WO2022050332A1 - ポリエーテルエーテルケトン、組成物及びシート - Google Patents

ポリエーテルエーテルケトン、組成物及びシート Download PDF

Info

Publication number
WO2022050332A1
WO2022050332A1 PCT/JP2021/032222 JP2021032222W WO2022050332A1 WO 2022050332 A1 WO2022050332 A1 WO 2022050332A1 JP 2021032222 W JP2021032222 W JP 2021032222W WO 2022050332 A1 WO2022050332 A1 WO 2022050332A1
Authority
WO
WIPO (PCT)
Prior art keywords
peek
mass
less
polyetheretherketone
inorganic compound
Prior art date
Application number
PCT/JP2021/032222
Other languages
English (en)
French (fr)
Inventor
浩一 菅
実 千賀
洸 熊谷
祐子 村上
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US18/024,250 priority Critical patent/US20240026077A1/en
Priority to CN202180060621.7A priority patent/CN116209708A/zh
Priority to JP2022546959A priority patent/JP7275400B2/ja
Publication of WO2022050332A1 publication Critical patent/WO2022050332A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols

Definitions

  • the present invention relates to polyetheretherketones, compositions and sheets. Specifically, the present invention relates to a polyetheretherketone, a composition and a sheet capable of exhibiting excellent mechanical strength by blending an inorganic compound.
  • polyetheretherketone As a representative resin of engineering plastics, polyetheretherketone (hereinafter, polyetheretherketone may be referred to as "PEEK”) is known.
  • Patent Document 1 states that when producing PEEK, it is essential to use a mixed solvent of 100 parts by mass of aromatic sulfone and 1 to 20 parts by mass of a solvent having a boiling point of 270 to 330 ° C. 4'-dichlorobenzophenone and hydroquinone are used as raw materials.
  • Patent Document 2 is in the presence of one or more alkali metal fluorides selected from the group consisting of sodium fluoride, potassium fluoride, rubidium fluoride and cesium fluoride when producing PEEK.
  • alkali metal fluorides selected from the group consisting of sodium fluoride, potassium fluoride, rubidium fluoride and cesium fluoride
  • 4,4'-dichlorobenzophenone and hydroquinone are used as raw materials.
  • Patent Documents 1 and 2 has room for further improvement from the viewpoint of improving the mechanical strength.
  • One of the objects of the present invention is to provide a polyetheretherketone, a composition and a sheet capable of exhibiting excellent mechanical strength by blending an inorganic compound.
  • polyetheretherketones and the like can be provided.
  • the content a of fluorine atoms is less than 2 mg / kg.
  • the chlorine atom content b is 2 mg / kg or more.
  • the content a of fluorine atoms is less than 2 mg / kg.
  • the chlorine atom content b is 2 mg / kg or more. 6. 5. The composition according to 5, wherein the polyetheretherketone has hydroxyl groups at one end or both ends of the main chain. 7. The composition according to 5 or 6, wherein the area ratio of the peak of the ⁇ -position of the hydroxyl group to the main chain peak in the 1 H-NMR measurement of the polyether ether ketone is 0.10 to 2.00%. 8. The composition according to any one of 5 to 7, wherein the reduced viscosity ⁇ sp / c of the polyetheretherketone is 0.40 to 1.00 dl / g. 9.
  • the inorganic compound is one or more selected from the group consisting of glass fibers and carbon fibers, and is one or more forms selected from the group consisting of chopped strands, rovings, woven fabrics, non-woven fabrics and unidirectional materials.
  • the composition according to any one of 9. 11.
  • the sheet according to 12, wherein the cloth is a unidirectional material.
  • the sheet of 12 or 13, wherein the cloth comprises one or more selected from the group consisting of glass fibers and carbon fibers.
  • x to y represents a numerical range of "x or more and y or less”.
  • the upper and lower limits described for the numerical range can be combined arbitrarily.
  • two or more embodiments that do not conflict with each other can be combined, and an embodiment in which two or more embodiments are combined is also possible. It is an embodiment of the aspect which concerns on this invention.
  • Polyetheretherketone PEEK contains a repeating unit represented by the following formula (1), satisfies one or both of the following conditions (A) and (B), and one end or both ends of the main chain. Has a hydroxyl group in.
  • A) The content a of fluorine atoms is less than 2 mg / kg.
  • B) The chlorine atom content b is 2 mg / kg or more.
  • PEEK according to this aspect can exhibit excellent mechanical strength by blending an inorganic compound.
  • the reason why such an effect is exhibited is not always clear, but the hydroxyl group of PEEK makes the interface between PEEK and the inorganic compound suitable for exhibiting excellent mechanical strength, etc. Is estimated.
  • the mechanical strength referred to here may be, for example, tensile strength or the like.
  • PEEK according to this embodiment has an area ratio of the peak at the ⁇ -position of the hydroxyl group to the main chain peak in 1 H-NMR measurement (hereinafter, may be simply referred to as “area ratio X”) of 0.10. It is ⁇ 2.00%.
  • the area ratio X is a value obtained by 1 H-NMR measurement described in Examples.
  • the area of the main chain peak is obtained by connecting the intensity of the chemical shift of 7.32 ppm and the intensity of 7.36 ppm with a straight line (baseline) and integrating the range surrounded by this baseline and the peak. It is calculated as the value.
  • the area of the peak at the ⁇ -position of the hydroxyl group is the value obtained by connecting the intensity of the chemical shift of 6.98 ppm and the intensity of 7.03 ppm with a straight line (baseline) and integrating the range surrounded by the baseline and the peak.
  • Baseline straight line
  • the PEEK according to this embodiment is composed of one kind of PEEK having the same area ratio X.
  • the PEEK according to this embodiment is a mixture of two or more types of PEEK having different area ratios X from each other.
  • the area ratio X is 0.10 to 2.00% in the 1 H-NMR measurement of the mixture.
  • the two or more types of PEEK may or may not contain PEEK having an area ratio X of 0%.
  • the area ratio X is 0.10% or more, 0.12% or more or 0.14% or more, and 2.0% or less, 1.8% or less or 1.6% or less. be.
  • the area ratio X can be, for example, 0.10 to 2.0%, 0.12 to 1.8%, or 0.14 to 1.6%.
  • the area ratio X is set by bringing the mol ratio of 4,4'-dichlorobenzophenone to hydroquinone close to 1.00. It can be 0.10 to 2.00%.
  • the reaction occurs in a state where the Cl terminal of 4,4'-dichlorobenzophenone and the OH terminal of hydroquinone do not completely react with each other. By adjusting the reaction time so as to stop, the area ratio X can be set to 0.10 to 2.00%.
  • the fluorine atom content a and the chlorine atom content b of PEEK are values measured by the combustion ion chromatograph method described in the examples.
  • the fluorine atom content a of PEEK is less than 2 mg / kg.
  • the lower limit is not particularly limited and may be, for example, 0 mg / kg.
  • the content a of the fluorine atom is the content a1 of the fluorine atom contained in the molecular structure of PEEK and the content a2 of the fluorine atom contained as a component (free component) not contained in the molecular structure of PEEK. Is the total of.
  • the fluorine of PEEK is made by not using a raw material containing a fluorine atom during PEEK synthesis (for example, 4,4'-difluorobenzophenone, etc.) or by reducing the amount of the raw material containing a fluorine atom during PEEK synthesis.
  • the atomic content a can be less than 2 mg / kg.
  • the free component in the fluorine atom content a2 is potassium fluoride and one or both of 4,4'-difluorobenzophenone.
  • the chlorine atom content b of PEEK is 2 mg / kg or more, 10 mg / kg or more, 100 mg / kg or more, 500 mg / kg or more, 700 mg / kg or more, 1000 mg / kg or more, 2000 mg / kg or more, It is 33000 mg / kg or more or 4000 mg / kg or more.
  • the upper limit is not particularly limited and may be, for example, 10,000 mg / kg or less, 9000 mg / kg or less, 8000 mg / kg or less, 7000 mg / kg or less, or 6000 mg / kg or less.
  • the chlorine atom content b of PEEK is, for example, 2 to 10000 mg / kg, preferably 700 to 9000 mg / kg, and more preferably 1000 to 8000 mg / kg.
  • the chlorine atom content b is the chlorine atom content b1 contained in the molecular structure of PEEK and the chlorine atom content b2 contained as a component (free component) not contained in the molecular structure of PEEK. Is the total of.
  • the chlorine atom content b of PEEK can be increased to 2 mg / kg or more.
  • the chlorine atom of PEEK can be increased.
  • the content b can be increased in the range of 2 mg / kg or more.
  • the chlorine atom content b1 is 0 mg / kg or more, 100 mg / kg or more, 200 mg / kg or more, or 400 mg / kg or more.
  • the upper limit is not particularly limited and may be, for example, 10,000 mg / kg or less, 9000 mg / kg or less, 8000 mg / kg or less, or 7000 mg / kg or less.
  • the chlorine atom content b2 is 0 mg / kg or more, 2 mg / kg or more, 5 mg / kg or more, or 10 mg / kg or more.
  • the upper limit is not particularly limited and may be, for example, 500 mg / kg or less, 400 mg / kg or less, or 300 mg / kg or less.
  • the free component in the chlorine atom content b2 is potassium chloride and one or both of 4,4'-dichlorobenzophenone.
  • the chlorine atom contained in PEEK as potassium chloride, which is a free component, is quantified by the following method.
  • ⁇ Measurement method of chlorine atom contained as potassium chloride which is a free component in PEEK> The solid sample (PEEK) is crushed with a blender, washed with acetone and water in this order, and dried with an explosion-proof dryer at 180 ° C.
  • the reaction mixture (product) immediately after the reaction for producing PEEK is used as a sample, the product is cooled and solidified after the reaction is completed to obtain the solid sample.
  • the blender used is not particularly limited, and for example, 7010HS manufactured by Waring Co., Ltd. can be used.
  • aqueous solution is analyzed by ion chromatography and chloride ions in the aqueous solution are quantified based on a calibration curve prepared from a reference of known concentration.
  • the conditions of the ion chromatograph are as follows.
  • the chlorine atom contained in PEEK as a free component 4,4'-dichlorobenzophenone is quantified by the following method. ⁇ Measurement method of chlorine atom contained as 4,4'-dichlorobenzophenone which is a free component in PEEK>
  • the solid sample (PEEK) is crushed with a blender, washed with acetone and water in this order, and dried with an explosion-proof dryer at 180 ° C.
  • the reaction mixture (product) immediately after the reaction for producing PEEK is used as a sample, the product is cooled and solidified after the reaction is completed to obtain the solid sample.
  • the blender used is not particularly limited, and for example, 7010HS manufactured by Waring Co., Ltd. can be used.
  • Amount of chlorine atom contained as free component 4,4'-dichlorobenzophenone in PEEK amount of 4,4'-dichlorobenzophenone in sample (mg / kg) ⁇ 251.11 (4, 4'-Molecular weight of dichlorobenzophenone) x 35.45 (Atomic weight of chlorine) x 2
  • the quantitative value of 4,4'-dichlorobenzophenone is obtained based on the calibration curve prepared from the reference of the known concentration. The measurement conditions are shown below.
  • the repeating unit represented by the formula (1) is a connection between the structural unit represented by the following formula (2) and the structural unit represented by the following formula (3).
  • the structural unit represented by the formula (2) is arranged at one or more ends of the molecular chain.
  • the terminal structure attached to the structural unit may be a chlorine atom (Cl).
  • the structural unit represented by the formula (3) is arranged at one or more ends of the molecular chain.
  • the terminal structure bonded to the structural unit may be, for example, a hydrogen atom (H) or the like (when the terminal structure is a hydrogen atom (H), a hydroxyl group is formed together with the oxygen atom (O) in the structural unit. ).
  • the terminal structure of PEEK may be, for example, a structure in which the chlorine atom (Cl) or the hydroxyl group described above is replaced with a hydrogen atom (H) or the like.
  • the terminal structure is not limited to these examples, and may be any structure.
  • PEEK does not include structural units other than the repeating unit represented by the formula (1). However, the end of the molecular chain can have a terminal structure as described above. In one embodiment, PEEK does not include structural units other than the structural units represented by the formulas (2) and (3). However, the end of the molecular chain can have a terminal structure as described above.
  • PEEK includes structural units other than the structural units represented by the formulas (2) and (3) as long as the effects of the present invention are not impaired.
  • the total ratio (mass%) of the structural units represented by the formulas (2) and (3) contained in all the monomers is 50% by mass or more, based on all the monomers subjected to the reaction. , 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 97% by mass or more, 99% by mass or more, 99.5% by mass or more or 100% by mass.
  • the mol ratio ([1A]: [2A]) of the structural unit represented by the formula (2) to the structural unit represented by the formula (3) is 47.5: 52. .5 to 52.5: 47.5, 48.0: 52.0 to 52.0: 48.0, 48.5: 51.5 to 51.5: 48.5, 49.0: 51.0 It is ⁇ 51.0: 49.0 or 49.5: 50.5 ⁇ 50.5: 49.5.
  • the mol number of the structural unit represented by the formula (2) may be larger, smaller, or the same as the mol number of the structural unit represented by the formula (3). If the total ratio of the structural units represented by the formulas (2) and (3) contained in all the monomers constituting PEEK is 100% by mass, the above mol ratio is usually 1: 1.
  • PEEK's meltflow index (abbreviated as "MI”: synonymous with the meltflow rate (abbreviated as "MFR”) described in ASTM D 1238-13) is 1500 g / 10 min or less, 1000 g / 10 min or less, 500 g / 10 min or less, 300 g / 10 min or less, 200 g / 10 min or less, 100 g / 10 min or less, 80 g / 10 min or less or 60 g / 10 min or less, and 0.0001 g / 10 min or more, 0.0005 g / 10 min or more or 0. It is 001 g / 10 min or more.
  • the meltflow index of PEEK is, for example, 0.0001 to 1500 g / 10 min, preferably 0.0005 to 500 g / 10 min, and more preferably 0.001 to 100 g / 10 min.
  • the meltflow index of PEEK is preferably 100 g / 10 min or less.
  • PEEK having a melt flow index of 100 g / 10 min or less is sufficiently high molecular weight, and for example, pelletizing by an extruder can be preferably applied.
  • the PEEK meltflow index is a value measured by the method described in the examples.
  • the PEEK meltflow index can be adjusted by the temperature conditions of the reaction mixture (maximum temperature, temperature retention time, temperature rise rate, etc.) and the ratio of raw materials (4,4'-dichlorobenzophenone and hydroquinone, etc.) in the reaction mixture.
  • the meltflow index of PEEK can also be measured by the following measuring method, and even when measuring by this measuring method, the preferable range and the like are as described above.
  • PEEK's melt flow index is measured under the following measurement conditions using a melt indexer (L-220) manufactured by Tateyama Kagaku High Technologies Co., Ltd. in accordance with JIS K 7210-1: 2014 (ISO 1133-1: 2011). do.
  • the reduction viscosity ⁇ sp / c of PEEK is 0.36 dl / g or more, 0.36 dl / g or more, 0.37 dl / g or more, 0.38 dl / g or more, 0.39 dl / g or more, It is 0.40 dl / g or more, 0.46 dl / g or more, or 0.48 dl / g or more, and 1.50 dl / g or less, 1.30 dl / g or less, or 1.20 dl / g or less.
  • the preferable range of the reduction viscosity ⁇ sp / c of PEEK is, for example, 0.36 to 1.50 dl / g, more than 0.36 and 1.50 dl / g or less, 0.37 to 1.50 dl / g, 0. It is 40 to 1.50 dl / g, 0.46 to 1.30 dl / g or 0.48 to 1.20 dl / g.
  • the reduced viscosity ⁇ sp / c of PEEK is a value measured by the method described in Examples.
  • the PEEK concentration in the sulfuric acid solution (sample solution) for measurement is 0.1 g / dl.
  • the reduction viscosity ⁇ sp / c of PEEK can be adjusted by the temperature condition of the reaction mixture (maximum temperature, temperature holding time, temperature rise rate, etc.) and the ratio of the raw materials (4,4'-dichlorobenzophenone and hydroquinone, etc.) in the reaction mixture. .. The same applies to the following reduction viscosity ⁇ 'sp / c.
  • the reduced viscosity ⁇ sp / c of PEEK can also be measured by the following measuring method, and even when measuring by this measuring method, the preferable range and the like are as described above.
  • this PEEK is dissolved in concentrated sulfuric acid (purity 98% by mass), prepared in a measuring flask so that the concentration C [g / dl] of PEEK is 0.1 g / dl, and a sample solution is obtained.
  • a constant temperature water bath at 25 ° C.
  • PEEK has a reduced viscosity ⁇ 'sp / c (described in the examples) measured at 25 ° C. for a sulfuric acid solution (sample solution) in which this PEEK is dissolved in concentrated sulfuric acid at a concentration of 0.5 g / dl.
  • the reduced viscosity measured by the method (not ⁇ sp / c) is more than 0.36 dl / g, 0.37 dl / g or more, 0.38 dl / g or more, 0.39 dl / g or more, 0.40 dl / g or more.
  • the preferred range of the reduction viscosity ⁇ 'sp / c of PEEK is, for example, more than 0.36 and 1.50 dl / g or less, 0.37 to 1.50 dl / g, 0.40 to 1.50 dl / g, 0.46. It is ⁇ 1.30 dl / g or 0.48 ⁇ 1.20 dl / g. As a result, a molding material exhibiting more excellent strength can be obtained while ensuring appropriate melt fluidity during molding.
  • the reduced viscosity of PEEK tends to increase as the PEEK concentration in the sample solution for measurement increases.
  • the value of the reduced viscosity ⁇ 'sp / c (PEEK concentration 0.5 g / dl) tends to be larger than the value of the reduced viscosity ⁇ sp / c (PEEK concentration 0.1 g / dl). be.
  • the reduction viscosity ⁇ sp / c of PEEK is 0.36 dl / g
  • it is estimated that the reduction viscosity ⁇ 's sp / c is larger than 0.36 dl / g.
  • the intrinsic viscosity ⁇ inh of PEEK is 0.47 dl / g or more, 0.48 dl / g or more, 0.49 dl / g or more or 0.50 dl / g or more, and 2.00 dl / g or more.
  • it is 1.80 dl / g or less, 1.50 dl / g or less, 1.30 dl / g or less, or 1.20 dl / g or less.
  • the preferable range of the intrinsic viscosity ⁇ inh of PEEK is, for example, 0.47 to 2.00 dl / g, 0.47 to 1.50 dl / g, 0.48 to 1.30 dl / g or 0.50 to 1. It is 20 dl / g.
  • the intrinsic viscosity ⁇ inh of PEEK is a value measured by the following measuring method. Vacuum dry PEEK at 120 ° C. for 6 hours.
  • this PEEK is dissolved in concentrated sulfuric acid (purity of 95% by mass or more) to obtain a plurality of sample solutions in which the concentration C [g / dl] of PEEK is changed.
  • concentrated sulfuric acid purity of 95% by mass or more
  • Reduction viscosity ⁇ sp / c [dl / g] (tt 0 ) / (t 0 ⁇ C)
  • concentration C [g / dl] of each sample solution is plotted on the horizontal axis and the reduced viscosity ⁇ sp / c is plotted on the vertical axis to obtain a first-order correlation equation, and the value of the reduced viscosity ⁇ sp / c at zero concentration (section). Can be obtained as the intrinsic viscosity ⁇ inh .
  • the intrinsic viscosity ⁇ inh of PEEK can be adjusted by the temperature condition of the reaction mixture (maximum temperature, temperature holding time, heating rate, etc.) and the ratio of the raw materials (4,4'-dichlorobenzophenone and hydroquinone, etc.) in the reaction mixture.
  • pellets containing the PEEK can be produced. These pellets can be used as various molding materials that require heat resistance, solvent resistance, insulation, and the like. Using these pellets, a molded product can be manufactured by a molding method such as injection molding using a mold. Further, using these pellets, a molded product can be manufactured by a molding method such as extrusion molding, press molding, sheet molding, or film molding.
  • the use of PEEK according to this aspect is not particularly limited. PEEK is suitable, for example, for aerospace applications, sliding members such as gears and bearings, various resin compositions and the like.
  • the molded body containing PEEK according to this aspect is suitable as, for example, an aerospace molded body, a molded body for a sliding member, and a filament for a 3D printer. Further, the molded body containing PEEK is suitable as, for example, an injection molded body for aerospace and an injection molded body for a sliding member.
  • the PEEK according to one aspect of the present invention described above can be produced by reacting 4,4'-dichlorobenzophenone with hydroquinone.
  • 4,4'-Dichlorobenzophenone and hydroquinone are monomers for polymerizing PEEK.
  • PEEK can be obtained as a copolymer of these compounds (monomer unit) through the steps of reacting 4,4'-dichlorobenzophenone and hydroquinone.
  • 4,4'-Dichlorobenzophenone and hydroquinone can be easily synthesized and are also available as commercial products.
  • reaction mixture is a reaction system from the start of the reaction between 4,4'-dichlorobenzophenone and hydroquinone to the completion of the reaction, and preferably, in addition to these monomers, a solvent described later is used. It is in the form of a solution containing it.
  • the composition of the reaction mixture can change as the reaction progresses. Usually, as the reaction progresses, the concentration of reactants (4,4'-dichlorobenzophenone and hydroquinone) in the reaction mixture decreases and the concentration of product (PEEK) increases.
  • the “maximum temperature” of the reaction mixture is the maximum temperature (maximum temperature) reached by the reaction mixture in the process from the start of the reaction between 4,4'-dichlorobenzophenone and hydroquinone to the completion of the reaction.
  • the maximum temperature of the reaction mixture is 260 ° C. or higher, 270 ° C. or higher, 275 ° C. or higher, 280 ° C. or higher, 285 ° C. or higher, 290 ° C. or higher, 290 ° C. or higher, 295 ° C. or higher, 300 ° C. or higher.
  • the temperature may be 305 ° C. or higher, 310 ° C. or higher, 315 ° C. or higher, 320 ° C. or higher, 325 ° C. or higher, 330 ° C. or higher, or 335 ° C. or higher.
  • the upper limit is not particularly limited, and is, for example, 360 ° C. or lower.
  • the maximum temperature of the reaction mixture is, for example, 260 to 360 ° C., preferably more than 290 ° C. and 360 ° C. or lower, and more preferably 295 to 360 ° C.
  • the method for producing PEEK according to this embodiment includes heating the reaction mixture to 150 ° C. or higher and then maintaining the temperature.
  • the temperature at which the temperature is maintained is not particularly limited and may be, for example, 150 to 360 ° C.
  • the temperature holding time is not particularly limited and may be, for example, 0.1 to 12 hours.
  • the method for producing PEEK comprises raising the temperature of the reaction mixture to 150 ° C. or higher and then raising the temperature and holding the temperature once, or raising the temperature and holding the temperature. Includes repeating multiple times. The number of repetitions is not particularly limited and may be, for example, 2, 3, 4, 5, 6, 7, 8, 9 or 10 times. By repeating raising the temperature and maintaining the temperature a plurality of times, the reaction can proceed efficiently.
  • the method for producing PEEK according to this embodiment is such that the reaction mixture is heated at 180 to 220 ° C. for 0.5 to 2 hours, preferably 0.6 to 1.8 hours, and more preferably 0.7 to 1. It includes holding for 5 hours (hereinafter, also referred to as “temperature holding (i)”). As a result, the reaction can be promoted while suppressing the volatilization of the raw material, and PEEK having a higher molecular weight can be obtained.
  • the method for producing PEEK according to this embodiment is such that the reaction mixture is heated at 230 to 270 ° C. for 0.5 to 2 hours, preferably 0.6 to 1.8 hours, and more preferably 0.7 to 1.
  • the method for producing PEEK according to this embodiment is to hold the reaction mixture at 280 to 360 ° C. for 1 to 8 hours, preferably 1 to 6 hours, more preferably 1 to 4 hours (hereinafter, "" Also referred to as "temperature retention (iii)”). This makes it possible to obtain PEEK having a desired molecular weight.
  • the method for producing PEEK according to this embodiment can include two or three selected from the group consisting of the above temperature holdings (i) to (iii). It is preferable to carry out the two or three temperature maintenance in order from the one with the lowest temperature. Between two or three temperature holdings, heating the reaction mixture can be included.
  • the rate of temperature rise when raising the temperature of the reaction mixture is not particularly limited, for example, 0.1 to 15 ° C./min, 0.1 to 10 ° C./min, 0.1 to 8 ° C./min or 0.1 to 5 ° C. It can be ° C./min. As a result, the reaction can be promoted while suppressing the volatilization of the raw material, and PEEK having a higher molecular weight can be obtained.
  • the time from the time when the temperature of the reaction mixture reaches 150 ° C. to the time when the temperature reaches the maximum temperature is 2.0 to 10 hours.
  • the reaction mixture comprises a solvent.
  • the reaction mixture containing the solvent can be in the form of a solution.
  • the solution may contain 4,4'-dichlorobenzophenone and hydroquinone dissolved in a solvent.
  • the solvent is not particularly limited, and for example, a neutral polar solvent can be used. Examples of the neutral polar solvent include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dipropylacetamide, N, N-dimethyl.
  • Benic acid amide N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-isobutyl-2-pyrrolidone, Nn-propyl-2-pyrrolidone, Nn- Butyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N-methyl-3-methyl-2-pyrrolidone, N-ethyl-3-methyl-2-pyrrolidone, N-methyl-3,4,5- Trimethyl-2-pyrrolidone, N-methyl-2-piperidone, N-ethyl-2-piperidone, N-isopropyl-2-piperidone, N-methyl-6-methyl-2-piperidone, N-methyl-3-ethylpiperidone, Examples thereof include dimethyl sulfoxide, diethyl sulfoxide, 1-methyl-1-oxosulfolane, 1-ethyl-1-ox
  • the reaction mixture contains an aromatic sulfone, and the content of the solvent having a boiling point of 270 to 330 ° C. is 0 parts by mass or more and less than 1 part by mass with respect to 100 parts by mass of the aromatic sulfone. This facilitates control of the reaction temperature.
  • the reaction mixture can contain one or more solvents.
  • the reaction mixture preferably contains only one type of solvent (single solvent) as the solvent, which simplifies the process.
  • the reaction mixture comprises potassium carbonate. This promotes the reaction.
  • potassium carbonate satisfies at least one of the following conditions (A) and (B). This makes it possible to increase the molecular weight of the obtained PEEK.
  • A) The bulk density of potassium carbonate is 1.2 g / ml (l: liter) or less.
  • the bulk density of potassium carbonate is 1.2 g / ml or less, 1.1 g / ml or less or 1.0 g / ml or less, and 0.05 g / ml or more or 0.10 g / ml or more.
  • the bulk density of potassium carbonate is, for example, 0.05 g / ml to 1.2 g / ml, 0.05 g / ml to 1.1 g / ml, 0.05 g / ml to 1.0 g / ml, 0.10 g.
  • the bulk density of potassium carbonate is a value measured by the following method. Approximately 50 g of potassium carbonate (mass m (g)) weighed with an accuracy of 0.1% by weight is gently placed in a dried 100 ml graduated cylinder (minimum scale unit: 1 ml) without consolidation.
  • the value of D / S is 600 or less, 550 or less, or 500 or less, and also. , 0.1 or more, 0.2 or more, or 0.5 or more.
  • the D / S value may be, for example, 1 to 600, 1 to 550, 1 to 500, 2 to 600, 2 to 550, 2 to 500, 5 to 600, 5 to 550, or 5 to 500. ..
  • D / S ⁇ 600 the obtained PEEK can be made high molecular weight.
  • the average particle size D ( ⁇ m) of potassium carbonate is a value measured by the method described below.
  • Particle size distribution is measured by a dry method using CAMSIZER manufactured by Microtrac Bell Co., Ltd.
  • a sample (potassium carbonate) is dropped on the measuring unit with a vibration feeder, and the particles are photographed with a camera to measure the particle size.
  • the average particle diameter D is calculated by automatic calculation by a program provided in the measuring device using the numerical value obtained by processing the data from the minor diameter of the particle image.
  • the specific surface area S (m 2 / g) of potassium carbonate is measured by the method shown below.
  • Pretreatment As a pretreatment of the sample (potassium carbonate), a heated vacuum exhaust at 100 ° C.
  • the reaction mixture contains an alkali metal carbonate other than potassium carbonate, an alkali metal salt such as an alkali metal hydrogen carbonate.
  • alkali metal salts may be used in combination with potassium carbonate.
  • potassium carbonate and sodium carbonate may be used in combination.
  • alkali metal carbonate examples include lithium carbonate, rubidium carbonate, cesium carbonate and the like.
  • alkali metal bicarbonate that can be used in combination with potassium carbonate examples include lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, rubidium hydrogen carbonate, and cesium hydrogen carbonate. These alkali metal salts may be used alone or in combination of two or more.
  • the total concentration of alkali metal salts (including potassium carbonate and other alkali metal salts mentioned above) in the reaction mixture is not particularly limited.
  • the total amount of the alkali metal salt to be blended in the reaction mixture is 100 mol or more, 180 mol or less, 160 mol or less, 140 mol or less, or 100 mol or more with respect to 100 mol of hydroquinone to be blended in the reaction mixture. It is 120 mol or less.
  • the total amount of the alkali metal salts is 100 mol or more, the reaction time can be shortened.
  • the total amount of the alkali metal salts is 180 mol or less, the formation of gel components can be suppressed.
  • the total amount of the alkali metal salt blended in the reaction mixture is, for example, 100 to 180 mol parts, preferably 100 to 140 mol parts, and more preferably 100 to 120 mol parts with respect to 100 mol parts of hydroquinone to be blended in the reaction mixture.
  • potassium carbonate is blended as an alkali metal salt in the above-mentioned blending amount.
  • the reaction mixture does not contain any of sodium fluoride, potassium fluoride, rubidium fluoride and cesium fluoride.
  • high molecular weight PEEK can be obtained without containing these compounds. Further, by not containing these compounds, it is possible to prevent these compounds from remaining in the obtained PEEK, and the purification cost can be reduced. As a result, PEEK capable of exhibiting excellent mechanical strength by blending an inorganic compound can be produced at low cost.
  • the mol ratio ([DCBP]: [HQ]) of 4,4'-dichlorobenzophenone (DCBP) and hydroquinone (HQ) subjected to the reaction is not particularly limited.
  • the mol ratio ([DCBP]: [HQ]) can be appropriately adjusted for the purpose of controlling the molecular weight of the obtained PEEK.
  • the mol ratio ([DCBP]: [HQ]) is 47.5: 52.5 to 52.5: 47.5, 48.0: 52.0 to 52.0: 48.0. 48.5: 51.5 to 51.5: 48.5, 49.0: 51.0 to 51.0: 49.0 or 49.5: 50.5 to 50.5: 49.5.
  • the mol number of 4,4'-dichlorobenzophenone (DCBP) may be larger, smaller or the same as the mol number of hydroquinone (HQ).
  • the total concentration of 4,4'-dichlorobenzophenone and hydroquinone (based on the amount of compounding) in the reaction mixture is not particularly limited, and is, for example, 1.0 mol / l or more, 1.2 mol / l or more, 1. It is 3 mol / l or more, 1.4 mol / l or more or 1.5 mol / l or more, and 6.0 mol / l or less, 5.0 mol / l or less or 4.0 mol / l or less.
  • the total concentration of 4,4'-dichlorobenzophenone and hydroquinone in the reaction mixture (based on the blending amount) is, for example, 1.0 to 6.0 mol / l, preferably 1.3 to 5.0 mol / l, more preferably. Is 1.5 to 4.0 mol / l.
  • no monomer other than 4,4'-dichlorobenzophenone and hydroquinone is used as the monomer to be subjected to the above-mentioned reaction.
  • a monomer other than 4,4'-dichlorobenzophenone and hydroquinone is used in combination with the above-mentioned reaction as long as the effect of the present invention is not impaired.
  • the total ratio (% by mass) of 4,4'-dichlorobenzophenone and hydroquinone is 50% by mass or more, 60% by mass or more, 70% by mass or more, based on all the monomers subjected to the reaction. It is 80% by mass or more, 90% by mass or more, 95% by mass or more, 97% by mass or more, 99% by mass or more, 99.5% by mass or more, or 100% by mass.
  • substantially 100% by mass 4,4'-Dichlorobenzophenone, hydroquinone, alkali metal salts and solvents, One or more alkali metal salts selected from the group consisting of 4,4'-dichlorobenzophenone, hydroquinone, potassium carbonate and sodium carbonate and diphenyl sulfone, or 4,4'-dichlorobenzophenone, hydroquinone, potassium carbonate and It is a diphenyl sulfone.
  • substantially 100% by mass unavoidable impurities may be contained.
  • the reaction between 4,4'-dichlorobenzophenone and hydroquinone can be carried out in an inert gas atmosphere.
  • the inert gas is not particularly limited, and examples thereof include nitrogen and argon gas.
  • composition according to one aspect of the present invention contains PEEK which contains a repeating unit represented by the following formula (1) and satisfies one or both of the following conditions (A) and (B), and an inorganic compound.
  • PEEK which contains a repeating unit represented by the following formula (1) and satisfies one or both of the following conditions (A) and (B), and an inorganic compound.
  • the content a of fluorine atoms is less than 2 mg / kg.
  • the chlorine atom content b is 2 mg / kg or more.
  • composition according to this embodiment exhibits excellent mechanical strength.
  • the description of PEEK according to one aspect of the present invention is incorporated, and detailed description thereof is omitted here.
  • the PEEK contained in the composition according to this embodiment is not particularly limited as long as it satisfies one or both of the conditions (A) and (B).
  • the PEEK contained in the composition according to the present embodiment is the PEEK according to the above-mentioned aspect of the present invention. This causes the composition to exhibit better mechanical strength.
  • the inorganic compound is one or more selected from the group consisting of glass fiber, carbon fiber and boron nitride. This further improves the strength of the composition.
  • the inorganic compound is at least one selected from the group consisting of glass fibers and carbon fibers, chopped strands, rovings, woven fabrics, non-woven fabrics and unidirectional materials (also referred to as "UD materials"). It is one or more forms selected from the group consisting of. This further improves the strength of the composition.
  • the inorganic compound is glass fiber.
  • the composition can be a fiber composite material containing PEEK as a matrix and a fibrous inorganic compound such as glass fiber or carbon fiber.
  • the fiber composite material can be a so-called fiber reinforced thermoplastic (FRTP).
  • the fibrous inorganic compound may be treated with a sizing agent.
  • the sizing agent can bind the fibrous inorganic compound into a bundle.
  • the fibrous inorganic compound treated with the sizing agent has the sizing agent attached to the surface thereof.
  • the sizing agent is not particularly limited, and examples thereof include an epoxy-based sizing agent, a urethane-based sizing agent, and a polyamide-based sizing agent.
  • PEEK according to one aspect of the present invention can also be used.
  • the sizing agent one of these may be used alone, or two or more thereof may be used in combination.
  • As the fibrous inorganic compound one that has not been treated with a sizing agent may be used.
  • the inorganic compound is an inorganic compound having a strengthening effect on PEEK.
  • the tensile strength when 43 parts by mass of the inorganic compound is uniformly contained in 100 parts by mass of PEEK is larger than the tensile strength of PEEK containing no inorganic compound. It is an inorganic compound. Tensile strength is measured by the method described in the examples.
  • the content of the inorganic compound in the composition is not particularly limited.
  • the content of the inorganic compound in the composition is, for example, 5 parts by mass or more, 10 parts by mass or more or 20 parts by mass or more, and 60 parts by mass or less, 55 parts by mass with respect to 100 parts by mass of PEEK. It is less than a part or 50 parts by mass or less.
  • the upper and lower limits can be combined arbitrarily.
  • the composition may contain other components other than PEEK and inorganic compounds.
  • Other components are not particularly limited, and examples thereof include other resins that are not PEEK.
  • examples of other resins include fluororesins such as polytetrafluoroethylene.
  • one type may be used alone, or two or more types may be used in combination.
  • the method for preparing the composition is not particularly limited, and examples thereof include mixing with a known mixer and melt kneading with an extruder or the like.
  • Inorganic compounds may be side-fed to PEEK using a twin-screw kneader.
  • Pellets of the composition may be produced.
  • the pellet can be used as a raw material for producing a molded product.
  • the method for producing pellets comprises cutting a fibrous inorganic compound into short pieces to form chopped strands, and then adding PEEK to the short fibers.
  • Pellets also referred to as "staples" can be produced by mixing short fibers and PEEK and granulating them.
  • the method for producing pellets is to immerse a roving of a fibrous inorganic compound in melted PEEK, pultrudate it, and then cut it to a desired pellet length to make pellets (also referred to as "long fiber pellets"). ) Is manufactured.
  • the long fiber pellets are produced as described above, the breakage of the fibrous inorganic compound can be suppressed.
  • a molded product can be manufactured by molding the composition (which may be in the form of the pellets described above).
  • known methods such as injection molding, extrusion molding, blow molding and the like can be used.
  • the composition can be press-molded, and a known method such as a cold press method or a hot press method can be used.
  • the composition can be used as a resin composition for a 3D printer and can be molded by a 3D printer.
  • the tensile strength of the composition is 76 MPa or more, 78 MPa or more, 80 MPa or more, 82 MPa or more, 84 MPa or more, 86 MPa or more, 88 MPa or more, 89 MPa or more, 90 MPa or more, 91 MPa or more or 92 MPa or more.
  • the upper limit is not particularly limited, and is, for example, 300 MPa or less, 200 MPa or less, 180 MPa or less, 150 MPa or less, 130 MPa or less, or 120 MPa or less.
  • the tensile strength of the composition is, for example, 76 to 300 MPa, preferably 80 to 200 MPa, and more preferably 90 to 180 MPa.
  • the tensile strength of the composition is a value measured by the method described in Examples.
  • Sheet A sheet according to one aspect of the present invention includes a cloth containing an inorganic compound and PEEK impregnated in the cloth. According to such a sheet, excellent mechanical strength is exhibited as in the case where PEEK contains an inorganic compound.
  • the cloth is not particularly limited as long as it contains fibers of an inorganic compound.
  • the cloth is composed of fibers arranged in a plane.
  • the cloth can be, for example, a woven fabric, a non-woven fabric, a unidirectional material, or the like.
  • the unidirectional material is composed of fibers aligned in one direction.
  • the fibers contained in the cloth are not particularly limited.
  • the cloth preferably contains one or more selected from the group consisting of glass fibers and carbon fibers.
  • the cloth comprises glass fiber.
  • the sheet can be a fiber composite material containing PEEK as a matrix and a fibrous inorganic compound such as glass fiber or carbon fiber.
  • a fiber composite material can be a so-called fiber reinforced thermoplastic (FRTP).
  • FRTP fiber reinforced thermoplastic
  • PEEK is impregnated between the fibers contained in the cloth.
  • the cloth may be one piece or a laminated body in which two or more pieces are laminated. If the cloth is a laminate, PEEK can also contribute to the binding between the cloths.
  • the sheet may contain other ingredients in addition to PEEK and cloth.
  • those described for the composition can be used.
  • mass or more or substantially 100% by mass PEEK and cloth, or PEEK, cloth and other components mentioned above.
  • it may contain unavoidable impurities.
  • the method of making a sheet comprises immersing PEEK in a cloth.
  • a solution obtained by dissolving PEEK in an appropriate solvent, a mixture obtained by mixing PEEK in an appropriate vehicle, or a melt of PEEK is applied to carbon fibers and immersed.
  • the method of making a sheet comprises making a cloth from fibers bound by a sizing agent containing PEEK.
  • the method for producing a sheet comprises laminating a film containing PEEK on a cloth and melt pressing it.
  • the method of making a sheet comprises adding PEEK powder directly to the cloth and then melting the powder.
  • the cloth impregnated with PEEK may be the above-mentioned laminated body.
  • the sheet is planar over the entire surface.
  • the sheet is given a three-dimensional shape.
  • the shape of the sheet is "three-dimensional" it means that the sheet includes a curved portion (including a bent portion).
  • the manufacturing method of the sheet to which the three-dimensional shape is given is not particularly limited.
  • a method of manufacturing a sheet with a three-dimensional shape comprises impregnating a cloth with the three-dimensional shape with PEEK.
  • a cloth is impregnated with PEEK to obtain a sheet (for example, a flat sheet), and then the sheet is given a three-dimensional shape.
  • PEEK may be impregnated into the cloth as the composition according to the above-mentioned aspect of the present invention.
  • the composition may or may not contain an inorganic compound.
  • Example 1 4,4'-Dichlorobenzophenone 40.613 g (0.162 mol), hydroquinone 17.809 g (0) in a 300 ml four-necked flask equipped with a stirrer, thermometer, nitrogen inlet tube and water recovery vessel connected to the condenser. .162 mol), 25.704 g (0.186 mol) of potassium carbonate and 140.01 g of diphenyl sulfone were added, and nitrogen gas was circulated.
  • the reaction mixture was reacted under the following temperature control.
  • ⁇ Temperature control> (1) After raising the temperature to 150 ° C, raise the temperature to 200 ° C over 30 minutes (2) Hold at 200 ° C for 1 hour (3) Raise the temperature from 200 ° C to 250 ° C (heating rate 1.7 ° C / min) ) (4) Hold at 250 ° C for 1 hour (5) Raise the temperature from 250 ° C to 340 ° C (maximum temperature of the reaction mixture) (heating rate 3.0 ° C / min) (6) Hold at 340 ° C (maximum temperature of reaction mixture) for 2 hours
  • the product was pulverized with a blender (7010HS manufactured by Waring Co., Ltd.), washed with acetone and water in this order, and then dried with a dryer at 180 ° C. to obtain powdered PEEK.
  • a blender 7010HS manufactured by Waring Co., Ltd.
  • the obtained PEEK was used for the following measurements (1) to (5).
  • MI Melt flow index
  • ⁇ Probe 5 mm ⁇ TCI cryoprobe ⁇ NMR sample tube diameter: 5 mm ⁇ -Sample solution preparation: Add 0.6 ml of methanesulfonic acid to about 20 mg of the sample and stir at room temperature for 1 hour, then add 0.4 ml of heavy dichloromethane and stir at room temperature for another 30 minutes to dissolve the sample. It was used as a sample solution.
  • Combustion furnace set temperature front stage 800 ° C, rear stage 1100 ° C
  • Argon flow rate 400 ml / min
  • Oxygen flow rate 200 ml / min
  • Absorbent Hydrogen peroxide solution ⁇ ion chromatograph>
  • Analytical device Integration manufactured by Thermo Fisher Scientific Co., Ltd. Column: Used by connecting (Dionex IonPac AG12A) as a guard column and (Dionex IonPac AS12A) as a separation column (both columns are manufactured by DIONEX).
  • This press-formed plate was cut into a dumbbell-shaped 5A shape specified in JIS K7161 to obtain a test piece.
  • the obtained test piece was subjected to a tensile test at a test speed of 5 mm / min and a distance between chucks of 50 mm, and the tensile strength was measured.
  • Example 2 PEEK was obtained in the same manner as in Example 1 except that acetone, water and N-methyl-2-pyrrolidone were washed in this order in the washing after the reaction was completed. The obtained PEEK was subjected to the same measurement as in Example 1. The results are shown in Table 1.
  • Example 3 In Example 1, the reaction mixture was formulated with 5,4'-dichlorobenzophenone 52.499 g (0.209 mol), hydroquinone 22.464 g (0.204 mol), potassium carbonate 32.4324 g (0.235 mol) and diphenyl sulfone. PEEK was obtained in the same manner as in Example 1 except that the amount was 120.02 g. The obtained PEEK was subjected to the same measurement as in Example 1. The results are shown in Table 1.
  • Example 4 PEEK was carried out in the same manner as in Example 1 except that the blending amount of 4,4'-dichlorobenzophenone was changed to 41.224 g (0.164 mol) and the maximum temperature of the reaction mixture was set to 280 ° C. Got The obtained PEEK was subjected to the same measurement as in Example 1. The results are shown in Table 1.
  • Example 5 PEEK was carried out in the same manner as in Example 1 except that the blending amount of 4,4'-dichlorobenzophenone was changed to 41.209 g (0.164 mol) and the maximum temperature of the reaction mixture was set to 300 ° C. Got The obtained PEEK was subjected to the same measurement as in Example 1. The results are shown in Table 1.
  • Example 1 The PEEK obtained in Example 5 was subjected to the same tensile strength measurement as in Example 1 by PEEK alone, omitting the strengthening with the inorganic compound. Specifically, PEEK obtained in Example 5 was press-molded to a thickness of 2 mm at 380 ° C. using a vacuum press manufactured by Imoto Seisakusho and annealed at 200 ° C. to obtain a press-molded plate. This press-formed plate was cut into a dumbbell-shaped 5A shape specified in JIS K7161 to obtain a test piece. The obtained test piece was subjected to a tensile test at a test speed of 5 mm / min and a distance between chucks of 50 mm, and the tensile strength was measured. The results are shown in Table 1.
  • Example 1 (Synthesis Example 1) In Example 1, a 2 liter reaction vessel (including a stirrer, a thermometer, a water recovery vessel connected to a nitrogen introduction pipe and a cooling pipe) was used in place of the 300 ml four-necked flask, and the reaction vessel was filled with 4, Except that 284.30 g (1.132 mol) of 4'-dichlorobenzophenone, 124.66 g (1.132 mol) of hydroquinone, 179.91 g (1.302 mol) of potassium carbonate and 980.01 g of diphenyl sulfone were added to prepare a reaction mixture. A powdery PEEK was obtained in the same manner as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyethers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

下記式(1)で表される繰り返し単位を含み、下記条件(A)及び(B)の一方又は両方を満たし、主鎖の一端又は両端に水酸基を有する、ポリエーテルエーテルケトン。(A)フッ素原子の含有量aが2mg/kg未満である。(B)塩素原子の含有量bが2mg/kg以上である。

Description

ポリエーテルエーテルケトン、組成物及びシート
 本発明は、ポリエーテルエーテルケトン、組成物及びシートに関する。
 具体的には、本発明は、無機化合物を配合することにより優れた機械的強度を発揮できるポリエーテルエーテルケトン、組成物及びシートに関する。
 エンジニアリングプラスチックの代表樹脂として、ポリエーテルエーテルケトン(以下、ポリエーテルエーテルケトンを「PEEK」と称する場合がある。)が知られている。
 一般的に、PEEKを製造する際には、反応性が高いとされている4,4’-ジフルオロベンゾフェノンと、ハイドロキノンとが原料として用いられている。
 一方、特許文献1は、PEEKを製造する際に、芳香族スルホン100質量部と、沸点が270~330℃の溶媒1~20質量部との混合溶媒を用いることを必須の条件として、4,4’-ジクロロベンゾフェノンと、ハイドロキノンとを原料として用いている。
 また、特許文献2は、PEEKを製造する際に、フッ化ナトリウム、フッ化カリウム、フッ化ルビジウム及びフッ化セシウムからなる群から選択される1種以上のアルカリ金属フッ化物の存在下であることを必須の条件として、4,4’-ジクロロベンゾフェノンと、ハイドロキノンとを原料として用いている。
特開平3-122120号公報 特開昭64-65129号公報
 しかしながら、特許文献1、2をはじめとする従来の技術に係るPEEKには、機械的強度を向上する観点でさらなる改善の余地が見出された。
 本発明の目的の1つは、無機化合物を配合することにより優れた機械的強度を発揮できるポリエーテルエーテルケトン、組成物及びシートを提供することである。
 本発明者らは鋭意検討の結果、特定のPEEKに無機化合物を配合することにより優れた機械的強度が発揮されることを見出し、本発明を完成した。
 本発明によれば、以下のポリエーテルエーテルケトン等を提供できる。
1.下記式(1)で表される繰り返し単位を含み、下記条件(A)及び(B)の一方又は両方を満たし、主鎖の一端又は両端に水酸基を有する、ポリエーテルエーテルケトン。
Figure JPOXMLDOC01-appb-C000003
 (A)フッ素原子の含有量aが2mg/kg未満である。
 (B)塩素原子の含有量bが2mg/kg以上である。
2.原料に4,4’-ジクロロベンゾフェノンを含む、1に記載のポリエーテルエーテルケトン。
3.H-NMR測定における主鎖ピークに対する水酸基のα位のピークの面積比が0.10~2.00%である、1又は2に記載のポリエーテルエーテルケトン。
4.還元粘度ηsp/cが0.40~1.00dl/gである、1~3のいずれかに記載のポリエーテルエーテルケトン。
5.下記式(1)で表される繰り返し単位を含み、下記条件(A)及び(B)の一方又は両方を満たすポリエーテルエーテルケトンと、
 無機化合物と、
 を含む、組成物。
Figure JPOXMLDOC01-appb-C000004
 (A)フッ素原子の含有量aが2mg/kg未満である。
 (B)塩素原子の含有量bが2mg/kg以上である。
6.前記ポリエーテルエーテルケトンが、主鎖の一端又は両端に水酸基を有する、5に記載の組成物。
7.前記ポリエーテルエーテルケトンのH-NMR測定における主鎖ピークに対する水酸基のα位のピークの面積比が0.10~2.00%である、5又は6に記載の組成物。
8.前記ポリエーテルエーテルケトンの還元粘度ηsp/cが0.40~1.00dl/gである、5~7のいずれかに記載の組成物。
9.前記無機化合物が、ガラス繊維、炭素繊維及び窒化ホウ素からなる群から選択される1以上である、5~8のいずれかに記載の組成物。
10.前記無機化合物が、ガラス繊維及び炭素繊維からなる群から選択される1種以上であり、チョップドストランド、ロービング、織物、不織布及び一方向材からなる群から選ばれる1種以上の形態である、5~9のいずれかに記載の組成物。
11.前記無機化合物がガラス繊維である、5~10のいずれかに記載の組成物。
12.無機化合物を含むクロスと、前記クロスに含浸された1~4のいずれかに記載のポリエーテルエーテルケトンとを含む、シート。
13.前記クロスが一方向材である、12に記載のシート。
14.前記クロスが、ガラス繊維及び炭素繊維からなる群から選択される1種以上を含む、12又は13に記載のシート。
 本発明によれば、無機化合物を配合することにより優れた機械的強度を発揮できるポリエーテルエーテルケトン、組成物及びシートを提供することができる。
 以下、本発明のポリエーテルエーテルケトン、組成物及びシートについて詳述する。
 尚、本明細書において、「x~y」は「x以上、y以下」の数値範囲を表すものとする。数値範囲に関して記載された上限値及び下限値は任意に組み合わせることができる。
 また、以下において記載される本発明に係る態様の個々の実施形態のうち、互いに相反しないもの同士を2つ以上組み合わせることが可能であり、2つ以上の実施形態を組み合わせた実施形態もまた、本発明に係る態様の実施形態である。
1.ポリエーテルエーテルケトン
 本発明の一態様に係るPEEKは、下記式(1)で表される繰り返し単位を含み、下記条件(A)及び(B)の一方又は両方を満たし、主鎖の一端又は両端に水酸基を有する。
Figure JPOXMLDOC01-appb-C000005
 (A)フッ素原子の含有量aが2mg/kg未満である。
 (B)塩素原子の含有量bが2mg/kg以上である。
 本態様に係るPEEKは、無機化合物を配合することにより優れた機械的強度を発揮できる。
 そのような効果が発揮される理由は必ずしも明らかではないが、PEEKが有する水酸基によって、PEEKと無機化合物との界面が、優れた機械的強度を発揮するのに適した状態になっていること等が推定される。
 ここでいう機械的強度は、例えば引張強度等であり得る。
 一実施形態において、本態様に係るPEEKは、H-NMR測定における主鎖ピークに対する水酸基のα位のピークの面積比(以下、単に「面積比X」という場合がある。)が0.10~2.00%である。
 尚、面積比Xは、実施例に記載のH-NMR測定により求めた値である。面積比Xを求める際に、主鎖ピークの面積は、化学シフト7.32ppmの強度と7.36ppmの強度とを直線(ベースライン)でつなぎ、このベースラインとピークに囲まれた範囲を積分した値として求める。また、水酸基のα位のピークの面積は、化学シフト6.98ppmの強度と7.03ppmの強度とを直線(ベースライン)でつなぎ、このベースラインとピークに囲まれた範囲を積分した値として求める。
 一実施形態において、本態様に係るPEEKは、面積比Xが等しい1種のPEEKからなる。
 一実施形態において、本態様に係るPEEKは、面積比Xが互いに異なる2種以上のPEEKの混合物である。この場合、混合物のH-NMR測定において、面積比Xが0.10~2.00%である。ここで、前記2種以上のPEEKは、面積比Xが0%であるPEEKを含んでもよいし、含まなくてもよい。
 一実施形態において、面積比Xは、0.10%以上、0.12%以上又は0.14%以上であり、また、2.0%以下、1.8%以下又は1.6%以下である。また、面積比Xは、例えば、0.10~2.0%、0.12~1.8%又は0.14~1.6%であり得る。これにより、本発明の効果が良好に発揮される。
 一実施形態において、4,4’-ジクロロベンゾフェノンとハイドロキノンとを用いてPEEKを合成する際に、ハイドロキノンに対する4,4’-ジクロロベンゾフェノンのmol比を1.00に近づけることによって、面積比Xを0.10~2.00%にすることができる。
 一実施形態において、4,4’-ジクロロベンゾフェノンとハイドロキノンとを用いてPEEKを合成する際に、4,4’-ジクロロベンゾフェノンのCl末端と、ハイドロキノンのOH末端とが反応しきらない状態で反応停止するように反応時間を調整することによって、面積比Xを0.10~2.00%にすることができる。
 PEEKのフッ素原子の含有量a及び塩素原子の含有量bは、実施例に記載の燃焼イオンクロマトグラフ法により測定される値である。
 一実施形態において、PEEKのフッ素原子の含有量aは、2mg/kg未満である。これにより、本発明の効果が良好に発揮される。下限は格別限定されず、例えば0mg/kgであってもよい。
 ここで、フッ素原子の含有量aは、PEEKの分子構造中に含まれるフッ素原子の含有量a1と、PEEKの分子構造中に含まれない成分(遊離成分)として含まれるフッ素原子の含有量a2との合計である。
 一実施形態において、PEEK合成時においてフッ素原子を含む原料(例えば4,4’-ジフルオロベンゾフェノン等)を用いないか又はPEEK合成時におけるフッ素原子を含む原料の使用量を減らすことによって、PEEKのフッ素原子の含有量aを2mg/kg未満にすることができる。
 一実施形態において、フッ素原子の含有量a2における前記遊離成分は、フッ化カリウム及び4,4’-ジフルオロベンゾフェノンの一方又は両方である。
 一実施形態において、PEEKの塩素原子の含有量bは、2mg/kg以上、10mg/kg以上、100mg/kg以上、500mg/kg以上、700mg/kg以上、1000mg/kg以上、2000mg/kg以上、33000mg/kg以上又は4000mg/kg以上である。これにより、本発明の効果が良好に発揮される。上限は格別限定されず、例えば10000mg/kg以下、9000mg/kg以下、8000mg/kg以下、7000mg/kg以下又は6000mg/kg以下であり得る。
 また、PEEKの塩素原子の含有量bは、例えば2~10000mg/kg、好ましくは700~9000mg/kg、より好ましくは1000~8000mg/kgである。
 ここで、塩素原子の含有量bは、PEEKの分子構造中に含まれる塩素原子の含有量b1と、PEEKの分子構造中に含まれない成分(遊離成分)として含まれる塩素原子の含有量b2との合計である。
 一実施形態において、PEEK合成時の原料に4,4’-ジクロロベンゾフェノンを含むことにより、PEEKの塩素原子の含有量bを2mg/kg以上にすることができる。また、PEEK合成時の原料として、4,4’-ジクロロベンゾフェノンとハイドロキノンとを用い、ハイドロキノンの使用量に対する4,4’-ジクロロベンゾフェノンの使用量の割合を大きくすることによって、PEEKの塩素原子の含有量bを2mg/kg以上の範囲で大きくすることができる。
 一実施形態において、塩素原子の含有量b1は、0mg/kg以上、100mg/kg以上、200mg/kg以上、又は400mg/kg以上である。上限は格別限定されず、例えば、10000mg/kg以下、9000mg/kg以下、8000mg/kg以下又は7000mg/kg以下であり得る。
 一実施形態において、塩素原子の含有量b2は、0mg/kg以上、2mg/kg以上、5mg/kg以上又は10mg/kg以上である。上限は格別限定されず、例えば500mg/kg以下、400mg/kg以下又は300mg/kg以下であり得る。
 一実施形態において、前記塩素原子の含有量b2における前記遊離成分は、塩化カリウム及び4,4’-ジクロロベンゾフェノンの一方又は両方である。
 PEEKに遊離成分である塩化カリウムとして含まれる塩素原子は、以下の方法により定量する。
<PEEKに遊離成分である塩化カリウムとして含まれる塩素原子の測定方法>
 固体試料(PEEK)をブレンダーで粉砕してアセトン、水の順で洗浄し、180℃の防爆乾燥機で乾燥する。尚、PEEKを生成する反応の直後の反応混合物(生成物)を試料として用いる場合は、反応終了後、生成物を冷却固化して上記固体試料とする。使用するブレンダーは格別限定されず、例えばワーリング社製7010HSを用いることができる。
 乾燥した試料約1gを秤量し、そこに超純水100ml(l:リットル)を加え、液温50℃において20分間撹拌し、放冷後、濾過することで、固形分と水溶液とに分離する。水溶液をイオンクロマトグラフィーで分析し、水溶液中の塩化物イオンを、既知濃度のリファレンスから作成した検量線に基づいて定量する。イオンクロマトグラフの条件は下記のとおりである。
<イオンクロマトグラフ>
分析装置:Metrohm 940 IC Vario
カラム:ガードカラムとして(Metrosep A Supp 5 Guard)及び分離カラムとして(Metrosep A Supp 4)を連結して使用(カラムは共にMetrohm社製)
溶離液:NaCO(1.8mmol/l)+NaHCO(1.7mmol/l)
流速:1.0ml/min
カラム温度:30℃
測定モード:サプレッサ方式
検出器:電気伝導度検出器
 PEEKに遊離成分である4,4’-ジクロロベンゾフェノンとして含まれる塩素原子は、以下の方法により定量する。
<PEEKに遊離成分である4,4’-ジクロロベンゾフェノンとして含まれる塩素原子の測定方法>
 固体試料(PEEK)をブレンダーで粉砕してアセトン、水の順で洗浄し、180℃の防爆乾燥機で乾燥する。尚、PEEKを生成する反応の直後の反応混合物(生成物)を試料として用いる場合は、反応終了後、生成物を冷却固化して上記固体試料とする。使用するブレンダーは格別限定されず、例えばワーリング社製7010HSを用いることができる。
 乾燥した試料約1gをナスフラスコに秤量し、そこにアセトン10mlと沸騰石を加えウォーターバスで5時間加熱還流する。室温に放冷後、濾過により固形分を除去する。得られたアセトン溶液をエバポレーターにて乾固させたのち、ホールピペットでアセトン10mlを加えて再溶解する。これをガスクロマトグラフィーで測定することで、試料中の4,4’-ジクロロベンゾフェノンの量(mg/kg)を算出する。PEEKに遊離成分である4,4’-ジクロロベンゾフェノンとして含まれる塩素原子の量(mg/kg)は、以下の計算式より換算する。
 PEEKに遊離成分である4,4’-ジクロロベンゾフェノンとして含まれる塩素原子の量(mg/kg)=試料中の4,4’-ジクロロベンゾフェノンの量(mg/kg)÷251.11(4,4’-ジクロロベンゾフェノンの分子量)×35.45(塩素の原子量)×2
 4,4’-ジクロロベンゾフェノンの定量値は、既知濃度のリファレンスから作成した検量線を元に求める。以下に測定条件を示す。
<ガスクロマトグラフ>
分析装置:Agilent Technologies 7890B
GCカラム:Agilent Technologies DB-5MS(長さ30m、内径0.25mm、膜厚0.25μm)
注入口温度:250℃
オーブン温度:100℃(1min)→30℃/min→250℃(10min)
流速:1ml/min
注入量:1μl
スプリット比:40:1
検出器:FID
検出器温度:250℃
 式(1)で表される繰り返し単位は、下記式(2)で表される構造単位と下記式(3)で表される構造単位との連結体である。
Figure JPOXMLDOC01-appb-C000006
 一実施形態に係るPEEKにおいて、式(2)で表される構造単位が分子鎖の1以上の末端に配置される。この場合、該構造単位に結合する末端構造は塩素原子(Cl)であり得る。
 一実施形態に係るPEEKにおいて、式(3)で表される構造単位が分子鎖の1以上の末端に配置される。この場合、該構造単位に結合する末端構造は例えば水素原子(H)等であり得る(末端構造が水素原子(H)であるとき、該構造単位中の酸素原子(O)と共に水酸基が形成される。)。
 PEEKの末端構造は、例えば、上述した塩素原子(Cl)や水酸基が水素原子(H)等に置き換わった構造等であってもよい。尚、末端構造はこれらの例に限定されず、任意の構造であり得る。
 一実施形態において、PEEKは、式(1)で表される繰り返し単位以外の他の構造単位を含まない。但し、分子鎖の末端には上述したように末端構造を有することができる。
 一実施形態において、PEEKは、式(2)及び式(3)で表される構造単位以外の他の構造単位を含まない。但し、分子鎖の末端には上述したように末端構造を有することができる。
 一実施形態において、PEEKは、本発明の効果を損なわない範囲で、式(2)及び式(3)で表される構造単位以外の他の構造単位を含む。
 一実施形態において、反応に供される全モノマーを基準として、全モノマーに含まれる式(2)及び式(3)で表される構造単位の合計の割合(質量%)が、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上、97質量%以上、99質量%以上、99.5質量%以上又は100質量%である。
 一実施形態において、PEEKにおいて、式(2)で表される構造単位と、式(3)で表される構造単位とのmol比([1A]:[2A])は、47.5:52.5~52.5:47.5、48.0:52.0~52.0:48.0、48.5:51.5~51.5:48.5、49.0:51.0~51.0:49.0又は49.5:50.5~50.5:49.5である。
 式(2)で表される構造単位のmol数は、式(3)で表される構造単位のmol数より大きくても、小さくても、同じでもよい。
 PEEKを構成する全モノマーに含まれる式(2)及び式(3)で表される構造単位の合計の割合が100質量%であれば、通常、上記のmol比は1:1である。
 一実施形態において、PEEKのメルトフローインデックス(略称「MI」:ASTM D 1238-13に記載のメルトフローレート(略称「MFR」)と同義である)は、1500g/10min以下、1000g/10min以下、500g/10min以下、300g/10min以下、200g/10min以下、100g/10min以下、80g/10min以下又は60g/10min以下であり、また、0.0001g/10min以上、0.0005g/10min以上又は0.001g/10min以上である。
 また、PEEKのメルトフローインデックスは、例えば0.0001~1500g/10min、好ましくは0.0005~500g/10min、より好ましくは0.001~100g/10minである。
 PEEKのメルトフローインデックスは100g/10min以下であることが好ましい。メルトフローインデックスが100g/10min以下であるPEEKは、十分に高分子量化されており、例えば押出機によるペレタイズを好ましく適用できる。
 PEEKのメルトフローインデックスは、実施例に記載の方法により測定される値である。
 PEEKのメルトフローインデックスは、反応混合物の温度条件(最高温度、温度保持時間、昇温速度など)や反応混合物における原料(4,4’-ジクロロベンゾフェノンとハイドロキノンなど)の比率により調整できる。
 尚、PEEKのメルトフローインデックスは、下記の測定方法によっても測定でき、この測定方法で測定する場合においても、好ましい範囲等は上記の通りである。
 PEEKのメルトフローインデックスを、株式会社立山科学ハイテクノロジーズ製メルトインデクサ(L-220)を用いて、JIS K 7210-1:2014(ISO 1133-1:2011)に準拠し、下記の測定条件で測定する。
[測定条件]
・測定温度(樹脂温度):380℃
・測定荷重:2.16kg
・シリンダ内径:9.550mm
・ダイ内径:2.095mm
・ダイ長さ:8.000mm
・ピストンヘッドの長さ:6.35mm
・ピストンヘッドの直径:9.474mm
・ピストン重量:110.0g(上記測定荷重はピストン重量を含む)
・操作:
 試料は事前に150℃で2時間以上乾燥する。試料をシリンダに投入し、ピストンを差し込み6分間予熱する。荷重を加え、ピストンガイドを外してダイから溶融した試料を押し出す。ピストン移動の所定範囲および所定時間(t[s])で試料を切り取り、重量を測定する(m[g])。次式からMIを求める。MI[g/10min]=600/t×m
 一実施形態において、PEEKの還元粘度ηsp/cは、0.36dl/g以上、0.36dl/g超、0.37dl/g以上、0.38dl/g以上、0.39dl/g以上、0.40dl/g以上、0.46dl/g以上又は0.48dl/g以上であり、また、1.50dl/g以下、1.30dl/g以下又は1.20dl/g以下である。
 また、PEEKの還元粘度ηsp/cの好適範囲は、例えば、0.36~1.50dl/g、0.36超1.50dl/g以下、0.37~1.50dl/g、0.40~1.50dl/g、0.46~1.30dl/g又は0.48~1.20dl/gである。これにより、成形時の適切な溶融流動性を確保しつつ、より優れた強度を示す成形材料が得られる。
 PEEKの還元粘度ηsp/cは、実施例に記載の方法によって測定される値である。この実施例に記載の方法において、測定用の硫酸溶液(試料溶液)におけるPEEK濃度は0.1g/dlである。
 PEEKの還元粘度ηsp/cは、反応混合物の温度条件(最高温度、温度保持時間、昇温速度など)や反応混合物における原料(4,4’-ジクロロベンゾフェノンとハイドロキノンなど)の比率により調整できる。下記還元粘度η’sp/cも同様である。
 尚、PEEKの還元粘度ηsp/cは、下記の測定方法によっても測定でき、この測定方法で測定する場合においても、好ましい範囲等は上記の通りである。
 PEEKを120℃で6時間、真空乾燥する。次いで、このPEEKを濃硫酸(純度98質量%)に溶解し、PEEKの濃度C[g/dl]が0.1g/dlとなるようにメスフラスコで調製し、試料溶液を得る。次いで、JIS K 7367-5:2000(ISO 1628-5:1998)に準拠して、25℃の恒温水槽(動粘度測定用恒温槽(トーマス科学器械(株)TV-5S))及びウベローデ粘度計(No.2)を用いて、溶媒(濃硫酸(純度98質量%))の流下時間t[s]と、試料溶液の流下時間t[s]とを測定し、次式から還元粘度ηsp/cを求める。還元粘度ηsp/c[dl/g]=(t-t)/(t×C)
 一実施形態において、PEEKは、このPEEKを0.5g/dlの濃度で濃硫酸に溶解した硫酸溶液(試料溶液)について25℃で測定される還元粘度η’sp/c(実施例に記載の方法により測定される還元粘度ηsp/cではない)が、0.36dl/g超、0.37dl/g以上、0.38dl/g以上、0.39dl/g以上、0.40dl/g以上、0.46dl/g以上、0.48dl/g以上、0.50dl/g以上又は0.52dl/g以上であり、また、1.50dl/g以下、1.30dl/g以下又は1.20dl/g以下である。
 PEEKの還元粘度η’sp/cの好適範囲は、例えば、0.36超1.50dl/g以下、0.37~1.50dl/g、0.40~1.50dl/g、0.46~1.30dl/g又は0.48~1.20dl/gである。これにより、成形時の適切な溶融流動性を確保しつつ、より優れた強度を示す成形材料が得られる。
 尚、PEEKの還元粘度は、測定用の試料溶液におけるPEEK濃度が高いほど大きくなる傾向がある。例えば同じPEEKについて測定した場合、還元粘度η’sp/c(PEEK濃度0.5g/dl)の値は、還元粘度ηsp/c(PEEK濃度0.1g/dl)の値より大きくなる傾向がある。例えば、PEEKの還元粘度ηsp/cが0.36dl/gであった場合、還元粘度η’sp/cは0.36dl/gより大きいと推定される。
 一実施形態において、PEEKの固有粘度ηinhは、0.47dl/g以上、0.48dl/g以上、0.49dl/g以上又は0.50dl/g以上であり、また、2.00dl/g以下、1.80dl/g以下、1.50dl/g以下、1.30dl/g以下又は1.20dl/g以下である。
 また、PEEKの固有粘度ηinhの好適範囲は、例えば0.47~2.00dl/g、0.47~1.50dl/g、0.48~1.30dl/g又は0.50~1.20dl/gである。これにより、成形時の適切な溶融流動性を確保しつつ、より優れた強度を示す成形材料が得られる。
 尚、PEEKの固有粘度ηinhは、下記の測定方法により測定される値である。
 PEEKを120℃で6時間、真空乾燥する。次いで、このPEEKを濃硫酸(純度95質量%以上)に溶解し、PEEKの濃度C[g/dl]を変えた複数の試料溶液を得る。その後、JIS K 7367-5:2000(ISO 1628-5:1998)に準拠して、25℃の恒温水槽(動粘度測定用恒温槽(トーマス科学器械(株)TV-5S))及びウベローデ粘度計(No.2)を用いて、溶媒(濃硫酸(純度95質量%以上))の流下時間t[s]と、試料溶液の流下時間t[s]とを測定し、次式から還元粘度ηsp/cを求める。還元粘度ηsp/c[dl/g]=(t-t)/(t×C)
 各試料溶液の濃度C[g/dl]を横軸、還元粘度ηsp/cを縦軸として二次元プロットして一次相関式を求め、濃度ゼロ(切片)における還元粘度ηsp/cの値を固有粘度ηinhとして求めることができる。
 PEEKの固有粘度ηinhは、反応混合物の温度条件(最高温度、温度保持時間、昇温速度など)や反応混合物における原料(4,4’-ジクロロベンゾフェノンとハイドロキノンなど)の比率により調整できる。
 本態様に係るPEEKを用いて、例えば、該PEEKを含むペレットを製造することができる。このペレットを耐熱性、耐溶剤性、絶縁性等を必要とする各種成形材料として用いることができる。このペレットを用いて、例えば金型を用いた射出成形等の成形方法により、成形体を製造することができる。また、このペレットを用いて、例えば押出成形、プレス成形、シート成形、フィルム成形等の成形方法により成形体を製造することができる。
 本態様に係るPEEKの用途は格別限定されない。PEEKは、例えば、航空宇宙用途、ギア、ベアリング等のような摺動部材、各種樹脂組成物等として好適である。
 本態様に係るPEEKを含む成形体は、例えば、航空宇宙用成形体、摺動部材用成形体、3Dプリンター用フィラメントとして好適である。また、該PEEKを含む成形体は、例えば、航空宇宙用射出成形体、摺動部材用射出成形体として好適である。
 以上に説明した本発明の一態様に係るPEEKは、4,4’-ジクロロベンゾフェノンとハイドロキノンとを反応させることにより製造できる。
 4,4’-ジクロロベンゾフェノン及びハイドロキノンは、PEEKを重合するためのモノマーである。
 4,4’-ジクロロベンゾフェノン及びハイドロキノンを反応させる工程を経て、これら化合物(モノマー単位)の共重合体として、PEEKを得ることができる。
 4,4’-ジクロロベンゾフェノン及びハイドロキノンは、容易に合成でき、また市販品としても入手可能である。
 以下の説明において、「反応混合物」とは、4,4’-ジクロロベンゾフェノンとハイドロキノンとの反応の開始から反応の完了までの反応系であり、好ましくは、これらのモノマーに加えて後述する溶媒を含む溶液の形態である。反応混合物の組成は、反応の進行に伴って変化し得る。通常、反応の進行に伴って、反応混合物における反応物(4,4’-ジクロロベンゾフェノン及びハイドロキノン)の濃度は減少し、生成物(PEEK)の濃度は上昇する。
 また、反応混合物の「最高温度」とは、4,4’-ジクロロベンゾフェノンとハイドロキノンとの反応の開始から反応の完了までの過程において反応混合物が到達する最高温度(最高到達温度)である。
 一実施形態において、反応混合物の最高温度は、260℃以上、265℃以上、270℃以上、275℃以上、280℃以上、285℃以上、290℃以上、290℃超、295℃以上、300℃以上、305℃以上、310℃以上、315℃以上、320℃以上、325℃以上、330℃以上又は335℃以上であり得る。上限は格別限定されず、例えば、360℃以下である。また、反応混合物の最高温度は、例えば260~360℃、好ましくは290℃超360℃以下、より好ましくは295~360℃である。
 一実施形態において、本態様に係るPEEKの製造方法は、反応混合物を150℃以上に昇温した後、温度保持することを含む。温度保持する際の温度は格別限定されず、例えば150~360℃であり得る。温度保持する時間は格別限定されず、例えば0.1~12時間であり得る。
 一実施形態において、本態様に係るPEEKの製造方法は、反応混合物を150℃以上に昇温した後、昇温と温度保持とを1回ずつ行うことを含むか、又は昇温と温度保持とを複数回繰り返すことを含む。繰り返しの回数は格別限定されず、例えば、2、3、4、5、6、7、8、9又は10回であり得る。
 昇温と温度保持とを複数回繰り返すことによって、反応を効率的に進行させることができる。
 一実施形態において、本態様に係るPEEKの製造方法は、反応混合物を180~220℃において0.5~2時間、好ましくは0.6~1.8時間、より好ましくは0.7~1.5時間、保持すること(以下、「温度保持(i)」ともいう)を含む。これにより、原料の揮発を抑制しながら反応を促進することができ、より高分子量のPEEKを得ることができる。
 一実施形態において、本態様に係るPEEKの製造方法は、反応混合物を230~270℃において0.5~2時間、好ましくは0.6~1.8時間、より好ましくは0.7~1.5時間、保持すること(以下、「温度保持(ii)」ともいう)を含む。これにより、原料の揮発を抑制しながら反応を促進することができ、より高分子量のPEEKを得ることができる。
 一実施形態において、本態様に係るPEEKの製造方法は、反応混合物を280~360℃において1~8時間、好ましくは1~6時間、より好ましくは1~4時間、保持すること(以下、「温度保持(iii)」ともいう)を含む。これにより、所望の分子量のPEEKを得ることができる。
 一実施形態において、本態様に係るPEEKの製造方法は、上記の温度保持(i)~(iii)からなる群から選択される2つ又は3つを含むことができる。2つ又は3つの温度保持は、温度が低いものから順に実施することが好ましい。2つ又は3つの温度保持の間には、反応混合物を昇温することを含むことができる。
 反応混合物を昇温する際の昇温速度は格別限定されず、例えば0.1~15℃/min、0.1~10℃/min、0.1~8℃/min又は0.1~5℃/minであり得る。これにより、原料の揮発を抑制しながら反応を促進することができ、より高分子量のPEEKを得ることができる。
 一実施形態において、本態様に係るPEEKの製造方法は、反応混合物の温度が150℃に達した時点から最高温度に達する時点までの時間が2.0~10時間である。
 一実施形態において、反応混合物は溶媒を含む。溶媒を含む反応混合物は、溶液の形態であり得る。溶液は、溶媒に溶解された4,4’-ジクロロベンゾフェノン及びハイドロキノンを含み得る。
 溶媒は格別限定されず、例えば、中性極性溶媒を用いることができる。中性極性溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジプロピルアセトアミド、N,N-ジメチル安息香酸アミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-イソブチル-2-ピロリドン、N-n-プロピル-2-ピロリドン、N-n-ブチル-2-ピロリドン、N-シクロへキシル-2-ピロリドン、N-メチル-3-メチル-2-ピロリドン、N-エチル-3-メチル-2-ピロリドン、N-メチル-3,4,5-トリメチル-2-ピロリドン、N-メチル-2-ピペリドン、N-エチル-2-ピペリドン、N-イソプロピル-2-ピペリドン、N-メチル-6-メチル-2-ピペリドン、N-メチル-3-エチルピペリドン、ジメチルスルホキシド、ジエチルスルホキシド、1-メチル-1-オキソスルホラン、1-エチル-1-オキソスルホラン、1-フェニル-1-オキソスルホラン、N,N’-ジメチルイミダゾリジノン、ジフェニルスルホン等が挙げられる。
 一実施形態において、反応混合物は、芳香族スルホンを含み、前記芳香族スルホン100質量部に対して、沸点が270~330℃である溶媒の含有量が0質量部以上1質量部未満である。これにより、反応温度の制御が容易になる。
 反応混合物は、1種又は2種以上の溶媒を含むことができる。特に、反応混合物が溶媒として一種の溶媒のみ(単一溶媒)を含むことが好ましく、これによりプロセスを簡素化できる。
 一実施形態において、反応混合物は炭酸カリウムを含む。これにより、反応が促進される。
 一実施形態において、炭酸カリウムは、下記条件(A)及び(B)の少なくとも一つを満たす。これにより、得られるPEEKを高分子量化できる。
 (A)炭酸カリウムの嵩密度が1.2g/ml(l:リットル)以下である。
 (B)炭酸カリウムの平均粒子径をD(μm)、比表面積をS(m/g)としたとき、D/S≦600を満たす。
 一実施形態において、炭酸カリウムの嵩密度は、1.2g/ml以下、1.1g/ml以下又は1.0g/ml以下であり、また、0.05g/ml以上又は0.10g/ml以上である。
 また、炭酸カリウムの嵩密度は、例えば、0.05g/ml~1.2g/ml、0.05g/ml~1.1g/ml、0.05g/ml~1.0g/ml、0.10g/ml~1.2g/ml、0.10g/ml~1.1g/ml、又は0.10g/ml~1.0g/mlであり得る。
 炭酸カリウムの嵩密度が1.2g/ml以下であることによって、得られるPEEKを高分子量化できる。
 炭酸カリウムの嵩密度は、下記の方法によって測定される値である。
 0.1質量%の精度で秤量した約50gの炭酸カリウム(質量m(g))を圧密せずに、乾燥させた100mlメスシリンダー(最小目盛単位:1ml)に静かに入れる。粉体層の上面を圧密せずに注意深くならし、ゆるみ嵩体積V(ml)を最小目盛単位まで読み取り、下記式より嵩密度を算出する。
 嵩密度(g/ml)=m/V
 尚、ゆるみ嵩体積Vが100mlを超える場合は、試料とする炭酸カリウムの質量mを減じて、ゆるみ嵩体積Vが100ml以下の容量になるよう調整して、ゆるみ嵩体積Vを読み取り、嵩密度を算出する。
 一実施形態において、炭酸カリウムの平均粒子径をD(μm)、比表面積をS(m/g)としたとき、D/Sの値は、600以下、550以下又は500以下であり、また、0.1以上、0.2以上又は0.5以上である。
 また、D/Sの値は、例えば、1~600、1~550、1~500、2~600、2~550、2~500、5~600、5~550、又は5~500であり得る。
 D/S≦600であることによって、得られるPEEKを高分子量化できる。
 炭酸カリウムの平均粒子径D(μm)は、以下に記載の方法によって測定される値である。
 マイクロトラック・ベル(株)製のCAMSIZERを用いて、乾式法により粒度分布測定を行う。試料(炭酸カリウム)を振動フィーダーで測定部に落として、カメラで粒子を撮影して粒子径を測定する。観察した画像を処理する際に、粒子画像の短径からのデータを処理した数値を用いて、測定装置に具備されたプログラムによる自動計算により平均粒子径Dを算出する。
 炭酸カリウムの比表面積S(m/g)は、以下に示す方法によって測定される。
(i)前処理
 試料(炭酸カリウム)の前処理として、マイクロトラック・ベル社製のBELPREP vacIIを用いて、100℃、1時間以上の加熱真空排気を実施し、真空度が10Pa(75mTorr)に到達したら前処理完了とする。
(ii)測定
 マイクロトラック・ベル社製のBELSORP-miniIIを用いて、液体窒素温度での窒素吸着法による比表面積測定を行う。窒素導入量の設定は、本装置の「簡易モード」で行い、目標相対圧は、0.10、0.15、0.20、0.25、0.30とする。
(iii)解析
 解析ソフトとしてBEL Masterを用いた。解析方法はJIS Z 8830:2013に準拠し、相対圧が高い方の測定結果から4点以上を用いて、BET多点法により比表面積Sを算出する。
 一実施形態において、炭酸カリウムは、上記の測定により、例えば、嵩密度0.90[g/ml]、平均粒子径D=460[μm]、比表面積S=1.51[m/g]、D/S=305となるものなどを用いることができる。
 一実施形態において、反応混合物は、炭酸カリウム以外の他のアルカリ金属炭酸塩、アルカリ金属炭酸水素塩等のアルカリ金属塩を含む。これらのアルカリ金属塩は、炭酸カリウムと併用してもよい。例えば、炭酸カリウムと炭酸ナトリウムとを併用してもよい。
 アルカリ金属炭酸塩としては、炭酸リチウム、炭酸ルビジウム、炭酸セシウム等が挙げられる。
 炭酸カリウムと併用可能なアルカリ金属炭酸水素塩としては、例えば、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、炭酸水素セシウム等が挙げられる。
 これらのアルカリ金属塩は、1種を単独で使用しても、2種以上を併用してもよい。
 反応混合物におけるアルカリ金属塩(炭酸カリウム及び上述した他のアルカリ金属塩を含む)の合計の濃度は格別限定されない。
 一実施形態において、反応混合物におけるアルカリ金属塩の合計の配合量は、反応混合物に配合するハイドロキノン100mol部に対して、100mol部以上であり、また、180mol部以下、160mol部以下、140mol部以下又は120mol部以下である。アルカリ金属塩の合計の配合量が、100mol部以上であれば、反応時間を短縮できる。アルカリ金属塩の合計の配合量が、180mol部以下であれば、ゲル成分の生成を抑制できる。また、反応混合物におけるアルカリ金属塩の合計の配合量は、反応混合物に配合するハイドロキノン100mol部に対して、例えば100~180mol部、好ましくは100~140mol部、より好ましくは100~120mol部である。
 一実施形態において、アルカリ金属塩として炭酸カリウムを上記の配合量で配合する。
 一実施形態において、反応混合物は、フッ化ナトリウム、フッ化カリウム、フッ化ルビジウム及びフッ化セシウムのいずれも含まない。本態様においては、これらの化合物を含まなくても高分子量のPEEKを得ることができる。また、これらの化合物を含まないことにより、得られるPEEK中にこれらの化合物が残留することを回避でき、精製コストを削減できる。これにより、無機化合物を配合することにより優れた機械的強度を発揮できるPEEKを、低コストで製造することができる。
 反応に供される4,4’-ジクロロベンゾフェノン(DCBP)と、ハイドロキノン(HQ)とのmol比([DCBP]:[HQ])は格別限定されない。
 mol比([DCBP]:[HQ])は、得られるPEEKの分子量を制御する等の目的で適宜調整できる。
 一実施形態において、mol比([DCBP]:[HQ])は、47.5:52.5~52.5:47.5、48.0:52.0~52.0:48.0、48.5:51.5~51.5:48.5、49.0:51.0~51.0:49.0又は49.5:50.5~50.5:49.5である。
 4,4’-ジクロロベンゾフェノン(DCBP)のmol数は、ハイドロキノン(HQ)のmol数より大きくても、小さくても、同じでもよい。
 一実施形態において、反応混合物における4,4’-ジクロロベンゾフェノン及びハイドロキノンの合計の濃度(配合量基準)は格別限定されず、例えば、1.0mol/l以上、1.2mol/l以上、1.3mol/l以上、1.4mol/l以上又は1.5mol/l以上であり、また、6.0mol/l以下、5.0mol/l以下又は4.0mol/l以下である。また、反応混合物における4,4’-ジクロロベンゾフェノン及びハイドロキノンの合計の濃度(配合量基準)は、例えば1.0~6.0mol/l、好ましくは1.3~5.0mol/l、より好ましくは1.5~4.0mol/lである。
 一実施形態において、上述した反応に供されるモノマーとして、4,4’-ジクロロベンゾフェノン及びハイドロキノン以外の他のモノマーを用いない。
 一実施形態において、上述した反応には、本発明の効果を損なわない範囲で、4,4’-ジクロロベンゾフェノン及びハイドロキノン以外の他のモノマーが併用される。
 一実施形態において、反応に供される全モノマーを基準として、4,4’-ジクロロベンゾフェノン及びハイドロキノンの合計の割合(質量%)は、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上、97質量%以上、99質量%以上、99.5質量%以上又は100質量%である。
 一実施形態において、反応開始時における反応混合物の70質量%以上、80質量%以上、90質量%以上、95質量%以上、99質量%以上、99.5質量%以上、99.9質量%以上又は実質的に100質量%が、
 4,4’-ジクロロベンゾフェノン、ヒドロキノン、アルカリ金属塩及び溶媒であるか、
 4,4’-ジクロロベンゾフェノン、ヒドロキノン、炭酸カリウム及び炭酸ナトリウムからなる群から選択される1種以上のアルカリ金属塩並びにジフェニルスルホンであるか、又は
 4,4’-ジクロロベンゾフェノン、ヒドロキノン、炭酸カリウム及びジフェニルスルホンである。
 尚、「実質的に100質量%」の場合、不可避不純物を含んでもよい。
 4,4’-ジクロロベンゾフェノンとハイドロキノンとの反応は、不活性ガス雰囲気で実施することができる。不活性ガスは格別限定されず、例えば窒素、アルゴンガス等が挙げられる。
2.組成物
 本発明の一態様に係る組成物は、下記式(1)で表される繰り返し単位を含み、下記条件(A)及び(B)の一方又は両方を満たすPEEKと、無機化合物と、を含む。
Figure JPOXMLDOC01-appb-C000007
 (A)フッ素原子の含有量aが2mg/kg未満である。
 (B)塩素原子の含有量bが2mg/kg以上である。
 本態様に係る組成物は、優れた機械的強度を発揮する。
 条件(A)及び(B)については、本発明の一態様に係るPEEKについてした説明を援用し、ここでの詳細な説明は省略する。
 本態様に係る組成物に含まれるPEEKは、条件(A)及び(B)の一方又は両方を満たすものであれば格別限定されない。
 一実施形態において、本態様に係る組成物に含まれるPEEKは、上述した本発明の一態様に係るPEEKである。これにより、組成物はより優れた機械的強度を発揮する。
 一実施形態において、無機化合物は、ガラス繊維、炭素繊維及び窒化ホウ素からなる群から選択される1以上である。これにより、組成物の強度がさらに向上する。
 一実施形態において、無機化合物は、ガラス繊維及び炭素繊維からなる群から選択される1種以上であり、チョップドストランド、ロービング、織物、不織布及び一方向材(「UD材」とも称される。)からなる群から選ばれる1種以上の形態である。これにより、組成物の強度がさらに向上する。
 一実施形態において、無機化合物はガラス繊維である。
 一実施形態において、組成物は、マトリクスとしてのPEEKと、ガラス繊維や炭素繊維等のような繊維状の無機化合物とを含む繊維複合材料であり得る。繊維複合材料は、所謂、繊維強化熱可塑性プラスチック(FRTP)であり得る。
 繊維状の無機化合物は、サイジング剤で処理されたものであってもよい。サイジング剤によって、繊維状の無機化合物を束状に結束することができる。サイジング剤で処理された繊維状の無機化合物は、その表面にサイジング剤が付着している。サイジング剤は格別限定されず、例えば、エポキシ系サイジング剤、ウレタン系サイジング剤、ポリアミド系サイジング剤等が挙げられる。また、サイジング剤として、本発明の一態様に係るPEEKを用いることもできる。サイジング剤として、これらの1種を単独で用いても、2種以上を併用してもよい。繊維状の無機化合物として、サイジング剤で処理されていないものを用いてもよい。
 一実施形態において、無機化合物は、PEEKに対して強化作用を有する無機化合物である。ここで、「PEEKに対して強化作用を有する無機化合物」は、PEEK100質量部に無機化合物43質量部を均一に含有させた場合の引張強度が、無機化合物を含有しないPEEKの引張強度よりも大きくなる無機化合物である。引張強度は実施例に記載の方法によって測定される。
 組成物における無機化合物の含有量は格別限定されない。
 一実施形態において、組成物における無機化合物の含有量は、PEEK100質量部に対して、例えば、5質量部以上、10質量部以上又は20質量部以上であり、また、60質量部以下、55質量部以下又は50質量部以下である。上限及び下限は任意に組み合わせることができる。
 組成物は、PEEK及び無機化合物以外の他の成分を含んでもよい。他の成分は格別限定されず、例えば、PEEKではない他の樹脂が挙げられる。他の樹脂としては、例えばポリテトラフルオロエチレン等のフッ素樹脂等が挙げられる。他の成分として、1種を単独で用いてもよいし、2種以上を併用してもよい。
 一実施形態において、組成物の50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上、97質量%以上、99質量%以上、99.5質量%以上又は実質的に100質量%が、
 PEEKであるか、
 PEEK及び無機化合物であるか、
 PEEK及び上述した他の成分であるか、又は
 PEEK、無機化合物及び上述した他の成分である。
 なお、「実質的に100質量%」である場合、不可避不純物を含んでもよい。
 組成物を調製する方法は格別限定されず、例えば、公知のミキサーによる混合や、押出機等による溶融混錬等が挙げられる。二軸混練機を用いてPEEKに無機化合物をサイドフィードしてもよい。
 組成物のペレットを製造してもよい。ペレットは、成形体を製造するための原料として用いることができる。
 一実施形態において、ペレットの製造方法は、繊維状の無機化合物を短くカットしてチョップドストランドとした後、短繊維にPEEKを加えることを含む。短繊維とPEEKとを混合し、造粒することによってペレット(「短繊維ペレット」とも称される。)を製造することができる。
 一実施形態において、ペレットの製造方法は、溶融させたPEEKに繊維状の無機化合物のロービングを浸漬させて引き抜き成形した後に、所望のペレット長に切断してペレット(「長繊維ペレット」とも称される。)を製造する。上記のように長繊維ペレットを製造する場合は、繊維状の無機化合物の折損を抑制できる。
 組成物(上述したペレットの形態であってもよい)を成形することによって、成形体を製造することができる。成形には、射出成形、押出成形、ブロー成形等の既知の方法を用いることができる。また、組成物をプレス成形することもでき、コールドプレス法、ホットプレス法等の既知の方法を用いることができる。さらに、組成物を3Dプリンター用樹脂組成物として用い、3Dプリンターによって成形することもできる。
 一実施形態において、組成物の引張強度は、76MPa以上、78MPa以上、80MPa以上、82MPa以上、84MPa以上、86MPa以上、88MPa以上、89MPa以上、90MPa以上、91MPa以上又は92MPa以上である。これにより、組成物を、機械的強度が求められる用途により好適に用いることができる。上限は格別限定されず、例えば、300MPa以下、200MPa以下、180MPa以下、150MPa以下、130MPa以下又は120MPa以下である。
 組成物の引張強度は、例えば76~300MPa、好ましくは80~200MPa、より好ましくは90~180MPaである。
 組成物の引張強度は、実施例に記載の方法により測定される値である。
3.シート
 本発明の一態様に係るシートは、無機化合物を含むクロスと、該クロスに含浸されたPEEKとを含む。かかるシートによれば、PEEKに無機化合物を含有させた場合と同様に、優れた機械的強度が発揮される。
 クロスは格別限定されず、無機化合物の繊維を含むものであればよい。一実施形態において、クロスは、面状に配置された繊維によって構成される。クロスは、例えば織布、不織布、一方向材等であり得る。
 一方向材は、一方向に引き揃えられた繊維によって構成される。
 クロスに含まれる繊維は格別限定されない。
 クロスは、ガラス繊維及び炭素繊維からなる群から選択される1以上を含むことが好ましい。一実施形態において、クロスはガラス繊維を含む。
 一実施形態において、シートは、マトリクスとしてのPEEKと、ガラス繊維や炭素繊維等のような繊維状の無機化合物とを含む繊維複合材料であり得る。かかる繊維複合材料は、所謂、繊維強化熱可塑性プラスチック(FRTP)であり得る。例えば、クロスとして一方向材を用いることによって、一方向繊維強化プラスチックが得られる。
 一実施形態に係るシートにおいて、クロスに含まれる繊維間にPEEKが含浸されている。クロスは1枚であってもよいし、2枚以上を積層した積層体であってもよい。クロスが積層体である場合、PEEKは、クロス間の結着にも寄与し得る。
 シートは、PEEK及びクロスに加えて、他の成分を含んでもよい。他の成分としては、組成物について説明したものを用いることができる。
 一実施形態において、シートの50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上、97質量%以上、99質量%以上、99.5質量%以上又は実質的に100質量%が、
 PEEK及びクロスであるか、又は
 PEEK、クロス及び上述した他の成分である。
 なお、「実質的に100質量%」である場合、不可避不純物を含んでもよい。
 上述したシートの製造方法は格別限定されない。
 一実施形態において、シートの製造方法は、クロスにPEEKを浸漬させることを含む。この場合、例えば、PEEKを適切な溶媒に溶解して得られた溶液、PEEKを適切なビヒクルに混合して得られた混合物、あるいはPEEKの溶融物を、炭素繊維に塗布して、浸漬させることができる。
 一実施形態において、シートの製造方法は、PEEKを含むサイジング剤によって結束された繊維によってクロスを作製することを含む。
 一実施形態において、シートの製造方法は、PEEKを含むフィルムをクロスに積層して溶融プレスすることを含む。
 一実施形態において、シートの製造方法は、PEEKの粉末をクロスに直接加えた後、前記粉末を溶融させることを含む。
 以上、シートの製造方法に係る説明において、PEEKが含浸されるクロスは、上述した積層体であってもよい。
 一実施形態において、シートは全面にわたって平面状である。
 一実施形態において、シートには三次元的な形状が付与されている。シートの形状が「三次元的」であるとは、シートが湾曲部分(屈曲部分を含む)を含むことを意味する。
 三次元的な形状が付与されたシートの製造方法は格別限定されない。
 一実施形態において、三次元的な形状が付与されたシートの製造方法は、三次元的な形状が付与されたクロスにPEEKを含浸させることを含む。
 一実施形態において、三次元的な形状が付与されたシートの製造方法は、クロスにPEEKを含浸させてシート(例えば平面状のシート)を得た後、前記シートに三次元的な形状が付与されるように成形を施すことを含む。成形は、例えば、加熱下において、シートに圧力をかけることによって行うことができる。
 以上、シートに係る説明において、PEEKは、上述した本発明の一態様に係る組成物としてクロスに含浸されてもよい。この場合、組成物は無機化合物を含んでも、含まなくてもよい。
 以下に本発明の実施例を説明するが、本発明はこれらの実施例により限定されない。
(実施例1)
 撹拌機、温度計、窒素導入管及び冷却管に接続した水回収容器を備えた300mlの四口フラスコに、4,4’-ジクロロベンゾフェノン40.613g(0.162mol)、ヒドロキノン17.809g(0.162mol)、炭酸カリウム25.704g(0.186mol)及びジフェニルスルホン140.01gを入れ、窒素ガスを流通させた。
 反応混合物を下記の温度制御下で反応させた。
<温度制御>
(1)150℃に昇温した後、30分間かけて200℃に昇温
(2)200℃において1時間保持
(3)200℃から250℃に昇温(昇温速度1.7℃/min)
(4)250℃において1時間保持
(5)250℃から340℃(反応混合物の最高温度)に昇温(昇温速度3.0℃/min)
(6)340℃(反応混合物の最高温度)において2時間保持
 反応終了後、生成物をブレンダー(ワーリング社製7010HS)で粉砕し、アセトン、水の順に洗浄を行ってから、180℃の乾燥機で乾燥し、粉末状のPEEKを得た。
 得られたPEEKを下記(1)~(5)の測定に供した。
(1)メルトフローインデックス(MI)
 PEEKのメルトフローインデックスを、株式会社立山科学ハイテクノロジーズ製メルトインデクサ(L-227)を用いて、ASTM D 1238-13に準拠し、樹脂温度380℃、荷重2.16kgにおいて測定した。
(2)H-NMR測定(面積比X)
 PEEKをH-NMR測定に供し、主鎖ピークの面積(化学シフト7.32ppmから7.36ppmまでの面積)に対する水酸基のα位のピークの面積(化学シフト6.98ppmから7.03ppmまでの面積)の比(面積比X)を下記式より求めた。
 面積比X[%]=(水酸基のα位のピークの面積/主鎖ピークの面積)×100
 H-NMR測定の測定条件は下記のとおりである。
H-NMR測定の測定条件>
・NMR装置:ブルカージャパン(株)製 Ascend500
・プローブ:5mmφTCIクライオプローブ
・NMR試料管径:5mmφ
・試料溶液調整:試料約20mgにメタンスルホン酸を0.6ml加えて、室温で1時間攪拌した後、重ジクロロメタン0.4mlを加えて、さらに30分室温で攪拌することで試料を溶解させ、試料溶液とした。
・観測範囲:20ppm
・観測中心:6.175ppm
・データポイント数:64kB
・パルス繰り返し時間:10秒
・積算回数:256回
・フリップアングル:30°
・測定温度:25℃
・化学シフトのリファレンス:重ジクロロメタンのピーク3本のうち中央のピークを5.32ppmに設定
(3)燃焼イオンクロマトグラフ
 燃焼イオンクロマトグラフ法により、PEEKにおけるフッ素原子の含有量a及び塩素原子の含有量bを測定した。
 具体的には、試料を燃焼炉内に導入し、酸素を含む燃焼ガス中で燃焼させ、発生したガスを吸収液に捕集させた後、その吸収液をイオンクロマトグラフにて分離定量した。定量値は、既知濃度のリファレンスから作成した検量線を元に求めた。以下に測定条件を示す。
<試料燃焼>
燃焼装置:株式会社三菱化学アナリテック製AQF-2100H
燃焼炉設定温度:前段800℃、後段1100℃
アルゴン流量:400ml/min
酸素流量:200ml/min
吸収液:過酸化水素水
<イオンクロマトグラフ>
分析装置:サーモフィッシャーサイエンティフィック株式会社製Integrion
カラム:ガードカラムとして(Dionex IonPac AG12A)及び分離カラムとして(Dionex IonPac AS12A)を連結して使用(カラムは共にDIONEX社製)
溶離液:NaCO(2.7mmol/l)+NaHCO(0.3mmol/l)
流速:1.5ml/min
カラム温度:30℃
測定モード:サプレッサ方式
検出器:電気伝導度検出器
 尚、上記の測定方法におけるフッ素原子及び塩素原子の検出限界は2mg/kgである。これらの原子が検出限界未満の場合は、表1中、「<2」(mg/kg)と表記する(後の表2も同様である。)。
(4)還元粘度ηsp/c
 濃硫酸(純度95質量%以上)に、PEEKを濃度が0.1g/dlとなるように溶解して得られた溶液について、25℃においてJIS K7367-5:2000に準拠しウベローデ粘度計を用いて還元粘度ηsp/cを測定した。
(5)無機化合物による強化(引張強度の測定)
 得られたPEEK100質量部と、無機化合物(ガラス繊維;日本電気硝子株式会社製「T-786H」、平均繊維径10μm、平均繊維長さ3.0mm)43質量部とを、ブラベンダー社製プラスチコーダを用いて380℃で5分間混練して、組成物を得た。
 得られた組成物を、井元製作所製真空プレスを用いて380℃で2mm厚にプレス成形し、200℃でアニールし、プレス成形板を得た。このプレス成形板を、JIS K7161に規定するダンベル状5A形に切削して試験片とした。得られた試験片について、試験速度5mm/分、チャック間距離50mmで引張試験を行い、引張強度を測定した。
 以上の結果を表1に示す。
(実施例2)
 実施例1において、反応終了後の洗浄においてアセトン、水及びN-メチル-2-ピロリドンの順に洗浄を行ったこと以外は、実施例1と同様にしてPEEKを得た。得られたPEEKについて実施例1と同様の測定に供した。結果を表1に示す。
(実施例3)
 実施例1において、反応混合物の配合を、4,4’-ジクロロベンゾフェノン52.499g(0.209mol)、ヒドロキノン22.464g(0.204mol)、炭酸カリウム32.4324g(0.235mol)及びジフェニルスルホン120.02gとしたこと以外は実施例1と同様にして、PEEKを得た。得られたPEEKについて実施例1と同様の測定に供した。結果を表1に示す。
(実施例4)
 実施例1において、4,4’-ジクロロベンゾフェノンの配合量を41.224g(0.164mol)に変更し、反応混合物の最高温度を280℃としたこと以外は実施例1と同様にして、PEEKを得た。得られたPEEKについて実施例1と同様の測定に供した。結果を表1に示す。
(実施例5)
 実施例1において、4,4’-ジクロロベンゾフェノンの配合量を41.209g(0.164mol)に変更し、反応混合物の最高温度を300℃としたこと以外は実施例1と同様にして、PEEKを得た。得られたPEEKについて実施例1と同様の測定に供した。結果を表1に示す。
(比較例1)
 実施例5で得られたPEEKを、無機化合物による強化を省略して、PEEK単独で、実施例1と同様の引張強度の測定に供した。
 具体的には、実施例5で得られたPEEKを、井元製作所製真空プレスを用いて380℃で2mm厚にプレス成形し、200℃でアニールし、プレス成形板を得た。このプレス成形板を、JIS K7161に規定するダンベル状5A形に切削して試験片とした。得られた試験片について、試験速度5mm/分、チャック間距離50mmで引張試験を行い、引張強度を測定した。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008
(合成例1)
 実施例1において、300mlの四口フラスコに代えて2リットルの反応容器(撹拌機、温度計、窒素導入管及び冷却管に接続した水回収容器を備える)を用い、この反応容器に、4,4’-ジクロロベンゾフェノン284.30g(1.132mol)、ヒドロキノン124.66g(1.132mol)、炭酸カリウム179.91g(1.302mol)及びジフェニルスルホン980.01gを入れて反応混合物としたこと以外は実施例1と同様にして、粉末状のPEEKを得た。
 得られたPEEKについて実施例1と同様にメルトフローインデックス(MI)、面積比X、塩素原子の含有量b及び還元粘度ηsp/cを測定した結果は下記のとおりであった。
MI:42g/10min
面積比X:1.22%
塩素原子の含有量:1400mg/kg
還元粘度ηsp/c:0.52dl/g
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。

Claims (14)

  1.  下記式(1)で表される繰り返し単位を含み、下記条件(A)及び(B)の一方又は両方を満たし、主鎖の一端又は両端に水酸基を有する、ポリエーテルエーテルケトン。
    Figure JPOXMLDOC01-appb-C000001
     (A)フッ素原子の含有量aが2mg/kg未満である。
     (B)塩素原子の含有量bが2mg/kg以上である。
  2.  原料に4,4’-ジクロロベンゾフェノンを含む、請求項1に記載のポリエーテルエーテルケトン。
  3.  H-NMR測定における主鎖ピークに対する水酸基のα位のピークの面積比が0.10~2.00%である、請求項1又は2に記載のポリエーテルエーテルケトン。
  4.  還元粘度ηsp/cが0.40~1.00dl/gである、請求項1~3のいずれかに記載のポリエーテルエーテルケトン。
  5.  下記式(1)で表される繰り返し単位を含み、下記条件(A)及び(B)の一方又は両方を満たすポリエーテルエーテルケトンと、
     無機化合物と、
     を含む、組成物。
    Figure JPOXMLDOC01-appb-C000002
     (A)フッ素原子の含有量aが2mg/kg未満である。
     (B)塩素原子の含有量bが2mg/kg以上である。
  6.  前記ポリエーテルエーテルケトンが、主鎖の一端又は両端に水酸基を有する、請求項5に記載の組成物。
  7.  前記ポリエーテルエーテルケトンのH-NMR測定における主鎖ピークに対する水酸基のα位のピークの面積比が0.10~2.00%である、請求項5又は6に記載の組成物。
  8.  前記ポリエーテルエーテルケトンの還元粘度ηsp/cが0.40~1.00dl/gである、請求項5~7のいずれかに記載の組成物。
  9.  前記無機化合物が、ガラス繊維、炭素繊維及び窒化ホウ素からなる群から選択される1以上である、請求項5~8のいずれかに記載の組成物。
  10.  前記無機化合物が、ガラス繊維及び炭素繊維からなる群から選択される1種以上であり、チョップドストランド、ロービング、織物、不織布及び一方向材からなる群から選ばれる1種以上の形態である、請求項5~9のいずれかに記載の組成物。
  11.  前記無機化合物がガラス繊維である、請求項5~10のいずれかに記載の組成物。
  12.  無機化合物を含むクロスと、前記クロスに含浸された請求項1~4のいずれかに記載のポリエーテルエーテルケトンとを含む、シート。
  13.  前記クロスが一方向材である、請求項12に記載のシート。
  14.  前記クロスが、ガラス繊維及び炭素繊維からなる群から選択される1種以上を含む、請求項12又は13に記載のシート。
PCT/JP2021/032222 2020-09-02 2021-09-02 ポリエーテルエーテルケトン、組成物及びシート WO2022050332A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/024,250 US20240026077A1 (en) 2020-09-02 2021-09-02 Polyether ether ketone, composition, and sheet
CN202180060621.7A CN116209708A (zh) 2020-09-02 2021-09-02 聚醚醚酮、组合物和片
JP2022546959A JP7275400B2 (ja) 2020-09-02 2021-09-02 ポリエーテルエーテルケトン、組成物及びシート

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-147624 2020-09-02
JP2020147624 2020-09-02

Publications (1)

Publication Number Publication Date
WO2022050332A1 true WO2022050332A1 (ja) 2022-03-10

Family

ID=80491065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032222 WO2022050332A1 (ja) 2020-09-02 2021-09-02 ポリエーテルエーテルケトン、組成物及びシート

Country Status (5)

Country Link
US (1) US20240026077A1 (ja)
JP (2) JP7275400B2 (ja)
CN (1) CN116209708A (ja)
TW (1) TW202221056A (ja)
WO (1) WO2022050332A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080151A1 (ja) * 2021-11-02 2023-05-11 出光興産株式会社 芳香族ポリエーテル、組成物、フィルム、粉体、ペレット、複合材料の製造方法及び複合材料
WO2023080153A1 (ja) * 2021-11-02 2023-05-11 出光興産株式会社 芳香族ポリエーテル、組成物、フィルム、粉体、ペレット、複合材料の製造方法及び複合材料
WO2024075623A1 (ja) * 2022-10-05 2024-04-11 出光興産株式会社 組成物
WO2024075619A1 (ja) * 2022-10-05 2024-04-11 出光興産株式会社 組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148524A (ja) * 1985-12-23 1987-07-02 Toray Ind Inc 熱可塑性芳香族ポリエ−テルの製造方法
JPS6465129A (en) * 1987-09-04 1989-03-10 Mitsubishi Gas Chemical Co Production of aromatic polyether

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104479089B (zh) * 2014-12-17 2017-06-06 江门市优巨新材料有限公司 一种高热稳定性封端含联苯结构聚芳醚酮树脂的工业化合成方法
JP6465129B2 (ja) 2017-03-06 2019-02-06 マツダ株式会社 往復動ピストンエンジン

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148524A (ja) * 1985-12-23 1987-07-02 Toray Ind Inc 熱可塑性芳香族ポリエ−テルの製造方法
JPS6465129A (en) * 1987-09-04 1989-03-10 Mitsubishi Gas Chemical Co Production of aromatic polyether

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080151A1 (ja) * 2021-11-02 2023-05-11 出光興産株式会社 芳香族ポリエーテル、組成物、フィルム、粉体、ペレット、複合材料の製造方法及び複合材料
WO2023080153A1 (ja) * 2021-11-02 2023-05-11 出光興産株式会社 芳香族ポリエーテル、組成物、フィルム、粉体、ペレット、複合材料の製造方法及び複合材料
WO2024075623A1 (ja) * 2022-10-05 2024-04-11 出光興産株式会社 組成物
WO2024075619A1 (ja) * 2022-10-05 2024-04-11 出光興産株式会社 組成物

Also Published As

Publication number Publication date
US20240026077A1 (en) 2024-01-25
TW202221056A (zh) 2022-06-01
JP7275400B2 (ja) 2023-05-17
JPWO2022050332A1 (ja) 2022-03-10
JP2023095966A (ja) 2023-07-06
CN116209708A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
JP7275400B2 (ja) ポリエーテルエーテルケトン、組成物及びシート
JP2023087072A (ja) ポリエーテルエーテルケトン及びポリエーテルエーテルケトンの製造方法
EP4074748B1 (en) Aromatic polyether, aromatic polyether composition, sheet, and method for manufacturing aromatic polyether
EP0429964A2 (en) Polyether copolymers, a method of producing them, resin compositions containing them, and molded articles formed from them
JPS633058A (ja) 熱可塑性樹脂組成物
WO2023080153A1 (ja) 芳香族ポリエーテル、組成物、フィルム、粉体、ペレット、複合材料の製造方法及び複合材料
WO2024075619A1 (ja) 組成物
WO2024075623A1 (ja) 組成物
JP2024054818A (ja) 組成物
WO2023080151A1 (ja) 芳香族ポリエーテル、組成物、フィルム、粉体、ペレット、複合材料の製造方法及び複合材料
JP2024054817A (ja) 組成物
CN114746476B (zh) 芳香族聚醚、芳香族聚醚组合物、片材和芳香族聚醚的制造方法
JP7275399B2 (ja) 芳香族ポリエーテルの製造方法及びこれに用いる炭酸カリウム
WO2022050341A1 (ja) ポリエーテルエーテルケトンの製造方法
WO2023171407A1 (ja) 芳香族ポリエーテル、芳香族ポリエーテルの製造方法、組成物及びシート
WO2022230934A1 (ja) ポリエーテルエーテルケトン及びその製造方法
WO2022230943A1 (ja) 芳香族ポリエーテル共重合体、芳香族ポリエーテル共重合体の製造方法及び芳香族ポリエーテル共重合体の結晶化温度の調整方法
JP2023163884A (ja) 樹脂組成物及び樹脂組成物の製造方法
JPH03124765A (ja) 導電性材料
JPH02255833A (ja) ポリエーテル系共重合体、その製造方法、その粉末の製造方法およびポリエーテル系共重合体組成物
JPH0369358A (ja) 耐熱性積層体
JPH03182344A (ja) 耐熱性積層体
JPH03122121A (ja) ポリエーテル系共重合体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546959

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18024250

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864387

Country of ref document: EP

Kind code of ref document: A1