背离外框方向偏移指定距离来修改第三钢网开口图形B2 1的位置,并使增大开口宽度部分尺寸满足微调前尺寸的0.5%-10%阈值范围内的操作以增大宽厚比的方式实现。
步骤2.10、针对所有经过步骤2.9经过图形处理后的钢网开口图形,重复步骤2.7,若仍有不满足条件的,则继续重复步骤2.9,一直循环步骤2.7至步骤2.9,直到产生新的钢网开口图形Bi(此处i从i=2,i<20)开始,直到i=20退出循环,如图4g中钢网开口图形Bi 1
步骤2.11、若步骤2.7中条件均满足,用Bi替换钢网开口B 1,如图图4h 中的钢网开口图形B1i 1
步骤2.12、对于经过i次循环直到i=20仍然不满足步骤2.7条件的钢网开口图形Bi,将其一一统计出来,以报告形式返回至避让检查窗口,将其相应的坐标位置显示出来,供人工进行查看和修改。
实施例三
请参见图5a~图5h,图5a~图5h是本发明实施例提供的涉及阻焊图形的钢网避让设计的过程示意图,本发明在上述实施例的基础上,以第一图形为阻焊为例举例说明利用本发明所提供的阻焊图形与钢网避让设计方法对阻焊与钢网开口做避让的具体过程,该过程具体包括:
步骤3.1、通过读取PCB设计数据并进行预处理,获取PCB板图形数据,如PCB板的通孔数据(导通孔)、阻焊数据(阻焊层)、Profile(PCB板的外框)数据、器件本体(Body)数据、器件坐标数据、器件封装数据等,先根据器件封装数据生成锡膏层数据,再通过锡膏层数据针对不同器件类型制作(设计)出相应的钢网开口图形。如图5a所示,需要做避让处理的为5个阻焊(包括阻焊S 1、阻焊S 2、阻焊S 3、阻焊S 4、阻焊S 5)和5个第一钢网开口图形(包括第一钢网开口图形B 1、第一钢网开口图形B 2、第一钢网开口图形B 3、第一钢网开口图形B 4、第一钢网开口图形B 5)。
步骤3.2、如图5b所示,判断阻焊S 1、阻焊S 2、阻焊S 3、阻焊S 4、阻焊S 5与第一钢网开口图形B 1、第一钢网开口图形B 2、第一钢网开口图形B 3、第一钢网开口图形B 4、第一钢网开口图形B 5每两者间的预距离,判断其是否满足预设阈值范围,即0<AB间距<0.2mm(此处AB间距指阻焊和第一钢网开口图形的最短距离)。
步骤3.3、若满足预设阈值范围,即0<AB间距<0.2mm,则将满足预设 阈值范围的第一钢网开口图形作为第二钢网开口图形。如图5b所示,d1表示阻焊S 1与第一钢网开口图形B 1间的距离测量值,d1=0.07mm;d2表示阻焊S 2与第一钢网开口图形B 2间的距离测量值,d2=0.13mm;d3表示阻焊S 3与第一钢网开口图形B 3间的距离测量值,d3=0.18mm;d4表示阻焊S 4与第一钢网开口图形B 4间的距离测量值,d4=0.35mm;d5表示阻焊S 5与第一钢网开口图形B 5间的距离测量值,d5=0.38mm。则可以将满足预设阈值范围的第一钢网开口图形B 1、第一钢网开口图形B 2、第一钢网开口图形B 3作为图5c中的第二钢网开口图形B1 1、第二钢网开口图形B1 2、第二钢网开口图形B1 3
步骤3.4、若不满足预设阈值范围,则第一钢网开口图形保持不变,如图5b中的阻焊S 4与第一钢网开口图形B 4之间的预设距离、阻焊S 5与第一钢网开口图形B 5之间的预设距离均不满足距离要求,则第一钢网开口图形B 4与第一钢网开口图形B 5开口保持不变。
步骤3.5、针对步骤3.2中满足预设阈值范围的阻焊,将其满足预设阈值范围的部分沿朝向与其满足预设阈值范围的第二钢网开口图形的方向外扩至指定距离(如0.2mm),此处的外扩是指阻焊中靠近与其满足预设阈值范围的第二钢网开口图形的边,该边朝向该第二钢网开口图形外扩指定距离,然后和与其满足预设阈值范围的第二钢网开口图形做碰撞处理,如图5c中示出了阻焊S1 1、阻焊S1 2、阻焊S1 3为阻焊S 1、阻焊S 2、阻焊S 3经外扩之后与第二钢网开口图形B1 1、第二钢网开口图形B1 2、第二钢网开口图形B1 3产生碰撞的部分。
步骤3.6、若产生碰撞,则对第二钢网开口图形中产生碰撞的部分做裁剪处理,作为第三钢网开口图形,如图5c和5d所示,第二钢网开口图形B1 1做裁剪处理得到第三钢网开口图形B2 1,第二钢网开口图形B1 2做裁剪处理 得到第三钢网开口图形B2 2、第二钢网开口图形B1 3做裁剪处理得到第三钢网开口图形B2 3
步骤3.7、针对第三钢网开口图形B2 1、第三钢网开口图形B2 2、第三钢网开口图形B2 3,分别判断第三钢网开口图形B2 1、第三钢网开口图形B2 2、第三钢网开口图形B2 3是否均满足第一面积比>0.66、宽厚比>1.5、第二面积比>50%、尺寸比>50%、第三钢网开口图形和与其对应的第二钢网开口图形的面积的比值小于20%。
步骤3.8、若步骤3.7中条件均满足,则用满足条件的第三钢网开口图形替代未修改之前的第一钢网开口图形,如图5e所示,第三钢网开口图形B2 2、第三钢网开口图形B2 3均满足步骤3.7中的条件,则将第三钢网开口图形B2 2作为新的钢网开口图形B12 2替换第一钢网开口图形B 2,将第三钢网开口图形B2 3作为新的钢网开口图形B12 3替换第一钢网开口图形B 3
步骤3.9、若步骤3.7中有一个条件不满足,视为不满足条件,如图5e中的第三钢网开口图形B2 1因开口与阻焊距离过近使得缺口太大,不满足宽厚比的要求,则需要对不满足条件的第三钢网开口图形做图形修改处理。如先修改开口第三钢网开口图形尺寸(如缩小0.05倍),再修改第三钢网开口图形的位置(如背离阻焊方向偏移指定距离,如偏移0.001mm),再修改三钢网开口图形的形状(微调长宽等某一边尺寸,如微调尺寸与微调前尺寸的比值在0.5%-10%阈值范围内即可),产生新的钢网开口图形,如图5f中的钢网开口图形B3 1,,是第三钢网开口图形B2 1通过背离外框方向偏移指定距离来修改第三钢网开口图形B2 1的位置,并使增大开口宽度部分尺寸满足微调前尺寸的0.5%-10%阈值范围内的操作以增大宽厚比的方式实现。
步骤3.10、针对所有经过步骤3.9经过图形处理后的钢网开口图形,重 复步骤3.7,若仍有不满足条件的,则继续重复步骤3.9,一直循环步骤3.7至步骤3.9,直到产生新的钢网开口图形Bi(此处i从i=2,i<20)开始,直到i=20退出循环,如图5g中钢网开口图形Bi 1
步骤3.11、若步骤3.7中条件均满足,用Bi替换钢网开口B 1,如图图5h中的钢网开口图形B1i 1
步骤3.12、对于经过i次循环直到i=20仍然不满足步骤3.7条件的钢网开口图形Bi,将其一一统计出来,以报告形式返回至避让检查窗口,将其相应的坐标位置显示出来,供人工进行查看和修改。
实施例四
请参见图6a~图6h,图6a~图6h是本发明实施例提供的涉及器件本体的钢网避让设计的过程示意图,本发明在上述实施例的基础上,以第一图形为器件本体为例举例说明利用本发明所提供的器件本体与钢网避让设计方法对器件本体与钢网开口做避让的具体过程,该过程具体包括:
步骤4.1、通过读取PCB设计数据并进行预处理,获取PCB板图形数据,如PCB板的通孔数据(导通孔)、阻焊数据(阻焊层)、Profile(PCB板的外框)数据、器件本体(Body)数据、器件坐标数据、器件封装数据等,先根据器件封装数据生成锡膏层数据,再通过锡膏层数据针对不同器件类型制作(设计)出相应的钢网开口图形。如图6a所示,需要做避让处理的为5个器件本体(包括器件本体P 1、器件本体P 2、器件本体P 3、器件本体P 4、器件本体P 5)和5个第一钢网开口图形(包括第一钢网开口图形B 1、第一钢网开口图形B 2、第一钢网开口图形B 3、第一钢网开口图形B 4、第一钢网开口图形B 5)。
步骤4.2、如图6b所示,判断器件本体P 1、器件本体P 2、器件本体P 3、器件本体P 4、器件本体P 5与第一钢网开口图形B 1、第一钢网开口图形B 2、第一 钢网开口图形B 3、第一钢网开口图形B 4、第一钢网开口图形B 5两两间的预距离,判断其是否满足预设阈值范围,即0<AB间距<0.2mm(此处AB间距指器件本体和第一钢网开口图形的最短距离)。
步骤4.3、若满足预设阈值范围,即0<AB间距<0.2mm,则将满足预设阈值范围的第一钢网开口图形作为第二钢网开口图形。如图6b所示,d1表示器件本体P 1与第一钢网开口图形B 1间的距离测量值,d1=0.07mm;d2表示器件本体P 2与第一钢网开口图形B 2间的距离测量值,,d2=0.15mm;d3表示器件本体P 3与第一钢网开口图形B 3间的距离测量值,d3=0.18mm;d4表示器件本体P 4与第一钢网开口图形B 4间的距离测量值,d4=0.3mm;d5表示器件本体P 5与第一钢网开口图形B 5间的距离测量值,d5=0.33mm。则可以将满足预设阈值范围的第一钢网开口图形B 1、第一钢网开口图形B 2、第一钢网开口图形B 3作为图6c中的第二钢网开口图形B1 1、第二钢网开口图形B1 2、第二钢网开口图形B1 3
步骤4.4、若不满足预设阈值范围,则第一钢网开口图形保持不变,如图6b中的器件本体P4与第一钢网开口图形B 4之间的预设距离、器件本体P 5与第一钢网开口图形B 5之间的预设距离均不满足距离要求,则第一钢网开口图形B 4与第一钢网开口图形B 5开口保持不变。
步骤4.5、针对步骤4.2中满足预设阈值范围的器件本体,将其满足预设阈值范围的部分沿朝向与其满足预设阈值范围的第二钢网开口图形的方向外扩至指定距离(如0.2mm),此处的外扩是指器件本体中靠近与其满足预设阈值范围的第二钢网开口图形的边,该边朝向该第二钢网开口图形外扩指定距离,然后和与其满足预设阈值范围的第二钢网开口图形做碰撞处理,如图6c中示出了器件本体P1 1、器件本体P1 2、器件本体P1 3为器件本体P 1、 器件本体P 2、器件本体P 3经外扩之后与第二钢网开口图形B1 1、第二钢网开口图形B1 2、第二钢网开口图形B1 3产生碰撞的部分。
步骤4.6、若产生碰撞,则对第二钢网开口图形中产生碰撞的部分做裁剪处理,作为第三钢网开口图形,如图6c和6d所示,第二钢网开口图形B1 1做裁剪处理得到第三钢网开口图形B2 1,第二钢网开口图形B1 2做裁剪处理得到第三钢网开口图形B2 2、第二钢网开口图形B1 3做裁剪处理得到第三钢网开口图形B2 3
步骤4.7、针对第三钢网开口图形B2 1、第三钢网开口图形B2 2、第三钢网开口图形B2 3,分别判断第三钢网开口图形B2 1、第三钢网开口图形B2 2、第三钢网开口图形B2 3是否均满足第一面积比>0.66、宽厚比>1.5、第二面积比>50%、尺寸比>50%、第三钢网开口图形和与其对应的第二钢网开口图形的面积的比值小于20%。
步骤4.8、若步骤4.7中条件均满足,则用满足条件的第三钢网开口图形替代未修改之前的第一钢网开口图形,如图6e所示,第三钢网开口图形B2 2、第三钢网开口图形B2 3均满足步骤4.7中的条件,则将第三钢网开口图形B2 2作为新的钢网开口图形B12 2替换第一钢网开口图形B 2,将第三钢网开口图形B2 3作为新的钢网开口图形B12 3替换第一钢网开口图形B 3
步骤4.9、若步骤4.7中有一个条件不满足,视为不满足条件,如图6e中的第三钢网开口图形B2 1因开口与器件本体距离过近使得缺口太大,不满足宽厚比的要求,则需要对不满足条件的第三钢网开口图形做图形修改处理。如先修改开口第三钢网开口图形尺寸(如缩小0.05倍),再修改第三钢网开口图形的位置(如背离器件本体方向偏移指定距离,如偏移0.001mm),再修改三钢网开口图形的形状(微调长宽等某一边尺寸,如微调尺寸与微调前尺寸 的比值在0.5%-10%阈值范围内即可),产生新的钢网开口图形,如图6f中的钢网开口图形B3 1,,是第三钢网开口图形B2 1通过背离外框方向偏移指定距离来修改第三钢网开口图形B2 1的位置,并使增大开口宽度部分尺寸满足微调前尺寸的0.5%-10%阈值范围内的操作以增大宽厚比的方式实现。
步骤4.10、针对所有经过步骤4.9经过图形处理后的钢网开口图形,重复步骤4.7,若仍有不满足条件的,则继续重复步骤4.9,一直循环步骤4.7至步骤4.9,直到产生新的钢网开口图形Bi(此处i从i=2,i<20)开始,直到i=20退出循环,如图6g中钢网开口图形Bi 1
步骤4.11、若步骤4.7中条件均满足,用Bi替换钢网开口B 1,如图图6h中的钢网开口图形B1i 1
步骤4.12、对于经过i次循环直到i=20仍然不满足步骤4.7条件的钢网开口图形Bi,将其一一统计出来,以报告形式返回至避让检查窗口,将其相应的坐标位置显示出来,供人工进行查看和修改。
实施例五
请参见图7,图7是本发明实施例提供的一种钢网避让设计装置的结构示意图。该钢网避让设计装置,包括:
获取模块,用于获取若干第一图形和若干第一钢网开口图形;
第一分析模块,用于判断第一图形和第一钢网开口图形之间的预设距离是否在预设阈值范围之内,若预设距离满足预设阈值范围的条件,则得到满足预设阈值范围的第二图形和第二钢网开口图形;
图形处理模块,用于根据第二图形获取第三图形,第三图形用于与第二钢网开口图形做碰撞处理;
第二分析模块,用于判断第三图形与第二钢网开口图形的碰撞关系, 若产生碰撞,则对第二钢网开口图形进行裁剪得到第三钢网开口图形;
检测模块,用于根据第三钢网开口图形的第一面积比、宽厚比、第二面积比、第三钢网开口图形的面积和与其对应的第二钢网开口图形的面积的关系得到最终的钢网开口图形。
本实施例提供的钢网避让设计装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
实施例六
请参见图8,图8是本发明实施例提供的一种电子设备的结构示意图。该电子设备1100,包括:处理器1101、通信接口1102、存储器1103和通信总线1104,其中,处理器1101,通信接口1102,存储器1103通过通信总线1104完成相互间的通信;
存储器1103,用于存储计算机程序;
处理器1101,用于执行计算机程序时,实现上述方法步骤。
处理器1101执行计算机程序时实现如下步骤:
步骤1.1、获取若干第一图形和若干第一钢网开口图形;
步骤1.2、判断第一图形和第一钢网开口图形之间的预设距离是否在预设阈值范围之内,若满足预设阈值范围的条件,则得到满足预设阈值范围的第二图形和第二钢网开口图形;
步骤1.3、根据第二图形获取第三图形,第三图形用于与第二钢网开口图形做碰撞处理;
步骤1.4、判断第三图形与第二钢网开口图形的碰撞关系,若产生碰撞,则对第二钢网开口图形进行裁剪得到第三钢网开口图形;
步骤1.5、根据第三钢网开口图形的第一面积比、宽厚比、第二面积比、 尺寸比、第三钢网开口图形的面积和与其对应的第二钢网开口图形的面积的关系得到最终的钢网开口图形。
本发明实施例提供的电子设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
实施例七
本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,上述计算机程序被处理器执行时实现以下步骤:
步骤1.1、获取若干第一图形和若干第一钢网开口图形;
步骤1.2、判断第一图形和第一钢网开口图形之间的预设距离是否在预设阈值范围之内,若满足预设阈值范围的条件,则得到满足预设阈值范围的第二图形和第二钢网开口图形;
步骤1.3、根据第二图形获取第三图形,第三图形用于与第二钢网开口图形做碰撞处理;
步骤1.4、判断第三图形与第二钢网开口图形的碰撞关系,若产生碰撞,则对第二钢网开口图形进行裁剪得到第三钢网开口图形;
步骤1.5、根据第三钢网开口图形的第一面积比、宽厚比、第二面积比、尺寸比、第三钢网开口图形的面积和与其对应的第二钢网开口图形的面积的关系得到最终的钢网开口图形。
本发明实施例提供的计算机可读存储介质,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
本领域技术人员应明白,本申请的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式,这里将它们都统称为“模块” 或“系统”。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可读存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机程序存储/分布在合适的介质中,与其它硬件一起提供或作为硬件的一部分,也可以采用其他分布形式,如通过Internet或其它有线或无线电信系统。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (11)

  1. 一种钢网避让设计方法,其特征在于,包括:
    获取若干第一图形和若干第一钢网开口图形;
    判断所述第一图形和所述第一钢网开口图形之间的预设距离是否在预设阈值范围之内,若满足所述预设阈值范围的条件,则得到满足所述预设阈值范围的第二图形和第二钢网开口图形;
    根据所述第二图形获取第三图形;
    判断所述第三图形与所述第二钢网开口图形的碰撞关系,若产生碰撞,则对所述第二钢网开口图形进行裁剪得到第三钢网开口图形;
    根据所述第三钢网开口图形的第一面积比、宽厚比、第二面积比、尺寸比、所述第三钢网开口图形的面积和与其对应的所述第二钢网开口图形的面积的关系得到最终的钢网开口图形。
  2. 根据权利要求1所述的钢网避让设计方法,其特征在于,根据所述第二图形得到第三图形,包括:
    将所述满足所述预设阈值范围的第二图形沿预设方向进行外扩或内缩得到所述第三图形,所述预设方向为朝向所述第二钢网开口图形的方向。
  3. 根据权利要求2所述的钢网避让设计方法,其特征在于,对所述第二钢网开口图形进行裁剪得到第三钢网开口图形,包括:
    对所述第二钢网开口图形的碰撞部分进行裁剪得到所述第三钢网开口图形。
  4. 根据权利要求3所述的钢网避让设计方法,其特征在于,所述第一面积比为所述第三钢网开口图形的面积与孔壁面积的比值,所述第二面积比为所述第三钢网开口图形的面积和与其对应的所述第二钢网开口图形的面积。
  5. 根据权利要求4所述的钢网避让设计方法,其特征在于,根据所述第三钢网开口图形的第一面积比、宽厚比、第二面积比、所述第三钢网开口图形的面积和与其对应的所述第二钢网开口图形的面积的关系得到最终的钢网开口图形,包括:
    步骤1.51、判断所述第三钢网开口图形是否满足第一条件、第二条件和第三条件,其中,所述第一条件为所述第一面积比大于第一阈值、所述宽厚比大于第二阈值,所述第二条件为所述第三钢网开口图形的面积和与其对应的所述第二钢网开口图形的面积的比值小于第三阈值,所述第三条件为所述第二面积比大于第四阈值、所述尺寸比大于第五阈值;
    步骤1.52、若不能同时满足,则按照预设方式对所述第三钢网开口图形进行处理以获取图形处理后的第三钢网开口图形;
    步骤1.53、对所述图形处理后的第三钢网开口图形循环执行步骤1.51和步骤1.52,在所述第三钢网开口图形的图形处理总次数N小于或者等于预设次数阈值,且经过N次图形处理的第三钢网开口图形同时满足所述第一条件、所述第二条件和所述第三条件时,则得到最终的钢网开口图形,在所述第三钢网开口图形的图形处理总次数N等于所述预设次数阈值,且经过N次图形处理的第三钢网开口图形不能同时满足所述第一条件、所述第二条件和所述第三条件时,则得到第四钢网开口图形;
    步骤1.54、获取经过修改后的所述第四钢网开口图形,以得到最终的钢网开口图形。
  6. 根据权利要求5所述的钢网避让设计方法,其特征在于,所述预设方式包括尺寸调整方式、位置调整方式、形状调整方式中的至少一项。
  7. 根据权利要求6所述的钢网避让设计方法,其特征在于,按照预设 方式对所述第三钢网开口图形进行处理以获取图形处理后的第三钢网开口图形,包括:
    基于预设顺序,按照所述预设方式对所述第三钢网开口图形进行处理以获取所述图形处理后的第三钢网开口图形,所述预设顺序为所述尺寸调整方式优先级高于所述位置调整方式,所述位置调整方式优先级高于所述形状调整方式。
  8. 根据权利要求1至7任一项所述的钢网避让设计方法,其特征在于,所述第一图形包括通孔图形、阻焊图形、外框图形、器件本体图形中的至少一种。
  9. 一种钢网避让设计装置,其特征在于,包括:
    获取模块,用于获取若干第一图形和若干第一钢网开口图形;
    第一分析模块,用于判断所述第一图形和所述第一钢网开口图形之间的预设距离是否在预设阈值范围之内,若满足所述预设阈值范围的条件,则得到满足所述预设阈值范围的第二图形和第二钢网开口图形;
    图形处理模块,用于根据所述第二图形得到第三图形,所述第三图形用于与所述第二钢网开口图形做碰撞处理;
    第二分析模块,用于判断所述第三图形与所述第二钢网开口图形的碰撞关系,若产生碰撞,则对所述第二钢网开口图形进行裁剪得到第三钢网开口图形;
    检测模块,用于根据所述第三钢网开口图形的第一面积比、宽厚比、第二面积比、所述第三钢网开口图形的面积和与其对应的所述第二钢网开口图形的面积的关系得到最终的钢网开口图形。
  10. 一种电子设备,其特征在于,包括处理器、通信接口、存储器和 通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序时,实现权利要求1-8任一项所述的方法步骤。
  11. 一种存储介质,其特征在于,所述存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-8任一项所述的方法步骤。
PCT/CN2021/097211 2020-09-16 2021-05-31 钢网避让设计方法、设计装置、电子设备及存储介质 WO2022057313A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21868150.0A EP4145331A4 (en) 2020-09-16 2021-05-31 TEMPLATE AVOIDANCE DESIGN METHOD AND APPARATUS AND ELECTRONIC DEVICE AND STORAGE MEDIUM
JP2022567149A JP7479616B2 (ja) 2020-09-16 2021-05-31 ステンシル回避設計方法、ステンシル回避設計装置、電子デバイス及び記憶媒体
US18/009,804 US11775731B2 (en) 2020-09-16 2021-05-31 Stencil-avoidance design method and device, electronic device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010974513.8A CN112232014B (zh) 2020-09-16 2020-09-16 钢网避让设计方法、设计装置、电子设备及存储介质
CN202010974513.8 2020-09-16

Publications (1)

Publication Number Publication Date
WO2022057313A1 true WO2022057313A1 (zh) 2022-03-24

Family

ID=74106955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097211 WO2022057313A1 (zh) 2020-09-16 2021-05-31 钢网避让设计方法、设计装置、电子设备及存储介质

Country Status (5)

Country Link
US (1) US11775731B2 (zh)
EP (1) EP4145331A4 (zh)
JP (1) JP7479616B2 (zh)
CN (1) CN112232014B (zh)
WO (1) WO2022057313A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112232014B (zh) * 2020-09-16 2022-07-29 上海望友信息科技有限公司 钢网避让设计方法、设计装置、电子设备及存储介质
CN112788859B (zh) * 2021-01-21 2022-04-01 上海望友信息科技有限公司 一种屏蔽框钢网开口方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070234262A1 (en) * 2006-03-29 2007-10-04 Fujitsu Limited Method and apparatus for inspecting element layout in semiconductor device
CN110600402A (zh) * 2019-08-27 2019-12-20 上海望友信息科技有限公司 钢网开口的设计方法、钢网开口的设计装置及电子设备
US20200100354A1 (en) * 2018-09-25 2020-03-26 International Business Machines Corporation Automatic determination of power plane shape in printed circuit board
CN111191408A (zh) * 2019-12-26 2020-05-22 深圳市元征科技股份有限公司 一种pcb元件布局校验方法、装置、服务器及存储介质
CN111291530A (zh) * 2020-02-23 2020-06-16 苏州浪潮智能科技有限公司 一种pcb板中避免走线与阻焊层重叠的方法及系统
CN112232014A (zh) * 2020-09-16 2021-01-15 上海望友信息科技有限公司 钢网避让设计方法、设计装置、电子设备及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412873C (zh) 2002-08-08 2008-08-20 弗赖斯金属有限公司d/b/a阿尔发金属有限公司 用于修改电子设计数据的系统和方法
JP2004334302A (ja) 2003-04-30 2004-11-25 Ngk Spark Plug Co Ltd 電子回路基板用camデータ作成方法、電子回路基板用cad/camシステムとそれに使用するコンピュータプログラム、及び電子回路基板の製造方法
JP2005228999A (ja) 2004-02-13 2005-08-25 Sharp Corp 半導体集積回路のレイアウトパターン修正装置、半導体集積回路のレイアウトパターン修正方法、半導体集積装置の製造方法、半導体集積回路のレイアウトパターン修正プログラムおよび可読記録媒体
JP5606932B2 (ja) 2011-01-18 2014-10-15 ルネサスエレクトロニクス株式会社 マスクの製造方法ならびに光近接効果補正の補正方法および半導体装置の製造方法
CN106227946B (zh) 2016-07-26 2019-03-12 上海望友信息科技有限公司 一种pcb网板制作方法及系统
CN108829907A (zh) * 2018-04-11 2018-11-16 上海望友信息科技有限公司 基于eda封装库创建钢网库的方法及系统、存储介质及终端
CN109977518B (zh) * 2019-03-19 2021-02-12 上海望友信息科技有限公司 网板阶梯的设计方法、系统、计算机可读存储介质及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070234262A1 (en) * 2006-03-29 2007-10-04 Fujitsu Limited Method and apparatus for inspecting element layout in semiconductor device
US20200100354A1 (en) * 2018-09-25 2020-03-26 International Business Machines Corporation Automatic determination of power plane shape in printed circuit board
CN110600402A (zh) * 2019-08-27 2019-12-20 上海望友信息科技有限公司 钢网开口的设计方法、钢网开口的设计装置及电子设备
CN111191408A (zh) * 2019-12-26 2020-05-22 深圳市元征科技股份有限公司 一种pcb元件布局校验方法、装置、服务器及存储介质
CN111291530A (zh) * 2020-02-23 2020-06-16 苏州浪潮智能科技有限公司 一种pcb板中避免走线与阻焊层重叠的方法及系统
CN112232014A (zh) * 2020-09-16 2021-01-15 上海望友信息科技有限公司 钢网避让设计方法、设计装置、电子设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4145331A4 *

Also Published As

Publication number Publication date
CN112232014A (zh) 2021-01-15
EP4145331A1 (en) 2023-03-08
JP2023524120A (ja) 2023-06-08
JP7479616B2 (ja) 2024-05-09
EP4145331A4 (en) 2024-06-05
US20230205973A1 (en) 2023-06-29
US11775731B2 (en) 2023-10-03
CN112232014B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2022057313A1 (zh) 钢网避让设计方法、设计装置、电子设备及存储介质
JP4378648B2 (ja) 照射パターンデータ作成方法、マスク製造方法、及び描画システム
CN107479331B (zh) 一种图形转角的opc修正方法
KR101717337B1 (ko) 스크린 인쇄용 메쉬 부재 및 스크린 인쇄판
CN108009316B (zh) Opc修正方法
CN107908893B (zh) 一种金属层光阻顶部缺失工艺热点的版图处理方法
CN115243471A (zh) 一种pcb补锡方法、系统、电子设备及存储介质
CN113495426A (zh) 一种光学临近效应修正方法及装置
CN110658696B (zh) 断线热点的光刻友善性设计检查方法
CN110126458A (zh) 一种pcb丝印自动调整方法、装置及存储介质
EP1514202B1 (de) Verfahren zum verändern von entwurfsdaten für die herstellung eines bauteils sowie zugehöriger einheiten
JP5888006B2 (ja) 電子線照射量決定方法
CN109145378B (zh) 一种快速复制pcb线段的方法及系统
TW201411274A (zh) 產生輔助圖案的方法
WO2022156526A1 (zh) 一种屏蔽框钢网开口方法、装置、电子设备及存储介质
CN115657417A (zh) 目标版图优化方法
CN111474820B (zh) 一种模拟凹角目标图形生成的优化方法
JP4092817B2 (ja) 鉛蓄電池用エキスパンド格子体の製造方法
CN109992808B (zh) 一种快速生成参数化单元的方法
CN109523608B (zh) 一种剔除pcb生产中cam图形冗余边的矢量图形填充方法及系统
CN111596521B (zh) 一种提高曝光分辨率的版图结构及制作方法
CN111948900B (zh) 版图的特征图形的识别方法
CN109696796B (zh) 光罩优化方法和光学临近修正方法
CN112949242B (zh) 遮光带版图绘制方法、光罩版图绘制方法及光罩版图
CN115373227A (zh) 光掩模修正方法和装置以及布局机器学习模型的训练方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022567149

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021868150

Country of ref document: EP

Effective date: 20221129

NENP Non-entry into the national phase

Ref country code: DE