WO2022056668A1 - 环氧树脂、环氧树脂组合物、半导体密封材料及半导体装置 - Google Patents

环氧树脂、环氧树脂组合物、半导体密封材料及半导体装置 Download PDF

Info

Publication number
WO2022056668A1
WO2022056668A1 PCT/CN2020/115282 CN2020115282W WO2022056668A1 WO 2022056668 A1 WO2022056668 A1 WO 2022056668A1 CN 2020115282 W CN2020115282 W CN 2020115282W WO 2022056668 A1 WO2022056668 A1 WO 2022056668A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
resins
sealing material
epoxy
Prior art date
Application number
PCT/CN2020/115282
Other languages
English (en)
French (fr)
Inventor
王之锟
矢本和久
青山和贤
秋元源祐
中村信哉
戚伟
赵伟
李立岩
Original Assignee
Dic株式会社
王之锟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社, 王之锟 filed Critical Dic株式会社
Priority to PCT/CN2020/115282 priority Critical patent/WO2022056668A1/zh
Priority to TW110134164A priority patent/TW202225245A/zh
Publication of WO2022056668A1 publication Critical patent/WO2022056668A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to an epoxy resin, an epoxy resin composition, a semiconductor sealing material, and a semiconductor device.
  • Epoxy resin compositions containing epoxy resins and their curing agents as essential components are widely used in the fields of semiconductor sealing materials, electronic components such as printed circuit boards, and electronic components due to their excellent physical properties such as high heat resistance and moisture resistance.
  • conductive adhesives such as conductive pastes, other adhesives, substrates for composite materials, coatings, photoresist materials, coloring materials, etc.
  • phenolic resins and epoxy resins for sealing materials for electronic parts for example, benzylated phenolic resins using benzylated phenolic resins obtained by reacting phenolic resins with benzylic agents such as benzyl chloride, and epoxy resins are disclosed.
  • the epoxy resin obtained by the reaction of the above-mentioned benzylated phenol resin and epihalohydrin for example, refer to Patent Document 1).
  • a phenolic resin obtained by reacting a phenolic compound with dichloromethylnaphthalene and a phenolic resin obtained by reacting the above-mentioned dichloromethylnaphthalene with epihalohydrin and the like are also disclosed.
  • prepared epoxy resin for example, refer to Patent Documents 2 and 3).
  • the current situation is that in the field of semiconductor encapsulating materials, an epoxy resin composition sufficiently provided with, in particular, high fluidity, blocking resistance, high toughness, and high adhesion to a base material has not been obtained.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-120039
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-59792
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-123859
  • the problem to be solved by the present invention is to provide an epoxy resin suitable for semiconductor encapsulation, which is excellent in both fluidity and blocking resistance, and which is excellent in the toughness of the cured product and in the adhesion to a metal substrate, and which contains the above-mentioned epoxy resin.
  • the present inventors have repeatedly conducted intensive studies in order to solve the above-mentioned problems, and as a result, they have found that a crystalline epoxy resin containing a glycidyl ether compound having a specific structure has excellent blocking resistance and sufficient fluidity during dry blending , and the cured product obtained by using the epoxy resin is excellent in toughness and adhesiveness to a metal substrate, and therefore can be suitably used in a semiconductor sealing material application, and the present invention has been completed.
  • the present invention relates to an epoxy resin characterized by containing a glycidyl ether product of a dihydroxynaphthalene compound (X) and having crystallinity.
  • the aforementioned dihydroxynaphthalene compound (X) is represented by the following structural formula (1).
  • R 1 is each independently any one of an aliphatic hydrocarbon group, an alkoxy group, and a halogen atom.
  • n is each independently an integer of 0-3.
  • the two hydroxyl groups may be bonded to the same aromatic ring of the two aromatic rings of the naphthalene ring, or may be bonded to different aromatic rings of the two aromatic rings of the naphthalene ring, respectively.
  • the epoxy resin of the present invention preferably has a melting point of 50 to 150°C.
  • the present invention relates to an epoxy resin composition characterized by containing the aforementioned epoxy resin.
  • the epoxy resin composition of the present invention may contain other epoxy resins.
  • the epoxy resin composition of the present invention preferably has a mass ratio of the aforementioned epoxy resin to the aforementioned other epoxy resins of 99/1 to 60/40.
  • the epoxy resin composition of the present invention may further contain a curing agent for epoxy resins.
  • the epoxy resin composition of the present invention may further contain an inorganic filler.
  • the present invention relates to a cured product obtained from the aforementioned epoxy resin composition.
  • the present invention relates to a semiconductor sealing material comprising the epoxy resin composition.
  • the present invention relates to a semiconductor device comprising a cured product of the semiconductor sealing material.
  • the present invention by using a crystalline epoxy resin containing a glycidyl ether compound having a specific structure, it is possible to achieve both fluidity and blocking resistance of the epoxy resin composition containing the epoxy resin, and to achieve moldability Also excellent epoxy resin composition.
  • cured material obtained using the said epoxy resin composition is also excellent in toughness and adhesiveness (high adhesiveness) with respect to a metal base material, and is useful.
  • the epoxy resin composition containing the aforementioned epoxy resin has a low viscosity when melted, has high fluidity, and is excellent in moldability, and thus can be suitably used for a semiconductor sealing material application.
  • FIG. 1 is a GPC chart of the epoxy resin (1) obtained in Synthesis Example 1.
  • FIG. 1 is a GPC chart of the epoxy resin (1) obtained in Synthesis Example 1.
  • the present invention relates to an epoxy resin characterized by containing a glycidyl ether product of a dihydroxynaphthalene compound (X) and having crystallinity.
  • the above epoxy resin contains a naphthalene ring and has (shows) crystallinity, so it is difficult to cause blocking during dry mixing, and has the characteristics of excellent toughness and/or adhesion to metal substrates of the cured product, and is suitable for semiconductor sealing materials. use, is useful.
  • the dihydroxynaphthalene compound (X) may be a compound having two phenolic hydroxyl groups on the naphthalene ring, and there are no particular limitations on the substitution position of the phenolic hydroxyl group, the presence or absence of other substituents, and the like, and various compounds can be used. .
  • the epoxy resin of the present invention is characterized by having crystallinity.
  • the epoxy resin exhibits crystallinity because the dihydroxynaphthalene compound (X) has a naphthalene ring exhibiting strong orientation.
  • the naphthalene ring exhibits strong orientation, the thermal expansion coefficient is suppressed, the volume change of the cured product obtained by using the epoxy resin is reduced, and the residual stress in the cured product is alleviated.
  • a cured product that can express high toughness and high adhesion can be obtained.
  • Epoxy resin etc. which have properties required for semiconductor sealing material and are solid content.
  • the epoxy resin of the present invention has crystallinity, blocking does not easily occur during dry blending, high fluidity, which is a characteristic required as a semiconductor sealing material, high toughness of the obtained cured product, and high density with metal substrates It is also excellent in compatibility and is a preferable aspect.
  • the aforementioned dihydroxynaphthalene compound (X) is represented by the following structural formula (1).
  • R 1 is each independently any one of an aliphatic hydrocarbon group, an alkoxy group, and a halogen atom.
  • n is each independently an integer of 0-3.
  • the two hydroxyl groups may be bonded to the same aromatic ring of the two aromatic rings of the naphthalene ring, or may be bonded to different aromatic rings of the two aromatic rings of the naphthalene ring, respectively.
  • Examples of the aliphatic hydrocarbon group include alkyl groups having 1 to 4 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl. Wait.
  • alkoxy group examples include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, isobutoxy, tert-butoxy, and the like having 1 carbon atoms. ⁇ 4 alkoxy and the like.
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom, etc. are mentioned, for example.
  • n in the aforementioned formula (1) is independently an integer of 0 to 3, and it is more preferable that two n in the aforementioned formula (1) are 0 and not have a substituent other than a phenolic hydroxyl group.
  • the bonding position of the phenolic hydroxyl group in the aforementioned structural formula (1) is not particularly limited, for example, 1,3-position, 1,4-position, 1,5-position, 1,6-position, 2,3-position can be mentioned.
  • -Position, 2,6-position, 2,7-position has a hydroxyl group.
  • the compound more preferably has a hydroxyl group at the 1,6-position.
  • epichlorohydrin As said epihalohydrin, epichlorohydrin, epibromohydrin, ⁇ -methyl epichlorohydrin, etc. are mentioned, for example, Among them, epichlorohydrin is preferable from the point of industrial availability.
  • Examples of the basic catalyst include alkaline earth metal hydroxides, alkali metal carbonates, and alkali metal hydroxides. Among them, alkali metal hydroxides are preferred because of their excellent catalytic activity. Specifically, , preferably sodium hydroxide, potassium hydroxide and the like.
  • the reaction rate of the said dihydroxynaphthalene compound (X) and epihalohydrin can be improved by carrying out in an organic solvent.
  • organic solvent used here include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, aromatic hydrocarbon solvents such as toluene and xylene, methanol, ethanol, 1-propanol, and isopropyl alcohol.
  • Alcohol 1-butanol, sec-butanol, tert-butanol and other alcoholic solvents, methyl cellosolve, ethyl cellosolve and other cellosolve solvents, tetrahydrofuran, 1,4-dioxane, 1,3- Ether solvents such as dioxane and diethoxyethane, aprotic polar solvents such as acetonitrile, dimethyl sulfoxide, and dimethylformamide, and the like.
  • organic solvents may be used alone or in combination of two or more.
  • the reaction mixture was washed with water, and then the unreacted epihalohydrin and the organic solvent were distilled off by distillation under heating and reduced pressure.
  • the obtained crude product may be dissolved in an organic solvent again, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide and potassium hydroxide may be added to further react.
  • a phase transfer catalyst such as a quaternary ammonium salt and a crown ether may be present.
  • the usage-amount when a phase transfer catalyst is used is preferably a ratio of 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the crude product.
  • the generated salt is removed by filtration, water washing, or the like, and the organic solvent is distilled off under heating and reduced pressure.
  • the epoxy resin of the present invention is characterized in that it has crystallinity, but when the glycidyl ether product of the dihydroxynaphthalene compound (X) is produced, it exhibits a liquid or semi-solid form and does not exhibit crystallinity . Therefore, in order to express crystallinity of the said epoxy resin, the method is not specifically limited, For example, the method of crystallizing by a recrystallization operation, etc. are mentioned. By this operation, by-products and the like generated when the glycidyl ether compound of the dihydroxynaphthalene compound (X) is produced can be removed, and an epoxy resin having crystallinity can be easily obtained, which is useful.
  • a solvent used in the said recrystallization what is necessary is just to melt
  • said solvent toluene, xylene, methyl isobutyl ketone, methyl ethyl ketone, acetone, 1-butanol, ethanol, methanol, cyclohexanone, ethyl acetate, hexane, etc. are mentioned. These mixed solvents of two or more can be used as needed.
  • the usage-amount of the said solvent it is preferable that it is the range of 20-1000 mass parts with respect to 100 mass parts of glycidyl ether products of the said dihydroxynaphthalene compound (X). Moreover, as a heating temperature, it is preferable that it is the range of 50-100 degreeC.
  • the temperature at the time of leaving the obtained solution to stand still under low temperature conditions is, for example, preferably 15° C. or lower, and more preferably 10° C. or lower.
  • the temperature at the time of leaving the obtained solution to stand still under low temperature conditions is, for example, preferably 15° C. or lower, and more preferably 10° C. or lower.
  • the said standing temperature what is necessary is just to the extent that a solvent does not freeze, for example, it can cool to about -20 degreeC.
  • the precipitated epoxy resin (crystallized epoxy resin) having crystallinity can be obtained by taking it out by filtration and drying it.
  • the epoxy resin having the aforementioned crystallinity can be used as a solid resin material excellent in blocking resistance at normal temperature.
  • the melting point of the epoxy resin of the present invention is preferably 50 to 150°C. Furthermore, from the viewpoint of blocking resistance, the melting point is more preferably 55°C or higher, and from the viewpoint of fluidity, it is more preferably 120°C or lower. By making the said melting
  • the said melting point is the peak top value of the crystal melting peak measured by DSC (measurement temperature: -30°C to 200°C, temperature elevation condition: 3°C/min).
  • the epoxy resin of the present invention contains a glycidyl ether product of a dihydroxynaphthalene compound (X), and as the glycidyl ether product, a compound represented by the following structural formula (2) is preferable.
  • a compound represented by the following structural formula (2) is preferable.
  • specific examples of R 1 and n in the following structural formula (2) are the same as those of R 1 and n in the aforementioned structural formula (1).
  • R 1 is each independently any one of aliphatic hydrocarbon group, alkoxy group and halogen atom.
  • n is each independently an integer of 0-3.
  • the epoxy resin of the present invention contains the above-mentioned glycidyl ether compound, and preferably contains the glycidyl ether compound represented by the above-mentioned structural formula (2). Components other than the aforementioned glycidyl etherate.
  • the content ratio of the glycidyl ether compound represented by the structural formula (2) is preferably 80 area % or more relative to the total amount of the epoxy resin from the viewpoint of expressing sufficient crystallinity, more preferably 90 area % or more, especially the range of 90-99 area % is preferable.
  • the content rate of the glycidyl ether compound represented by the said structural formula (2) in the said epoxy resin can be calculated from the area ratio of the GPC chart measured under the following conditions.
  • HCT-8320GPC manufactured by Tosoh Corporation
  • RI differential refractometer
  • Sample A substance (50 ⁇ l) obtained by filtering a tetrahydrofuran solution of epoxy resin with a resin solid content of 1.0% by mass with a microfilter
  • Mn a number average molecular weight (Mn) of the said epoxy resin
  • 150-1000 are preferable, and 200-800 are more preferable.
  • the said number average molecular weight was computed from the measured value by GPC measurement of the said conditions.
  • an epoxy equivalent of the said epoxy resin 120-400 g/eq is preferable, and 130-300 g/eq is more preferable.
  • the epoxy equivalent of the epoxy resin is within the above-mentioned range, it is preferable that the curability is excellent, and the heat resistance of the obtained cured product is excellent in the balance of high toughness, low coefficient of thermal expansion, adhesion to the base material, and the like. .
  • the present invention relates to an epoxy resin composition characterized by containing the aforementioned epoxy resin.
  • the epoxy resin composition can achieve both fluidity and blocking resistance, and is excellent in moldability, and the cured product obtained by using the epoxy resin composition has toughness and resistance to metal substrates.
  • the adhesiveness (high adhesiveness) is also excellent, and it is useful.
  • epoxy resin compositions containing the aforementioned epoxy resins have low viscosity when melted, high fluidity, and excellent moldability, and are therefore useful for semiconductor sealing material applications.
  • the epoxy resin composition of the present invention may contain other epoxy resins.
  • the epoxy resin of the present invention (hereinafter, sometimes referred to as “epoxy resin (E1)” for convenience of description.) is used in combination with other epoxy resins (hereinafter, sometimes referred to as “epoxy resin (E1)” for convenience of description) within a range that does not impair the effects of the present invention. "Epoxy resin (E2)”.), since there is a possibility that properties other than those based on the aforementioned epoxy resin (E1) can be imparted, it is preferable.
  • Epoxy resin (E2) Phenol novolak type epoxy resin, cresol novolak type epoxy resin, ⁇ -naphthol novolak type epoxy resin, ⁇ -naphthol novolak type epoxy resin can be mentioned.
  • type epoxy resin bisphenol A novolak type epoxy resin, biphenyl novolak type epoxy resin and other novolak type epoxy resin;
  • Aralkyl epoxy resins such as phenol aralkyl epoxy resin, naphthol aralkyl epoxy resin, phenol biphenyl aralkyl epoxy resin, etc.;
  • Bisphenol A type epoxy resin bisphenol AP type epoxy resin, bisphenol AF type epoxy resin, bisphenol B type epoxy resin, bisphenol BP type epoxy resin, bisphenol C type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetrabromobisphenol A type epoxy resin and other bisphenol type epoxy resin;
  • Biphenyl type epoxy resins such as biphenyl type epoxy resins, tetramethyl biphenyl type epoxy resins, epoxy resins with biphenyl skeleton and diglycidyloxybenzene skeleton, etc.;
  • Binaphthol type epoxy resin Binaphthyl type epoxy resin
  • Dicyclopentadiene epoxy resin such as dicyclopentadiene phenol epoxy resin; naphthylene ether epoxy resin;
  • Glycidylamine type epoxy resins such as tetraglycidyl diaminodiphenylmethane type epoxy resin, triglycidyl p-aminophenol type epoxy resin, glycidylamine type epoxy resin of diaminodiphenyl sulfone;
  • 2,6-Naphthalenedicarboxylic acid diglycidyl ester type epoxy resin hexahydrophthalic anhydride diglycidyl ester type epoxy resin and other diglycidyl ester type epoxy resin;
  • epoxy resins (E2) phenol novolak epoxy resins, cresol novolak epoxy resins, aralkyl epoxy resins, naphthyl ether epoxy resins, bisphenol A epoxy resins, Bisphenol F type epoxy resin.
  • aralkyl-type epoxy resins and naphthyl ether-type epoxy resins are preferable, and from the viewpoint of high fluidity, bisphenol A-type epoxy resins and bisphenols are more preferable.
  • Type F epoxy the said epoxy resin (E2) may be used individually and may be used in combination of 2 or more types.
  • the content ratio (mass ratio) of the epoxy resin (E1) and the epoxy resin (E2) [(E1)/( E2)] is not particularly limited as long as it is within a range that does not impair the properties of the present invention, and the value of the aforementioned mass ratio [(E1)/(E2)] is not restricted from the viewpoint of not inhibiting the effects of the present invention and having more excellent physical properties of the cured product
  • it is the range of 99/1 - 60/40, More preferably, it is 99/1 - 80/20.
  • the epoxy resin composition of the present invention may further contain a curing agent for epoxy resins.
  • a curing agent for epoxy resins By containing the said hardening
  • curing agent for epoxy resins various compounds generally used as curing agents for epoxy resins can be used without particular limitation, and specific examples thereof include phenolic resins, amine compounds, acid anhydrides, reactive Ester resin, etc. These curing agents may be used alone or in combination of two or more.
  • phenol novolac resins examples include phenol novolac resins, cresol novolac resins, aromatic hydrocarbon formaldehyde resin-modified phenolic resins, dicyclopentadiene phenol addition type resins, and phenol aralkyl resins (Xylock resins).
  • Naphthol Aralkyl Resin Trisphenol Methane Resin, Tetraphenol Ethane Resin, Naphthol Novolak Resin, Naphthol-Phenol Co-Avolac Resin, Naphthol-Cresol Co-Apovolac Resin, Biphenyl Modified phenolic resins (polyphenol resins in which phenol cores are linked by two methylene groups), biphenyl-modified naphthol resins (polyvalent naphthol compounds in which phenol cores are linked by two methylene groups), Aminotriazine-modified phenolic resins (polyphenol resins formed by connecting phenol cores with melamine, benzoguanamine, etc.), alkoxy-containing aromatic ring-modified novolak resins (using formaldehyde to combine phenol cores and alkoxy-containing phenolic resins) Polyhydric phenol resins such as polyhydric phenol resins that are linked by aromatic rings.
  • phenol novolak resins phenol novolak resins
  • phenol aralkyl resins Xylock resins
  • trisphenol methane resins biphenyl-modified phenol resins, and the like are more preferable.
  • Diethylenetriamine DTA
  • triethylenetetramine TTA
  • TEPA tetraethylenepentamine
  • DPDA dipropylenediamine
  • Diethylaminopropylamine DEAPA
  • N-aminoethylpiperazine Mantanediamine
  • IPDA Isophoronediamine
  • 1,3-BAC 1,3-bisaminomethylcyclohexane
  • piperidine N,N,-dimethylpiperazine, triethylenediamine and other aliphatic amines
  • m-xylylenediamine XDA
  • methanephenylenediamine MPDA
  • Diaminodiphenylmethane DDM
  • Diaminodiphenylsulfone DDS
  • Benzylmethylamine 2-(dimethylaminomethyl)phenol, 2,4,6-tris(dimethylamino) Aromatic amines such as methyl)
  • Examples of the acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bis-trimellitate, glycerol trimellitate, maleic anhydride, Tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, methylbutenyltetrahydrophthalic anhydride Acid anhydride, dodecenyl succinic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, succinic anhydride, methylcyclohexenedicarboxylic anhydride, and the like.
  • the active ester resin is a resin having an ester bond site which is an ester bond site between aromatic rings having high reactivity.
  • an active ester resin obtained from an aromatic carboxylic acid compound or its acid halide and a phenol resin can be mentioned.
  • the resin etc. which are represented by following structural formula (3) are mentioned.
  • n is an integer of 0 or 1 or more.
  • curing agents for epoxy resins can be adjusted suitably according to the physical property etc. of the hardened
  • the epoxy resin relative to the epoxy resin for example, the total of the epoxy resins (E1) and (E2)) in the epoxy resin composition
  • the functional group equivalent in the curing agent for epoxy resins is preferably in the range of 0.3 to 1.5 equivalents, preferably in the range of 0.6 to 1.2 equivalents, per equivalent of the group.
  • the epoxy resin composition of this invention may contain other resin in addition to the said epoxy resin (E1), the said epoxy resin (E2), and the said hardening
  • the other resins described above are not particularly limited, and examples thereof include maleimide resins, bismaleimide resins, polymaleimide resins, polyphenylene ether resins, polyimide resins, and cyanic acid.
  • Ester resin cyanate ester resin
  • benzoxazine resin triazine-containing cresol novolac resin
  • styrene-maleic anhydride resin diallyl bisphenol/triallyl isocyanurate
  • the epoxy resin composition of the present invention may further contain an inorganic filler.
  • an inorganic filler By containing the above-mentioned inorganic filler, thermal expansion can be suppressed, which is preferable.
  • the inorganic filler is not particularly limited, and examples thereof include silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, and magnesium.
  • silica is preferably used.
  • silica amorphous silica, fused silica, crystalline silica, synthetic silica, hollow silica and the like can be used.
  • the said inorganic filler may be used individually or in combination of 2 or more types.
  • the aforementioned inorganic filler may be surface-treated as necessary.
  • the surface treating agent that can be used is not particularly limited, and aminosilane-based coupling agents, epoxysilane-based coupling agents, mercaptosilane-based coupling agents, silane-based coupling agents, and organosilazane compounds can be used , titanate coupling agent, etc.
  • Specific examples of the surface treatment agent include 3-glycidoxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and N-phenyl -3-aminopropyltrimethoxysilane, hexamethyldisilazane, etc.
  • the usage-amount of the said inorganic filler is preferably 100 to 2000 parts by mass, more preferably 100 parts by mass to 2000 parts by mass, relative to 100 parts by mass of the resin component (epoxy resin, phenolic resin as a curing agent for epoxy resins, etc.) in the said epoxy resin composition Preferably it is 400-1800 mass parts.
  • the usage-amount of an inorganic filler is in the said range, it is excellent in low thermal expansion property, flame retardance, and insulation reliability, and it is preferable.
  • the epoxy resin composition of the present invention may contain, in addition to the epoxy resin, the curing agent for epoxy resins, and the inorganic filler, a solvent, an additive, and the like within a range that does not impair the effects of the present invention.
  • the epoxy resin composition of the present invention may be prepared without a solvent, or may contain a solvent.
  • the solvent are not particularly limited, and include ketone-based solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ether-based solvents such as diethyl ether and tetrahydrofuran; ethyl acetate, butyl acetate, solvents Cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate and other ester solvents; cellosolve, butyl carbitol and other carbitols, toluene, xylene, ethylbenzene, mesitylene Aromatic hydrocarbons such as toluene, 1,2,3-trimethylbenzene, and 1,2,4-trimethylbenzene, amide-based solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone, etc. . These solvents may be used alone or in combination of
  • the usage-amount of the said solvent is suitably adjusted according to the intended use, and is not specifically limited. Specifically, 10-90 mass % is preferable with respect to the whole mass of the said epoxy resin composition, and 20-80 mass % is more preferable.
  • additives such as a curing accelerator, a silane coupling agent, a mold release agent, a pigment, a coloring agent, an emulsifier, a flame retardant, can be mix
  • hardening accelerator Phosphorus type hardening accelerator, amine type hardening accelerator, imidazole type hardening accelerator, guanidine type hardening accelerator, urea type hardening accelerator, etc. are mentioned.
  • Examples of the phosphorus-based curing accelerator include organic phosphine compounds such as triphenylphosphine, tributylphosphine, tri-p-tolylphosphine, diphenylcyclohexylphosphine, and tricyclohexylphosphine; trimethylphosphite, Organic phosphite compounds such as triethyl phosphite; ethyl triphenyl phosphonium bromide, benzyl triphenyl phosphonium chloride, butyl phosphonium tetraphenyl borate, tetraphenyl phosphonium tetraphenyl borate salt, tetraphenylphosphonium tetra-p-tolyl borate, triphenylphosphine triphenylborane, tetraphenylphosphonium thiocyanate, tetraphenylphosphonium dicyanamide salt, butyl
  • amine-based curing accelerator examples include triethylamine, tributylamine, N,N-dimethyl-4-aminopyridine (4-dimethylaminopyridine, DMAP), 2,4,6-triethylamine (Dimethylaminomethyl)phenol, 1,8-diazabicyclo[5,4,0]-undec-7-ene (DBU), 1,5-diazabicyclo[4,3, 0]-non-5-ene (DBN) and the like.
  • DMAP 1,8-diazabicyclo[5,4,0]-undec-7-ene
  • DBN 1,5-diazabicyclo[4,3, 0]-non-5-ene
  • imidazole-based curing accelerator examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, and 2-ethyl-4-methylimidazole.
  • guanidine-based curing accelerator examples include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, dimethylguanidine, diphenylguanidine, and triphenylguanidine.
  • urea-based curing accelerator examples include 3-phenyl-1,1-dimethylurea, 3-(4-methylphenyl)-1,1-dimethylurea, chlorophenylurea, 3-(4-chlorophenyl)-1,1-dimethylurea, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, etc.
  • phosphorus-based curing accelerators and imidazole-based curing accelerators are preferred from the viewpoint of curability, and phosphorus-based curing accelerators are preferred from the viewpoint of insulation reliability.
  • the said hardening accelerator may be used individually and may be used in combination of 2 or more types.
  • the usage-amount of the said curing accelerator can be appropriately adjusted in order to obtain the desired curability, and the amount of the resin component (epoxy resin, phenol resin as a curing agent for epoxy resins, etc.) in the epoxy resin composition can be adjusted as appropriate.
  • the total amount is 100 parts by mass, preferably 0.01 to 10.0 parts by mass, more preferably 0.1 to 5.0 parts by mass.
  • the flame retardant is not particularly limited, and examples thereof include inorganic phosphorus-based flame retardants, organic phosphorus-based flame retardants, halogen-based flame retardants, and the like.
  • the inorganic phosphorus-based flame retardant is not particularly limited, and examples thereof include red phosphorus; ammonium phosphates such as monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate; phosphoric acid amide, and the like.
  • the organic phosphorus-based flame retardant is not particularly limited, and examples thereof include methyl acid phosphate, ethyl acid phosphate, isopropyl acid phosphate, dibutyl phosphate, monobutyl phosphate, Butoxyethyl acid phosphate, 2-ethylhexyl acid phosphate, bis(2-ethylhexyl) phosphate, monoisodecyl acid phosphate, lauryl acid phosphate, tridecane base acid phosphate, stearyl acid phosphate, isostearyl acid phosphate, oleyl acid phosphate, butyl pyrophosphate, behenyl acid phosphate, ethylene glycol Phosphate esters such as acid phosphate, (2-hydroxyethyl) methacrylate acid phosphate, etc.; 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, diphenyl Diphenylphosphin
  • the halogen-based flame retardant is not particularly limited, and examples thereof include brominated polystyrene, bis(pentabromophenyl)ethane, tetrabromobisphenol A bis(dibromopropyl ether), 1,2-bis (tetrabromophthalimide), 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine, tetrabromophthalic acid, and the like.
  • the above-mentioned flame retardants may be used alone or in combination of two or more.
  • the epoxy resin composition can be obtained by uniformly mixing each component such as the above epoxy resin alone or in addition to the above epoxy resin curing agent for epoxy resins, and can be obtained by a method similar to a conventionally known method. to easily make a cured product.
  • the present invention relates to a cured product obtained from the aforementioned epoxy resin composition. Since the said hardened
  • the epoxy resin composition containing the epoxy resin has a low viscosity when melted, has high fluidity, and is excellent in moldability, and thus the cured product can be suitably used for a semiconductor sealing material application.
  • cured material such as a laminate, a cast molding, an adhesive layer, a coating film, a film, is mentioned.
  • Examples of the curing reaction include thermal curing, ultraviolet curing, and the like. Among them, the thermal curing reaction is easy to proceed even without a catalyst, but when a faster reaction is desired, organic peroxides, azo
  • a polymerization initiator such as a compound, a phosphine-based compound, and a basic catalyst such as a tertiary amine is effective.
  • a polymerization initiator such as a compound, a phosphine-based compound, and a basic catalyst such as a tertiary amine is effective.
  • benzoyl peroxide, dicumyl peroxide, azobisisobutyronitrile, triphenylphosphine, triethylamine, imidazoles, etc. are mentioned.
  • the present invention relates to a semiconductor sealing material comprising the epoxy resin composition.
  • the epoxy resin composition containing the epoxy resin described above the fluidity and moldability are excellent, and the cured product obtained from the epoxy resin composition is excellent in toughness, adhesion to metal substrates, and the like. It can be preferably used for semiconductor sealing materials.
  • the said epoxy resin composition epoxy resin, the hardening agent for epoxy resins, the inorganic filler, etc.
  • the additive which is an arbitrary component
  • an extruder is used.
  • a kneader, a roll, etc. to fully melt and mix until uniform, etc.
  • the present invention relates to a semiconductor device comprising a cured product of the semiconductor sealing material.
  • the said semiconductor device is excellent in toughness, adhesiveness to a metal base material, etc. by using the hardened
  • the above-mentioned semiconductor sealing material is cast-molded, or molded using a transfer molding machine, an injection molding machine, etc., and a method of heating and curing at 150 to 250° C. for 1 to 10 hours, etc. .
  • the cured product obtained from the epoxy resin composition of the present invention is excellent in high toughness, adhesion to a substrate (high adhesion), and the like, and is therefore suitable not only for semiconductor sealing materials and semiconductor devices, but also for prepregs , circuit substrates, laminate films, laminate substrates, adhesives, resist materials, etc. Moreover, it is also suitable for various uses, such as a matrix resin of a fiber-reinforced resin, and it is not limited to these in terms of use.
  • HCT-8320GPC manufactured by Tosoh Corporation
  • RI differential refractometer
  • step 1 For 500.0 g of the epoxy resin obtained in step 1, a falling film molecular distillation apparatus (manufactured by Shibata Science Co., Ltd.) with a heat transfer area of about 0.03 m 2 was used, and the vacuum degree was 2 to 20 Pa, and the liquid supply rate was 100 ml/ h.
  • the temperature of the evaporation surface is 240°C, and 355.1 g of epoxy resin is obtained as a distillation component.
  • the epoxy resin composition obtained by mixing each component at the compounding ratio shown in Table 2 above was dry-blended, and then melt-kneaded to prepare a semiconductor sealing material.
  • each component was compounded in the ratio shown in the above-mentioned Table 2, and the dry-blending operation was performed at 25 degreeC for 5 minutes. It was confirmed whether each compounding component could be mixed uniformly without blocking, and the blocking resistance was evaluated. In addition, in the case of A, it is judged that there is no problem practically.
  • Comparative Example 1 the epoxy resin composition containing the epoxy resin composition did not contain an epoxy resin having a viscosity larger than a desired range, and the moldability was poor. Moreover, the toughness and adhesiveness of the obtained hardened

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

本发明提供流动性和抗粘连性这两者优异、固化物的韧性、对金属基材的密合性也优异的适于半导体密封用的环氧树脂、含有前述环氧树脂的环氧树脂组合物、使用前述环氧树脂组合物而得到的固化物、半导体密封材料、包含使用前述半导体密封材料而得到的固化物的半导体装置。本发明涉及一种环氧树脂,其特征在于,含有二羟基萘化合物(X)的缩水甘油醚化物、具有结晶性。

Description

环氧树脂、环氧树脂组合物、半导体密封材料及半导体装置 技术领域
本发明涉及环氧树脂、环氧树脂组合物、半导体密封材料、及半导体装置。
背景技术
以环氧树脂及其固化剂为必需成分的环氧树脂组合物因高耐热性、耐湿性等各种物性优异而被广泛用在半导体密封材料、印刷电路基板等电子部件、电子部件领域、导电糊剂等导电性粘接剂、其他粘接剂、复合材料用基质、涂料、光致抗蚀剂材料、显色材料等中。
在半导体密封材料的领域中,由于向BGA、CSP这样的表面安装封装过渡、进而应对无铅焊料,导致回流处理温度高温化,比以前更需要耐湿耐焊料性优异的电子部件密封树脂材料。
另外,半导体密封材料的领域中,正在采用高温环境下的接合可靠性高的铜线。但是,铜线与以往的金线相比容易腐蚀,因此若在密封树脂与引线框界面发生剥离等界面劣化,则会产生如下问题:由于毛细管现象,水分集中在剥离部分,使芯片、引线接合接合部腐蚀。进而,在高温下的回流工序中,水分急剧膨胀,成为产生裂纹的主要因素,因此,作为密封树脂特性,必须减少回流工序时的引线框界面的剥离,强烈要求提高与引线框的粘接力。
进而,近年来为了减少电子设备的小型化/薄型化、批量密封工艺中产生的密封材料的翘曲,要求在以往的要求特性的基础上还赋予了高韧性特性的密封材料用树脂组合物。
为了应对所述要求特性,作为电子部件密封材料用的酚醛树脂及环氧树脂,例如,公开了使用使酚醛树脂与氯化苄等苄基化剂反应而成的苄基化酚 醛树脂、及使前述苄基化酚醛树脂与环氧卤丙烷反应而成的环氧树脂(例如,参照专利文献1)。另外,还公开了如下内容等:可列举出使用酚性化合物与二氯甲基萘反应而得的酚醛树脂、及使前述二氯甲基萘反应而得到的酚醛树脂与环氧卤丙烷反应而成的环氧树脂(例如,参照专利文献2及3)。
但是,为专利文献1中的酚醛树脂和环氧树脂的情况下,吸湿率降低,在耐湿耐焊料性方面可看到一定程度的改善,但近年要求的其他特性不足。
另外,专利文献2及3中记载的环氧树脂和酚醛树脂(固化剂)的粘度高,因此成形时的流动性差,完全不能用于近年的细间距化要求变高的电子部件。另一方面,流动性高且成形性优异的树脂材料通常大多在常温下为半固体状态等而比较柔软,有在干混时容易发生粘连等问题。
如上所述,现状是:在半导体密封材料的领域中,得不到充分具备特别是高流动性和抗粘连性、高韧性、与基材高密合性的环氧树脂组合物。
现有技术文献
专利文献
专利文献1:日本特开平8-120039号公报
专利文献2:日本特开2004-59792号公报
专利文献3:日本特开2004-123859号公报
发明内容
发明要解决的问题
因此,本发明要解决的问题在于,提供流动性和抗粘连性这两者优异、固化物的韧性、对金属基材的密合性也优异的适于半导体密封用的环氧树脂、含有前述环氧树脂的环氧树脂组合物、使用前述环氧树脂组合物而得到的固化物、半导体密封材料、包含使用前述半导体密封材料而得的固化物的半导体装置。
用于解决问题的方案
本发明人等为了解决上述问题反复进行了深入研究,结果发现,含有具有特定结构的缩水甘油醚化物且具有结晶性的环氧树脂在干混时的抗粘连性优异,并且具有充分的流动性,并且使用前述环氧树脂而得到的固化物的韧性、对金属基材的密合性也优异,因此尤其可以适宜地用于半导体密封材料用途,从而完成了本发明。
即,本发明涉及一种环氧树脂,其特征在于,含有二羟基萘化合物(X)的缩水甘油醚化物,且具有结晶性。
本发明的环氧树脂优选前述二羟基萘化合物(X)由下述结构式(1)表示。
Figure PCTCN2020115282-appb-000001
[式中,R 1各自独立地为脂肪族烃基、烷氧基、卤素原子中的任意者。n各自独立地为0~3的整数。式中2个羟基可以键合于萘环的2个芳香环中的同一芳香环上、也可以分别键合于萘环的2个芳香环中的不同的芳香环上。]
本发明的环氧树脂优选熔点为50~150℃。
本发明涉及一种环氧树脂组合物,其特征在于,含有前述环氧树脂。
本发明的环氧树脂组合物可以含有其他环氧树脂。
本发明的环氧树脂组合物优选前述环氧树脂与前述其他环氧树脂的质量比为99/1~60/40。
本发明的环氧树脂组合物还可以含有环氧树脂用固化剂。
本发明的环氧树脂组合物还可以含有无机填充材料。
本发明涉及一种固化物,其特征在于,由前述环氧树脂组合物得到。
本发明涉及一种半导体密封材料,其特征在于,含有前述环氧树脂组合物。
本发明涉及一种半导体装置,其特征在于,含有前述半导体密封材料的固化物。
发明的效果
根据本发明,通过使用含有具有特定结构的缩水甘油醚化物且具有结晶性的环氧树脂,能够实现含有前述环氧树脂的环氧树脂组合物的流动性与抗粘连性的兼顾,成为成形性也优异的环氧树脂组合物。并且,使用前述环氧树脂组合物而得到的固化物的韧性、对金属基材的密合性(高密合性)也优异,是有用的。特别是含有前述环氧树脂的环氧树脂组合物在熔融时为低粘度,流动性高、成形性优异,因此可以适宜用于半导体密封材料用途。
附图说明
图1为合成例1中得到的环氧树脂(1)的GPC图。
具体实施方式
<环氧树脂>
本发明涉及一种环氧树脂,其特征在于,含有二羟基萘化合物(X)的缩水甘油醚化物,且具有结晶性。前述环氧树脂含有萘环、并且具有(显示)结晶性,因此具有干混时不易发生粘连、固化物的韧性和/或对金属基材的密合性也优异的特征,适合于半导体密封材料用途,是有用的。
前述二羟基萘化合物(X)只要为萘环上具有2个酚羟基的化合物即可,对于酚羟基的取代位置、其他取代基的有无等,没有特别限制,可以使用各种各样的化合物。
本申请发明的环氧树脂的特征在于,具有结晶性。前述环氧树脂由于前 述二羟基萘化合物(X)具有显示强取向性的萘环,因此显示结晶性。另外,推测如下:前述萘环显示强的取向性,从而热膨胀系数得以抑制,使用前述环氧树脂而得的固化物的体积变化变小,固化物中的残留应力得以缓和,与不具有萘环的环氧树脂相比,可得到能够表现高韧性及高密合性的固化物。
另外,通常使用环氧树脂并在半导体密封材料等制造时采用干混的情况下,理想的是使用在常温下为固体成分的原料而不是在常温下为液态的物质,但得不到维持作为半导体密封材料要求的特性、并且为固体成分的环氧树脂等。但是,本发明的环氧树脂具有结晶性,因此干混时不易发生粘连,在作为半导体密封材料而要求的特性即高流动性、和得到的固化物的高韧性、及与金属基材的高密合性的方面也优异,为优选的方案。
本发明的环氧树脂优选前述二羟基萘化合物(X)由下述结构式(1)表示。
Figure PCTCN2020115282-appb-000002
前述式中,R 1各自独立地为脂肪族烃基、烷氧基、卤素原子中的任意者。n各自独立地为0~3的整数。式中2个羟基可以键合于萘环的2个芳香环中的同一芳香环上,也可以分别键合于萘环的2个芳香环中的不同的芳香环上。
作为前述结构式(1)中的R 1,优选各自独立地为脂肪族烃基、烷氧基、卤素原子中的任意者。
作为前述脂肪族烃基,例如,可列举出甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基等碳原子数1~4的烷基等。
前述烷氧基例如可列举出甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基、异丁氧基、叔丁氧基等碳原子数1~4的烷氧基等。
前述卤素原子例如可列举出氟原子、氯原子、溴原子等。
前述式(1)中的n各自独立地为0~3的整数,其中,更优选前述式(1)中的2个n为0、且不具有除酚羟基以外的取代基。
前述结构式(1)中的酚羟基的键合位置没有特别限定,例如,可列举出在1,3-位、1,4-位、1,5-位、1,6-位、2,3-位、2,6-位、2,7-位具有羟基。其中,从制成环氧树脂组合物时的固化性、固化物的韧性、金属基材密合性特别优异的方面出发,优选为在萘环的2个芳香环上分别各具有1个酚羟基的化合物,更优选在1,6-位具有羟基。
作为前述二羟基萘化合物(X)的缩水甘油醚化的方法,没有特别限定,可以通过与通常的环氧树脂的制造同样的方法来进行。具体而言,例如可列举出:相对于前述二羟基萘化合物(X)所具有的酚羟基1摩尔,使用环氧卤丙烷2~10摩尔,一并或分批添加相对于1摩尔酚羟基为0.9~2.0摩尔的碱性催化剂,在20~120℃的温度下反应0.5~10小时的方法等。
作为前述环氧卤丙烷,例如,可列举出环氧氯丙烷、环氧溴丙烷、β-甲基环氧氯丙烷等,其中,从工业上容易获得的方面出发,优选环氧氯丙烷。
作为前述碱性催化剂,例如,可列举出碱土金属氢氧化物、碱金属碳酸盐及碱金属氢氧化物等,其中,从催化活性优异的方面出发,优选碱金属氢氧化物,具体而言,优选氢氧化钠、氢氧化钾等。
需要说明的是,进行环氧树脂的工业生产时,优选:在环氧树脂生产的首批次中,投料中使用的环氧卤丙烷类全部为新的,在接下来及以后的批次中,组合使用从粗反应产物回收的环氧卤丙烷和与以在反应中消耗的量消失的量相当的新的环氧卤丙烷。
前述二羟基萘化合物(X)与环氧卤丙烷的反应通过在有机溶剂中进行,能够提高反应速度。此处使用的有机溶剂例如可列举出丙酮、甲乙酮、甲基异丁基酮、环己酮等酮性溶剂、甲苯、二甲苯等芳香族烃溶剂、甲醇、乙醇、 1-丙醇、异丙醇、1-丁醇、仲丁醇、叔丁醇等醇性溶剂、甲基溶纤剂、乙基溶纤剂等溶纤剂溶剂、四氢呋喃、1,4-二噁烷、1,3-二噁烷、二乙氧基乙烷等醚溶剂、乙腈、二甲基亚砜、二甲基甲酰胺等非质子性极性溶剂等。这些有机溶剂可以各自单独使用,也可以组合使用2种以上。
前述二羟基萘化合物(X)与环氧卤丙烷的反应结束后,对反应混合物进行水洗,然后,通过加热减压下的蒸馏将未反应的环氧卤丙烷、有机溶剂蒸馏去除。另外,为了制成水解性卤素更少的环氧树脂,也可以将得到的粗产物再次溶解于有机溶剂并加入氢氧化钠、氢氧化钾等碱金属氢氧化物的水溶液来进一步进行反应。此时,出于提高反应速度的目的,可以存在季铵盐、冠醚等相转移催化剂。对于使用相转移催化剂时的用量,优选相对于粗产物100质量份为0.1~3.0质量份的比例。反应结束后通过过滤、水洗等将生成的盐去除,在加热减压下将有机溶剂蒸馏去除。
如上所述,本申请发明的环氧树脂的特征在于,具有结晶性,但在制造前述二羟基萘化合物(X)的缩水甘油醚化物的情况下,显示液态或半固体形状,不显示结晶性。因此,为了使前述环氧树脂表现结晶性,对其方法没有特别限定,例如,可列举出通过重结晶操作进行结晶化的方法等。通过该操作,能够将制造前述二羟基萘化合物(X)的缩水甘油醚化物时生成的副产物等去除,能够容易地得到具有结晶性的环氧树脂,是有用的。
作为使前述二羟基萘化合物(X)的缩水甘油醚化物重结晶的方法,例如可列举出:将前述二羟基萘化合物(X)的缩水甘油醚化物溶解于溶剂中后,例如在低温条件下静置,从而使结晶化的环氧树脂析出的方法等。
作为前述重结晶时使用的溶剂,例如,只要在加热条件下前述二羟基萘化合物(X)的缩水甘油醚化物溶解、并且通过冷却可析出结晶化物即可。例如,作为前述溶剂,可列举出甲苯、二甲苯、甲基异丁基酮、甲乙酮、丙酮、1-丁醇、乙醇、甲醇、环己酮、乙酸乙酯、己烷等。这些根据需要可以 采用2种以上的混合溶剂。
作为前述溶剂的用量,优选相对于前述二羟基萘化合物(X)的缩水甘油醚化物100质量份为20~1000质量份的范围。另外,作为加热温度,优选为50~100℃的范围。
接着,作为将得到的溶液在低温条件下静置时的温度,例如,优选15℃以下、更优选10℃以下。另外,作为前述静置温度的下限值,只要为溶剂不冻结的程度即可,例如,可以冷却至-20℃左右。
析出的具有结晶性的环氧树脂(结晶化环氧树脂)可以通过利用过滤将其取出并使其干燥来获得。前述具有结晶性的环氧树脂可以用作在常温下为固体的抗粘连性优异的树脂材料。
本发明的环氧树脂的熔点优选为50~150℃。进而,从抗粘连性的观点出发,熔点更优选55℃以上,从流动性的观点出发,更优选120℃以下。通过使前述熔点为前述范围内,从而在常温(25℃)固体化,因此适合于使用干混的半导体密封材料的制造。需要说明的是,前述熔点为DSC测定(作为测定条件,测定温度:-30℃~200℃、升温条件:3℃/分钟)的晶体熔融峰的峰顶值。
本发明的环氧树脂含有二羟基萘化合物(X)的缩水甘油醚化物,作为前述缩水甘油醚化物,优选下述结构式(2)所示的化合物。需要说明的是,下述结构式(2)中的R 1、及n的具体例与前述结构式(1)中的R 1、及n同样。
Figure PCTCN2020115282-appb-000003
[式中R 1各自独立地为脂肪族烃基、烷氧基、卤素原子中的任意者。n各自独立地为0~3的整数。]
本发明的环氧树脂含有前述缩水甘油醚化物,其中,优选含有前述结构式(2)所示的缩水甘油醚化物,前述环氧树脂在不阻碍前述环氧树脂的结晶性的范围内可以包含除前述缩水甘油醚化物以外的成分。
前述环氧树脂中,作为前述结构式(2)所示的缩水甘油醚化物的含有比例,从表现充分的结晶性的方面出发,相对于前述环氧树脂总量,优选80面积%以上、更优选90面积%以上、特别优选为90~99面积%的范围。需要说明的是,前述环氧树脂中的前述结构式(2)所示的缩水甘油醚化物的含有比例可以根据在下述条件下测定的GPC图的面积比来算出。
测定装置:东曹株式会社制“HLC-8320GPC”
柱:东曹株式会社制保护柱“HXL-L”+东曹株式会社制“TSK-GEL G2000HXL”+东曹株式会社制“TSK-GEL G2000HXL”+东曹株式会社制“TSK-GEL G3000HXL”+东曹株式会社制“TSK-GEL G4000HXL”
检测器:RI(差示折射计)
数据处理:东曹株式会社制“GPC工作站EcoSEC-WorkStation”
测定条件:柱温度  40℃
展开溶剂  四氢呋喃
流速      1.0ml/分钟
标准:依据前述“GPC工作站EcoSEC-WorkStation”的测定手册,使用分子量已知的下述的单分散聚苯乙烯。
(使用聚苯乙烯)
东曹株式会社制“A-500”
东曹株式会社制“A-1000”
东曹株式会社制“A-2500”
东曹株式会社制“A-5000”
东曹株式会社制“F-1”
东曹株式会社制“F-2”
东曹株式会社制“F-4”
东曹株式会社制“F-10”
东曹株式会社制“F-20”
东曹株式会社制“F-40”
东曹株式会社制“F-80”
东曹株式会社制“F-128”
试样:用微型过滤器对环氧树脂的以树脂固体成分换算为1.0质量%的四氢呋喃溶液进行过滤所得的物质(50μl)
作为前述环氧树脂的数均分子量(Mn),优选为150~1000、更优选为200~800。通过在前述范围内,从而成为低分子量的环氧树脂,容易呈高流动性,因此优选。需要说明的是,前述数均分子量是通过前述条件的GPC测定根据测定的值算出的。
作为前述环氧树脂的环氧当量,优选为120~400g/eq、更优选为130~300g/eq。前述环氧树脂的环氧当量处于前述范围内时,固化性优异,另外,得到的固化物的耐热性与高韧性、低热膨胀系数、与基材的密合性等的平衡优异,因此优选。
<环氧树脂组合物>
本发明涉及一种环氧树脂组合物,其特征在于,含有前述环氧树脂。前述环氧树脂组合物通过含有前述环氧树脂,从而能够实现流动性与抗粘连性的兼顾,成形性也优异,并且使用前述环氧树脂组合物而得到的固化物的韧性、对金属基材的密合性(高密合性)也优异,是有用的。特别是含有前述环氧树脂的环氧树脂组合物在熔融时为低粘度,流动性高、成形性优异,因 此适合用于半导体密封材料用途,是有用的。
[其他环氧树脂]
本发明的环氧树脂组合物可以含有其他环氧树脂。本发明的环氧树脂(以下,为了便于说明有时记为“环氧树脂(E1)”。)通过在不损害本发明效果的范围内组合使用其他环氧树脂(以下,为了便于说明有时记为“环氧树脂(E2)”。),从而有能够赋予除基于前述环氧树脂(E1)的特性以外的特性的可能性,是优选的。
作为前述环氧树脂(E2),没有特别限制,可列举出苯酚酚醛清漆型环氧树脂、甲酚酚醛清漆型环氧树脂、α-萘酚酚醛清漆型环氧树脂、β-萘酚酚醛清漆型环氧树脂、双酚A酚醛清漆型环氧树脂、联苯酚醛清漆型环氧树脂等酚醛清漆型环氧树脂;
苯酚芳烷基型环氧树脂、萘酚芳烷基型环氧树脂、苯酚联苯芳烷基型环氧树脂等芳烷基型环氧树脂;
双酚A型环氧树脂、双酚AP型环氧树脂、双酚AF型环氧树脂、双酚B型环氧树脂、双酚BP型环氧树脂、双酚C型环氧树脂、双酚E型环氧树脂、双酚F型环氧树脂、双酚S型环氧树脂、四溴双酚A型环氧树脂等双酚型环氧树脂;
联苯型环氧树脂、四甲基联苯型环氧树脂、具有联苯骨架及二缩水甘油氧基苯骨架的环氧树脂等联苯型环氧树脂;
除前述环氧树脂(E1)以外的萘型环氧树脂;
联萘酚型环氧树脂;联萘型环氧树脂;
二环戊二烯苯酚型环氧树脂等二环戊二烯型环氧树脂;萘醚(naphthylene ether)型环氧树脂;
四缩水甘油基二氨基二苯基甲烷型环氧树脂、三缩水甘油基对氨基苯酚型环氧树脂、二氨基二苯基砜的缩水甘油胺型环氧树脂等缩水甘油胺型环氧 树脂;
2,6-萘二羧酸二缩水甘油酯型环氧树脂、六氢苯二甲酸酐的缩水甘油酯型环氧树脂等二缩水甘油酯型环氧树脂;
二苯并吡喃、六甲基二苯并吡喃、7-苯基六甲基二苯并吡喃等苯并吡喃型环氧树脂等。
这些环氧树脂(E2)中,优选苯酚酚醛清漆型环氧树脂、甲酚酚醛清漆型环氧树脂、芳烷基型环氧树脂、萘醚型环氧树脂、双酚A型环氧树脂、双酚F型环氧树脂。其中,从耐热性、阻燃性的观点出发,优选芳烷基型环氧树脂、萘醚型环氧树脂,从高流动性的观点出发,更优选双酚A型环氧树脂、双酚F型环氧树脂。需要说明的是,前述环氧树脂(E2)可以单独使用,也可以组合使用2种以上。
组合使用前述环氧树脂(E1)和前述环氧树脂(E2)的情况下,作为前述环氧树脂(E1)与前述环氧树脂(E2)的含有比例(质量比)[(E1)/(E2)],只要为不损害本发明特性的范围,就没有特别限制,从不阻碍本发明效果、并且固化物物性更优异的观点出发,前述质量比[(E1)/(E2)]的值优选为99/1~60/40的范围、更优选为99/1~80/20。
[环氧树脂用固化剂]
本发明的环氧树脂组合物还可以含有环氧树脂用固化剂。通过含有前述环氧树脂用固化剂,能够使含有前述环氧树脂的环氧树脂组合物固化从而得到具有期望特性的固化物,是优选的。
作为前述环氧树脂用固化剂,可以使用通常作为环氧树脂用固化剂使用的多种多样的化合物,没有特别限制,作为其具体例,例如,可列举出酚醛树脂、胺化合物、酸酐、活性酯树脂等。这些固化剂可以单独使用一种,也可以组合使用多种。
作为前述酚醛树脂,例如,可列举出苯酚酚醛清漆树脂、甲酚酚醛清漆 树脂、芳香族烃甲醛树脂改性酚醛树脂、二环戊二烯苯酚加成型树脂、苯酚芳烷基树脂(Xylock树脂)、萘酚芳烷基树脂、三酚基甲烷树脂、四酚基乙烷树脂、萘酚酚醛清漆树脂、萘酚-苯酚共缩酚醛清漆树脂、萘酚-甲酚共缩酚醛清漆树脂、联苯改性酚醛树脂(用两个亚甲基将苯酚核连结而成的多元苯酚树脂)、联苯改性萘酚树脂(用两个亚甲基将苯酚核连结而成的多元萘酚化合物)、氨基三嗪改性酚醛树脂(用三聚氰胺、苯并胍胺等将苯酚核连结而成的多元苯酚树脂)、含烷氧基芳香环改性酚醛清漆树脂(用甲醛将苯酚核及含烷氧基芳香环连结而成的多元苯酚树脂)等多元苯酚树脂。其中,从耐热性、阻燃性的观点出发,更优选苯酚酚醛清漆树脂、苯酚芳烷基树脂(Xylock树脂)、三酚基甲烷树脂、联苯改性酚醛树脂等。
作为前述胺化合物,没有特别限制,可列举出二亚乙基三胺(DTA)、三亚乙基四胺(TTA)、四亚乙基五胺(TEPA)、二亚丙基二胺(DPDA)、二乙基氨基丙基胺(DEAPA)、N-氨基乙基哌嗪、孟烷二胺(MDA)、异佛尔酮二胺(IPDA)、1,3-双氨基甲基环己烷(1,3-BAC)、哌啶、N,N,-二甲基哌嗪、三亚乙基二胺等脂肪族胺;间苯二甲胺(XDA)、甲烷亚苯基二胺(MPDA)、二氨基二苯基甲烷(DDM)、二氨基二苯基砜(DDS)、苄基甲基胺、2-(二甲基氨基甲基)苯酚、2,4,6-三(二甲基氨基甲基)苯酚等芳香族胺等。
作为前述酸酐,可列举出苯二甲酸酐、偏苯三酸酐、均苯四甲酸酐、二苯甲酮四羧酸酐、乙二醇双偏苯三酸酯、甘油三偏苯三酸酯、马来酸酐、四氢苯二甲酸酐、甲基四氢苯二甲酸酐、内亚甲基四氢苯二甲酸酐、甲基内亚甲基四氢苯二甲酸酐、甲基丁烯基四氢苯二甲酸酐、十二碳烯基琥珀酸酐、六氢苯二甲酸酐、甲基六氢苯二甲酸酐、琥珀酸酐、甲基环己烯二羧酸酐等。
作为前述活性酯树脂,为具有酯键合部位的树脂,所述酯键合部位为反应活性高的芳香环彼此的酯键合部位。例如,可列举出由芳香族羧酸化合物 或其酰卤与酚树脂得到的活性酯树脂。作为具体例之一,可列举出下述结构式(3)所示的树脂等。
Figure PCTCN2020115282-appb-000004
[式中m为0或1,n为0或1以上的整数。]
这些环氧树脂用固化剂的用量可以根据期望的固化物物性等来适宜调整。特别是从固化性、固化物的耐热性优异的方面出发,相对于环氧树脂组合物中的前述环氧树脂(例如,前述环氧树脂(E1)和(E2)的合计)的环氧基1当量,前述环氧树脂用固化剂中的官能团当量优选为0.3~1.5当量的范围,优选为0.6~1.2当量的范围。
[其他树脂]
本发明的环氧树脂组合物可以在不损害本发明效果的范围内在前述环氧树脂(E1)、前述环氧树脂(E2)、前述环氧树脂用固化剂的基础上还包含其他树脂。
作为前述其他树脂的具体例,没有特别限制,可列举出马来酰亚胺树脂、双马来酰亚胺树脂、聚马来酰亚胺树脂、聚苯醚树脂、聚酰亚胺树脂、氰酸酯树脂(cyanate ester resin)、苯并噁嗪树脂、含三嗪的甲酚酚醛清漆树脂、苯乙烯-马来酸酐树脂、二烯丙基双酚/三烯丙基异氰脲酸酯等含烯丙基树脂、聚磷酸酯、磷酸酯-碳酸酯共聚物等。这些其他树脂可以单独使用,也可以组合使用2种以上。
[无机填充材料]
本发明的环氧树脂组合物可以还含有无机填充材料。通过含有前述无机填充材料,从而可抑制热膨胀性,是优选的。
作为前述无机填充材料,没有特别限制,可列举出二氧化硅、氧化铝、玻璃、堇青石、硅氧化物、硫酸钡、碳酸钡、氢氧化铝、氢氧化镁、碳酸钙、碳酸镁、镁氧化物、氮化硼、氮化铝、氮化锰、硼酸铝、碳酸锶、钛酸锶、钛酸钙、钛酸镁、钛酸铋、钛氧化物、锆氧化物、钛酸钡、锆钛酸钡、锆酸钡、锆酸钙、磷酸锆、磷钨酸锆、滑石、粘土、云母粉、锌氧化物、水滑石、勃姆石、炭黑等。这些之中,优选使用二氧化硅。此时,作为二氧化硅,可使用无定形二氧化硅、熔融二氧化硅、结晶二氧化硅、合成二氧化硅、中空二氧化硅等。需要说明的是,前述无机填充材料可以单独使用,也可以组合使用2种以上。
另外,前述无机填充材料根据需要可以进行表面处理。此时,作为可使用的表面处理剂,没有特别限制,可使用氨基硅烷系偶联剂、环氧硅烷系偶联剂、巯基硅烷系偶联剂、硅烷系偶联剂、有机硅氮烷化合物、钛酸酯系偶联剂等。作为表面处理剂的具体例,可列举出3-环氧丙氧基丙基三甲氧基硅烷、3-巯基丙基三甲氧基硅烷、3-氨基丙基三乙氧基硅烷、N-苯基-3-氨基丙基三甲氧基硅烷、六甲基二硅氮烷等。
对于前述无机填充材料的用量,相对于前述环氧树脂组合物中的树脂成分(环氧树脂、作为环氧树脂用固化剂的酚醛树脂等)100质量份,优选为100~2000质量份、更优选为400~1800质量份。无机填充材料的用量处于前述范围内时,低热膨胀性、阻燃性、及绝缘可靠性优异,是优选的。
另外,只要为不损害本发明特性的范围,除了前述无机填充材料以外,还可以配混有机填充材料。作为前述有机填充材料,例如,可列举出聚酰胺颗粒等。
本发明的环氧树脂组合物除了包含前述环氧树脂、前述环氧树脂用固化剂、及前述无机填充材料以外,还可以在不损害本发明效果的范围内包含溶剂、添加剂等。
[溶剂]
本发明的环氧树脂组合物可以在无溶剂下制备,也可以包含溶剂。
作为前述溶剂的具体例,没有特别限制,可列举出丙酮、甲乙酮、甲基异丁基酮、环己酮等酮系溶剂;乙醚、四氢呋喃等醚系溶剂;乙酸乙酯、乙酸丁酯、溶纤剂乙酸酯、丙二醇单甲醚乙酸酯、卡必醇乙酸酯等酯系溶剂;溶纤剂、丁基卡必醇等卡必醇类、甲苯、二甲苯、乙苯、均三甲苯、1,2,3-三甲基苯、1,2,4-三甲基苯等芳香族烃、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮等酰胺系溶剂等。这些溶剂可以单独使用,也可以组合使用2种以上。
前述溶剂的用量根据目标用途来适宜调整,没有特别限定。具体而言,相对于前述环氧树脂组合物的全部质量,优选为10~90质量%、更优选为20~80质量%。
[添加剂]
本发明的环氧树脂组合物根据需要可以配混固化促进剂、硅烷偶联剂、脱模剂、颜料、着色剂、乳化剂、阻燃剂等各种添加剂。
[固化促进剂]
作为前述固化促进剂,没有特别限制,可列举出磷系固化促进剂、胺系固化促进剂、咪唑系固化促进剂、胍系固化促进剂、脲系固化促进剂等。
作为前述磷系固化促进剂,可列举出三苯基膦、三丁基膦、三对甲苯基膦、二苯基环己基膦、三环己基膦等有机膦化合物;三甲基亚磷酸酯、三乙基亚磷酸酯等有机亚磷酸酯化合物;乙基三苯基溴化鏻、苄基三苯基氯化鏻、丁基鏻四苯基硼酸盐、四苯基鏻四苯基硼酸盐、四苯基鏻四对甲苯基硼酸盐、三苯基膦三苯基硼烷、四苯基鏻硫氰酸盐、四苯基鏻二氰胺盐、丁基苯基鏻二氰胺盐、四丁基鏻癸酸盐等鏻盐等。
作为前述胺系固化促进剂,可列举出三乙胺、三丁胺、N,N-二甲基-4- 氨基吡啶(4-二甲基氨基吡啶、DMAP)、2,4,6-三(二甲基氨基甲基)苯酚、1,8-二氮杂双环[5,4,0]-十一碳-7-烯(DBU)、1,5-二氮杂双环[4,3,0]-壬-5-烯(DBN)等。
作为前述咪唑系固化促进剂,可列举出2-甲基咪唑、2-十一烷基咪唑、2-十七烷基咪唑、1,2-二甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑、1-苄基-2-甲基咪唑、1-苄基-2-苯基咪唑、1-氰基乙基-2-甲基咪唑、1-氰基乙基-2-十一烷基咪唑、1-氰基乙基-2-乙基-4-甲基咪唑、1-氰基乙基-2-苯基咪唑、1-氰基乙基-2-十一烷基咪唑鎓偏苯三酸酯、1-氰基乙基-2-苯基咪唑鎓偏苯三酸酯、2-苯基咪唑异氰脲酸加成物、2-苯基-4,5-二羟基甲基咪唑、2-苯基-4-甲基-5-羟基甲基咪唑、2,3-二氢-1H-吡咯并[1,2-a]苯并咪唑、1-十二烷基-2-甲基-3-苄基咪唑鎓氯化物、2-甲基咪唑啉等。
作为前述胍系固化促进剂,可列举出双氰胺、1-甲基胍、1-乙基胍、1-环己基胍、1-苯基胍、二甲基胍、二苯基胍、三甲基胍、四甲基胍、五甲基胍、1,5,7-三氮杂双环[4.4.0]癸-5-烯、7-甲基-1,5,7-三氮杂双环[4.4.0]癸-5-烯、1-甲基双胍、1-乙基双胍、1-丁基双胍、1-环己基双胍、1-烯丙基双胍、1-苯基双胍等。
作为前述脲系固化促进剂,可列举出3-苯基-1,1-二甲基脲、3-(4-甲基苯基)-1,1-二甲基脲、氯苯基脲、3-(4-氯苯基)-1,1-二甲基脲、3-(3,4-二氯苯基)-1,1-二甲基脲等。
上述的固化促进剂中,使用磷系固化促进剂、咪唑系固化促进剂从固化性的观点出发是优选的,从绝缘可靠性的观点出发,优选磷系固化促进剂。
需要说明的是,上述的固化促进剂可以单独使用,也可以组合使用2种以上。
对于前述固化促进剂的用量,为了得到期望的固化性,可以进行适宜调整,相对于前述环氧树脂组合物中的树脂成分(环氧树脂、作为环氧树脂用 固化剂的酚醛树脂等)的合计量100质量份,优选为0.01~10.0质量份、更优选为0.1~5.0质量份。固化促进剂的用量为前述范围内时,固化性及绝缘可靠性优异,是优选的。
[阻燃剂]
作为前述阻燃剂,没有特别限制,可列举出无机磷系阻燃剂、有机磷系阻燃剂、卤素系阻燃剂等。
作为前述无机磷系阻燃剂,没有特别限制,可列举出红磷;磷酸一铵、磷酸二铵、磷酸三铵、聚磷酸铵等磷酸铵;磷酸酰胺等。
作为前述有机磷系阻燃剂,没有特别限制,可列举出甲基酸式磷酸酯、乙基酸式磷酸酯、异丙基酸式磷酸酯、二丁基磷酸酯、单丁基磷酸酯、丁氧基乙基酸式磷酸酯、2-乙基己基酸式磷酸酯、双(2-乙基己基)磷酸酯、单异癸基酸式磷酸酯、月桂基酸式磷酸酯、十三烷基酸式磷酸酯、硬脂基酸式磷酸酯、异硬脂基酸式磷酸酯、油烯基酸式磷酸酯、丁基焦磷酸酯、二十四烷基酸式磷酸酯、乙二醇酸式磷酸酯、(2-羟基乙基)甲基丙烯酸酯酸式磷酸酯等磷酸酯;9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物、二苯基氧化膦等二苯基膦;10-(2,5-二羟基苯基)-10H-9-氧杂-10-磷杂菲-10-氧化物、10-(1,4-二氧萘)-10H-9-氧杂-10-磷杂菲-10-氧化物、二苯基蒽醌氧化膦、二苯基氧膦基-1,4-二氧萘、1,4-亚环辛基氧膦基-1,4-苯基二醇、1,5-亚环辛基氧膦基-1,4-苯基二醇等含磷的酚;9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物、10-(2,5-二羟基苯基)-10H-9-氧杂-10-磷杂菲-10-氧化物、10-(2,7-二羟基萘基)-10H-9-氧杂-10-磷杂菲-10-氧化物等环状磷化合物;前述磷酸酯、前述二苯基膦、前述含磷的酚与环氧树脂、醛合物、酚化合物反应而得到的化合物等。
作为前述卤素系阻燃剂,没有特别限制,可列举出溴化聚苯乙烯、双(五溴苯基)乙烷、四溴双酚A双(二溴丙基醚)、1,2-双(四溴苯二甲酰亚胺)、2,4,6-三(2,4,6-三溴苯氧基)-1,3,5-三嗪、四溴苯二甲酸等。
上述的阻燃剂可以单独使用,也可以组合使用2种以上。
前述环氧树脂组合物通过将前述环氧树脂单独、或在前述环氧树脂的基础上将上述环氧树脂用固化剂等各成分均匀地混合来获得,可以通过与以往公知的方法同样的方法来容易地制成固化物。
<固化物>
本发明涉及一种固化物,其特征在于,由前述环氧树脂组合物得到。前述固化物是使用含有前述环氧树脂的环氧树脂组合物而得到的,因此韧性、对金属基材的密合性(高密合性)优异,是有用的。特别是含有前述环氧树脂的环氧树脂组合物在熔融时为低粘度,流动性高、成形性优异,因此前述固化物可以适合用于半导体密封材料用途。
作为前述固化物,可列举出层叠物、浇铸成型物、粘接层、涂膜、薄膜等成形固化物。
作为前述固化反应,可列举出热固化、紫外线固化反应等,其中,作为热固化反应,即使在无催化剂下也容易进行,但想要更快地反应的情况下,有机过氧化物、偶氮化合物那样的聚合引发剂、膦系化合物、叔胺那样的碱性催化剂的添加是有效的。例如,可列举出过氧化苯甲酰、过氧化二异丙苯、偶氮双异丁腈、三苯基膦、三乙胺、咪唑类等。
<半导体密封材料>
本发明涉及一种半导体密封材料,其特征在于,含有前述环氧树脂组合物。通过使用含有前述环氧树脂的环氧树脂组合物,从而流动性、成形性优异,另外,由前述环氧树脂组合物得到的固化物的韧性、对金属基材的密合性等优异,因此可以优选用于半导体密封材料用途。
作为得到前述半导体密封材料的方法,可列举出将前述环氧树脂组合物(环氧树脂、环氧树脂用固化剂、及无机填充材料等)、及作为任意成分的添加剂混合,使用挤出机、捏合机、辊等充分地进行熔融混合直至均匀的方 法等。
<半导体装置>
本发明涉及一种半导体装置,其特征在于,含有前述半导体密封材料的固化物。前述半导体装置通过利用使用了含有前述环氧树脂的环氧树脂组合物的半导体密封材料的固化物,从而韧性、对金属基材的密合性等优异,是优选的。
作为得到前述半导体装置的方法,可列举出将前述半导体密封材料浇铸成型、或使用传递成型成形机、注射成形机等进行成形,在150~250℃下进行1~10小时的加热固化的方法等。
<其他用途>
由本发明的环氧树脂组合物得到的固化物的高韧性、对基材的密合性(高密合性)等优异,因此不仅适合用于半导体密封材料、半导体装置,还适合用于预浸料、电路基板、积层薄膜、积层基板、粘接剂、抗蚀剂材料等。另外,也适合用于纤维强化树脂的基质树脂等各种用途,在用途方面不限定于这些。
[实施例]
以下,使用实施例更详细地对本发明进行说明,但本发明不限定于这些范围。另外,以下的“份”及“%”只要没有特别说明就为质量基准。需要说明的是,在制备环氧树脂时,通过以下所示的GPC测定进行环氧树脂的合成确认。
<GPC测定条件>
测定装置:东曹株式会社制“HLC-8320GPC”
柱:东曹株式会社制保护柱“HXL-L”+东曹株式会社制“TSK-GEL G2000HXL”+东曹株式会社制“TSK-GEL G2000HXL”+东曹株式会社制“TSK-GEL G3000HXL”+东曹株式会社制“TSK-GEL G4000HXL”
检测器:RI(差示折射计)
数据处理:东曹株式会社制“GPC工作站EcoSEC-WorkStation”
测定条件:柱温度  40℃
展开溶剂  四氢呋喃
流速      1.0ml/分钟
标准:依据前述“GPC工作站EcoSEC-WorkStation”的测定手册,使用分子量已知的下述的单分散聚苯乙烯。
(使用聚苯乙烯)
东曹株式会社制“A-500”
东曹株式会社制“A-1000”
东曹株式会社制“A-2500”
东曹株式会社制“A-5000”
东曹株式会社制“F-1”
东曹株式会社制“F-2”
东曹株式会社制“F-4”
东曹株式会社制“F-10”
东曹株式会社制“F-20”
东曹株式会社制“F-40”
东曹株式会社制“F-80”
东曹株式会社制“F-128”
试样:用微型过滤器对以下所示的合成例1中得到的环氧树脂的以固体成分换算为1.0质量%的四氢呋喃溶液进行过滤所得的物质(50μl)
[合成例1]
〔环氧树脂(1)的合成〕
[工序1]
在安装有温度计、滴液漏斗、冷凝管、搅拌机的烧瓶中,实施氮气吹扫,投入1,6-二羟基萘320.4g(羟基4.0当量)、环氧氯丙烷1480.0g(16.0当量)、正丁醇444.0g并溶解。升温至60℃后,用5小时滴加20%氢氧化钠水溶液880.0g(4.4当量)。其后,继续搅拌0.5小时。其后,通过减压蒸馏将未反应的环氧氯丙烷蒸馏去除。向由此得到的粗环氧树脂中加入甲基异丁基酮1088.8g并溶解。进而向该溶液中添加20%氢氧化钠水溶液20.0g并在80℃下反应2小时,然后用水544.4g重复3次水洗直至清洗液的pH变为中性。接着,通过共沸对体系内进行脱水,经过精密过滤后,在减压下将溶剂蒸馏去除,得到环氧树脂517.2g。
[工序2]
对工序1中得到的环氧树脂500.0g,使用传热面积约为0.03m 2的降膜式分子蒸馏装置(柴田科学株式会社制),以2~20Pa的真空度、以供给液速度100ml/h、蒸发面的温度240℃进行处理,得到环氧树脂355.1g作为蒸馏组分。
〔工序3〕
在安装有搅拌机的烧瓶中投入工序2中得到的环氧树脂300g、甲乙酮100g,升温至70℃后,搅拌1小时,使其完全溶解。其后,边搅拌边冷却至-10℃,进行2小时搅拌,通过过滤将析出的固体成分和上清液分离(重结晶)。将得到的固体成分在25℃、真空下干燥10小时,由此得到重结晶后的环氧树脂(1)291g。得到的环氧树脂(1)的熔点(DSC)为60℃、环氧当量为140g/eq。将得到的环氧树脂(1)的GPC图示于图1。
需要说明的是,根据GPC图算出的环氧树脂(1)中的1,6-二(2,3-环氧丙氧基)萘的含量为97面积%。
[表1]
Figure PCTCN2020115282-appb-000005
[表2]
Figure PCTCN2020115282-appb-000006
<半导体密封材料的制备>
将使用上述表1所示的配混成分并以上述表2所示的配混比例配混各成分而成的环氧树脂组合物干混后,进行熔融混炼,由此制备半导体密封材料。
使用得到的半导体密封材料,通过以下的评价方法对半导体密封用途相关的特性进行测定/评价。将这些评价结果示于表3。
<干混时的抗粘连性>
使用上述表1所示的配混成分,以上述表2所示的比例配混各成分,在25℃下进行5分钟干混操作。确认各配混成分是否不粘连而能够均匀地混合,评价抗粘连性。需要说明的是,A的情况下,判断为实用上没问题。
(评价基准)
A:在25℃下5分钟、不粘连、可实现均匀的混合。
B:在25℃下5分钟、发生粘连、无法实现均匀的混合。
<流动试验粘度>
使用各半导体密封材料,依据JIS K 7210-1,用岛津制作所株式会社制、高化式流动试验粘度计
Figure PCTCN2020115282-appb-000007
实施测定,将熔融曲线的最低粘度作为流动试验粘度(Pa·s),评价流动性。
作为前述粘度,优选为3~12Pa·s,更优选为3~9Pa·s。需要说明的是,前述粘度在前述范围内时,实用上没有问题,另外,在高流动性的方面也优异。
<夏比冲击强度试验>
使用各半导体密封材料,依据JIS K 6911,在175℃、120秒钟、成形压力6.9MPa的条件下进行传递成型,进而进行后固化,在175℃下进行5小时的处理,制成夏比冲击强度试验用的试验片(成形物)。使用Pendulum Impact Tester Zwick 5102对得到的试验片(成形物)测定夏比冲击强度(kgf/cm 2),对韧性进行评价。
<芯片剪切试验(Die shear test)>
在15mm×15mm厚度0.15mm的铜合金(Olin C7025)制基板上,在175℃×120秒钟、成形压力6.9MPa的条件下,通过传递成型,以底面积10mm 2、高度3.5mm制成由表2中记载的配混内容的各半导体密封材料得到的成形物后,在175℃下进行5小时的后固化,得到芯片剪切试验用的试验片。接着,使用芯片剪切试验仪(DAGE制),对前述成形物以剪切速度0.2mm/s施加剪切力,测定从基板表面剥离时的剪切强度(MPa),评价对基材的密合性。
[表3]
Figure PCTCN2020115282-appb-000008
注)上述表3中的“※1”是指由于在干混时粘连,因此不能均匀地混合,中止了评价(无法评价)。
根据上述表3的评价结果能够确认:所有实施例的环氧树脂组合物的干混时的抗粘连性均优异,使用其的半导体密封材料为低粘度,维持良好的成形性,并且得到的固化物(成形物)为高韧性及高密合性。
另一方面,根据上述表3的评价结果可知,对于比较例1,不含有具有萘环的环氧树脂,含有环氧树脂组合物的半导体密封材料的粘度比期望的范围更大,成形性差,另外,得到的固化物的韧性及密合性与实施例相比均不充分。比较例2由于使用不显示结晶性的液态的含有萘环的环氧树脂,从而在将环氧树脂组合物干混时,发生粘连,不能均匀地混合,不能进行韧性、密合性的评价。

Claims (11)

  1. 一种环氧树脂,其特征在于,含有二羟基萘化合物(X)的缩水甘油醚化物,且具有结晶性。
  2. 根据权利要求1所述的环氧树脂,其特征在于,所述二羟基萘化合物(X)由下述结构式(1)表示,
    Figure PCTCN2020115282-appb-100001
    式中,R 1各自独立地为脂肪族烃基、烷氧基、卤素原子中的任意者,n各自独立地为0~3的整数,式中2个羟基可以键合于萘环的2个芳香环中的同一芳香环上、也可以分别键合于萘环的2个芳香环中的不同的芳香环上。
  3. 根据权利要求1或2所述的环氧树脂,其特征在于,其熔点为50~150℃。
  4. 一种环氧树脂组合物,其特征在于,含有权利要求1~3中任一项所述的环氧树脂。
  5. 根据权利要求4所述的环氧树脂组合物,其特征在于,含有其他环氧树脂。
  6. 根据权利要求5所述的环氧树脂组合物,其特征在于,所述环氧树脂与所述其他环氧树脂的质量比为99/1~60/40。
  7. 根据权利要求4~6中任一项所述的环氧树脂组合物,其特征在于,含有环氧树脂用固化剂。
  8. 根据权利要求4~7中任一项所述的环氧树脂组合物,其特征在于,还含有无机填充材料。
  9. 一种固化物,其特征在于,由权利要求4~8中任一项所述的环氧树脂组合物得到。
  10. 一种半导体密封材料,其特征在于,含有权利要求4~8中任一项所述的环氧树脂组合物。
  11. 一种半导体装置,其特征在于,含有权利要求10所述的半导体密封材料的固化物。
PCT/CN2020/115282 2020-09-15 2020-09-15 环氧树脂、环氧树脂组合物、半导体密封材料及半导体装置 WO2022056668A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/115282 WO2022056668A1 (zh) 2020-09-15 2020-09-15 环氧树脂、环氧树脂组合物、半导体密封材料及半导体装置
TW110134164A TW202225245A (zh) 2020-09-15 2021-09-14 環氧樹脂、環氧樹脂組成物、半導體封裝材料、及半導體裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115282 WO2022056668A1 (zh) 2020-09-15 2020-09-15 环氧树脂、环氧树脂组合物、半导体密封材料及半导体装置

Publications (1)

Publication Number Publication Date
WO2022056668A1 true WO2022056668A1 (zh) 2022-03-24

Family

ID=80777462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115282 WO2022056668A1 (zh) 2020-09-15 2020-09-15 环氧树脂、环氧树脂组合物、半导体密封材料及半导体装置

Country Status (2)

Country Link
TW (1) TW202225245A (zh)
WO (1) WO2022056668A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358980A (en) * 1991-10-03 1994-10-25 Shin-Etsu Chemical Company, Limited Naphthol novolac epoxy resin compositions and semiconductor devices encapsulated therewith
CN1854186A (zh) * 2005-04-25 2006-11-01 信越化学工业株式会社 半导体密封用环氧树脂组合物及半导体装置
CN1854185A (zh) * 2005-04-25 2006-11-01 信越化学工业株式会社 半导体密封用环氧树脂组合物及半导体装置
KR20100025665A (ko) * 2008-08-28 2010-03-10 동우 화인켐 주식회사 경화성 수지 조성물
JP2010184963A (ja) * 2009-02-10 2010-08-26 Dic Corp エポキシ樹脂組成物、その硬化物、エポキシ樹脂、その製造方法、半導体封止材料、及び半導体装置
JP2013057018A (ja) * 2011-09-08 2013-03-28 Sekisui Chem Co Ltd 硬化性組成物及び接続構造体
CN109651596A (zh) * 2018-12-24 2019-04-19 上海华谊树脂有限公司 一种含有萘环结构的环氧树脂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358980A (en) * 1991-10-03 1994-10-25 Shin-Etsu Chemical Company, Limited Naphthol novolac epoxy resin compositions and semiconductor devices encapsulated therewith
CN1854186A (zh) * 2005-04-25 2006-11-01 信越化学工业株式会社 半导体密封用环氧树脂组合物及半导体装置
CN1854185A (zh) * 2005-04-25 2006-11-01 信越化学工业株式会社 半导体密封用环氧树脂组合物及半导体装置
KR20100025665A (ko) * 2008-08-28 2010-03-10 동우 화인켐 주식회사 경화성 수지 조성물
JP2010184963A (ja) * 2009-02-10 2010-08-26 Dic Corp エポキシ樹脂組成物、その硬化物、エポキシ樹脂、その製造方法、半導体封止材料、及び半導体装置
JP2013057018A (ja) * 2011-09-08 2013-03-28 Sekisui Chem Co Ltd 硬化性組成物及び接続構造体
CN109651596A (zh) * 2018-12-24 2019-04-19 上海华谊树脂有限公司 一种含有萘环结构的环氧树脂及其制备方法

Also Published As

Publication number Publication date
TW202225245A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
TWI726122B (zh) 硬化性組成物及其硬化物
JP2011001447A (ja) エポキシ樹脂組成物
JP2007332196A (ja) 変性エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP4655490B2 (ja) エポキシ樹脂組成物及びその硬化体
WO2022056668A1 (zh) 环氧树脂、环氧树脂组合物、半导体密封材料及半导体装置
JP5127160B2 (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
JP2010184963A (ja) エポキシ樹脂組成物、その硬化物、エポキシ樹脂、その製造方法、半導体封止材料、及び半導体装置
WO2017175560A1 (ja) エポキシ樹脂組成物、硬化性組成物、及び半導体封止材料
JP7541664B2 (ja) エポキシ樹脂組成物、硬化物、半導体封止材、及び、半導体装置
JP7541665B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、硬化物、半導体封止材、及び、半導体装置
JP5220488B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP7290205B2 (ja) エポキシ樹脂、硬化性組成物、硬化物、半導体封止材料、半導体装置、プリプレグ、回路基板、及び、ビルドアップフィルム
JP5983662B2 (ja) 電子材料用エポキシ樹脂組成物およびその硬化物
TW202231706A (zh) 環氧樹脂、硬化性組成物、硬化物、半導體封裝材料、半導體裝置、預浸漬物、電路基板、及增層薄膜
WO2022102489A1 (ja) 樹脂組成物、硬化物、半導体封止材、及び、半導体装置
JP2023074977A (ja) 半導体封止用樹脂組成物、半導体封止材料及び半導体装置
JP6241186B2 (ja) フェノール樹脂、エポキシ樹脂、これらの製造方法、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
TW202309118A (zh) 環氧樹脂及含有該環氧樹脂之硬化性組成物
JP2023074975A (ja) 半導体封止用樹脂組成物、半導体封止材料及び半導体装置
JP2010053293A (ja) エポキシ樹脂組成物
JP2023074978A (ja) エポキシ樹脂組成物及びその製造方法、硬化性組成物、硬化物、半導体封止材料、半導体装置、プリプレグ、回路基板、並びに、ビルドアップフィルム
JP4942384B2 (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
JP5299976B2 (ja) 変性エポキシ樹脂及びエポキシ樹脂組成物
TW202336067A (zh) 環氧樹脂
JP2023074976A (ja) 多価ヒドロキシ樹脂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953529

Country of ref document: EP

Kind code of ref document: A1