WO2022054511A1 - 測定システム及び測定方法 - Google Patents
測定システム及び測定方法 Download PDFInfo
- Publication number
- WO2022054511A1 WO2022054511A1 PCT/JP2021/030153 JP2021030153W WO2022054511A1 WO 2022054511 A1 WO2022054511 A1 WO 2022054511A1 JP 2021030153 W JP2021030153 W JP 2021030153W WO 2022054511 A1 WO2022054511 A1 WO 2022054511A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ray
- fillet
- measuring device
- rays
- diffraction
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 115
- 238000000691 measurement method Methods 0.000 title description 16
- 230000001678 irradiating effect Effects 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 55
- 238000002441 X-ray diffraction Methods 0.000 claims description 30
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 4
- 229910001563 bainite Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/203—Measuring back scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0047—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/20008—Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/205—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials using diffraction cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/2055—Analysing diffraction patterns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/25—Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/05—Investigating materials by wave or particle radiation by diffraction, scatter or reflection
- G01N2223/053—Investigating materials by wave or particle radiation by diffraction, scatter or reflection back scatter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/05—Investigating materials by wave or particle radiation by diffraction, scatter or reflection
- G01N2223/056—Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
- G01N2223/0566—Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction analysing diffraction pattern
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/30—Accessories, mechanical or electrical features
- G01N2223/306—Accessories, mechanical or electrical features computer control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/607—Specific applications or type of materials strain
Definitions
- the present invention relates to a measurement system and a measurement method.
- the cos ⁇ method is known as a method for measuring residual stress using X-rays.
- the cos ⁇ method irradiates an inspected object with X-rays at a specific incident angle, detects the intensity of the diffracted X-rays generated by the reflection of the X-rays by the inspected object in two dimensions, and detects the diffraction.
- the residual stress is measured based on the diffractive ring formed by the intensity distribution of X-rays.
- the hardness of the inspected object and the like are also obtained by calculating the half-value width of the X-ray diffraction intensity curve based on the intensity distribution of the diffracted X-rays.
- an X-ray stress measuring device for measuring the residual stress of the fillet portion in the structure an X-ray emitter that emits X-rays, an imaging plate on which a diffraction ring by diffracted X-rays is formed, and the like are arranged in a single housing.
- the X-ray stress measuring device can be used (see JP-A-2012-225996).
- the incident angle is usually set to 15 ° or more and 65 ° or less so that the measurement accuracy can be improved.
- a columnar shaft portion and a flange portion (plate-shaped portion) protruding radially from the shaft portion are provided, and a fillet portion for relaxing stress concentration is provided at the connection portion between the shaft portion and the flange portion.
- the present invention has been made based on such circumstances, and an object of the present invention is to provide a measurement system and a measurement method capable of easily measuring the intensity distribution of diffracted X-rays in a desired arrangement.
- the measurement system is a metal structure having a shaft portion and a flange portion radially protruding from the shaft portion, and having a fillet portion at a connecting portion between the shaft portion and the flange portion.
- a measurement system capable of measuring the intensity distribution of diffracted X-rays obtained by irradiating the fillet portion with X-rays.
- the positioning device is provided with a positioning device for positioning the diffraction X-ray measuring device with respect to the unit, and the positioning device has a moving mechanism for moving the diffraction X-ray measuring device relative to the fillet unit in three dimensions, and the fillet unit. It has a rotation mechanism for rotating the diffraction X-ray measuring device in a direction in which the incident angle of the X-ray is changed with respect to the X-ray.
- the measurement system includes a positioning device for positioning the diffractive X-ray measuring device with respect to the fillet portion, and the positioning device moves the diffracted X-ray measuring device relative to the fillet portion in three dimensions. Since it has a moving mechanism for rotating the fillet portion and a rotating mechanism for rotating the diffractive X-ray measuring device in a direction in which the incident angle of the X-rays with respect to the fillet portion changes, the fillet portion is irradiated with X-rays. The intensity distribution of the diffracted X-rays to be obtained can be easily measured in a desired arrangement.
- the measurement system may further include a control unit that controls movement by the movement mechanism and rotation by the rotation mechanism so that the diffraction X-ray measuring device and the shaft portion and the flange portion do not come into contact with each other.
- the measurement system further includes a control unit that controls movement by the movement mechanism and rotation by the rotation mechanism so that the diffraction X-ray measuring device and the shaft portion and the flange portion do not come into contact with each other.
- the intensity distribution of the lines can be more easily measured in the desired arrangement.
- control unit controls the movement by the movement mechanism and the rotation by the rotation mechanism within a range in which the peak of the diffraction X-ray can be detected by the diffraction X-ray measuring device.
- control unit controls the movement by the movement mechanism and the rotation by the rotation mechanism within the range in which the peak of the diffraction X-rays can be detected by the diffraction X-ray measuring device, whereby the diffraction X-rays of the diffraction X-rays are controlled.
- the intensity distribution can be measured easily and reliably.
- the axis passing through the center of the fillet and parallel to the central axis of the shaft portion is the X-ray
- the axis passing through the center of the fillet and parallel to the protruding direction of the flange portion is the Z axis
- the coordinates of the center of the fillet are (0, 0).
- the coordinates of the center of rotation of the diffractive X-ray measuring device are (X, Z)
- the X-ray irradiation distance by the diffractive X-ray measuring device is L [mm]
- the minimum value of the X-ray irradiation distance is L min .
- the maximum value of the X-ray irradiation distance is L max [mm]
- the fillet angle is ⁇ [°]
- the fillet radius is R [mm]
- the incident angle of X-rays is ⁇ [°]
- the X-rays The distance between the end of the diffractive X-ray measuring device housing on the fillet side and the center of rotation in the irradiation direction is h [mm], and the vertical width of the end of the housing adjacent to the fillet.
- the margin angle of the Bragg angle is ⁇ [°]
- the vertical width of the detection area of the two-dimensional detector of the diffractive X-ray measuring device is D [mm]
- the incident angle ⁇ of the X-ray is positive when it is inclined toward the shaft portion and negative when it is inclined toward the flange portion with respect to the virtual straight line passing through the measurement site and the center of the fillet, and when ⁇ ⁇ 0.
- the X-ray irradiation distance L satisfies the following equation 3, and when ⁇ ⁇ 0, the X-ray irradiation distance L satisfies the following equation 4.
- the measuring system By positioning the diffracted X-ray measuring device within the range satisfying the above formulas 1 and 2, the measuring system easily suppresses the contact between the shaft portion and the flange portion and the diffracted X-ray measuring device. can do.
- control unit controls the movement by the movement mechanism and the rotation by the rotation mechanism based on the following equation 5, and when ⁇ ⁇ 0, the movement by the movement mechanism and the movement by the movement mechanism based on the following equation 6. It is preferable to control the rotation by the rotation mechanism.
- control unit controls the movement by the movement mechanism and the rotation by the rotation mechanism based on the equations 5 and 6, so that the shaft portion, the flange portion, and the diffraction X-ray measuring device can be used. It is possible to easily and surely measure the intensity distribution of the diffracted X-rays while suppressing contact with.
- the moving mechanism is connected to the first moving body, which is aligned with the outer peripheral surface of the shaft portion and rotates relative to the shaft portion in the circumferential direction, and the central axis of the shaft portion.
- a vertical axis extending in an orthogonal direction
- a second moving body connected to the vertical axis and movable in the axial direction of the vertical axis, and the first moving body or the vertical axis moving in the axial direction of the shaft portion. It is preferable that the diffractive X-ray measuring device is connected to the second moving body by having a slide mechanism for causing the movement.
- the moving mechanism is connected to the first moving body, which is aligned with the outer peripheral surface of the shaft portion and rotates relative to the shaft portion in the circumferential direction, and the shaft portion.
- a vertical axis extending in a direction orthogonal to the central axis of the above, a second moving body connected to the vertical axis and movable in the axial direction of the vertical axis, and the first moving body or the vertical axis of the axis portion.
- the diffraction X-ray measuring device is provided so that the residual stress of the fillet portion can be calculated by the cos ⁇ method. Since the measuring system can easily measure the intensity distribution of the diffracted X-rays in a desired arrangement, it is suitable for calculating the residual stress of the fillet portion.
- the diffraction X-ray measuring device is provided so as to be able to calculate the half width of the X-ray diffraction intensity curve. Since the measurement system can easily measure the intensity distribution of the diffracted X-rays in a desired arrangement, it is suitable for calculating the half-value width of the X-ray diffraction intensity curve.
- the measuring method has a metal structure having a shaft portion and a flange portion radially protruding from the shaft portion, and having a fillet portion at a connecting portion between the shaft portion and the flange portion.
- a measuring method capable of measuring the intensity distribution of diffracted X-rays obtained by irradiating the fillet portion of an object with X-rays, using a diffracted X-ray measuring device having an irradiation portion for irradiating the fillet portion with X-rays.
- a step of measuring the intensity distribution of the diffracted X-rays by the diffracted X-ray measuring device is provided.
- the measuring method includes a step of moving the diffracted X-ray measuring device relative to the fillet portion in three dimensions, and rotating the diffracted X-ray measuring device in a direction in which the incident angle of the X-rays with respect to the fillet portion changes. Since the step is provided, the intensity distribution of the diffracted X-rays obtained by irradiating the fillet portion with X-rays can be easily measured in a desired arrangement.
- the measurement step it is advisable to calculate the residual stress of the fillet portion by the cos ⁇ method.
- This measuring method is suitable for calculating the residual stress of the fillet portion because the intensity distribution of the diffracted X-rays can be easily measured in a desired arrangement.
- the measuring method can easily measure the intensity distribution of the diffracted X-rays in a desired arrangement, it is suitable for calculating the half-value width of the X-ray diffraction intensity curve.
- the fillet portion Obtained by continuously irradiating the fillet portion with X-rays in parallel with at least one of the moving step and the rotating step, and superimposing a plurality of diffraction rings generated by the diffraction of the X-rays in the measuring step. It is advisable to obtain a single diffraction ring to be obtained.
- the fillet portion is continuously irradiated with X-rays in parallel with at least one of the moving step and the rotating step, and in the measuring step, a plurality of diffraction rings generated by the diffraction of the X-rays are overlapped.
- the measuring method may include, after the measuring step, a step of repeating at least one of the moving step and the rotating step and the measuring step.
- the residual stress or the half-value range can be measured more accurately by providing the step of repeating at least one of the moving step and the rotating step and the measuring step after the measuring step. ..
- the measuring method may further include a step of obtaining an average value of a plurality of calculated values obtained by the above measuring step. As described above, by further providing a step of obtaining the average value of the plurality of calculated values obtained by the above-mentioned measurement step, the above-mentioned residual stress or the above-mentioned half width can be measured easily and with high accuracy.
- the "fillet center” means the center of curvature of the fillet portion.
- the “fillet angle” means the angle formed in the side view between the virtual straight line passing through the fillet center and orthogonal to the axis portion and the virtual straight line passing through the measurement site and the fillet center (see ⁇ in FIG. 2).
- the “fillet radius” means the radius of curvature of the fillet portion.
- the “vertical width” means the width between the surface on the side adjacent to the shaft portion and the surface on the side facing this surface and adjacent to the flange portion. "The distance between the virtual straight line passing through the center of the fillet and parallel to the flange portion” means the average value of the distances between the virtual straight line and the flange portion (excluding the fillet portion) at any five points. ..
- the measurement system according to one aspect of the present invention and the measurement method according to another aspect of the present invention can easily measure the intensity distribution of diffracted X-rays in a desired arrangement.
- FIG. 1 is a schematic perspective view showing a state when the measurement system according to the embodiment of the present invention is used.
- FIG. 2 is a schematic side view showing a state in which the residual stress of the fillet portion is measured by the diffractive X-ray measuring device of the measuring system of FIG.
- FIG. 3 is a schematic cross-sectional view taken along the line AA showing the main part of the moving mechanism of the measurement system of FIG.
- FIG. 4 is a graph showing the relationship between the incident angle ⁇ of X-rays and the measurement error of residual stress.
- FIG. 5 is a graph showing the relationship between the irradiation area of X-rays and the measurement error of residual stress.
- FIG. 6 is a schematic side view showing a state at the time of use of a measurement system according to a form different from that of the measurement system of FIG.
- FIG. 7 is a graph showing the measurement results of residual stress using the measurement system of FIG.
- FIG. 8 is a graph showing the relationship between the number of measurement points and the measurement time in Examples and Comparative Examples.
- FIG. 9 is a graph showing the full width at half maximum calculated from the X-ray diffraction intensity curve obtained by the arrangement derived in the measurement of FIG. 7.
- the measurement system 1 has a shaft portion 2 and a flange portion 3 projecting radially from the shaft portion 2, and is connected to the shaft portion 2 and the flange portion 3.
- the intensity distribution of the diffracted X-rays obtained by irradiating the fillet portion 4 of the metal structure M having the fillet portion 4 with X-rays is measured.
- the flange portion 3 projects in a direction perpendicular to the central axis of the shaft portion 2.
- the measurement system 1 includes a diffractive X-ray measuring device 10 having an irradiation unit 11 that irradiates the fillet unit 4 with X-rays.
- the diffracted X-ray measuring device 10 examples include an X-ray stress measuring device. Further, as shown in FIGS. 1 and 3, the measurement system 1 includes a positioning device 20 for positioning the diffraction X-ray measuring device 10 with respect to the fillet unit 4. Further, as shown in FIGS. 1 and 3, the measuring system 1 operates the diffracted X-ray measuring device 10 by the positioning device 20 so that the diffracted X-ray measuring device 10 does not come into contact with the shaft portion 2 and the flange portion 3. A control unit 30 for controlling the above is provided.
- the irradiation unit 11 that irradiates X-rays and the X that is irradiated from the irradiation unit 11 to the fillet unit 4 (more specifically, the measurement site S in the fillet unit 4). It has a two-dimensional detector 12 that detects a diffraction ring generated by Bragg diffraction of a line, and a housing 13 to which an irradiation unit 11 and a two-dimensional detector 12 are mounted.
- the diffraction X-ray measuring device 10 is configured to be able to calculate the residual stress of the fillet portion 4 by the cos ⁇ method.
- the diffracted X-ray measuring device 10 irradiates the measurement site S with X-rays, and the intensity of the diffracted X-rays generated by the reflection of the X-rays is detected by the two-dimensional detector 12 and detected.
- the residual stress can be calculated based on the diffraction ring formed by the intensity distribution of the diffracted X-rays.
- the diffracted X-ray measuring device 10 is configured to be able to calculate the half-value width of the X-ray diffraction intensity curve based on the intensity distribution of the diffracted X-rays.
- the "half-value width of the X-ray diffraction intensity curve” means the width of the profile at half the intensity value of the peak of the X-ray diffraction intensity curve.
- the full width at half maximum is said to change reflecting non-uniform strain caused by quenching, tempering, plastic deformation, etc., and is considered to correlate with, for example, the hardness of the fillet portion 4, plastic strain, and the like.
- the half-value width may be, for example, a value calculated in any X-ray diffraction intensity curve constituting the diffraction ring, or a value calculated in a plurality of X-ray diffraction intensity curves constituting the diffraction ring. It may be an average value or the like.
- the two-dimensional detector 12 is provided at the end on the side where X-rays are emitted from the housing 13. That is, the two-dimensional detector 12 is provided at the end on the side facing the measurement site S.
- Examples of the two-dimensional detector 12 include an imaging plate.
- the housing 13 has, for example, a substantially rectangular parallelepiped shape.
- the housing 13 has a lower surface 13a adjacent to the shaft portion 2 and an upper surface 13b facing the lower surface 13a and adjacent to the flange portion 3.
- the irradiation unit 11 and the two-dimensional detector 12 are integrally provided by being arranged in the housing 13.
- a calculator 14 capable of calculating residual stress by the cos ⁇ method using the diffractive ring is connected to the housing 13. Further, the calculator 14 is configured to be able to calculate the half width of the X-ray diffraction intensity curve based on the intensity distribution of the diffracted X-rays.
- the positioning device 20 includes a moving mechanism 21 that moves the diffraction X-ray measuring device 10 relative to the fillet portion 4 in three dimensions, and an X-ray incident angle ⁇ with respect to the fillet portion 4 (see FIG. 2).
- the moving mechanism 21 is connected to the shaft portion 2 or the flange portion 3, and is connected to the shaft portion 2 in the present embodiment.
- the moving mechanism 21 is connected to the first moving body 23, which is aligned with the outer peripheral surface of the shaft portion 2 and rotates relative to the shaft portion 2 in the circumferential direction, and the first moving body 23, and is connected to the central axis of the shaft portion 2.
- a vertical axis 24 extending in a direction orthogonal to the vertical axis 24, a second moving body 25 connected to the vertical axis 24 and movable in the axial direction of the vertical axis 24, and a slide mechanism for moving the vertical axis 24 in the axial direction of the shaft portion 2. It has 26 and.
- the diffraction X-ray measuring device 10 is connected to the second moving body 25.
- a frame 23a that is aligned with the outer peripheral surface of the shaft portion 2 and a rotating shaft 23b are arranged in parallel with the central axis of the shaft portion 2, and the outer peripheral surface of the shaft portion 2 is arranged. It has a plurality of rollers 23c that come into contact with the vehicle, and a motor 23d that rotationally drives the plurality of rollers 23c.
- the first moving body 23 rotates the plurality of rollers 23c by the motor 23d to rotate the diffraction X-ray measuring device 10 relative to the shaft portion 2 in the circumferential direction.
- the first moving body 23 may rotate the diffraction X-ray measuring device 10 relative to the shaft portion 2 in the circumferential direction by rotating the shaft portion 2 in the circumferential direction. Further, in the measurement system 1, the first moving body 23 may rotate in the circumferential direction of the shaft portion 2 to rotate the diffraction X-ray measuring device 10 relative to the shaft portion 2 in the circumferential direction.
- the vertical axis 24 may be directly connected to the first moving body 23, or may be connected to the first moving body 23 via another member. In the present embodiment, the vertical axis 24 is connected to the first moving body 23 via the slide mechanism 26.
- the second moving body 25 is configured to be aligned with the vertical axis 24 and to be movable in the axial direction of the vertical axis 24 by a motor (not shown).
- the second moving body 25 has, for example, a frame shape externally mounted on the vertical axis 24.
- the slide mechanism 26 has a support portion 26a that slidably supports the vertical shaft 24 in the axial direction of the shaft portion 2, and a motor (not shown) that drives the vertical shaft 24 in the axial direction of the shaft portion 2.
- the moving mechanism 21 has a first moving body 23, a vertical axis 24, a second moving body 25, and a slide mechanism 26, and a diffractive X-ray measuring device 10 is connected to the second moving body 25. Therefore, the moving mechanism 21 is unlikely to interfere with arranging the diffractive X-ray measuring device 10 at a desired position. That is, when the residual stress of the fillet portion 4 is measured by the diffraction X-ray measuring device 10, the diffraction X-ray measuring device 10 or the positioning device 20 interferes with the shaft portion 2 or the flange portion 3 in a desired arrangement. It may be difficult to irradiate the fillet portion 4 with X-rays.
- the moving mechanism 21 has the above-mentioned configuration, so that the diffraction X-ray measuring device 10 or the positioning device 20 and the shaft portion 2 or the flange portion 3 are suppressed from interfering with each other. , The residual stress of the fillet portion 4 can be easily and surely measured in a desired arrangement.
- the rotation mechanism 22 includes a connecting body 22a that connects the second moving body 25 and the diffractive X-ray measuring device 10, and a motor that rotationally drives the connecting body 22a around an axis perpendicular to the central axis of the shaft portion 2 (not shown). ) And.
- the diffraction X-ray measuring device 10 is directly connected to the connecting body 22a, and is connected to the second moving body 25 via the connecting body 22a.
- the control unit 30 includes, for example, a computer having a CPU (Central Processing Unit) that processes data and a computer having a storage unit such as a semiconductor memory that temporarily or permanently stores various information.
- the control unit 30 controls the movement by the movement mechanism 21 and the rotation by the rotation mechanism 22 so that the diffraction X-ray measuring device 10 and the shaft portion 2 and the flange portion 3 do not come into contact with each other.
- the measurement system 1 can easily measure the residual stress and the like of the fillet unit 4 in a desired arrangement.
- the control unit 30 controls the movement by the movement mechanism 21 and the rotation by the rotation mechanism 22 within a range in which the peak of the diffraction X-ray can be detected by the diffraction X-ray measuring device 10 (more specifically, the two-dimensional detector 12). According to this configuration, the residual stress of the fillet portion 4 and the like can be easily and surely measured.
- the control procedure by the control unit 30 will be described with reference to FIG.
- the control unit 30 has the coordinates of the fillet center P as (0, 0), passes through the fillet center P, passes through an axis parallel to the central axis of the shaft portion 2, passes through the X-axis, and passes through the fillet center P, and the protrusion direction of the flange portion 3.
- the arrangement of the housing 13 is controlled by using a two-dimensional Cartesian coordinate system having an axis parallel to the Z axis.
- the control unit 30 sets the coordinates of the rotation center Q of the diffractive X-ray measuring device 10 (X, Z), the X-ray irradiation distance by the diffractive X-ray measuring device 10 to L [mm], and the minimum X-ray irradiation distance L.
- the value is L min [mm]
- the maximum value of the X-ray irradiation distance L is L max [mm]
- the fillet angle is ⁇ [°]
- the fillet radius is R [mm]
- the X-ray incident angle (measurement site S and The angle between the virtual straight line N passing through the fillet center P and the X-ray) is ⁇ [°]
- the distance between the end of the housing 13 on the fillet portion 4 side and the rotation center Q in the X-ray irradiation direction is h [mm].
- the vertical width (width between the lower surface 13a and the upper surface 13b) of the end portion of the housing 13 adjacent to the fillet portion 4 is W [mm]
- the margin angle of the Bragg angle is ⁇ [°]
- the two-dimensional detector 12 When the vertical width of is D [mm] and the distance between the virtual straight line passing through the fillet center P and parallel to the flange portion 3 and the flange portion 3 is a [mm], diffraction is performed so as to satisfy the following equations 1 and 2.
- the arrangement of the X-ray measuring device 10 is controlled.
- the incident angle ⁇ of the X-ray is positive when it is inclined toward the shaft portion 2 side with respect to the virtual straight line N passing through the measurement site S and the fillet center P, and is negative when it is inclined toward the flange portion 3, and ⁇ ⁇ 0.
- the X-ray irradiation distance L satisfies the following equation 3
- the X-ray irradiation distance L satisfies the following equation 4.
- the measuring system 1 facilitates contact between the shaft portion 2 and the flange portion 3 and the diffracted X-ray measuring device 10 by positioning the diffracted X-ray measuring device 10 within the range satisfying the above equations 1 and 2. It can be suppressed.
- control unit 30 preferably controls the movement by the moving mechanism 21 and the rotation by the rotating mechanism 22 based on the following equation 5.
- control unit 30 preferably controls the movement by the movement mechanism 21 and the rotation by the rotation mechanism 22 based on the following equation 6.
- the measurement system 1 controls the movement by the moving mechanism 21 and the rotation by the rotating mechanism 22 based on the above equations 5 and 6, so that the shaft portion 2 and the flange portion 3 come into contact with the diffraction X-ray measuring device 10. It is possible to easily and surely measure the residual stress and the like of the fillet portion 4 while suppressing the above.
- Figure 4 shows the relationship between the incident angle ⁇ of X-rays and the measurement error of residual stress.
- the smaller the absolute value of the X-ray incident angle ⁇ the greater the influence of the setting error of the X-ray incident angle.
- the control unit 30 controls the arrangement of the housing 13 so that the absolute value of the incident angle ⁇ of the X-ray is 10 ° or more, preferably 20 ° or more.
- the movement mechanism 21 and the rotation mechanism 22 are controlled by the control unit 30, so that the housing 13 can be easily arranged so that the absolute value of the incident angle ⁇ of the X-rays becomes large. That is, if the housing 13 is manually arranged, it is not easy to find an arrangement in which the absolute value of the incident angle ⁇ of the X-ray becomes large within the range where the housing 13 does not come into contact with the shaft portion 2 and the flange portion 3.
- the control unit 30 controls the moving mechanism 21 and the rotation mechanism 22 to automatically find a desired arrangement of the housing 13 and to have this arrangement. Can be moved and rotated.
- the control unit 30 derives an X-ray irradiation distance L and an X-ray incident angle ⁇ in which the diffraction X-ray measuring device 10 does not come into contact with the shaft portion 2 and the flange portion 3 with respect to the fillet angle ⁇ of the fillet unit 4. Is preferable. Specifically, the control unit 30 receives the input of the X-ray irradiation distance L and the X-ray incident angle ⁇ desired by the user for a specific fillet angle ⁇ .
- the control unit 30 determines the X-ray irradiation distance L and the X-ray irradiation distance L and the X-ray input by the user based on the above equation 5 or the above equation 6. It is determined whether or not the housing 13 can be arranged at the incident angle ⁇ .
- the control unit 30 moves the housing 13 to the arrangement corresponding to the input value. Tell the user that it can be rotated or the housing 13 can be placed. According to this configuration, the residual stress of the fillet portion 4 and the like can be measured more easily in a desired arrangement.
- control unit 30 derives the irradiation distance L of X-rays on which the housing 13 can be arranged and the incident angle ⁇ of X-rays with respect to a plurality of fillet angles ⁇ .
- the measurement system 1 can calculate the residual stress of the fillet unit 4 over a plurality of times in a desired arrangement and in a short time.
- the diffractive X-ray measuring device 10 does not have to be arranged so that the absolute value of the incident angle ⁇ of the X-ray becomes large when calculating the half-value width of the X-ray diffraction intensity curve.
- the incident angle ⁇ of the X-ray may be 0 °.
- the diffractive X-ray measuring device 10 is arranged so as to be suitable for calculating the residual stress of the fillet portion 4, so that the residual stress of the fillet portion 4 and the half-value width of the X-ray diffraction intensity curve are obtained. Both are easy to calculate.
- the control unit 30 uses a movement mechanism 21 and a rotation mechanism 22 to rotate the diffraction X-ray measuring device 10 in the circumferential direction of the shaft portion 2 or move the diffraction X-ray measuring device 10 in a specific plane including the central axis of the shaft portion 2. It is preferable to control the rotation.
- the diffractive X-ray measuring device 10 may continuously irradiate X-rays in parallel with positioning by the positioning device 20, or may irradiate X-rays after being positioned in a specific arrangement by the positioning device 20.
- the diffractive X-ray measuring device 10 continuously irradiates X-rays in parallel with the positioning by the positioning device 20, for example, while rotating the diffracted X-ray measuring device 10 relatively in the circumferential direction of the shaft portion 2.
- a configuration for irradiating X-rays can be mentioned. According to this configuration, the residual stress of the fillet portion 4 and the like can be measured easily and with high accuracy.
- the diffraction X-ray measuring device 10 calculates the residual stress of the fillet portion 4 a plurality of times
- the diffraction X-ray measuring device 10 calculates the average value of the plurality of calculated values (calculated values of the residual stress) by the calculator 14. It is preferable to obtain it.
- the half-value width of the X-ray diffraction intensity curve is calculated by the diffraction X-ray measuring device 10 a plurality of times
- the diffraction X-ray measuring device 10 uses the calculator 14 to calculate a plurality of calculated values (half-value width). It is preferable to obtain the average value of the value).
- the measurement system 1 can reduce the measurement error of the residual stress and the half width at half maximum by obtaining the average value of a plurality of calculated values by the calculator 14.
- FIG. 5 shows the relationship between the X-ray irradiation area and the measurement error of the residual stress.
- the collimating diameter through which X-rays pass is 1 mm, and the irradiation area at one point is about 6.5 mm 2 .
- the measurement error of the residual stress can be reduced by increasing the total value of the irradiation areas. In particular, by setting the total value of the irradiation area to 25 mm 2 or more, the measurement error of the residual stress can be sufficiently reduced.
- a method of increasing the total value of the X-ray irradiation area for example, a method of arbitrarily changing the arrangement of the housing 13 to irradiate the X-rays a plurality of times, or a method of irradiating the housing 13 in the circumferential direction of the shaft portion 2 Examples thereof include a method of irradiating X-rays while swinging, a method of irradiating X-rays at a plurality of incident angles ⁇ , and the like.
- the segregated portion of the bainite structure, the non-segregated portion of the bainite structure, and the martensite structure are each irradiated with X-rays a plurality of times so that the total value of the irradiation area becomes large.
- the measurement method according to the embodiment of the present invention will be described.
- the intensity distribution of the diffracted X-ray obtained by irradiating 4 with X-ray is measured.
- the measuring method can be performed using the measuring system 1 of FIG. Therefore, the measurement method using the measurement system 1 will be described below.
- the measuring method includes a step of moving the diffracted X-ray measuring device 10 relative to the fillet portion 4 in three dimensions (movement step) and a diffracted X-ray measurement in a direction in which the incident angle ⁇ of the X-rays with respect to the fillet portion 4 changes.
- a step of rotating the device 10 (rotation step) and a step of measuring the intensity distribution of the diffracted X-rays by the diffracted X-ray measuring device 10 (measurement step) are provided.
- the measuring method may include, after the measuring step, a step (repeating step) of repeating at least one of the moving step and the rotating step and the measuring step.
- a step (mean value calculation step) of obtaining an average value of a plurality of calculated values (calculated values of a plurality of residual stresses or a plurality of calculated values of a plurality of half-value widths) obtained by the above-mentioned measurement step is performed. You may be prepared.
- the housing 13 is moved to a desired position by controlling the moving mechanism 21 by the control unit 30.
- the rotation mechanism 22 is controlled by the control unit 30 to rotate the housing 13 to a desired angle. Either the moving step and the rotating step may be performed first, or both may be performed at the same time.
- the residual stress of the fillet portion 4 is calculated by the cos ⁇ method. Specifically, in the above measurement step, the residual stress is calculated based on the diffraction ring generated by the Bragg diffraction of X-rays applied to the fillet portion 4 (more specifically, the measurement site S) from the diffraction X-ray measuring device 10. do. Further, in the above measurement step, the half-value width of the X-ray diffraction intensity curve based on the intensity distribution of the diffracted X-rays is calculated.
- the fillet portion 4 is irradiated with X-rays, and the diffraction ring generated by Bragg diffraction of the irradiated X-rays is detected by the two-dimensional detector 12.
- the residual stress may be calculated by the calculator 14 using the cos ⁇ method.
- the fillet portion 4 may be irradiated with X-rays in the arrangement after the movement step and the rotation step, and the half-value width of the X-ray diffraction intensity curve may be calculated.
- X-rays are continuously irradiated to the fillet portion 4 in parallel with at least one of the movement step and the rotation step, and a plurality of X-rays generated by diffraction of the X-rays in the measurement step.
- a single diffractive ring obtained by superimposing the diffractive rings may be obtained.
- the residual stress may be calculated based on the obtained single diffractive ring.
- the diffracted X-ray measuring device 10 constantly irradiates the continuously connected portion of the fillet portion 4 in parallel with at least one of the moving step and the rotating step, and each X-ray is a fillet portion.
- a single diffractive ring obtained by superimposing a plurality of diffractive rings formed by diffracting in 4 is detected by the two-dimensional detector 12, and remains based on this single diffractive ring in the above measurement step.
- the stress may be calculated.
- the diffractive X-ray measuring device 10 is relatively relative to the circumferential direction of the shaft portion 2.
- a method of continuously irradiating the fillet portion 4 with X-rays while rotating the fillet portion 4 can be mentioned.
- the residual stress of the fillet portion 4 can be measured easily and with high accuracy by calculating the residual stress based on the single diffraction ring in the measurement step. Further, the measuring method is obtained by continuously irradiating the fillet portion 4 with X-rays based on the single diffraction ring (that is, in parallel with at least one of the moving step and the rotating step). The half-value range may be calculated (based on the X-ray diffraction intensity curve). When the measurement method calculates the residual stress or the like based on the single diffraction ring in the measurement step, the measurement method may not include the repetition step and the mean value calculation step described later.
- the repeating step After the measuring step, at least one of the moving step and the rotating step is performed to change the arrangement of the housing 13 with respect to the fillet portion 4.
- the residual stress of the fillet portion 4 is calculated by irradiating X-rays from the diffracted X-ray measuring device 10 with this changed arrangement. Since the residual stress of the fillet portion 4 usually has a constant distribution, it is easy to grasp the distribution of the residual stress by repeating the above steps.
- the half-value width of the X-ray diffraction intensity curve is calculated by irradiating X-rays from the diffraction X-ray measuring device 10 in the changed arrangement. Since the half-value width of the X-ray diffraction intensity curve can change depending on the irradiation position of the X-ray, it is easy to grasp the half-value width more accurately by performing the above-mentioned repeating steps.
- the number of repetitions in the above repetition step is arbitrary and may be one. However, as shown in FIG. 5, from the viewpoint of sufficiently reducing the measurement error of the residual stress, it is preferable to repeat the above repeating step until the total value of the X-ray irradiation area becomes 25 mm 2 or more.
- the residual stress may be calculated at a plurality of incident angles ⁇ while changing the incident angle ⁇ of the X-ray with respect to one measurement site S.
- the residual stress may be calculated at a plurality of incident angles ⁇ while changing the incident angle ⁇ of the X-ray by 10 °.
- the average value calculation step the average value of the calculated values obtained by the measurement steps carried out a plurality of times including the repeat step is obtained.
- this average value (average value of residual stress) is calculated as the residual stress of the fillet portion 4.
- this average value (average value of the half width) is calculated as the half width of the X-ray diffraction intensity curve.
- the measurement system 1 includes a positioning device 20 for positioning the diffracted X-ray measuring device 10 with respect to the fillet unit 4, and the positioning device 20 measures the diffracted X-ray measuring device 10 with respect to the fillet unit 4 in three dimensions. Since it has a moving mechanism 21 for relative movement and a rotating mechanism 22 for rotating the diffracted X-ray measuring device 10 in a direction in which the incident angle ⁇ of X-rays with respect to the fillet portion 4 changes, X-rays are transmitted to the fillet portion 4.
- the intensity distribution of the diffracted X-rays obtained by irradiation can be easily measured in a desired arrangement.
- the measurement system 1 can easily measure the intensity distribution of the diffracted X-rays in a desired arrangement, and is therefore suitable for calculating the residual stress of the fillet portion 4. That is, the fillet portion 4 usually has a distribution of residual stress in the direction in which the incident angle ⁇ of X-rays changes, the circumferential direction of the shaft portion 2, and the like. Since the measuring system 1 can position the diffractive X-ray measuring device 10 with high accuracy and in a short time, the residual stress at a plurality of positions of the fillet portion 4 can be easily measured. As a result, the distribution of the residual stress of the fillet portion 4 can be easily grasped.
- the measurement system 1 can easily measure the intensity distribution of the diffracted X-rays in a desired arrangement, it is suitable for calculating the half-value width of the X-ray diffraction intensity curve.
- the measuring method includes a step of moving the diffracted X-ray measuring device 10 relative to the fillet portion 4 in three dimensions, and rotating the diffracted X-ray measuring device 10 in a direction in which the incident angle ⁇ of the X-rays with respect to the fillet portion 4 changes. Since the step of making the fillet portion 4 is provided, the intensity distribution of the diffracted X-rays obtained by irradiating the fillet portion 4 with X-rays can be easily measured in a desired arrangement.
- the measuring method is suitable for calculating the residual stress of the fillet portion 4 because the intensity distribution of the diffracted X-rays can be easily measured in a desired arrangement. Further, since the measuring method can easily measure the intensity distribution of the diffracted X-rays in a desired arrangement, it is suitable for calculating the half-value width of the X-ray diffracted intensity curve.
- the configuration of the positioning device is not limited to the configuration described in the above embodiment.
- the moving mechanism may be connected to the flange portion.
- An example of a configuration in which the moving mechanism is connected to the flange portion will be described with reference to FIG.
- the moving mechanism 41 is connected to the upper surface of the flange portion 3.
- the moving mechanism 41 is connected to a support base 41a arranged on the upper surface of the flange portion 3, a first support rod 41b that protrudes upward from the support base 41a and is rotatable in the circumferential direction, and a first support rod 41b.
- a second support rod 41c extending in a direction orthogonal to the support rod 41b, a moving body 41d connected to the second support rod 41c and movable in the axial direction of the second support rod 41c, and connected to the moving body 41d. It has a third support rod 41e that is arranged in parallel with the first support rod 41b and can move in the vertical direction.
- the diffraction X-ray measuring device 10 is connected to the lower part of the third support rod 41e via the rotation mechanism 42.
- the measuring system can measure the residual stress of the fillet portion 4 and the like in a desired arrangement even with the configuration of FIG.
- the measurement system may be configured such that the slide mechanism moves the first moving body in the axial direction of the shaft portion.
- the measurement system can be configured not to have the above-mentioned control unit.
- the measurement system may be configured to arrange the diffraction X-ray measuring device at a desired position by the user operating the moving mechanism and the rotating mechanism.
- the specific control procedure by the control unit is not limited to the configuration described in the embodiment. For example, even if the control unit controls the movement mechanism and the rotation mechanism so as to arrange the diffraction X-ray measuring device so that the incident angle ⁇ of the X-ray approaches ⁇ 35 ° with respect to a specific fillet angle. good.
- the measurement system and the measurement method may be configured so that only one of the residual stress of the fillet portion and the half width of the X-ray diffraction intensity curve can be calculated. Further, the measuring system and the measuring method may be configured to calculate a value other than the residual stress of the fillet portion and the half width of the X-ray diffraction intensity curve.
- the measuring method it is preferable to calculate the residual stress of the fillet portion in a plurality of arrangements from the viewpoint of reducing the measurement error.
- the absolute value of the incident angle ⁇ of the X-ray can be sufficiently increased, the residual stress of the fillet portion may be obtained from the value of only one desired point.
- the measuring method may not include the above-mentioned repeating step and average value calculating step.
- the residual stress of the fillet portion 4 of the metal structure M having the shaft portion 2 and the flange portion 3 protruding in the radial direction from the shaft portion 2 was measured by the measurement system 1 of FIG. 1 using the cos ⁇ method.
- the diffraction X-ray measuring device 10 an X-ray stress measuring device having a vertical width D of the detection region of the two-dimensional detector 12 of 70 mm and a vertical width of the housing 13 of 102 mm was used.
- the fillet radius R of the fillet portion 4 was 29 mm
- the margin angle ⁇ of the Bragg angle was 23.6 °
- the distance a between the virtual straight line passing through the fillet center P and parallel to the flange portion 3 was 8 mm.
- FIG. 7 shows the measurement result of the residual stress using the measurement system 1.
- the control unit 30 derives the X-ray irradiation distance L and the X-ray incident angle ⁇ in which the diffractive X-ray measuring device 10 does not come into contact with the shaft portion 2 and the flange portion 3 for a plurality of fillet angles ⁇ . Then, the residual stress of the fillet portion 4 is measured by this derived arrangement. As shown in FIG. 7, by using the measurement system 1, the residual stress can be automatically measured for a plurality of fillet angles ⁇ .
- FIG. 8 shows the relationship between the number of measurement points and the measurement time when the measurement system 1 is used (Example) and when the housing is manually arranged without using the measurement system 1 (Comparative Example). .. As shown in FIG. 8, as the number of measurement points increases, the measurement time can be significantly shortened by using the measurement system 1.
- FIG. 9 shows the full width at half maximum calculated from the X-ray diffraction intensity curve obtained by the arrangement derived in the measurement of FIG. 7.
- the error bar indicates the width between the maximum value and the minimum value of the half width in the X-ray diffraction intensity curve constituting the diffraction ring, and each point shows the average value of the half width.
- the full width at half maximum of the X-ray diffraction intensity curve can be calculated according to the measurement system 1.
- the measurement system according to one aspect of the present invention is suitable for measuring the residual stress of the fillet portion and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Toxicology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本発明の一態様に係る測定システムは、軸部とこの軸部から径方向に突出するフランジ部とを有し、上記軸部と上記フランジ部との接続部分にフィレット部を有する金属構造物の上記フィレット部にX線を照射して得られる回折X線の強度分布を測定可能な測定システムであって、X線を上記フィレット部に照射する照射部を有する回折X線測定装置と、上記フィレット部に対して上記回折X線測定装置を位置決めする位置決め装置とを備え、上記位置決め装置が、上記回折X線測定装置を上記フィレット部に対して三次元で相対移動させる移動機構と、上記フィレット部に対する上記X線の入射角度が変化する方向に上記回折X線測定装置を回転させる回転機構とを有する。
Description
本発明は、測定システム及び測定方法に関する。
近年、X線を用いて残留応力を測定する技術が普及している。この技術は、X線を用いることにより結晶構造を有する被検査体の内部に生じている格子ひずみを測定し、測定結果を残留応力に換算するものである。
X線を用いた残留応力測定方法としては、cosα法が知られている。cosα法は、被検査体に対して特定の入射角度でX線を照射し、このX線が被検査体で反射することによって生じる回折X線の強度を二次元で検出し、検出された回折X線の強度分布により形成される回折環に基づいて残留応力を測定するものである。
また、今日では、回折X線の強度分布に基づくX線回折強度曲線の半価幅を算出することで、被検査体の硬度等を求めることも行われている。
円柱状の軸部とこの軸部から径方向に突出するフランジ部(板状部)とを備え、軸部とフランジ部との接続部分に応力集中を緩和するためのフィレット部が設けられた金属構造物における上記フィレット部の残留応力を測定するX線応力測定装置として、X線を出射するX線出射器、回折X線による回折環が形成されるイメージングプレート等が単一の筐体に配置されたX線応力測定装置が使用できる(特開2012-225796号公報参照)。
cosα法による残留応力の測定においては、測定精度を高められるよう、通常入射角度は15°以上65°以下に設定される。しかし、円柱状の軸部とこの軸部から径方向に突出するフランジ部(板状部)とを備え、軸部とフランジ部との接続部分に応力集中を緩和するためのフィレット部が設けられた金属構造物に対しては、例えばフィレット部の複数の位置にX線を照射するような場合において、フランジ部又は軸部とX線応力測定装置とが干渉するおそれが高くなり、X線応力測定装置を所望の位置に配置し難い場合がある。
本発明は、このような事情に基づいてなされたもので、回折X線の強度分布を所望の配置で容易に測定することが可能な測定システム及び測定方法を提供することを目的とする。
本発明の一態様に係る測定システムは、軸部とこの軸部から径方向に突出するフランジ部とを有し、上記軸部と上記フランジ部との接続部分にフィレット部を有する金属構造物の上記フィレット部にX線を照射して得られる回折X線の強度分布を測定可能な測定システムであって、X線を上記フィレット部に照射する照射部を有する回折X線測定装置と、上記フィレット部に対して上記回折X線測定装置を位置決めする位置決め装置とを備え、上記位置決め装置が、上記回折X線測定装置を上記フィレット部に対して三次元で相対移動させる移動機構と、上記フィレット部に対する上記X線の入射角度が変化する方向に上記回折X線測定装置を回転させる回転機構とを有する。
当該測定システムは、上記フィレット部に対して上記回折X線測定装置を位置決めする位置決め装置を備えており、上記位置決め装置が、上記回折X線測定装置を上記フィレット部に対して三次元で相対移動させる移動機構と、上記フィレット部に対する上記X線の入射角度が変化する方向に上記回折X線測定装置を回転させる回転機構とを有しているので、上記フィレット部にX線を照射して得られる回折X線の強度分布を所望の配置で容易に測定することができる。
当該測定システムは、上記回折X線測定装置と上記軸部及び上記フランジ部とが接触しないように上記移動機構による移動及び上記回転機構による回転を制御する制御部をさらに備えるとよい。当該測定システムは、上記回折X線測定装置と上記軸部及び上記フランジ部とが接触しないように上記移動機構による移動及び上記回転機構による回転を制御する制御部をさらに備えることによって、上記回折X線の強度分布を所望の配置でより容易に測定することができる。
上記制御部が、上記回折X線測定装置によって回折X線のピークを検出可能な範囲内で上記移動機構による移動及び上記回転機構による回転を制御するとよい。このように、上記制御部が、上記回折X線測定装置によって回折X線のピークを検出可能な範囲内で上記移動機構による移動及び上記回転機構による回転を制御することによって、上記回折X線の強度分布を容易かつ確実に測定することができる。
フィレット中心を通り、上記軸部の中心軸と平行な軸をX軸、上記フィレット中心を通り、上記フランジ部の突出方向と平行な軸をZ軸とし、上記フィレット中心の座標を(0、0)、上記回折X線測定装置の回転中心の座標を(X、Z)、上記回折X線測定装置によるX線の照射距離をL[mm]、上記X線の照射距離の最小値をLmin[mm]、上記X線の照射距離の最大値をLmax[mm]、フィレット角度をθ[°]、フィレット半径をR[mm]、X線の入射角度をΨ[°]、X線の照射方向における上記回折X線測定装置の筐体の上記フィレット部側の端部と上記回転中心との距離をh[mm]、上記筐体の上記フィレット部に隣接する側の端部の上下幅をW[mm]、ブラッグ角の余角をη[°]、上記回折X線測定装置の二次元検出器の検出領域の上下幅をD[mm]、上記フィレット中心を通り上記フランジ部に平行な仮想直線と上記フランジ部との間隔をa[mm]とした場合、下記式1及び下記式2を満たすとよい。
但し、X線の入射角度Ψは、測定部位及びフィレット中心を通る仮想直線に対し上記軸部側に傾斜した場合をプラス、上記フランジ部側に傾斜した場合をマイナスとし、Ψ≧0の場合、X線の照射距離Lは下記式3を満たし、Ψ<0の場合、X線の照射距離Lは下記式4を満たす。
当該測定システムは、上記式1及び上記式2を満たす範囲内で上記回折X線測定装置を位置決めすることで、上記軸部及び上記フランジ部と上記回折X線測定装置との接触を容易に抑制することができる。
上記制御部が、Ψ≧0の場合、下記式5に基づいて上記移動機構による移動及び上記回転機構による回転を制御し、Ψ<0の場合、下記式6に基づいて上記移動機構による移動及び上記回転機構による回転を制御するとよい。
このように、上記制御部が、上記式5及び上記式6に基づいて上記移動機構による移動及び上記回転機構による回転を制御することで、上記軸部及び上記フランジ部と上記回折X線測定装置との接触を抑制しつつ、上記回折X線の強度分布を容易かつ確実に測定することができる。
上記移動機構が、上記軸部の外周面に篏合し、上記軸部に対して周方向に相対回転する第1移動体と、上記第1移動体に接続され、上記軸部の中心軸と直交する方向に延びる垂直軸と、上記垂直軸に接続され、上記垂直軸の軸方向に移動可能な第2移動体と、上記第1移動体又は上記垂直軸を上記軸部の軸方向に移動させるスライド機構とを有し、上記回折X線測定装置が上記第2移動体に接続されているとよい。このように、上記移動機構が、上記軸部の外周面に篏合し、上記軸部に対して周方向に相対回転する第1移動体と、上記第1移動体に接続され、上記軸部の中心軸と直交する方向に延びる垂直軸と、上記垂直軸に接続され、上記垂直軸の軸方向に移動可能な第2移動体と、上記第1移動体又は上記垂直軸を上記軸部の軸方向に移動させるスライド機構とを有し、上記回折X線測定装置が上記第2移動体に接続されていることによって、上記回折X線の強度分布を所望の配置でより容易に測定することができる。
上記回折X線測定装置が、cosα法によって上記フィレット部の残留応力を算出可能に設けられているとよい。当該測定システムは、上記回折X線の強度分布を所望の配置で容易に測定できるので、上記フィレット部の残留応力を算出するのに適している。
上記回折X線測定装置が、X線回折強度曲線の半価幅を算出可能に設けられているとよい。当該測定システムは、上記回折X線の強度分布を所望の配置で容易に測定できるので、上記X線回折強度曲線の半価幅を算出するのに適している。
本発明の他の一態様に係る測定方法は、軸部とこの軸部から径方向に突出するフランジ部とを有し、上記軸部と上記フランジ部との接続部分にフィレット部を有する金属構造物の上記フィレット部にX線を照射して得られる回折X線の強度分布を測定可能な測定方法であって、X線を上記フィレット部に照射する照射部を有する回折X線測定装置を用い、上記回折X線測定装置を上記フィレット部に対して三次元で相対移動させる工程と、上記フィレット部に対する上記X線の入射角度が変化する方向に上記回折X線測定装置を回転させる工程と、上記回折X線測定装置によって上記回折X線の強度分布を測定する工程とを備える。
当該測定方法は、上記回折X線測定装置を上記フィレット部に対して三次元で相対移動させる工程と、上記フィレット部に対する上記X線の入射角度が変化する方向に上記回折X線測定装置を回転させる工程とを備えているので、上記フィレット部にX線を照射して得られる回折X線の強度分布を所望の配置で容易に測定することができる。
上記測定工程で、cosα法によって上記フィレット部の残留応力を算出するとよい。当該測定方法は、上記回折X線の強度分布を所望の配置で容易に測定できるので、上記フィレット部の残留応力を算出するのに適している。
上記測定工程で、X線回折強度曲線の半価幅を算出するとよい。当該測定方法は、上記回折X線の強度分布を所望の配置で容易に測定できるので、上記X線回折強度曲線の半価幅を算出するのに適している。
上記移動工程と上記回転工程との少なくとも一方と並行してX線を上記フィレット部に連続して照射させ、上記測定工程で、上記X線の回折によって生じる複数の回折環が重ね合わさることにより得られる単一の回折環を求めるとよい。このように、上記移動工程と上記回転工程との少なくとも一方と並行してX線を上記フィレット部に連続して照射させ、上記測定工程で、上記X線の回折によって生じる複数の回折環が重ね合わさることにより得られる単一の回折環を求めることによって、上記残留応力又は上記半価幅を容易かつ高精度に算出することができる。
当該測定方法は、上記測定工程後に、上記移動工程及び上記回転工程の少なくともいずれかと上記測定工程とを繰り返し行う工程を備えるとよい。このように、上記測定工程後に、上記移動工程及び上記回転工程の少なくともいずれかと上記測定工程とを繰り返し行う工程を備えることによって、上記残留応力又は上記半価幅をより正確に測定することができる。
当該測定方法は、上記測定工程によって得られた複数の算出値の平均値を求める工程をさらに備えるとよい。このように、上記測定工程によって得られた複数の算出値の平均値を求める工程をさらに備えることによって、上記残留応力又は上記半価幅を容易かつ高精度に測定することができる。
なお、本発明において、「フィレット中心」とは、フィレット部の曲率中心を意味する。「フィレット角度」とは、フィレット中心を通り軸部と直交する仮想直線と、測定部位及びフィレット中心を通る仮想直線との側面視におけるなす角度(図2のθ参照)を意味する。「フィレット半径」とは、フィレット部の曲率半径を意味する。「上下幅」とは、軸部に隣接する側の面と、この面に対向し、フランジ部に隣接する側の面との幅を意味する。「フィレット中心を通りフランジ部に平行な仮想直線とフランジ部との間隔」とは、上記仮想直線と上記フランジ部(但しフィレット部を除く)との任意の5点における間隔の平均値を意味する。
以上説明したように、本発明の一態様に係る測定システム及び本発明の他の一態様に係る測定方法は、回折X線の強度分布を所望の配置で容易に測定することができる。
以下、図面を参照しつつ、本発明の実施の形態を詳説する。
[測定システム]
図1及び図2に示すように、当該測定システム1は、軸部2と、軸部2から径方向に突出するフランジ部3とを有し、軸部2とフランジ部3との接続部分にフィレット部4を有する金属構造物Mのフィレット部4にX線を照射して得られる回折X線の強度分布を測定する。フランジ部3は軸部2の中心軸に対して垂直な方向に突出している。図2に示すように、当該測定システム1は、X線をフィレット部4に照射する照射部11を有する回折X線測定装置10を備える。回折X線測定装置10としては、例えばX線応力測定装置が挙げられる。また、図1及び図3に示すように、当該測定システム1は、フィレット部4に対して回折X線測定装置10を位置決めする位置決め装置20を備える。さらに、図1及び図3に示すように、当該測定システム1は、回折X線測定装置10と軸部2及びフランジ部3とが接触しないように位置決め装置20による回折X線測定装置10の動作を制御する制御部30を備える。
図1及び図2に示すように、当該測定システム1は、軸部2と、軸部2から径方向に突出するフランジ部3とを有し、軸部2とフランジ部3との接続部分にフィレット部4を有する金属構造物Mのフィレット部4にX線を照射して得られる回折X線の強度分布を測定する。フランジ部3は軸部2の中心軸に対して垂直な方向に突出している。図2に示すように、当該測定システム1は、X線をフィレット部4に照射する照射部11を有する回折X線測定装置10を備える。回折X線測定装置10としては、例えばX線応力測定装置が挙げられる。また、図1及び図3に示すように、当該測定システム1は、フィレット部4に対して回折X線測定装置10を位置決めする位置決め装置20を備える。さらに、図1及び図3に示すように、当該測定システム1は、回折X線測定装置10と軸部2及びフランジ部3とが接触しないように位置決め装置20による回折X線測定装置10の動作を制御する制御部30を備える。
(回折X線測定装置)
図2に示すように、回折X線測定装置10は、X線を照射する照射部11と、照射部11からフィレット部4(より詳しくは、フィレット部4における測定部位S)に照射されたX線のブラッグ回折により生じる回折環を検出する二次元検出器12と、照射部11及び二次元検出器12が装着される筐体13とを有する。回折X線測定装置10は、cosα法によってフィレット部4の残留応力を算出可能に構成されている。具体的には、回折X線測定装置10は、測定部位SにX線を照射し、このX線が反射されることによって生じる回折X線の強度を二次元検出器12で検出し、検出された回折X線の強度分布により形成される回折環に基づいて残留応力を算出可能に構成されている。また、回折X線測定装置10は、回折X線の強度分布に基づくX線回折強度曲線の半価幅を算出可能に構成されている。「X線回折強度曲線の半価幅」とは、X線回折強度曲線のピークの半分の強度値におけるプロファイルの幅を意味している。上記半価幅は、焼入れ、焼き戻しや塑性変形などによって引き起こされる不均一な歪みを反映して変化するといわれており、例えばフィレット部4の硬度、塑性歪み等と相関していると考えられる。上記半価幅は、例えば上記回折環を構成する任意のX線回折強度曲線において算出される値であってもよく、上記回折環を構成する複数のX線回折強度曲線において算出される値の平均値等であってもよい。
図2に示すように、回折X線測定装置10は、X線を照射する照射部11と、照射部11からフィレット部4(より詳しくは、フィレット部4における測定部位S)に照射されたX線のブラッグ回折により生じる回折環を検出する二次元検出器12と、照射部11及び二次元検出器12が装着される筐体13とを有する。回折X線測定装置10は、cosα法によってフィレット部4の残留応力を算出可能に構成されている。具体的には、回折X線測定装置10は、測定部位SにX線を照射し、このX線が反射されることによって生じる回折X線の強度を二次元検出器12で検出し、検出された回折X線の強度分布により形成される回折環に基づいて残留応力を算出可能に構成されている。また、回折X線測定装置10は、回折X線の強度分布に基づくX線回折強度曲線の半価幅を算出可能に構成されている。「X線回折強度曲線の半価幅」とは、X線回折強度曲線のピークの半分の強度値におけるプロファイルの幅を意味している。上記半価幅は、焼入れ、焼き戻しや塑性変形などによって引き起こされる不均一な歪みを反映して変化するといわれており、例えばフィレット部4の硬度、塑性歪み等と相関していると考えられる。上記半価幅は、例えば上記回折環を構成する任意のX線回折強度曲線において算出される値であってもよく、上記回折環を構成する複数のX線回折強度曲線において算出される値の平均値等であってもよい。
二次元検出器12は、筐体13からX線が出射される側の端部に設けられている。すなわち、二次元検出器12は、測定部位Sと対向する側の端部に設けられている。二次元検出器12としては、例えばイメージングプレートが挙げられる。筐体13は、例えば略直方体状である。筐体13は、軸部2に隣接する下面13aと、下面13aに対向し、フランジ部3に隣接する上面13bとを有する。照射部11及び二次元検出器12は、筐体13に配置されることで、一体的に設けられている。筐体13には、上記回折環を用い、cosα法によって残留応力を算出可能な算出機14が接続されている。また、この算出機14は、回折X線の強度分布に基づくX線回折強度曲線の半価幅を算出可能に構成されている。
(位置決め装置)
図3に示すように、位置決め装置20は、回折X線測定装置10をフィレット部4に対して三次元で相対移動させる移動機構21と、フィレット部4に対するX線の入射角度Ψ(図2参照)が変化する方向に回折X線測定装置10を回転させる回転機構22とを有する。移動機構21は、軸部2又はフランジ部3に接続されており、本実施形態では軸部2に接続されている。
図3に示すように、位置決め装置20は、回折X線測定装置10をフィレット部4に対して三次元で相対移動させる移動機構21と、フィレット部4に対するX線の入射角度Ψ(図2参照)が変化する方向に回折X線測定装置10を回転させる回転機構22とを有する。移動機構21は、軸部2又はフランジ部3に接続されており、本実施形態では軸部2に接続されている。
〔移動機構〕
移動機構21は、軸部2の外周面に篏合し、軸部2に対して周方向に相対回転する第1移動体23と、第1移動体23に接続され、軸部2の中心軸と直交する方向に延びる垂直軸24と、垂直軸24に接続され、垂直軸24の軸方向に移動可能な第2移動体25と、垂直軸24を軸部2の軸方向に移動させるスライド機構26とを有する。回折X線測定装置10は、第2移動体25に接続されている。
移動機構21は、軸部2の外周面に篏合し、軸部2に対して周方向に相対回転する第1移動体23と、第1移動体23に接続され、軸部2の中心軸と直交する方向に延びる垂直軸24と、垂直軸24に接続され、垂直軸24の軸方向に移動可能な第2移動体25と、垂直軸24を軸部2の軸方向に移動させるスライド機構26とを有する。回折X線測定装置10は、第2移動体25に接続されている。
図3に示すように、第1移動体23は、軸部2の外周面に篏合するフレーム23aと、回転軸23bが軸部2の中心軸と平行に配置され、軸部2の外周面に当接する複数のローラ23cと、複数のローラ23cを回転駆動するモータ23dとを有する。第1移動体23は、モータ23dによって複数のローラ23cを回転駆動することで、回折X線測定装置10を軸部2に対して周方向に相対回転させる。第1移動体23は、軸部2を周方向に回転させることで回折X線測定装置10を軸部2に対して周方向に相対回転させてもよい。また、当該測定システム1は、第1移動体23が軸部2の周方向に回転することで回折X線測定装置10を軸部2に対して周方向に相対回転させてもよい。
垂直軸24は、第1移動体23に直接接続されていてもよく、他の部材を介して第1移動体23に接続されていてもよい。本実施形態では、垂直軸24は、スライド機構26を介して第1移動体23に接続されている。
第2移動体25は、垂直軸24に篏合し、モータ(不図示)によって垂直軸24の軸方向に移動可能に構成される。第2移動体25は、例えば垂直軸24に外篏される枠状である。
スライド機構26は、垂直軸24を軸部2の軸方向にスライド可能に支持する支持部26aと、垂直軸24を軸部2の軸方向に駆動するモータ(不図示)とを有する。
当該測定システム1は、移動機構21が、第1移動体23、垂直軸24、第2移動体25及びスライド機構26を有し、回折X線測定装置10が第2移動体25に接続されているので、移動機構21が回折X線測定装置10を所望の位置に配置する妨げとなり難い。すなわち、回折X線測定装置10によってフィレット部4の残留応力等を測定する場合、回折X線測定装置10又は位置決め装置20と、軸部2又はフランジ部3とが干渉することで所望の配置でフィレット部4にX線を照射し難い場合がある。この点において、当該測定システム1は、移動機構21が上述の構成を有することで、回折X線測定装置10又は位置決め装置20と、軸部2又はフランジ部3とが干渉するのを抑制しつつ、所望の配置でフィレット部4の残留応力等を容易かつ確実に測定することができる。
〔回転機構〕
回転機構22は、第2移動体25と回折X線測定装置10とを接続する接続体22aと、接続体22aを軸部2の中心軸と垂直な軸の回りに回転駆動するモータ(不図示)とを有する。回折X線測定装置10は、直接的には接続体22aに接続されており、接続体22aを介して第2移動体25に接続されている。
回転機構22は、第2移動体25と回折X線測定装置10とを接続する接続体22aと、接続体22aを軸部2の中心軸と垂直な軸の回りに回転駆動するモータ(不図示)とを有する。回折X線測定装置10は、直接的には接続体22aに接続されており、接続体22aを介して第2移動体25に接続されている。
(制御部)
制御部30は、例えばデータ処理を行うCPU(Central Processing Unit)や各種情報を一時的或いは恒久的に記憶する半導体メモリ等の記憶部を有するコンピュータを含んで構成される。制御部30は、回折X線測定装置10と軸部2及びフランジ部3とが接触しないように移動機構21による移動及び回転機構22による回転を制御する。当該測定システム1は、制御部30を備えることで、フィレット部4の残留応力等を所望の配置で容易に測定することができる。
制御部30は、例えばデータ処理を行うCPU(Central Processing Unit)や各種情報を一時的或いは恒久的に記憶する半導体メモリ等の記憶部を有するコンピュータを含んで構成される。制御部30は、回折X線測定装置10と軸部2及びフランジ部3とが接触しないように移動機構21による移動及び回転機構22による回転を制御する。当該測定システム1は、制御部30を備えることで、フィレット部4の残留応力等を所望の配置で容易に測定することができる。
制御部30は、回折X線測定装置10(より詳しくは二次元検出器12)によって回折X線のピークを検出可能な範囲内で移動機構21による移動及び回転機構22による回転を制御する。この構成によると、フィレット部4の残留応力等を容易かつ確実に測定することができる。
図2を参照して、制御部30による制御手順について説明する。制御部30は、フィレット中心Pの座標を(0、0)とし、フィレット中心Pを通り、軸部2の中心軸と平行な軸をX軸、フィレット中心Pを通り、フランジ部3の突出方向と平行な軸をZ軸とする二次元直交座標系を用いて筐体13の配置を制御する。
制御部30は、回折X線測定装置10の回転中心Qの座標を(X、Z)、回折X線測定装置10によるX線の照射距離をL[mm]、X線の照射距離Lの最小値をLmin[mm]、X線の照射距離Lの最大値をLmax[mm]、フィレット角度をθ[°]、フィレット半径をR[mm]、X線の入射角度(測定部位S及びフィレット中心Pを通る仮想直線NとX線のなす角度)をΨ[°]、X線の照射方向における筐体13のフィレット部4側の端部と回転中心Qとの距離をh[mm]、筐体13のフィレット部4に隣接する側の端部の上下幅(下面13aと上面13bとの幅)をW[mm]、ブラッグ角の余角をη[°]、二次元検出器12の上下幅をD[mm]、フィレット中心Pを通りフランジ部3に平行な仮想直線とフランジ部3との間隔をa[mm]とした場合、下記式1及び下記式2を満たすように回折X線測定装置10の配置を制御する。
但し、X線の入射角度Ψは、測定部位S及びフィレット中心Pを通る仮想直線Nに対し軸部2側に傾斜した場合をプラス、フランジ部3側に傾斜した場合をマイナスとし、Ψ≧0の場合、X線の照射距離Lは下記式3を満たし、Ψ<0の場合、X線の照射距離Lは下記式4を満たす。
当該測定システム1は、上記式1及び上記式2を満たす範囲内で回折X線測定装置10を位置決めすることで、軸部2及びフランジ部3と回折X線測定装置10との接触を容易に抑制することができる。
制御部30は、Ψ≧0の場合、下記式5に基づいて移動機構21による移動及び回転機構22による回転を制御することが好ましい。
また、制御部30は、Ψ<0の場合、下記式6に基づいて移動機構21による移動及び回転機構22による回転を制御することが好ましい。
当該測定システム1は、上記式5及び上記式6に基づいて移動機構21による移動及び回転機構22による回転を制御することで、軸部2及びフランジ部3と回折X線測定装置10との接触を抑制しつつ、フィレット部4の残留応力等を容易かつ確実に測定することができる。
X線の入射角度Ψと残留応力の測定誤差との関係を図4に示す。図4に示すように、X線の入射角度Ψの絶対値が小さくなるほどX線の入射角度の設定誤差の影響は大きくなる。特に、X線の入射角度Ψの絶対値が10°未満になると、X線の入射角度の設定誤差の影響は顕著となる。そのため、制御部30は、X線の入射角度Ψの絶対値が10°以上、好ましくは20°以上になるように筐体13の配置を制御することが好ましい。
当該測定システム1は、移動機構21及び回転機構22を制御部30によって制御することで、X線の入射角度Ψの絶対値が大きくなるように筐体13を容易に配置することができる。すなわち、仮に手作業で筐体13を配置する場合、軸部2及びフランジ部3に接触しない範囲でX線の入射角度Ψの絶対値が大きくなるような配置を見つけることは容易ではない。これに対し、当該測定システム1は、制御部30が移動機構21及び回転機構22を制御することで、筐体13の所望の配置を自動的に見つけ、かつこの配置になるように筐体13を移動及び回転させることができる。
制御部30は、フィレット部4のフィレット角度θに対して、回折X線測定装置10と軸部2及びフランジ部3とが接触しないX線の照射距離L及びX線の入射角度Ψを導出することが好ましい。具体的には、制御部30は、特定のフィレット角度θに対して、ユーザが所望するX線の照射距離L及びX線の入射角度Ψの入力を受け付ける。制御部30は、X線の照射距離L及びX線の入射角度Ψが入力されると、上記式5又は上記式6に基づいて、ユーザによって入力されたX線の照射距離L及びX線の入射角度Ψで筐体13を配置することが可能か否かを判定する。制御部30は、ユーザによって入力されたX線の照射距離L及びX線の入射角度Ψで筐体13を配置することが可能である場合、入力値に対応する配置に筐体13を移動及び回転させるか、又は筐体13の配置が可能であることをユーザに伝える。この構成によると、フィレット部4の残留応力等を所望の配置でより容易に測定することができる。
制御部30は、筐体13を配置可能なX線の照射距離L及びX線の入射角度Ψを複数のフィレット角度θに対して導出することが好ましい。当該測定システム1は、制御部30によって移動機構21及び回転機構22を制御することで、所望の配置かつ短時間で複数回に亘ってフィレット部4の残留応力を算出することができる。
なお、回折X線測定装置10は、X線回折強度曲線の半価幅を算出する際には、X線の入射角度Ψの絶対値が大きくなるように配置されなくてもよい。例えばX線回折強度曲線の半価幅を算出する場合であれば、X線の入射角度Ψは0°であってもよい。但し、当該測定システム1は、回折X線測定装置10をフィレット部4の残留応力を算出するのに適した配置とすることで、フィレット部4の残留応力とX線回折強度曲線の半価幅との両方を容易に算出しやすい。
制御部30は、回折X線測定装置10を、軸部2の周方向に回転させ、又は軸部2の中心軸を含む特定の面内で移動させるよう移動機構21による移動及び回転機構22による回転を制御することが好ましい。
回折X線測定装置10は、位置決め装置20による位置決めと並行してX線を連続的に照射してもよく、位置決め装置20によって特定の配置に位置決めされた後にX線を照射してもよい。回折X線測定装置10が位置決め装置20による位置決めと並行してX線を連続的に照射する具体例としては、例えば回折X線測定装置10を軸部2の周方向に相対的に回転させながらX線を照射する構成が挙げられる。この構成によると、フィレット部4の残留応力等を容易かつ高精度に測定することができる。
回折X線測定装置10で複数回に亘ってフィレット部4の残留応力を算出した場合、回折X線測定装置10は、算出機14によって複数の算出値(残留応力の算出値)の平均値を求めることが好ましい。また、回折X線測定装置10で複数回に亘ってX線回折強度曲線の半価幅を算出した場合、回折X線測定装置10は、算出機14によって複数の算出値(半価幅の算出値)の平均値を求めることが好ましい。当該測定システム1は、算出機14によって複数の算出値の平均値を求めることで、上記残留応力や上記半価幅の測定誤差を低減することができる。
X線の照射面積と残留応力の測定誤差との関係を図5に示す。図5では、X線を通過させるコリメート径が1mmであり、1点の照射面積は約6.5mm2である。図5に示すように、照射面積の合計値を大きくすることで残留応力の測定誤差を低減することができる。特に、照射面積の合計値を25mm2以上とすることで、残留応力の測定誤差を十分に低減することができる。X線の照射面積の合計値を大きくする方法としては、例えば筐体13の配置を任意に変更して複数回に亘ってX線を照射する方法や、軸部2の周方向に筐体13を揺動しながらX線を照射する方法、複数の入射角度ΨでX線を照射する方法等が挙げられる。なお、図5では、ベイナイト組織の偏析部、ベイナイト組織の偏析がない部分、及びマルテンサイト組織について、それぞれ照射面積の合計値が大きくなるように複数回に亘ってX線を照射している。
[測定方法]
次に、本発明の一実施形態に係る測定方法について説明する。当該測定方法では、軸部2と軸部2から径方向に突出するフランジ部3とを有し、軸部2とフランジ部3との接続部分にフィレット部4を有する金属構造物Mのフィレット部4にX線を照射して得られる回折X線の強度分布を測定する。当該測定方法は、図1の測定システム1を用いて行うことができる。そのため、以下では、当該測定システム1を用いた測定方法について説明する。
次に、本発明の一実施形態に係る測定方法について説明する。当該測定方法では、軸部2と軸部2から径方向に突出するフランジ部3とを有し、軸部2とフランジ部3との接続部分にフィレット部4を有する金属構造物Mのフィレット部4にX線を照射して得られる回折X線の強度分布を測定する。当該測定方法は、図1の測定システム1を用いて行うことができる。そのため、以下では、当該測定システム1を用いた測定方法について説明する。
当該測定方法は、回折X線測定装置10をフィレット部4に対して三次元で相対移動させる工程(移動工程)と、フィレット部4に対するX線の入射角度Ψが変化する方向に回折X線測定装置10を回転させる工程(回転工程)と、回折X線測定装置10によって上記回折X線の強度分布を測定する工程(測定工程)とを備える。当該測定方法は、上記測定工程後に、上記移動工程及び上記回転工程の少なくともいずれかと上記測定工程とを繰り返し行う工程(繰り返し工程)を備えていてもよい。さらに、当該測定方法は、上記測定工程によって得られた複数の算出値(複数の残留応力の算出値、又は複数の半価幅の算出値)の平均値を求める工程(平均値算出工程)を備えていてもよい。
(移動工程)
上記移動工程では、制御部30によって移動機構21を制御することで、筐体13を所望の位置に移動させる。
上記移動工程では、制御部30によって移動機構21を制御することで、筐体13を所望の位置に移動させる。
(回転工程)
上記回転工程では、制御部30によって回転機構22を制御することで、筐体13を所望の角度に回転させる。なお、上記移動工程及び上記回転工程は、いずれを先に行ってもよく、両方を同時に行ってもよい。
上記回転工程では、制御部30によって回転機構22を制御することで、筐体13を所望の角度に回転させる。なお、上記移動工程及び上記回転工程は、いずれを先に行ってもよく、両方を同時に行ってもよい。
(測定工程)
上記測定工程では、cosα法によってフィレット部4の残留応力を算出する。具体的には、上記測定工程では、回折X線測定装置10からフィレット部4(より詳しくは測定部位S)に対して照射されたX線のブラッグ回折により生じる回折環に基づいて残留応力を算出する。また、上記測定工程では、回折X線の強度分布に基づくX線回折強度曲線の半価幅を算出する。
上記測定工程では、cosα法によってフィレット部4の残留応力を算出する。具体的には、上記測定工程では、回折X線測定装置10からフィレット部4(より詳しくは測定部位S)に対して照射されたX線のブラッグ回折により生じる回折環に基づいて残留応力を算出する。また、上記測定工程では、回折X線の強度分布に基づくX線回折強度曲線の半価幅を算出する。
上記測定工程では、例えば上記移動工程及び上記回転工程後の配置でフィレット部4に対してX線を照射し、照射されたX線のブラッグ回折により生じる回折環を二次元検出器12で検出し、算出機14によってcosα法を用いて残留応力を算出してもよい。また、上記測定工程では、上記移動工程及び上記回転工程後の配置でフィレット部4に対してX線を照射し、X線回折強度曲線の半価幅を算出してもよい。
また、当該測定方法では、上記移動工程と上記回転工程との少なくも一方と並行してX線をフィレット部4に連続して照射させ、上記測定工程で、上記X線の回折によって生じる複数の回折環が重ね合わさることにより得られる単一の回折環を求めてもよい。この場合、上記測定工程では、得られた単一の回折環に基づいて残留応力を算出してもよい。より詳しくは、上記移動工程及び上記回転工程の少なくとも一方と並行してフィレット部4の連続的につながる部分に対して回折X線測定装置10からX線を常時照射させ、各X線がフィレット部4で回折することにより形成される複数の回折環を重ね合わせることによって得られる単一の回折環を二次元検出器12で検出し、上記測定工程で、この単一の回折環に基づいて残留応力を算出してもよい。上記移動工程と上記回転工程との少なくも一方と並行してX線をフィレット部4に連続して照射させる構成としては、例えば回折X線測定装置10を軸部2の周方向に相対的に回転させながらフィレット部4にX線を連続的に照射する方法が挙げられる。当該測定方法は、上記測定工程で、上記単一の回折環に基づいて残留応力を算出することによって、フィレット部4の残留応力を容易かつ高精度に測定することができる。また、当該測定方法は、上記単一の回折環に基づいて(すなわち、上記移動工程と上記回転工程との少なくも一方と並行してX線をフィレット部4に連続して照射させることで得られるX線回折強度曲線に基づいて)半価幅を算出してもよい。なお、当該測定方法は、上記測定工程で、上記単一の回折環に基づいて残留応力等を算出する場合、後述の繰り返し工程及び平均値算出工程を備えていなくてもよい。
(繰り返し工程)
上記繰り返し工程では、上記測定工程後に、上記移動工程及び上記回転工程の少なくとも一方を行い、フィレット部4に対する筐体13の配置を変更する。上記繰り返し工程では、この変更後の配置で回折X線測定装置10からX線を照射してフィレット部4の残留応力を算出する。通常フィレット部4の残留応力には一定の分布があるため、上記繰り返し工程を行うことで、残留応力の分布を把握しやすい。また、上記繰り返し工程では、上記変更後の配置で回折X線測定装置10からX線を照射してX線回折強度曲線の半価幅を算出する。X線回折強度曲線の半価幅は、X線の照射位置によって変化し得るため、上記繰り返し工程を行うことで、上記半価幅をより正確に把握しやすい。
上記繰り返し工程では、上記測定工程後に、上記移動工程及び上記回転工程の少なくとも一方を行い、フィレット部4に対する筐体13の配置を変更する。上記繰り返し工程では、この変更後の配置で回折X線測定装置10からX線を照射してフィレット部4の残留応力を算出する。通常フィレット部4の残留応力には一定の分布があるため、上記繰り返し工程を行うことで、残留応力の分布を把握しやすい。また、上記繰り返し工程では、上記変更後の配置で回折X線測定装置10からX線を照射してX線回折強度曲線の半価幅を算出する。X線回折強度曲線の半価幅は、X線の照射位置によって変化し得るため、上記繰り返し工程を行うことで、上記半価幅をより正確に把握しやすい。
上記繰り返し工程による繰り返し回数は任意であり、1回であってもよい。但し、図5に示されるように、残留応力の測定誤差を十分に低減する観点からは、上記繰り返し工程は、X線の照射面積の合計値が25mm2以上となるまで繰り返し行うことが好ましい。上記繰り返し工程では、1つの測定部位Sに対してX線の入射角度Ψを変化させつつ複数の入射角度Ψで残留応力を算出してもよい。例えば上記繰り返し工程では、X線の入射角度Ψを10°毎変化させながら複数の入射角度Ψで残留応力を算出してもよい。
(平均値算出工程)
上記平均値算出工程では、上記繰り返し工程を含めて複数回実施した上記測定工程による算出値の平均値を求める。当該測定方法では、この平均値(残留応力の平均値)をフィレット部4の残留応力として算出する。また、当該測定方法では、この平均値(半価幅の平均値)をX線回折強度曲線の半価幅として算出する。当該測定方法は、上記平均値算出工程を備えることで、測定誤差の低減された残留応力及び半価幅を容易に測定することができる。
上記平均値算出工程では、上記繰り返し工程を含めて複数回実施した上記測定工程による算出値の平均値を求める。当該測定方法では、この平均値(残留応力の平均値)をフィレット部4の残留応力として算出する。また、当該測定方法では、この平均値(半価幅の平均値)をX線回折強度曲線の半価幅として算出する。当該測定方法は、上記平均値算出工程を備えることで、測定誤差の低減された残留応力及び半価幅を容易に測定することができる。
<利点>
当該測定システム1は、フィレット部4に対して回折X線測定装置10を位置決めする位置決め装置20を備えており、位置決め装置20が、回折X線測定装置10をフィレット部4に対して三次元で相対移動させる移動機構21と、フィレット部4に対するX線の入射角度Ψが変化する方向に回折X線測定装置10を回転させる回転機構22とを有しているので、フィレット部4にX線を照射して得られる回折X線の強度分布を所望の配置で容易に測定することができる。
当該測定システム1は、フィレット部4に対して回折X線測定装置10を位置決めする位置決め装置20を備えており、位置決め装置20が、回折X線測定装置10をフィレット部4に対して三次元で相対移動させる移動機構21と、フィレット部4に対するX線の入射角度Ψが変化する方向に回折X線測定装置10を回転させる回転機構22とを有しているので、フィレット部4にX線を照射して得られる回折X線の強度分布を所望の配置で容易に測定することができる。
当該測定システム1は、上記回折X線の強度分布を所望の配置で容易に測定できるので、フィレット部4の残留応力を算出するのに適している。すなわち、通常フィレット部4は、X線の入射角度Ψが変化する方向や軸部2の周方向等に残留応力の分布を有する。当該測定システム1は、回折X線測定装置10の位置決めを高精度かつ短時間で行うことが可能であるので、フィレット部4の複数の位置における残留応力を容易に測定することができる。その結果、フィレット部4の残留応力の分布を容易に把握することができる。
また、当該測定システム1は、上記回折X線の強度分布を所望の配置で容易に測定できるので、上記X線回折強度曲線の半価幅を算出するのに適している。
当該測定方法は、回折X線測定装置10をフィレット部4に対して三次元で相対移動させる工程と、フィレット部4に対するX線の入射角度Ψが変化する方向に回折X線測定装置10を回転させる工程とを備えているので、フィレット部4にX線を照射して得られる回折X線の強度分布を所望の配置で容易に測定することができる。
当該測定方法は、上記回折X線の強度分布を所望の配置で容易に測定できるので、フィレット部4の残留応力を算出するのに適している。また、当該測定方法は、上記回折X線の強度分布を所望の配置で容易に測定できるので、上記X線回折強度曲線の半価幅を算出するのに適している。
[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
上記位置決め装置の構成は上記実施形態に記載の構成に限定されるものではない。例えば上記位置決め装置は、移動機構がフランジ部に接続されるものであってもよい。図6を参照して、移動機構がフランジ部に接続される構成の一例について説明する。図6の位置決め装置40は、移動機構41がフランジ部3の上面に接続されている。移動機構41は、フランジ部3の上面に配置される支持台41aと、支持台41aから上方に突出し、周方向に回転可能な第1支持棒41bと、第1支持棒41bに接続され、第1支持棒41bと直交する方向に延びる第2支持棒41cと、第2支持棒41cに接続され、第2支持棒41cの軸法方向に移動可能な移動体41dと、移動体41dに接続され、第1支持棒41bと平行に配置されて上下方向に移動可能な第3支持棒41eとを有する。回折X線測定装置10は、回転機構42を介して第3支持棒41eの下部に接続されている。当該測定システムは、図6の構成によっても所望の配置でフィレット部4の残留応力等を測定することができる。
上記実施形態では、上記スライド機構が上記垂直軸を軸部の軸方向に移動させる構成について説明した。但し、当該測定システムは、上記スライド機構が上記第1移動体を軸部の軸方向に移動させるように構成されていてもよい。
当該測定システムは、上述の制御部を備えない構成とすることも可能である。例えば当該測定システムは、上記移動機構及び上記回転機構をユーザが操作することで回折X線測定装置を所望の位置に配置するように構成されていてもよい。また、当該測定システムは、上記制御部を備える場合でも、この制御部による具体的な制御手順は上記実施形態に記載された構成に限定されるものではない。例えば上記制御部は、特定のフィレット角度に対して、X線の入射角度Ψが±35°に近づくように回折X線測定装置を配置するように上記移動機構及び上記回転機構を制御してもよい。
当該測定システム及び当該測定方法は、上記フィレット部の残留応力及びX線回折強度曲線の半価幅のいずれか一方のみを算出可能に構成されていてもよい。また、当該測定システム及び当該測定方法は、上記フィレット部の残留応力及びX線回折強度曲線の半価幅以外の値を算出するように構成されていてもよい。
上述のように、当該測定方法は、測定誤差を低減する観点から、複数の配置でフィレット部の残留応力等を算出することが好ましい。但し、当該測定方法は、X線の入射角度Ψの絶対値を十分に大きくできる場合等であれば、所望の1点のみの値によってフィレット部の残留応力等を求めてもよい。この場合、当該測定方法は、上述の繰り返し工程及び平均値算出工程を備えていなくてもよい。
以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。
図1の測定システム1によって、軸部2及びこの軸部2から径方向に突出するフランジ部3を有する金属構造物Mのフィレット部4の残留応力をcosα法を用いて測定した。回折X線測定装置10としては、二次元検出器12の検出領域の上下幅Dが70mmであり、筐体13の上下幅が102mmであるX線応力測定装置を用いた。フィレット部4のフィレット半径Rは29mm、ブラッグ角の余角ηは23.6°、フィレット中心Pを通りフランジ部3に平行な仮想直線とフランジ部3との間隔aは8mmであった。
図7に、当該測定システム1を用いた残留応力の測定結果を示す。図7では、複数のフィレット角度θに対して、回折X線測定装置10と軸部2及びフランジ部3とが接触しないX線の照射距離L及びX線の入射角度Ψを制御部30によって導出し、この導出された配置でフィレット部4の残留応力を測定している。図7に示すように、当該測定システム1を用いることで、複数のフィレット角度θに対して自動で残留応力を測定することができる。
図8に、当該測定システム1を用いた場合(実施例)と、当該測定システム1を用いずに筐体を手動で配置した場合(比較例)とにおける測定点数と測定時間との関係を示す。図8に示すように、測定点数が大きくなる程、当該測定システム1を用いた方が測定時間を大幅に短縮できている。
また、図9に、図7の測定において導出された配置で得られたX線回折強度曲線により算出した半価幅を示す。図9において、エラーバーは、回折環を構成するX線回折強度曲線における半価幅の最大値と最小値との幅を示しており、各点は半価幅の平均値を示している。図9に示すように、当該測定システム1によると、X線回折強度曲線の半価幅を算出することができることが分かる。
以上説明したように、本発明の一態様に係る測定システムは、フィレット部の残留応力等を測定するのに適している。
1 測定システム
2 軸部
3 フランジ部
4 フィレット部
10 回折X線測定装置
11 照射部
12 二次元検出器
13 筐体
13a 下面
13b 上面
14 算出機
20、40 位置決め装置
21、41 移動機構
22、42 回転機構
22a 接続体
23 第1移動体
23a フレーム
23b 回転軸
23c ローラ
23d モータ
24 垂直軸
25 第2移動体
26 スライド機構
26a 支持部
30 制御部
41a 支持台
41b 第1支持棒
41c 第2支持棒
41d 移動体
41e 第3支持棒
a フィレット中心を通りフランジ部に平行な仮想直線とフランジ部との間隔
D 二次元検出器の検出領域の上下幅
h X線の照射方向における筐体のフィレット部側の端部と回転中心との距離
L X線の照射距離
M 金属構造物
N 測定部位及びフィレット中心を通る仮想直線
P フィレット中心
Q 回折X線測定装置の回転中心
R フィレット半径
S 測定部位
W 筐体のフィレット部に隣接する側の端部の上下幅
θ フィレット角度
Ψ X線の入射角度
η ブラッグ角の余角
2 軸部
3 フランジ部
4 フィレット部
10 回折X線測定装置
11 照射部
12 二次元検出器
13 筐体
13a 下面
13b 上面
14 算出機
20、40 位置決め装置
21、41 移動機構
22、42 回転機構
22a 接続体
23 第1移動体
23a フレーム
23b 回転軸
23c ローラ
23d モータ
24 垂直軸
25 第2移動体
26 スライド機構
26a 支持部
30 制御部
41a 支持台
41b 第1支持棒
41c 第2支持棒
41d 移動体
41e 第3支持棒
a フィレット中心を通りフランジ部に平行な仮想直線とフランジ部との間隔
D 二次元検出器の検出領域の上下幅
h X線の照射方向における筐体のフィレット部側の端部と回転中心との距離
L X線の照射距離
M 金属構造物
N 測定部位及びフィレット中心を通る仮想直線
P フィレット中心
Q 回折X線測定装置の回転中心
R フィレット半径
S 測定部位
W 筐体のフィレット部に隣接する側の端部の上下幅
θ フィレット角度
Ψ X線の入射角度
η ブラッグ角の余角
Claims (14)
- 軸部とこの軸部から径方向に突出するフランジ部とを有し、上記軸部と上記フランジ部との接続部分にフィレット部を有する金属構造物の上記フィレット部にX線を照射して得られる回折X線の強度分布を測定可能な測定システムであって、
X線を上記フィレット部に照射する照射部を有する回折X線測定装置と、
上記フィレット部に対して上記回折X線測定装置を位置決めする位置決め装置と
を備え、
上記位置決め装置が、
上記回折X線測定装置を上記フィレット部に対して三次元で相対移動させる移動機構と、
上記フィレット部に対する上記X線の入射角度が変化する方向に上記回折X線測定装置を回転させる回転機構と
を有する測定システム。 - 上記回折X線測定装置と上記軸部及び上記フランジ部とが接触しないように上記移動機構による移動及び上記回転機構による回転を制御する制御部をさらに備える請求項1に記載の測定システム。
- 上記制御部が、上記回折X線測定装置によって回折X線のピークを検出可能な範囲内で上記移動機構による移動及び上記回転機構による回転を制御する請求項2に記載の測定システム。
- フィレット中心を通り、上記軸部の中心軸と平行な軸をX軸、上記フィレット中心を通り、上記フランジ部の突出方向と平行な軸をZ軸とし、上記フィレット中心の座標を(0、0)、上記回折X線測定装置の回転中心の座標を(X、Z)、上記回折X線測定装置によるX線の照射距離をL[mm]、上記X線の照射距離の最小値をLmin[mm]、上記X線の照射距離の最大値をLmax[mm]、フィレット角度をθ[°]、フィレット半径をR[mm]、X線の入射角度をΨ[°]、X線の照射方向における上記回折X線測定装置の筐体の上記フィレット部側の端部と上記回転中心との距離をh[mm]、上記筐体の上記フィレット部に隣接する側の端部の上下幅をW[mm]、ブラッグ角の余角をη[°]、上記回折X線測定装置の二次元検出器の検出領域の上下幅をD[mm]、上記フィレット中心を通り上記フランジ部に平行な仮想直線と上記フランジ部との間隔をa[mm]とした場合、下記式1及び下記式2を満たす請求項3に記載の測定システム。
- 上記移動機構が、
上記軸部の外周面に篏合し、上記軸部に対して周方向に相対回転する第1移動体と、
上記第1移動体に接続され、上記軸部の中心軸と直交する方向に延びる垂直軸と、
上記垂直軸に接続され、上記垂直軸の軸方向に移動可能な第2移動体と、
上記第1移動体又は上記垂直軸を上記軸部の軸方向に移動させるスライド機構と
を有し、
上記回折X線測定装置が上記第2移動体に接続されている請求項1から請求項5のいずれか1項に記載の測定システム。 - 上記回折X線測定装置が、cosα法によって上記フィレット部の残留応力を算出可能に設けられている請求項1から請求項5のいずれか1項に記載の測定システム。
- 上記回折X線測定装置が、X線回折強度曲線の半価幅を算出可能に設けられている請求項1から請求項5のいずれか1項に記載の測定システム。
- 軸部とこの軸部から径方向に突出するフランジ部とを有し、上記軸部と上記フランジ部との接続部分にフィレット部を有する金属構造物の上記フィレット部にX線を照射して得られる回折X線の強度分布を測定可能な測定方法であって、
X線を上記フィレット部に照射する照射部を有する回折X線測定装置を用い、
上記回折X線測定装置を上記フィレット部に対して三次元で相対移動させる工程と、
上記フィレット部に対する上記X線の入射角度が変化する方向に上記回折X線測定装置を回転させる工程と、
上記回折X線測定装置によって上記回折X線の強度分布を測定する工程と
を備える測定方法。 - 上記測定工程で、cosα法によって上記フィレット部の残留応力を算出する請求項9に記載の測定方法。
- 上記測定工程で、X線回折強度曲線の半価幅を算出する請求項9又は請求項10に記載の測定方法。
- 上記移動工程と上記回転工程との少なくとも一方と並行してX線を上記フィレット部に連続して照射させ、
上記測定工程で、上記X線の回折によって生じる複数の回折環が重ね合わさることにより得られる単一の回折環を求める請求項10に記載の測定方法。 - 上記測定工程後に、上記移動工程及び上記回転工程の少なくともいずれかと上記測定工程とを繰り返し行う工程を備える請求項10に記載の測定方法。
- 上記測定工程によって得られた複数の算出値の平均値を求める工程をさらに備える請求項13に記載の測定方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21866471.2A EP4202389A4 (en) | 2020-09-10 | 2021-08-18 | MEASURING SYSTEM AND MEASURING METHOD |
US18/043,988 US20230324316A1 (en) | 2020-09-10 | 2021-08-18 | Measurement system and measurement method |
CN202180054328.XA CN116057363A (zh) | 2020-09-10 | 2021-08-18 | 测定系统及测定方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-152007 | 2020-09-10 | ||
JP2020152007 | 2020-09-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022054511A1 true WO2022054511A1 (ja) | 2022-03-17 |
Family
ID=80631536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/030153 WO2022054511A1 (ja) | 2020-09-10 | 2021-08-18 | 測定システム及び測定方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230324316A1 (ja) |
EP (1) | EP4202389A4 (ja) |
JP (1) | JP7566698B2 (ja) |
CN (1) | CN116057363A (ja) |
WO (1) | WO2022054511A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7344841B2 (ja) * | 2020-06-02 | 2023-09-14 | 株式会社神戸製鋼所 | 残留応力測定方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001336992A (ja) * | 2000-05-26 | 2001-12-07 | Shin Sangyo Souzou Kenkyu Kiko | X線応力測定方法及びx線応力測定装置 |
JP2005227138A (ja) * | 2004-02-13 | 2005-08-25 | Toshiba Corp | 内部残留応力測定装置およびその測定方法 |
JP2008522142A (ja) * | 2004-11-29 | 2008-06-26 | ストレステック,オウ | ゴニオメータ |
JP2012225796A (ja) | 2011-04-20 | 2012-11-15 | Pulstec Industrial Co Ltd | X線回折装置 |
CN108731865A (zh) * | 2018-07-24 | 2018-11-02 | 集美大学 | 一种x射线应力测试仪 |
JP2019124481A (ja) * | 2018-01-12 | 2019-07-25 | 株式会社神戸製鋼所 | 残留応力測定方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5967394B2 (ja) * | 2013-02-21 | 2016-08-10 | パルステック工業株式会社 | 回折環形成装置及びx線回折測定装置 |
JP6560998B2 (ja) * | 2016-03-03 | 2019-08-14 | 株式会社神戸製鋼所 | 残留応力算出方法 |
JP6607127B2 (ja) * | 2016-04-04 | 2019-11-20 | 日本製鉄株式会社 | X線残留応力測定方法及びx線残留応力測定システム |
JP6867329B2 (ja) * | 2018-04-25 | 2021-04-28 | 株式会社神戸製鋼所 | 残留応力算出方法 |
-
2021
- 2021-08-02 JP JP2021127010A patent/JP7566698B2/ja active Active
- 2021-08-18 WO PCT/JP2021/030153 patent/WO2022054511A1/ja unknown
- 2021-08-18 CN CN202180054328.XA patent/CN116057363A/zh active Pending
- 2021-08-18 US US18/043,988 patent/US20230324316A1/en active Pending
- 2021-08-18 EP EP21866471.2A patent/EP4202389A4/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001336992A (ja) * | 2000-05-26 | 2001-12-07 | Shin Sangyo Souzou Kenkyu Kiko | X線応力測定方法及びx線応力測定装置 |
JP2005227138A (ja) * | 2004-02-13 | 2005-08-25 | Toshiba Corp | 内部残留応力測定装置およびその測定方法 |
JP2008522142A (ja) * | 2004-11-29 | 2008-06-26 | ストレステック,オウ | ゴニオメータ |
JP2012225796A (ja) | 2011-04-20 | 2012-11-15 | Pulstec Industrial Co Ltd | X線回折装置 |
JP2019124481A (ja) * | 2018-01-12 | 2019-07-25 | 株式会社神戸製鋼所 | 残留応力測定方法 |
CN108731865A (zh) * | 2018-07-24 | 2018-11-02 | 集美大学 | 一种x射线应力测试仪 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4202389A4 |
Also Published As
Publication number | Publication date |
---|---|
US20230324316A1 (en) | 2023-10-12 |
EP4202389A1 (en) | 2023-06-28 |
JP2022046416A (ja) | 2022-03-23 |
JP7566698B2 (ja) | 2024-10-15 |
CN116057363A (zh) | 2023-05-02 |
EP4202389A4 (en) | 2024-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10520455B2 (en) | Residual stress measuring apparatus and residual stress measuring method | |
JP2016006511A5 (ja) | ||
WO2022054511A1 (ja) | 測定システム及び測定方法 | |
JP5713357B2 (ja) | X線応力測定方法とその装置 | |
JP6230618B2 (ja) | 面内斜入射回折を用いた表面マッピングのための装置、および、方法 | |
US8339594B2 (en) | Method for measuring semiconductor wafer profile and device for measuring the same used therefor | |
JP6000696B2 (ja) | X線応力測定装置およびx線応力測定方法 | |
JP6346538B2 (ja) | 形状測定装置及び形状測定方法 | |
JP5005807B2 (ja) | ゴニオメータ | |
US9146204B2 (en) | X-ray analyzing apparatus and method | |
JP6842084B2 (ja) | 携帯型3軸応力測定装置 | |
JPH1164121A (ja) | X線応力測定方法 | |
WO2021246080A1 (ja) | 残留応力測定方法 | |
JP4784984B2 (ja) | X線回折装置とその制御方法 | |
CN113310611A (zh) | 一种短波长特征x射线内部应力无损测试装置及方法 | |
JP7120247B2 (ja) | 表面形状測定装置、表面形状測定方法、構造物製造システム、構造物製造方法、及び表面形状測定プログラム | |
CN110709689B (zh) | 应力测定方法 | |
JP7145539B1 (ja) | 断面形状測定方法及び両面研磨装置 | |
JP5492173B2 (ja) | 回折x線検出方法およびx線回折装置 | |
JP2016024060A (ja) | 計測条件の決定方法および計測装置 | |
JP4619282B2 (ja) | エックス線分析装置 | |
JPWO2019049234A1 (ja) | 平面検出器の歪み量算出方法 | |
RU2500561C1 (ru) | Устройство и способ измерения профиля железнодорожного колеса | |
JP6859869B2 (ja) | X線応力測定装置 | |
JP2006177731A (ja) | 回折法によるひずみ測定装置及びひずみ測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21866471 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021866471 Country of ref document: EP Effective date: 20230320 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |