WO2022054667A1 - 下地処理剤、及び金属材料 - Google Patents

下地処理剤、及び金属材料 Download PDF

Info

Publication number
WO2022054667A1
WO2022054667A1 PCT/JP2021/032122 JP2021032122W WO2022054667A1 WO 2022054667 A1 WO2022054667 A1 WO 2022054667A1 JP 2021032122 W JP2021032122 W JP 2021032122W WO 2022054667 A1 WO2022054667 A1 WO 2022054667A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
soluble
acrylic resin
treatment agent
metal material
Prior art date
Application number
PCT/JP2021/032122
Other languages
English (en)
French (fr)
Inventor
優子 和田
美和 内川
秀公 平澤
徳純 松井
宏一 斉藤
Original Assignee
日本ペイント・サーフケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント・サーフケミカルズ株式会社 filed Critical 日本ペイント・サーフケミカルズ株式会社
Priority to JP2022547530A priority Critical patent/JP7322301B2/ja
Publication of WO2022054667A1 publication Critical patent/WO2022054667A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present invention relates to a surface treatment agent and a metal material.
  • a technique of laminating the surface of a metal material in order to protect and design a metal material such as aluminum or an aluminum alloy has been known.
  • the laminated film adhered to the surface of the metal material in the laminating process is excellent in processability, corrosion resistance, barrier property of the contents, and the like. Further, unlike paints, it does not generate volatile organic compounds in the manufacturing process, so it is also excellent in terms of the environment, and is widely used as a surface protective material in food cans, condenser cases, battery members and the like.
  • Patent Document 1 improves adhesion by having an amide ester moiety formed by the reaction of an oxazoline group and a carboxyl group in the base treatment layer. There was still room for improvement in terms of obtaining favorable adhesion. Further, since the condition is that a resin containing an oxazoline group is used, there is room for improvement in terms of manufacturing cost.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a base treatment agent capable of imparting preferable adhesion to a laminated film to a metal material.
  • the present invention is a surface treatment agent containing a water-soluble metal compound which is at least one of a water-soluble zirconium compound and a water-soluble titanium compound, and a water-soluble or water-dispersible acrylic resin.
  • concentration of the water-soluble metal compound is 500 to 200,000 mass ppm in terms of metal atom
  • the water-soluble or water-dispersible acrylic resin has a molecular weight of 15,000 to 500,000 and a solid acid value. Is 150 to 740 mgKOH / g, the solid content hydroxyl value is 24 to 350 mgKOH / g, and the concentration of the water-soluble or water-dispersible acrylic resin is 500 to 200,000 mass ppm in terms of solid content.
  • the ratio of the concentration of the water-soluble metal compound in terms of metal element to the concentration of the water-soluble or water-dispersible acrylic resin is 3/97 to 91/9, and the present invention relates to a surface treatment agent used for producing a laminated metal material. ..
  • the water-soluble or water-dispersible acrylic resin is a copolymer of the monomer (A), and at least a part of the monomer (A) contains a glycidyl group, an amide group, a silanol group, a phosphoric acid group, and the like.
  • the surface treatment agent according to (1) which contains a monomer containing at least one of the imide group and the imide group.
  • the present invention relates to a metal material in which at least one surface is treated with the surface treatment agent according to (1) or (2).
  • the water-soluble metal compound is 0.8 to 3200 mg / m2 in terms of metal atom, and the water-soluble or water-dispersible acrylic resin is converted into solid content in terms of the mass of the film after drying per one surface.
  • the surface treatment agent according to the present embodiment forms a film on the surface of the metal material to improve the adhesion to the laminated film.
  • the metal material laminated by the above-mentioned film and the laminated film (hereinafter, may be referred to as “laminated metal material”) is not particularly limited, but is not particularly limited, but is a food can body or lid material, a beverage can body or lid material.
  • Heat exchanger exterior material for batteries, battery separator, condenser case, vehicle body, engine parts or chassis parts, aircraft body, main wings, frame, fuel tank, engine turbine, engine fan or parts, railroad vehicle body, Carts or parts, ships, rocket parts, bicycle parts, vending machines, elevator car side plates, speed regulators or hoisting machines, escalator steps or interior panels, machine tools, injection molding machines, industrial robot structural members or Drive components, semiconductor manufacturing equipment, displays, submarines, signals, automatic loom, tunnel excavators, pipelines, road signs, generators, waste incinerators, exhaust gas treatment equipment, motors, transformers, electronic circuits, light bulbs, photoelectron multipliers , Golf clubs, antennas, bolts, nuts, screws and the like.
  • the surface treatment agent according to the present embodiment is used for applications that require adhesion between a metal material and a laminated film in a moist heat environment, for example, a soft packaging material for food such as an aluminum pouch, or a surface protective material. Can also be used as.
  • the surface treatment agent according to this embodiment contains a water-soluble metal compound and a water-soluble or water-dispersible acrylic resin.
  • the water-soluble metal compound is at least one of a water-soluble zirconium compound and a water-soluble titanium compound.
  • a film containing at least one of a zirconium compound and a titanium compound is formed on the surface of the metal material.
  • the water-soluble zirconium compound is not particularly limited, but is zirconium fluoride hydride (H 2 ZrF 6 ), ammonium hexafluoride zirconium ((NH 4 ) 2 ZrF 6 ), ammonium zirconium carbonate ((NH 4 ) 2 ZrO).
  • the water-soluble titanium compound is not particularly limited, and examples thereof include a titanium fluoride ammonium salt, an alkoxytitanium, and a titanium lactate ammonium salt.
  • the water-soluble zirconium compound and the water-soluble titanium compound also include an aqueous dispersion of the zirconium compound or the titanium compound.
  • Examples of the aqueous dispersion of the zirconium compound or the titanium compound include zirconia (ZrO 2 ) as a zirconium compound and zirconia sol and titania sol having zirconia (TIO 2 ) as a titanium compound as a dispersoid and water as a dispersion medium.
  • ZrO 2 zirconia
  • Tia sol having zirconia (TIO 2 ) zirconia
  • TiO 2 titania sol having zirconia
  • water-soluble metal compounds may be used alone or in combination of two or more. That is, as one embodiment of the water-soluble metal compound, a water-soluble zirconium compound and a water-soluble titanium compound can be used in combination.
  • the concentration of the water-soluble metal compound in the base treatment agent is 500 to 200,000 mass ppm in terms of metal atoms. If the concentration is less than 500 ppm, the adhesion and corrosion resistance of the laminated metal material are lowered. If the concentration exceeds 200,000 ppm, the adhesion is lowered and the cost of the surface treatment agent is increased. From the above viewpoint, the concentration of the water-soluble metal compound is preferably 500 to 60,000 mass ppm in terms of metal atoms.
  • the water-soluble or water-dispersible acrylic resin is a copolymer of the monomer (A), and the monomer (A) is a polymerizable monomer such as a radically polymerizable monomer.
  • the water-soluble or water-dispersible acrylic resin can be obtained by a known method using a polymerization reaction using the monomer (A) as a raw material component.
  • the radically polymerizable monomer is not particularly limited, and for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like.
  • Hydroxyl group-containing radically polymerizable monomers such as allyl alcohol, methacrylic alcohol, adduct of 2-hydroxyethyl (meth) acrylate and ⁇ -caprolactone, methyl (meth) acrylate, ethyl (meth) acrylate, methoxypolyethylene methacrylate, acrylic acid, (Meta) acrylic acid such as methacrylic acid, crotonic acid, isocrotonic acid, acrylic acid dimer, ⁇ -caprolactone adduct of acrylic acid and its derivatives, unsaturated dibasic acid such as maleic acid, fumaric acid, itaconic acid and the like. Examples thereof include radically polymerizable monomers having a carboxyl group such as the half ester, half amide, and half thioester.
  • examples of the monomer (A) that can be used to obtain a water-soluble or water-dispersible acrylic resin include n-butyl (meth) acrylate, isobutyl acrylate, t-butyl acrylate, and 2-ethylhexyl (meth).
  • the monomer (A) used for obtaining the water-soluble or water-dispersible acrylic resin includes a glycidyl group and an amide group (specific examples of the amide group are -CONR- (R is a hydrogen atom or 1 or more carbon atoms 4). These are the following alkyl groups, and the alkyl group may be a linear group or a branched chain)), and at least one of a silanol group, a phosphoric acid group, and an imide group. It is preferable that the monomer containing the above is contained as a modifier. This makes it possible to improve the adhesion between the film formed by the surface treatment agent and the metal material.
  • the monomer (A) containing the glycidyl group, the amide group, the silanol group, the phosphoric acid group, and the imide group may be used in combination of a plurality of types.
  • Examples of the monomer that can be used as the modifier include glycidyl (meth) acrylate, glycidyl group-containing monomer such as (meth) allyl glycidyl ether, (meth) acrylamide, N-methylol (meth) acrylamide, N, N-dimethyl.
  • Amide group-containing monomers such as (meth) acrylamide, N, N-dibutyl (meth) acrylamide, N, N-dioctyl (meth) acrylamide, N-monobutyl (meth) acrylamide, N-monooctyl (meth) acrylamide, acid phospho Phosphoric acid group-containing monomers such as oxyethyl methacrylate and acid phosphooxypolyoxyethylene glycol monomethacrylate, vinylmethoxysilane, vinyltrimethoxysilane, vinylethoxysilane, vinyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-methacry
  • a silanol group-containing monomer such as loxypropyltriethoxysilane, an imide group-containing monomer such as amideimide, a hydroxyl group-containing monomer and the like can be used.
  • the above monomer (A) is used by mixing two or more kinds.
  • the polymerization initiator is not particularly limited, but is, for example, 4,4'-azobis (4-cyanovaleric acid), 2,2'-azobis (2-methylpropionamidine) dihydrochloride, 2,2'-azobis.
  • 2,2'-azobis. 2,2-Imidazoline-2-yl) propane hydrochloride, ammonium peroxodisulfate, sodium peroxodisulfate, potassium peroxodisulfate and the like can be mentioned.
  • the polymerization method for obtaining the acrylic resin is not particularly limited, and can be synthesized by a known method such as a solution radical polymerization method, an emulsion polymerization method, or a suspension polymerization method.
  • the acrylic resin is obtained by stirring a mixed solution of a known radical polymerization initiator and the above-mentioned monomer in a suitable solvent while dropping the mixture at a polymerization temperature of 60 to 160 ° C. for 2 to 10 hours. be able to.
  • the molecular weight of the acrylic resin has a number average molecular weight of 15,000 to 500,000.
  • the number average molecular weight is less than 15,000, the adhesion of the formed film to the preferable metal material and the laminated film cannot be obtained.
  • the number average molecular weight exceeds 500,000, the viscosity of the obtained surface treatment agent increases, and the coating workability and storage stability deteriorate.
  • the number average molecular weight of the acrylic resin is preferably 55,000 to 200,000.
  • the number average molecular weight of the acrylic resin may be 10,000 to 800,000 depending on the required performance and other conditions.
  • the number average molecular weight is determined by the GPC method using polyethylene oxide as a standard.
  • the solid content hydroxyl value of the acrylic resin is 24-350 mgKOH / g. If it is less than 24 mgKOH / g, the adhesion and corrosion resistance of the laminated metal material are lowered. If it exceeds 350 mgKOH / g, the storage stability of the obtained acrylic resin is lowered.
  • the "solid content hydroxyl value" of the acrylic resin in the present specification and the scope of the patent claim is the free content contained in 1 g of the solid content of the acrylic resin based on the charging ratio of each monomer used for the polymerization of the acrylic resin. It means the theoretical value of the solid content hydroxyl value calculated by calculating the amount of potassium hydroxide (unit: mg) required to neutralize the acrylic required for acetylating the amount of hydroxyl groups. The solid content hydroxyl value of the acrylic resin is adjusted within the above numerical range by adjusting the ratio of each monomer used for polymerization.
  • the solid acid value of the acrylic resin is 150 to 740 mgKOH / g. If it is less than 150 mgKOH / g, the water solubility is lowered, the appearance of the film is deteriorated, and the adhesion of the laminated metal material is also lowered. If it exceeds 740 mgKOH / g, the above-mentioned required hydroxyl value cannot be obtained.
  • the "solid acid value" of the acrylic resin in the present specification and the scope of the patent claim is the acid contained in 1 g of the solid content of the acrylic resin based on the charging ratio of each monomer used for the polymerization of the acrylic resin. It means the theoretical value of solid acid value calculated by calculation of the amount of potassium hydroxide (unit: mg) required to neutralize the group.
  • the solid acid value of the acrylic resin is adjusted within the above numerical range by adjusting the ratio of each monomer used for polymerization.
  • the concentration of the acrylic resin in the base treatment agent is 500 to 200,000 mass ppm in terms of solid content. If it is less than 500 mass ppm, the adhesion and corrosion resistance of the laminated metal material are lowered. If it exceeds 200,000 mass ppm, the viscosity of the obtained surface treatment agent increases and handling becomes difficult. In addition, the performance improvement corresponding to the increase in the blending amount cannot be obtained, and the cost increases. From the above viewpoint, the concentration of the acrylic resin in the base treatment agent is preferably 500 to 60,000 mass ppm in terms of solid content.
  • the ratio of the mass concentration of the water-soluble metal compound in terms of metal atom to the mass concentration of the acrylic resin in terms of solid content is 3/97 to 91/9 in terms of the water-soluble metal compound concentration / acrylic resin concentration.
  • the ratio of the water-soluble metal compound is higher than 91/9 in the above concentration ratio, the adhesion of the film formed by the base treatment agent to the metal material such as the aluminum material and the laminate film is lowered.
  • the ratio of the water-soluble metal compound is lower than 3/97 in the concentration ratio, the adhesion to a metal material such as an aluminum material is lowered.
  • the base treatment agent according to the present embodiment may contain other resins in addition to the above-mentioned water-soluble metal compound and acrylic resin.
  • it may contain a polyester resin, an alkyd resin, an epoxy resin, a urethane resin, or the like. These resins can be used alone or in combination of two or more.
  • the acrylic resin is preferably 70 to 100% by mass, more preferably 90 to 100% by mass, based on the total amount of the resin solid content.
  • the base treatment agent according to this embodiment does not have to contain a cross-linking agent. Even if the base treatment agent according to the present embodiment does not contain a cross-linking agent, preferable adhesion and corrosion resistance of the laminated metal material can be obtained. However, the base treatment agent according to the present embodiment may contain a cross-linking agent.
  • the cross-linking agent is not particularly limited, and examples thereof include water-soluble thermosetting cross-linking agents such as water-soluble melamine resin and water-soluble phenol resin.
  • the surface treatment agent according to the present embodiment may contain known additives such as stabilizers, antioxidants, surface conditioners, antifoaming agents, and antibacterial agents, if necessary.
  • antioxidant examples include a phenol-based antioxidant, a phosphorus-based antioxidant, a sulfur-based antioxidant, and the like.
  • the surface conditioner examples include a nonionic or cationic surfactant, a polyethylene oxide of polyacetylene glycol or an adduct of polypropylene oxide, an acetylene glycol compound and the like.
  • defoaming agent examples include mineral oil-based defoaming agents, fatty acid-based defoaming agents, silicone-based defoaming agents, and the like.
  • antibacterial agent examples include zincpyrythion, 2- (4-thiazolyl) -benzimidazole, 1,2-benzisothiazolin, 2-n-octyl-4-isothiazolin-3-one, N- (fluorodichloromethylthio) phthalimide, and the like.
  • the method for producing the base treatment agent according to the present embodiment is not particularly limited, and the above-mentioned water-soluble metal compound, water-soluble or water-dispersible acrylic resin, and, if necessary, other components are mixed with water as a solvent. It can be produced by a known method such as stirring.
  • the base treatment agent according to the present embodiment is prepared as an aqueous solution or an aqueous dispersion of the water-soluble metal compound and the water-soluble or water-dispersible acrylic resin. As a result, it is not necessary to include an organic solvent in the surface treatment agent, which is excellent in terms of environment and workability.
  • the base treatment agent according to the present embodiment is used for producing a laminated metal material produced by forming a film on at least one surface of a metal material and adhering the laminated film.
  • the method for manufacturing the laminated metal material is not particularly limited. For example, after degreasing a metal material such as a thin plate material, washing with water, pickling, surface adjusting, etc. as necessary, the surface treatment agent according to the present embodiment is applied, and the metal material is heated and dried. Examples thereof include a method of forming a film on the surface and further adhering a laminated film made of a thermoplastic resin or the like.
  • Examples of the metal material to be treated of the surface treatment agent according to the present embodiment include aluminum or an aluminum alloy, iron, iron alloy, copper, copper alloy, SUS and the like.
  • aluminum or an aluminum alloy is preferably used as the metal material from the viewpoint of processability and adhesion.
  • aluminum alloy 3004 material, 3104 material, aluminum alloy 3005 material, etc. for beverage / food can body aluminum alloy 5052 material, aluminum alloy 5182 material, etc. for beverage / food can lid material, aluminum alloy 1050 material, aluminum as dry battery container.
  • Alloy 1100 material, 1200 material, 8079 material as an aluminum alloy for a battery packaging material, 8021 material as an electrode material, and the like are preferably used.
  • Aluminum alloys include Al—Cu alloys, Al—Mn alloys, Al—Si alloys, Al—Mg alloys, Al—Mg—Si alloys, Al—Zn—Mg alloys, and aluminum die casts (ADC materials). ) May be used.
  • the copper alloy for example, oxygen-free copper such as brass and C1020P and commercially available copper foil are used, and as SUS, for example, austenite stainless steel such as SUS304 and SUS301, SUS430 and the like are used. Examples thereof include ferrite-based stainless steels such as SUS410 and martensite-based stainless steels such as SUS410.
  • the nickel alloy include Ni-P alloy and the like.
  • a plated metal material such as a Ni-plated steel sheet, a Zn-plated steel sheet, or a Zn—Ni-plated steel sheet may be used.
  • a plated metal material such as a Ni-plated steel sheet, a Zn-plated steel sheet, or a Zn—Ni-plated steel sheet may be used.
  • the above examples include Ni-plated steel sheets, Zn-plated steel sheets, Zn—Ni-plated steel sheets, etc., which use SPCC, SPCD, SPCE, or the like as a base steel sheet.
  • the shape of the metal is not particularly limited, and examples thereof include a foil shape and a plate shape.
  • only one surface may be surface-treated with the surface-treating agent according to the present embodiment, or both surfaces may be surface-treated with the surface-treating agent. You may.
  • both sides may be surface-treated with a single surface treatment agent, or each side may be surface-treated with a surface treatment agent having a different composition.
  • the degreasing treatment is not particularly limited, and for example, a known method such as alkaline degreasing cleaning can be used.
  • the degreasing treatment is usually performed by a spray method.
  • the moisture on the surface of the base material is subjected to a method such as draining with a roll, air blowing, or hot air drying. To remove.
  • the film formed on at least one surface of the metal material preferably contains 0.8 to 3200 mg / m 2 of the water-soluble metal compound in terms of metal atom, based on the mass of the film after drying per surface.
  • the water-soluble or water-dispersible acrylic resin is contained in an amount of 1.0 to 4000 mg / m 2 in terms of solid content in terms of the mass of the film after drying per surface.
  • the film may be formed on any one surface of the metal material, and for example, the film may be formed on both sides of the thin plate material. When the mass of the film after drying per surface of the water-soluble metal compound is less than 0.8 mg / m 2 in terms of metal atoms, sufficient adhesion between the film and the laminated film cannot be obtained.
  • the method of applying the surface treatment agent according to the present embodiment is not particularly limited as long as the weight of each component of the formed film is within the above range.
  • roll coater paint gravure coater paint, reverse coater paint, slot die coater paint, lip coater paint, knife coater paint, blade coater paint, chamber doctor coater paint, air knife coater paint, curtain coat paint, spin coat paint, brush paint.
  • Examples thereof include painting, roller painting, bar coater painting, dip painting, applicator painting, spray painting, sink painting, and combinations thereof.
  • the method for heating and drying the surface treatment agent according to the present embodiment is not particularly limited, and examples thereof include oven drying, a method by forced circulation of hot air, a method of drying by an electromagnetic induction heating furnace using an IH heater, and the like. Can be mentioned.
  • the conditions for heat drying can be, for example, 40 to 160 ° C. for 2 to 60 seconds.
  • the air volume, wind speed, etc. set by the drying method can be set arbitrarily.
  • the method of adhering the laminated film to the metal material having a film formed on the surface by the above-mentioned surface treatment agent is not particularly limited, and known methods such as a dry laminating method, a heat laminating method, and an extrusion laminating method can be used. can.
  • the laminating film is not particularly limited, and a known laminating film can be used.
  • Examples of the laminated film include polypropylene resin, polyethylene terephthalate resin, nylon resin, polyethylene naphthalate resin, polyester resin, polycarbonate resin, polyvinyl alcohol resin, polyvinyl acetal resin, polyvinylidene chloride resin, polyvinyl acetate resin, and polyethylene isophthalate.
  • Resin copolymerized polyester resin, polyester resin, polyamide resin, polyimide resin, polyetherimide resin, polyphenylene sulfide resin, fluororesin, silicone resin, nylon resin, phenol resin, (meth) acrylic resin, epoxy resin, polymethoxylylen adiba
  • resin obtained by mixing two or more kinds of resins containing these resins and the like.
  • the laminated film made of these materials may be uniaxially or biaxially stretched.
  • the laminating metal material according to the present embodiment may have a film formed by the surface treatment agent and a layer other than the laminating film.
  • it may have an adhesive layer arranged between the film formed by the surface treatment agent and the laminated film.
  • the adhesive layer is not particularly limited, and may be formed by a one-component adhesive or a two-component adhesive.
  • the resin component of the adhesive that can be used to form the adhesive layer is not particularly limited, and is, for example, a polyolefin resin, a polyester resin, a polyether resin, a polyurethane resin, a polycarbonate resin, an epoxy resin, or a phenol resin.
  • Resin polyamide resin, polyvinyl acetate resin, cellulose resin, (meth) acrylic resin, polyimide resin, amino resin, chloroprene rubber, nitrile rubber, styrene-butadiene rubber, silicone resin, ethylene fluorinated propylene
  • copolymers One of these resin components may be used alone, or two or more thereof may be used in combination.
  • examples of the combination of two or more kinds of resin components include polyurethane resin and modified polyolefin resin, polyamide resin and acid-modified polyolefin resin, polyamide resin and metal modified polyolefin resin, polyamide resin and polyester resin, and the like.
  • the method for forming the adhesive layer is not particularly limited, and examples thereof include an extrusion molding method and a dispersion method.
  • the base treatment agent according to the present embodiment contains the above-mentioned water-soluble metal compound and acrylic resin in a specific amount, it is excellent in coating workability and stability, and the obtained laminated metal material has sufficient adhesion.
  • the surface treatment agent simply containing the acrylic resin and the zirconium compound has corrosion resistance, but the surface treatment agent according to the present embodiment has an advantage that the adhesion to the laminated film is improved and the corrosion resistance is also obtained. Therefore, the surface treatment agent according to the present embodiment is particularly preferably used for producing a laminated metal material that is required to have high adhesion and corrosion resistance after high processing.
  • the obtained acrylic resin had a number average molecular weight of 50,000, a solid content acid value of 620 mgKOH / g, and a solid content hydroxyl value of 82 mgKOH / g.
  • the unit of the numerical value for which the unit is not described is the mass part.
  • Example 1 Ion-exchanged water is charged into a corben equipped with a heating / stirring device, and while stirring at room temperature, the acrylic resin aqueous solution obtained in Synthesis Example 1 is gradually added so as to have a solid content of 7,500 mass ppm, and the mixture is stirred.
  • the water-soluble zirconium compound (ammonium carbonate, manufactured by Daiichi Rare Element Chemical Industry Co., Ltd., trade name, zircozol AC-7, containing 13% in Zr atomic equivalent) is 2,500 mass ppm in terms of zirconium metal atom. Gradually added, stirring was continued for 20 minutes to prepare the surface treatment agent of Example 1.
  • Examples 2 to 31, Comparative Examples 1 to 9 The surface treatment agents of Examples 2 to 31 and Comparative Examples 1 to 9 were prepared in the same manner as in Example 1 except that the types and concentrations of the acrylic resin and the water-soluble metal compound were shown in Table 2.
  • a cross-linking agent a melamine resin (“Simel 370N” manufactured by Nippon Cytec Co., Ltd. (nonvolatile content 80%)) or a phenol resin (“Shonol BRL-204” manufactured by Aica Kogyo Co., Ltd. (nonvolatile content)). Minutes 70%)) were used in the amounts shown in Table 2.
  • Example 21 tetraalkylammonium-modified zirconium (manufactured by Matsumoto Fine Chemical Co., Ltd., “Organotics ZC700” (nonvolatile component 20%)) was used as the water-soluble zirconium compound.
  • Examples 22 and 23 were zirconium fluoride, respectively. Titanium triethanol aminate was used.
  • Example 30 ammonium carbonate zirconium ammonium carbonate (2250 mass ppm in terms of Zr) and titanium triethanol aminate (250 mass ppm in terms of Ti) were used in combination as a water-soluble metal compound.
  • Example 31 a polyester resin (“Vironal MD1245” (500 mass ppm) manufactured by Toyo Boseki Co., Ltd.) was used as another resin.
  • Aluminum alloy 3004 plate (Al) as a metal material was degreased (treated at 65 ° C for 3 seconds) with a 2% diluted solution of "Surf Cleaner 330" manufactured by Nippon Paint Surf Chemicals Co., Ltd. to obtain the obtained aluminum material.
  • the surface treatment agents of the above Examples and Comparative Examples were applied with a bar coater and dried in a hot air oven at a material temperature of 100 ° C. or higher to obtain a metal material having a film formed on the surface by the surface treatment agent. ..
  • the film weight (mg / m 2 ) after drying the solid content weight of the acrylic resin and the weight in terms of metal atoms in the water-soluble metal compound are shown in Table 3, respectively.
  • the metal material copper (NC-WS manufactured by Furukawa Electric Co., Ltd.) in Example 14, SUS (SUS304) in Example 15, Ni-plated steel sheet using SPCC as a base steel sheet in Example 16, and Example 17 Then, aluminum die casting (ADC-12) was used respectively.
  • the base treatment agents according to the above Examples and Comparative Examples were coated, and the laminated metal material was prepared by the following three methods for producing the laminated metal material on the metal material having a film formed on the surface.
  • the laminating method 1 a polyester-based two-component adhesive was used as the adhesive, and coating was applied on the film formed on the surface of the metal material so as to be 3 g / m 2 when dried.
  • a PP film was pressure-bonded to the coated surface at 100 ° C. and 0.38 MPa, and then stored at 60 ° C. for 6 days to obtain a laminated metal material.
  • the laminating method 2 acid-modified polypropylene was used as an adhesive, and a coating was applied on the film formed on the surface of the metal material so as to be 3 g / m 2 when dried, and dried at 200 ° C. for 30 seconds. Next, a PP film was attached to the coated surface and pressure-bonded at 180 ° C. and 0.38 MPa to obtain a laminated metal material. In the laminating method 3, a PET film was pressure-bonded on a film formed on the surface of the metal material at 180 ° C. and 0.38 MPa, and then dried at 240 ° C. for 60 seconds to obtain a laminated metal material.
  • Adhesion test after retort treatment A test piece obtained by cutting the crimped metal plate into a size of 150 mm ⁇ 15 mm was placed in an autoclave and heat-treated in pressurized steam at 125 ° C. for 30 minutes (retort treatment). The retort-treated test piece was measured for peel strength (kgf / 15 mm width) when the film surface was peeled off using a "Tencilon tensile tester" (manufactured by LST-200N-S Minerva). The measurement result was evaluated as the adhesion after the retort treatment according to the same evaluation criteria as the initial adhesion, and the evaluation of 4 or more was passed. The results are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

金属材料にラミネートフィルムに対する好ましい密着性を付与できる下地処理剤を提供すること。 水溶性ジルコニウム化合物、及び、チタニウム化合物、水溶性又は水分散性アクリル樹脂を含有する下地処理剤であって、水溶性金属化合物の濃度は、金属原子換算で500~200,000質量ppmであり、水溶性又は水分散性アクリル樹脂は、分子量が15,000~500,000であり、固形分酸価が150~740mgKOH/gであり、固形分水酸基価が24~350mgKOH/gであり、水溶性又は水分散性アクリル樹脂の濃度は、固形分換算で500~200,000質量ppmであり、水溶性金属化合物の金属原子換算の濃度と、水溶性又は水分散性アクリル樹脂の濃度との比は3/97~91/9であり、ラミネート金属材の製造に用いられる、下地処理剤。

Description

下地処理剤、及び金属材料
 本発明は、下地処理剤、及び金属材料に関する。
 従来、アルミニウム、アルミニウム合金等の金属材料を保護し、意匠を施すために、金属材料の表面に、ラミネート加工を施す技術が知られている。ラミネート加工において金属材料の表面に接着されるラミネートフィルムは、加工性、耐食性、及び内容物のバリア性等に優れる。また、塗料と異なり製造過程で揮発性有機化合物を発生しないことから、環境面においても優れており、食品缶、コンデンサーケース、電池部材等における表面保護材として広く用いられている。
 ラミネート加工を適用する際には、美観や耐食性維持の観点から、ラミネートフィルムと金属材料との密着性を向上させることが重要である。このため、金属材料の下地処理層として、オキサゾリン基を含有する樹脂とアクリル樹脂を用いて、金属材料とラミネートフィルムとの密着性を向上させる技術が知られている(特許文献1参照)。
特開2011-187386号公報
 特許文献1に記載された技術は、下地処理層が、オキサゾリン基とカルボキシル基とが反応することで形成されるアミドエステル部位を有していることで、密着性を向上させるものであるが、好ましい密着性を得る観点で未だ改善の余地があった。また、オキサゾリン基を含有する樹脂を用いることが条件であることから、製造コストの点でも改善の余地があった。
 本発明は、上記に鑑みてなされたものであり、金属材料にラミネートフィルムに対する好ましい密着性を付与できる下地処理剤を提供することを目的とする。
(1) 本発明は、水溶性ジルコニウム化合物、及び水溶性チタニウム化合物のうち少なくとも何れかである水溶性金属化合物と、水溶性又は水分散性アクリル樹脂と、を含有する下地処理剤であって、前記水溶性金属化合物の濃度は、金属原子換算で500~200,000質量ppmであり、前記水溶性又は水分散性アクリル樹脂は、分子量が15,000~500,000であり、固形分酸価が150~740mgKOH/gであり、固形分水酸基価が24~350mgKOH/gであり、前記水溶性又は水分散性アクリル樹脂の濃度は、固形分換算で500~200,000質量ppmであり、前記水溶性金属化合物の金属元素換算の濃度と、前記水溶性又は水分散性アクリル樹脂の濃度との比は3/97~91/9であり、ラミネート金属材の製造に用いられる、下地処理剤に関する。
(2) 前記水溶性又は水分散性アクリル樹脂は、モノマー(A)の共重合体であり、前記モノマー(A)の少なくとも一部には、グリシジル基、アミド基、シラノール基、リン酸基、及びイミド基のうち、少なくとも何れかを含有するモノマーが含まれる、(1)に記載の下地処理剤。
 (3) また、本発明は、少なくとも何れかの一面が(1)又は(2)に記載の下地処理剤で処理されてなる、金属材料に関する。
 (4) 前記何れかの一面当たりの乾燥後皮膜質量で、前記水溶性金属化合物を金属原子換算で0.8~3200mg/m2、前記水溶性又は水分散性アクリル樹脂を固形分換算で1.0~4000mg/m2含有する皮膜が形成されてなる、(3)に記載の金属材料に関する。
 本発明によれば、金属材料にラミネートフィルムに対する好ましい密着性を付与できる下地処理剤を提供できる。
 以下、本発明の実施形態について説明する。本発明は以下の実施形態の記載に限定されない。
<下地処理剤>
 本実施形態に係る下地処理剤は、金属材料の表面上に、ラミネートフィルムとの密着性を向上させる皮膜を形成する。上記皮膜及びラミネートフィルムによりラミネート加工がされた金属材料(以下、「ラミネート金属材」と記載する場合がある)は、特に制限されないが、食品缶のボディーもしくは蓋材、飲料缶のボディーもしくは蓋材、熱交換器、電池用外装材、電池セパレーター、コンデンサーケース、車両のボディー、エンジン部品もしくはシャーシ部品、航空機のボディー、主翼、フレーム、燃料タンク、エンジンタービン、エンジンファンもしくは部品、鉄道車両の車体、台車もしくは部品、船、ロケット部材、自転車部品、自動販売機、エレベーターのかご側板、調速機もしくは巻上機、エスカレーターのステップもしくはインテリアパネル、工作機械、射出成型機、産業用ロボットの構造部材もしくは駆動部材、半導体製造装置、ディスプレイ、潜水艦、信号、自動織機、トンネル掘削機、パイプライン、道路標識、発電機、ごみ焼却炉、排ガス処理装置、モーター、トランス、電子回路、電球、光電子増倍管、ゴルフクラブ、アンテナ、ボルト、ナット、ねじ等の種々の用途に用いることができる。本実施形態に係る下地処理剤は、上記以外に、湿熱環境下における金属材料とラミネートフィルムとの密着性が要求される用途である、例えばアルミパウチ等の食品用軟包装材、または表面保護材としても使用できる。
 本実施形態に係る下地処理剤は、水溶性金属化合物、及び、水溶性又は水分散性アクリル樹脂を含有する。
(水溶性金属化合物)
 水溶性金属化合物は、水溶性ジルコニウム化合物、及び水溶性チタニウム化合物のうち少なくとも何れかである。水溶性金属化合物は、下地処理剤に含有されることで、金属材料の表面にジルコニウム化合物、及びチタニウム化合物のうち少なくとも何れかを含む皮膜を形成する。水溶性ジルコニウム化合物としては、特に限定されないが、フッ化ジルコン水素酸(HZrF)、六フッ化ジルコニウム酸アンモニウム((NHZrF)、炭酸ジルコニウムアンモニウム((NHZrO(CO)、テトラアルキルアンモニウム変性ジルコニウム、ジルコニウムモノアセチルアセテート、ジルコニウムテトラアセチルアセテート等が挙げられる。また、水溶性チタン化合物としては、特に限定されないが、チタンフッ化アンモニウム塩、又はアルコキシチタン、チタンラクテートアンモニウム塩等が挙げられる。上記以外に、本明細書において、水溶性ジルコニウム化合物、及び水溶性チタニウム化合物には、ジルコニウム化合物又はチタニウム化合物の水分散体も含まれる。ジルコニウム化合物又はチタニウム化合物の水分散体としては、例えば、ジルコニウム化合物としてのジルコニア(ZrO)やチタニウム化合物としてのチタニア(TiO)を分散質とし、水を分散媒とするジルコニアゾル、チタニアゾル等が挙げられる。上記の水溶性金属化合物は、1種又は2種以上を併用して用いることができる。即ち、水溶性金属化合物の一実施形態として、水溶性ジルコニウム化合物及び水溶性チタニウム化合物を併用して用いることができる。
 水溶性金属化合物は、下地処理剤中の濃度が金属原子換算で500~200,000質量ppmである。上記濃度が500ppm未満であると、ラミネート金属材の密着性や防食性が低下する。上記濃度が200,000ppmを超えると、密着性が低下すると共に、下地処理剤のコストが上昇する。上記の観点から、水溶性金属化合物の濃度は金属原子換算で500~60,000質量ppmであることが好ましい。
(水溶性又は水分散性アクリル樹脂)
 水溶性又は水分散性アクリル樹脂は、モノマー(A)の共重合体であり、モノマー(A)は、例えば、ラジカル重合性モノマー等の重合性モノマーである。水溶性又は水分散性アクリル樹脂は、モノマー(A)を原料成分とする、重合反応を利用した公知の方法により得ることができる。ラジカル重合性モノマーとしては、特に限定されないが、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、アリルアルコール、メタクリルアルコール、2-ヒドロキシエチル(メタ)アクリレートとε-カプロラクトンとの付加物等の水酸基含有ラジカル重合性モノマー、メチル(メタ)アクリレート、エチル(メタ)アクリレート、メトキシポリエチレンメタクリレート、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、アクリル酸二量体、アクリル酸のε-カプロラクトン付加物等の(メタ)アクリル酸及びその誘導体、マレイン酸、フマル酸、イタコン酸等の不飽和二塩基酸及びそのハーフエステル、ハーフアミド、ハーフチオエステル等のカルボキシル基を有するラジカル重合性モノマー等が挙げられる。
 上記以外に、水溶性又は水分散性アクリル樹脂を得る際に用いることができる、モノマー(A)としては、n-ブチル(メタ)アクリレート、イソブチルアクリレート、t-ブチルアクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリルメタアクリレート、フェニルアクリレート、イソボルニル(メタ)アクリレート、シクロヘキシルメタクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、ジヒドロジシクロペンタジエニル(メタ)アクリレート等の(メタ)アクリレート、スチレン、α-メチルスチレン、ビニルケトン、t-ブチルスチレン、パラクロロスチレン、ビニルナフタレン等の重合性芳香族化合物、アクリロニトリル、メタクリロニトリル等の重合性ニトリル、エチレン、プロピレン等のα-オレフィン、酢酸ビニル、プロピオン酸ビニル等のビニルエステル、ブタジエン、イソプレン等のジエン等を用いることができる。
 水溶性又は水分散性アクリル樹脂を得る際に用いられるモノマー(A)には、グリシジル基、アミド基(アミド基の具体例としては、-CONR-(Rは、水素原子または炭素数1以上4以下のアルキル基であり、上記アルキル基は、直鎖であってもよいし分岐鎖であってもよい)が挙げられる。)、シラノール基、リン酸基、及びイミド基のうち、少なくとも何れかを含有するモノマーが改質剤として含まれることが好ましい。これにより、下地処理剤により形成される皮膜と金属材料との密着性を向上できる。上記グリシジル基、アミド基、シラノール基、リン酸基、及びイミド基を含有するモノマー(A)は、複数種類を組み合わせて用いてもよい。
 上記改質剤として用いることができるモノマーとしては、グリシジル(メタ)アクリレート、(メタ)アリルグリシジルエーテル等のグリシジル基含有モノマー、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジブチル(メタ)アクリルアミド、N,N-ジオクチル(メタ)アクリルアミド、N-モノブチル(メタ)アクリルアミド、N-モノオクチル(メタ)アクリルアミド等のアミド基含有モノマー、アシッドホスホオキシエチルメタクリレート、アシッドホスホオキシポリオキシエチレングリコールモノメタクリレート等のリン酸基含有モノマー、ビニルメトキシシラン、ビニルトリメトキシシラン、ビニルエトキシシラン、ビニルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等のシラノール基含有モノマー、アミドイミド等のイミド基含有モノマー、水酸基含有モノマー等を用いることができる。
 上記モノマー(A)は、2種以上を混合して用いる。
 重合開始剤としては、特に限定されないが、例えば、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩、2,2’-アゾビス-2-(2-イミダゾリン-2-イル)プロパン塩酸塩、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム等が挙げられる。
 上記アクリル樹脂を得るための重合方法は、特に制限されず、溶液ラジカル重合法、乳化重合法、懸濁重合法等、公知の方法により合成することができる。例えば、重合温度60~160℃で2~10時間かけて、公知のラジカル重合開始剤と上記モノマーとの混合溶液とを、適当な溶媒中に滴下しながら撹拌することで、上記アクリル樹脂を得ることができる。
 上記アクリル樹脂の分子量は、数平均分子量が15,000~500,000である。数平均分子量が15,000未満である場合には、形成される皮膜の好ましい金属材料及びラミネートフィルムとの密着性が得られない。数平均分子量が500,000を超える場合には、得られる下地処理剤の粘度が上昇し、塗装作業性や貯蔵安定性が悪化する。上記の観点から、上記アクリル樹脂の数平均分子量は、55,000~200,000であることが好ましい。なお、上記アクリル樹脂の数平均分子量は、要求される性能等の条件によっては10,000~800,000とすることもできる。上記数平均分子量は、ポリエチレンオキサイドを標準とするGPC法により決定される。
 上記アクリル樹脂の固形分水酸基価は、24~350mgKOH/gである。24mgKOH/g未満であると、ラミネート金属材の密着性や防食性が低下する。350mgKOH/gを超えると、得られるアクリル樹脂の貯蔵安定性が低下する。
 本明細書及び特許請求の範囲における上記アクリル樹脂の「固形分水酸基価」とは、上記アクリル樹脂の重合に用いた各モノマーの仕込み比に基づいて、上記アクリル樹脂の固形分1gに含まれる遊離の水酸基量を求め、これをアセチル化するために必要な酢酸を中和するのに要する水酸化カリウム量(単位:mg)を計算により算出した、固形分水酸基価の理論値を意味する。上記アクリル樹脂の固形分水酸基価は、重合に用いる各モノマーの比率を調整することで、上記数値範囲内に調整される。
 上記アクリル樹脂の固形分酸価は、150~740mgKOH/gである。150mgKOH/g未満であると、水溶性が低下して、皮膜外観の低下を招くほか、ラミネート金属材の密着性も低下する。740mgKOH/gを超えると、上述の必要な水酸基価が得られない。
 本明細書及び特許請求の範囲における上記アクリル樹脂の「固形分酸価」とは、上記アクリル樹脂の重合に用いた各モノマーの仕込み比に基づいて、上記アクリル樹脂の固形分1gに含まれる酸基を中和するのに要する水酸化カリウム量(単位:mg)を計算により算出した、固形分酸価の理論値を意味する。上記アクリル樹脂の固形分酸価は、重合に用いる各モノマーの比率を調整することで、上記数値範囲内に調整される。
 上記アクリル樹脂は、下地処理剤中の濃度が固形分換算で500~200,000質量ppmである。500質量ppm未満であると、ラミネート金属材の密着性や防食性が低下する。200,000質量ppmを超える場合には、得られる下地処理剤の粘度が上昇し、取り扱いが困難となる。また、配合量の増加に見合った性能向上が得られず、コストが上昇する。上記の観点から、アクリル樹脂の下地処理剤中の濃度は、固形分換算で500~60,000質量ppmであることが好ましい。
 上記水溶性金属化合物の金属原子換算の質量濃度と、上記アクリル樹脂の固形分換算の質量濃度との比は、水溶性金属化合物濃度/アクリル樹脂濃度で3/97~91/9である。上記濃度比において91/9よりも上記水溶性金属化合物の割合が上昇すると、下地処理剤により形成される皮膜のアルミ素材等の金属材料、及びラミネートフィルムとの密着性が低下する。上記濃度比において3/97よりも上記水溶性金属化合物の割合が低下すると、アルミ素材等の金属材料との密着性が低下する。
(その他の成分)
 本実施形態に係る下地処理剤は、上記水溶性金属化合物及びアクリル樹脂以外に、その他の樹脂を含有していてもよい。例えば、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂等を含有していてもよい。これらの樹脂は、1種又は2種以上を併用して用いることができる。樹脂固形分の総量に対して、上記アクリル樹脂は70~100質量%であることが好ましく、90~100質量%であることがより好ましい。
 本実施形態に係る下地処理剤は、架橋剤を含有していなくてもよい。本実施形態に係る下地処理剤は、架橋剤を含有していなくても、好ましいラミネート金属材の密着性や防食性が得られる。しかし、本実施形態に係る下地処理剤は、架橋剤を含有していてもよい。架橋剤としては、特に限定されないが、水溶性メラミン樹脂、水溶性フェノール樹脂等の水分散性熱硬化型架橋剤が挙げられる。
 上記以外に、本実施形態に係る下地処理剤は、必要に応じて公知の安定剤、酸化防止剤、表面調整剤、消泡剤、抗菌剤等の添加剤を含有していてもよい。
 酸化防止剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤等が挙げられる。
 表面調整剤としては、例えば、ノニオン性又はカチオン性の界面活性剤、ポリアセチレングリコールのポリエチレンオキサイド又はポリプロピレンオキサイドの付加物、アセチレングリコール化合物等が挙げられる。
 消泡剤としては、例えば、鉱油系消泡剤、脂肪酸系消泡剤、シリコーン系消泡剤等が挙げられる。
 抗菌剤としては、例えば、ジンクピリチオン、2-(4-チアゾリル)-ベンズイミダゾール、1,2-ベンズイソチアゾリン、2-n-オクチル-4-イソチアゾリン-3-オン、N-(フルオロジクロロメチルチオ)フタルイミド、N,N-ジメチル-N‘-フェニル-N’-(フルオロジクロロメチルチオ)-スルファミド、2-ベンズイミダゾールカルバミン酸メチル、ビス(ジメチルチオカルバモイル)ジサルファイド、N-(トリクロロメチルチオ)-4-シクロヘキサン-1,2-ジカルボキシイミド、メタホウ酸バリウム、イソチオシアン酸アリル;ポリオキシアルキレントリアルキルアンモニウム、有機シリコーン第4級アンモニウム塩、ヘキサメチレンビググアニド塩酸塩等の第4級アンモニウム塩;トリ-n-ブチルテトラデシルホスホニウムクロリド等の第4級ホスホニウム塩;ポリフェノール系抗菌剤、フェニルアミド系抗菌剤、ビクアニド系抗菌剤等が挙げられる。
<下地処理剤の製造方法>
 本実施形態に係る下地処理剤の製造方法としては、特に限定されず、上記水溶性金属化合物、水溶性又は水分散性アクリル樹脂、及び必要に応じてその他の成分を溶媒としての水に混合し撹拌する等の公知の方法により製造することができる。
 本実施形態に係る下地処理剤は、上記水溶性金属化合物及び、水溶性又は水分散性アクリル樹脂の水溶液又は水分散液として調製される。これにより、下地処理剤に有機溶剤を含有させる必要が無く、環境面や作業性の点においても優れている。
<ラミネート金属材>
 本実施形態に係る下地処理剤は、金属材料の少なくとも何れかの一面上に皮膜を形成し、ラミネートフィルムを接着させることで製造されるラミネート金属材の製造に用いられる。上記ラミネート金属材の製造方法としては特に限定されない。例えば、薄板材等の金属材料に脱脂処理を施し、必要に応じて水洗、酸洗、表面調整等を行った後、本実施形態に係る下地処理剤を塗布し、加熱乾燥させて金属材料の表面に皮膜を形成し、更に熱可塑性樹脂等からなるラミネートフィルムを接着させる方法が挙げられる。
 本実施形態に係る下地処理剤の被処理物である金属材料としては、アルミニウム又はアルミニウム合金、鉄、鉄合金、銅、銅合金、SUS等が挙げられる。中でも、加工性及び密着性の観点から、金属材料としては、アルミニウム又はアルミニウム合金、が好ましく用いられる。例えば、飲料・食品缶ボディー用としてアルミニウム合金3004材、3104材、アルミニウム合金3005材等、飲料・食品缶蓋材としてアルミニウム合金5052材、アルミニウム合金5182材等、乾電池容器としてアルミニウム合金1050材、アルミニウム合金1100材、1200材、電池包材用のアルミニウム合金として8079材、電極材として8021材等が好ましく用いられる。アルミニウム合金としては、Al-Cu系合金、Al-Mn系合金、Al-Si系合金、Al-Mg系合金、Al-Mg-Si系合金、Al-Zn-Mg系合金、アルミダイカスト(ADC材)を用いてもよい。上記以外に、金属材料としての銅合金としては、例えば、黄銅、C1020P等の無酸素銅や市販の銅箔が用いられ、SUSとしては、例えば、SUS304、SUS301等のオーステナイト系ステンレス鋼、SUS430等のフェライト系ステンレス鋼、SUS410等のマルテンサイト系ステンレス鋼等が挙げられる。ニッケル合金としては、例えば、Ni-P合金等が挙げられる。上記以外に、金属材料として、Niめっき鋼板、Znめっき鋼板、Zn-Niめっき鋼板等のメッキを施した金属材料を用いてもよい。上記の例としては、例えば、SPCC、SPCD、SPCE等を母材鋼板としたNiめっき鋼板、Znめっき鋼板、Zn-Niめっき鋼板等が挙げられる。
 金属の形状としては、特に限定されないが、例えば、箔状又は板状等が挙げられる。箔状又は板状の形状を有する金属を表面処理する場合は、片方の面だけを本実施形態に係る下地処理剤で表面処理してもよいし、両方の面を下地処理剤で表面処理してもよい。また、両方の面を処理する場合は、単一の下地処理剤で両面を表面処理してもよいし、片面ごとにそれぞれ別の組成の下地処理剤で表面処理してもよい。
 上記脱脂処理としては特に限定されず、例えば、アルカリ脱脂洗浄等の公知の方法を用いることができる。上記脱脂処理は、通常、スプレー法で行われる。上記脱脂処理を行った後は、基材表面に残存する脱脂剤を除去するために、水洗処理を行った後、ロールによる水切り、エアーブロー、熱空気乾燥等の方法によって、基材表面の水分を除去する。
 上記金属材料の少なくとも何れかの一面上に形成される皮膜は、一面当たりの乾燥後皮膜質量で、上記水溶性金属化合物を金属原子換算で0.8~3200mg/m含有することが好ましい。同様に、一面当たりの乾燥後皮膜質量で、上記水溶性又は水分散性アクリル樹脂を固形分換算で1.0~4000mg/m含有することが好ましい。上記皮膜は、金属材料の何れかの一面上に形成されていればよく、例えば薄板材の両面に上記皮膜が形成されていてもよい。上記水溶性金属化合物の一面当たりの乾燥後皮膜質量が金属原子換算で0.8mg/m未満である場合、皮膜とラミネートフィルムとの十分な密着性が得られない。同様に、3200mg/mを超える場合、皮膜と被処理物である金属材料との十分な密着性が得られない。上記水溶性又は水分散性アクリル樹脂の一面当たりの乾燥後皮膜質量が固形分換算で1.0mg/m未満である場合、皮膜とラミネートフィルムとの十分な密着性が得られない。同様に、4000mg/mを超える場合、皮膜と被処理物である金属材料との十分な密着性が得られない。
 本実施形態に係る下地処理剤の塗布方法としては、形成される皮膜の各成分の重量が上記範囲となるように行えばよく、特に限定されない。例えば、ロールコーター塗装、グラビアコーター塗装、リバースコーター塗装、スロットダイコーター塗装、リップコーター塗装、ナイフコーター塗装、ブレードコーター塗装、チャンバードクターコーター塗装、エアナイフコーター塗装、カーテンコート塗装、スピンコート塗装、刷毛塗り塗装、ローラー塗装、バーコーター塗装、ディップ塗装、アプリケーター塗装、スプレー塗装、流し塗り塗装等及びこれらの組み合わせ等が挙げられる。
 本実施形態に係る下地処理剤の加熱乾燥方法としては、特に限定されないが、例えば、オーブン乾燥、熱空気の強制的循環による方法、IHヒーター等を用いた電磁誘導加熱炉により乾燥させる方法等が挙げられる。加熱乾燥の条件は、例えば、40~160℃で2~60秒間とすることができる。乾燥方法で設定する風量や風速等は任意に設定できる。
 上記下地処理剤により表面に皮膜が形成された金属材料に対してラミネートフィルムを接着させる方法としては特に限定されず、ドライラミネート法、ヒートラミネート法、押出ラミネート法等、公知の方法を用いることができる。上記ラミネートフィルムとしては、特に限定されず、公知のラミネートフィルムを用いることができる。上記ラミネートフィルムとしては、例えば、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ナイロン樹脂、ポリエチレンナフタレート樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリエチレンイソフタレート樹脂、共重合ポリエステル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリフェニレンスルフィド樹脂、フッ素樹脂、シリコーン樹脂、ナイロン樹脂、フェノール樹脂、(メタ)アクリル樹脂、エポキシ樹脂、ポリメタキシリレンアジバミド等および、これらの樹脂を含む2種以上の樹脂を混合した樹脂等が挙げられる。これらの材料からなるラミネートフィルムは、1軸もしくは2軸延伸されたものであってもよい。
 本実施形態に係るラミネート金属材は、下地処理剤により形成される皮膜及び、ラミネートフィルム以外の層を有していてもよい。例えば、下地処理剤により形成される皮膜とラミネートフィルムとの間に配置される接着層を有していてもよい。上記接着層としては、特に限定されず、1液系の接着剤により形成されてもよいし、2液系の接着剤により形成されてもよい。上記接着層の形成に使用できる接着剤の樹脂成分としては、特に限定されないが、例えば、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂、ポリウレタン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、フェノール系樹脂、ポリアミド系樹脂、ポリ酢酸ビニル系樹脂、セルロース系樹脂、(メタ)アクリル系樹脂、ポリイミド系樹脂、アミノ系樹脂、クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム、シリコーン系樹脂、フッ化エチレンプロピレン共重合体等が挙げられる。これらの樹脂成分は1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。2種以上の樹脂成分の組み合わせとしては、例えば、ポリウレタン系樹脂と変性ポリオレフィン系樹脂、ポリアミド系樹脂と酸変性ポリオレフィン系樹脂、ポリアミド系樹脂と金属変性ポリオレフィン系樹脂、ポリアミド系樹脂とポリエステル系樹脂、ポリエステル系樹脂と酸変性ポリオレフィン系樹脂、ポリエステル系樹脂と金属変性ポリオレフィン系樹脂等が挙げられる。
 接着層の形成方法は特に限定されないが、例えば、押出成形法、ディスパージョン法等が挙げられる。
 本実施形態に係る下地処理剤は、上記水溶性金属化合物、及びアクリル樹脂を特定量含有するので、塗装作業性や安定性に優れるとともに、得られるラミネート金属材は充分な密着性を有する。アクリル樹脂とジルコニウム化合物とを単に含む下地処理剤は耐食性を有するが、本実施形態に係る下地処理剤は、ラミネートフィルムとの密着性が向上するとともに耐食性も得られる利点を有する。従って、本実施形態に係る下地処理剤は、高度な加工後の密着性及び耐食性を求められるラミネート金属材の製造に特に好ましく用いられる。
 以下、実施例に基づいて本発明の内容を更に詳細に説明する。本発明の内容は以下の実施例の記載に限定されない。
(アクリル樹脂の合成例1)
 イオン交換水を94.98質量部、加熱・撹拌装置付きコルベンに仕込み、撹拌及び窒素還流しながら、80℃に加熱した。次いで、加熱、撹拌、及び窒素還流を行いながら、表1に示すモノマー種の混合モノマー液、重合開始剤としてのACVA(4,4’-アゾビス(4-シアノ吉草酸))、及び25%アンモニア水溶液の混合液を、滴下漏斗を用いてそれぞれ3時間かけて滴下した。滴下終了後、加熱、撹拌、及び窒素還流を2時間継続した。その後、加熱及び窒素還流を停止して溶液を撹拌しながら30℃まで冷却し、25%アンモニア水で中和し、200メッシュでろ過を行い、無色透明の水溶性アクリル樹脂を得た。得られたアクリル樹脂は、表1に示す通り、数平均分子量50,000、固形分酸価620mgKOH/g、固形分水酸基価82mgKOH/gであった。なお、表1中、単位が記載されていない数値の単位は質量部である。
(アクリル樹脂の合成例2~20)
 原料の配合量を表1に示すものとしたこと以外は、合成例1と同様にして、合成例2~20のアクリル樹脂を得た。なお、表1に記載した各種略称として、以下に示すものを用いた。モノマー種として、ホスマーM(アシッドホスホオキシエチルメタクリレート(ユニケミカル(株)製))、重合開始剤としてAPS(過硫酸アンモニウム)を用いた。数平均分子量、固形分酸価、固形分水酸基価をそれぞれ表1に示した。
Figure JPOXMLDOC01-appb-T000001
《下地処理剤の調製)
(実施例1)
 イオン交換水を加熱・撹拌装置付きコルベンに仕込み、常温にて撹拌しながら、合成例1で得たアクリル樹脂水溶液を固形分換算で7,500質量ppmとなるように徐々に添加し、撹拌しながら、水溶性ジルコニウム化合物(炭酸ジルコニウムアンモニウム、第一希元素化学工業社製、商品名、ジルコゾールAC-7、Zr原子換算で13%含有)をジルコニウム金属原子換算で2,500質量ppmとなるように徐々に添加し、20分間撹拌を継続して、実施例1の下地処理剤を調製した。
(実施例2~31、比較例1~9)
 アクリル樹脂及び水溶性金属化合物の種類及び濃度を表2に示すものとしたこと以外は、実施例1と同様にして、実施例2~31、比較例1~9の下地処理剤を調製した。実施例19、20及び比較例3においては架橋剤としてメラミン樹脂(日本サイテック社製「サイメル370N」(不揮発分80%))、又はフェノール樹脂(アイカ工業社製「ショーノールBRL-204」(不揮発分70%))を表2に示す量用いた。実施例21においては、水溶性ジルコニウム化合物としてテトラアルキルアンモニウム変性ジルコニウム(マツモトファインケミカル社製、「オルガノチックス ZC700」(不揮発成分20%)を用いた。実施例22、実施例23はそれぞれジルコンフッ化アンモニウム、チタントリエタノールアミネートを用いた。実施例30は水溶性金属化合物として、炭酸ジルコニウムアンモニウム(Zr換算で2250質量ppm)とチタントリエタノールアミネート(Ti換算で250質量ppm)とを併用した。実施例31はその他の樹脂としてポリエステル樹脂(東洋紡社製「バイロナールMD1245」(500質量ppm))を用いた。
Figure JPOXMLDOC01-appb-T000002
《下地処理剤の塗装》
 金属材料としてのアルミニウム合金3004板材(Al)を、日本ペイント・サーフケミカルズ社製「サーフクリーナー330」の2%希釈液を用いて脱脂し(65℃×3秒間処理)、得られたアルミニウム材に、上記実施例及び比較例の下地処理剤を、バーコーターにて塗布し、熱風式オーブンで素材温度100℃以上にて乾燥させ、下地処理剤により表面に皮膜が形成された金属材料を得た。乾燥後の皮膜重量(mg/m)として、アクリル樹脂の固形分重量及び、水溶性金属化合物中の金属原子換算の重量を、それぞれ表3に示した。また金属材料として、実施例14では銅(古河電気工業(株)製 NC-WS)、実施例15ではSUS(SUS304)、実施例16ではSPCCを母材鋼板としたNiめっき鋼板、実施例17ではアルミダイカスト(ADC-12)をそれぞれ用いた。
Figure JPOXMLDOC01-appb-T000003
《ラミネート金属材の製造》
 上記実施例及び比較例に係る下地処理剤を塗装し、表面に皮膜が形成された金属材料に対し、以下に示す3通りのラミネート金属材作製方法により、それぞれラミネート金属材の作製を行った。ラミネート法1では、接着剤としてポリエステル系の2液型接着剤を使用し、乾燥時に3g/mとなるよう、金属材料の表面に形成された皮膜上に塗装を行った。次に100℃、0.38MPaで上記塗装表面にPPフィルムを圧着し、その後60℃で6日間保管し、ラミネート金属材を得た。ラミネート法2では、接着剤として酸変性ポリプロピレンを使用し、乾燥時に3g/mとなるよう、金属材料の表面に形成された皮膜上に塗装を行い、200℃で30秒間乾燥させた。次に上記塗装表面にPPフィルムを張り付け、180℃、0.38MPaで圧着し、ラミネート金属材を得た。ラミネート法3では、金属材料の表面に形成された皮膜上にPETフィルムを180℃、0.38MPaで圧着したのち、240℃で60秒間乾燥させ、ラミネート金属材を得た。
[初期密着性試験]
 上記製造した実施例及び比較例に係るラミネート金属材を150mm×15mmのサイズに切断した。「テンシロン引張り試験機」(LST-200N-S ミネルバ製)を用いて、この試験片のフィルム面を引き剥がす際にかかる剥離強度(kgf/15mm幅)を測定した。測定結果を初期密着性として、以下の評価基準にて評価を行い、評価4以上を合格とした。結果を表4に示す。
 5:8.0kgf/15mm幅以上
 4:6.0kgf/15mm幅以上、8.0kgf/15mm幅未満
 3:4.0kgf/15mm幅以上、6.0kgf/15mm幅未満
 2:2.0kgf/15mm幅以上、4.0kgf/15mm幅未満
 1:2.0kgf/15mm幅未満
[レトルト処理後密着性試験]
 上記圧着した金属板を150mm×15mmに切り出した試験片をオートクレーブに入れ、125℃の加圧蒸気中で30分間加熱処理した(レトルト処理)。レトルト処理を行った試験片を、「テンシロン引張り試験機」(LST-200N-S ミネルバ製)を用いて、フィルム面を引き剥がす際に係る剥離強度(kgf/15mm幅)を測定した。測定結果をレトルト処理後密着性として、初期密着性と同様の評価基準にて評価を行い、評価4以上を合格とした。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、各実施例に係るラミネート金属材は、比較例に係るラミネート金属材と比較して、好ましい密着性が得られる結果が確認された。

Claims (4)

  1.  水溶性ジルコニウム化合物、及び水溶性チタニウム化合物のうち少なくとも何れかである水溶性金属化合物と、水溶性又は水分散性アクリル樹脂と、を含有する下地処理剤であって、
     前記水溶性金属化合物の濃度は、金属原子換算で500~200,000質量ppmであり、
     前記水溶性又は水分散性アクリル樹脂は、分子量が15,000~500,000であり、固形分酸価が150~740mgKOH/gであり、固形分水酸基価が24~350mgKOH/gであり、
     前記水溶性又は水分散性アクリル樹脂の濃度は、固形分換算で500~200,000質量ppmであり、
     前記水溶性金属化合物の金属原子換算の濃度と、前記水溶性又は水分散性アクリル樹脂の濃度との比は3/97~91/9であり、
     ラミネート金属材の製造に用いられる、下地処理剤。
  2.  前記水溶性又は水分散性アクリル樹脂は、モノマー(A)の共重合体であり、
     前記モノマー(A)の少なくとも一部には、グリシジル基、アミド基、シラノール基、リン酸基、及びイミド基のうち、少なくとも何れかを含有するモノマーが含まれる、請求項1に記載の下地処理剤。
  3.  少なくとも何れかの一面が請求項1又は2に記載の下地処理剤で処理されてなる、金属材料。
  4.  前記何れかの一面当たりの乾燥後皮膜質量で、前記水溶性金属化合物を金属原子換算で0.8~3200mg/m、前記水溶性又は水分散性アクリル樹脂を固形分換算で1.0~4000mg/m含有する皮膜が形成されてなる、請求項3に記載の金属材料。
PCT/JP2021/032122 2020-09-09 2021-09-01 下地処理剤、及び金属材料 WO2022054667A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022547530A JP7322301B2 (ja) 2020-09-09 2021-09-01 下地処理剤、及び金属材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-151019 2020-09-09
JP2020151019 2020-09-09

Publications (1)

Publication Number Publication Date
WO2022054667A1 true WO2022054667A1 (ja) 2022-03-17

Family

ID=80632380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032122 WO2022054667A1 (ja) 2020-09-09 2021-09-01 下地処理剤、及び金属材料

Country Status (3)

Country Link
JP (1) JP7322301B2 (ja)
TW (1) TW202210535A (ja)
WO (1) WO2022054667A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171194A1 (ja) * 2022-03-07 2023-09-14 日本ペイント・サーフケミカルズ株式会社 下地処理剤、及び金属材料

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060699A (ja) * 2000-08-21 2002-02-26 Nippon Parkerizing Co Ltd 下地処理剤、及び下地処理方法
JP2002060975A (ja) * 2000-08-09 2002-02-28 Kansai Paint Co Ltd 鋼板用下地処理剤、それを使用した被覆鋼板及びその製造方法
JP2002265821A (ja) * 2001-03-15 2002-09-18 Nippon Paint Co Ltd 下地処理剤
JP2002275648A (ja) * 2001-03-15 2002-09-25 Nippon Paint Co Ltd 金属表面処理剤
JP2009084516A (ja) * 2007-10-02 2009-04-23 Nippon Paint Co Ltd 金属表面処理組成物、この組成物を用いたアルミニウム系金属基材の表面処理方法、及びこの方法を用いて製造されたアルミニウム系金属表面処理基材
JP2012212511A (ja) * 2011-03-30 2012-11-01 Nisshin Steel Co Ltd 電池外装用積層体および二次電池
JP2013023702A (ja) * 2011-07-15 2013-02-04 Nippon Parkerizing Co Ltd 水系金属表面処理剤及びその処理剤で処理してなる金属材料
WO2014057899A1 (ja) * 2012-10-12 2014-04-17 日本ペイント株式会社 表面処理剤及び表面処理方法
WO2016129640A1 (ja) * 2015-02-12 2016-08-18 日本ペイント・サーフケミカルズ株式会社 金属表面処理剤

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060975A (ja) * 2000-08-09 2002-02-28 Kansai Paint Co Ltd 鋼板用下地処理剤、それを使用した被覆鋼板及びその製造方法
JP2002060699A (ja) * 2000-08-21 2002-02-26 Nippon Parkerizing Co Ltd 下地処理剤、及び下地処理方法
JP2002265821A (ja) * 2001-03-15 2002-09-18 Nippon Paint Co Ltd 下地処理剤
JP2002275648A (ja) * 2001-03-15 2002-09-25 Nippon Paint Co Ltd 金属表面処理剤
JP2009084516A (ja) * 2007-10-02 2009-04-23 Nippon Paint Co Ltd 金属表面処理組成物、この組成物を用いたアルミニウム系金属基材の表面処理方法、及びこの方法を用いて製造されたアルミニウム系金属表面処理基材
JP2012212511A (ja) * 2011-03-30 2012-11-01 Nisshin Steel Co Ltd 電池外装用積層体および二次電池
JP2013023702A (ja) * 2011-07-15 2013-02-04 Nippon Parkerizing Co Ltd 水系金属表面処理剤及びその処理剤で処理してなる金属材料
WO2014057899A1 (ja) * 2012-10-12 2014-04-17 日本ペイント株式会社 表面処理剤及び表面処理方法
WO2016129640A1 (ja) * 2015-02-12 2016-08-18 日本ペイント・サーフケミカルズ株式会社 金属表面処理剤

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171194A1 (ja) * 2022-03-07 2023-09-14 日本ペイント・サーフケミカルズ株式会社 下地処理剤、及び金属材料
JP2023129912A (ja) * 2022-03-07 2023-09-20 日本ペイント・サーフケミカルズ株式会社 下地処理剤、及び金属材料
JP7459156B2 (ja) 2022-03-07 2024-04-01 日本ペイント・サーフケミカルズ株式会社 下地処理剤、及び金属材料

Also Published As

Publication number Publication date
TW202210535A (zh) 2022-03-16
JPWO2022054667A1 (ja) 2022-03-17
JP7322301B2 (ja) 2023-08-07

Similar Documents

Publication Publication Date Title
JP4652592B2 (ja) 金属表面処理剤
JP4920625B2 (ja) 表面処理金属板
JP4901116B2 (ja) 表面処理金属板
JP5854505B2 (ja) 金属表面処理剤及び金属表面処理方法
TWI683033B (zh) 金屬材料用表面處理劑、表面處理金屬材料之製造方法
JP5718752B2 (ja) 金属表面処理剤及びその処理剤で処理してなる金属材料
JP4805467B2 (ja) 下地処理剤
JP4922295B2 (ja) 被覆鋼板
KR101712253B1 (ko) 표면 처리 알루미늄판 및 유기 수지 피복 표면 처리 알루미늄판 그리고 이것을 이용하여 이루어지는 캔체 및 캔 덮개
JP6455855B2 (ja) 水性金属表面処理剤
JP2009280889A (ja) 水系表面処理剤、プレコート金属材料の下地処理方法、プレコート金属材料の製造方法およびプレコート金属材料
JP4389066B2 (ja) 水分散型防錆塗料用組成物
JP2009084516A (ja) 金属表面処理組成物、この組成物を用いたアルミニウム系金属基材の表面処理方法、及びこの方法を用いて製造されたアルミニウム系金属表面処理基材
CN110983315A (zh) 水系金属表面处理剂、金属表面处理被膜及带有金属表面处理被膜的金属材料
US7476445B2 (en) Surface-treated metal sheet
WO2022054667A1 (ja) 下地処理剤、及び金属材料
JP5130484B2 (ja) 表面処理金属板及びその製造方法
JP2003155454A (ja) 鋼材用水性被覆剤、被覆方法及び被覆鋼材
JP5915293B2 (ja) 表面処理鋼板
JP7459156B2 (ja) 下地処理剤、及び金属材料
JP2023021025A (ja) 金属表面処理組成物、及び金属材料
JP2002212749A (ja) 耐プレスかじり性と耐コイル変形性に優れた非クロメート型表面処理金属板及びその製造方法
JP2003183587A (ja) 潤滑性皮膜を形成可能な組成物及びこれを使用した潤滑性の優れた金属板
JP4246689B2 (ja) 耐食性に優れるプレコート金属板
JP2010047796A (ja) 表面処理亜鉛系めっき鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866626

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547530

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866626

Country of ref document: EP

Kind code of ref document: A1