WO2022047902A1 - 一种化合物及有机电致发光器件 - Google Patents

一种化合物及有机电致发光器件 Download PDF

Info

Publication number
WO2022047902A1
WO2022047902A1 PCT/CN2020/121429 CN2020121429W WO2022047902A1 WO 2022047902 A1 WO2022047902 A1 WO 2022047902A1 CN 2020121429 W CN2020121429 W CN 2020121429W WO 2022047902 A1 WO2022047902 A1 WO 2022047902A1
Authority
WO
WIPO (PCT)
Prior art keywords
deuterated
compound
phenyl
butyl
anthracenyl
Prior art date
Application number
PCT/CN2020/121429
Other languages
English (en)
French (fr)
Inventor
钱超
许军
Original Assignee
南京高光半导体材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京高光半导体材料有限公司 filed Critical 南京高光半导体材料有限公司
Publication of WO2022047902A1 publication Critical patent/WO2022047902A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom

Definitions

  • the present invention relates to the technical field of organic electroluminescence, in particular to a compound and an organic electroluminescence device.
  • OLED is a device that utilizes a multilayer organic thin film structure to generate electroluminescence. It is easy to fabricate and only requires low driving voltage. These main features make OLED very prominent in the application of flat panel displays. OLED displays are lighter and thinner than LCDs, with high brightness, low power consumption, fast response, high definition, good flexibility, and high luminous efficiency, which can meet the new demands of consumers for display technology. More and more display manufacturers around the world have invested in research and development, which has greatly promoted the industrialization process of OLED.
  • OLED devices are composed of substrate, cathode, anode, hole injection layer (HIL), electron injection layer (EIL), hole transport layer (HTL), electron transport layer (ETL), electron blocking layer (EBL), empty Hole blocking layer (HBL), light-emitting layer (EML) and other parts, when a voltage is applied to the electrodes at both ends of the OLED device, positive and negative charges are generated in the organic layer functional material film layer through the action of the electric field, and the positive and negative charges are further in the light-emitting layer. When combined, light can be produced.
  • HIL hole injection layer
  • EIL electron injection layer
  • HTL hole transport layer
  • ETL electron transport layer
  • EBL electron blocking layer
  • HBL empty Hole blocking layer
  • EML empty Hole blocking layer
  • the research on improving the performance of OLED devices includes: reducing the driving voltage of the device, improving the luminous efficiency of the device, and improving the service life of the device.
  • the present invention provides a compound and an organic electroluminescence device.
  • Z1-Z3 are the same or different, each independently is CH or N, and Z1-Z3 are not CH at the same time;
  • Ar1 is phenyl or deuterated phenyl
  • Y is O
  • Ar2 is C1-C4 linear or branched alkyl, C1-C4 deuterated linear or branched alkyl, C3-C10 cycloalkyl, C3-C10 deuterated cycloalkyl, C3-C6 Cycloalkenyl, C3-C6 deuterated cycloalkenyl, phenyl, naphthyl, anthracenyl, phenanthryl, deuterated phenyl, deuterated naphthyl, deuterated anthracenyl, deuterated phenanthryl;
  • phenyl, naphthyl, anthracenyl, phenanthryl, deuterated phenyl, deuterated naphthyl, deuterated anthracenyl, deuterated phenanthryl are unsubstituted or at least one hydrogen or deuterium is C1-C4 Linear or branched alkyl, C1-C4 deuterated linear or branched alkyl, C3-C10 cycloalkyl, C3-C10 deuterated cycloalkyl, C3-C6 cycloalkenyl, C3- A group obtained by substitution of deuterated cycloalkenyl, phenyl or deuterated phenyl of C6;
  • Ar3 is a group represented by formula 2:
  • X1-X8 are the same or different, and are independently N, CH or CD;
  • At least one of Ar1, Ar2, and Ar3 is a group substituted with deuterium.
  • Ar2 is the following group:
  • phenyl, naphthyl, anthracenyl, phenanthryl, deuterated phenyl, deuterated naphthyl, deuterated anthracenyl, and deuterated phenanthryl are unsubstituted or by methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, adamantyl, bicyclo[1.1.1]pentyl, cyclopentyl propenyl, cyclobutenyl, cyclobutadienyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, cyclohexadienyl;
  • Ar2 is the following group:
  • X1-X8 are both CH or CD at the same time. Further, it is any one of the following compounds:
  • An organic electroluminescence device comprising a first electrode, a second electrode and an organic layer formed between the first electrode and the second electrode, the organic layer containing the above-mentioned compound.
  • the organic layer includes a hole injection layer, a hole transport layer, an electron blocking layer, a light-emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer; the hole injection layer, hole transport layer, At least one of the electron blocking layer, the light emitting layer, the hole blocking layer, the electron transport layer, and the electron injection layer contains the above-mentioned compound.
  • the above-mentioned compound is contained in the light-emitting layer.
  • the light-emitting layer contains a light-emitting host material, and the light-emitting host material is formed by mixing any one or more of the above-mentioned compounds and compounds G1-G28, and the compounds G1-G28 are as follows:
  • the room temperature in the present invention is all 25 ⁇ 5°C.
  • the compounds provided by the present invention can be widely used as organic electroluminescent materials.
  • the inventors introduced deuterium (deuterium) into the traditional structure of such compounds.
  • the introduction of deuterium is associated with electron-rich carbazole as a group, and electron-withdrawing triazine
  • the groups are combined with each other, so that this type of compound has the characteristics of bipolarity, and at the same time has the characteristics of transporting electrons and holes, so that the transport of electrons and holes can be balanced, and can be better matched with doping materials.
  • the efficiency and stability of the device are greatly improved, the service life of the device is increased, and the service life and luminous efficiency of the device are further improved.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescence device provided by the present invention.
  • 1-anode 2-hole injection layer, 3-hole transport layer, 4-electron blocking layer, 5-light emitting layer, 6-hole blocking layer, 7-electron transport layer, 8-electron injection layer, 9- cathode.
  • Fig. 2 is the HPLC chart of compound 1 prepared in Example 1 of the present invention.
  • Fig. 3 is the hydrogen nuclear magnetic spectrum of compound 1 prepared in Example 1 of the present invention.
  • Fig. 4 is the DSC spectrum of Compound 1 prepared in Example 1 of the present invention. As can be seen from Fig. 4, the Tm of Compound 1 is 263.67°C.
  • Fig. 5 is the TGA spectrum of compound 1 prepared in Example 1 of the present invention. As can be seen from Fig. 5, the thermal weight loss temperature Td of compound 1 is 461.92°C.
  • FIG. 6 is a life diagram of the organic electroluminescent device in Application Example 1 and Comparative Example 1 of the present invention.
  • T97% lifetimes of the organic electroluminescent devices prepared in Application Example 1 and Comparative Example 1 of the present invention are 475h and 424h, respectively.
  • a "Ca to Cb" hydrocarbyl group is defined as a hydrocarbyl group having a carbon number of "a” (inclusive) to "b” (inclusive).
  • “a and/or b” means “a” or "b” or “a and b”.
  • substituted means that at least one hydrogen in the group is combined with a deuterium, hydrocarbyl, hydrocarbyl derivative, halogen, or cyano group (-CN) realignment.
  • unsubstituted means that at least one hydrogen in the group is not recoordinated with a deuterium, hydrocarbyl, hydrocarbyl derivative, halogen, or cyano group (-CN).
  • hydrocarbyl or hydrocarbon derivative groups may include C1 to C30 alkyl, C2 to C30 alkenyl, C2 to C30 alkynyl, C6 to C30 aryl, C5 to C30 heteroaryl, C1 to C30 alkylamino, C6 to C30 C30 arylamino, C6 to C30 heteroarylamino, C6 to C30 arylheteroarylamino, etc., but not limited thereto.
  • C1-C4 alkyl refers to methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl;
  • C1-C4 deuterated alkyl is Refers to the group obtained by replacing any number of hydrogens in methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl with deuterium.
  • compound 1-a (10g, 356.81g/mol, 28.03mmol), compound 1-b (1.1eq, 9.04g, 293.14g/mol, 30.83mmol) and sodium carbonate (2eq, 5.94g, 105.99 g/mol, 56.06mmol) was added to toluene (200ml), ethanol (100ml), water (100ml), stirred and mixed, and then added tetrakistriphenylphosphine palladium (0.05eq, 1.62g, 1155.58g/mol, 1.4 mmol), heated to reflux for 10h, cooled to room temperature, added water (100ml), stirred to separate the aqueous phase, the aqueous phase was extracted with dichloromethane, the organic phases were combined, dried with anhydrous sodium sulfate, and the mixture was subjected to column chromatography on silica gel mixture.
  • the preparation method is basically the same as that in Example 1, except that compound 1-a and compound 1-b are replaced by compound 2-a and compound 2-b, respectively, and compound 2 (yield 79.7%) is obtained by the reaction.
  • ESI-MS (m /z)(M+) theoretical value 569.66, measured value 570.44, elemental analysis results (molecular formula C39H19D5N4O): theoretical value C, 82.23; H, 5.13; N, 9.84; O, 2.81; measured value C, 82.23; H, 5.13 ; N, 9.84; O, 2.81.
  • the preparation method is basically the same as that of Example 2, the difference is that compound 2-a is replaced by compound 3-a, and the reaction obtains compound 3 (yield 80.5%), ESI-MS (m/z) (M+): theoretical value 572.68, Found value 572.81, elemental analysis results (molecular formula C39H16D8N4O): theoretical value C, 81.79; H, 5.63; N, 9.78; O, 2.79; found value C, 81.79; H, 5.63; N, 9.78; O, 2.79.
  • the preparation method is basically the same as that in Example 2, the difference is that compound 2-b is replaced by compound 4-b, and the reaction obtains compound 9 (yield 77.3%), ESI-MS (m/z) (M+): theoretical value 619.72, Found 620.18, elemental analysis results (molecular formula C43H21D5N4O): theoretical value C, 83.34; H, 5.04; N, 9.04; O, 2.58; found value C, 83.33; H, 5.04; N, 9.04; O, 2.58.
  • the preparation method is basically the same as that in Example 1, the difference is that compound 1-b is replaced by compound 5-b, and the reaction obtains compound 16 (yield 71.2%), ESI-MS (m/z) (M+): theoretical value 695.82, Found 696.07, elemental analysis results (molecular formula C49H25D5N4O): theoretical value C, 84.58; H, 5.07; N, 8.05; O, 2.30; found value C, 84.58; H, 5.07; N, 8.05;
  • the preparation method is basically the same as that of Example 2, the difference is that compound 2-b is replaced by compound 6-b, and the reaction obtains compound 16 (yield 71.7%), ESI-MS (m/z) (M+): theoretical value 695.82, Measured value 696.30, elemental analysis results (molecular formula C49H25D5N4O): theoretical value C, 84.58; H, 5.07; N, 8.05; O, 2.30; found value C, 84.58; H, 5.07; N, 8.05;
  • the preparation method is basically the same as that of Example 1, the difference is that compound 1-b is replaced by compound 7-b, and the reaction obtains compound 22 (yield 76.5%), ESI-MS (m/z) (M+): theoretical value 695.82, Found 696.04, elemental analysis results (molecular formula C49H25D5N4O): theoretical value C, 84.58; H, 5.07; N, 8.05; O, 2.30; found value C, 84.58; H, 5.07; N, 8.05; O, 2.30.
  • the preparation method is basically the same as that in Example 1, the difference is that compound 1-b is replaced by compound 8-b, and the reaction obtains compound 29 (yield 74.2%), ESI-MS (m/z) (M+): theoretical value 695.82, Found 696.27, elemental analysis results (molecular formula C49H25D5N4O): theoretical value C, 84.58; H, 5.07; N, 8.05; O, 2.30; found value C, 84.58; H, 5.07; N, 8.05; O, 2.30.
  • the preparation method is basically the same as that of Example 1, except that compound 1-b is replaced by compound 9-b, and the reaction obtains compound 36 (yield 76.3%), ESI-MS (m/z) (M+): theoretical value 695.82, Measured value 696.67, elemental analysis results (molecular formula C49H25D5N4O): theoretical value C, 84.58; H, 5.07; N, 8.05; O, 2.30; found value C, 84.58; H, 5.07; N, 8.05;
  • the preparation method is basically the same as that of Example 1, the difference is that compound 1-b is replaced by compound 10-b, and the reaction obtains compound 43 (yield 68.4%), ESI-MS (m/z) (M+): theoretical value 695.82, Found 696.03, elemental analysis results (molecular formula C49H25D5N4O): theoretical value C, 84.58; H, 5.07; N, 8.05; O, 2.30; found value C, 84.58; H, 5.07; N, 8.05;
  • the preparation method is basically the same as that in Example 1, the difference is that compound 1-b is replaced by compound 11-b, and the reaction obtains compound 49 (yield 73.9%), ESI-MS (m/z) (M+): theoretical value 695.82, Found 696.11, elemental analysis results (molecular formula C49H25D5N4O): theoretical value C, 84.58; H, 5.07; N, 8.05; O, 2.30; found value C, 84.58; H, 5.07; N, 8.05;
  • the preparation method is basically the same as that in Example 1, the difference is that compound 1-b is replaced by compound 12-b, and the reaction obtains compound 65 (yield 70.1%), ESI-MS (m/z) (M+): theoretical value 695.82, Found 696.27, elemental analysis results (molecular formula C49H25D5N4O): theoretical value C, 84.58; H, 5.07; N, 8.05; O, 2.30; found value C, 84.58; H, 5.07; N, 8.05; O, 2.30.
  • the preparation method is basically the same as that in Example 1, the difference is that compound 1-b is replaced by compound 13-b, and the reaction obtains compound 86 (yield 73.3%), ESI-MS (m/z) (M+): theoretical value 695.82, Measured value 696.31, elemental analysis results (molecular formula C49H25D5N4O): theoretical value C, 84.58; H, 5.07; N, 8.05; O, 2.30; found value C, 84.58; H, 5.07; N, 8.05;
  • the preparation method is basically the same as that in Example 1, the difference is that compound 1-b is replaced with compound 14-b, and the reaction obtains compound 93 (yield 76.6%), ESI-MS (m/z) (M+): theoretical value 695.82, Measured value 696.62, elemental analysis results (molecular formula C49H25D5N4O): theoretical value C, 84.58; H, 5.07; N, 8.05; O, 2.30; found value C, 84.58; H, 5.07; N, 8.05;
  • the preparation method of compound 100 is as follows:
  • the preparation method is basically the same as that of Example 1, the difference is that compound 1-b is replaced by compound 15-b, and the reaction obtains compound 100 (yield 75.8%), ESI-MS (m/z) (M+): theoretical value 695.82, Found 696.47, elemental analysis results (molecular formula C49H25D5N4O): theoretical value C, 84.58; H, 5.07; N, 8.05; O, 2.30; found value C, 84.58; H, 5.07; N, 8.05; O, 2.30.
  • the preparation method is basically the same as that in Example 1, the difference is that compound 1-b is replaced by compound 16-b, and the reaction obtains compound 121 (yield 70.8%), ESI-MS (m/z) (M+): theoretical value 745.88, Found 746.21, elemental analysis results (molecular formula C53H27D5N4O): theoretical value C, 85.34; H, 5.00; N, 7.51; O, 2.15; found value C, 85.34; H, 5.00; N, 7.50; O, 2.15.
  • the preparation method is basically the same as that of Example 1, the difference is that compound 17-b is replaced by compound 17-b, and the reaction obtains compound 177 (yield 81.1%), ESI-MS (m/z) (M+): theoretical value 628.79, Found 628.80, elemental analysis results (molecular formula C43H28D6N4O): theoretical value C, 82.14; H, 6.41; N, 8.91; O, 2.54; found value C, 82.14; H, 6.41; N, 8.91;
  • the thermal weight loss temperature Td is the temperature at which the weight loses 5% in a nitrogen atmosphere. It is measured on a TGA N-1000 thermogravimetric analyzer. The nitrogen flow rate is 10 mL/min during the measurement. The melting point Tm is determined by differential scanning calorimetry (DSC, Xinke DSC N-650) measurement, heating rate 10 °C/min.
  • test material Td(°C) Tm(°C) 1 461.92 263.67 2 468.19 268.90 3 471.94 271.84
  • the compounds of the present invention have higher Td value and Tm value, indicating that they have excellent thermal stability, and their application in organic electroluminescence devices can effectively prolong the service life of organic electroluminescence devices. , and better use effect can be obtained.
  • ITO was used as the anode substrate material of the reflective layer, and the surface was treated with water, acetone, and N2 plasma in turn;
  • HIL hole injection layer
  • a hole transport layer was formed by evaporating 100 nm of HT-1 over the hole injection layer (HIL);
  • EBL electron blocking layer
  • Compound 1 and G1 prepared in Example 1 of the present invention were co-evaporated as a luminescent host material in a ratio of 5:5, and GD-1 was used as a dopant material (the amount of GD-1 was 8% of the total weight of compound 1 and G1) Evaporating to form a light-emitting layer with a thickness of 20 nm on the electron blocking layer (EBL);
  • EBL electron blocking layer
  • HBL hole blocking layer
  • ET-1 and LiQ were co-evaporated onto the hole blocking layer (HBL) in a ratio of 5:5 to obtain an electron transport layer (ETL) with a thickness of 30 nm;
  • Magnesium (Mg) and silver (Ag) were mixed and evaporated in a ratio of 9:1 onto the electron transport layer (ETL) to form an electron injection layer (EIL) with a thickness of 50 nm;
  • silver (Ag) was evaporated over the electron injection layer to form a cathode with a thickness of 100 nm, and DNTPD with a thickness of 50 nm was deposited on the above-mentioned cathode sealing layer.
  • a UV curing adhesive and a packaging film containing a dehumidifying agent were used on the surface of the cathode. (seal cap) to protect the organic electroluminescent device from being affected by oxygen or moisture in the atmosphere. The organic electroluminescent device is thus prepared.
  • Comparative Examples 1-3 and Application Example 1 The difference between Comparative Examples 1-3 and Application Example 1 is that GH-1, GH-2, and GH-3 are respectively used to replace Compound 1 in Application Example 1, and the rest are the same as Application Example 1.
  • the compound of the present invention is used as the host material of the light-emitting layer and applied to the organic electroluminescent device, and the service life of the prepared organic electroluminescent device is greatly improved, so it has a wide application. prospect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种化合物及有机电致发光器件,其结构式如下式(1)所示: Z1-Z3相同或不同,各自独立的为CH或N,Z1-Z3不同时为CH;Ar1为苯基或氘代苯基;Y为O,Ar2为C1-C4的直链或支链烷基、C1-C4的氘代直链或支链烷基、C3-C10的环烷基、C3-C10的氘代环烷基、C3-C6的环烯基、C3-C6的氘代环烯基、苯基、萘基、蒽基、菲基、氘代苯基、氘代萘基、氘代蒽基、氘代菲基,将式1化合物作为发光层的主体材料使用,应用于有机电致发光器件中,所制备的有机电致发光器件使用寿命得到很大程度提升,所以具有很广阔的应用前景。

Description

一种化合物及有机电致发光器件 技术领域
本发明涉及有机电致发光技术领域,具体涉及一种化合物及有机电致发光器件。
背景技术
OLED作为一种利用多层有机薄膜结构产生电致发光的器件,它很容易制作,而且只需要低的驱动电压,这些主要的特征使得OLED在满足平面显示器的应用上显得非常突出。OLED显示屏比LCD更轻薄、亮度高、功耗低、响应快、清晰度高、柔性好、发光效率高,能满足消费者对显示技术的新需求。全球越来越多的显示器厂家纷纷投入研发,大大的推动了OLED的产业化进程。
目前的,OLED器件由基板、阴极、阳极、空穴注入层(HIL)、电子注入层(EIL)、空穴传输层(HTL)、电子传输层(ETL)、电子阻挡层(EBL)、空穴阻挡层(HBL)、发光层(EML)等部分构成,当对OLED器件的两端电极施加电压,通过电场作用在有机层功能材料膜层中产生正负电荷,正负电荷进一步在发光层中复合,就可以产生光。
目前,对于OLED器件提高性能的研究包括:降低器件的驱动电压,提高器件的发光效率,提高器件的使用寿命等。为了实现有机电致发光器件性能的不断提升,不但需要有机电致发光器件的结构和制作工艺的创新,更需要有机电致光电功能材料的不断研究和创新,创制出更高性能的有机电致功能材料。
就当前有机电致发光产业的实际需求而言,目前有机电致发光材料的发展还远远不够,落后于面板制造企业的要求。
发明内容
发明目的:针对上述技术问题,本发明提供了一种化合物及有机电致发光器件。
为了达到上述发明目的,本发明所采用的技术方案如下:
一种化合物,其结构式如下式1所示:
Figure PCTCN2020121429-appb-000001
Z1-Z3相同或不同,各自独立的为CH或N,Z1-Z3不同时为CH;
Ar1为苯基或氘代苯基;
Y为O;
Ar2为C1-C4的直链或支链烷基、C1-C4的氘代直链或支链烷基、C3-C10的环烷基、C3-C10的氘代环烷基、C3-C6的环烯基、C3-C6的氘代环烯基、苯基、萘基、蒽基、菲基、氘代苯基、氘代萘基、氘代蒽基、氘代菲基;
所述苯基、萘基、蒽基、菲基、氘代苯基、氘代萘基、氘代蒽基、氘代菲基为未取代的或是其中至少一个氢或氘被C1-C4的直链或支链烷基、C1-C4的氘代直链或支链烷基、C3-C10的环烷基、C3-C10的氘代环烷基、C3-C6的环烯基、C3-C6的氘代环烯基、苯基或氘代苯基取代获得的基团;
Ar3为式2所示基团:
Figure PCTCN2020121429-appb-000002
X1-X8相同或不同,各自独立的为N、CH或CD;
Ar1、Ar2、Ar3中至少一个是被氘取代的基团。
2.如权利要求1所述的化合物,其特征在于,Z1-Z3同时为N。
进一步地,Ar2为以下基团:
甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、环丙基、环丁基、环戊基、环己基、金刚烷基、双环[1.1.1]戊烷基、环丙烯基、环丁烯基、环丁二烯基、环戊烯基、环戊二烯基、环己烯基、环己二烯基;
氘代甲基、氘代乙基、氘代正丙基、氘代异丙基、氘代正丁基、氘代异丁基、氘代仲丁基、氘代叔丁基、氘代环丙基、氘代环丁基、氘代环戊基、氘代环己基、氘代金刚烷基、氘代双环[1.1.1]戊烷基、氘代环丙烯基、氘代环丁烯基、氘代环丁二烯基、氘代环戊烯基、氘代环戊二烯基、氘代环己烯基、氘代环己二烯基;
苯基、萘基、蒽基、菲基、氘代苯基、氘代萘基、氘代蒽基、氘代菲基;
所述苯基、萘基、蒽基、菲基、氘代苯基、氘代萘基、氘代蒽基、氘代菲基为未取代的或是被甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、环丙基、环丁基、环戊基、环己基、金刚烷基、双环[1.1.1]戊烷基、环丙烯基、环丁烯基、环丁二烯基、 环戊烯基、环戊二烯基、环己烯基、环己二烯基;
氘代甲基、氘代乙基、氘代正丙基、氘代异丙基、氘代正丁基、氘代异丁基、氘代仲丁基、氘代叔丁基、氘代环丙基、氘代环丁基、氘代环戊基、氘代环己基、氘代金刚烷基、氘代双环[1.1.1]戊烷基、氘代环丙烯基、氘代环丁烯基、氘代环丁二烯基、氘代环戊烯基、氘代环戊二烯基、氘代环己烯基、氘代环己二烯基;
苯基、萘基、蒽基、菲基、氘代苯基、氘代萘基、氘代蒽基、氘代菲基取代所获得的基团。
进一步地,Ar2为以下基团:
Figure PCTCN2020121429-appb-000003
Figure PCTCN2020121429-appb-000004
进一步地,X1-X8同时为CH或同时为CD。进一步地,为以下化合物中的任意一种:
Figure PCTCN2020121429-appb-000005
Figure PCTCN2020121429-appb-000006
Figure PCTCN2020121429-appb-000007
Figure PCTCN2020121429-appb-000008
Figure PCTCN2020121429-appb-000009
Figure PCTCN2020121429-appb-000010
Figure PCTCN2020121429-appb-000011
Figure PCTCN2020121429-appb-000012
Figure PCTCN2020121429-appb-000013
Figure PCTCN2020121429-appb-000014
Figure PCTCN2020121429-appb-000015
一种有机电致发光器件,包括第一电极、第二电极以及在所述第一电极和所述第二电极之间形成的有机层,所述有机层中含有上述化合物。
进一步地,所述有机层包含空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层;所述空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层中的至少一层含有上述化合物。
进一步地,所述发光层中含有上述化合物。
进一步地,所述发光层中含有发光主体材料,所述发光主体材料由上述化合物及化合物G1-G28中的任意一种或多种混合而成,化合物G1-G28如下所示:
Figure PCTCN2020121429-appb-000016
Figure PCTCN2020121429-appb-000017
本发明所述室温均为25±5℃。
本发明的有益效果:
本发明提供的化合物可以作为有机电致发光材料广泛应用,发明人在传统的该类化合物结构中引入重氢(氘),氘的引入与富电子的咔唑为基团,吸电子的三嗪基团,相互组合,进而使得该类化合物具有双极性特点,同时具备传输电子与空穴的特点,使电子与空穴的传输达到平衡,且能够更好的与掺杂材料进行搭配,大幅度提高了器件的效率及稳定性,提高了器件的寿命,进一步提高器件的使用寿命及发光效率。
附图说明
图1为本发明提供的有机电致发光器件的结构示意图;
图中标号分别代表:
1-阳极、2-空穴注入层、3-空穴传输层、4-电子阻挡层、5-发光层、6-空穴阻挡层、7-电子传输层、8-电子注入层、9-阴极。
图2为本发明实施例1中所制备的化合物1的HPLC图;
图3为本发明实施例1中所制备的化合物1的核磁氢谱图;
图4为本发明实施例1中所制备的化合物1的DSC图谱,由图4可知,化合物1的Tm 为263.67℃。
图5为本发明实施例1中所制备的化合物1的TGA图谱,由图5可知,化合物1的热失重温度Td为461.92℃。
图6为本发明应用例1和对照例1中有机电致发光器件的寿命图;
由图6可知,本发明应用例1和对照例1所制备的有机电致发光器件的T97%寿命分别为475h和424h。
具体实施方式
以下进一步说明和描述了各个方面的实施例。应当理解,本文的描述并非旨在将权利要求书限制于所描述的特定方面。相反,旨在覆盖可包括在由所附权利要求书限定的本公开的精神和范围内的替代、修改和等同物。
如本文所用,“Ca至Cb”烃基被限定为具有碳数为“a”(包含在内)至“b”(包含在内)的烃基。如本文所用,“a和/或b”表示“a”或“b”或“a和b”。
如本文所用,在“取代的”或“未取代的”中,术语“取代的”是指该基团中的至少一个氢与氘、烃基、烃衍生物基、卤素或氰基(-CN)重新配位。术语“未取代的”是指该基团中的至少一个氢不与氘、烃基、烃衍生物基、卤素或氰基(-CN)重新配位。烃基或烃衍生物基团的实例可包括C1至C30烷基、C2至C30烯基、C2至C30炔基、C6至C30芳基、C5至C30杂芳基、C1至C30烷氨基、C6至C30芳氨基、C6至C30杂芳氨基、C6至C30芳基杂芳氨基等,但不限于此。
本发明中C1-C4的烷基是指甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基;C1-C4的氘代烷基是指甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基中的任意数量的氢被氘取代所得到的基团。
实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1:
Figure PCTCN2020121429-appb-000018
化合物1的制备方法如下所示:
Figure PCTCN2020121429-appb-000019
氮气保护下,将化合物1-a(10g,356.81g/mol,28.03mmol)、化合物1-b(1.1eq,9.04g,293.14g/mol,30.83mmol)和碳酸钠(2eq,5.94g,105.99g/mol,56.06mmol)加入到甲苯(200ml)、乙醇(100ml)、水(100ml)中,搅拌混匀后再加入四三苯基膦钯(0.05eq,1.62g,1155.58g/mol,1.4mmol),升温至回流反应10h后,冷却至室温加入水(100ml),搅拌分出水相,水相用二氯甲烷萃取后,有机相合并后用无水硫酸钠干燥后硅胶拌样柱层析提纯,得到化合物1(12.79g,收率80.1%),ESI-MS(m/z)(M+):理论值569.66,实测值570.19,元素分析结果(分子式C39H19D5N4O):理论值C,82.23;H,5.13;N,9.84;O,2.81;实测值C,82.23;H,5.13;N,9.84;O,2.81。
实施例1中所制备的化合物1的HPLC图如下表1:
表1
Figure PCTCN2020121429-appb-000020
实施例2:
Figure PCTCN2020121429-appb-000021
化合物2的制备方法如下所示:
Figure PCTCN2020121429-appb-000022
制备方法与实施例1基本相同,区别在于,分别用化合物2-a、化合物2-b替换化合物1-a、化合物1-b,反应得到化合物2(收率79.7%),ESI-MS(m/z)(M+):理论值569.66,实测值570.44,元素分析结果(分子式C39H19D5N4O):理论值C,82.23;H,5.13;N,9.84;O,2.81;实测值C,82.23;H,5.13;N,9.84;O,2.81。
实施例3:
Figure PCTCN2020121429-appb-000023
化合物3的制备方法如下所示:
Figure PCTCN2020121429-appb-000024
制备方法与实施例2基本相同,区别在于,用化合物3-a替换化合物2-a,反应得到化合物3(收率80.5%),ESI-MS(m/z)(M+):理论值572.68,实测值572.81,元素分析结果(分子式C39H16D8N4O):理论值C,81.79;H,5.63;N,9.78;O,2.79;实测值C,81.79;H,5.63;N,9.78;O,2.79。
实施例4:
Figure PCTCN2020121429-appb-000025
化合物9的制备方法如下所示:
Figure PCTCN2020121429-appb-000026
制备方法与实施例2基本相同,区别在于,用化合物4-b替换化合物2-b,反应得到化合物9(收率77.3%),ESI-MS(m/z)(M+):理论值619.72,实测值620.18,元素分析结果(分子式C43H21D5N4O):理论值C,83.34;H,5.04;N,9.04;O,2.58;实测值C,83.33;H,5.04;N,9.04;O,2.58。
实施例5:
Figure PCTCN2020121429-appb-000027
化合物16的制备方法如下所示:
Figure PCTCN2020121429-appb-000028
制备方法与实施例1基本相同,区别在于,用化合物5-b替换化合物1-b,反应得到化合物16(收率71.2%),ESI-MS(m/z)(M+):理论值695.82,实测值696.07,元素分析结果(分子式C49H25D5N4O):理论值C,84.58;H,5.07;N,8.05;O,2.30;实测值C,84.58;H,5.07;N,8.05;O,2.30。
实施例6:
Figure PCTCN2020121429-appb-000029
化合物17的制备方法如下所示:
Figure PCTCN2020121429-appb-000030
制备方法与实施例2基本相同,区别在于,用化合物6-b替换化合物2-b,反应得到化合物16(收率71.7%),ESI-MS(m/z)(M+):理论值695.82,实测值696.30,元素分析结果(分子式C49H25D5N4O):理论值C,84.58;H,5.07;N,8.05;O,2.30;实测值C,84.58;H,5.07;N,8.05;O,2.30。
实施例7:
Figure PCTCN2020121429-appb-000031
化合物22的制备方法如下所示:
Figure PCTCN2020121429-appb-000032
制备方法与实施例1基本相同,区别在于,用化合物7-b替换化合物1-b,反应得到化合物22(收率76.5%),ESI-MS(m/z)(M+):理论值695.82,实测值696.04,元素分析结果(分子式C49H25D5N4O):理论值C,84.58;H,5.07;N,8.05;O,2.30;实测值C,84.58;H,5.07;N,8.05;O,2.30。
实施例8:
Figure PCTCN2020121429-appb-000033
化合物29的制备方法如下所示:
Figure PCTCN2020121429-appb-000034
制备方法与实施例1基本相同,区别在于,用化合物8-b替换化合物1-b,反应得到化合物29(收率74.2%),ESI-MS(m/z)(M+):理论值695.82,实测值696.27,元素分析结果(分子式C49H25D5N4O):理论值C,84.58;H,5.07;N,8.05;O,2.30;实测值C,84.58;H,5.07;N,8.05;O,2.30。
实施例9:
Figure PCTCN2020121429-appb-000035
化合物36的制备方法如下所示:
Figure PCTCN2020121429-appb-000036
制备方法与实施例1基本相同,区别在于,用化合物9-b替换化合物1-b,反应得到化合物36(收率76.3%),ESI-MS(m/z)(M+):理论值695.82,实测值696.67,元素分析结果(分子式C49H25D5N4O):理论值C,84.58;H,5.07;N,8.05;O,2.30;实测值C,84.58;H,5.07;N,8.05;O,2.30。
实施例10:
Figure PCTCN2020121429-appb-000037
化合物43的制备方法如下所示:
Figure PCTCN2020121429-appb-000038
制备方法与实施例1基本相同,区别在于,用化合物10-b替换化合物1-b,反应得到化合物43(收率68.4%),ESI-MS(m/z)(M+):理论值695.82,实测值696.03,元素分析结果(分子式C49H25D5N4O):理论值C,84.58;H,5.07;N,8.05;O,2.30;实测值C,84.58;H,5.07;N,8.05;O,2.30。
实施例11:
Figure PCTCN2020121429-appb-000039
化合物49的制备方法如下所示:
Figure PCTCN2020121429-appb-000040
制备方法与实施例1基本相同,区别在于,用化合物11-b替换化合物1-b,反应得到化合物49(收率73.9%),ESI-MS(m/z)(M+):理论值695.82,实测值696.11,元素分析结果(分子式C49H25D5N4O):理论值C,84.58;H,5.07;N,8.05;O,2.30;实测值C,84.58;H,5.07;N,8.05;O,2.30。
实施例12:
Figure PCTCN2020121429-appb-000041
化合物65的制备方法如下所示:
Figure PCTCN2020121429-appb-000042
制备方法与实施例1基本相同,区别在于,用化合物12-b替换化合物1-b,反应得到化合物65(收率70.1%),ESI-MS(m/z)(M+):理论值695.82,实测值696.27,元素分析结果(分子式C49H25D5N4O):理论值C,84.58;H,5.07;N,8.05;O,2.30;实测值C,84.58;H,5.07;N,8.05;O,2.30。
实施例13:
Figure PCTCN2020121429-appb-000043
化合物86的制备方法如下所示:
Figure PCTCN2020121429-appb-000044
制备方法与实施例1基本相同,区别在于,用化合物13-b替换化合物1-b,反应得到化合物86(收率73.3%),ESI-MS(m/z)(M+):理论值695.82,实测值696.31,元素分析结果(分子式C49H25D5N4O):理论值C,84.58;H,5.07;N,8.05;O,2.30;实测值C,84.58;H,5.07;N,8.05;O,2.30。
实施例14:
Figure PCTCN2020121429-appb-000045
化合物93的制备方法如下所示:
Figure PCTCN2020121429-appb-000046
制备方法与实施例1基本相同,区别在于,用化合物14-b替换化合物1-b,反应得到化合物93(收率76.6%),ESI-MS(m/z)(M+):理论值695.82,实测值696.62,元素分析结果(分子式C49H25D5N4O):理论值C,84.58;H,5.07;N,8.05;O,2.30;实测值C,84.58;H,5.07;N,8.05;O,2.30。
实施例15:
Figure PCTCN2020121429-appb-000047
化合物100的制备方法如下所示:
Figure PCTCN2020121429-appb-000048
制备方法与实施例1基本相同,区别在于,用化合物15-b替换化合物1-b,反应得到化合物100(收率75.8%),ESI-MS(m/z)(M+):理论值695.82,实测值696.47,元素分析结果(分子式C49H25D5N4O):理论值C,84.58;H,5.07;N,8.05;O,2.30;实测值C,84.58;H,5.07;N,8.05;O,2.30。
实施例16:
Figure PCTCN2020121429-appb-000049
化合物121的制备方法如下所示:
Figure PCTCN2020121429-appb-000050
制备方法与实施例1基本相同,区别在于,用化合物16-b替换化合物1-b,反应得到化合物 121(收率70.8%),ESI-MS(m/z)(M+):理论值745.88,实测值746.21,元素分析结果(分子式C53H27D5N4O):理论值C,85.34;H,5.00;N,7.51;O,2.15;实测值C,85.34;H,5.00;N,7.50;O,2.15。
实施例17:
Figure PCTCN2020121429-appb-000051
化合物177的制备方法如下所示:
Figure PCTCN2020121429-appb-000052
制备方法与实施例1基本相同,区别在于,用化合物17-b替换化合物1-b,反应得到化合物177(收率81.1%),ESI-MS(m/z)(M+):理论值628.79,实测值628.80,元素分析结果(分子式C43H28D6N4O):理论值C,82.14;H,6.41;N,8.91;O,2.54;实测值C,82.14;H,6.41;N,8.91;O,2.54。
器件性能测试:
测试本发明实施例1-17中的化合物1、2、3、9、16、17、22、29、36、43、49、65、86、93、100、121、177的热失重温度Td、熔点Tm,结果如表2所示:
注:热失重温度Td是在氮气气氛中失重5%的温度,在TGA N-1000热重分析仪上进行测定,测定时氮气流量为10mL/min,熔点Tm由示差扫描量热法(DSC,新科DSC N-650)测定,升温速率10℃/min。
表2:
测试材料 Td(℃) Tm(℃)
1 461.92 263.67
2 468.19 268.90
3 471.94 271.84
9 499.68 260.52
16 500.63 267.79
17 481.55 272.41
22 504.12 276.05
29 491.37 261.92
36 480.21 257.53
43 507.88 259.18
49 482.39 261.66
65 471.26 270.08
86 502.89 259.90
93 497.15 265.13
100 517.43 259.52
121 498.24 257.27
177 458.76 247.94
由上表2可知,本发明化合物具有较高的Td值、Tm值,说明其具有优良的热稳定性,将其应用于有机电致发光器件中,可以有效延长有机电致发光器件的使用寿命,且可以获得更佳的使用效果。
器件性能测试:
应用例1:
采用ITO作为反射层阳极基板材料,并依次用水、丙酮、N 2等离子对其进行表面处理;
在ITO阳极基板上方,沉积10nm掺杂有5%HAT-CN的HT-1,形成空穴注入层(HIL);
在空穴注入层(HIL)上方蒸镀100nm的HT-1形成空穴传输层(HTL);
在空穴传输层(HTL)上方真空蒸镀EB-1,形成厚度为10nm的电子阻挡层(EBL);
将本发明实施例1制备的化合物1与G1按照5:5的比例作为发光主体材料进行共同蒸镀,GD-1作为掺杂材料(GD-1用量为化合物1和G1总重量的8%)蒸发在电子阻挡层(EBL)上形成厚度为20nm的发光层;
将HB-1蒸镀到发光层上得到厚度为20nm的空穴阻挡层(HBL);
将ET-1与LiQ按照5:5的比例进行共同蒸镀到空穴阻挡层(HBL)上得到厚度为30nm的电子传输层(ETL);
将镁(Mg)和银(Ag)以9:1的比例混合蒸镀到电子传输层(ETL)上方,形成厚度为50nm的电子注入层(EIL);
此后将银(Ag)蒸镀到电子注入层上方,形成厚度为100nm的阴极,在上述阴极封口层上沉积50nm厚度的DNTPD,此外,在阴极表面以UV硬化胶合剂和含有除湿剂的封装薄膜(seal cap)进行密封,以保护有机电致发光器件不被大气中的氧气或水分所影响至此制备获得有机电致发光器件。
Figure PCTCN2020121429-appb-000053
应用例2-17
分别用本发明实施例2-17中的化合物2、3、9、16、17、22、29、36、43、49、65、86、93、100、121、177替代应用例1中的化合物1,其他部分与应用例1一致,据此制作出应用例2-17的有机电致发光器件。
对照例1-3
对照例1-3和与应用例1的区别在于,分别使用GH-1、GH-2、GH-3替代应用例1中的化合物1,其余与应用例1相同。
分别测试应用例1-17及对照例1、2、3制备的有机电致发光器件,测试结果如表3所示。
表3
Figure PCTCN2020121429-appb-000054
由上表3可知,将本发明化合物应用于有机电致发光器件中,作为发光层的主体材料使用,可以使有机电致发光器件的发光效率得到一定幅度提升,而且启动电压下降,功耗相对降低。
将对照例1-3及应用例1-5所制备的有机电致发光器件进行发光寿命测试,得到发光寿命T97%数据(发光亮度降低至初始亮度97%的时间),测试设备为TEO发光器件寿命测试系统。结果如表4所示:
表4
Figure PCTCN2020121429-appb-000055
由上表4可知,将本发明化合物作为作为发光层的主体材料使用,应用于有机电致发光器件中,所制备的有机电致发光器件使用寿命得到很大程度提升,所以具有很广阔的应用前景。

Claims (10)

  1. 一种化合物,其特征在于,其结构式如下式1所示:
    Figure PCTCN2020121429-appb-100001
    Z1-Z3相同或不同,各自独立的为CH或N,Z1-Z3不同时为CH;
    Ar1为苯基或氘代苯基;
    Y为O;
    Ar2为C1-C4的直链或支链烷基、C1-C4的氘代直链或支链烷基、C3-C10的环烷基、C3-C10的氘代环烷基、C3-C6的环烯基、C3-C6的氘代环烯基、苯基、萘基、蒽基、菲基、氘代苯基、氘代萘基、氘代蒽基、氘代菲基;
    所述苯基、萘基、蒽基、菲基、氘代苯基、氘代萘基、氘代蒽基、氘代菲基为未取代的或是其中至少一个氢或氘被C1-C4的直链或支链烷基、C1-C4的氘代直链或支链烷基、C3-C10的环烷基、C3-C10的氘代环烷基、C3-C6的环烯基、C3-C6的氘代环烯基、苯基或氘代苯基取代获得的基团;
    Ar3为式2所示基团:
    Figure PCTCN2020121429-appb-100002
    X1-X8相同或不同,各自独立的为N、CH或CD;
    Ar1、Ar2、Ar3中至少一个是被氘取代的基团。
  2. 如权利要求1所述的化合物,其特征在于,Z1-Z3同时为N。
  3. 如权利要求1所述的化合物,其特征在于,Ar2为以下基团:
    甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、环丙基、环丁基、环戊基、环己基、金刚烷基、双环[1.1.1]戊烷基、环丙烯基、环丁烯基、环丁二烯基、环戊烯基、环戊二烯基、环己烯基、环己二烯基;
    氘代甲基、氘代乙基、氘代正丙基、氘代异丙基、氘代正丁基、氘代异丁基、氘代仲丁 基、氘代叔丁基、氘代环丙基、氘代环丁基、氘代环戊基、氘代环己基、氘代金刚烷基、氘代双环[1.1.1]戊烷基、氘代环丙烯基、氘代环丁烯基、氘代环丁二烯基、氘代环戊烯基、氘代环戊二烯基、氘代环己烯基、氘代环己二烯基;
    苯基、萘基、蒽基、菲基、氘代苯基、氘代萘基、氘代蒽基、氘代菲基;
    所述苯基、萘基、蒽基、菲基、氘代苯基、氘代萘基、氘代蒽基、氘代菲基为未取代的或是被甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、环丙基、环丁基、环戊基、环己基、金刚烷基、双环[1.1.1]戊烷基、环丙烯基、环丁烯基、环丁二烯基、环戊烯基、环戊二烯基、环己烯基、环己二烯基;
    氘代甲基、氘代乙基、氘代正丙基、氘代异丙基、氘代正丁基、氘代异丁基、氘代仲丁基、氘代叔丁基、氘代环丙基、氘代环丁基、氘代环戊基、氘代环己基、氘代金刚烷基、氘代双环[1.1.1]戊烷基、氘代环丙烯基、氘代环丁烯基、氘代环丁二烯基、氘代环戊烯基、氘代环戊二烯基、氘代环己烯基、氘代环己二烯基;
    苯基、萘基、蒽基、菲基、氘代苯基、氘代萘基、氘代蒽基、氘代菲基取代所获得的基团。
  4. 如权利要求1所述的化合物,其特征在于,Ar2为以下基团:
    Figure PCTCN2020121429-appb-100003
    Figure PCTCN2020121429-appb-100004
  5. 如权利要求1所述的化合物,其特征在于,X1-X8同时为CH或同时为CD。
  6. 如权利要求1-5中任一项所述的化合物,其特征在于,为以下化合物中的任意一种:
    Figure PCTCN2020121429-appb-100005
    Figure PCTCN2020121429-appb-100006
    Figure PCTCN2020121429-appb-100007
    Figure PCTCN2020121429-appb-100008
    Figure PCTCN2020121429-appb-100009
    Figure PCTCN2020121429-appb-100010
    Figure PCTCN2020121429-appb-100011
    Figure PCTCN2020121429-appb-100012
    Figure PCTCN2020121429-appb-100013
    Figure PCTCN2020121429-appb-100014
  7. 一种有机电致发光器件,其特征在于,包括第一电极、第二电极以及在所述第一电极和所述第二电极之间形成的有机层,所述有机层中含有如权利要求1-6中任一项所述的化合物。
  8. 如权利要求7所述的有机电致发光器件,其特征在于,所述有机层包含空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层;所述空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层中的至少一层含有如权利要求1-6中任一项所述的化合物。
  9. 如权利要求8所述的有机电致发光器件,其特征在于,所述发光层中含有如权利要求1-6中任一项所述的化合物。
  10. 如权利要求9所述的有机电致发光器件,其特征在于,所述发光层中含有发光主体材料,所述发光主体材料由权利要求1-6中任一项所述的化合物及化合物G1-G28中的任意一种或多种混合而成,化合物G1-G28如下所示:
    Figure PCTCN2020121429-appb-100015
PCT/CN2020/121429 2020-09-02 2020-10-16 一种化合物及有机电致发光器件 WO2022047902A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010911428.7A CN112028883B (zh) 2020-09-02 2020-09-02 一种化合物及有机电致发光器件
CN202010911428.7 2020-09-02

Publications (1)

Publication Number Publication Date
WO2022047902A1 true WO2022047902A1 (zh) 2022-03-10

Family

ID=73591282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121429 WO2022047902A1 (zh) 2020-09-02 2020-10-16 一种化合物及有机电致发光器件

Country Status (2)

Country Link
CN (1) CN112028883B (zh)
WO (1) WO2022047902A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112225726B (zh) * 2020-12-14 2021-03-26 南京高光半导体材料有限公司 一种化合物及有机电致发光器件
CN112552251B (zh) * 2020-12-17 2024-03-05 上海传勤新材料有限公司 一种含有氘原子的有机电子材料及其应用
CN112259691B (zh) * 2020-12-23 2021-10-22 南京高光半导体材料有限公司 有机电致发光器件
CN114835697A (zh) * 2021-02-02 2022-08-02 江苏三月科技股份有限公司 一种含三嗪和菲类结构的化合物及其应用
CN114835686A (zh) * 2021-02-02 2022-08-02 江苏三月科技股份有限公司 一种含有菲与三嗪结构的化合物及其应用
CN112961145B (zh) * 2021-02-19 2022-12-09 南京高光半导体材料有限公司 一种化合物及有机电致发光器件
CN113429334B (zh) * 2021-05-31 2022-09-02 南京高光半导体材料有限公司 一种含有苯并菲并呋喃结构的化合物及其有机电致发光器件
CN113480526A (zh) * 2021-06-30 2021-10-08 南京高光半导体材料有限公司 一种含有咔唑的化合物及有机电致发光器件
CN114075181B (zh) * 2021-08-31 2024-02-02 陕西莱特迈思光电材料有限公司 含氮化合物及使用其的有机电致发光器件和电子装置
WO2023055177A1 (ko) * 2021-10-01 2023-04-06 주식회사 엘지화학 신규한 화합물 및 이를 포함한 유기 발광 소자
CN114230559A (zh) * 2021-12-15 2022-03-25 上海和辉光电股份有限公司 一种有机电致发光的化合物及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190074451A1 (en) * 2013-12-17 2019-03-07 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
CN110540536A (zh) * 2018-05-28 2019-12-06 三星Sdi株式会社 化合物、组合物以及有机光电装置和显示装置
CN110770241A (zh) * 2017-07-20 2020-02-07 株式会社Lg化学 新的杂环化合物和使用其的有机发光器件
CN110892538A (zh) * 2017-07-21 2020-03-17 三星Sdi株式会社 有机光电二极管及显示装置
WO2020060286A1 (ko) * 2018-09-21 2020-03-26 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
CN111584721A (zh) * 2019-02-15 2020-08-25 三星Sdi株式会社 用于光电器件的组合物和有机光电器件及显示装置
CN111574995A (zh) * 2019-02-15 2020-08-25 三星Sdi株式会社 用于光电器件的组合物和有机光电器件及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102140018B1 (ko) * 2013-12-17 2020-07-31 삼성전자주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102069310B1 (ko) * 2017-06-27 2020-01-22 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190074451A1 (en) * 2013-12-17 2019-03-07 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
CN110770241A (zh) * 2017-07-20 2020-02-07 株式会社Lg化学 新的杂环化合物和使用其的有机发光器件
CN110892538A (zh) * 2017-07-21 2020-03-17 三星Sdi株式会社 有机光电二极管及显示装置
CN110540536A (zh) * 2018-05-28 2019-12-06 三星Sdi株式会社 化合物、组合物以及有机光电装置和显示装置
WO2020060286A1 (ko) * 2018-09-21 2020-03-26 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
CN111584721A (zh) * 2019-02-15 2020-08-25 三星Sdi株式会社 用于光电器件的组合物和有机光电器件及显示装置
CN111574995A (zh) * 2019-02-15 2020-08-25 三星Sdi株式会社 用于光电器件的组合物和有机光电器件及显示装置

Also Published As

Publication number Publication date
CN112028883B (zh) 2021-07-13
CN112028883A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2022047902A1 (zh) 一种化合物及有机电致发光器件
WO2020135687A1 (zh) 一种含硼化合物及其制备方法和其应用
WO2018033088A1 (zh) 一种以氧杂蒽酮为核心的五元环取代化合物及其应用
WO2018033087A1 (zh) 一种以蒽酮为核心的化合物及其应用
CN112094261B (zh) 一种化合物、组合物及有机电致发光器件
WO2018113538A1 (zh) 一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用
WO2019185061A1 (zh) 一种基于双二甲基芴的化合物、制备方法及其应用
WO2018033085A1 (zh) 一种以蒽酮为核心的化合物及其在oled器件中的应用
WO2021134820A1 (zh) 一种新型有机电致发光化合物及有机电致发光器件
WO2020034805A1 (zh) 一种基于激基复合物和激基缔合物体系的有机电致发光器件
WO2018019254A1 (zh) 一种基于二芳基酮的化合物及其应用
WO2019085683A1 (zh) 一种含有蒽酮和含氮杂环的化合物及其在oled上的应用
WO2019233429A1 (zh) 一种以三芳胺结构为核心的化合物及其制备方法
CN106397423B (zh) 一种以氮杂苯为核心的有机化合物及其在oled上的应用
CN111675701B (zh) 一种基于三苯胺结构的有机电致发光化合物及有机电致发光器件
CN110317140B (zh) 一种以芳胺接双二甲基芴为核心的化合物及其应用
WO2019085759A1 (zh) 一种以氮杂螺芴和芳基酮为核心的化合物、其制备方法及其在oled上的应用
WO2023273357A1 (zh) 一种含有咔唑的化合物及有机电致发光器件
CN112552270A (zh) 一种有机电致发光化合物及有机电致发光器件
JP6716145B1 (ja) 含ホウ素化合物および有機el素子
WO2021121230A1 (zh) 一种化合物及其应用、包含其的有机电致发光器件
WO2019196948A1 (zh) 一种以芳基酮为核心的化合物、其制备方法及其在oled上的应用
WO2020052544A1 (zh) 一种以苯并[1,2-b:5,4-b']二苯并呋喃为核心的化合物及其应用
WO2019228430A1 (zh) 一种含酮的化合物及其在有机电致发光器件上的应用
CN112961144B (zh) 一种化合物、混合物及有机电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952144

Country of ref document: EP

Kind code of ref document: A1