WO2019085683A1 - 一种含有蒽酮和含氮杂环的化合物及其在oled上的应用 - Google Patents

一种含有蒽酮和含氮杂环的化合物及其在oled上的应用 Download PDF

Info

Publication number
WO2019085683A1
WO2019085683A1 PCT/CN2018/107221 CN2018107221W WO2019085683A1 WO 2019085683 A1 WO2019085683 A1 WO 2019085683A1 CN 2018107221 W CN2018107221 W CN 2018107221W WO 2019085683 A1 WO2019085683 A1 WO 2019085683A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
thickness
group
raw material
formula
Prior art date
Application number
PCT/CN2018/107221
Other languages
English (en)
French (fr)
Inventor
陈海峰
李崇
张兆超
张小庆
唐丹丹
Original Assignee
江苏三月光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏三月光电科技有限公司 filed Critical 江苏三月光电科技有限公司
Priority to US16/759,358 priority Critical patent/US11873294B2/en
Publication of WO2019085683A1 publication Critical patent/WO2019085683A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/46Oxygen atoms
    • C07D213/50Ketonic radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of semiconductor technology, and more particularly to a compound containing an anthrone and a nitrogen-containing heterocycle, and its use in an OLED.
  • OLED Organic Light Emission Diodes
  • the OLED light-emitting device is like a sandwich structure, including an electrode material film layer and an organic functional material sandwiched between different electrode film layers, and various functional materials are superposed on each other according to the purpose to form an OLED light-emitting device.
  • OLED display technology has been applied in the fields of smart phones, tablet computers, etc., and will further expand to large-size applications such as televisions.
  • OLED devices have luminous efficiency and service life. Further improvement is needed.
  • Research on improving the performance of OLED light-emitting devices includes: reducing the driving voltage of the device, improving the luminous efficiency of the device, and improving the service life of the device.
  • OLED photoelectric functional materials applied to OLED devices can be divided into two categories, namely, charge injection transport materials and luminescent materials, and further, charge injection transport materials can be divided into electron injection transport materials, electron blocking materials, and holes. The transport material and the hole blocking material are injected, and the luminescent material can also be divided into a host luminescent material and a dopant material.
  • various organic functional materials are required to have good photoelectric characteristics. For example, as a charge transport material, it is required to have good carrier mobility, high glass transition temperature, etc., as a main body of the light-emitting layer. Materials require materials with good bipolarity, appropriate HOMO/LUMO energy levels, and the like.
  • the OLED photoelectric functional material film layer constituting the OLED device includes at least two or more layers, and the industrially applied OLED device structure includes a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, and an electron.
  • a plurality of film layers such as a transport layer and an electron injection layer, that is, an optoelectronic functional material applied to an OLED device includes at least a hole injecting material, a hole transporting material, a luminescent material, an electron transporting material, etc., and the material type and the collocation form are rich. Characteristics of sex and diversity.
  • the optoelectronic functional materials used have strong selectivity, and the performance of the same materials in different structural devices may be completely different. Therefore, in view of the industrial application requirements of current OLED devices, and the different functional film layers of OLED devices, the photoelectric characteristics of the devices must be selected to be more suitable, and high-performance OLED functional materials or material combinations can achieve high efficiency and long device. Comprehensive characteristics of life and low voltage. As far as the actual demand of the current OLED display lighting industry is concerned, the development of OLED materials is still far from enough. It is lagging behind the requirements of panel manufacturers, and it is especially important to develop higher performance organic functional materials as material enterprises.
  • the Applicant has provided a compound containing an anthrone and a nitrogen-containing heterocycle and its use in an organic electroluminescent device.
  • the compound of the invention contains an anthrone structure, has high glass transition temperature and molecular thermal stability, suitable HOMO and LUMO energy levels, high electron mobility, and can be used for OLED devices to effectively improve the luminous efficiency of the device and the OLED. The life of the device.
  • a compound containing an anthrone and a nitrogen-containing heterocyclic ring the structure of which is as shown in the formula (1):
  • each of Z, Z' is the same or different, CH, N or C-CN, wherein at least one group Z is N or at least one group Z' is N;
  • Ar 1 , Ar 2 , Ar 1 ', Ar 2 ', and Ar 4 each independently represent a hydrogen atom, a substituted or unsubstituted C 6-30 aryl group, substituted or unsubstituted. a C 5-30 heteroaryl group; Ar 4 is also represented as a C 1-10 straight or branched alkyl group;
  • Ar 3 and Ar 5 are each independently represented by a single bond, a substituted or unsubstituted C 6-30 arylene group, a substituted or unsubstituted C 5-30 heteroarylene group. One of them; Ar 3 is also represented by a C 1-10 straight or branched alkyl group, a substituted or unsubstituted C 6-30 aryl group, a substituted or unsubstituted C 5-30 heteroaryl group; One of the bases;
  • X is represented by a carbon atom, an oxygen atom or a sulfur atom
  • the compound structure may also be represented by the formula (2), the formula (3), the formula (4), the formula (5), the formula (6), the formula (7) or the formula (8):
  • the Ar 3 and Ar 5 are each independently represented by one of a phenylene group, a biphenylylene group or a naphthylene group; and the Ar 3 is also represented by a methyl group or a phenyl group. Or one of a biphenyl group or a naphthyl group; the Ar 4 is represented by one of a methyl group, a phenyl group, a biphenyl group or a naphthyl group.
  • R 1 and R 2 are each independently represented by one of a substituted or unsubstituted C 6-30 aryl group, a substituted or unsubstituted C 5-30 heteroaryl group; R 1 , R 2 ; Same or different.
  • the R 1 and R 2 are respectively represented as:
  • the raw material A1 was weighed and dissolved in tetrahydrofuran, and then the intermediate M1 and tetrakis(triphenylphosphine)palladium were added, the mixture was stirred, and then an aqueous solution of potassium carbonate was added thereto, and the mixed solution of the above reactants was reacted at a reaction temperature of 70- The mixture was heated to reflux at 90 ° C for 5-20 hours. After the reaction was completed, water was added and the mixture was evaporated.
  • the molar ratio of the raw material A1 to the intermediate M1 is 1:1.0 to 1.5, the molar ratio of tetrakis(triphenylphosphine)palladium to the raw material A1 is 0.001 to 0.02:1, and the molar ratio of potassium carbonate to the raw material A1 is 1.0 to 2.0:1, the ratio of the raw material A1 to THF is 1g: 10-30 ml;
  • the raw material A2 is weighed and dissolved in tetrahydrofuran, and then the intermediate M1 and tetrakis(triphenylphosphine)palladium are added, the mixture is stirred, and then an aqueous solution of potassium carbonate is added, and the mixed solution of the above reactants is reacted at a reaction temperature of 70- The mixture was heated to reflux at 90 ° C for 5-20 hours. After the reaction was completed, water was added and the mixture was evaporated.
  • the molar ratio of the raw material A2 to the intermediate M1 is 1:1.0 to 1.5
  • the molar ratio of tetrakis(triphenylphosphine)palladium to the raw material A2 is 0.001 to 0.02:1
  • the molar ratio of potassium carbonate to the raw material A2 is 1.0 to 2.0:1
  • the ratio of the raw material A2 to THF is 1g: 10 ⁇ 30ml;
  • the raw material A3 is weighed and dissolved in tetrahydrofuran, and then the intermediate M2 and tetrakis(triphenylphosphine)palladium are added, the mixture is stirred, and then an aqueous solution of potassium carbonate is added, and the mixed solution of the above reactants is reacted at a reaction temperature of 70- The mixture was heated to reflux at 90 ° C for 5-20 hours. After the reaction was completed, water was added and the mixture was evaporated.
  • the molar ratio of the raw material A3 to the intermediate M2 is 1:1.0 to 1.5
  • the molar ratio of tetrakis(triphenylphosphine)palladium to the raw material A3 is 0.001 to 0.02:1
  • the molar ratio of potassium carbonate to the raw material A3 is 1.0 to 2.0:1
  • the ratio of the amount of the raw material A3 to THF is 1 g: 10 to 30 ml.
  • An organic electroluminescent device comprising the compound, the organic electroluminescent device comprising at least one functional layer comprising the compound containing an anthrone and a nitrogen-containing heterocycle.
  • An organic electroluminescent device containing the compound comprising a hole blocking layer/electron transport layer, the hole blocking layer/electron transport layer containing the compound containing an anthrone and a nitrogen-containing hetero ring.
  • An organic electroluminescent device containing the compound comprising a light-emitting layer containing the compound containing an anthrone and a nitrogen-containing hetero ring.
  • An illumination or display element comprising the organic electroluminescent device, the illumination or display element comprising the organic electroluminescent device.
  • the compound of the present invention is composed of an anthrone and a nitrogen-containing heterocyclic ring, and is bonded through an aromatic group.
  • the anthrone and the nitrogen-containing heterocyclic ring are both strong electron groups, have a deep HOMO level and a high electron mobility, and pass other aromatic groups.
  • the modification of the group allows the HOMO level to be freely adjusted, and can be used as an electron type luminescent material or as a hole blocking or electron transport layer material.
  • the structure of the present invention containing a hole group can balance the electrons and holes of the material, so that the material can be used as a host material of the electron-emitting type light-emitting layer.
  • the specific structure of anthrone affects the HOMO level and LUMO level of the material and the distribution of the triplet level.
  • the material with a deeper HOMO level and a slightly lower T1 level can be used as a hole blocking or electron transport layer material, HOMO level.
  • a shallower material with a higher T1 level can be used as a host material for the electron-emitting layer.
  • the anthrone moiety and the nitrogen-containing heterocycle are strong electron-withdrawing groups, and the aromatic groups are separated in the middle to destroy the molecular symmetry and avoid the aggregation between molecules.
  • the compound of the present invention has strong rigidity and is difficult to be intermolecular. It has the characteristics of crystallization, non-aggregation, good film formation, high glass transition temperature and thermal stability. Therefore, when the compound of the present invention is applied to an OLED device, the film stability after film formation can be maintained, and the OLED device can be improved. Service life.
  • the compound of the invention is applied as an organic electroluminescent functional layer material to an OLED device, the current efficiency, power efficiency and external quantum efficiency of the device are greatly improved; at the same time, the device lifetime is greatly improved, in the OLED light-emitting device. It has good application effect and has good industrialization prospects.
  • FIG. 1 is a schematic structural view of a material exemplified in the present invention applied to an OLED device;
  • 1 is a transparent substrate layer
  • 2 is an ITO anode layer
  • 3 is a hole injection layer
  • 4 is a hole transport/electron barrier layer
  • 5 is a light-emitting layer
  • 6 is an electron transport/hole blocking layer
  • 7 is an electron injection layer.
  • Layer, 8 is a cathode reflective electrode layer;
  • FIG. 2 is a graph showing the efficiency of a device measured at different temperatures according to an embodiment of the present invention.
  • the raw material B is weighed and dissolved in tetrahydrofuran, and then the raw material C and tetrakis(triphenylphosphine)palladium are added, the mixture is stirred, and then an aqueous solution of potassium carbonate is added to react the mixed solution of the above reactants at the reaction temperature. Heat at reflux at 70-90 ° C for 5-20 hours. After the reaction is completed, the mixture is cooled, and the mixture is extracted with methylene chloride. The extract is dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • the molar ratio of the raw material B to the raw material C is 1:1.0 to 1.5
  • the molar ratio of tetrakis(triphenylphosphine)palladium to the raw material B is 0.001 to 0.02:1
  • the molar ratio of potassium carbonate to the raw material B is 1.0 to 2.0. :1
  • the ratio of the amount of THF to the amount of the raw material B is 1 g: 10 to 30 ml.
  • the molar ratio of the intermediate I to the starting material D is 1:1.0 to 1.5
  • the molar ratio of tetrakis(triphenylphosphine)palladium to the intermediate I is 0.001 to 0.02:1
  • the molar ratio of potassium carbonate to the intermediate I is 1.0 to 2.0:1
  • the ratio of the amount of THF to the intermediate I is 1 g: 10 to 30 ml.
  • the intermediate II is dissolved in tetrahydrofuran, and the raw material E and tetrakis(triphenylphosphine)palladium are added, the mixture is stirred, and then the aqueous solution of potassium carbonate is added to react the mixed solution of the above reactants.
  • the mixture was heated under reflux at a temperature of 70-90 ° C for 5-20 hours. After the reaction is completed, the mixture is cooled, and the mixture is extracted with methylene chloride. The extract is dried over anhydrous sodium sulfate.
  • the molar ratio of the intermediate II to the starting material E is 1:1.0 to 1.5
  • the molar ratio of the tetrakis(triphenylphosphine)palladium to the intermediate II is 0.001 to 0.02:1
  • the molar ratio of the potassium carbonate to the intermediate II is 1.0 to ⁇ . 2.0:1
  • the ratio of THF to intermediate II is 1 g: 10 to 30 ml.
  • the intermediate III was dissolved in tetrahydrofuran (THF), and then bis(pinacolyl)diboron, (1,1'-bis(diphenylphosphino)ferrocene) dichloropalladium ( II) and potassium acetate are added, the mixture is stirred, and the mixed solution of the above reactants is heated and refluxed at a reaction temperature of 70 to 90 ° C for 5 to 10 hours; after the reaction is completed, water is added thereto, and the mixture is filtered and dried in a vacuum oven. The obtained residue is separated and purified on a silica gel column to obtain an intermediate M;
  • Elemental analysis structure (Molecular formula C 14 H 9 ClN 4 ): Theory C, 62.58; H, 3.38; Cl, 13.19; N, 20.85; Tests: C, 62.58; H, 3.38; Cl, 13.20; N, 20.84.
  • ESI-MS (m/z) (M + ): Theory: 268.05.
  • Elemental analysis structure (Molecular formula C 26 H 17 ClN 4 ): Theory C, 74.19; H, 4.07; Cl, 8.42; N, 13.31; Tests: C, 74.20; H, 4.07; Cl, 8.42; N, 13.30.
  • the intermediate M was prepared by the synthesis method of the intermediate M-5, and the specific structure is shown in Table 1.
  • Compound 20 was prepared in the same manner as in Example 2 except that the starting material A1 was replaced with the starting material A2 and the intermediate M-1 was replaced with the intermediate M-3. Elemental analysis structure (Molecular formula C 40 H 25 N 3 O 2 ): Theory C, 82.88; H, 4.35; N, 7.25; Tests: C, 82.88; H, 4.35; N, 7.26. ESI-MS (m/z) (M + ): Theory: 579.19.
  • Compound 27 was prepared in the same manner as in Example 2 except that the starting material A1 was replaced with the starting material A3. Elemental analysis structure (molecular formula C 37 H 27 N 3 O): calcd for C, 83.91; H, 5.14; N, 7.93; ⁇ / RTI> C, 83.91; H, 5.14; N, 7.94. ESI-MS (m/z) (M + ): 553.22.
  • Compound 44 was prepared in the same manner as in Example 2 except that the starting material A1 was replaced with the starting material A4 and the intermediate M-1 was replaced with the intermediate M-3. Elemental Analysis Structure (Molecular Formula C 43 H 31 N 3 O): Theory C, 85.26; H, 5.16; N, 6.94; Tests: C, 85.27; H, 5.16; N, 6.93. ESI-MS (m/z) (M + ): calc. 605.
  • Compound 50 was prepared in the same manner as in Example 2 except that the starting material A1 was replaced with the starting material A5 and the intermediate M-1 was replaced with the intermediate M-4. Elemental analysis structure (Molecular formula C 41 H 27 N 3 O): Theory C, 85.25; H, 4.71; N, 7.27; Tests: C, 85.25; H, 4.71; N, 7.26. ESI-MS (m/z) (M + ): 553.21.
  • Compound 95 was prepared in the same manner as in Example 2 except that the starting material A1 was replaced with the starting material A3 and the intermediate M-1 was replaced with the intermediate M-8. Elemental analysis structure (Molecular formula C 39 H 29 NO): calcd. C, 88.77; H, 5.54; N, 2.65; ⁇ / RTI> ⁇ /RTI> C, 88.78; H, 5.54; N, 2.65. ESI-MS (m/z) (M + ): 553.22.
  • Compound 104 was prepared in the same manner as in Example 2 except that the starting material A1 was replaced with the starting material A3 and the intermediate M-1 was replaced with the intermediate M-9. Elemental analysis structure (Molecular formula C 45 H 33 NO): Theory C, 89.52; H, 5.51; N, 2.32; Tests: C, 89.52; H, 5.51; N, 2.33. ESI-MS (m/z) (M + ): calc. 603.26.
  • Compound 113 was prepared in the same manner as in Example 2 except that the starting material A1 was replaced with the starting material A4 and the intermediate M-1 was replaced with the intermediate M-10. Elemental analysis structure (Molecular formula C 45 H 33 NO): Theory C, 89.52; H, 5.51; N, 2.32; Tests: C, 89.52; H, 5.51; N, 2.33. ESI-MS (m/z) (M + ): calc. 603.26.
  • Compound 119 was prepared in the same manner as in Example 2 except that the starting material A1 was replaced with the starting material A5 and the intermediate M-1 was replaced with the intermediate M-11. Elemental analysis structure (Molecular formula C 42 H 28 N 2 O): calcd. C, 87.47; H, 4.98; N, 4.86; ⁇ / RTI> C, 87.47; H, 4.89; N, 4.87. ESI-MS (m/z) (M + ): Theory: 576.22.
  • Compound 126 was prepared in the same manner as in Example 2 except that the starting material A1 was replaced with the starting material A5 and the intermediate M-1 was replaced with the intermediate M-12.
  • Elemental analysis structure (molecular formula C 48 H 32 N 2 O): calcd. C, 88.32; H, 4.94; N, 4.29; ⁇ / RTI> ⁇ /RTI> C, 88.31; H, 4.94; N, 4.29.
  • Compound 128 was prepared in the same manner as in Example 2 except that the starting material A1 was replaced with the starting material A6 and the intermediate M-1 was replaced with the intermediate M-13. Elemental analysis structure (Molecular formula C 42 H 28 N 2 O): calcd. C, 87.47; H, 4.89; N, 4.86; ⁇ / RTI> ⁇ /RTI> C, 87.47; H, 4.89; N, 4.85. ESI-MS (m/z) (M + ): calc.
  • Compound 153 was prepared in the same manner as in Example 2 except that the starting material A1 was replaced with the starting material A3 and the intermediate M-1 was replaced with the intermediate M-15. Elemental analysis structure (Molecular formula C 45 H 31 N 3 O): Theory C, 85.83; H, 4.96; N, 6.67; Tests: C, 85.83; H, 4.96; N, 6.66. ESI-MS (m/z) (M + ): calc. 629.
  • Compound 167 was prepared in the same manner as in Example 2 except that the starting material A1 was replaced with the starting material A6 and the intermediate M-1 was replaced with the intermediate M-16. Elemental analysis structure (Molecular formula C 45 H 27 N 3 O): Theory C, 86.38; H, 4.35; N, 6.72; Tests: C, 86.38; H, 4.35; N, 6.73. ESI-MS (m/z) (M + ): calc. 625.22.
  • the organic compound is used in a light-emitting device, has a high Tg (glass transition temperature) temperature and a triplet level (T1), and a suitable HOMO, LUMO energy level can be used as a hole blocking/electron transport material, or as a The luminescent layer material is used.
  • Tg glass transition temperature
  • T1 triplet level
  • HOMO HOMO
  • LUMO energy level can be used as a hole blocking/electron transport material, or as a The luminescent layer material is used.
  • the thermal performance, T1 energy level and HOMO energy level test were carried out on the compound of the present invention and the existing materials, and the results are shown in Table 2.
  • the triplet energy level T1 is tested by Hitachi's F4600 fluorescence spectrometer.
  • the test conditions of the material are 2*10 -5 toluene solution;
  • the glass transition temperature Tg is by differential scanning calorimetry (DSC, Germany Benz DSC204F1 differential scanning) The calorimeter was measured at a heating rate of 10 ° C/min;
  • the thermogravimetric temperature Td was a temperature at which the weight loss was 1% in a nitrogen atmosphere, and was measured on a TGA-50H thermogravimetric analyzer of Shimadzu Corporation, Japan, and the flow rate of nitrogen was 20 mL/ Min;
  • the highest occupied molecular orbital HOMO level is tested by the ionization energy test system (IPS3) and tested as the atmospheric environment.
  • IPS3 ionization energy test system
  • the organic compound of the invention has high glass transition temperature, can improve the phase stability of the material film, further improve the service life of the device, and has a high triplet energy level, compared with the currently applied CBP and TPBi materials.
  • the energy loss of the luminescent layer can be blocked, thereby improving the luminous efficiency of the device.
  • the materials of the invention and the materials of application have similar HOMO levels. Therefore, the organic material containing the anthrone and the nitrogen-containing heterocyclic ring of the present invention can effectively improve the luminous efficiency and the service life of the device after being applied to different functional layers of the OLED device.
  • the device examples 1 to 22 and the device comparative example 1 of the present invention have the same fabrication process as the device embodiment 1, and the same substrate material and electrode material are used, and the film thickness of the electrode material is also maintained. Consistently, the difference between the device embodiments 2 and 15 is that the material of the light-emitting layer in the device is changed; the device embodiments 16 to 22 change the material of the hole blocking/electron transport layer of the device, and the devices obtained by the respective embodiments are The performance test results are shown in Table 3.
  • an electroluminescent device is prepared by: a) cleaning an ITO anode layer 2 on a transparent substrate layer 1 and ultrasonically cleaning each with deionized water, acetone, and ethanol for 15 minutes, respectively, and then plasma.
  • the body cleaner is treated for 2 minutes; b) on the ITO anode layer 2, the hole injection layer material HAT-CN is deposited by vacuum evaporation, the thickness is 10 nm, this layer serves as the hole injection layer 3; c) is empty On the hole injecting layer 3, a hole transporting material NPB is deposited by vacuum evaporation to a thickness of 80 nm, the layer is a hole transporting layer/electron blocking layer 4; d) is steamed on the hole transporting/electron blocking layer 4
  • the light-emitting layer 5 is plated, the host material is the compound 3 of the invention and the compound GH, the doping material is Ir(ppy) 3 , and the mass ratio of the compound 3, GH and Ir(ppy) 3 is 50:50:10, and the thickness is 40 nm; e) On the light-emitting layer 5, an electron transport material TPBI is deposited by vacuum evaporation to a thickness of 35 nm, and this organic material is used as
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (Thickness: 40 nm, material: compound 10, GH, and Ir(ppy) 3 are mixed by weight ratio of 40:60:10)/hole blocking/electron transport layer 6 (thickness: 35 nm, material: TPBI) / electron injection Layer 7 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (Thickness: 40 nm, material: compound 11, GH, and Ir(ppy) 3 are mixed by weight ratio of 60:40:10) / hole blocking/electron transport layer 6 (thickness: 35 nm, material: TPBI) / electron injection Layer 7 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / luminescent layer 5 (Thickness: 40 nm, material: compound 20, GH, and Ir(ppy) 3 are mixed by weight ratio of 70:30:10) / hole blocking/electron transport layer 6 (thickness: 35 nm, material: TPBI) / electron injection Layer 7 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (Thickness: 40 nm, material: compound 27, GH, and Ir(ppy) 3 are mixed by weight ratio of 60:40:10)/hole blocking/electron transport layer 6 (thickness: 35 nm, material: TPBI) / electron injection Layer 7 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (Thickness: 40 nm, material: Compound 35 and Ir(ppy) 3 are mixed by weight ratio of 90:10) / Hole blocking/electron transport layer 6 (thickness: 35 nm, material: TPBI) / Electron injection layer 7 (thickness) : 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (Thickness: 40 nm, material: Compound 44 and Ir(ppy) 3 are mixed by weight ratio of 90:10) / Hole blocking/electron transport layer 6 (thickness: 35 nm, material: TPBI) / Electron injection layer 7 (thickness) : 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (Thickness: 40 nm, material: compound 59, GH, and Ir(ppy) 3 are mixed by weight ratio of 50:50:10) / hole blocking/electron transport layer 6 (thickness: 35 nm, material: TPBI) / electron injection Layer 7 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (Thickness: 40 nm, material: compound 69, GH, and Ir(ppy) 3 are mixed by weight ratio of 50:50:10) / hole blocking/electron transport layer 6 (thickness: 35 nm, material: TPBI) / electron injection Layer 7 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (Thickness: 40 nm, material: compound 95, GH, and Ir(ppy) 3 are mixed by weight ratio of 50:50:10)/hole blocking/electron transport layer 6 (thickness: 35 nm, material: TPBI) / electron injection Layer 7 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (thickness: 40 nm, material: compound 104, GH, and Ir(ppy) 3 are mixed by weight ratio of 60:40:10)/hole blocking/electron transport layer 6 (thickness: 35 nm, material: TPBI) / electron injection Layer 7 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (Thickness: 40 nm, material: compound 113, GH, and Ir(ppy) 3 are mixed by weight ratio of 70:30:10) / hole blocking/electron transport layer 6 (thickness: 35 nm, material: TPBI) / electron injection Layer 7 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / luminescent layer 5 (Thickness: 40 nm, material: compound 128, GH, and Ir(ppy) 3 are mixed by weight ratio of 50:50:10) / hole blocking/electron transport layer 6 (thickness: 35 nm, material: TPBI) / electron injection Layer 7 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (Thickness: 40 nm, material: compound 153, GH and Ir(ppy) 3 are mixed by weight ratio of 50:50:10) / hole blocking/electron transport layer 6 (thickness: 35 nm, material: TPBI) / electron injection Layer 7 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (Thickness: 40 nm, material: compound 167, GH, and Ir(ppy) 3 are mixed by weight ratio of 40:60:10)/hole blocking/electron transport layer 6 (thickness: 35 nm, material: TPBI) / electron injection Layer 7 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking/electron transport layer 6 (thickness: 35 nm, material: compound 50) / electron injection layer 7 (thickness) : 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking/electron transport layer 6 (thickness: 35 nm, material: compound 79) / electron injection layer 7 (thickness) : 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking/electron transport layer 6 (thickness: 35 nm, material: compound 80) / electron injection layer 7 (thickness) : 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking/electron transport layer 6 (thickness: 35 nm, material: compound 89) / electron injection layer 7 (thickness) : 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking/electron transport layer 6 (thickness: 35 nm, material: compound 119) / electron injection layer 7 (thickness) : 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / luminescent layer 5 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking/electron transport layer 6 (thickness: 35 nm, material: compound 126) / electron injection layer 7 (thickness) : 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking/electron transport layer 6 (thickness: 35 nm, material: compound 139) / electron injection layer 7 (thickness) : 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 80 nm, material: NPB) / light-emitting layer 5 (thickness: 40 nm, material: CBP and Ir(ppy) 3 are mixed by weight ratio of 90:10) / hole blocking/electron transport layer 6 (thickness: 35 nm, material: TPBI) / electron injection layer 7 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • the detection data of the obtained electroluminescent device is shown in Table 3.
  • the organic compound of the present invention can be applied to the fabrication of an OLED light-emitting device, and compared with the comparative example, both the efficiency and the lifetime are greatly improved than the known OLED materials, in particular, the service life of the device is obtained. A big boost. Further, the OLED device prepared by the material of the present invention can maintain a long life at a high temperature, and the device examples 1 to 22 and the device comparative example 1 were subjected to a high-temperature driving life test at 85 ° C, and the results are shown in Table 4.
  • the device embodiments 1 to 22 are device structures in which the material of the present invention and the known materials are matched. Compared with the device of Comparative Example 1, the OLED device provided by the present invention has a good driving life at a high temperature.
  • the OLED device prepared by the material of the present invention is more stable when operating at a low temperature, and the device examples 2, 10, and 18 and the device comparative example 1 are tested in the range of -10 to 80 °C, and the results are shown in Table 5 and Figure 2 shows.
  • device examples 2, 10, and 18 are device structures in which the materials of the present invention and known materials are matched, and compared with the device comparative example 1, not only the low temperature efficiency but also the temperature rise process. In the middle, efficiency has increased steadily.

Abstract

本发明公开了一种含有蒽酮和含氮杂环的化合物及其在OLED上的应用,该化合物含有蒽酮和含氮杂环结构,两个基团都是强电子基团,具有深的HOMO能级和高电子迁移率,适合作为空穴阻挡材料或电子传输材料应用;又可作为偏电子型发光层主体材料使用;另外,本发明化合物基团刚性较强,具有分子间不易结晶、不易聚集、具有良好成膜性的特点。作为有机电致发光功能层材料应用于OLED器件后,器件的电流效率,功率效率和外量子效率均得到很大改善;同时,对于器件寿命提升非常明显。

Description

一种含有蒽酮和含氮杂环的化合物及其在OLED上的应用 技术领域
本发明涉及半导体技术领域,尤其是涉及一种含有蒽酮和含氮杂环的化合物,以及其在OLED上的应用。
背景技术
有机电致发光(OLED:Organic Light Emission Diodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。OLED发光器件犹如三明治的结构,包括电极材料膜层,以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成OLED发光器件。作为电流器件,当对OLED发光器件的两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷,正负电荷进一步在发光层中复合,即产生OLED电致发光。
当前,OLED显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展,但是,和实际的产品应用要求相比,OLED器件的发光效率,使用寿命等性能还需要进一步提升。对于OLED发光器件提高性能的研究包括:降低器件的驱动电压,提高器件的发光效率,提高器件的使用寿命等。为了实现OLED器件的性能的不断提升,不但需要从OLED器件结构和制作工艺的创新,更需要OLED光电功能材料不断研究和创新,创制出更高性能OLED的功能材料。应用于OLED器件的OLED光电功能材料从用途上可划分为两大类,即电荷注入传输材料和发光材料,进一步,还可将电荷注入传输材料分为电子注入传输材料、电子阻挡材料、空穴注入传输材料和空穴阻挡材料,还可以将发光材料分为主体发光材料和掺杂材料。为了制作高性能的OLED发光器件,要求各种有机功能材料具备良好的光电特性,譬如,作为电荷传输材料,要求具有良好的载流子迁移率,高玻璃化转化温度等,作为发光层的主体材料要求材料具有良好双极性,适当的HOMO/LUMO能阶等。
构成OLED器件的OLED光电功能材料膜层至少包括两层以上结构,产业上应用的OLED器件结构,则包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层等多种膜层,也就是说应用于OLED器件的光电功能材料至少包含空穴注入材料,空穴传输材料,发光材料,电子传输材料等,材料类型和搭配形式具有丰富性和多样性的特点。另外,对于不同结构的OLED器件搭配而言,所使用的光电功能材料具有较强的选择性,相同 的材料在不同结构器件中的性能表现,也可能完全迥异。因此,针对当前OLED器件的产业应用要求,以及OLED器件的不同功能膜层,器件的光电特性需求,必须选择更适合,具有高性能的OLED功能材料或材料组合,才能实现器件的高效率、长寿命和低电压的综合特性。就当前OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。
发明内容
针对现有技术存在的上述问题,本申请人提供了一种含有蒽酮和含氮杂环为的化合物及其在有机电致发光器件上的应用。本发明化合物含有蒽酮结构,具有较高的玻璃化温度和分子热稳定性,合适的HOMO和LUMO能级,高电子迁移率,应用于OLED器件制作后,可有效提高器件的发光效率和OLED器件的使用寿命。
本发明的技术方案如下:
一种含有蒽酮和含氮杂环的化合物,该化合物的结构如通式(1)所示:
Figure PCTCN2018107221-appb-000001
通式(1)中,Z、Z’每一次出现时相同或不同地为CH、N或C-CN,其中,至少一个基团Z为N或至少一个基团Z’为N;
通式(1)中,Ar 1、Ar 2、Ar 1’、Ar 2’、Ar 4分别独立的表示氢原子、取代或未经取代的C 6-30芳基、经取代或未经取代的C 5-30杂芳基中的一种;Ar 4还表示为C 1-10的直连或支链烷基;
通式(1)中,Ar 3、Ar 5分别独立的表示为单键、经取代或未经取代的C 6-30亚芳基、经取代或未经取代的C 5-30亚杂芳基中的一种;Ar 3还表示为C 1-10的直连或支链烷基、经取代或未经取代的C 6-30芳基、经取代或未经取代的C 5-30杂芳基中的一种;
通式(1)中,X表示为碳原子、氧原子或硫原子;
当X为碳原子时,k=1,m、n分别独立的表示为0或者1,且m、n不相同;
当X为氧原子或硫原子时,k=0,m=0,n=1。
所述化合物结构还可以采用通式(2)、通式(3)、通式(4)、通式(5)、通式(6)、通式 (7)或通式(8)表示:
Figure PCTCN2018107221-appb-000002
通式(1)结构中优选:所述Ar 3、Ar 5分别独立地表示为亚苯基、亚联苯基或亚萘基中的一种;所述Ar 3还表示为甲基、苯基、联苯基或萘基中的一种;所述Ar 4表示为甲基、苯基、联苯基或萘基中的一种。
所述通式(1)中的
Figure PCTCN2018107221-appb-000003
分别独立的表示为:
Figure PCTCN2018107221-appb-000004
其中,R 1、R 2分别独立的表示为经取代或未经取代的C 6-30芳基、经取代或未经取代的C 5-30杂芳基中的一种;R 1、R 2相同或不同。
所述R 1、R 2分别独立的表示为:
Figure PCTCN2018107221-appb-000005
Figure PCTCN2018107221-appb-000006
Figure PCTCN2018107221-appb-000007
中的一种。所述化合物的具体结构式为:
Figure PCTCN2018107221-appb-000008
Figure PCTCN2018107221-appb-000009
Figure PCTCN2018107221-appb-000010
Figure PCTCN2018107221-appb-000011
Figure PCTCN2018107221-appb-000012
Figure PCTCN2018107221-appb-000013
Figure PCTCN2018107221-appb-000014
中的任一种。
一种所述化合物的制备方法,所述制备方法涉及的反应方程式为:
(1)当X为氧原子或硫原子时,k=0,m=0,n=1:
Figure PCTCN2018107221-appb-000015
具体反应过程为:
氮气氛围下,称取原料A1溶解于四氢呋喃中,再将中间体M1及四(三苯基膦)钯加入,搅拌混合物,再加入碳酸钾水溶液,将上述反应物的混合溶液于反应温度70-90℃下加热回流5-20小时;反应结束后,冷却加水,混合物用二氯甲烷萃取,萃取液用无水硫酸钠干燥,过滤并在减压下浓缩,所得残余物过硅胶柱纯化,得到目标化合物;
所述原料A1与中间体M1的摩尔比为1:1.0~1.5,四(三苯基膦)钯与原料A1的摩尔比为0.001~0.02:1,碳酸钾与原料A1的摩尔比为1.0~2.0:1,原料A1与THF的用量比为1g:10~30ml;
(2)当X为碳原子时,k=1,m=0,n=1:
Figure PCTCN2018107221-appb-000016
具体反应过程为:
氮气氛围下,称取原料A2溶解于四氢呋喃中,再将中间体M1及四(三苯基膦)钯加入,搅拌混合物,再加入碳酸钾水溶液,将上述反应物的混合溶液于反应温度70-90℃下加热回流5-20小时;反应结束后,冷却加水,混合物用二氯甲烷萃取,萃取液用无水硫酸钠干燥,过滤并在减压下浓缩,所得残余物过硅胶柱纯化,得到目标化合物;
所述原料A2与中间体M1的摩尔比为1:1.0~1.5,四(三苯基膦)钯与原料A2的摩尔比为0.001~0.02:1,碳酸钾与原料A2的摩尔比为1.0~2.0:1,原料A2与THF的用量比为1g:10~30ml;
(3)当X为碳原子时,k=1,m=1,n=0:
Figure PCTCN2018107221-appb-000017
具体反应过程为:
氮气氛围下,称取原料A3溶解于四氢呋喃中,再将中间体M2及四(三苯基膦)钯加入,搅拌混合物,再加入碳酸钾水溶液,将上述反应物的混合溶液于反应温度70-90℃下加热回流5-20小时;反应结束后,冷却加水,混合物用二氯甲烷萃取,萃取液用无水硫酸钠干燥,过滤并在减压下浓缩,所得残余物过硅胶柱纯化,得到目标化合物;
所述原料A3与中间体M2的摩尔比为1:1.0~1.5,四(三苯基膦)钯与原料A3的摩尔比为0.001~0.02:1,碳酸钾与原料A3的摩尔比为1.0~2.0:1,原料A3与THF的用量比为1g:10~30ml。
一种含有所述化合物的有机电致发光器件,所述有机电致发光器件包括至少一层功能层含有所述含有蒽酮和含氮杂环的化合物。
一种含有所述化合物的有机电致发光器件,包括空穴阻挡层/电子传输层,所述空穴阻挡层/电子传输层含有所述含有蒽酮和含氮杂环的化合物。
一种含有所述化合物的有机电致发光器件,包括发光层,所述发光层含有所述含有蒽酮和含氮杂环的化合物。
一种含有所述有机电致发光器件的照明或显示元件,所述照明或显示元件包括所述有机电 致发光器件。
本发明有益的技术效果在于:
本发明化合物以蒽酮和含氮杂环为骨架,通过芳香基团连接,蒽酮和含氮杂环均为强电子性基团,具有深的HOMO能级和高电子迁移率,通过其他芳香基团的修饰,使HOMO能级自由调整,可以作为电子型发光材料使用,也可以作为空穴阻挡或电子传输层材料使用。本发明含有空穴基团的结构,可平衡材料的电子和空穴,使得材料可作为偏电子型发光层主体材料使用。蒽酮的具体结构会影响材料的HOMO能级和LUMO能级以及三线态能级分布,HOMO能级较深、T1能级稍低的材料可作为空穴阻挡或电子传输层材料,HOMO能级较浅、T1能级较高的材料可作为偏电子型的发光层主体材料使用。
另外,蒽酮部分和含氮杂环都是强吸电子基团,中间以芳香基团相隔,破坏分子对称性,避免分子间的聚集作用,本发明化合物基团刚性较强,具有分子间不易结晶、不易聚集、具有良好成膜性的特点,具有高的玻璃化温度及热稳定性,所以,本发明化合物应用于OLED器件时,可保持材料成膜后的膜层稳定性,提高OLED器件使用寿命。本发明所述化合物作为有机电致发光功能层材料应用于OLED器件后,器件的电流效率,功率效率和外量子效率均得到很大改善;同时,对于器件寿命提升非常明显,在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。
附图说明
图1为本发明所列举的材料应用于OLED器件的结构示意图;
其中,1为透明基板层,2为ITO阳极层,3为空穴注入层,4为空穴传输/电子阻挡层,5为发光层,6为电子传输/空穴阻挡层,7为电子注入层,8为阴极反射电极层;
图2为本发明实施例器件在不同温度下测量的效率曲线图。
具体实施方式
实施例1 中间体M的合成:
Figure PCTCN2018107221-appb-000018
(1)氮气氛围下,称取原料B溶解于四氢呋喃中,再将原料C及四(三苯基膦)钯加入,搅拌混合物,再加入碳酸钾水溶液,将上述反应物的混合溶液于反应温度70-90℃下,加热回流5-20小时。反应结束后,冷却加水、混合物用二氯甲烷萃取,萃取液用无水硫酸钠干燥,过滤并在减压下浓缩,所得残余物过硅胶柱纯化,得到中间体I;
所述原料B与原料C的摩尔比为1:1.0~1.5,四(三苯基膦)钯与原料B的摩尔比为0.001~0.02:1,碳酸钾与原料B的摩尔比为1.0~2.0:1,THF用量与原料B的比例为1g:10~30ml。
Figure PCTCN2018107221-appb-000019
(2)氮气氛围下,称取中间体I溶解于四氢呋喃中,再将原料D及四(三苯基膦)钯加入,搅拌混合物,再加入碳酸钾水溶液,将上述反应物的混合溶液于反应温度70-90℃下,加热回流5-20小时。反应结束后,冷却加水、混合物用二氯甲烷萃取,萃取液用无水硫酸钠干燥,过滤并在减压下浓缩,所得残余物过硅胶柱纯化,得到中间体II;
所述中间体I与原料D的摩尔比为1:1.0~1.5,四(三苯基膦)钯与中间体I的摩尔比为0.001~0.02:1,碳酸钾与中间体I的摩尔比为1.0~2.0:1,THF用量与中间体I的比例为1g:10~30ml。
Figure PCTCN2018107221-appb-000020
(3)氮气氛围下,称取中间体II溶解于四氢呋喃中,再将原料E及四(三苯基膦)钯加入,搅拌混合物,再加入碳酸钾水溶液,将上述反应物的混合溶液于反应温度70-90℃下,加热回流5-20小时。反应结束后,冷却加水、混合物用二氯甲烷萃取,萃取液用无水硫酸钠干燥,过滤并在减压下浓缩,所得残余物过硅胶柱纯化,得到中间体III;
中间体II与原料E的摩尔比为1:1.0~1.5,四(三苯基膦)钯与中间体II的摩尔比为0.001~0.02:1,碳酸钾与中间体II的摩尔比为1.0~2.0:1,THF与中间体II的比例为1g:10~30ml。
Figure PCTCN2018107221-appb-000021
氮气氛围下,称取中间体III溶解于四氢呋喃(THF)中,再将双(频哪醇根基)二硼、(1,1’-双(二苯基膦)二茂铁)二氯钯(II)以及乙酸钾加入,搅拌混合物,将上述反应物的混合溶液于反应温度70-90℃下加热回流5-10小时;反应结束后,加水冷却、且将混合物过滤并在真空烘箱中干燥。将所获得的残余物过硅胶柱分离纯化,得到中间体M;
以中间体M-5合成为例:
Figure PCTCN2018107221-appb-000022
(1)在250mL三口瓶中,通入氮气,加入0.04mol原料2,4,6-三氯吡啶,150ml的THF,0.05mol 4-联苯硼酸,0.0004mol四(三苯基膦)钯,搅拌,然后加入0.06mol的K 2CO 3水溶液(2M),加热至80℃,回流反应10小时,取样点板,反应完全。自然冷却,用200ml二氯甲烷萃取,分层,萃取液用无水硫酸钠干燥,过滤,滤液旋蒸,过硅胶柱纯化,得到中间体X,HPLC纯度99.5%,收率75.4%。元素分析结构(分子式C 9H 5Cl 2N 3):理论值C,47.82;H,2.23;Cl,31.36;N,18.59;测试值:C,47.81;H,2.23;Cl,31.36;N,18.60。ESI-MS(m/z)(M +):理论值为224.99,实测值为225.20。
Figure PCTCN2018107221-appb-000023
(2)在250mL三口瓶中,通入氮气,加入0.02mol中间体X,120ml的THF,0.025mol 9,9-二甲基-2-硼酸,0.0002mol四(三苯基膦)钯,搅拌,然后加入0.03mol的K 2CO 3水溶液(2M),加热至80℃,回流反应10小时,取样点板,反应完全。自然冷却,用200ml二氯甲烷萃取,分层,萃取液用无水硫酸钠干燥,过滤,滤液旋蒸,过硅胶柱纯化,得到中间体Y,HPLC纯度99.1%,收率67.3%。元素分析结构(分子式C 14H 9ClN 4):理论值C,62.58;H,3.38;Cl,13.19;N,20.85;测试值:C,62.58;H,3.38;Cl,13.20;N,20.84。ESI-MS(m/z)(M +):理论值为268.05,实测值为268.65。
Figure PCTCN2018107221-appb-000024
(3)在250mL三口瓶中,通入氮气,加入0.02mol中间体Y,150ml的THF,0.025mol对氯苯硼酸,0.0002mol四(三苯基膦)钯,搅拌,然后加入0.03mol的K 2CO 3水溶液(2M),加热至80℃,回流反应10小时,取样点板,反应完全。自然冷却,用200ml二氯甲烷萃取,分层,萃取液用无水硫酸钠干燥,过滤,滤液旋蒸,过硅胶柱纯化,得到中间体Z,HPLC纯度99.2%,收率67.1%。元素分析结构(分子式C 26H 17ClN 4):理论值C,74.19;H,4.07;Cl,8.42;N,13.31;测试值:C,74.20;H,4.07;Cl,8.42;N,13.30。ESI-MS(m/z)(M +):理论值为420.11,实测值为420.70。
Figure PCTCN2018107221-appb-000025
(4)在250mL三口瓶中,通入氮气,加入0.02mol中间体Z溶解于150ml四氢呋喃中,再将0.024mol双(频哪醇根基)二硼、0.0002mol(1,1’-双(二苯基膦)二茂铁)二氯钯(II)以及0.05mol乙酸钾加入,搅拌混合物,将上述反应物的混合溶液于反应温度80℃下,加热回流5小时;反应结束后,冷却并加入100ml水、且将混合物过滤并在真空烘箱中干燥。将所获得的残余物过硅胶柱分离纯化,得到中间体M-5;HPLC纯度99.6%,收率91.2%。元素分析结构(分子式C 32H 29BN 4O 2):理论值C,75.01;H,5.70;B,2.11;N,10.93;测试值:C,75.00;H,5.70;B,2.11;N,10.94。ESI-MS(m/z)(M +):理论值为512.24,实测值为512.53。
以中间体M-5的合成方法制备中间体M,具体结构如表1所示。
表1
Figure PCTCN2018107221-appb-000026
Figure PCTCN2018107221-appb-000027
实施例2 化合物3的合成:
Figure PCTCN2018107221-appb-000028
在250mL三口瓶中,通入氮气,加入0.01mol原料A1,150ml的THF,0.015mol中间体M-1,0.0001mol四(三苯基膦)钯,搅拌,然后加入0.02mol的K 2CO 3水溶液(2M),加热至80℃,回流反应15小时,取样点板,反应完全。自然冷却,用200ml二氯甲烷萃取,分层,萃取液用无水硫酸钠干燥,过滤,滤液旋蒸,过硅胶柱纯化,得到目标化合物,HPLC纯度99.1%,收率77.3%。元素分析结构(分子式C 34H 21N 3O 2):理论值C,81.10;H,4.20;N,8.34;测试值:C,81.10;H,4.20;N,8.33。ESI-MS(m/z)(M +):理论值为503.16,实测值为503.65。
实施例3 化合物10的合成:
Figure PCTCN2018107221-appb-000029
在250mL三口瓶中,通入氮气,加入0.01mol原料A1,150ml的THF,0.015mol中间体M-2,0.0001mol四(三苯基膦)钯,搅拌,然后加入0.02mol的K 2CO 3水溶液(2M),加热至80℃,回流反应15小时,取样点板,反应完全。自然冷却,用200ml二氯甲烷萃取,分层,萃取液用无水硫酸钠干燥,过滤,滤液旋蒸,过硅胶柱纯化,得到目标化合物,HPLC纯度99.3%,收率71.9%。素分析结构(分子式C 40H 25N 3O 2):理论值C,82.88;H,4.35;N,7.25;测试值:C,82.88;H,4.35;N,7.24。ESI-MS(m/z)(M +):理论值为579.19,实测值为579.75。
实施例4 化合物11的合成:
Figure PCTCN2018107221-appb-000030
化合物11的制备方法同实施例2,不同之处在于用中间体M-3替换中间体M-1。元素分析结构(分子式C 40H 25N 3O 2):理论值C,82.88;H,4.35;N,7.25;测试值:C,82.88;H,4.35;N,7.24。ESI-MS(m/z)(M +):理论值为579.19,实测值为580.10。
实施例5 化合物20的合成:
Figure PCTCN2018107221-appb-000031
化合物20的制备方法同实施例2,不同之处在于用原料A2替换原料A1,用中间体M-3替换中间体M-1。元素分析结构(分子式C 40H 25N 3O 2):理论值C,82.88;H,4.35;N,7.25;测试值:C,82.88;H,4.35;N,7.26。ESI-MS(m/z)(M +):理论值为579.19,实测值为579.45。
实施例6 化合物27的合成:
Figure PCTCN2018107221-appb-000032
化合物27的制备方法同实施例2,不同之处在于用原料A3替换原料A1。元素分析结构(分子式C 37H 27N 3O):理论值C,83.91;H,5.14;N,7.93;测试值:C,83.91;H,5.14;N,7.94。ESI-MS(m/z)(M +):理论值为529.22,实测值为529.55。
实施例7 化合物35的合成:
Figure PCTCN2018107221-appb-000033
化合物35的制备方法同实施例2,不同之处在于用原料A3替换原料A1,用中间体M-3替换中间体M-1。元素分析结构(分子式C 43H 31N 3O):理论值C,85.26;H,5.16;N,6.94;测试值:C,85.26;H,5.16;N,6.94。ESI-MS(m/z)(M +):理论值为605.74,实测值为605.94。
实施例8 化合物44的合成:
Figure PCTCN2018107221-appb-000034
化合物44的制备方法同实施例2,不同之处在于用原料A4替换原料A1,用中间体M-3替换中间体M-1。元素分析结构(分子式C 43H 31N 3O):理论值C,85.26;H,5.16;N,6.94;测试值:C,85.27;H,5.16;N,6.93。ESI-MS(m/z)(M +):理论值为605.25,实测值为605.88。
实施例9 化合物50的合成:
Figure PCTCN2018107221-appb-000035
化合物50的制备方法同实施例2,不同之处在于用原料A5替换原料A1,用中间体M-4替换中间体M-1。元素分析结构(分子式C 41H 27N 3O):理论值C,85.25;H,4.71;N,7.27;测试值:C,85.25;H,4.71;N,7.26。ESI-MS(m/z)(M +):理论值为577.22,实测值为577.81。
实施例10 化合物59的合成:
Figure PCTCN2018107221-appb-000036
化合物59的制备方法同实施例2,不同之处在于用原料A6替换原料A1,用中间体M-4替换中间体M-1。元素分析结构(分子式C 41H 27N 3O):理论值C,85.25;H,4.71;N,7.27;测试值:C,85.25;H,4.71;N,7.26。ESI-MS(m/z)(M +):理论值为577.22,实测值为577.82。
实施例11 化合物69的合成:
Figure PCTCN2018107221-appb-000037
化合物69的制备方法同实施例2,不同之处在于用原料A6替换原料A1,用中间体M-11替换中间体M-1。元素分析结构(分子式C 42H 28N 2O):理论值C,87.47;H,4.89;N,4.86;测试值:C,87.47;H,4.89;N,4.85。ESI-MS(m/z)(M +):理论值为576.22,实测值为576.55。
实施例12 化合物79的合成:
Figure PCTCN2018107221-appb-000038
化合物79的制备方法同实施例2,不同之处在于用中间体M-5替换中间体M-1。元素分析结构(分子式C 39H 24N 4O 2):理论值C,80.67;H,4.17;N,9.65;测试值C,80.67;H,4.17;N,9.64。ESI-MS(m/z)(M +):理论值为580.19,实测值为580.56。
实施例13 化合物80的合成:
Figure PCTCN2018107221-appb-000039
化合物80的制备方法同实施例2,不同之处在于用中间体M-6替换中间体M-1。元素分析结构(分子式C 38H 23N 5O 2):理论值C,78.47;H,3.99;N,12.04;测试值:C,78.46;H,3.99;N,12.04。ESI-MS(m/z)(M +):理论值为581.19,实测值为581.75。
实施例14 化合物89的合成:
Figure PCTCN2018107221-appb-000040
化合物89的制备方法同实施例2,不同之处在于用原料A2替换原料A1,用中间体M-7替换中间体M-1。元素分析结构(分子式C 43H 26N 4O 2):理论值C,81.89;H,4.16;N,8.88;测试值:C,81.89;H,4.16;N,8.89。ESI-MS(m/z)(M +):理论值为630.21,实测值为630.81。
实施例15 化合物95的合成:
Figure PCTCN2018107221-appb-000041
化合物95的制备方法同实施例2,不同之处在于用原料A3替换原料A1,用中间体M-8替换中间体M-1。元素分析结构(分子式C 39H 29NO):理论值C,88.77;H,5.54;N,2.65;测试值:C,88.78;H,5.54;N,2.65。ESI-MS(m/z)(M +):理论值为527.22,实测值为527.62。
实施例16 化合物104的合成:
Figure PCTCN2018107221-appb-000042
化合物104的制备方法同实施例2,不同之处在于用原料A3替换原料A1,用中间体M-9替换中间体M-1。元素分析结构(分子式C 45H 33NO):理论值C,89.52;H,5.51;N,2.32;测试值:C,89.52;H,5.51;N,2.33。ESI-MS(m/z)(M +):理论值为603.26,实测值为603.76。
实施例17 化合物113的合成:
Figure PCTCN2018107221-appb-000043
化合物113的制备方法同实施例2,不同之处在于用原料A4替换原料A1,用中间体M-10替换中间体M-1。元素分析结构(分子式C 45H 33NO):理论值C,89.52;H,5.51;N,2.32;测试值:C,89.52;H,5.51;N,2.33。ESI-MS(m/z)(M +):理论值为603.26,实测值为603.36。
实施例18 化合物119的合成:
Figure PCTCN2018107221-appb-000044
化合物119的制备方法同实施例2,不同之处在于用原料A5替换原料A1,用中间体M-11替换中间体M-1。元素分析结构(分子式C 42H 28N 2O):理论值C,87.47;H,4.89;N,4.86;测试值:C,87.47;H,4.89;N,4.87。ESI-MS(m/z)(M +):理论值为576.22,实测值为576.82。
实施例19 化合物126的合成:
Figure PCTCN2018107221-appb-000045
化合物126的制备方法同实施例2,不同之处在于用原料A5替换原料A1,用中间体M-12替换中间体M-1。元素分析结构(分子式C 48H 32N 2O):理论值C,88.32;H,4.94;N,4.29;测试值:C,88.31;H,4.94;N,4.29。ESI-MS(m/z)(M +):理论值为652.25,实测值为652.45。
实施例20 化合物128的合成:
Figure PCTCN2018107221-appb-000046
化合物128的制备方法同实施例2,不同之处在于用原料A6替换原料A1,用中间体M-13替换中间体M-1。元素分析结构(分子式C 42H 28N 2O):理论值C,87.47;H,4.89;N,4.86;测试值:C,87.47;H,4.89;N,4.85。ESI-MS(m/z)(M +):理论值为576.22,实测值为576.98。
实施例21 化合物139的合成:
Figure PCTCN2018107221-appb-000047
化合物139的制备方法同实施例2,不同之处在于用中间体M-14替换中间体M-1。元素分析结构(分子式C 42H 25N 3O 2):理论值C,83.56;H,4.17;N,6.96;测试值:C,83.56;H,4.17;N,6.95。ESI-MS(m/z)(M +):理论值为603.19,实测值为603.77。
实施例22 化合物153的合成:
Figure PCTCN2018107221-appb-000048
化合物153的制备方法同实施例2,不同之处在于用原料A3替换原料A1,用中间体M-15替换中间体M-1。元素分析结构(分子式C 45H 31N 3O):理论值C,85.83;H,4.96;N,6.67;测试值:C,85.83;H,4.96;N,6.66。ESI-MS(m/z)(M +):理论值为629.25,实测值为629.65。
实施例23 化合物167的合成:
Figure PCTCN2018107221-appb-000049
化合物167的制备方法同实施例2,不同之处在于用原料A6替换原料A1,用中间体M-16替换中间体M-1。元素分析结构(分子式C 45H 27N 3O):理论值C,86.38;H,4.35;N,6.72;测试值:C,86.38;H,4.35;N,6.73。ESI-MS(m/z)(M +):理论值为625.22,实测值为625.76。
本有机化合物在发光器件中使用,具有高的Tg(玻璃转化温度)温度和三线态能级(T1),合适的HOMO、LUMO能级,可作为空穴阻挡/电子传输材料使用,也可作为发光层材料使用。对本发明化合物及现有材料分别进行热性能、T1能级以及HOMO能级测试,结果如表2所示。
表2
Figure PCTCN2018107221-appb-000050
Figure PCTCN2018107221-appb-000051
注:三线态能级T1是由日立的F4600荧光光谱仪测试,材料的测试条件为2*10 -5的甲苯溶液;玻璃化温度Tg由示差扫描量热法(DSC,德国耐驰公司DSC204F1示差扫描量热仪)测定,升温速率10℃/min;热失重温度Td是在氮气气氛中失重1%的温度,在日本岛津公司的TGA-50H热重分析仪上进行测定,氮气流量为20mL/min;最高占据分子轨道HOMO能级是由电离能量测试系统(IPS3)测试,测试为大气环境。
由上表数据可知,对比目前应用的CBP和TPBi材料,本发明的有机化合物具有高的玻璃转化温度,可提高材料膜相态稳定性,进一步提高器件使用寿命;具有高的三线态能级,可以 阻挡发光层能量损失,从而提升器件发光效率。同时本发明材料和应用材料具有相似的HOMO能级。因此,本发明含有蒽酮和含氮杂环的有机材料在应用于OLED器件的不同功能层后,可有效提高器件的发光效率及使用寿命。
以下通过器件实施例1~22和器件比较例1详细说明本发明合成的OLED材料在器件中的应用效果。本发明所述器件实施例2~22、器件比较例1与器件实施例1相比所述器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是器件实施例2~15对器件中的发光层材料做了变换;器件实施例16~22对器件的空穴阻挡/电子传输层材料做了变换,各实施例所得器件的性能测试结果如表3所示。
器件实施例1:
如图1所示,一种电致发光器件,其制备步骤包括:a)清洗透明基板层1上的ITO阳极层2,分别用去离子水、丙酮、乙醇超声清洗各15分钟,然后在等离子体清洗器中处理2分钟;b)在ITO阳极层2上,通过真空蒸镀方式蒸镀空穴注入层材料HAT-CN,厚度为10nm,这层作为空穴注入层3;c)在空穴注入层3上,通过真空蒸镀方式蒸镀空穴传输材料NPB,厚度为80nm,该层为空穴传输层/电子阻挡层4;d)在空穴传输/电子阻挡层4之上蒸镀发光层5,主体材料为本发明化合物3和化合物GH,掺杂材料为Ir(ppy) 3,化合物3、GH和Ir(ppy) 3三者质量比为为50:50:10,厚度为40nm;e)在发光层5之上,通过真空蒸镀方式蒸镀电子传输材料TPBI,厚度为35nm,这层有机材料作为空穴阻挡/电子传输层6使用;f)在空穴阻挡/电子传输层6之上,真空蒸镀电子注入层LiF,厚度为1nm,该层为电子注入层7;g)在电子注入层7之上,真空蒸镀阴极Al(100nm),该层为阴极反射电极层8;按照上述步骤完成电致发光器件的制作后,测量器件的驱动电压,电流效率,其结果见表3所示。相关材料的分子机构式如下所示:
Figure PCTCN2018107221-appb-000052
器件实施例2:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:化合物10、GH和 Ir(ppy) 3按重量比40:60:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:TPBI)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例3:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:化合物11、GH和Ir(ppy) 3按重量比60:40:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:TPBI)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例4:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:化合物20、GH和Ir(ppy) 3按重量比70:30:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:TPBI)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例5:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:化合物27、GH和Ir(ppy) 3按重量比60:40:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:TPBI)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例6:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:化合物35和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:TPBI)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例7:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:化合物44和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:TPBI)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例8:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:化合物59、GH和Ir(ppy) 3按重量比50:50:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:TPBI)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例9:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:化合物69、GH和Ir(ppy) 3按重量比50:50:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:TPBI)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例10:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:化合物95、GH和Ir(ppy) 3按重量比50:50:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:TPBI)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例11:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:化合物104、GH和Ir(ppy) 3按重量比60:40:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:TPBI)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例12:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:化合物113、GH和Ir(ppy) 3按重量比70:30:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:TPBI)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例13:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:化合物128、GH和Ir(ppy) 3按重量比50:50:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:TPBI)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例14:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:化合物153、GH和Ir(ppy) 3按重量比50:50:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:TPBI)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例15:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:化合物167、GH和Ir(ppy) 3按重量比40:60:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:TPBI)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例16:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:化合物50)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例17:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:CBP和Ir(ppy) 3按 重量比90:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:化合物79)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例18:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:化合物80)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例19:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:化合物89)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例20:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:化合物119)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例21:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:化合物126)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例22:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:化合物139)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件比较例1:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:80nm,材料:NPB)/发光层5(厚度:40nm,材料:CBP和Ir(ppy) 3按重量比90:10混掺构成)/空穴阻挡/电子传输层6(厚度:35nm,材料:TPBI)/电子注入层7(厚度:1nm,材料:LiF)/Al(厚度:100nm)。所得电致发光器件的检测数据见表3所示。
表3
编号 电流效率(cd/A) 色彩 LT95寿命(Hr)@5000nits
器件实施例1 46.4 绿光 27.3
器件实施例2 45.5 绿光 26.5
器件实施例3 46.7 绿光 25.1
器件实施例4 45.9 绿光 25.7
器件实施例5 45.4 绿光 25.5
器件实施例6 36.9 绿光 27.6
器件实施例7 37.1 绿光 27.1
器件实施例8 42.9 绿光 25.6
器件实施例9 45.5 绿光 27.3
器件实施例10 45.7 绿光 25.1
器件实施例11 47.1 绿光 27.2
器件实施例12 46.3 绿光 25.9
器件实施例13 47.9 绿光 25.3
器件实施例14 45.1 绿光 26.1
器件实施例15 46.5 绿光 26.2
器件实施例16 36.3 绿光 35.3
器件实施例17 35.9 绿光 33.4
器件实施例18 36.5 绿光 32.1
器件实施例19 35.3 绿光 32.8
器件实施例20 38.1 绿光 33.9
器件实施例21 37.3 绿光 37.8
器件实施例22 36.4 绿光 32.0
器件比较例1 28 绿光 10.5
由表3的结果可以看出本发明有机化合物可应用于OLED发光器件制作,并且与比较例相比,无论是效率还是寿命均比已知OLED材料获得较大改观,特别是器件的使用寿命获得较大的提升。进一步的本发明材料制备的的OLED器件在高温下能够保持长寿命,将器件实施例1~22和器件比较例1在85℃进行高温驱动寿命测试,所得结果如表4所示。
表4
Figure PCTCN2018107221-appb-000053
Figure PCTCN2018107221-appb-000054
从表4的数据可知,器件实施例1~22为本发明材料和已知材料搭配的器件结构,和器件比较例1相比,高温下,本发明提供的OLED器件具有很好的驱动寿命。
进一步的本发明材料制备的OLED器件在低温下工作时效率也比较稳定,将器件实施例2、10、18和器件比较例1在-10~80区间℃进行效率测试,所得结果如表5和图2所示。
表5
Figure PCTCN2018107221-appb-000055
从表5和图2的数据可知,器件实施例2、10、18为本发明材料和已知材料搭配的器件结构,和器件比较例1相比,不仅低温效率高,而且在温度升高过程中,效率平稳升高。
综上,以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种含有蒽酮和含氮杂环的化合物,其特征在于,该化合物的结构如通式(1)所示:
    Figure PCTCN2018107221-appb-100001
    通式(1)中,Z、Z’每一次出现时相同或不同地为CH、N或C-CN,其中,至少一个基团Z为N或至少一个基团Z’为N;
    通式(1)中,Ar 1、Ar 2、Ar 1’、Ar 2’、Ar 4分别独立的表示氢原子、取代或未经取代的C 6-30芳基、经取代或未经取代的C 5-30杂芳基中的一种;Ar 4还表示为C 1-10的直连或支链烷基;
    通式(1)中,Ar 3、Ar 5分别独立的表示为单键、经取代或未经取代的C 6-30亚芳基、经取代或未经取代的C 5-30亚杂芳基中的一种;Ar 3还表示为C 1-10的直连或支链烷基、经取代或未经取代的C 6-30芳基、经取代或未经取代的C 5-30杂芳基中的一种;
    通式(1)中,X表示为碳原子、氧原子或硫原子;
    当X为碳原子时,k=1,m、n分别独立的表示为0或者1,且m、n不相同;
    当X为氧原子或硫原子时,k=0,m=0,n=1。
  2. 根据权利要求1所述的化合物,其特征在于,所述化合物结构采用通式(2)、通式(3)、通式(4)、通式(5)、通式(6)、通式(7)或通式(8)表示:
    Figure PCTCN2018107221-appb-100002
    Figure PCTCN2018107221-appb-100003
  3. 根据权利要求1所述的化合物,其特征在于,所述Ar 3、Ar 5分别独立地表示为亚苯基、亚联苯基或亚萘基中的一种;所述Ar 3还表示为甲基、苯基、联苯基或萘基中的一种;所述Ar 4表示为甲基、苯基、联苯基或萘基中的一种。
  4. 根据权利要求1所述的化合物,其特征在于,所述通式(1)中的
    Figure PCTCN2018107221-appb-100004
    分别独立的表示为:
    Figure PCTCN2018107221-appb-100005
    其中,R 1、R 2分别独立的表示为经取代或未经取代的C 6-30芳基、经取代或未经取代的C 5-30杂芳基中的一种;R 1、R 2相同或不同。
  5. 根据权利要求4所述的化合物,其特征在于,所述R 1、R 2分别独立的表示为:
    Figure PCTCN2018107221-appb-100006
    Figure PCTCN2018107221-appb-100007
    中的一种。
  6. 根据权利要求1所述的化合物,其特征在于,所述化合物的具体结构式为:
    Figure PCTCN2018107221-appb-100008
    Figure PCTCN2018107221-appb-100009
    Figure PCTCN2018107221-appb-100010
    Figure PCTCN2018107221-appb-100011
    Figure PCTCN2018107221-appb-100012
    Figure PCTCN2018107221-appb-100013
    Figure PCTCN2018107221-appb-100014
    中的任一种。
  7. 一种权利要求1~6任一项所述化合物的制备方法,其特征在于,所述制备方法涉及的反应方程式为:
    (1)当X为氧原子或硫原子时,k=0,m=0,n=1:
    Figure PCTCN2018107221-appb-100015
    具体反应过程为:
    氮气氛围下,称取原料A1溶解于四氢呋喃中,再将中间体M1及四(三苯基膦)钯加入,搅拌混合物,再加入碳酸钾水溶液,将上述反应物的混合溶液于反应温度70-90℃下加热回流5-20小时;反应结束后,冷却加水,混合物用二氯甲烷萃取,萃取液用无水硫酸钠干燥,过滤并在减压下浓缩,所得残余物过硅胶柱纯化,得到目标化合物;
    所述原料A1与中间体M1的摩尔比为1:1.0~1.5,四(三苯基膦)钯与原料A1的摩尔比为0.001~0.02:1,碳酸钾与原料A1的摩尔比为1.0~2.0:1,原料A1与THF的用量比为1g:10~30ml;
    (2)当X为碳原子时,k=1,m=0,n=1:
    Figure PCTCN2018107221-appb-100016
    具体反应过程为:
    氮气氛围下,称取原料A2溶解于四氢呋喃中,再将中间体M1及四(三苯基膦)钯加入, 搅拌混合物,再加入碳酸钾水溶液,将上述反应物的混合溶液于反应温度70-90℃下加热回流5-20小时;反应结束后,冷却加水,混合物用二氯甲烷萃取,萃取液用无水硫酸钠干燥,过滤并在减压下浓缩,所得残余物过硅胶柱纯化,得到目标化合物;
    所述原料A2与中间体M1的摩尔比为1:1.0~1.5,四(三苯基膦)钯与原料A2的摩尔比为0.001~0.02:1,碳酸钾与原料A2的摩尔比为1.0~2.0:1,原料A2与THF的用量比为1g:10~30ml;
    (3)当X为碳原子时,k=1,m=1,n=0:
    Figure PCTCN2018107221-appb-100017
    具体反应过程为:
    氮气氛围下,称取原料A3溶解于四氢呋喃中,再将中间体M2及四(三苯基膦)钯加入,搅拌混合物,再加入碳酸钾水溶液,将上述反应物的混合溶液于反应温度70-90℃下加热回流5-20小时;反应结束后,冷却加水,混合物用二氯甲烷萃取,萃取液用无水硫酸钠干燥,过滤并在减压下浓缩,所得残余物过硅胶柱纯化,得到目标化合物;
    所述原料A3与中间体M2的摩尔比为1:1.0~1.5,四(三苯基膦)钯与原料A3的摩尔比为0.001~0.02:1,碳酸钾与原料A3的摩尔比为1.0~2.0:1,原料A3与THF的用量比为1g:10~30ml。
  8. 一种含有权利要求1~6任一项所述化合物的有机电致发光器件,其特征在于,所述有机电致发光器件包括至少一层功能层含有所述含有蒽酮和含氮杂环的化合物。
  9. 一种含有权利要求1~6任一项所述化合物的有机电致发光器件,包括空穴阻挡层/电子传输层,其特征在于,所述空穴阻挡层/电子传输层含有所述含有蒽酮和含氮杂环的化合物。
  10. 一种含有权利要求1~6任一项所述化合物的有机电致发光器件,包括发光层,其特征在于,所述发光层含有所述含有蒽酮和含氮杂环的化合物。
  11. 一种含有权利要求8~10任一项所述有机电致发光器件的照明或显示元件,其特征在于,所述照明或显示元件包括所述有机电致发光器件。
PCT/CN2018/107221 2017-11-02 2018-09-25 一种含有蒽酮和含氮杂环的化合物及其在oled上的应用 WO2019085683A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/759,358 US11873294B2 (en) 2017-11-02 2018-09-25 Compound containing anthrone and nitrogen-containing heterocycle and application in OLED devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711081106.9 2017-11-02
CN201711081106.9A CN109748906A (zh) 2017-11-02 2017-11-02 一种含有蒽酮和含氮杂环的化合物及其在oled上的应用

Publications (1)

Publication Number Publication Date
WO2019085683A1 true WO2019085683A1 (zh) 2019-05-09

Family

ID=66331311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107221 WO2019085683A1 (zh) 2017-11-02 2018-09-25 一种含有蒽酮和含氮杂环的化合物及其在oled上的应用

Country Status (3)

Country Link
US (1) US11873294B2 (zh)
CN (1) CN109748906A (zh)
WO (1) WO2019085683A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110878091B (zh) * 2018-09-05 2021-11-30 江苏三月科技股份有限公司 一种基于三嗪和蒽酮类结构的有机化合物及其应用
CN110878092A (zh) * 2018-09-05 2020-03-13 江苏三月光电科技有限公司 一种基于氮杂苯和蒽酮类结构的有机化合物及其在oled上的应用
CN113121514B (zh) * 2019-12-30 2024-03-01 江苏三月科技股份有限公司 一种以二苯并五元杂环为核心的化合物及其应用
CN114249715A (zh) * 2020-09-25 2022-03-29 江苏三月科技股份有限公司 一种含有氧杂蒽酮搭配三嗪结构的有机化合物及其应用
CN115197125B (zh) * 2021-04-13 2024-02-27 陕西莱特光电材料股份有限公司 有机化合物以及使用其的电子元件、电子装置
CN116969928B (zh) * 2022-06-30 2024-04-19 江苏三月科技股份有限公司 一种含氮杂环结构的化合物及其在有机电致发光器件上的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106467516A (zh) * 2016-07-25 2017-03-01 江苏三月光电科技有限公司 一种以三嗪为核心的化合物及其在有机电致发光器件上的应用
CN106467497A (zh) * 2016-08-18 2017-03-01 江苏三月光电科技有限公司 一种以蒽酮为核心的化合物及其在oled器件中的应用
CN106467542A (zh) * 2016-08-18 2017-03-01 江苏三月光电科技有限公司 一种以蒽酮为核心的化合物及其应用
CN107068910A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种含氧杂蒽酮类化合物的有机电致发光器件及其应用
CN107056748A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种以三嗪和酮为核心的化合物及其在有机电致发光器件上的应用
CN107057681A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种含有氧杂蒽结构的光电材料及其在oled领域的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3055303B1 (de) * 2013-10-08 2020-12-02 Merck Patent GmbH Materialien für elektronische vorrichtungen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107068910A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种含氧杂蒽酮类化合物的有机电致发光器件及其应用
CN107056748A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种以三嗪和酮为核心的化合物及其在有机电致发光器件上的应用
CN107057681A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种含有氧杂蒽结构的光电材料及其在oled领域的应用
CN106467516A (zh) * 2016-07-25 2017-03-01 江苏三月光电科技有限公司 一种以三嗪为核心的化合物及其在有机电致发光器件上的应用
CN106467497A (zh) * 2016-08-18 2017-03-01 江苏三月光电科技有限公司 一种以蒽酮为核心的化合物及其在oled器件中的应用
CN106467542A (zh) * 2016-08-18 2017-03-01 江苏三月光电科技有限公司 一种以蒽酮为核心的化合物及其应用

Also Published As

Publication number Publication date
US20200354347A1 (en) 2020-11-12
US11873294B2 (en) 2024-01-16
CN109748906A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
CN107021926B (zh) 一种含有氮杂螺芴和含氮六元杂环的化合物及其在oled上的应用
WO2019085683A1 (zh) 一种含有蒽酮和含氮杂环的化合物及其在oled上的应用
WO2020135687A1 (zh) 一种含硼化合物及其制备方法和其应用
WO2019114478A1 (zh) 一种基于三嗪和苯并噁唑的有机化合物及其在有机电致发光器件上的应用
WO2018113538A1 (zh) 一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用
WO2017215549A1 (zh) 一种有机电致发光化合物及其应用
CN107586261B (zh) 一种含有螺二苯并环庚烯芴的有机化合物及其应用
WO2018033085A1 (zh) 一种以蒽酮为核心的化合物及其在oled器件中的应用
WO2019061796A1 (zh) 一种以三嗪和喹喔啉为核心的有机化合物及其在oled上的应用
KR102366722B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2018019254A1 (zh) 一种基于二芳基酮的化合物及其应用
WO2019185061A1 (zh) 一种基于双二甲基芴的化合物、制备方法及其应用
CN110835318B (zh) 一种以氮杂芴为核心的有机化合物及其制备方法与应用
Chen et al. A multifunctional bipolar host material based on phenanthroimidazole for efficient green and red PhOLEDs with low turn-on voltage
CN107021925B (zh) 一种以氮杂二苯并环庚酮为核心的化合物及其在oled上的应用
WO2019062686A1 (zh) 一种以氰基苯为核心的化合物及其在oled器件上的应用
Braveenth et al. Dibenzothiophene-indolocarbazole-based bipolar material: Host for green phosphorescent OLEDs and non-doped fluorescent emitter
WO2019085759A1 (zh) 一种以氮杂螺芴和芳基酮为核心的化合物、其制备方法及其在oled上的应用
WO2019179497A1 (zh) 一种以氮杂苯为核心的有机化合物及其应用
CN110577523B (zh) 一种含三芳胺结构的化合物及其制备的有机电致发光器件
CN109574908B (zh) 一种含螺二甲基蒽芴的化合物及其在有机电致发光器件上的应用
CN109796450B (zh) 一种以吡啶并吲哚为核心的化合物及其在电致发光器件上的应用
CN110655486A (zh) 一种以二苯并环庚烯为核心的化合物及其应用
CN110963904A (zh) 一种以酮和芴为核心的化合物、制备方法及其应用
WO2019114769A1 (zh) 一种含有吡啶并吲哚的化合物及其在有机电致发光器件上的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873762

Country of ref document: EP

Kind code of ref document: A1