WO2022049960A1 - 難燃性樹脂組成物、絶縁電線、ワイヤーハーネス - Google Patents

難燃性樹脂組成物、絶縁電線、ワイヤーハーネス Download PDF

Info

Publication number
WO2022049960A1
WO2022049960A1 PCT/JP2021/028628 JP2021028628W WO2022049960A1 WO 2022049960 A1 WO2022049960 A1 WO 2022049960A1 JP 2021028628 W JP2021028628 W JP 2021028628W WO 2022049960 A1 WO2022049960 A1 WO 2022049960A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
resin composition
less
mass
flame
Prior art date
Application number
PCT/JP2021/028628
Other languages
English (en)
French (fr)
Inventor
達也 長谷
達也 嶋田
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to DE112021004552.0T priority Critical patent/DE112021004552T5/de
Priority to CN202180053206.9A priority patent/CN115989274A/zh
Publication of WO2022049960A1 publication Critical patent/WO2022049960A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes

Definitions

  • This disclosure relates to flame-retardant resin compositions, insulated wires, and wire harnesses.
  • Insulated electric wires used in automobiles may be used in places with high temperatures such as around engines, and high heat resistance is required.
  • a crosslinked polyvinyl chloride resin or a crosslinked polyolefin resin has been used as a covering material for such an insulated electric wire.
  • a method for producing these crosslinked resins a method of crosslinking with an electron beam has been the mainstream (for example, Patent Document 1).
  • silane crosslinked polyolefin When silane crosslinked polyolefin is used for products used in environments that are prone to high temperatures, such as electric wires for automobiles, it is required to impart flame retardancy. Flame retardancy can be imparted by adding a flame retardant to the silane crosslinked resin. When a large amount of a flame retardant, particularly an inorganic flame retardant such as a metal hydroxide, is added, the mechanical properties of the resin component may deteriorate. In particular, a decrease in flexibility tends to be a problem.
  • a flame retardant particularly an inorganic flame retardant such as a metal hydroxide
  • a highly flexible base resin constituting the silane crosslinked polyolefin.
  • the highly flexible polyolefin-based resin include low-density resins having many amorphous portions and having an increased amount of copolymer using a metallocene-based polymerization catalyst.
  • these highly flexible polyolefin resins often have a low melting point.
  • blocking as described above, when a silane crosslinkable resin composition is formed by using a polyolefin resin having a low melting point as a base resin, blocking (adhesion due to close contact) of the material is likely to occur in the resin composition.
  • the handleability of the insulated wire deteriorates in the state before crosslinking.
  • the handleability in the manufacturing process of the insulated wire is significantly lowered.
  • the resin composition composed of such a low melting point polyolefin resin may have a sticky surface even in a crosslinked state, and the handleability of the product such as an insulated wire after crosslinking may be deteriorated. There is sex.
  • a silane crosslinkable polyolefin-based flame-retardant resin composition having both high flexibility and high handleability, and an insulated wire and wire harness configured by using such a flame-retardant resin composition.
  • the challenge is to provide.
  • the first flame retardant resin composition of the present disclosure contains, as resin components, (A) a silane grafted polyolefin obtained by grafting a silane coupling agent to a polyolefin, (B) an unmodified polyolefin, and (C) a carboxyl group. It contains a modified polyolefin having one or more functional groups selected from an ester group, an acid anhydride group, an amino group and an epoxy group, and further comprises (D) a flame retardant and (E) a cross-linking catalyst.
  • the crosslinked body contained and crosslinked with silane has a melting point of 80 ° C. or higher and a bending elasticity of 100 MPa or lower.
  • the second flame-retardant resin composition of the present disclosure contains, as resin components, (A) a silane grafted polyolefin obtained by grafting a silane coupling agent on a polyolefin, (B) an unmodified polyolefin, and (C) a carboxyl group.
  • the polyolefin contained and constituting the (A) silane graft polyolefin is (a-1) the first polyolefin having a density of 0.870 g / cm 3 or less, a melting point of 110 ° C. or more, and a bending elasticity of 11 MPa or less. a-2)
  • the second polyolefin having a density of 0.870 g / cm 3 or less, a melting point of 60 ° C. or less, and a bending elasticity of 11 MPa or less is contained, and the (a-1) first polyolefin and the above (a) are contained.
  • the mixing ratio of the second polyolefin is in the range of 30/70 or more and 70/30 or less in terms of the mass ratio of (a-1) / (a-2).
  • the insulated wire of the present disclosure includes a conductor and a wire covering material composed of a crosslinked body of the first or second flame-retardant resin composition and covering the outer periphery of the conductor.
  • the wire harness of the present disclosure has the insulated wire.
  • the flame-retardant resin composition disclosed in the present disclosure is a silane-crosslinkable polyolefin-based flame-retardant resin composition having both high flexibility and high handleability. Further, the insulated electric wire and the wire harness of the present disclosure are configured by using such a flame-retardant resin composition.
  • FIG. 1 is a perspective view showing an insulated wire according to an embodiment of the present disclosure.
  • FIG. 2 is a DSC curve obtained for the silane graft PE1.
  • the first flame retardant resin composition according to the present disclosure has, as a resin component, (A) a silane grafted polyolefin obtained by grafting a silane coupling agent on a polyolefin, (B) an unmodified polyolefin, and (C) a carboxyl group. , A modified polyolefin having one or more functional groups selected from an ester group, an acid anhydride group, an amino group and an epoxy group, and further, (D) a flame retardant, (E) a cross-linking catalyst,
  • the crosslinked body which contains the above and is crosslinked with silane has a melting point of 80 ° C. or higher and a bending elasticity of 100 MPa or lower.
  • the fact that the crosslinked product has a high melting point and a low elastic modulus means that the resin composition before cross-linking also has a high melting point and a low elastic modulus. do.
  • the first flame-retardant resin composition is a low-elasticity composition constituting a crosslinked body having an elastic modulus of 100 MPa or less, so that the resin composition and the crosslinked body show high flexibility.
  • the present flame-retardant resin composition is a composition having a high melting point and constitutes a crosslinked body having a high melting point of 80 ° C. or higher, blocking is unlikely to occur at a temperature of about room temperature.
  • the flame-retardant resin composition such as an insulated wire before crosslinking
  • stickiness is unlikely to occur at a temperature of about room temperature, and in products containing a cross-linked body of this flame-retardant resin composition such as an insulated wire after cross-linking, deterioration of handleability due to stickiness should be avoided.
  • the flame-retardant resin composition and the crosslinked product thereof have both high flexibility and handleability.
  • the polyolefin constituting the (A) silane graft polyolefin includes (a-1) the first polyolefin and (a-2) the second polyolefin, and the (a-1) first. It is preferable that the polyolefin has a higher melting point than the above-mentioned (a-2) second polyolefin.
  • the melting point and flexibility can be controlled in various ways as compared with the case where only one type is used. Therefore, it becomes easy to obtain a flame-retardant resin composition and a crosslinked body having both a low flexural modulus and a high melting point.
  • the first polyolefin (a-1) has a density of 0.870 g / cm 3 or less, a melting point of 110 ° C. or more, and a flexural modulus of 11 MPa or less
  • the second polyolefin (a-2) has a bending modulus of 11 MPa or less.
  • the density is 0.870 g / cm 3 or less
  • the melting point is 60 ° C. or less
  • the flexural modulus is 11 MPa or less
  • the mixing ratio of the (a-1) first polyolefin and the (a-2) second polyolefin is (a).
  • the mass ratio of -1) / (a-2) is preferably in the range of 30/70 or more and 70/30 or less.
  • Both the (a-1) first polyolefin and the (a-2) second polyolefin have a low density of 0.870 g / cm 3 or less and a low flexural modulus of 11 MPa or less.
  • (A-2) The second polyolefin has a low melting point of 60 ° C. or lower, whereas the (a-1) first polyolefin has a high melting point of 110 ° C. or higher.
  • the crosslinked product obtained by cross-linking the flame-retardant resin composition with silane has an elastic modulus of 100 MPa or less and a melting point of 80 ° C. or higher. It is easy to have. As a result, it becomes easy to form a flame-retardant resin composition and a crosslinked body having both high flexibility and handleability.
  • the second flame-retardant resin composition according to the present disclosure has, as a resin component, (A) a silane grafted polyolefin obtained by grafting a silane coupling agent on a polyolefin, (B) an unmodified polyolefin, and (C) a carboxyl group. , A modified polyolefin having one or more functional groups selected from an ester group, an acid anhydride group, an amino group, and an epoxy group, and further, (D) a flame retardant, (E) a cross-linking catalyst, and the like.
  • the polyolefins constituting the (A) silane graft polyolefin (a-1) are the first polyolefin having a density of 0.870 g / cm 3 or less, a melting point of 110 ° C. or more, and a bending elasticity of 11 MPa or less.
  • A-2) The second polyolefin having a density of 0.870 g / cm 3 or less, a melting point of 60 ° C. or less, and a bending elasticity of 11 MPa or less is contained, and the (a-1) first polyolefin and the above (a-1) are contained.
  • the mixing ratio of the second polyolefin is in the range of 30/70 or more and 70/30 or less in terms of the mass ratio of (a-1) / (a-2).
  • Two types of the second polyolefin are used. Since both of the two base polyolefins have low densities and elastic moduli, the entire flame-retardant resin composition and its crosslinked product have low flexural modulus and show high flexibility. Further, by using the (a-1) first polyolefin having a high melting point of 110 ° C. or higher in addition to the (a-2) second polyolefin having a low melting point of 60 ° C.
  • the high flexibility is not impaired.
  • the melting point of the crosslinked product of the flame-retardant resin composition can be increased to 80 ° C. or higher. Since the flame-retardant resin composition provides a crosslinked product having such a high melting point, the flame-retardant resin composition is less likely to cause blocking at a temperature of about room temperature, and is excellent in handleability. Become. Further, even in the resin after cross-linking, stickiness does not easily occur at a temperature of about room temperature, and the product containing the cross-linked product of the present flame-retardant resin composition is also highly handleable. As described above, the flame-retardant resin composition and the crosslinked product thereof have both high flexibility and handleability.
  • the (B) unmodified polyolefin has a density of 0.950 g / cm 3 or less and an elastic modulus of 200 MPa or less. Then, it becomes easy to increase the flexibility of the flame-retardant resin composition.
  • the (A) silane graft polyolefin is 10 parts by mass or more and 70 parts by mass or less
  • the (B) unmodified polyolefin is 20 parts by mass or more and 60 parts by mass.
  • the modified polyolefin (C) may be contained in an amount of 1 part by mass or more and 30 parts by mass or less. Then, it is easy to make the flame-retardant resin composition compatible with high flexibility and high handleability due to having a high melting point in a well-balanced manner.
  • At least one selected from magnesium hydroxide and aluminum hydroxide may be contained in a total amount of 30 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the resin component.
  • Magnesium hydroxide and aluminum hydroxide need to be added to the resin composition in a larger amount than those of brominated flame retardants in order to exhibit sufficient flame retardancy.
  • the resin component has high flexibility, so that even if these flame retardants are added, the resin composition as a whole can be used. You can keep the flexibility high. In particular, by setting the amount of the flame retardant added within the above range, it is easy to achieve both excellent flame retardancy and flexibility.
  • the average particle size of the magnesium hydroxide and aluminum hydroxide is preferably 0.5 ⁇ m or more and 5.0 ⁇ m or less. Then, these flame retardants are likely to be highly dispersed in the resin component without causing aggregation, and it is easy to maintain high flexibility of the flame retardant resin composition as a whole.
  • the content of the (E) cross-linking catalyst is preferably 0.1 part by mass or more and 1 part by mass or less with respect to 100 parts by mass of the resin component. Then, the cross-linking of the resin composition is sufficiently promoted, and it becomes easy to form a cross-linked body having a high melting point and a low flexural modulus.
  • the flame-retardant resin composition may contain at least one of (F) a hindered phenolic antioxidant, (G) a metal oxide, (H) a sulfur-based antioxidant, and (I) a lubricant.
  • F a hindered phenolic antioxidant
  • G a metal oxide
  • H a sulfur-based antioxidant
  • I a lubricant
  • the (H) sulfur-based antioxidant may contain at least one imidazole-based compound. Then, the flame-retardant resin composition can be imparted with an excellent antioxidant effect and heat resistance.
  • the contents of the components (F) to (I) may be as follows with respect to 100 parts by mass of the resin component. 0.5 parts by mass or more and 20 parts by mass or less for the (F) hindered phenolic antioxidant, 0.5 parts by mass or more and 15 parts by mass or less for the (G) metal oxide, and the above (H). 0.5 parts by mass or more and 20 parts by mass or less for the sulfur-based antioxidant, and 0.1 parts by mass or more and 5 parts by mass or less for the (I) lubricant.
  • the flame-retardant property exhibited by the resin component including flexibility and high handleability, is exhibited.
  • the effect of adding each component can be sufficiently obtained without impairing the characteristics of the resin composition.
  • the insulated wire according to the present disclosure includes a conductor and a wire covering material which is composed of a crosslinked body of any one of the flame-retardant resin compositions and covers the outer periphery of the conductor. Further, the wire harness according to the present disclosure has the insulated wire. These insulated wires and wire harnesses are made of the above-mentioned flame-retardant resin composition to have a wire covering material, so that they have high flexibility both before and after cross-linking, and are high due to suppression of blocking and stickiness. It will be easy to handle.
  • the flame-retardant resin composition according to the embodiment of the present disclosure is configured as a silane crosslinkable polyolefin resin composition containing the following components.
  • the insulated wire according to the embodiment of the present disclosure is configured by using the flame-retardant resin composition according to the embodiment of the present disclosure, and the wire harness according to the embodiment of the present disclosure is such a book. It includes an insulated wire according to an embodiment of the disclosure.
  • a flame-retardant resin composition according to an embodiment of the present disclosure (hereinafter, may be simply referred to as a “resin composition”) will be described.
  • the flame-retardant resin composition according to one embodiment of the present disclosure contains (A) silane grafted polyolefin, (B) unmodified polyolefin, and (C) as resin components. ) Contains modified polyolefin. Further, the present resin composition contains (D) a flame retardant and (E) a cross-linking catalyst. In addition, the present resin composition preferably contains at least one of (F) a hindered phenolic antioxidant, (G) a metal oxide, (H) a sulfur-based antioxidant, and (I) a lubricant. It is more preferable to include all of these components. Further, in the present resin composition, the crosslinked body crosslinked with silane has a melting point of 80 ° C. or higher and a flexural modulus of 100 MPa or lower.
  • each component contained in the present resin composition and the characteristics of the present resin composition will be described below.
  • the content of each component is expressed with the total mass of the resin components as 100 parts by mass.
  • the resin component refers to the above components (A) to (C), and when other resin materials are contained, the other resin materials are also included.
  • the content described for each group refers to the total content of the plurality of chemical species unless otherwise specified.
  • each characteristic value shall be a value measured at room temperature or in the atmosphere.
  • the silane grafted polyolefin is a polyolefin having a main chain grafted with a silane coupling agent, and the main chain has a silane graft chain. Has been introduced.
  • the type of polyolefin (base polyolefin) used for the silane graft polyolefin is not particularly limited, but a homopolymer of ethylene or propylene, or a copolymer of ethylene or propylene and ⁇ -olefin is preferable. An example is given. Further, as the above-mentioned polyolefin, a polyolefin elastomer based on an olefin may be used.
  • polyethylene As the polyethylene, it is preferable to use low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ultra low density polyethylene (VLDPE), and metallocene low density polyethylene. These polyethylenes may be used alone or in combination. When these low-density polyethylenes are used, the flexibility of the resin composition and its crosslinked body is particularly excellent.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE ultra low density polyethylene
  • metallocene low density polyethylene metallocene low density polyethylene
  • polystyrene foam elastomer examples include polyethylene-based elastomers (PE elastomers), polypropylene-based elastomers (PP elastomers) and other polyolefin-based thermoplastic elastomers (TPO), ethylene-propylene rubber (EPM, EPR), and ethylene-propylene-diene copolymers. (EPDM, EPT) and the like. These polyolefin elastomers may be used alone or in combination. When a polyolefin elastomer is used, high flexibility can be imparted to the resin composition and the crosslinked product thereof.
  • PE elastomers polyethylene-based elastomers
  • PP elastomers polypropylene-based elastomers
  • TPO polyolefin-based thermoplastic elastomers
  • EPM ethylene-propylene rubber
  • EPDM ethylene-propylene-diene copolymers
  • a base polyolefin of the silane graft polyolefin at least one selected from polyethylene, polypropylene, ethylene-butene copolymer, ethylene-octene copolymer, and polyolefin elastomer among those listed above may be used. preferable. Above all, it is preferable to use a polyolefin elastomer from the viewpoint of achieving high flexibility in the resin composition.
  • the base polyolefins constituting (A) silane grafted polyolefin include (a-1) first polyolefin and (a-2) second polyolefin having different melting points of at least the base polyolefins from each other.
  • the plurality of base polyolefins are of the same type, and are mutually characteristic due to differences in specific molecular chain structures such as the degree of polymerization of the main chain, the presence / absence of branched chains, the number, and the length. It may be different or different. In general, the more branched the polymer chain of polyolefin is and the longer the branched side chain is, the lower the density is and the better the flexibility is, but the melting point tends to be lowered accordingly.
  • the silane coupling agent used for the (A) silane graft polyolefin is not particularly limited, but for example, vinyl alkoxysilanes such as vinyltrimethoxysilane, vinyltriethoxysilane, and vinyltributoxysilane, and vinyltriacetoxysilane. , Gamma-methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane and the like can be exemplified. These silane coupling agents may be used alone or in combination of two or more.
  • the upper limit of the graft amount of the silane coupling agent is preferably 15% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less from the viewpoint of preventing excessive cross-linking.
  • the lower limit of the graft amount is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, and further preferably 1.5% by mass or more.
  • the base polyolefin constituting the silane graft polyolefin one having a density of 0.870 g / cm 3 or less shall be used in an ungrafted state (hereinafter, the same applies to the density of the base polyolefin of the silane graft polyolefin). Is preferable.
  • the density of the base polyolefin constituting the silane graft polyolefin is not particularly limited, but from the viewpoints of easily increasing the melting point of the resin composition and easily forming a resin composition having excellent wear resistance.
  • the density is preferably 0.855 g / cm 3 or more, more preferably 0.857 g / cm 3 or more.
  • each polyolefin has the above-mentioned density, and further, the two or more kinds of polyolefins.
  • the mixture also preferably has the above density.
  • the density of the resin material can be measured according to ASTM D790.
  • the bending elastic modulus of the silane graft polyolefin (A) is preferably 11 MPa or less (value after silane grafting). Since the (A) silane graft polyolefin has a low flexural modulus, it is easy to increase the flexibility of the (A) silane graft polyolefin and the resin composition containing the silane graft polyolefin. More preferably, the flexural modulus is 10 MPa or less, more preferably 8 MPa or less.
  • the elastic modulus of the silane-grafted polyolefin is not particularly limited, but the silane-grafted polyolefin having a low flexural modulus tends to show a low melting point, and is resistant to increasing the melting point of the resin composition. From the viewpoint of obtaining a resin composition having high wear resistance and the like, it is preferably 3 MPa or more, more preferably 5 MPa or more.
  • the grafted body of each polyolefin has the bending elastic modulus as described above, and further, these 2 It is preferable that the grafted body of the mixture of polyolefins of more than one species also has the flexural modulus as described above.
  • the flexural modulus of the resin material can be measured according to ASTM D790.
  • the silane graft polyolefin preferably has a melting point of 80 ° C. or higher (value after silane grafting). It is more preferably 100 ° C. or higher, still more preferably 110 ° C. or higher, 120 ° C. or higher.
  • a melting point 80 ° C. or higher (value after silane grafting). It is more preferably 100 ° C. or higher, still more preferably 110 ° C. or higher, 120 ° C. or higher.
  • the upper limit of the melting point is not particularly specified, but as a silane graft polyolefin having excellent flexibility and other physical characteristics, the temperature is generally 135 ° C.
  • the melting point of the resin material can be measured by the differential scanning calorimetry (DSC) in accordance with JIS K7121.
  • DSC differential scanning calorimetry
  • the above melting point is a value measured through the silane graft with respect to a mixture of these two kinds of polyolefins.
  • DSC differential scanning calorimetry
  • a single endothermic peak is usually observed (see FIG. 2), so the temperature at the peak top.
  • the temperature at the peak top of the lowest peak may be set as the melting point.
  • the characteristics of the (A) silane graft polyolefin have a great influence on the characteristics of the resin composition as a whole, but when the resin composition as a whole is made into a crosslinked body, it is 100 MPa or less.
  • the specific configuration of the base polyolefin constituting (A) silane grafted polyolefin is not particularly limited as long as it has a flexural modulus and a melting point of 80 ° C. or higher, and as described above, there is only one type. However, it may be a mixture of two or more kinds.
  • low-density polyolefins tend to be flexible, giving them a low flexural modulus, while also tending to have a low melting point.
  • the types of polyolefins that can be selected are limited.
  • the physical properties such as the flexural modulus and the melting point obtained through the silane graft as the whole mixture with a high degree of freedom. Therefore, it becomes easy to obtain a resin composition and a crosslinked body having both a low flexural modulus and a high melting point.
  • the base polyolefin constituting (A) the silane graft polyolefin contains (a-1) the first polyolefin and (a-2) the second polyolefin, and (a-1) the first. It is preferable that the polyolefin of (a-2) has a higher melting point than the second polyolefin. This makes it easy to obtain (a-2) a low flexural modulus mainly due to the contribution of the second polyolefin and (a-1) a high melting point due to the contribution of the first polyolefin as the base polyolefin as a whole.
  • the specific melting points of the (a-1) first polyolefin and (a-2) second polyolefin are not particularly limited, but are assumed to be the entire base polyolefin constituting the (A) silane grafted polyolefin.
  • (A-1) The first polyolefin has a higher melting point than the standard, and (a-2) the second polyolefin has a higher melting point than the standard. Also preferably has a low melting point.
  • the difference in melting point between the (a-1) first polyolefin and the (a-2) second polyolefin is not particularly limited, but makes it easy to achieve both a low flexural modulus and a high melting point. From the viewpoint, it is preferably 50 ° C. or higher, more preferably 60 ° C. or higher. There is no particular upper limit to the difference between the melting points of the two, but it is preferable to keep the temperature at about 100 ° C. or lower.
  • A Two types of base polyolefins capable of giving a flexural modulus of 100 MPa or less and a melting point of 80 ° C. or more in a crosslinked body composed of the entire resin composition according to the embodiment of the present disclosure containing a silane graft polyolefin.
  • the following can be exemplified as a suitable combination of.
  • Second polyolefin Melting point 60 ° C. or lower
  • Both (a-1) first polyolefin and (a-2) second polyolefin are described above.
  • the density is preferably 0.870 g / cm 3 or less, more preferably 0.866 g / cm 3 or less.
  • the lower limit is not particularly limited, it is preferably 0.855 g / cm 3 or more, and further preferably 0.857 g / cm 3 or more.
  • both the (a-1) first polyolefin and the (a-2) second polyolefin preferably have a flexural modulus of 11 MPa or less, more preferably 10 MPa or less, and 8 MPa or less, as described above.
  • the lower limit is not particularly limited, it is preferably 3 MPa or more, more preferably 5 MPa or more.
  • both the (a-1) first polyolefin and the (a-2) second polyolefin having a low density of 0.870 g / cm 3 or less and a low flexural modulus of 11 MPa or less.
  • a low flexural modulus is likely to be obtained for the base polyolefin as a whole.
  • Polyolefins having low density and low flexural modulus often show a low melting point, but by using the (a-2) second polyolefin having a melting point of 110 ° C. or higher, the entire base polyolefin of the component (A) can be used. Furthermore, it is easy to secure a melting point of 80 ° C. or higher for the resin composition and the crosslinked body as a whole.
  • the mixing ratio of (a-1) the first polyolefin and (a-2) the second polyolefin is (a-1) / (a-2).
  • the mass ratio is preferably 30/70 or more, more preferably 40/60 or more. Further, it is preferably 70/30 or less, more preferably 60/40 or less.
  • polyolefins it is preferable to use only two types of polyolefins, one type each as the second polyolefin, but a crosslinked product composed of the entire resin composition can be provided with a melting point of 80 ° C. or higher and a flexural modulus of 100 MPa or less. If it is, it may contain yet another polyolefin. Further, as the (a-1) first polyolefin and (a-2) second polyolefin, two or more kinds of polyolefins may be contained, respectively.
  • the unmodified polyolefin is a polyolefin composed of a hydrocarbon having no modified group introduced by, for example, graft polymerization or copolymerization. Specific examples thereof include ethylene and propylene homopolymers, ethylene or propylene and ⁇ -olefin copolymers, and olefin-based polyolefin elastomers. One of these polyolefins may be used alone, or two or more thereof may be used in combination. It is preferable to use at least one selected from polyethylene, polypropylene, an ethylene-butene copolymer, and an ethylene-octene copolymer.
  • polyethylene As the polyethylene, it is preferable to use low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ultra low density polyethylene (VLDPE), and metallocene low density polyethylene. These polyethylenes may be used alone or in combination. When these low-density polyethylenes are used, the flexibility of the resin composition and its crosslinked body is particularly excellent.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE ultra low density polyethylene
  • metallocene low density polyethylene metallocene low density polyethylene
  • the polyolefin elastomer includes, for example, polyethylene-based elastomer (PE elastomer), polypropylene-based thermoplastic elastomer (TPO) such as polypropylene-based elastomer (PP elastomer), ethylene-propylene rubber (EPM, EPR), and ethylene-propylene-diene.
  • PET polyethylene-based elastomer
  • TPO polypropylene-based thermoplastic elastomer
  • PP elastomer polypropylene-based elastomer
  • EPM ethylene-propylene rubber
  • EPDM ethylene-propylene-diene-diene
  • the (B) unmodified polyolefin may be the same as or different from the polyolefin used for the main chain of the (A) silane graft polyolefin. Excellent compatibility when the same type of polyolefin is used.
  • the density of the unmodified polyolefin is not particularly limited, but is preferably 0.855 g / cm 3 or more, more preferably 0.860 g / cm 3 or more. Having such a density makes it easy to obtain a high melting point in the resin composition as a whole and in the crosslinked body thereof, and it becomes easy to suppress blocking of the resin composition and stickiness of the crosslinked body.
  • the density is preferably 0.950 g / cm 3 or less, and more preferably 0.940 g / cm 3 or less. Then, it is easy to increase the flexibility of the resin composition as a whole and the crosslinked product thereof.
  • the flexural modulus of the unmodified polyolefin is also not particularly limited, but is preferably 200 MPa or less, more preferably 100 MPa or less. When having such a flexural modulus, it is easy to increase the flexibility of the resin composition as a whole and in the crosslinked body thereof. A lower limit is not particularly set for the flexural modulus, but if it is set to 3 MPa or more, further 10 MPa or more, it becomes easy to secure a high melting point as a whole resin composition and in the crosslinked body thereof.
  • the modified polyolefin is a modified polyolefin having one or more functional groups selected from a carboxyl group, an ester group, an acid anhydride group, an amino group and an epoxy group.
  • the modified polyolefin is one in which a functional group is introduced by graft-polymerizing a polymerizable compound having the above functional group on an unmodified base polyolefin composed of one or more ⁇ -olefins. Can be done.
  • a functional group can be introduced by copolymerizing the above-mentioned polymerizable compound having a functional group with the polymerizable compound and a polymerizable olefin (polymerizable monomer).
  • a silanol derivative such as methacryloxyalkylsilane
  • the modified polyolefin has one or more functional groups selected from a carboxyl group, an ester group, an acid anhydride group, an amino group, and an epoxy group, and thus exhibits high affinity for inorganic components. Since it has a polyolefin chain, it has a high affinity with resin components such as (A) silane grafted polyolefin and (B) unmodified polyolefin. Therefore, the (C) modified polyolefin functions as a compatibilizer between the resin component and the inorganic component such as a flame retardant, and enhances the dispersibility and adhesiveness of the inorganic component in the resin component.
  • the polymerizable compound having a carboxyl group is not particularly limited as long as it is a compound having a polymerizable group and a carboxyl group such as a carbon-carbon double bond in the molecule.
  • acrylic acid, methacrylic acid, crotonic acid, ⁇ -chloroacrylic acid, itaconic acid, butentricarboxylic acid, maleic acid, fumaric acid, or derivatives containing these acids as part of their molecular structure can be mentioned.
  • an acid anhydride group can be introduced by using the acid anhydride.
  • an ester compound obtained by reacting the above-mentioned polymerizable compound having a carboxyl group with an alcohol can be used. Further, it may be an ester compound obtained by reacting an alcohol having a carbon-carbon double bond with various carboxylic acids. Examples of such a compound include vinyl acetate, vinyl propionate, and the like.
  • the polymerizable compound having an amino group is not particularly limited as long as it is a compound having a polymerizable group and an amino group such as a carbon-carbon double bond in the molecule.
  • esters obtained by reacting the above-mentioned polymerizable compound having a carboxyl group with an alkanolamine, vinylamine, allylamine, or a derivative containing the structure of these compounds as a part of the molecular structure can be mentioned.
  • the polymerizable compound having an epoxy group is not particularly limited as long as it is a compound having a polymerizable group such as a carbon-carbon double bond and an epoxy group in the molecule.
  • acid glycidyl esters obtained by reacting the above-mentioned polymerizable compound having a carboxyl group with glycidyl alcohol, glycidyl ethers such as vinyl glycidyl ether, allyl glycidyl ether, glycidyloxyethyl vinyl ether, and styrene-p-glycidyl ether, Examples thereof include p-glycidylstyrene and derivatives containing the structure of these compounds as part of the molecular structure.
  • the polymerizable monomer copolymerizable with the polymerizable compound having each functional group is particularly any compound having a polymerizable group such as a carbon-carbon double bond in the molecule.
  • a polymerizable group such as a carbon-carbon double bond in the molecule.
  • an olefin monomer having no functional group such as ethylene or propylene may be used, or a polymerizable monomer having a functional group other than the carboxyl group or the epoxy group may be used.
  • One of these polymerizable monomers may be used alone, or two or more thereof may be used in combination.
  • the resin composition according to the present embodiment contains (A) silane grafted polyolefin, (B) unmodified polyolefin, and (C) modified polyolefin described above as resin components.
  • the mixing ratio of these resin components is not particularly limited, but (A) 10 parts by mass or more and 70 parts by mass or less of the silane grafted polyolefin, (B) 20 parts by mass or more of the unmodified polyolefin, and 60 parts by mass. It is preferable to contain the modified polyolefin (C) in an amount of 1 part by mass or less, 1 part by mass or more, and 30 parts by mass or less.
  • the resin composition and the crosslinked body thereof tend to have a low flexural modulus and a high melting point in a well-balanced manner and have excellent wear resistance.
  • the compatibility and affinity between the components contained in the resin composition tend to be excellent.
  • the resin composition according to the present embodiment contains only the above-mentioned components (A) to (C) as the resin component.
  • other resin components may be contained as long as the characteristics such as low elastic modulus and high melting point exhibited by those components are not impaired.
  • the flame retardant plays a role of enhancing the flame retardancy of the resin composition.
  • an inorganic flame retardant such as a metal hydroxide and an organic flame retardant such as a bromine flame retardant can be used.
  • any kind of flame retardant may be used.
  • an inorganic flame retardant particularly a metal hydroxide, as the flame retardant.
  • Examples of the flame retardant made of metal hydroxide include magnesium hydroxide, aluminum hydroxide, zirconium hydroxide and the like, and one or more kinds of metal hydroxide can be used.
  • magnesium hydroxide and aluminum hydroxide are particularly preferable from the viewpoint of low cost and the like.
  • the metal hydroxide may be treated with a surface treatment agent such as a silane coupling agent, a higher fatty acid, or a polyolefin wax for the purpose of improving dispersibility in the resin component.
  • a surface treatment agent such as a silane coupling agent, a higher fatty acid, or a polyolefin wax for the purpose of improving dispersibility in the resin component.
  • the resin composition according to the present embodiment contains (C) modified polyolefin as a resin component, the dispersibility of the metal hydroxide is excellent even without surface treatment.
  • the metal hydroxide preferably has an average particle size (D50) of 0.5 ⁇ m or more. Then, agglutination between particles is less likely to occur.
  • the average particle size of the metal hydroxide is preferably 5.0 ⁇ m or less. Then, the metal hydroxide particles are easily dispersed in the resin component. By suppressing aggregation and improving dispersibility, the particles of the metal hydroxide are uniformly distributed in the resin composition in the form of fine particles, thereby exhibiting high flame retardancy and depending on the resin component. Properties such as the exhibited flexibility are less likely to be impaired by the metal hydroxide particles.
  • the amount of the metal hydroxide added is preferably 30 parts by mass or more with respect to 100 parts by mass of the resin component. Then, high flame retardancy can be obtained. On the other hand, the amount of the metal hydroxide added is preferably 150 parts by mass or less with respect to 100 parts by mass of the resin component. Then, it is possible to avoid saturation of the flame retardancy improving effect and increase the flexibility of the resin composition.
  • an organic flame retardant such as a brominated flame retardant may be used together with or instead of an inorganic flame retardant such as a metal hydroxide.
  • the brominated flame retardant include brominated flame retardants having a phthalimide structure such as ethylenebistetrabromophthalimide and ethylenebistribromophthalimide, ethylenebispentabromophenyl, tetrabromobisphenol A (TBBA), hexabromocyclododecane (HBCD), and the like.
  • Examples thereof include TBBA-carbonate oligomer, TBBA-epoxy oligomer, brominated polystyrene, TBBA-bis (dibromopropyl ether), poly (dibromopropyl ether), hexabromobenzene (HBB) and the like. These flame retardants may be used alone or in combination of two or more.
  • an inorganic flame retardant such as antimony trioxide in combination in order to enhance the flame retardancy.
  • antimony trioxide it is preferable to use one having an average particle size of 3 ⁇ m or less, more preferably 1 ⁇ m or less.
  • Antimony trioxide may be treated with a surface treatment agent such as a silane coupling agent, a higher fatty acid, or a polyolefin wax for the purpose of improving dispersibility.
  • the brominated flame retardant and the inorganic flame retardant are mixed in an equivalent ratio, and the brominated flame retardant: the inorganic flame retardant is used. It is preferable to include the flame retardant in the range of 3: 1 to 2: 1. Further, in the resin composition, it is preferable to add 10 to 40 parts by mass of the brominated flame retardant and 5 to 20 parts by mass of antimony trioxide with respect to 100 parts by mass of the resin component.
  • the amount of each added can be reduced, and 10 to 50 metal hydroxides are used with respect to 100 parts by mass of the total resin component. It is preferable to mix the brominated flame retardant in the range of 5 to 20 parts by mass and, if necessary, the inorganic flame retardant in the range of 5 to 20 parts by mass.
  • Crosslinking catalyst is (A) silanol condensation catalyst for silane crosslinking of silane grafted polyolefin.
  • the cross-linking catalyst include carboxylates of metals such as tin, zinc, iron, lead and cobalt, titanic acid esters, organic bases, inorganic acids and organic acids. Specifically, dibutyltin dilaurate, dibutyltin dimarate, dibutyltin bisisooctylthioglycol ester salt, dibutyltin ⁇ -mercaptopropionate, dibutyltin diacetate, dioctyltin dilaurate, stannous acetate, first caprylic acid.
  • Tin, lead naphthenate, cobalt naphthenate, barium stearate, calcium stearate, tetrabutyl titanate ester, tetranonyl titanate ester, dibutylamine, hexylamine, pyridine, sulfuric acid, hydrochloric acid, toluenesulfonic acid, acetic acid, stearic acid, Maleic acid and the like can be exemplified.
  • the cross-linking catalyst dibutyltin dilaurate, dibutyltin dimalate, dibutyltin bisisooctylthioglycol ester salt, and dibutyltin ⁇ -mercaptopropionate are preferably used.
  • the cross-linking reaction proceeds, so it is preferable to mix the cross-linking catalyst immediately before coating the electric wire.
  • the cross-linking catalyst as a cross-linking catalyst batch in which the cross-linking catalyst is mixed with the binder resin in advance, it is possible to prevent an unintended cross-linking reaction of the (A) silane graft polyolefin, and the dispersibility of the cross-linking catalyst is excellent, so that the cross-linking reaction can be sufficiently promoted. .. Further, by using it as a cross-linking catalyst batch, it becomes easy to control the amount of the cross-linking catalyst added.
  • the polyolefins used in the above-mentioned (A) to (C) can be used.
  • low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), ultra-low-density polyethylene (VLDPE), and metallocene low-density polyethylene are preferable.
  • LLDPE linear low-density polyethylene
  • VLDPE ultra-low-density polyethylene
  • metallocene low-density polyethylene are preferable.
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • VLDPE ultra-low-density polyethylene
  • metallocene low-density polyethylene metallocene low-density polyethylene
  • a part of (B) unmodified polyolefin may be used as the binder resin.
  • the cross-linking catalyst batch preferably contains 0.5 parts by mass or more, more preferably 1 part by mass or more of the cross-linking catalyst with respect to 100 parts by mass of the binder resin. Then, the cross-linking reaction is likely to proceed.
  • the content of the crosslinking catalyst in the crosslinking catalyst batch is preferably 5 parts by mass or less with respect to 100 parts by mass of the binder resin. Then, the dispersibility of the catalyst is excellent.
  • the cross-linking catalyst is preferably 0.1 parts by mass or more as the content of the cross-linking catalyst itself with respect to 100 parts by mass of the resin component constituting the flame-retardant resin composition. Then, it becomes easy to proceed the cross-linking reaction. On the other hand, the content is preferably 1.0 part by mass or less. Then, excessive cross-linking can be prevented.
  • Hindered phenol-based antioxidants include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] and thiodiethylene.
  • antioxidants may be used alone or in combination of two or more.
  • the amount of the hindered phenolic antioxidant added is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, based on 100 parts by mass of the resin component. Then, an excellent antioxidant effect can be obtained. On the other hand, the addition amount is preferably 20 parts by mass or less, more preferably 10 parts by mass or less. Then, in the resin composition, the influence of the addition of a large amount of antioxidant such as bloom can be suppressed.
  • (G) Metal Oxide By adding a metal oxide to the resin composition, the heat resistance of the resin composition can be enhanced.
  • the metal oxide having a high effect of improving heat resistance include zinc oxide, aluminum oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide and the like.
  • zinc oxide is preferably used, and the average particle size of zinc oxide is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the amount of the (G) metal oxide added is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, with respect to 100 parts by mass of the resin component. Then, the effect of improving the heat resistance becomes high. On the other hand, the addition amount is preferably 15 parts by mass or less, more preferably 10 parts by mass or less. Then, agglutination of the metal oxide particles is less likely to occur, and the dispersibility in the resin component is improved.
  • (H) Sulfur-based Antioxidant By adding the (H) sulfur-based antioxidant to the resin composition, oxidation of the resin composition can be suppressed and the heat resistance of the resin composition can be enhanced.
  • the type of the sulfur-based antioxidant (H) is not particularly limited, but it is preferable to use an imidazole-based compound.
  • mercaptobenzimidazole As an antioxidant composed of an imidazole compound, mercaptobenzimidazole can be exemplified.
  • the mercaptobenzimidazole include 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, 4-mercaptomethylbenzimidazole, 5-mercaptomethylbenzimidazole, and zinc salts of these compounds.
  • 2-Mercaptobenzimidazole and its zinc salt are particularly preferred because they have a high melting point and are stable at high temperatures due to less sublimation during mixing.
  • the amount of the (H) sulfur-based antioxidant added is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, with respect to 100 parts by mass of the resin component. Then, the antioxidant effect and the heat resistance improving effect are enhanced. On the other hand, the addition amount is preferably 20 parts by mass or less, more preferably 15 parts by mass or less. Then, in the resin composition, the influence of the addition of a large amount of antioxidant such as bloom can be suppressed.
  • Lubricating agent imparts a lubricating effect to the resin composition.
  • the lubricant either an internal lubricant or an external lubricant may be used.
  • the types of compounds constituting the lubricant are not particularly limited, and hydrocarbons such as liquid paraffin, paraffin wax and polyethylene wax, fatty acids such as stearic acid, oleic acid and erucic acid, higher alcohols, stearic acid amides, oleic acid amides and elca Fatty acid amides such as acid amides, alkylene fatty acid amides such as methylene bisstearic acid amides and ethylene bisstearic acid amides, metal soaps such as stearic acid metal salts, ester-based lubricants such as stearic acid monoglycerides, stearyl stearate, and cured oils. Be done.
  • the lubricant from the viewpoint of compatibility with the resin component, it is
  • the amount of the lubricant added is preferably 0.1 part by mass or more with respect to 100 parts by mass of the resin component. Then, a high lubrication effect can be obtained. On the other hand, the amount added is preferably 5 parts by mass or less.
  • the flame-retardant resin composition according to the present embodiment may contain various additives as long as the characteristics such as flexibility and high melting point are not impaired.
  • the additive include a metal deactivator, an inorganic filler, a pigment, a silicone oil, and the like.
  • a metal inactivating agent a copper inactivating agent, a chelating agent, or the like can be used, and specifically, 2,3-bis [3- (3,5-ditert-butyl-4-hydroxyphenyl).
  • Propionyl] Hydrazide derivatives such as propionohydrazide and salicylic acid derivatives such as 3- (N-salicyloyl) amino-1,2,4-triazole can be used.
  • the inorganic filler include calcium carbonate and the like. From the viewpoint of resin strength and the like, the amount of the inorganic filler added is preferably 30 parts by mass or less with respect to 100 parts by mass of the total resin components.
  • the crosslinked body formed through silane cross-linking has a high melting point of 80 ° C. or higher and a low flexural modulus of 100 MPa or lower.
  • the fact that the crosslinked product has a high melting point and a low flexural modulus indicates that the resin composition before cross-linking also has a high melting point and a low flexural modulus.
  • the resin does not flow in the crosslinked body even if it is heated to a temperature higher than the melting point, an endothermic peak appears in the DSC, and the peak top of the endothermic peak becomes the melting point of the crosslinked body. Since the melting point of the crosslinked product is about the same as the melting point of the resin composition before crosslinking, it is preferable that the resin composition before crosslinking also has a melting point of 80 ° C. or higher.
  • the present resin composition is a low-elasticity resin composition that gives a bending elastic modulus of 100 MPa or less in the crosslinked body, in the state of the resin composition before cross-linking and in the state of the cross-linked body subjected to silane cross-linking.
  • the present resin composition is a high melting point resin composition that gives a melting point of 80 ° C. or higher in a crosslinked body
  • the resin composition is less likely to melt or soften due to the influence of heat, for example, at room temperature. At moderate temperatures, blocking is unlikely to occur. Further, in the crosslinked body, stickiness is less likely to occur on the surface at a temperature of about room temperature. Blocking of the resin composition and stickiness of the crosslinked body reduce the handleability of the resin composition and the crosslinked body at room temperature, but by suppressing these phenomena, the resin composition and the crosslinked body are at room temperature. Handleability is high. When a product such as an insulated wire is manufactured using this resin composition, blocking in the state of the resin composition before cross-linking during manufacturing and stickiness in the state of the finished product after cross-linking are suppressed, which is high. Handleability can be obtained.
  • the present resin composition has both high flexibility and high handleability, which gives a crosslinked body having a melting point of 80 ° C. or higher and a flexural modulus of 100 MPa or lower.
  • the melting point of the crosslinked product is more preferably 100 ° C. or higher, more preferably 110 ° C. or higher.
  • the flexural modulus of the crosslinked body is more preferably less than 90 MPa, more preferably less than 80 MPa.
  • the present resin composition contains at least three kinds of polyolefins as components (A) to (C) in total, when the melting point of the crosslinked body of the resin composition is measured by DSC, it is usually normal. Has a single endothermic peak. The melting point obtained as the temperature of the single peak top is 80 ° C. or higher. However, when a plurality of endothermic peaks are observed, the melting point may be 80 ° C. or higher, with the temperature of the peak top of the lowest temperature peak as the melting point. Further, although it does not prevent some of the components other than the resin component from having a melting point of less than 80 ° C., each component other than the resin component does not give a melting point of less than 80 ° C. in the crosslinked body. Is preferable.
  • the resin composition according to the present embodiment contains, for example, each component (A) to (E) and various additive components added as needed, and is biaxial. It can be prepared by kneading using an extrusion kneader or the like. However, when the (A) silane graft polyolefin and (E) the cross-linking catalyst are mixed, the cross-linking reaction proceeds due to the moisture in the atmosphere. From the viewpoint of preventing cross-linking reactions such as storage and other unintended reactions, it is preferable to mix various components immediately before coating the electric wire. As such a method, it is preferable to prepare a silane graft batch, a flame-retardant batch, and a cross-linking catalyst batch in advance and pelletize them.
  • the silane graft batch is a batch containing (A) silane graft polyolefin.
  • the flame retardant batch is a batch containing (B) unmodified polyolefin, (C) modified polyolefin, and (D) flame retardant.
  • the cross-linking catalyst batch is a batch containing (E) a cross-linking catalyst and a binder resin.
  • Each component (F) to (I) and other various additive components added as needed are a silane graft batch or a flame-retardant batch as long as the characteristics of the components constituting each batch are not impaired. , May be included in any of the cross-linking catalyst batches.
  • the flame-retardant resin composition according to the modified form will be briefly described.
  • the crosslinked body composed of the resin composition has a melting point of 80 ° C. or higher and a flexural modulus of 100 MPa or higher as a whole.
  • the resin composition does not necessarily give a crosslinked body having a melting point and / or a flexural modulus thereof, the following (a-1) th is used as the base polyolefin resin constituting the (A) silane graft polyolefin.
  • a resin composition having both high flexibility and high handleability can be obtained.
  • the mixing ratio of the (a-1) first polyolefin and (a-2) second polyolefin is (a-1) / (a-).
  • the mass ratio of 2) is in the range of 30/70 or more and 70/30 or less.
  • the resin composition of the (A) silane grafted polyolefin as a whole is further increased. High flexibility can be obtained by having a low flexural modulus as a whole and the crosslinked body as a whole.
  • (a-1) the first polyolefin has a high melting point
  • (A) the silane graft polyolefin as a whole the entire resin composition, and the crosslinked body as a whole have a high melting point. , Handleability at room temperature is improved.
  • polyolefins with a lower melting point tend to be silane grafted polyolefins and show a lower flexural modulus when crosslinked. Therefore, when a silane graft polyolefin is formed using a single polyolefin, it may be difficult to achieve both a desired low flexural modulus and a high melting point in the composition as a whole.
  • a silane graft polyolefin is formed using a single polyolefin, it may be difficult to achieve both a desired low flexural modulus and a high melting point in the composition as a whole.
  • the resin composition and cross-linking are performed. It is easy to achieve both high melting point and low flexural modulus in the body.
  • the material composition and properties of the (A) silane graft polyolefin having (a-1) the first polyolefin and (a-2) the second polyolefin as the base polyolefin are described above.
  • the material composition and properties listed as preferred embodiments can be suitably applied.
  • the material composition and properties mentioned as preferable forms in the embodiment described in detail above can be suitably applied. ..
  • the insulated wire 1 has a conductor 2 and a wire covering material (sometimes simply referred to as a covering material) 3 that covers the outer periphery of the conductor 2.
  • the electric wire covering material 3 is composed of a crosslinked body obtained by cross-linking the flame-retardant resin composition according to the embodiment of the present disclosure described above.
  • the conductor 2 of the insulated wire 1 is not particularly limited in its conductor diameter, material, etc., and can be appropriately selected according to the intended use of the insulated wire 1.
  • Examples of the material constituting the conductor 2 include metal materials such as copper, copper alloy, aluminum, and aluminum alloy. Aluminum or an aluminum alloy is preferable from the viewpoint of reducing the weight of the electric wire.
  • the layer of the wire covering material 3 may be a single layer or a plurality of layers of two or more.
  • the resin composition according to the embodiment of the present disclosure may be arranged on the outer periphery of the conductor 2 and then crosslinked.
  • each of the above silane graft batch, flame-retardant batch, and cross-linking catalyst batch is heat-kneaded using a normal kneader such as a Bambali mixer, a pressure kneader, a kneading extruder, a twin-screw extruder, or a roll.
  • a normal kneader such as a Bambali mixer, a pressure kneader, a kneading extruder, a twin-screw extruder, or a roll.
  • the resin composition obtained by using an extrusion molding machine or the like may be extruded and coated on the outer periphery of the conductor 2 and then crosslinked.
  • a method of cross-linking the covering material 3 a method of exposing the covering layer of the coated electric wire to steam or water can be mentioned. At this time, it is preferable that the contact with steam or water is performed within a temperature range of 90 ° C. from room temperature within 48 hours. More preferably, it is carried out within a temperature range of 50 ° C. to 80 ° C. for 8 hours or more and 24 hours or less.
  • the wire harness according to the embodiment of the present disclosure has the above-mentioned insulated wire 1.
  • the wire harness may be in the form of a single wire bundle in which only the insulated wire 1 is bundled together, or in the form of a mixed wire bundle in which the insulated wire 1 and other insulated wires are bundled in a mixed state. ..
  • the wire bundle is configured as a wire harness by being bundled with a wire harness protective material such as a corrugated tube or a binding material such as an adhesive tape.
  • the insulated wire 1 includes various electric wires for automobiles, electric / electronic devices, information and communication, electric power supply, ships, aircraft, etc. in a single state or in a state of a wire harness. Can be used for. In particular, it can be suitably used as an electric wire for automobiles.
  • Silane grafting was performed on each of the base polyolefins obtained by kneading or a single polyolefin to obtain (A) silane grafted polyolefins (silane grafts PE1 to PE14).
  • silane grafting 1.5 parts by mass of vinyltrimethoxysilane (“KBM1003” manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.15 parts by mass of dicumyl peroxide (“Parkmill D” manufactured by NOF Corporation) with respect to 100 parts by mass of the base polyolefin.
  • KBM1003 vinyltrimethoxysilane
  • Parkmill D dicumyl peroxide
  • Table 1 shows the specific product names, densities, melting points, and flexural modulus of the polyolefins (PE1 to PE6) used as raw materials.
  • silane graft PE1 to PE14 the compounding ratio of the raw materials is shown in units of mass.
  • the values of melting point and flexural modulus measured for the base polyolefin after grafting are shown.
  • the melting point was measured by the DSC method in accordance with JIS K7121.
  • FIG. 2 shows, as an example, the DSC curve obtained for the silane graft PE1. According to this measurement result, a single peak corresponding to melting is observed around 121 ° C. In all of the silane grafts PE1 to PE14, a peak corresponding to a single melting was observed, and the temperature of the apex was taken as the melting point.
  • the flexural modulus was measured in accordance with ASTM D790.
  • Unmodified Polyolefin As the unmodified polyolefin (unmodified PE1 to PE3, PP1), the following was prepared. Unmodified PE1: "Engage 7467" manufactured by Dow Elastomer (density: 0.862 g / cm 3 , flexural modulus: 4 MPa) -Unmodified PE2: "Engage 7256" manufactured by Dow Elastomer (density: 0.885 g / cm 3 flexural modulus: 30 MPa) -Unmodified PE3: "Novatec HDHY331" manufactured by Japan Polypropylene Corporation (density: 0.951 g / cm 3 , flexural modulus: 1050 MPa) Unmodified PP1: "Newcon NAR6" manufactured by Japan Polypropylene Corporation (density: 0.890 g / cm 3 , flexural modulus: 550 MPa)
  • Modified Polyolefin The following modified polyolefins (modified PE1, PE2, PP) were prepared.
  • -Modified PE1 "Modic AP512P” manufactured by Mitsubishi Chemical Corporation (maleic anhydride-modified polyethylene)
  • -Modified PE2 "Bond First E” manufactured by Sumitomo Chemical Co., Ltd. (glycidyl methacrylate-modified polyethylene)
  • -Modified PP "Admer QB550" manufactured by Mitsui Chemicals, Inc. (maleic anhydride-modified polypropylene)
  • an insulated wire was prepared for testing using the resin compositions having the compounding ratios shown in Tables 3 and 4.
  • the silane graft batch, the flame retardant batch, and the cross-linking catalyst batch prepared above were mixed by the hopper of the extrusion molding machine, and the temperature of the extrusion molding machine was set to 200 ° C. to perform extrusion processing.
  • an insulator having a thickness of 0.7 mm was extruded and coated on a conductor having an outer diameter of 2.4 mm to form a covering material.
  • an insulated wire was produced by subjecting it to cross-linking treatment for 24 hours in a constant temperature and humidity chamber having a humidity of 95% and a temperature of 65 ° C.
  • melting point The melting point was measured by the DSC method according to JIS K7121. When the melting point was 80 ° C. or higher, it was evaluated as having a high melting point (A), and when the melting point was 110 ° C. or higher, it was evaluated as having a particularly high melting point (A +). On the other hand, when the melting point was less than 80 ° C., it was evaluated as having a low melting point (B).
  • the flexural modulus was measured according to ASTM D790. A case where the flexural modulus was 100 MPa or less was evaluated as having a low flexural modulus (A), and a case where the flexural modulus was less than 80 MPa was evaluated as having a particularly low flexural modulus (A +). On the other hand, when the flexural modulus exceeds 100 MPa, it was evaluated as having a high flexural modulus (B).
  • the insulated wire before the cross-linking treatment at the stage where the insulator is extruded and coated on the wire conductor to form the covering material is wound around a reel having an outer diameter of 600 mm, and in that state, the humidity.
  • the cross-linking treatment was carried out for 24 hours in a constant temperature and humidity chamber at 95% and a temperature of 65 ° C. After that, the insulated wire was pulled out from the reel, and the place where it was pulled out was visually inspected to confirm the presence or absence of fusion.
  • the case where no fusion mark was visually confirmed on the surface of the covering material at the portion where the wires were wound around the reel and were in contact with each other was evaluated as having high fusion resistance (A). In this case, it can be determined that blocking of the resin composition before crosslinking and no stickiness of the surface after crosslinking occur. On the other hand, when the fusion mark was visually observed, it was evaluated as having low fusion resistance (B).
  • a wear test was performed in accordance with ISO 6722. At this time, an iron wire having an outer diameter of 0.45 mm is pressed against the crosslinked insulated wire with a load of 7 N and reciprocated at a speed of 55 times / minute until the iron wire and copper, which is a conductor, conduct with each other. was measured.
  • A wear resistance
  • a + particularly high wear resistance
  • B wear resistance
  • Test Results Tables 3 and 4 below show the compounding ratios of the components of Samples A1 to A14 and Samples B1 and B2 in units of parts by mass, and the results of each evaluation.
  • a melting point (A or A +) of 80 ° C. or higher and a flexural modulus (A or A +) of 100 MPa or less are obtained in the crosslinked body.
  • high fusion resistance (A) and high flexibility (A or A +) are compatible. From the correspondence of the evaluation results, it can be interpreted that the high melting point of the crosslinked body is linked to the high fusion resistance and the low flexural modulus is linked to the high flexibility. In these samples, the wear resistance is also high (A or A +).
  • the samples A1 to A14 attention is paid to the samples A1 to A7.
  • the base polyolefin constituting the (A) silane graft polyolefin (a-1) the density is 0.870 g / cm 3 or less, the melting point is 110 ° C. or more, and the flexural modulus is 11 MPa or less.
  • One polyolefin, PE1 or PE2, and a second polyolefin (a-2) having a density of 0.870 g / cm 3 or less, a melting point of 60 ° C. or less, and a flexural modulus of 11 MPa or less, are (a).
  • (B) unmodified polyolefin one having a density of 0.950 g / cm 3 or less and an elastic modulus of 200 MPa or less, that is, unmodified PE1 or PE2 is used.
  • (A) two types of base polyolefins having different melting points are used for the silane graft polyolefin, and (B) unmodified polyolefins having a predetermined low density and low flexural modulus are used.
  • a particularly low flexural modulus (A +) of less than 80 MPa and a particularly high melting point (A +) of 110 ° C. or higher are obtained.
  • a particularly high melting point (A +) of 110 ° C. or higher are obtained.
  • the insulated wire not only high fusion resistance (A) but also particularly high flexibility (A +) is obtained.
  • the base polyolefin of the (A) silane graft polyolefin is the above-mentioned (a-1) first polyolefin and (a-2) second polyolefin (a-1). ) / (A-2) is not mixed at a mixing ratio in the range of 30/70 to 70/30.
  • polyolefins (PE5 and PE6) having a high density and a high flexural modulus are used instead of the second polyolefin (a-2).
  • the samples A8 to A10 do not contain (A-2) the second polyolefin having low density, low flexural modulus, and low melting point as the base polyolefin of (A) silane grafted polyolefin, or not so much.
  • it can be interpreted that the low flexural modulus and high flexibility are not obtained as in the samples A1 to A7.
  • This sample A11 corresponds to the fact that the first polyolefin (a-1) having low density, low flexural modulus and high melting point is not contained so much as the base polyolefin of (A) silane grafted polyolefin. Therefore, it can be interpreted that samples A1 to A7 do not have a high melting point in the crosslinked product. The wear resistance has not reached a particularly high level.
  • sample A14 as (A) silane graft polyolefin (silane graft polyolefin PE12), only one kind of polyolefin (PE1) is used as a base polyolefin.
  • PE1 silane graft polyolefin
  • Table 2 in response to this silane graft polyolefin PE12 having a high melting point and a relatively low flexural modulus, Sample A14 also has a somewhat low flexural modulus and a somewhat high flexibility. Although the properties are shown, the samples A1 to A7 constituting the (A) silane grafted polyolefin by mixing the two types of base polyolefins (a-1) and (a-2) are all shown. It does not reach.
  • silane graft polyolefin PE13, PE14 only one kind of polyolefin (PE3, PE6) is used as the base polyolefin. ..
  • the silane-grafted polyolefins PE13 and PE14 containing only one of these base polyolefins have a high melting point and a low flexural modulus, unlike the silane-grafted polyolefin PE12 used in the sample A14. is not it.
  • Both the silane graft polyolefins PE13 and PE14 have a low melting point of 80 ° C.
  • the melting point of the crosslinked body and the fusion resistance of the insulated wire are lowered.
  • the bending elastic modulus of the silane graft polyolefin PE14 is high, so that the bending elastic modulus of the crosslinked body is low and the flexibility of the insulated wire is also inferior.
  • an insulated wire is constructed by using a silane crosslinkable resin composition that provides a crosslinked product having a melting point of 80 ° C. or higher and a flexural modulus of 100 MPa or lower, as in Samples A1 to A14. Therefore, it is possible to obtain an insulated wire having high fusion resistance and flexibility, and also having excellent wear resistance.
  • the base polyolefin constituting (A) silane grafted polyolefin such as Samples A1 to A7 and Samples A10 and A11, (a-1) first polyolefin and (a-2) second polyolefin having different melting points from each other.
  • the mass ratio of (a-1) / (a-2) is in the range of 30/70 to 70/30 as in the samples A1 to A7. From the comparison between Sample A1 and Samples A12 and A13, it is preferable to use (B) the unmodified polyolefin having a density of 0.950 g / cm 3 or less and an elastic modulus of 200 MPa or less.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)

Abstract

柔軟性の高さと取り扱い性の高さを兼ね備えたシラン架橋可能なポリオレフィン系の難燃性樹脂組成物、およびそのような難燃性樹脂組成物を用いて構成される絶縁電線およびワイヤーハーネスを提供する。 樹脂成分として、(A)ポリオレフィンに対してシランカップリング剤がグラフトされたシラングラフトポリオレフィン、(B)未変性ポリオレフィン、(C)カルボキシル基、エステル基、酸無水物基、アミノ基、エポキシ基から選択される1種または2種以上の官能基を有する変性ポリオレフィン、を含有し、さらに、(D)難燃剤、(E)架橋触媒、を含有し、シラン架橋させた架橋体が、80℃以上の融点と、100MPa以下の曲げ弾性率を有する、難燃性樹脂組成物とする。

Description

難燃性樹脂組成物、絶縁電線、ワイヤーハーネス
 本開示は、難燃性樹脂組成物、絶縁電線、ワイヤーハーネスに関する。
 自動車に用いられる絶縁電線は、エンジンの周辺等の高温となる箇所に用いられる場合もあり、高い耐熱性が求められる。従来、このような絶縁電線の被覆材としては、架橋ポリ塩化ビニル樹脂や、架橋ポリオレフィン樹脂が用いられていた。これらの架橋樹脂の製造方法としては、電子線で架橋する方式が主流であった(例えば特許文献1)。
 しかし、電子線架橋は、高価な電子線架橋装置などを必要とし、設備費用が高価であり、製品コストが上昇してしまうという問題があった。そこで安価な設備で架橋が可能であるシラン架橋が注目されている。電線、ケーブルなどの被覆材に用いられる、シラン架橋が可能なポリオレフィン樹脂組成物が公知である(例えば特許文献2)。
特開2000-294039号公報 特開2000-212291号公報
 自動車用電線等、高温になりやすい環境で用いられる製品にシラン架橋ポリオレフィンを用いる場合に、難燃性を付与することが求められる。シラン架橋樹脂に難燃剤を添加することで、難燃性を付与することができる。難燃剤、特に金属水酸化物等、無機系難燃剤を多量に添加した場合に、樹脂成分の有する機械的特性が低下してしまう可能性がある。特に、柔軟性の低下が問題となりやすい。
 難燃剤による柔軟性の低下の影響を抑えるために、シラン架橋ポリオレフィンを構成するベース樹脂として、柔軟性の高いものを用いることが考えられる。柔軟性の高いポリオレフィン系樹脂として、例えば、メタロセン系重合触媒を用いてコポリマーを増量した、非晶部の多い、低密度の樹脂を挙げることができる。しかし、それら柔軟性の高いポリオレフィン系樹脂は、融点が低い場合が多い。そのように、融点の低いポリオレフィン系樹脂をベース樹脂として用いてシラン架橋性の樹脂組成物を構成した場合に、樹脂組成物において、材料のブロッキング(密接による付着)が発生しやすくなる。例えば、絶縁電線を製造するために、樹脂組成物を導体の外周に押し出した状態において、ブロッキングが発生すると、架橋前の状態において、絶縁電線の取り扱い性が低下してしまう。特に、室温でブロッキングが起こると、絶縁電線の製造工程における取り扱い性が、著しく低くなってしまう。またそのように低融点のポリオレフィン系樹脂を用いて構成された樹脂組成物は、架橋体とした状態でも、表面にべたつきが発生し、架橋後の絶縁電線等、製品の取り扱い性が低下する可能性がある。
 そこで、柔軟性の高さと取り扱い性の高さを兼ね備えたシラン架橋可能なポリオレフィン系の難燃性樹脂組成物、およびそのような難燃性樹脂組成物を用いて構成される絶縁電線およびワイヤーハーネスを提供することを課題とする。
 本開示の第一の難燃性樹脂組成物は、樹脂成分として、(A)ポリオレフィンに対してシランカップリング剤がグラフトされたシラングラフトポリオレフィン、(B)未変性ポリオレフィン、(C)カルボキシル基、エステル基、酸無水物基、アミノ基、エポキシ基から選択される1種または2種以上の官能基を有する変性ポリオレフィン、を含有し、さらに、(D)難燃剤、(E)架橋触媒、を含有し、シラン架橋させた架橋体が、80℃以上の融点と、100MPa以下の曲げ弾性率を有する。
 本開示の第二の難燃性樹脂組成物は、樹脂成分として、(A)ポリオレフィンに対してシランカップリング剤がグラフトされたシラングラフトポリオレフィン、(B)未変性ポリオレフィン、(C)カルボキシル基、エステル基、酸無水物基、アミノ基、エポキシ基から選択される1種または2種以上の官能基を有する変性ポリオレフィン、を含有し、さらに、(D)難燃剤、(E)架橋触媒、を含有し、前記(A)シラングラフトポリオレフィンを構成するポリオレフィンが、(a-1)密度0.870g/cm以下、融点110℃以上、曲げ弾性率11MPa以下である、第一のポリオレフィンと、(a-2)密度0.870g/cm以下、融点60℃以下、曲げ弾性率11MPa以下である、第二のポリオレフィンと、を含有し、前記(a-1)第一のポリオレフィンと前記(a-2)第二のポリオレフィンの混合比が、(a-1)/(a-2)の質量比で、30/70以上、70/30以下の範囲にある。
 本開示の絶縁電線は、導体と、前記第一または第二の難燃性樹脂組成物の架橋体より構成され、前記導体の外周を被覆する電線被覆材と、を有する。本開示のワイヤーハーネスは、前記絶縁電線を有する。
 本開示の難燃性樹脂組成物は、柔軟性の高さと取り扱い性の高さを兼ね備えたシラン架橋可能なポリオレフィン系の難燃性樹脂組成物となる。また、本開示の絶縁電線およびワイヤーハーネスは、そのような難燃性樹脂組成物を用いて構成されたものとなる。
図1は、本開示の一実施形態にかかる絶縁電線を示す斜視図である。 図2は、シラングラフトPE1に対して得られたDSC曲線である。
[本開示の実施形態の説明]
 最初に本開示の実施形態を列記して説明する。
 本開示にかかる第一の難燃性樹脂組成物は、樹脂成分として、(A)ポリオレフィンに対してシランカップリング剤がグラフトされたシラングラフトポリオレフィン、(B)未変性ポリオレフィン、(C)カルボキシル基、エステル基、酸無水物基、アミノ基、エポキシ基から選択される1種または2種以上の官能基を有する変性ポリオレフィン、を含有し、さらに、(D)難燃剤、(E)架橋触媒、を含有し、シラン架橋させた架橋体が、80℃以上の融点と、100MPa以下の曲げ弾性率を有する。
 一般に、シラン架橋性樹脂組成物において、架橋体が高い融点を有すること、また低い弾性率を有することは、架橋前の樹脂組成物も、高い融点と低い弾性率を有するものであることを意味する。上記第一の難燃性樹脂組成物は、100MPa以下の弾性率を有する架橋体を構成する、低弾性の組成物であることにより、樹脂組成物および架橋体が、高い柔軟性を示す。同時に、本難燃性樹脂組成物は、80℃以上の高い融点を有する架橋体を構成する、高融点の組成物であることにより、室温程度の温度では、ブロッキングを起こしにくい。よって、架橋前の絶縁電線等、本難燃性樹脂組成物を用いて形成した製品において、ブロッキングの影響による取り扱い性の低下を避けることができる。また、架橋後の樹脂においても、室温程度の温度ではべたつきが起こりにくく、架橋後の絶縁電線等、本難燃性樹脂組成物の架橋体を含む製品において、べたつきによる取り扱い性の低下を避けることができる。このように、本難燃性樹脂組成物およびその架橋体は、高い柔軟性と取り扱い性を兼ね備えたものとなる。
 ここで、前記(A)シラングラフトポリオレフィンを構成するポリオレフィンが、(a-1)第一のポリオレフィンと、(a-2)第二のポリオレフィンと、を含み、前記(a-1)第一のポリオレフィンの方が、前記(a-2)第二のポリオレフィンよりも、高い融点を有するとよい。(A)シラングラフトポリオレフィンを構成するベースポリオレフィンとして、融点の異なる2種を混合することで、1種のみを用いる場合と比べて、融点および柔軟性を多様に制御することができる。よって、低い曲げ弾性率と高い融点とを両立する難燃性樹脂組成物および架橋体を得やすくなる。
 この場合に、前記(a-1)第一のポリオレフィンが、密度0.870g/cm以下、融点110℃以上、曲げ弾性率11MPa以下であり、前記(a-2)第二のポリオレフィンが、密度0.870g/cm以下、融点60℃以下、曲げ弾性率11MPa以下であり、前記(a-1)第一のポリオレフィンと前記(a-2)第二のポリオレフィンの混合比が、(a-1)/(a-2)の質量比で、30/70以上、70/30以下の範囲にあるとよい。これら(a-1)第一のポリオレフィンおよび(a-2)第二のポリオレフィンは、いずれも0.870g/cm以下の低い密度と、11MPa以下の低い曲げ弾性率を有しているが、(a-2)第二のポリオレフィンが60℃以下の低い融点を有しているのに対し、(a-1)第一のポリオレフィンは110℃以上の高い融点を有している。これら2種のポリオレフィンを混合して(A)シラングラフトポリオレフィンのベース樹脂として用いることで、難燃性樹脂組成物をシラン架橋させた架橋体が、100MPa以下の弾性率と、80℃以上の融点を有するものとなりやすい。その結果として、高い柔軟性と取り扱い性を兼ね備えた難燃性樹脂組成物および架橋体を構成しやすくなる。
 本開示にかかる第二の難燃性樹脂組成物は、樹脂成分として、(A)ポリオレフィンに対してシランカップリング剤がグラフトされたシラングラフトポリオレフィン、(B)未変性ポリオレフィン、(C)カルボキシル基、エステル基、酸無水物基、アミノ基、エポキシ基から選択される1種または2種以上の官能基を有する変性ポリオレフィン、を含有し、さらに、(D)難燃剤、(E)架橋触媒、を含有し、前記(A)シラングラフトポリオレフィンを構成するポリオレフィンが、(a-1)密度0.870g/cm以下、融点110℃以上、曲げ弾性率11MPa以下である、第一のポリオレフィンと、(a-2)密度0.870g/cm以下、融点60℃以下、曲げ弾性率11MPa以下である、第二のポリオレフィンと、を含有し、前記(a-1)第一のポリオレフィンと前記(a-2)第二のポリオレフィンの混合比が、(a-1)/(a-2)の質量比で、30/70以上、70/30以下の範囲にある。
 上記第二の難燃性樹脂組成物においては、(A)シラングラフトポリオレフィンを構成するベースポリオレフィンとして、それぞれ所定の密度、弾性率、融点を有する(a-1)第一のポリオレフィンと、(a-2)第二のポリオレフィンの2種を用いている。2種のベースポリオレフィンが、ともに低い密度と弾性率を有していることにより、難燃性樹脂組成物全体、またその架橋体が、低い曲げ弾性率を有するものとなり、高い柔軟性を示す。また、融点が60℃以下と低い(a-2)第二のポリオレフィンに加えて、融点が110℃以上と高い(a-1)第一のポリオレフィンを用いることで、その高い柔軟性を損なわずに、難燃性樹脂組成物の架橋体の融点を、80℃以上のように高くすることができる。難燃性樹脂組成物が、そのように高い融点の架橋体を与えるものであることで、室温程度の温度では、難燃性樹脂組成物がブロッキングを起こしにくくなり、取り扱い性に優れたものとなる。また、架橋後の樹脂においても、室温程度の温度ではべたつきが起こりにくく、本難燃性樹脂組成物の架橋体を含む製品も、取り扱い性の高いものとなる。このように、本難燃性樹脂組成物およびその架橋体は、高い柔軟性と取り扱い性を兼ね備えたものとなる。
 上記第一および第二の難燃性樹脂組成物において、前記(B)未変性ポリオレフィンが、密度0.950g/cm以下、弾性率200MPa以下であるとよい。すると、難燃性樹脂組成物の柔軟性を高めやすくなる。
 また、前記難燃性樹脂組成物は、前記樹脂成分として、前記(A)シラングラフトポリオレフィンを10質量部以上、70質量部以下、前記(B)未変性ポリオレフィンを20質量部以上、60質量部以下、前記(C)変性ポリオレフィンを1質量部以上、30質量部以下含有するとよい。すると、難燃性樹脂組成物を、柔軟性の高さと、高い融点を有することによる取り扱い性の高さをバランス良く両立するものとしやすい。
 前記(D)難燃剤として、水酸化マグネシウムおよび水酸化アルミニウムより選択される少なくとも1種を、前記樹脂成分100質量部に対して、合計で30質量部以上、150質量部以下含有するとよい。水酸化マグネシウムや水酸化アルミニウムは、十分な難燃性を発揮させるためには、臭素系難燃剤等と比較して、多量に樹脂組成物に添加する必要があり、多量の添加により、柔軟性をはじめとして、樹脂成分の物性を損ないやすいが、本難燃性樹脂組成物においては、樹脂成分が高い柔軟性を有することにより、それらの難燃剤を添加しても、樹脂組成物全体としての柔軟性を高く保つことができる。特に、難燃剤の添加量を上記の範囲とすることで、優れた難燃性と柔軟性を両立しやすい。
 前記水酸化マグネシウムおよび水酸化アルミニウムの平均粒子径が、0.5μm以上、5.0μm以下であるとよい。すると、それら難燃剤が、樹脂成分中で、凝集を起こさずに、高度に分散しやすくなり、難燃性樹脂組成物全体としての柔軟性を高く保ちやすくなる。
 前記(E)架橋触媒の含有量は、前記樹脂成分100質量部に対して、0.1質量部以上、1質量部以下であるとよい。すると、樹脂組成物の架橋を十分に促進し、高い融点と低い曲げ弾性率を有する架橋体を形成しやすくなる。
 前記難燃性樹脂組成物は、(F)ヒンダードフェノール系酸化防止剤、(G)金属酸化物、(H)硫黄系酸化防止剤、(I)滑剤、の少なくとも1種を含有するとよい。難燃性樹脂組成物が、成分(F)~(I)を含有することで、それぞれが発揮する作用により、難燃性樹脂組成物全体としての特性を、向上させることができる。
 この場合に、前記(H)硫黄系酸化防止剤が、少なくとも1種のイミダゾール系化合物を含むとよい。すると、難燃性樹脂組成物に、優れた酸化防止効果と耐熱性を付与することができる。
 前記成分(F)~(I)の含有量は、前記樹脂成分100質量部に対して、それぞれ、下記のとおりとされるとよい。前記(F)ヒンダードフェノール系酸化防止剤について、0.5質量部以上、20質量部以下、前記(G)金属酸化物について、0.5質量部以上、15質量部以下、前記(H)硫黄系酸化防止剤について、0.5質量部以上、20質量部以下、前記(I)滑剤について、0.1質量部以上、5質量部以下。成分(F)~(I)が、それぞれ上記の範囲の含有量で、難燃性樹脂組成物に含有されることで、柔軟性および高い取り扱い性をはじめ、樹脂成分によって発揮される難燃性樹脂組成物の特性を損なうことなく、各成分の添加による効果を、十分に得ることができる。
 本開示にかかる絶縁電線は、導体と、前記いずれかの難燃性樹脂組成物の架橋体より構成され、前記導体の外周を被覆する電線被覆材と、を有する。また、本開示にかかるワイヤーハーネスは、前記絶縁電線を有する。これら絶縁電線およびワイヤーハーネスは、上記の難燃性樹脂組成物を用いて、電線被覆材が構成されていることにより、架橋の前後を通じて、高い柔軟性を有するとともに、ブロッキングおよびべたつきの抑制による高い取り扱い性を有するものとなる。
[本開示の実施形態の詳細]
 以下に、本開示の実施形態にかかる難燃性樹脂組成物、絶縁電線、およびワイヤーハーネスについて、詳細に説明する。本開示の実施形態にかかる難燃性樹脂組成物は、以下に挙げる成分を含有するシラン架橋可能なポリオレフィン系樹脂組成物として構成されている。本開示の実施形態にかかる絶縁電線は、そのような本開示の実施形態にかかる難燃性樹脂組成物を用いて構成されており、本開示の実施形態にかかるワイヤーハーネスは、そのような本開示の実施形態にかかる絶縁電線を含むものである。
<難燃性樹脂組成物>
 まず、本開示の一実施形態にかかる難燃性樹脂組成物(以下、単に「樹脂組成物」と称する場合がある)について説明する。
 本開示の一実施形態にかかる難燃性樹脂組成物(以下、「本樹脂組成物」ともいう)は、樹脂成分として、(A)シラングラフトポリオレフィンと、(B)未変性ポリオレフィンと、(C)変性ポリオレフィンとを含んでいる。さらに、本樹脂組成物は(D)難燃剤と、(E)架橋触媒と、を含んでいる。加えて、本樹脂組成物は、(F)ヒンダードフェノール系酸化防止剤、(G)金属酸化物、(H)硫黄系酸化防止剤、(I)滑剤の少なくとも1種類を含むことが好ましく、それらの成分を全て含むことがさらに好ましい。また、本樹脂組成物は、シラン架橋させた架橋体が、80℃以上の融点と、100MPa以下の曲げ弾性率を有する。
 以下に、本樹脂組成物に含有される各成分の詳細および本樹脂組成物の特性について説明する。以下、各成分の含有量は、樹脂成分の合計の質量を100質量部として表示する。ここで、樹脂成分とは、上記成分(A)~(C)を指し、さらに他の樹脂材料を含有する場合には、それら他の樹脂材料も含むものとする。また、樹脂組成物が、同じ群に分類される化学種を複数含有する場合に、各群について記載している含有量は、特記しないかぎり、それら複数の化学種の含有量の合計を指すものとする。各特性値は、特記しないかぎり、室温、大気中で測定される値とする。
[1]樹脂組成物に含有される成分
(A)シラングラフトポリオレフィン
 (A)シラングラフトポリオレフィンは、主鎖となるポリオレフィンに、シランカップリング剤がグラフトされたものであり、主鎖にシラングラフト鎖が導入されたものとなっている。
 (A)シラングラフトポリオレフィンに用いられるポリオレフィン(ベースポリオレフィン)の種類は、特に限定されるものではないが、エチレン、プロピレンの単独重合体、エチレンまたはプロピレンとα-オレフィンとの共重合体が、好適な例として挙げられる。また上記ポリオレフィンとしては、オレフィンをベースとするポリオレフィンエラストマーを用いてもよい。
 上記ポリエチレンとしては、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPE)、メタロセン低密度ポリエチレンを用いることが好ましい。これらのポリエチレンは1種を単独で用いてもよいし、併用してもよい。これらの低密度のポリエチレンを用いると、樹脂組成物およびその架橋体の柔軟性に特に優れる。
 ポリオレフィンエラストマーとしては、例えばポリエチレン系エラストマー(PEエラストマー)、ポリプロピレン系エラストマー(PPエラストマー)などのポリオレフィン系熱可塑性エラストマー(TPO)、エチレン-プロピレンゴム(EPM、EPR)、エチレン-プロピレン-ジエン共重合体(EPDM、EPT)などが挙げられる。これらのポリオレフィンエラストマーは1種を単独で用いてもよいし、併用してもよい。ポリオレフィンエラストマーを用いると、樹脂組成物およびその架橋体に、高い柔軟性を付与することができる。
 (A)シラングラフトポリオレフィンのベースポリオレフィンとして、上記に列挙したものをはじめ、各種ポリオレフィンを、1種類単独で用いてもよいし、2種類以上を併用してもよいが、後述する(a-1)第一のポリオレフィンと(a-2)第二のポリオレフィンのように、2種以上のポリオレフィンを相互に混合してベースポリオレフィンとすることが好ましい。(A)シラングラフトポリオレフィンのベースポリオレフィンとしては、上記で列挙したうち、ポリエチレン、ポリプロピレン、エチレン-ブテン共重合体、エチレン-オクテン共重合体、ポリオレフィンエラストマーから選択される1種以上を少なくとも用いることが好ましい。中でも、樹脂組成物において高い柔軟性を達成する観点から、ポリオレフィンエラストマーを用いることが好ましい。
 後に説明するように、(A)シラングラフトポリオレフィンを構成するベースポリオレフィンは、相互に少なくともベースポリオレフィンの融点が相違する(a-1)第一のポリオレフィンと(a-2)第二のポリオレフィンをはじめ、複数のポリオレフィンの混合物として構成されることが好ましい。その場合に、複数のベースポリオレフィンは、同種のものであり、例えば主鎖の重合度や分岐鎖の有無や数、長さ等、具体的な分子鎖の構造が異なることにより、相互に特性の異なっていても、あるいは、異種のものであってもよい。一般に、ポリオレフィンのポリマー鎖に分岐が多く、分岐側鎖が長いほど、密度が低く、柔軟性に優れるが、それに伴って融点が低くなる傾向がある。
 (A)シラングラフトポリオレフィンに用いられるシランカップリング剤は、特に限定されるものではないが、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシランなどのビニルアルコキシシランやビニルトリアセトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシランなどを例示することができる。これらのシランカップリング剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 シランカップリング剤のグラフト量の上限は、過剰な架橋を防止するなどの観点から、好ましくは15質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下であるとよい。一方、グラフト量の下限は、好ましくは0.1質量%以上、より好ましくは1.0質量%以上、さらに好ましくは1.5質量%以上であるとよい。グラフト量が0.1%以上であると、本樹脂組成物を架橋させて電線被覆材等とした際に、十分に架橋し、耐熱性や機械的強度に優れる。なお、グラフト量は、シラングラフト前のポリオレフィンの質量に対して、グラフトされたシランカップリング剤の質量を百分率で表したものである。
 (A)シラングラフトポリオレフィンを構成するベースポリオレフィンとしては、グラフトしていない状態で(以下、シラングラフトポリオレフィンのベースポリオレフィンの密度について同じ)、密度が、0.870g/cm以下のものを用いることが好ましい。ポリオレフィンは、低密度である方がシランカップリング剤をグラフトしやすく、架橋密度を高めやすいとともに、柔軟性に優れる。より好ましくは、その密度は、0.866g/cm以下であるとよい。(A)シラングラフトポリオレフィンを構成するベースポリオレフィンの密度には、特に下限は設けられないが、樹脂組成物の融点を高めやすい、耐摩耗性に優れた樹脂組成物を構成しやすい等の観点から、その密度は、0.855g/cm以上、さらには0.857g/cm以上であることが好ましい。(A)シラングラフトポリオレフィンを構成するベースポリオレフィンとして、2種以上のポリオレフィンが用いられる場合には、各ポリオレフィンが、上記のような密度を有することが好ましく、さらには、それら2種以上のポリオレフィンの混合物も、上記のような密度を有することが好ましい。樹脂材料の密度は、ASTM D790に準拠して測定することができる。
(A)シラングラフトポリオレフィンは、曲げ弾性率が、11MPa以下であることが好ましい(シラングラフト後の値)。(A)シラングラフトポリオレフィンが低い曲げ弾性率を有することで、(A)シラングラフトポリオレフィンおよびそれを含む樹脂組成物の柔軟性を高めやすい。より好ましくは、曲げ弾性率は、10MPa以下、さらに8MPa以下であるとよい。(A)シラングラフトポリオレフィンの弾性率には、特に下限は設けられないが、曲げ弾性率が低いシラングラフトポリオレフィンは、低い融点を示す傾向があり、樹脂組成物の融点を高めやすくする観点、耐摩耗性の高い樹脂組成物を得る観点等から、3MPa以上、さらには5MPa以上であるとよい。(A)シラングラフトポリオレフィンを構成するベースポリオレフィンとして、2種以上のポリオレフィンが用いられる場合には、各ポリオレフィンのグラフト体が、上記のような曲げ弾性率を有することが好ましく、さらには、それら2種以上のポリオレフィンの混合物のグラフト体も、上記のような曲げ弾性率を有することが好ましい。樹脂材料の曲げ弾性率は、ASTM D790に準拠して測定することができる。
 (A)シラングラフトポリオレフィンは、融点が80℃以上であることが好ましい(シラングラフト後の値)。より好ましくは100℃以上、さらに好ましくは110℃以上、120℃以上である。そのように高い融点を有するシラングラフトポリオレフィンを用いることで、樹脂組成物、またその架橋体全体として、高い融点を得やすくなり、樹脂組成物のブロッキングを抑えやすくなる。また、架橋体において、べたつきを抑えやすくなる。融点の上限は特に指定されないが、柔軟性やその他の物性に優れるシラングラフトポリオレフィンとしては、概ね135℃以下となる場合が多い。なお、樹脂材料の融点は、JIS K7121に準拠して、示差走査熱量測定法(DSC)によって、測定することができる。シラングラフトポリオレフィンを構成するベースポリオレフィンとして、2種以上のポリオレフィンが用いられる場合には、上記の融点は、それら2種のポリオレフィンの混合物に対して、シラングラフトを経て測定される値である。2種以上のポリオレフィンを混合してシラングラフトさせたシラングラフトポリオレフィンに対して、DSCで融点を計測すると、通常は、単一の吸熱ピークが見られるので(図2参照)、そのピークトップの温度を融点とすればよいが、複数の吸熱ピークが見られる場合には、そのうち最も低温のピークのピークトップの温度を、融点とすればよい。
 本樹脂組成物において、(A)シラングラフトポリオレフィンの有する特性は、樹脂組成物全体としての特性に大きな影響を与えるものであるが、樹脂組成物全体として、架橋体とした際に、100MPa以下の曲げ弾性率と、80℃以上の融点を与えるものであれば、(A)シラングラフトポリオレフィンを構成するベースポリオレフィンの具体的な構成は、特に限定されず、上記のように、1種のみであっても、2種以上を混合したものであってもよい。しかし、一般に、密度の低いポリオレフィンは、低い曲げ弾性率を与える柔軟なものとなりやすい一方で、融点も低くなりやすい。よって、1種のポリオレフィンのみを用いて、低い曲げ弾性率と高い融点を両立するためには、ポリオレフィンとして選択できるものの種類が限られてしまう。しかし、異なる特性を有する2種以上のポリオレフィンを混合することで、混合物全体として、シラングラフトを経て得られる曲げ弾性率および融点等の物性を、高い自由度で選択することが可能となる。よって、低い曲げ弾性率と高い融点を両立する樹脂組成物および架橋体が得やすくなる。
 具体的には、(A)シラングラフトポリオレフィンを構成するベースポリオレフィンが、(a-1)第一のポリオレフィンと、(a-2)第二のポリオレフィンと、を含み、(a-1)第一のポリオレフィンの方が、(a-2)第二のポリオレフィンよりも高い融点を有しているとよい。このことにより、主に(a-2)第二のポリオレフィンの寄与による低い曲げ弾性率と、(a-1)第一のポリオレフィンの寄与による高い融点とを、ベースポリオレフィン全体として得やすくなる。(a-1)第一のポリオレフィンおよび(a-2)第二のポリオレフィンの具体的な融点は、特に限定されるものではないが、(A)シラングラフトポリオレフィンを構成するベースポリオレフィン全体として想定される融点、あるいは樹脂組成物および架橋体全体として想定される融点を基準として、(a-1)第一のポリオレフィンはその基準よりも高い融点、(a-2)第二のポリオレフィンはその基準よりも低い融点を有することが好ましい。また、(a-1)第一のポリオレフィンと(a-2)第二のポリオレフィンの間の融点の差は、特に限定されるものではないが、低い曲げ弾性率と高い融点を両立しやすくする観点から、50℃以上、さらには60℃以上であることが好ましい。両者の融点の差に、特に上限は設けられないが、おおむね100℃以下としておくとよい。
 (A)シラングラフトポリオレフィンを含有する本開示の実施形態にかかる樹脂組成物全体より構成される架橋体において、100MPa以下の曲げ弾性率および80℃以上の融点を与えることができる2種のベースポリオレフィンの好適な組み合わせとして、以下のものを例示することができる。
(a-1)第一のポリオレフィン:融点110℃以上
(a-2)第二のポリオレフィン:融点60℃以下
 (a-1)第一のポリオレフィン、(a-2)第二のポリオレフィンともに、上記のように、密度が、0.870g/cm以下、さらには0.866g/cm以下であることが好ましい。また、特に下限は限定されないものの、0.855g/cm以上、さらには0.857g/cm以上であるとよい。さらに、(a-1)第一のポリオレフィン、(a-2)第二のポリオレフィンともに、上記のように、曲げ弾性率が、11MPa以下、さらには10MPa以下、8MPa以下であることが好ましい。また、特に下限は限定されないものの、3MPa以上、さらには5MPa以上であるとよい。
 (a-1)第一のポリオレフィンおよび(a-2)第二のポリオレフィンが、ともに0.870g/cm以下の低密度を有し、11MPa以下の低い曲げ弾性率を有することの結果として、ベースポリオレフィン全体として、低い曲げ弾性率が得られやすい。低密度、低曲げ弾性率を有するポリオレフィンは、低い融点を示す場合が多いが、110℃以上の融点を有する(a-2)第二のポリオレフィンを用いることで、成分(A)のベースポリオレフィン全体として、さらには樹脂組成物および架橋体全体として、80℃以上の融点を確保しやすくなっている。
 2種のポリオレフィンのそれぞれの寄与を十分に得る観点から、(a-1)第一のポリオレフィンと(a-2)第二のポリオレフィンの混合比は、(a-1)/(a-2)の質量比で、30/70以上、さらには40/60以上であることが好ましい。また、70/30以下、さらには60/40以下であることが好ましい。低曲げ弾性率と高融点の両立のしやすさ、また成分組成の簡素性の観点から、(A)シラングラフトポリオレフィンのベースポリオレフィンとして、(a-1)第一のポリオレフィンおよび(a-2)第二のポリオレフィンとして1種ずつ、合計2種のポリオレフィンのみを用いることが好ましいが、樹脂組成物全体より構成される架橋体において、80℃以上の融点と、100MPa以下の曲げ弾性率を与えうるものであれば、さらに別のポリオレフィンを含んでいてもよい。また、(a-1)第一のポリオレフィンおよび(a-2)第二のポリオレフィンとして、それぞれ、2種以上のポリオレフィンを含んでいてもよい。
(B)未変性ポリオレフィン
 (B)未変性ポリオレフィンは、例えば、グラフト重合や共重合などにより、変性基を導入されていない、炭化水素からなるポリオレフィンである。具体的には、エチレン、プロピレンの単独重合体、エチレンまたはプロピレンとα-オレフィンとの共重合体、またオレフィンをベースとするポリオレフィンエラストマーが挙げられる。これらのポリオレフィンは1種を単独で用いてもよいし、2種以上を併用してもよい。ポリエチレン、ポリプロピレン、エチレン-ブテン共重合体、エチレン-オクテン共重合体から選択される1種以上を少なくとも用いることが好ましい。
 ポリエチレンとしては、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPE)、メタロセン低密度ポリエチレンを用いることが好ましい。これらのポリエチレンは1種を単独で用いてもよいし、併用してもよい。これらの低密度のポリエチレンを用いると、樹脂組成物およびその架橋体の柔軟性に特に優れる。
 また、ポリオレフィンエラストマーとしては、例えばポリエチレン系エラストマー(PEエラストマー)、ポリプロピレン系エラストマー(PPエラストマー)などのポリオレフィン系熱可塑性エラストマー(TPO)、エチレン-プロピレンゴム(EPM、EPR)、エチレン-プロピレン-ジエン共重合体(EPDM、EPT)などが挙げられる。ポリオレフィンエラストマーを用いると、樹脂組成物およびその架橋体に高い柔軟性を付与することができる。
 (B)未変性ポリオレフィンは、(A)シラングラフトポリオレフィンの主鎖に用いられるポリオレフィンと同じものでもよいし、異なるものを用いてもよい。同じ種のポリオレフィンを用いると相溶性に優れる。
 (B)未変性ポリオレフィンの密度は、特に限定されるものではないが、0.855g/cm以上、さらには0.860g/cm以上であることが好ましい。このような密度を有することにより、樹脂組成物全体として、またその架橋体において、高い融点が得られやすくなり、樹脂組成物のブロッキングや架橋体のべたつきを抑えやすくなる。また、その密度は、0.950g/cm以下、さらに0.940g/cm以下であることが好ましい。すると、樹脂組成物全体として、またその架橋体において、柔軟性を高めやすい。
 (B)未変性ポリオレフィンの曲げ弾性率も、特に限定されるものではないが、200MPa以下、さらには100MPa以下であることが好ましい。このような曲げ弾性率を有する場合に、樹脂組成物全体として、またその架橋体において、柔軟性を高めやすい。曲げ弾性率に下限は特に設けられないが、3MPa以上、さらには10MPa以上としておくことで、樹脂組成物全体として、またその架橋体において、高い融点を確保しやすくなる。
(C)変性ポリオレフィン
 (C)変性ポリオレフィンは、カルボキシル基、エステル基、酸無水物基、アミノ基、エポキシ基から選択される1種または2種以上の官能基を有する変性ポリオレフィンである。(C)変性ポリオレフィンは、1種または2種以上のα-オレフィンからなる未変性のベースポリオレフィンに上記の官能基を有する重合性化合物をグラフト重合させることにより、官能基を導入したものとすることができる。あるいは、上記の官能基を有する重合性化合物と、該重合性化合物と重合可能なオレフィン(重合性モノマー)とを共重合させることにより、官能基を導入したものとすることができる。ただし、メタクリロキシアルキルシランなどにより、シラノール誘導体が導入されたものは、(A)シラングラフトポリオレフィンに分類されるため除くこととする。
 (C)変性ポリオレフィンは、カルボキシル基、エステル基、酸無水物基、アミノ基、エポキシ基から選択される1種または2種以上の官能基を有することから、無機成分に対し高い親和性を示し、ポリオレフィン鎖を有することから、(A)シラングラフトポリオレフィン、(B)未変性ポリオレフィンなどの樹脂成分との親和性も高い。そのため、(C)変性ポリオレフィンは、樹脂成分と、難燃剤等の無機成分との相溶化剤として機能し、樹脂成分中での無機成分の分散性および接着性を高めるものとなる。
 カルボキシル基を有する重合性化合物としては、分子内に炭素-炭素二重結合のような重合性基とカルボキシル基とを有する化合物であれば、特に限定されない。例えば、アクリル酸、メタクリル酸、クロトン酸、α-クロロアクリル酸、イタコン酸、ブテントリカルボン酸、マレイン酸、フマル酸、あるいはこれらの酸を分子構造の一部に含む誘導体などが挙げられる。これらの酸が酸無水物を形成する場合は、その酸無水物を用いることにより、酸無水物基を導入することができる。
 エステル基を有する重合性化合物としては、上記のカルボキシル基を有する重合性化合物とアルコールとの反応により得られるエステル化合物を用いることができる。また、炭素-炭素二重結合を有するアルコールと、各種カルボン酸との反応により得られるエステル化合物であってもよい。このような化合物としては、例えば、酢酸ビニル、プロピオン酸ビニル、などが挙げられる。
 アミノ基を有する重合性化合物としては、分子内に炭素-炭素二重結合のような重合性基とアミノ基とを有する化合物であれば、特に限定されない。例えば、上記のカルボキシル基を有する重合性化合物とアルカノールアミンとの反応により得られるエステル類、ビニルアミン、アリルアミンあるいはこれらの化合物の構造を分子構造の一部に含む誘導体などが挙げられる。
 エポキシ基を有する重合性化合物としては、分子内に炭素-炭素二重結合のような重合性基とエポキシ基とを有する化合物であれば、特に限定されない。例えば、上記のカルボキシル基を有する重合性化合物とグリシジルアルコールとの反応により得られる酸グリシジルエステル類、ビニルグリシジルエーテル、アリルグリシジルエーテル、グリシジルオキシエチルビニルエーテル、スチレン-p-グリシジルエーテルなどのグリシジルエーテル類、p-グリシジルスチレン、あるいはこれらの化合物の構造を分子構造の一部に含む誘導体などが挙げられる。
 上記で列挙したものをはじめ、各官能基を有する重合性化合物と共重合可能な重合性モノマーとしては、分子内に炭素-炭素二重結合のような重合性基を有する化合物であれば、特に限定されない。例えば、エチレン、プロピレンなどの官能基を有しないオレフィンモノマーを用いてもよいし、カルボキシル基、エポキシ基以外の官能基を有する重合性モノマーを用いてもよい。これらの重合性モノマーは1種を単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態にかかる樹脂組成物は、樹脂成分として、以上に説明した(A)シラングラフトポリオレフィン、(B)未変性ポリオレフィン、(C)変性ポリオレフィンを含む。それらの樹脂成分の混合比は、特に限定されるものではないが、(A)シラングラフトポリオレフィンを10質量部以上、また70質量部以下、(B)未変性ポリオレフィンを20質量部以上、また60質量部以下、(C)変性ポリオレフィンを1質量部以上、また30質量部以下の比率で含有することが好ましい。そのような比率を満たすことで、樹脂組成物およびその架橋体が、低曲げ弾性率と高融点を、バランス良く備え、耐摩耗性にも優れたものとなりやすい。樹脂成分をはじめとして、樹脂組成物に含まれる成分間の相溶性、親和性にも優れたものとなりやすい。
 樹脂組成物の成分構成を簡素にする観点から、本実施形態にかかる樹脂組成物は、樹脂成分として、上記成分(A)~(C)のみを含むものであることが好ましい。しかし、それらの成分によって発揮される、低弾性率や高融点等の特性を損なわないかぎりにおいて、他の樹脂成分を含有してもよい。
(D)難燃剤
 (D)難燃剤は、樹脂組成物の難燃性を高める役割を果たす。(D)難燃剤としては、金属水酸化物等の無機系難燃剤、および臭素系難燃剤等の有機系難燃剤を用いることができる。本実施形態にかかる樹脂組成物においては、いずれの種類の難燃剤を用いてもよい。しかし、十分な難燃性を付与するために比較的多量に添加する必要があり、多量の添加による柔軟性の低下を、所定の樹脂成分を用いることで補うことによる効果が相対的に大きくなるという点において、無機系難燃剤、特に金属水酸化物を難燃剤として用いることが好ましい。
 金属水酸化物よりなる難燃剤としては、水酸化マグネシウム、水酸化アルミニウム、水酸化ジルコニウムなどが挙げられ、1種または2種以上の金属水酸化物を用いることができる。特に、水酸化マグネシウムおよび水酸化アルミニウムが、低コスト性等の観点で、特に好ましい。金属水酸化物は、樹脂成分中での分散性を向上させるなどの目的で、シランカップリング剤、高級脂肪酸、ポリオレフィンワックスなどの表面処理剤により処理されていてもよい。しかし、本実施形態にかかる樹脂組成物においては、樹脂成分として(C)変性ポリオレフィンが含有されることから、表面処理を施さなくても、金属水酸化物の分散性に優れる。
 金属水酸化物は、平均粒径(D50)が、0.5μm以上であることが好ましい。すると、粒子間の凝集が起こりにくくなる。また、金属水酸化物の平均粒径は、5.0μm以下であることが好ましい。すると、金属水酸化物粒子が樹脂成分の中で分散しやすくなる。凝集の抑制および分散性の向上によって、金属水酸化物の粒子が、微細な粒子の状態で樹脂組成物中に均一性高く分布することで、高い難燃性が発揮されるとともに、樹脂成分によって発揮される柔軟性等の特性が、金属水酸化物粒子によって損なわれにくくなる。
 金属水酸化物の添加量は、樹脂成分100質量部に対して、30質量部以上であることが好ましい。すると、高い難燃性を得ることができる。一方、金属水酸化物の添加量は、樹脂成分100質量部に対して、150質量部以下であることが好ましい。すると、難燃性向上効果の飽和を避けるとともに、樹脂組成物の柔軟性を高めることができる。
 本樹脂組成物において、(D)難燃剤として、金属水酸化物等の無機系難燃剤とともに、あるいはその代わりに、臭素系難燃剤等の有機系難燃剤を用いてもよい。臭素系難燃剤としては、エチレンビステトラブロモフタルイミド、エチレンビストリブロモフタルイミドなどのフタルイミド構造を持つ臭素系難燃剤、エチレンビスペンタブロモフェニル、テトラブロモビスフェノールA(TBBA)、ヘキサブロモシクロドデカン(HBCD)、TBBA-カーボネイト・オリゴマー、TBBA-エポキシ・オリゴマー、臭素化ポリスチレン、TBBA-ビス(ジブロモプロピルエーテル)、ポリ(ジブロモプロピルエーテル)、ヘキサブロモベンゼン(HBB)などが挙げられる。これらの難燃剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 臭素系難燃剤を用いる場合には、難燃性を高めるために、三酸化アンチモン等の無機系難燃助剤を併用することが好ましい。三酸化アンチモンとしては、平均粒子径が3μm以下、さらには1μm以下のものを用いることが好ましい。三酸化アンチモンは、分散性を向上させるなどの目的で、シランカップリング剤、高級脂肪酸、ポリオレフィンワックスなどの表面処理剤により処理されていてもよい。
 難燃成分として臭素系難燃剤および無機系難燃助剤の併用系を用いる場合には、臭素系難燃剤と無機系難燃助剤とを、当量比で、臭素系難燃剤:無機系難燃助剤=3:1~2:1の範囲内で含むことが好ましい。また、樹脂組成物において、樹脂成分100質量部に対して、臭素系難燃剤10~40質量部と三酸化アンチモン5~20質量部の範囲内で配合することが好ましい。
 難燃剤として、金属水酸化物と臭素系難燃剤を併用して用いる場合には、それぞれの添加量を減らすことができ、樹脂成分合計100質量部に対して、金属水酸化物を10~50質量部、臭素系難燃剤を5~20質量部、必要に応じて無機系難燃剤を5~20質量部の範囲内で配合することが好ましい。
(E)架橋触媒
 (E)架橋触媒は、(A)シラングラフトポリオレフィンをシラン架橋させるためのシラノール縮合触媒である。架橋触媒として、錫、亜鉛、鉄、鉛、コバルトなどの金属のカルボン酸塩、チタン酸エステル、有機塩基、無機酸、有機酸などを例示することができる。具体的には、ジブチル錫ジラウレート、ジブチル錫ジマレート、ジブチル錫ビスイソオクチルチオグリコールエステル塩、ジブチル錫β-メルカプトプロピオン酸塩、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、酢酸第一錫、カプリル酸第一錫、ナフテン酸鉛、ナフテン酸コバルト、ステアリン酸バリウム、ステアリン酸カルシウム、チタン酸テトラブチルエステル、チタン酸テトラノニルエステル、ジブチルアミン、ヘキシルアミン、ピリジン、硫酸、塩酸、トルエンスルホン酸、酢酸、ステアリン酸、マレイン酸などを例示することができる。架橋触媒として好ましくは、ジブチル錫ジラウレート、ジブチル錫ジマレート、ジブチル錫ビスイソオクチルチオグリコールエステル塩、ジブチル錫β-メルカプトプロピオン酸塩を用いるとよい。
 (E)架橋触媒は、(A)シラングラフトポリオレフィンと混合すると架橋反応が進行してしまうため、電線を被覆する直前で混合することが好ましい。この際、架橋触媒の分散性を向上させるため、予めバインダー樹脂と混合して架橋触媒バッチとして用いることが好ましい。架橋触媒を予めバインダー樹脂と混合した架橋触媒バッチとして用いることで、(A)シラングラフトポリオレフィンの意図せぬ架橋反応を防止できるとともに、架橋触媒の分散性に優れ、十分に架橋反応を進行させやすい。また、架橋触媒バッチとして用いることで、架橋触媒の添加量の制御が容易となる。
 架橋触媒バッチに用いられるバインダー樹脂としては、前述の(A)~(C)で用いられるポリオレフィンを用いることができる。特に低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPE)、メタロセン低密度ポリエチレンが好ましい。これらの低密度のポリエチレンを用いると、電線の柔軟性が良好となる。また、例えば、(B)未変性ポリオレフィンの一部を、バインダー樹脂として用いてもよい。
 架橋触媒バッチは、バインダー樹脂100質量部に対して、0.5質量部以上、さらには1質量部以上の架橋触媒を含むことが好ましい。すると、架橋反応が進行しやすくなる。一方、架橋触媒バッチにおける架橋触媒の含有量は、バインダー樹脂100質量部に対して、5質量部以下であることが好ましい。すると、触媒の分散性に優れる。
 (E)架橋触媒は、難燃性樹脂組成物を構成する樹脂成分100質量部に対して、架橋触媒そのものの含有量として、0.1質量部以上とすることが好ましい。すると、架橋反応を進行させやすくなる。一方、その含有量は、1.0質量部以下であることが好ましい。すると、過度な架橋を防止できる。
(F)ヒンダードフェノール系酸化防止剤
 (F)ヒンダードフェノール系酸化防止剤としては、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-(ヘキサン-1,6-ジイル)ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド]、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、ジエチル[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスフォネート、3,3’,3”,5,5’5”-ヘキサ-tert-ブチル-a,a’,a”-(メシチレン-2,4,6-トリル)トリ-p-クレゾール、カルシウムジエチルビス[[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスフォネート]、4,6-ビス(オクチルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス[(4-tert-ブチル-3-ヒドロキシ-2,6-キシリル)メチル]-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、2,6-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、2,6-ジ-tert-ブチル-4-メチルフェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、3,9-ビス[2-(3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)-プロピノキ)-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ(5,5)ウンデカンなどが挙げられる。これらの酸化防止剤は1種単独で用いても2種以上併用してもよい。これらの酸化防止剤の中で、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]を用いることが、特に好ましい。
 (F)ヒンダードフェノール系酸化防止剤の添加量は、樹脂成分100質量部に対し、0.5質量部以上、さらには1質量部以上とすることが好ましい。すると、優れた酸化防止効果が得られる。一方、その添加量は、20質量部以下、さらには10質量部以下とすることが好ましい。すると、樹脂組成物において、ブルーム等、多量の酸化防止剤の添加による影響を抑制できる。
(G)金属酸化物
 樹脂組成物に金属酸化物を添加することで、樹脂組成物の耐熱性を高めることができる。耐熱性向上に高い効果を有する金属酸化物として、酸化亜鉛、酸化アルミニウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム等を例示することができる。特に酸化亜鉛を用いることが好ましく、酸化亜鉛の平均粒径は、3μm以下、さらには1μm以下であるとよい。
 (G)金属酸化物の添加量は、樹脂成分100質量部に対し、0.5質量部以上、さらには1質量部以上とすることが好ましい。すると、耐熱性向上の効果が高くなる。一方、その添加量は、15質量部以下、さらには10質量部以下とすることが好ましい。すると、金属酸化物粒子の凝集が起こりにくく、樹脂成分中での分散性が高くなる。
(H)硫黄系酸化防止剤
 樹脂組成物に(H)硫黄系酸化防止剤を添加することで、樹脂組成物の酸化が抑制されるとともに、樹脂組成物の耐熱性を高めることができる。(H)硫黄系酸化防止剤の種類は、特に限定されるものではないが、イミダゾール系化合物を用いることが好ましい。
 イミダゾール系化合物より構成さる酸化防止剤としては、メルカプトベンズイミダゾールを例示することができる。メルカプトベンズイミダゾールとしては、2-メルカプトベンズイミダゾール、2-メルカプトメチルベンズイミダゾール、4-メルカプトメチルベンズイミダゾール、5-メルカプトメチルベンズイミダゾールなどや、これらの化合物の亜鉛塩などが挙げられる。融点が高く、混合中の昇華も少ないため高温で安定であることから、2-メルカプトベンズイミダゾールおよびその亜鉛塩が特に好ましい。
 (H)硫黄系酸化防止剤の添加量は、樹脂成分100質量部に対し、0.5質量部以上、さらには1質量部以上とすることが好ましい。すると、酸化防止効果および耐熱性向上効果が高くなる。一方、その添加量は、20質量部以下、さらには15質量部以下とすることが好ましい。すると、樹脂組成物において、ブルーム等、多量の酸化防止剤の添加による影響を抑制できる。
(I)滑剤
 (I)滑剤は、樹脂組成物に潤滑効果を付与するものとなる。滑剤としては、内部滑剤、外部滑剤のいずれを用いてもよい。滑剤を構成する化合物の種類も特に限定されず、流動パラフィン、パラフィンワックス、ポリエチレンワックスなどの炭化水素、ステアリン酸、オレイン酸、エルカ酸などの脂肪酸、高級アルコール、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミドなどの脂肪酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミドなどのアルキレン脂肪酸アミド、ステアリン酸金属塩などの金属せっけん、ステアリン酸モノグリセリド、ステアリルステアレート、硬化油などのエステル系滑剤が挙げられる。滑剤としては、樹脂成分との相溶性の観点から、エルカ酸、オレイン酸、ステアリン酸などの脂肪酸またはそれらの酸の誘導体、またはポリエチレン系ワックスを用いるのが好ましい。
 (I)滑剤の添加量は、樹脂成分100質量部に対し、0.1質量部以上であることが好ましい。すると、高い潤滑効果が得られる。一方、その添加量は、5質量部以下であることが好ましい。
 さらに、本実施形態にかかる難燃性樹脂組成物は、柔軟性、高融点等の特性を損なわない範囲で、種々の添加剤を含んでもよい。添加剤としては、例えば、金属不活性剤、無機フィラー、顔料、シリコーンオイルなどを例示することができる。金属不活性剤としては、銅不活性剤またはキレート化剤などが用いることができ、具体的には、2,3-ビス[3-(3,5-ジーtert-ブチル-4-ヒドロキシフェニル)プロピオニル]プロピオノヒドラジドなどのヒドラジド誘導体や3-(N-サリチロイル)アミノ-1,2,4-トリアゾールなどのサリチル酸誘導体を用いることができる。無機フィラーとしては、炭酸カルシウムなどを例示することができる。無機フィラーの添加量は、樹脂強度などの観点から、樹脂成分の合計100質量部に対し、30質量部以下であることが好ましい。
[2]樹脂組成物の特性
 本実施形態にかかる樹脂組成物は、上記のように、シラン架橋を経て形成される架橋体が、80℃以上の高い融点と、100MPa以下の低い曲げ弾性率を有している。架橋体が高い融点および低い曲げ弾性率を有していることは、架橋前の樹脂組成物も、高い融点および低い曲げ弾性率を有することを示す。なお、架橋体は、融点以上に加熱しても、樹脂が流動を起こすものではないが、DSCにおいて吸熱ピークが出現し、その吸熱ピークのピークトップが、架橋体の融点となる。架橋体の融点は、架橋前の樹脂組成物の融点と同程度となるので、架橋前の樹脂組成物も、80℃以上の融点を有することが好ましい。
 本樹脂組成物が、架橋体において100MPa以下の曲げ弾性率を与える、低弾性の樹脂組成物であることにより、架橋前の樹脂組成物の状態、およびシラン架橋を行った架橋体の状態において、高い柔軟性を有する。樹脂組成物が高い柔軟性を有することで、本樹脂組成物およびその架橋体を、絶縁電線の被覆材等、曲げを頻繁に受ける製品に、好適に用いることができる。
 同時に、本樹脂組成物が、架橋体において、80℃以上の融点を与える、高融点の樹脂組成物であることにより、樹脂組成物が、熱の影響による溶融や軟化を起こしにくく、例えば、室温程度の温度では、ブロッキングが起こりにくい。また、架橋体において、室温程度の温度では、表面にべたつきが発生しにくい。樹脂組成物のブロッキングや架橋体のべたつきは、樹脂組成物および架橋体の室温での取り扱い性を低下させるものとなるが、それらの現象が抑えられることで、樹脂組成物や架橋体の室温での取り扱い性が高くなる。本樹脂組成物を用いて、絶縁電線等の製品を製造した際に、製造途中の架橋前の樹脂組成物の状態でのブロッキング、および架橋後の完成品の状態でのべたつきを抑制し、高い取り扱い性を得ることができる。
 このように、本樹脂組成物は、80℃以上の融点と100MPa以下の曲げ弾性率を有する架橋体を与える、高い柔軟性と、高い取り扱い性を兼ね備えたものとなっている。架橋体の融点は、100℃以上、さらには110℃以上であると、さらに好ましい。また、架橋体の曲げ弾性率は、90MPa未満、さらには80MPa未満であると、さらに好ましい。
 なお、本樹脂組成物は、成分(A)~(C)として、合計で少なくとも3種のポリオレフィンを含有しているが、樹脂組成物の架橋体に対して、DSCで融点を計測すると、通常は、単一の吸熱ピークが見られる。その単一のピークトップの温度として得られる融点が、80℃以上となるものである。ただし、複数の吸熱ピークが見られる場合には、そのうち最も低温のピークのピークトップの温度を、融点として、その融点が80℃以上であればよい。また、樹脂成分以外の成分の一部が、80℃未満の融点を有することを妨げるものではないが、樹脂成分以外の各成分としても、架橋体中で、80℃未満の融点を与えるものでないことが好ましい。
[3]樹脂組成物の製造方法
 本実施形態にかかる樹脂組成物は、例えば、(A)~(E)の各成分、および、必要に応じて添加される各種添加成分を配合し、二軸押出混練機などを用いて混練することにより調製できる。ただし、(A)シラングラフトポリオレフィンと(E)架橋触媒とを混合すると、大気中の水分により架橋反応が進行してしまう。保存時等の架橋反応や、その他の意図しない反応を防止する観点から、電線を被覆する直前で各種成分を混合することが好ましい。このような方法としては、予めシラングラフトバッチ、難燃バッチ、架橋触媒バッチをそれぞれ調整し、ペレット化しておくことが好ましい。
 シラングラフトバッチは、(A)シラングラフトポリオレフィンを含むバッチである。難燃バッチは、(B)未変性ポリオレフィン、(C)変性ポリオレフィン、(D)難燃剤を含むバッチである。架橋触媒バッチは、(E)架橋触媒とバインダー樹脂を含むバッチである。(F)~(I)の各成分、および、必要に応じて添加されるその他の各種添加成分は、各バッチを構成する成分による特性を阻害しない範囲であれば、シラングラフトバッチ、難燃バッチ、架橋触媒バッチのいずれに含まれてもよい。
[4]他の実施形態
 ここで、変形形態にかかる難燃性樹脂組成物について、簡単に説明する。上記で説明した実施形態においては、樹脂組成物より構成される架橋体が、全体として、80℃以上の融点と100MPa以上の曲げ弾性率を有することが指定されている。しかし、樹脂組成物がそれらの融点および/または曲げ弾性率を有する架橋体を必ずしも与えない変形形態においても、(A)シラングラフトポリオレフィンを構成するベースポリオレフィン樹脂として、以下の(a-1)第一のポリオレフィンと(a-2)第二ポリオレフィンを用いることで、高い柔軟性と高い取り扱い性を兼ね備えた樹脂組成物とすることができる。
(a-1)第一のポリオレフィン:密度0.870g/cm以下、融点110℃以上、曲げ弾性率11MPa以下であるポリオレフィン
(a-2)第二のポリオレフィン:密度0.870g/cm以下、融点60℃以下、曲げ弾性率11MPa以下であるポリオレフィン
ここで、(a-1)第一のポリオレフィンと(a-2)第二のポリオレフィンの混合比は、(a-1)/(a-2)の質量比で、30/70以上、70/30以下の範囲とされる。
 (a-1)第一のポリオレフィンと(a-2)第二のポリオレフィンが、ともに、低い密度と低い曲げ弾性率を有することに由来して、(A)シラングラフトポリオレフィン全体として、さらに樹脂組成物全体、また架橋体全体として、低い曲げ弾性率を有することにより、高い柔軟性が得られる。一方、(a-1)第一のポリオレフィンが、高い融点を有することに由来して、(A)シラングラフトポリオレフィン全体として、さらに樹脂組成物全体、また架橋体全体として、高い融点を有することにより、室温での取り扱い性が高くなる。
 一般に、融点の低いポリオレフィンほど、シラングラフトポリオレフィンとし、架橋させた際に、低い曲げ弾性率を示す傾向がある。よって、単一のポリオレフィンを用いてシラングラフトポリオレフィンを構成する場合には、組成物全体として、所望されるレベルの低い曲げ弾性率と、高い融点とを両立することが難しい場合がある。しかし、相互に異なる融点を有する上記(a-1)第一のポリオレフィンと(a-2)第二のポリオレフィンを混合して、(A)シラングラフトポリオレフィンを構成することで、樹脂組成物および架橋体において、高融点と低曲げ弾性率を両立しやすい。
 この変形形態にかかる樹脂組成物においても、(a-1)第一のポリオレフィンと(a-2)第二のポリオレフィンをベースポリオレフィンとする(A)シラングラフトポリオレフィンの材料組成および特性について、上記で詳細に説明した実施形態において、好ましい形態として挙げた材料組成や特性を、好適に適用することができる。また、樹脂組成物に含有される(A)シラングラフトポリオレフィン以外の各成分についても、上記で詳細に説明した実施形態において、好ましい形態として挙げた材料組成や特性を、好適に適用することができる。
<絶縁電線およびワイヤーハーネス>
 次に、本開示の一実施形態にかかる絶縁電線および一実施形態にかかるワイヤーハーネスについて説明する。
 図1に示すように、本実施形態にかかる絶縁電線1は、導体2と、導体2の外周を被覆する電線被覆材(単に被覆材ということもある)3と、を有している。電線被覆材3は、上記で説明した本開示の実施形態かかる難燃性樹脂組成物を架橋させた架橋体より構成されている。
 絶縁電線1の導体2は、その導体径や材質などは特に限定されるものではなく、絶縁電線1の用途などに応じて適宜選択することができる。導体2を構成する材料としては例えば、銅、銅合金、アルミニウム、アルミニウム合金などの金属材料が挙げられる。電線の軽量化などの観点から、アルミニウムまたはアルミニウム合金であることが好ましい。電線被覆材3の層は、単層であっても、2層以上の複数層であってもよい。
 絶縁電線1を製造するには、本開示の実施形態にかかる樹脂組成物を導体2の外周に配置したうえで、架橋すればよい。例えば、上記シラングラフトバッチ、難燃バッチ、架橋触媒バッチの各バッチを、例えば、バンバリミキサー、加圧ニーダー、混練押出機、二軸押出機、ロールなどの通常の混練機を用いて加熱混練し、押出成形機などを用いて得られた樹脂組成物を導体2の外周に押出被覆した後、架橋すればよい。
 被覆材3を架橋する方法としては、被覆電線の被覆層を水蒸気あるいは水にさらす方法を挙げることができる。このとき、水蒸気または水との接触は、常温から90℃の温度範囲内で、48時間以内で行うことが好ましい。より好ましくは、50℃から80℃の温度範囲内で、8時間以上、24時間以内の時間で行うとよい。
 本開示の一実施形態にかかるワイヤーハーネスは、上記の絶縁電線1を有するものである。ワイヤーハーネスは、上記絶縁電線1のみがひとまとまりに束ねられた単独電線束の形態、あるいは上記の絶縁電線1と他の絶縁電線とが混在状態で束ねられた混在電線束の形態のいずれでもよい。電線束は、コルゲートチューブなどのワイヤーハーネス保護材や、粘着テープのような結束材などで束ねられてワイヤーハーネスとして構成される。
 そして、本開示の実施形態にかかる絶縁電線1は、単独の状態、あるいはワイヤーハーネスの状態で、自動車用、電気・電子機器用、情報通信用、電力供給用、船舶用、航空機用など各種電線に利用することができる。特に自動車用電線として好適に利用できる。
 以下に実施例を示す。なお、本発明はこれら実施例によって限定されるものではない。ここでは、種々の成分組成を有する難燃性樹脂組成物を調製し、特性を比較した。
[試験方法]
[1]用いた材料
(A)シラングラフトポリオレフィン
 まず、樹脂組成物の原料として、(A)シラングラフトポリオレフィンを準備した。まず、下の表1に示す6種のポリオレフィン(PE1~PE6)を準備し、下の表2に示すように、1種または2種を選択した。2種を選択する場合については、表2に示す質量比で2種を配合し、140℃にて単軸混練機で混練した。混練により得られたベースポリオレフィンのそれぞれ、または単一のポリオレフィンに対して、シラングラフトを行い、(A)シラングラフトポリオレフィン(シラングラフトPE1~PE14)とした。シラングラフトに際しては、ベースポリオレフィン100質量部に対してビニルトリメトキシシラン(信越化学社製「KBM1003」)1.5質量部、ジクミルパーオキサイド(日油社製「パークミルD」)0.15質量部をドライブレンドした材料を、単軸混練機にて、140℃で混練した。
 下の表1に、原料として用いたポリオレフィン(PE1~PE6)について、具体的な製品名と、密度、融点、曲げ弾性率を示す。
Figure JPOXMLDOC01-appb-T000001
 さらに、下の表2に、各シラングラフトポリオレフィン(シラングラフトPE1~PE14)について、原料の配合比を、単位を質量部として示す。合わせて、グラフト後のベースポリオレフィンについて測定された融点および曲げ弾性率の値を示す。ここで、融点の測定は、JIS K7121に準拠して、DSC法によって行った。図2に、例として、シラングラフトPE1について得られたDSC曲線を示す。この測定結果によると、121℃付近に、融解に対応する単一のピークが見られている。シラングラフトPE1~PE14のいずれにおいても、単一の融解に対応するピークが観測され、その頂点の温度を融点とした。曲げ弾性率の測定は、ASTM D790に準拠して行った。
Figure JPOXMLDOC01-appb-T000002
(B)未変性ポリオレフィン
 未変性ポリオレフィン(未変性PE1~PE3、PP1)として、以下のものを準備した。
・未変性PE1:ダウエラストマー社製「エンゲージ7467」(密度:0.862g/cm、曲げ弾性率:4MPa)
・未変性PE2:ダウエラストマー社製「エンゲージ7256」(密度:0.885g/cm曲げ弾性率:30MPa)
・未変性PE3:日本ポリプロ社製「ノバテックHDHY331」(密度:0.951g/cm、曲げ弾性率:1050MPa)
・未変性PP1:日本ポリプロ社製「ニューコンNAR6」(密度:0.890g/cm、曲げ弾性率:550MPa)
(C)変性ポリオレフィン
 変性ポリオレフィン(変性PE1,PE2,PP)として、以下のものを準備した。
・変性PE1:三菱ケミカル社製「モディックAP512P」(無水マレイン酸変性ポリエチレン)
・変性PE2:住友化学社製「ボンドファーストE」(メタクリル酸グリシジル変性ポリエチレン)
・変性PP:三井化学社製「アドマーQB550」(無水マレイン酸変性ポリプロピレン)
 上記以外の成分は、下記の通りである。
(D)難燃剤
・水酸化マグネシウム:アルベマール社製「グラニフィンH10」
・水酸化アルミニウム:住友化学社製「C305」
(E)架橋触媒
・架橋触媒バッチ:三菱化学社製「リンクロンLZ082」(架橋触媒含有量:1%、バインダー樹脂:密度0.91g/cmのポリエチレン)
(F)ヒンダードフェノール系酸化防止剤
・BASFジャパン社製「イルガノックス1010」
(G)金属酸化物
・酸化亜鉛:ハクスイテック社製「亜鉛華1種」
(H)硫黄系酸化防止剤
・イミダゾール化合物:川口化学社製「アンテージMB」(2-メルカプトベンゾイミダゾール)
(I)滑剤
・日本油脂社製「アルフローP10」(エルカ酸アミド)
(その他の成分)
・金属不活性剤:ADEKA社製「CDA-1」
[2]試料の作製
(シラングラフトバッチの調製)
 シラングラフトポリオレフィンをペレット化したものをシラングラフトバッチとして用いた。
(架橋触媒バッチの調製)
 予めペレットの状態で供給される三菱化学社製「リンクロンLZ082」を架橋触媒バッチとして用いた。
(難燃剤バッチの調製)
 表3,4に示す成分のうち、シラングラフトポリオレフィンと架橋触媒バッチ(架橋触媒およびバインダー樹脂)を除く成分を二軸混練機に加え、200℃で0.1~2分程度加熱混練し、十分に分散させた後、ペレット化して、難燃剤バッチを調製した。
(試験体の作製)
 試料A1~A14および試料B1,B2にかかる樹脂組成物を、表3,4に示す配合量比で調整した。この際、上記のように調製したシラングラフトバッチ、難燃剤バッチ、架橋触媒バッチを、200℃にて二軸混練機にて混錬し、圧縮成形にて短冊状の試験片を作成した。その後、湿度95%、温度65℃の恒温恒湿槽で12時間架橋処理を施した後、常温で24時間乾燥して、架橋体試験片とした。
 別途、試験用に、表3,4に示す配合比の樹脂組成物を用いて、絶縁電線を作製した。この際、上記で準備したシラングラフトバッチ、難燃剤バッチ、架橋触媒バッチを押出成形機のホッパーで混合し、押出成形機の温度を200℃に設定して、押出加工を行った。押出加工としては、外径2.4mmの導体上に、厚さ0.7mmの絶縁体を押出被覆して被覆材を形成した。その後、湿度95%、温度65℃の恒温恒湿槽で24時間架橋処理を施して絶縁電線を作製した。
[3]評価方法
・架橋体の物性
 上記で作製された架橋体試験片に対して、融点と曲げ弾性率を測定した。
(融点)
 融点の測定は、JIS K7121に準拠して、DSC法によって行った。融点が80℃以上の場合を、融点が高い(A)と評価し、さらに、融点が110℃以上の場合を、融点が特に高い(A+)と評価した。一方、融点が80℃未満の場合を、融点が低い(B)と評価した。
(曲げ弾性率)
 曲げ弾性率の測定は、ASTM D790に準拠して行った。曲げ弾性率が100MPa以下の場合を、曲げ弾性率が低い(A)と評価し、さらに、曲げ弾性率が80MPa未満の場合を、曲げ弾性率が特に低い(A+)と評価した。一方、曲げ弾性率が100MPaを超える場合を、曲げ弾性率が高い(B)と評価した。
・絶縁電線の特性
 上記で作製された試験用の絶縁電線に対して、耐融着性、柔軟性、耐摩耗性の評価を行った。
(耐融着性)
 上記の絶縁電線の製造工程の途中において、電線導体に絶縁体を押出被覆して被覆材を形成した段階の、架橋処理前の絶縁電線を、外径600mmのリールに巻き付け、その状態で、湿度95%、温度65℃の恒温恒湿槽で24時間架橋処理を施した。その後、絶縁電線をリールから引き出し、引き出した箇所を目視して、融着の有無を確認した。絶縁電線のうち、リールに巻かれた状態で相互に接触していた部位において、被覆材の表面に融着跡が目視確認されない場合を、耐融着性が高い(A)と評価した。この場合、架橋前の樹脂組成物のブロッキングや、架橋後の表面のべたつきが生じないと判定することができる。一方、融着跡が目視された場合には、耐融着性が低い(B)と評価した。
(柔軟性)
 JIS K7171を参考にし、3点曲げ柔軟性の評価を行った。この際、架橋させた絶縁電線を100mmの長さに切り出したものを3本、横一列に並べ、それら3本を、両端においてポリ塩化ビニルテープで相互に固定して、試験片とした。間隔50mmで設置された1対の支柱を有する治具上に、その試験片をセットした。そして、支柱間の中心に当たる位置において、試験片を、1mm/分の速度で上方から押し込みながら、試験片に印加される最大荷重を測定した。最大荷重が4N以下の場合を、柔軟性が高い(A)と評価し、さらに、最大荷重が2N以下の場合を、柔軟性が特に高い(A+)と評価した。一方、最大荷重が4Nを超える場合を、柔軟性が低い(B)と評価した。
(耐摩耗性)
 ISO 6722に準拠し、摩耗試験を行った。この際、架橋させた絶縁電線に対して、外径0.45mmの鉄線を荷重7Nで押し当て、55回/分の速さで往復運動させ、鉄線と導体である銅が導通するまでの回数を測定した。往復回数が500回以上の場合を、耐摩耗性が高い(A)と評価し、さらに往復回収が700回以上である場合を、耐摩耗性が特に高い(A+)と評価した。一方、往復回数が500回未満の場合を、耐摩耗性が低い(B)と評価した。
[4]試験結果
 下の表3,4に、試料A1~A14および試料B1,B2について、各成分の配合比を、質量部を単位として示すとともに、各評価の結果を示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 試料A1~A14においては、いずれも、架橋体において、80℃以上の融点(AまたはA+)と、100MPa以下の曲げ弾性率(AまたはA+)が得られている。そのことに対応して、絶縁電線において、高い耐融着性(A)と、高い柔軟性(AまたはA+)が、両立されている。評価結果の対応関係から、架橋体の融点の高さが耐融着性の高さに、曲げ弾性率の低さが柔軟性の高さに、それぞれつながっていると解釈できる。これらの試料においては、耐摩耗性も高くなっている(AまたはA+)。
 試料A1~A14の中でも、試料A1~A7に着目する。これらの試料においては、いずれも、(A)シラングラフトポリオレフィンを構成するベースポリオレフィンとして、(a-1)密度0.870g/cm以下、融点110℃以上、曲げ弾性率11MPa以下である、第一のポリオレフィン、つまりPE1またはPE2と、(a-2)密度0.870g/cm以下、融点60℃以下、曲げ弾性率11MPa以下である、第二のポリオレフィン、つまりPE3またはPE4が、(a-1)/(a-2)の質量比にして30/70から70/30の範囲の混合比で、混合されている。また、(B)未変性ポリオレフィンとして、密度0.950g/cm以下、弾性率200MPa以下のもの、つまり未変性PE1またはPE2を用いている。このように、(A)シラングラフトポリオレフィンに、融点の異なる2種のベースポリオレフィンを用いていること、また(B)未変性ポリオレフィンとして、所定の低密度、低曲げ弾性率のものを用いていることに対応して、架橋体において、80MPa未満の特に低い曲げ弾性率(A+)とともに、110℃以上の特に高い融点(A+)が、得られている。また、絶縁電線において、高い耐融着性(A)とともに、特に高い柔軟性(A+)が得られている。
 一方、試料A8~A11,A14は、いずれも、(A)シラングラフトポリオレフィンのベースポリオレフィンが、上記(a-1)第一のポリオレフィンと(a-2)第二のポリオレフィンを、(a-1)/(a-2)の質量比にして30/70から70/30の範囲の混合比で混合したものとはなっていない。試料A8,A9では、(a-2)第二のポリオレフィンの代わりに、密度が高く、曲げ弾性率の高いポリオレフィン(PE5,PE6)を用いている。また、試料A10では、(a-1)/(a-2)=70/30との混合比よりも、(a-2)第二のポリオレフィンが少ない領域にある。このように、試料A8~A10では、低密度、低曲げ弾性率、低融点を兼ね備えた(a-2)第二のポリオレフィンを、(A)シラングラフトポリオレフィンのベースポリオレフィンとして含んでいない、あるいはそれほど多く含んでいないことと対応して、試料A1~A7ほどは、低い曲げ弾性率および高い柔軟性が得られていないと解釈できる。
 試料A11では、(a-1)/(a-2)=30/70との混合比よりも、(a-1)第一のポリオレフィンが少ない領域にある。この試料A11では、低密度、低曲げ弾性率と高融点を同時に備えた(a-1)第一のポリオレフィンを、(A)シラングラフトポリオレフィンのベースポリオレフィンとして、それほど多く含んでいないことと対応して、試料A1~A7ほどは、架橋体において高い融点が得られていないと解釈できる。耐摩耗性も、特に高い水準までには達していない。
 試料A14では、(A)シラングラフトポリオレフィン(シラングラフトポリオレフィンPE12)として、1種のポリオレフィンのみ(PE1)をベースポリオレフィンとするもの用いている。表2に示されるように、このシラングラフトポリオレフィンPE12が、高い融点と、比較的低い曲げ弾性率を有していることに対応して、試料A14も、ある程度低い曲げ弾性率、およびある程度高い柔軟性を示すものとなっているが、2種のベースポリオレフィン(a-1),(a-2)を混合して(A)シラングラフトポリオレフィンを構成している試料A1~A7には、いずれも及んでいない。
 試料A12,A13では、(B)未変性ポリオレフィンとして、密度0.950g/cm以下、弾性率200MPa以下の少なくとも一方の特性を有さないもの(未変性PE3,PP1)を用いている。このことと対応して、低密度、低曲げ弾性率の未変性ポリオレフィンを用いている試料A1~A7ほどは、低い曲げ弾性率および高い柔軟性が得られていないと解釈できる。
 最後に、試料B1,B2でも、試料A14と同様に、(A)シラングラフトポリオレフィン(シラングラフトポリオレフィンPE13,PE14)として、1種のポリオレフィンのみ(PE3,PE6)をベースポリオレフィンとするもの用いている。しかし、試料B1,B2では、それら1種のベースポリオレフィンのみを含むシラングラフトポリオレフィンPE13,PE14が、試料A14で用いられているシラングラフトポリオレフィンPE12とは異なり、高融点を低曲げ弾性率とともに備えるものではない。シラングラフトポリオレフィンPE13,PE14ともに、融点が80℃以下と低くなっている。そのことと対応して、試料B1,B2では、架橋体の融点および絶縁電線の耐融着性が、低くなってしまっている。試料B2ではさらに、シラングラフトポリオレフィンPE14の曲げ弾性率が高いことにより、架橋体の曲げ弾性率の低さおよび絶縁電線の柔軟性にも劣っている。
 以上の結果に示されるとおり、試料A1~A14のように、80℃以上の融点と100MPa以下の曲げ弾性率を有する架橋体を与えるシラン架橋性樹脂組成物を用いて、絶縁電線を構成することで、高い耐融着性と柔軟性を備え、耐摩耗性にも優れた絶縁電線とすることができる。また、試料A1~A7および試料A10,A11のように、(A)シラングラフトポリオレフィンを構成するベースポリオレフィンとして、相互に融点の異なる(a-1)第一のポリオレフィンと(a-2)第二のポリオレフィンを混合することで、そのように高い融点と低い曲げ弾性率を備える架橋体を形成し、高い耐融着性および柔軟性を有する絶縁電線を、効率的に得ることができる。試料A1~A7のように、(a-1)/(a-2)の質量比を、30/70から70/30の範囲内とすると、さらに好ましい。試料A1と試料A12,A13との比較から、(B)未変性ポリオレフィンとしては、密度0.950g/cm以下、弾性率200MPa以下のものを用いることが好ましい。
 以上、本開示の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
1   絶縁電線
2   導体
3   電線被覆材

 

Claims (14)

  1.  樹脂成分として、
     (A)ポリオレフィンに対してシランカップリング剤がグラフトされたシラングラフトポリオレフィン、
     (B)未変性ポリオレフィン、
     (C)カルボキシル基、エステル基、酸無水物基、アミノ基、エポキシ基から選択される1種または2種以上の官能基を有する変性ポリオレフィン、を含有し、
     さらに、
     (D)難燃剤、
     (E)架橋触媒、を含有し、
     シラン架橋させた架橋体が、80℃以上の融点と、100MPa以下の曲げ弾性率を有する、難燃性樹脂組成物。
  2.  前記(A)シラングラフトポリオレフィンを構成するポリオレフィンが、
     (a-1)第一のポリオレフィンと、
     (a-2)第二のポリオレフィンと、を含み、
     前記(a-1)第一のポリオレフィンの方が、前記(a-2)第二のポリオレフィンよりも、高い融点を有する、請求項1に記載の難燃性樹脂組成物。
  3.  前記(a-1)第一のポリオレフィンが、密度0.870g/cm以下、融点110℃以上、曲げ弾性率11MPa以下であり、
     前記(a-2)第二のポリオレフィンが、密度0.870g/cm以下、融点60℃以下、曲げ弾性率11MPa以下であり、
     前記(a-1)第一のポリオレフィンと前記(a-2)第二のポリオレフィンの混合比が、(a-1)/(a-2)の質量比で、30/70以上、70/30以下の範囲にある、請求項2に記載の難燃性樹脂組成物。
  4.  樹脂成分として、
     (A)ポリオレフィンに対してシランカップリング剤がグラフトされたシラングラフトポリオレフィン、
     (B)未変性ポリオレフィン、
     (C)カルボキシル基、エステル基、酸無水物基、アミノ基、エポキシ基から選択される1種または2種以上の官能基を有する変性ポリオレフィン、を含有し、
     さらに、
     (D)難燃剤、
     (E)架橋触媒、を含有し、
     前記(A)シラングラフトポリオレフィンを構成するポリオレフィンが、
     (a-1)密度0.870g/cm以下、融点110℃以上、曲げ弾性率11MPa以下である、第一のポリオレフィンと、
     (a-2)密度0.870g/cm以下、融点60℃以下、曲げ弾性率11MPa以下である、第二のポリオレフィンと、を含有し、
     前記(a-1)第一のポリオレフィンと前記(a-2)第二のポリオレフィンの混合比が、(a-1)/(a-2)の質量比で、30/70以上、70/30以下の範囲にある、難燃性樹脂組成物。
  5.  前記(B)未変性ポリオレフィンが、密度0.950g/cm以下、弾性率200MPa以下である、請求項1から請求項4のいずれか1項に記載の難燃性樹脂組成物。
  6.  前記樹脂成分として、
     前記(A)シラングラフトポリオレフィンを10質量部以上、70質量部以下、
     前記(B)未変性ポリオレフィンを20質量部以上、60質量部以下、
     前記(C)変性ポリオレフィンを1質量部以上、30質量部以下含有する、請求項1から請求項5のいずれか1項に記載の難燃性樹脂組成物。
  7.  前記(D)難燃剤として、水酸化マグネシウムおよび水酸化アルミニウムより選択される少なくとも1種を、前記樹脂成分100質量部に対して、合計で30質量部以上、150質量部以下含有する、請求項1から請求項6のいずれか1項に記載の難燃性樹脂組成物。
  8.  前記水酸化マグネシウムおよび水酸化アルミニウムの平均粒子径が、0.5μm以上、5.0μm以下である、請求項1から請求項7のいずれか1項に記載の難燃性樹脂組成物。
  9.  前記(E)架橋触媒の含有量は、前記樹脂成分100質量部に対して、0.1質量部以上、1質量部以下である、請求項1から請求項8のいずれか1項に記載の樹脂組成物。
  10.  さらに、
     (F)ヒンダードフェノール系酸化防止剤、
     (G)金属酸化物、
     (H)硫黄系酸化防止剤、
     (I)滑剤、
    の少なくとも1種を含有する、請求項1から請求項9のいずれか1項に記載の難燃性樹脂組成物。
  11.  前記(H)硫黄系酸化防止剤が、少なくとも1種のイミダゾール系化合物を含む、請求項10に記載の難燃性樹脂組成物。
  12.  前記成分(F)~(I)の含有量は、前記樹脂成分100質量部に対して、それぞれ、下記のとおりとされる、請求項10または請求項11に記載の難燃性樹脂組成物。
     前記(F)ヒンダードフェノール系酸化防止剤について、0.5質量部以上、20質量部以下、
     前記(G)金属酸化物について、0.5質量部以上、15質量部以下、
     前記(H)硫黄系酸化防止剤について、0.5質量部以上、20質量部以下、
     前記(I)滑剤について、0.1質量部以上、5質量部以下。
  13.  導体と、
     請求項1から請求項12のいずれか1項に記載の難燃性樹脂組成物の架橋体より構成され、前記導体の外周を被覆する電線被覆材と、を有する絶縁電線。
  14.  請求項13に記載の絶縁電線を有する、ワイヤーハーネス。
PCT/JP2021/028628 2020-09-03 2021-08-02 難燃性樹脂組成物、絶縁電線、ワイヤーハーネス WO2022049960A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112021004552.0T DE112021004552T5 (de) 2020-09-03 2021-08-02 Flammenhemmende Kunststoffzusammensetzung, isolierte elektrische Leitung und Kabelbaum
CN202180053206.9A CN115989274A (zh) 2020-09-03 2021-08-02 阻燃性树脂组合物、绝缘电线、线束

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-148059 2020-09-03
JP2020148059A JP7491149B2 (ja) 2020-09-03 2020-09-03 難燃性樹脂組成物、絶縁電線、ワイヤーハーネス

Publications (1)

Publication Number Publication Date
WO2022049960A1 true WO2022049960A1 (ja) 2022-03-10

Family

ID=80491990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028628 WO2022049960A1 (ja) 2020-09-03 2021-08-02 難燃性樹脂組成物、絶縁電線、ワイヤーハーネス

Country Status (4)

Country Link
JP (1) JP7491149B2 (ja)
CN (1) CN115989274A (ja)
DE (1) DE112021004552T5 (ja)
WO (1) WO2022049960A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672131A (zh) * 2022-05-16 2022-06-28 南京工程学院 一种自动微交联无卤阻燃热塑性弹性体及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212291A (ja) * 1999-01-28 2000-08-02 Yazaki Corp ノンハロゲン難燃シラン架橋ポリオレフィン組成物の製造方法
US20090306283A1 (en) * 2006-12-14 2009-12-10 Matthias Kohl Prepolymer mixture containing silyl groups and use thereof
JP2011168697A (ja) * 2010-02-18 2011-09-01 Autonetworks Technologies Ltd 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP2016181413A (ja) * 2015-03-24 2016-10-13 株式会社オートネットワーク技術研究所 電線被覆材組成物、絶縁電線及びワイヤーハーネス
JP2017174551A (ja) * 2016-03-22 2017-09-28 株式会社オートネットワーク技術研究所 電線被覆材組成物、絶縁電線およびワイヤーハーネス
JP2018083867A (ja) * 2016-11-21 2018-05-31 Mcppイノベーション合同会社 シラン変性ポリオレフィン、シラン架橋ポリオレフィン、及びシラン変性ポリオレフィン組成物、並びに、これらを用いた成形体、架橋成形体及び三次元網状繊維集合体
JP2019163406A (ja) * 2018-03-20 2019-09-26 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294039A (ja) 1999-04-09 2000-10-20 Hitachi Cable Ltd 絶縁電線
CN103122096B (zh) * 2007-06-27 2017-04-12 陶氏环球技术有限责任公司 用于挠性提高的电缆绝缘层的聚烯烃弹性体与硅烷共聚物的可交联共混物
JP6278282B2 (ja) * 2013-09-25 2018-02-14 旭硝子株式会社 含フッ素エラストマー組成物、その製造方法、成形体、架橋物、及び被覆電線

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212291A (ja) * 1999-01-28 2000-08-02 Yazaki Corp ノンハロゲン難燃シラン架橋ポリオレフィン組成物の製造方法
US20090306283A1 (en) * 2006-12-14 2009-12-10 Matthias Kohl Prepolymer mixture containing silyl groups and use thereof
JP2011168697A (ja) * 2010-02-18 2011-09-01 Autonetworks Technologies Ltd 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP2016181413A (ja) * 2015-03-24 2016-10-13 株式会社オートネットワーク技術研究所 電線被覆材組成物、絶縁電線及びワイヤーハーネス
JP2017174551A (ja) * 2016-03-22 2017-09-28 株式会社オートネットワーク技術研究所 電線被覆材組成物、絶縁電線およびワイヤーハーネス
JP2018083867A (ja) * 2016-11-21 2018-05-31 Mcppイノベーション合同会社 シラン変性ポリオレフィン、シラン架橋ポリオレフィン、及びシラン変性ポリオレフィン組成物、並びに、これらを用いた成形体、架橋成形体及び三次元網状繊維集合体
JP2019163406A (ja) * 2018-03-20 2019-09-26 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672131A (zh) * 2022-05-16 2022-06-28 南京工程学院 一种自动微交联无卤阻燃热塑性弹性体及其制备方法
CN114672131B (zh) * 2022-05-16 2023-11-28 南京工程学院 一种自动微交联无卤阻燃热塑性弹性体及其制备方法

Also Published As

Publication number Publication date
CN115989274A (zh) 2023-04-18
JP7491149B2 (ja) 2024-05-28
DE112021004552T5 (de) 2023-08-10
JP2022042606A (ja) 2022-03-15

Similar Documents

Publication Publication Date Title
US9951242B1 (en) Electric wire coating material composition, insulated electric wire, and wire harness
JP5593730B2 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP5703789B2 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP6350129B2 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
US20120241190A1 (en) Composition for wire coating material, insulated wire, and wiring harness
US20130161064A1 (en) Composition for wire coating material, insulated wire, and wiring harness
JP6295886B2 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
US20180268956A1 (en) Composition for electric wire coating material, insulated electric wire, and wire harness
JP6569129B2 (ja) 電線被覆材組成物、絶縁電線およびワイヤーハーネス
JP2016050288A (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP6733695B2 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
WO2022049960A1 (ja) 難燃性樹脂組成物、絶縁電線、ワイヤーハーネス
JP2016050287A (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP2022072651A (ja) 被覆電線、及びワイヤーハーネス
JP2022042606A5 (ja)
JP2015193689A (ja) 難燃性組成物およびこれを用いた絶縁電線
JP2015193690A (ja) 難燃性組成物およびこれを用いた絶縁電線
JP7067590B2 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP2016195073A (ja) 絶縁電線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864018

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21864018

Country of ref document: EP

Kind code of ref document: A1