WO2019179497A1 - 一种以氮杂苯为核心的有机化合物及其应用 - Google Patents

一种以氮杂苯为核心的有机化合物及其应用 Download PDF

Info

Publication number
WO2019179497A1
WO2019179497A1 PCT/CN2019/079055 CN2019079055W WO2019179497A1 WO 2019179497 A1 WO2019179497 A1 WO 2019179497A1 CN 2019079055 W CN2019079055 W CN 2019079055W WO 2019179497 A1 WO2019179497 A1 WO 2019179497A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
reaction
thickness
organic compound
formula
Prior art date
Application number
PCT/CN2019/079055
Other languages
English (en)
French (fr)
Inventor
蔡啸
张兆超
李崇
张小庆
庞羽佳
Original Assignee
江苏三月光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏三月光电科技有限公司 filed Critical 江苏三月光电科技有限公司
Publication of WO2019179497A1 publication Critical patent/WO2019179497A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/22Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the invention relates to the field of semiconductor technology, in particular to a compound with azabenzene as its core and its application as an luminescent layer material on an organic electroluminescent device.
  • OLED Organic Light Emission Diodes
  • the OLED light-emitting device is like a sandwich structure, including an electrode material film layer and an organic functional material sandwiched between different electrode film layers, and various functional materials are superposed on each other according to the purpose to form an OLED light-emitting device.
  • a current device when a voltage is applied to the electrodes of both ends of the OLED light-emitting device, and the positive and negative charges in the film layer of the organic layer functional material are applied by the electric field, the positive and negative charges are further recombined in the light-emitting layer, that is, OLED electroluminescence is generated.
  • OLEDs organic light-emitting diodes
  • conventional organic fluorescent materials can only emit light with 25% singlet excitons formed by electrical excitation, and the internal quantum efficiency of the device is low (up to 25%). External quantum efficiency is generally less than 5%, which is far from the efficiency of phosphorescent devices.
  • the phosphorescent material enhances the intersystem crossing due to the strong spin-orbit coupling of the center of the heavy atom, it can effectively utilize the singlet excitons and triplet exciton luminescence formed by electrical excitation, so that the internal quantum efficiency of the device is 100%.
  • Thermally activated delayed fluorescence (TADF) materials are the third generation of organic luminescent materials developed after organic fluorescent materials and organic phosphorescent materials. Such materials generally have a small singlet-triplet energy level difference ( ⁇ E ST ), and triplet excitons can be converted into singlet exciton luminescence by anti-system enthalpy. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation, and the internal quantum efficiency of the device can reach 100%.
  • the material structure is controllable, the property is stable, the price is cheap, no precious metal is needed, and the application prospect in the field of OLEDs is broad.
  • T1 and S1 states of the design molecule have strong CT characteristics, and very small S1-T1 state energy gaps, although High T 1 ⁇ S 1 state exciton conversion is achieved by the TADF process, but at the same time results in a low S1 state radiation transition rate, and therefore, it is difficult to achieve (or simultaneously achieve) high exciton utilization and high fluorescence radiation efficiency; Even though doped devices have been used to mitigate the T exciton concentration quenching effect, most TADF material devices have a significant efficiency roll-off at high current densities.
  • the Applicant has provided an organic compound having azabenzene as its core and its use in an organic electroluminescent device.
  • the compound of the invention is based on the TADF mechanism with aza-benzene as the core, and is applied as an luminescent layer material to the organic electroluminescent device.
  • the device produced by the invention has good photoelectric performance and can meet the requirements of the panel manufacturer.
  • L represents one of a single bond, a substituted or unsubstituted C 6-60 arylene group, and a 5- to 60-membered heteroarylene group containing one or more hetero atoms substituted or unsubstituted.
  • the hetero atom is nitrogen, oxygen or sulfur;
  • Y 1 to Y 5 each independently represent N or CR 1 , and each time R 1 is present, the same or different ester group or group represented by H, D, F, or C 1 -C 20 a group or a heteroaromatic organic group; one or more of the C 1 -C 20 ester group, aromatic or heteroaromatic organic group may also be D, F or C 1 to 10 straight a chain or branched alkyl group; at least one of Y 1 to Y 5 is represented by N;
  • R is represented by the formula (2):
  • Z 1 to Z 12 each independently represent N or CR 2 , and each time R 2 is present, the same or different ester group or group represented by H, D, F, or C 1 - C 20 aromatic or heteroaromatic organic radical; a C 1 -C 20 esters of aliphatic, aromatic or heteroaromatic organic group of one or more H atoms may also be D, F or C 1 ⁇ 10 linear Substituted by a chain or a branched alkyl group; 1 to 4 of Z 1 to Z 12 are nitrogen atoms;
  • X 1 represents an oxygen atom, a sulfur atom, a C 1-10 linear or branched alkyl substituted alkylene group, an aryl substituted alkylene group, an alkyl substituted imido group or One of the aryl substituted imido groups.
  • Z 4 is represented as CR 2 .
  • Z 1 to Z 4 are each represented as CR 2 .
  • X 1 is a C 1-10 linear or branched alkyl-substituted alkylene group or an aryl-substituted alkylene group
  • Z 1 to Z 4 are represented by CR 2 .
  • the general formula (2) is expressed as Further, when X 1 represents an alkyl-substituted imido group or an aryl-substituted imido group, Z 1 to Z 12 contain only one nitrogen atom, and Z 4 does not represent a nitrogen atom.
  • L represents a single bond, D, F or C 1 to 10 linear or branched alkyl substituted or unsubstituted phenylene; D, F or C 1 to 10 straight chain or branched alkyl group substituted or unsubstituted biphenylene group; D, F or C linear or branched alkyl group having 1 to 10 substituted or unsubstituted naphthylene group; D, F or C 1 - 10 One of a linear or branched alkyl substituted or unsubstituted pyridyl group.
  • Compounds 281 to 560 are pyridyl groups in place of the azaphenyl groups in the above compounds 1 to 280; compounds 561 to 840 are pyrimidinyl groups in place of the azaphenyl groups in the above compounds 1 to 280; and compounds 841 to 1120 are pyridazine groups in place of the above.
  • the azaphenyl group in the compounds 1 to 280; the compounds 1121 to 1400 are pyrazinyl groups in place of the azaphenyl group in the above compounds 1 to 280.
  • An organic electroluminescence device comprising the organic compound, wherein an organic compound having azabenzene as a core in the light-emitting device is used as a host material of a light-emitting layer for producing an organic electroluminescence device.
  • An organic electroluminescent device comprising the organic compound, wherein an organic compound having azabenzene as a core in the light-emitting device is used as a hole blocking/electron transport layer material for fabricating an organic electroluminescent device.
  • a method of preparing the organic compound is:
  • the method includes the following specific steps:
  • the method includes the following specific steps:
  • intermediate C and intermediate S The molar ratio is 1:1 to 2; the molar ratio of intermediate C to potassium carbonate is 1:1 to 3; the molar ratio of intermediate C to tetrakistriphenylphosphine palladium is 1:0.01 to 0.05;
  • the intermediate D is dissolved in o-dichlorobenzene, triphenylphosphine is added, the temperature is raised to 170 to 190 ° C, and the reaction is stirred for 12 to 16 hours. After the reaction is completed, it is cooled to room temperature, filtered, and the filtrate is filtered. The mixture is steamed to a fraction without distillation, and passed through a neutral silica gel column to obtain intermediate E; in the above reaction, the molar ratio of intermediate D to triphenylphosphine is 1:1 to 2;
  • the preparation method comprises the following specific steps:
  • the compound of the present invention has a nitrogen-containing heterobenzene as a mother nucleus and is bonded to an aromatic heterocyclic group, and a HOMO level can be freely adjusted by introducing a plurality of nitrogen atoms into the aromatic heterocyclic group, and can be used as a hole blocking or electron transport layer material. use.
  • the introduction of a nitrogen atom in the branch of the compound can increase the T1 level of the compound, so that the compound of the present invention can ensure the return of the triplet excitons in the luminescent material to the host material when used as a host material of the luminescent layer material. Thereby improving luminous efficiency.
  • a charge-transfer material which is spatially separated by HOMO and LUMO can be obtained, and the energy level difference ( ⁇ E st ) of the small S 1 state and the T 1 state can be realized, thereby realizing the reverse intersystem under thermal stimulation conditions.
  • It is suitable for use as a host material for the light-emitting layer material; when used as a light-emitting host material, the electron-negative group of the hole-type group in the molecular structure is enhanced due to the introduction of nitrogen atoms, and the whole molecule is more electronic-oriented, when the device is applied.
  • the charge recombination region of the luminescent layer is biased toward the side of the hole, which is more conducive to exciton recombination, so that the device produces high efficiency.
  • the compound of the present invention contains an aromatic heterocyclic group, molecular symmetry is destroyed, and aggregation between molecules is avoided, and the compound of the present invention has strong rigidity, is incapable of crystallizing between molecules, is difficult to aggregate, and has good film forming properties.
  • the invention has high glass transition temperature and thermal stability. Therefore, when the compound of the invention is applied to an OLED device, the film stability after film formation can be maintained, and the service life of the OLED device can be improved.
  • the compound of the invention is applied as an organic electroluminescent functional layer material to an OLED device, the current efficiency, power efficiency and external quantum efficiency of the device are greatly improved; at the same time, the device lifetime is greatly improved, in the OLED light-emitting device. It has good application effect and has good industrialization prospects.
  • Figure 1 is a schematic view showing the structure of a device applied to the compound of the present invention
  • 1 is a transparent substrate layer
  • 2 is an ITO anode layer
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is an electron blocking layer
  • 6 is a light-emitting layer
  • 7 is an electron transport layer
  • 8 is an electron injection layer.
  • 9 is a cathode reflective electrode layer;
  • Figure 2 is a graph showing the efficiency of the device measured at different temperatures.
  • the intermediate E was prepared by the synthesis of the intermediates E1, E3 and E13, and the specific structure is shown in Table 1.
  • Elemental analysis structure (Molecular formula C 37 H 23 N 7 ): Theory C, 78.57; H, 4.10; N, 17.33; Tests: C, 78.55; H, 4.13; N, 17.35.
  • Compound 12 was prepared in the same manner as in Example 2 except that Intermediate E1 was replaced with Intermediate E2.
  • Elemental analysis structure (Molecular formula C 37 H 23 N 7 ): Theory C, 78.57; H, 4.10; N, 17.33; ⁇ / RTI> C, 78.55; H, 4.13; N, 17.32.
  • Compound 27 was prepared in the same manner as in Example 2 except that Intermediate E1 was replaced with Intermediate E3.
  • Elemental analysis structure (Molecular formula C 37 H 23 N 7 ): Theory C, 78.57; H, 4.10; N, 17.33; Tests: C, 78.58; H, 4.11; N, 17.32.
  • Compound 34 was prepared in the same manner as in Example 2 except that Intermediate E1 was replaced with Intermediate E4.
  • Elemental analysis structure (Molecular formula C 37 H 23 N 7 ): Theory C, 78.57; H, 4.10; N, 17.33; Tests: C, 78.58; H, 4.11; N, 17.33.
  • Compound 53 was prepared in the same manner as in Example 2 except that the starting material E1 was replaced with the starting material E5.
  • Elemental analysis structure (Molecular formula C 37 H 23 N 7 ): Theory C, 78.57; H, 4.10; N, 17.33; Tests: C, 78.59; H, 4.08; N, 17.34.
  • Elemental analysis structure (Molecular formula C 43 H 27 N 7 ): Theory C, 80.48; H, 4.24; N, 15.28; Tests: C, 80.47; H, 4.26; N, 15.27.
  • Elemental analysis structure (Molecular formula C 37 H 22 N 6 O): Theory C, 78.43; H, 3.91; N, 14.83; O, 2.82; Tests: C, 78.44; H, 3.92; N, 14.81; O, 2.83 .
  • Compound 123 was prepared in the same manner as in Example 8, except that the starting material E7 was replaced with the starting material E8.
  • Elemental analysis structure (Molecular formula C 37 H 22 N 6 O): Theory C, 78.43; H, 3.91; N, 14.83; O, 2.82; Tests: C, 78.41; H, 3.93; N, 14.85; O, 2.81 .
  • Compound 68 was prepared in the same manner as in Example 7 except that the starting material E6 was replaced with the starting material E9.
  • Elemental analysis structure (Molecular formula C 37 H 22 N 6 O): Theory C, 78.43; H, 3.91; N, 14.83; O, 2.82; Test: C, 78.41; H, 3.92; N, 14.84; O, 2.83 .
  • Compound 161 was prepared in the same manner as in Example 7 except that the starting material E6 was replaced with the starting material E11.
  • Elemental analysis structure (Molecular formula C 37 H 22 N 6 O): Theory C, 78.43; H, 3.91; N, 14.83; O, 2.82; Tests: C, 78.44; H, 3.90; N, 14.85; O, 2.81 .
  • Compound 167 was prepared in the same manner as in Example 8, except that the starting material E12 was replaced with the starting material E12.
  • Elemental analysis structure (Molecular formula C 37 H 22 N 6 O): Theory C, 78.43; H, 3.91; N, 14.83; O, 2.82; Test: C, 78.41; H, 3.92; N, 14.84; O, 2.83 .
  • Compound 172 was prepared in the same manner as in Example 8 except that the starting material E7 was replaced with the starting material E13.
  • Elemental analysis structure (Molecular formula C 40 H 28 N 6 ): Theory C, 81.06; H, 4.76; N, 14.18; Tests: C, 81.05; H, 4.77; N, 14.19.
  • Compound 180 was prepared in the same manner as in Example 7, except that the starting material E6 was replaced with the starting material E14.
  • Elemental analysis structure (Molecular formula C 40 H 28 N 6 ): Theory C, 81.06; H, 4.76; N, 14.18; Tests: C, 81.05; H, 4.77; N, 14.17.
  • Compound 181 was prepared in the same manner as in Example 8 except that the starting material E15 was replaced with the starting material E15.
  • Elemental analysis structure (Molecular formula C 40 H 28 N 6 ): Theory C, 81.06; H, 4.76; N, 14.18; Tests: C, 81.07; H, 4.79; N, 14.19.
  • Compound 186 was prepared in the same manner as in Example 8, except that the starting material E7 was replaced with the starting material E16.
  • Elemental analysis structure (Molecular formula C 40 H 28 N 6 ): Theory C, 81.06; H, 4.76; N, 14.18; Tests: C, 81.06; H, 4.78; N, 14.19.
  • Compound 196 was prepared in the same manner as in Example 8, except that the starting material E7 was replaced with the starting material E17.
  • Elemental analysis structure (Molecular formula C 40 H 28 N 6 ): Theory C, 81.06; H, 4.76; N, 14.18; Tests: C, 81.06; H, 4.78; N, 14.19.
  • Compound 213 was prepared in the same manner as in Example 8, except that the starting material E18 was replaced with the starting material E18.
  • Elemental analysis structure (Molecular formula C 38 H 23 N 5 O): Theory C, 80.69; H, 4.10; N, 12.38; O, 2.83; Tests: C, 80.70; H, 4.11; N, 12.35; O, 2.84 .
  • ESI-MS (m/z) (M + ): 550.
  • Compound 224 was prepared in the same manner as in Example 8, except that the starting material E7 was replaced with the starting material E19.
  • the compound 504 was prepared in the same manner as in Example 2 except that the raw material A1 was replaced with the raw material A4, and the raw material E1 was replaced with the raw material E19.
  • Elemental analysis structure (Molecular formula C 43 H 31 N 3 ): Theory C, 87.58; H, 5.30; N, 7.13; Tests: C, 87.59; H, 5.27; N, 7.15.
  • Compound 683 was prepared in the same manner as in Example 2 except that the starting material A1 was replaced with the starting material A5 and the starting material E1 was replaced with the starting material E8.
  • Elemental analysis structure (Molecular formula C 38 H 23 N 5 O): Theory C, 80.69; H, 4.10; N, 12.38; O, 2.83; Test: C, 80.67; H, 4.12; N, 12.37; O, 2.84 .
  • ESI-MS (m/z) (M + ): 550.
  • the compound of the present invention can be used as a light-emitting layer material for the compounds 1, 12, 27, 34, 53, 68, 83, 123, 131, 147, 161, 167, 172, 180, 181, 186, 196, 213, 224 of the present invention. 504, 683 and CBP were tested for T 1 energy level, thermal performance and HOMO energy level respectively. The test results are shown in Table 2.
  • the triplet energy level T1 is tested by Hitachi's F4600 fluorescence spectrometer.
  • the test conditions of the material are 2 ⁇ 10 -5 mol/L toluene solution;
  • the glass transition temperature Tg is determined by differential scanning calorimetry (DSC, Germany NETZSCH) DSC204F1 differential scanning calorimeter), the heating rate is 10 ° C / min;
  • the weight loss temperature T d is the temperature of 1% weight loss in a nitrogen atmosphere, measured on a TGA-50H thermogravimetric analyzer of Shimadzu Corporation, Nitrogen
  • the flow rate is 20 mL/min; the highest occupied molecular orbital HOMO level is tested by the ionization energy test system (IPS3) and tested to the atmospheric environment.
  • IPS3 ionization energy test system
  • the chemical structure of the comparative material is as follows:
  • the organic compound prepared by the invention has high glass transition temperature, can improve the phase stability of the material film, and further improve the service life of the device; meanwhile, the material of the invention has a high
  • the T1 level when used as a host material, allows the higher T1 level to prevent triplet excitons in the dopant of the luminescent layer from returning to the T1 level of the host material, reducing energy loss and thereby improving device luminescence efficiency. Therefore, the organic material containing the azabenzene and the azadibenzo-5-membered ring derivative of the invention can effectively improve the luminous efficiency and the service life of the device after being applied to different functional layers of the OLED device.
  • the device examples 1 to 21 and the device comparative example 1 The device embodiments 2 to 21, the device comparison example 1, the device comparison example 2 of the present invention have the same fabrication process as the device embodiment 1, and the same substrate material and electrode material are used, and the electrode material is used.
  • the film thickness is also kept the same, except that the device examples 1 to 11 change the material of the light-emitting layer in the device; the device examples 12 to 21 change the material of the hole blocking/electron transport layer of the device, each The performance test results of the devices obtained in the examples are shown in Table 3.
  • an electroluminescent device As shown in FIG. 1, an electroluminescent device, the preparation steps thereof include:
  • the hole injection layer material HAT-CN is deposited by vacuum evaporation, the thickness is 10nm, this layer serves as the hole injection layer 3;
  • the electron blocking material TPAC is evaporated by vacuum evaporation, the thickness is 20nm, the layer is the electron blocking layer 5;
  • the host material is the compound 1 prepared in the embodiment of the invention, the doping material is GD, and the compound 1: EM2: GD is mixed at a weight ratio of 50:50:12. , thickness is 30nm;
  • the electron transporting material TPBI is evaporated by vacuum evaporation to a thickness of 40 nm, and this organic material is used as the hole blocking/electron transporting layer 7;
  • the layer is the electron injection layer 8;
  • the layer is the cathode reflective electrode layer 9;
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 12 prepared by the present invention: EM2: GD is mixed by weight ratio of 50:50:12) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 34 prepared in the examples of the invention: EM2: GD is mixed by weight ratio of 50:50:12) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 83 prepared in the examples of the present invention: EM2: GD is mixed by weight ratio of 50:50:12) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 131 prepared by the embodiment of the invention: EM2: GD is mixed by weight ratio of 50:50:12) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 161 prepared by the present invention: EM2: GD is mixed by weight ratio of 50:50:12) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 167 prepared by the embodiment of the invention: EM2: GD is mixed by weight ratio of 50:50:12) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 180 prepared by the embodiment of the invention: EM2: GD is mixed by weight ratio of 50:50:12) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 186 prepared by the present invention: EM2: GD is mixed by weight ratio of 50:50:12) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 213 prepared by the embodiment of the invention: EM2: GD is mixed by weight ratio of 50:50:12) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: compound 224 prepared by the embodiment of the invention: EM2: GD is mixed by weight ratio of 50:50:12) / hole blocking / Electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: CBP and GD are mixed by weight ratio of 88:12) / hole blocking/electron transport layer 7 (thickness: 35 nm, material: Compound 27) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm) prepared in the examples of the present invention.
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: CBP and GD are mixed by weight ratio of 88:12) / hole blocking/electron transport layer 7 (thickness: 35 nm, material: Compound 53)/electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm) prepared in the examples of the present invention.
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: CBP and GD are mixed by weight ratio of 88:12) / hole blocking/electron transport layer 7 (thickness: 35 nm, material: Compound 68)/electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm) prepared in the examples of the present invention.
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: CBP and GD are mixed by weight ratio of 88:12) / hole blocking/electron transport layer 7 (thickness: 35 nm, material: The compound 123)/electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm) prepared in the examples of the present invention.
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: CBP and GD are mixed by weight ratio of 88:12) / hole blocking/electron transport layer 7 (thickness: 35 nm, material: Compound 147) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm) prepared in the examples of the present invention.
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: CBP and GD are mixed by weight ratio of 88:12) / hole blocking/electron transport layer 7 (thickness: 35 nm, material: Compound 172) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm) prepared in the examples of the present invention.
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: CBP and GD are mixed by weight ratio of 88:12) / hole blocking/electron transport layer 7 (thickness: 35 nm, material: The compound 181) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm) prepared in the examples of the present invention.
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: CBP and GD are mixed by weight ratio of 88:12) / hole blocking/electron transport layer 7 (thickness: 35 nm, material: Compound 196) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm) prepared in the examples of the present invention.
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: CBP and GD are mixed by weight ratio of 88:12) / hole blocking/electron transport layer 7 (thickness: 35 nm, material: Compound 504) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm) prepared in the examples of the present invention.
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: CBP and GD are mixed by weight ratio of 88:12) / hole blocking/electron transport layer 7 (thickness: 35 nm, material: Compound 683) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm) prepared in the examples of the present invention.
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: EM1: EM2: GD is mixed by weight ratio of 50:50:12) / hole blocking/electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • the detection data of the obtained electroluminescent device is shown in Table 3.
  • ITO anode layer 2 (thickness: 150 nm) / hole injection layer 3 (thickness: 10 nm, material: HAT-CN) / hole transport layer 4 (thickness: 60 nm, material: NPB) / electron blocking layer 5 (thickness: 20 nm, material: TAPC) / luminescent layer 6 (thickness: 40 nm, material: CBP and GD are mixed by weight ratio of 88:12) / hole blocking/electron transport layer 7 (thickness: 35 nm, material: TPBI) / electron injection layer 8 (thickness: 1 nm, material: LiF) / Al (thickness: 100 nm).
  • the detection data of the obtained electroluminescent device is shown in Table 3.
  • the organic compound prepared by the present invention can be applied to the fabrication of an OLED light-emitting device, and compared with the device Comparative Example 1, both the efficiency and the lifetime are greatly improved compared with the known OLED materials, especially The service life of the device has been greatly improved. Further, the OLED device prepared by the material of the present invention can maintain a long life at a high temperature, and the device examples 1 to 21 and the device comparative examples 1 and 2 were subjected to a high-temperature driving life test at 85 ° C, and the results are shown in Table 4.
  • the device embodiments 1 to 21 are the device structures of the material of the present invention and the known materials, and the OLED device provided by the present invention has a good driving at a high temperature compared with the device comparative examples 1 and 2. life.
  • the OLED device prepared by the material of the invention has relatively stable efficiency when working at low temperature, and the device examples 3, 8, and 15 and the device comparative example 1 are tested in the range of -10 to 80 ° C, and the obtained results are obtained.
  • the results are shown in Table 5.
  • device embodiments 3, 8, and 15 are device structures in which the materials of the present invention and known materials are matched, and compared with the device of Comparative Example 1, not only the low temperature efficiency but also the efficiency during the temperature increase process. Smoothly rise.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种以氮杂苯为核心的有机化合物及其应用,本发明所述化合物以氮杂二苯并五元环衍生物为支链,五元环中间有一个氮原子,这个氮原子通过单键、C 6-30亚芳基或C 1-10直链或支链烷基取代的亚烷基中的一种与氮杂苯结构相连。本发明化合物具有分子间不易结晶、不易聚集、具有良好成膜性的特点,本发明化合物分子中的刚性基团可以提高材料的热稳定性,本发明化合物作为发光层材料应用于OLED,制作出的OLED器件具有良好的光电性能,能够更好的满足面板制造企业的要求。

Description

一种以氮杂苯为核心的有机化合物及其应用 技术领域
本发明涉及半导体技术领域,尤其是涉及一种以氮杂苯为核心的化合物及其作为发光层材料在有机电致发光器件上的应用。
背景技术
有机电致发光(OLED:Organic Light Emission Diodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。
OLED发光器件犹如三明治的结构,包括电极材料膜层,以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成OLED发光器件。作为电流器件,当对OLED发光器件的两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷,正负电荷进一步在发光层中复合,即产生OLED电致发光。
有机发光二极管(OLEDs)在大面积平板显示和照明方面的应用引起了工业界和学术界的广泛关注。然而,传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。外量子效率普遍低于5%,与磷光器件的效率还有很大差距。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间窜越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达100%。但磷光材料存在价格昂贵,材料稳定性较差,器件效率滚落严重等问题限制了其在OLEDs的应用。热激活延迟荧光(TADF)材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(△E ST),三线态激子可以通过反系间窜越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子,器件的内量子效率可以达到100%。同时,材料结构可控,性质稳定,价格便宜无需贵重金属,在OLEDs领域的应用前景广阔。
虽然理论上TADF材料可以实现100%的激子利用率,但实际上存在如下问题:(1)设计分子的T1和S1态具有强的CT特征,非常小的S1-T1态能隙,虽然可以通过TADF过程实现高T 1→S 1态激子转化率,但同时导致低的S1态辐射跃迁速率,因此,难于兼具(或同时实现)高激子利用率和高荧光辐射效率;(2)即使已经采用掺杂器件减轻T激子浓度猝灭效应,大多数TADF材料的器件在高电流密度下效率滚降严重。
就当前OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。
发明内容
针对现有技术存在的上述问题,本申请人提供了一种以氮杂苯为核心的有机化合物及其在 有机电致发光器件上的应用。本发明化合物基于TADF机理以氮杂苯为核心,作为发光层材料应用于有机电致发光器件,本发明制作的器件具有良好的光电性能,能够满足面板制造企业的要求。
本发明的技术方案如下:
一种以氮杂苯为核心的有机化合物,所述有机化合物的结构如通式(1)所示:
Figure PCTCN2019079055-appb-000001
通式(1)中,L表示为单键、取代或未取代的C 6-60亚芳基、含有一个或多个杂原子取代或未取代的5~60元亚杂芳基中的一种;所述杂原子为氮、氧或硫;
通式(1)中,Y 1~Y 5分别独立地表示N或者C-R 1,R 1每次出现时相同或不同的表示为H、D、F、或C 1-C 20的酯族、芳族或杂芳族有机基团;所述C 1-C 20的酯族、芳族或杂芳族有机基团中的一个或多个H原子还可被D、F或C 1~10的直链或支链烷基代替;Y 1~Y 5中至少有一个表示为N;
通式(1)中,R采用通式(2)表示:
Figure PCTCN2019079055-appb-000002
通式(2)中,Z 1~Z 12分别独立地表示N或者C-R 2,R 2每次出现时相同或不同的表示为H、D、F、或C 1-C 20的酯族、芳族或杂芳族有机基团;所述C 1-C 20的酯族、芳族或杂芳族有机基团中的一个或多个H原子还可被D、F或C 1~10的直链或支链烷基代替;Z 1~Z 12中含有1~4个为氮原子;
通式(2)中,X 1表示为氧原子、硫原子、C 1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种。
所述通式(2)表示为:
Figure PCTCN2019079055-appb-000003
Figure PCTCN2019079055-appb-000004
优选结构为:通式(2)表示为
Figure PCTCN2019079055-appb-000005
并且X 1表示为O原子时,Z 4表示为C-R 2
优选结构为:通式(2)表示为
Figure PCTCN2019079055-appb-000006
并且X 1表示为S原子时,Z 1~Z 4均表示为C-R 2
优选结构为:通式(2)表示为
Figure PCTCN2019079055-appb-000007
并且X 1为C 1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基时,Z 1~Z 4均表示为C-R 2
所述通式(2)表示为
Figure PCTCN2019079055-appb-000008
Figure PCTCN2019079055-appb-000009
Figure PCTCN2019079055-appb-000010
并且X 1表示为烷基取代的亚胺基或芳基取代的亚胺基时,Z 1~Z 12中只含有1个氮原子,Z 4不表示为氮原子。
所述通式(1)中,L表示为单键、D、F或C 1~10的直链或支链烷基取代或未取代的亚苯基;D、F或C 1~10的直链或支链烷基取代或未取代的亚联苯基;D、F或C 1~10的直链或支链烷基取代或未取代的亚萘基;D、F或C 1~10的直链或支链烷基取代或未取代的亚吡啶基中的一种。
所述通式(1)中
Figure PCTCN2019079055-appb-000011
表示的具体结构如下:
Figure PCTCN2019079055-appb-000012
Figure PCTCN2019079055-appb-000013
所述有机化合物的具体结构式如下,但它们不限于此:
Figure PCTCN2019079055-appb-000014
Figure PCTCN2019079055-appb-000015
Figure PCTCN2019079055-appb-000016
Figure PCTCN2019079055-appb-000017
Figure PCTCN2019079055-appb-000018
Figure PCTCN2019079055-appb-000019
Figure PCTCN2019079055-appb-000020
Figure PCTCN2019079055-appb-000021
Figure PCTCN2019079055-appb-000022
Figure PCTCN2019079055-appb-000023
Figure PCTCN2019079055-appb-000024
Figure PCTCN2019079055-appb-000025
化合物281~560为吡啶基取代上述化合物1~280中氮杂苯基团;化合物561~840为嘧啶基取代上述化合物1~280中氮杂苯基团;化合物841~1120为哒嗪基取代上述化合物1~280中氮杂苯基团;化合物1121~1400为吡嗪基取代上述化合物1~280中氮杂苯基团。
一种包含所述有机化合物的有机电致发光器件,所述发光器件中以氮杂苯为核心的有机化合物作为发光层主体材料,用于制作有机电致发光器件。
一种包含所述有机化合物的有机电致发光器件,所述发光器件中以氮杂苯为核心的有机化合物作为空穴阻挡/电子传输层材料,用于制作有机电致发光器件。
一种制备所述有机化合物的方法,所述方法的反应方程式为:
Figure PCTCN2019079055-appb-000026
所述方法包括如下具体步骤:
称取原料Ⅱ溶于乙酸中,用冰盐浴降温至0℃;称取液溴溶于冰醋酸中并缓慢滴加至含有原料Ⅱ的乙酸溶液中,滴加结束后,升至室温搅拌反应直至反应完全,反应结束后,向反应液中加入碱液中和,用二氯甲烷萃取,分层,取有机相过滤,滤液减压旋蒸至无馏分,过硅胶柱,得到中间体S;所述反应中,原料Ⅱ与液溴的摩尔比例为1:1~3;
Figure PCTCN2019079055-appb-000027
所述方法包括如下具体步骤:
(1)称取中间体A溶于乙酸中,用冰盐浴降温至0℃;称取液溴溶于冰醋酸中并缓慢滴加至含有中间体A的乙酸溶液中,滴加结束后,升至室温搅拌反应直至反应完全,反应结束后,向反应液中加入碱液中和,用二氯甲烷萃取,分层,取有机相过滤,滤液减压旋蒸至无馏分,过硅胶柱,得到中间体B;所述反应中,中间体A与液溴的摩尔比例为1:1~3;
(2)在通氮气保护下,称取中间体B、联硼酸频那醇酯、乙酸钾、Pd(dppf)Cl 2、1,4-二氧六环,混合搅拌,加热至80~100℃,反应10~24小时,取样点板,显示无中间体B剩余,反应完全;自然冷却至室温,加水后有固体析出,过滤,滤饼用真空干燥箱烘干,然后过中性硅胶柱,得到中间体C;上述反应中,中间体B与联硼酸频那醇酯摩尔比为1:1~2;中间体B与乙酸钾的摩尔比为1:1~3;中间体B与Pd(dppf)Cl 2的摩尔比为1:0.01~0.05;
(3)称取中间体C和中间体S,用甲苯搅拌溶解,在惰性气氛下,加入碳酸钾、四三苯基磷钯、乙醇和水的混合溶液,搅拌升温至110-120℃,反应10-24小时,反应结束后,冷却至室温,过滤,滤液分层,取有机相减压旋蒸至无馏分,过硅胶柱,得到中间体D;上述反应中,中间体C与中间体S的摩尔比为1:1~2;中间体C与碳酸钾的摩尔比为1:1~3;中间体C与四三苯基磷钯的摩尔比为1:0.01~0.05;
(4)在惰性气氛下,将中间体D溶于邻二氯苯中,加入三苯基膦,升温至170~190℃,搅拌反应12~16小时,反应结束后冷却至室温,过滤,滤液减压旋蒸至无馏分,过中性硅胶柱,得中间体E;上述反应中,中间体D与三苯基膦摩尔比为1:1~2;
Figure PCTCN2019079055-appb-000028
所述制备方法包括如下具体步骤:
(1)称取
Figure PCTCN2019079055-appb-000029
和中间体E,用甲苯溶解;再加入Pd 2(dba) 3、三叔丁基膦、叔丁醇钠;在惰性气氛下,将上述反应物的混合溶液于95~110℃条件下,反应10~24h,冷却并过滤反应溶液,滤液旋蒸,过硅胶柱,得到目标产物;所述
Figure PCTCN2019079055-appb-000030
与中间体E的摩尔比为1:1.0~3.0,Pd 2(dba) 3
Figure PCTCN2019079055-appb-000031
的摩尔比为0.006~0.02:1,三叔丁基膦与
Figure PCTCN2019079055-appb-000032
的摩尔比为0.006~0.02:1,叔丁醇钠与
Figure PCTCN2019079055-appb-000033
的卤代化合物的摩尔比为3.0~5.0:1。
本发明有益的技术效果在于:
本发明化合物以含氮杂苯为母核,连接芳香杂环基团,通过在芳香杂环基团中引入多个氮原子,使HOMO能级自由调整,可以作为空穴阻挡或电子传输层材料使用。同时,在化合物的支链中引入氮原子可以提高化合物的T1能级,使得本发明化合物在作为发光层材料的主体材料 使用时,能够保证发光材料中的三线态激子返回至主体材料中,从而提升发光效率。连接芳香杂环基团还可以获得HOMO、LUMO空间分离的电荷转移态材料,实现小的S 1态和T 1态的能级差(△E st),从而在热刺激条件下实现反向系间窜越,适合作为发光层材料主体材料使用;在作为发光主体材料使用时,由于氮原子的引入,使得分子结构中空穴型基团电负性增强,分子整体更偏向电子型,在器件应用时,发光层的电荷复合区域偏向空穴一侧,更利于激子复合,使器件产生高效率。
另外,本发明化合物因含有芳香杂环基团,破坏了分子对称性,避免分子间的聚集作用,本发明化合物基团刚性较强,具有分子间不易结晶、不易聚集、具有良好成膜性的特点,具有高的玻璃化温度及热稳定性,所以,本发明化合物应用于OLED器件时,可保持材料成膜后的膜层稳定性,提高OLED器件使用寿命。
本发明所述化合物作为有机电致发光功能层材料应用于OLED器件后,器件的电流效率,功率效率和外量子效率均得到很大改善;同时,对于器件寿命提升非常明显,在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。
附图说明
图1为本发明化合物应用的器件结构示意图;
其中,1为透明基板层,2为ITO阳极层,3为空穴注入层,4为空穴传输层,5为电子阻挡层,6为发光层,7为电子传输层,8为电子注入层,9为阴极反射电极层;
图2为器件在不同温度下测量的效率曲线图。
具体实施方式
下面结合附图和实施例,对本发明进行具体描述。
实施例1:中间体E的合成
以中间体E1为例:
在250ml的三口瓶中,加入0.04mol原料Ⅱ-1、100ml乙酸,搅拌溶解,用冰盐浴降温至0℃,称取0.05mol Br2溶于50ml乙酸,将溴的乙酸溶液缓慢滴加至上述反应体系中,滴加结束后,升至室温,搅拌反应12小时;取样点板,显示无原料Ⅱ-1剩余,反应完全;加NaOH水溶液中和反应液,用二氯甲烷萃取,分层,取有机相过滤,滤液减压旋蒸至无馏分,过中性硅胶柱,得到中间体S1,HPLC纯度99.3%,收率60.2%;元素分析结构(分子式C 4H 2BrN 3O 2):理论值C,23.55;H,0.99;Br,39.17;N,20.60;O,15.69测试值:C,23.53;H,0.98;Br,39.18;N,20.63;O,15.68。ESI-MS(m/z)(M +):理论值为202.93,实测值为202.99。
Figure PCTCN2019079055-appb-000035
(1)在250mL的三口瓶中,通氮气保护下,依次加入0.04mol中间体B1、0.05mol联硼酸频那醇酯、0.06mol乙酸钾、0.002mol Pd(dppf)Cl 2、100ml 1,4-二氧六环,搅拌混合,加热至80℃,反应24小时,取样点板,显示无中间体B1剩余,反应完全;自然冷却至室温,加水后有固体析出,过滤,取滤饼用真空干燥箱烘干,然后过中性硅胶柱,得到中间体C1;HPLC纯度99.0%,收率67.3%;
(2)在250ml的三口瓶中,通氮气保护下,加入0.05mol中间体C1、0.06mol原料Ⅱ-1、100ml甲苯,搅拌混合,再加入0.0005mol Pd(PPh 3) 4、0.01mol碳酸钾、50ml水和乙醇1:1的混合液,搅拌升温至120℃,回流反应24小时,取样点板,显示无中间体C1剩余,反应完全;自然冷却至室温,过滤,滤液分层,取有机相减压旋蒸至无馏分,过中性硅胶柱,得到中间体D1,HPLC纯度99.1%,收率70.2%;
(3)在250ml的三口瓶中,通氮气保护下,加入0.04mol中间体D1、0.05mol三苯基膦、100ml邻二氯苯,搅拌混合,加热至180℃,反应12小时,取样点板,显示无中间体D1剩余,反应完全;自然冷却至室温,过滤,滤液减压旋蒸至无馏分,过中性硅胶柱,得到中间体E1,HPLC纯度99.1%,收率70.5%;元素分析结构(分子式C 22H 14N 4):理论值C,79.02;H,4.22;N,16.76;测试值:C,79.05;H,4.21;N,16.77。ESI-MS(m/z)(M +):理论值为334.12,实测值为334.24。
以中间体E3为例:
Figure PCTCN2019079055-appb-000036
(1)在250ml的三口瓶中,加入0.04mol中间体A1、100mL乙酸,搅拌溶解,用冰盐浴降温至0℃,称取0.05mol Br 2溶于50mL乙酸,将溴的乙酸溶液缓慢滴加至上述反应体系中,滴加结束后,升至室温,搅拌反应12小时;取样点板,显示无中间体A1剩余,反应完全;加NaOH水溶液中和反应液,用二氯甲烷萃取,分层,取有机相过滤,滤液减压旋蒸至无馏分,过中性硅胶柱,得到中间体M3,HPLC纯度99.1%,收率51.7%;
(2)在250mL的三口瓶中,通氮气保护下,加入0.03mol中间体M3、0.036mol碘苯、150mL甲苯,搅拌混合,再加入0.045mol叔丁醇钠、0.0006mol Pd 2(dba) 3、0.0006mol三叔丁基膦,搅拌加热至115℃,回流反应24小时,取样点板,显示无中间体M3剩余,反应完全;自然冷却至室温,过滤,滤液进行减压旋蒸至无馏分,过中性硅胶柱,得到中间体B3,HPLC纯度99.1%,收率68.2%;
(3)在250mL的三口瓶中,通氮气保护下,依次加入0.04mol中间体B3、0.05mol联硼酸频那醇酯、0.06mol乙酸钾、0.002mol Pd(dppf)Cl 2、100ml 1,4-二氧六环,搅拌混合,加热至80℃,反应24小时,取样点板,显示无中间体B3剩余,反应完全;自然冷却至室温,加水后有固体析出,过滤,取滤饼用真空干燥箱烘干,然后过中性硅胶柱,得到中间体C3;HPLC纯度99.0%,收率61.3%;
(4)在250ml的三口瓶中,通氮气保护下,加入0.05mol中间体C3、0.06mol原料Ⅱ-1、100mL甲苯,搅拌混合,再加入0.0005mol Pd(PPh 3) 4、0.01mol碳酸钾、50mL水和乙醇1:1的混合液,搅拌升温至120℃,回流反应24小时,取样点板,显示无中间体C3剩余,反应完全;自然冷却至室温,过滤,滤液分层,取有机相减压旋蒸至无馏分,过中性硅胶柱,得到中间体D3,HPLC纯度99.3%,收率75.2%;
(5)在250ml的三口瓶中,通氮气保护下,加入0.04mol中间体D3、0.05mol三苯基膦、100mL邻二氯苯,搅拌混合,加热至180℃,反应12小时,取样点板,显示无中间体D3剩余,反应完全;自然冷却至室温,过滤,滤液减压旋蒸至无馏分,过中性硅胶柱,得到中间体E3, HPLC纯度99.1%,收率60.5%;元素分析结构(分子式C 22H 14N 4):理论值C,79.02;H,4.22;N,16.76;测试值:C,79.05;H,4.21;N,16.75。ESI-MS(m/z)(M +):理论值为334.12,实测值为334.26。
以中间体E13为例:
Figure PCTCN2019079055-appb-000037
(1)在250ml的三口瓶中,通氮气保护下,加入0.02mol中间体Ⅰ-1、100ml DMSO(二甲基亚砜),在60℃条件下搅拌溶解,加入0.002mol碘化钾、0.05mol碘甲烷后,缓慢地加入0.08mol粉末状态下的氢氧化钾;加完氢氧化钾后,室温搅拌反应12小时;取样点板,反应完全;加水后有沉淀析出,过滤,取滤饼用真空干燥箱烘干,然后过中性硅胶柱,得到中间体A13,HPLC纯度98.8%,收率63.3%;
(2)在250ml的三口瓶中,加入0.04mol中间体A13、100mL乙酸,搅拌溶解,用冰盐浴降温至0℃,称取0.05mol Br 2溶于50mL乙酸,将溴的乙酸溶液缓慢滴加至上述反应体系中,滴加结束后,升至室温,搅拌反应12小时;取样点板,显示无中间体A13剩余,反应完全;加NaOH水溶液中和反应液,用二氯甲烷萃取,分层,取有机相过滤,滤液减压旋蒸至无馏分,过中性硅胶柱,得到中间体B13,HPLC纯度99.2%,收率66.7%;
(3)在250mL的三口瓶中,通氮气保护下,依次加入0.04mol中间体B13、0.05mol联硼酸频那醇酯、0.06mol乙酸钾、0.002mol Pd(dppf)Cl 2、100ml 1,4-二氧六环,搅拌混合,加热至80℃,反应24小时,取样点板,显示无中间体B13剩余,反应完全;自然冷却至室温,加水后有固体析出,过滤,取滤饼用真空干燥箱烘干,然后过中性硅胶柱,得到中间体C13;HPLC纯度98.7%,收率61.3%;
(4)在250ml的三口瓶中,通氮气保护下,加入0.05mol中间体C13、0.06mol原料Ⅱ-1、100mL甲苯,搅拌混合,再加入0.0005mol Pd(PPh 3) 4、0.01mol碳酸钾、50mL水和乙醇1:1的混合液,搅拌升温至120℃,回流反应24小时,取样点板,显示无中间体C13剩余,反应完全;自然冷却至室温,过滤,滤液分层,取有机相减压旋蒸至无馏分,过中性硅胶柱,得到中间体D13,HPLC纯度99.0%,收率75.2%;
(5)在250ml的三口瓶中,通氮气保护下,加入0.04mol中间体D13、0.05mol三苯基膦、100mL邻二氯苯,搅拌混合,加热至180℃,反应12小时,取样点板,显示无中间体D13剩余,反应完全;自然冷却至室温,过滤,滤液减压旋蒸至无馏分,过中性硅胶柱,得到中间体E13,HPLC纯度99.1%,收率60.5%;元素分析结构(分子式C 19H 15N 3):理论值C,79.98;H,5.30;N,14.73;测试值:C,79.97;H,5.32;N,14.74。ESI-MS(m/z)(M +):理论值为285.13,实测值为285.19。
以中间体E1、E3和E13的合成方法制备中间体E,具体结构如表1所示。
表1
Figure PCTCN2019079055-appb-000038
Figure PCTCN2019079055-appb-000039
Figure PCTCN2019079055-appb-000040
实施例2:化合物1的合成:
合成路线:
Figure PCTCN2019079055-appb-000041
250ml的四口瓶,在通入氮气的气氛下,加入0.01mol原料A1,0.015mol中间体E1,0.03mol叔丁醇钠,1×10 -4mol Pd 2(dba) 3,1×10 -4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物1,纯度98.6%,收率65.4%。
元素分析结构(分子式C 37H 23N 7):理论值C,78.57;H,4.10;N,17.33;测试值:C,78.55;H,4.13;N,17.35。ESI-MS(m/z)(M +):理论值为565.20,实测分子量565.32。
实施例3:化合物12的合成:
合成路线:
Figure PCTCN2019079055-appb-000042
化合物12的制备方法同实施例2,不同之处在于用中间体E2替换中间体E1。
元素分析结构(分子式C 37H 23N 7):理论值C,78.57;H,4.10;N,17.33;测试值:C,78.55;H,4.13;N,17.32。ESI-MS(m/z)(M +):理论值为565.20,实测分子量565.31。
实施例4:化合物27的合成:
合成路线:
Figure PCTCN2019079055-appb-000043
化合物27的制备方法同实施例2,不同之处在于用中间体E3替换中间体E1。
元素分析结构(分子式C 37H 23N 7):理论值C,78.57;H,4.10;N,17.33;测试值:C,78.58;H,4.11;N,17.32。ESI-MS(m/z)(M +):理论值为565.20,实测分子量565.28。
实施例5:化合物34的合成:
合成路线:
Figure PCTCN2019079055-appb-000044
化合物34的制备方法同实施例2,不同之处在于用中间体E4替换中间体E1。
元素分析结构(分子式C 37H 23N 7):理论值C,78.57;H,4.10;N,17.33;测试值:C,78.58;H,4.11;N,17.33。ESI-MS(m/z)(M +):理论值为565.20,实测分子量565.31。
实施例6:化合物53的合成:
合成路线:
Figure PCTCN2019079055-appb-000045
化合物53的制备方法同实施例2,不同之处在于用原料E5替换原料E1。
元素分析结构(分子式C 37H 23N 7):理论值C,78.57;H,4.10;N,17.33;测试值:C,78.59;H,4.08;N,17.34。ESI-MS(m/z)(M +):理论值为565.20,实测分子量565.28。
实施例7:化合物68的合成:
合成路线:
Figure PCTCN2019079055-appb-000046
250ml的四口瓶,在通入氮气的气氛下,加入0.01mol原料A2,0.015mol中间体E6,0.03mol叔丁醇钠,1×10 -4mol Pd 2(dba) 3,1×10 -4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物68,纯度99.1%,收率63.5%。
元素分析结构(分子式C 43H 27N 7):理论值C,80.48;H,4.24;N,15.28;测试值:C,80.47;H,4.26;N,15.27。ESI-MS(m/z)(M +):理论值为641.23,实测分子量641.29。
实施例8:化合物83的合成:
合成路线:
Figure PCTCN2019079055-appb-000047
250ml的四口瓶,在通入氮气的气氛下,加入0.01mol原料A3,0.015mol中间体E7,0.03mol叔丁醇钠,1×10 -4mol Pd 2(dba) 3,1×10 -4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物83,纯度99.1%,收率61.2%。
元素分析结构(分子式C 37H 22N 6O):理论值C,78.43;H,3.91;N,14.83;O,2.82;测试值:C, 78.44;H,3.92;N,14.81;O,2.83。ESI-MS(m/z)(M +):理论值为566.19,实测分子量566.26。
实施例9:化合物123的合成:
合成路线:
Figure PCTCN2019079055-appb-000048
化合物123的制备方法同实施例8,不同之处在于用原料E8替换原料E7。
元素分析结构(分子式C 37H 22N 6O):理论值C,78.43;H,3.91;N,14.83;O,2.82;测试值:C,78.41;H,3.93;N,14.85;O,2.81。ESI-MS(m/z)(M +):理论值为566.19,实测分子量566.27。
实施例10:化合物131的合成:
合成路线:
Figure PCTCN2019079055-appb-000049
化合物68的制备方法同实施例7,不同之处在于用原料E9替换原料E6。
元素分析结构(分子式C 37H 22N 6O):理论值C,78.43;H,3.91;N,14.83;O,2.82。测试值:C,78.44;H,3.90;N,14.81;O,2.85。ESI-MS(m/z)(M +):理论值为566.19,实测分子量566.27。
实施例11:化合物147的合成:
合成路线:
Figure PCTCN2019079055-appb-000050
化合物147的制备方法同实施例7,不同之处在于用原料E10替换原料E6。
元素分析结构(分子式C 37H 22N 6O):理论值C,78.43;H,3.91;N,14.83;O,2.82;测试值:C,78.41;H,3.92;N,14.84;O,2.83。ESI-MS(m/z)(M +):理论值为566.19,实测分子量566.27。
实施例12:化合物161的合成:
合成路线:
Figure PCTCN2019079055-appb-000051
化合物161的制备方法同实施例7,不同之处在于用原料E11替换原料E6。
元素分析结构(分子式C 37H 22N 6O):理论值C,78.43;H,3.91;N,14.83;O,2.82;测试值:C,78.44;H,3.90;N,14.85;O,2.81。ESI-MS(m/z)(M +):理论值为566.19,实测分子量566.31。
实施例13:化合物167的合成:
合成路线:
Figure PCTCN2019079055-appb-000052
化合物167的制备方法同实施例8,不同之处在于用原料E12替换原料E7。
元素分析结构(分子式C 37H 22N 6O):理论值C,78.43;H,3.91;N,14.83;O,2.82;测试值:C,78.41;H,3.92;N,14.84;O,2.83。ESI-MS(m/z)(M +):理论值为566.19,实测分子量566.34。
实施例14:化合物172的合成:
合成路线:
Figure PCTCN2019079055-appb-000053
化合物172的制备方法同实施例8,不同之处在于用原料E13替换原料E7。
元素分析结构(分子式C 40H 28N 6):理论值C,81.06;H,4.76;N,14.18;测试值:C,81.05;H,4.77;N,14.19。ESI-MS(m/z)(M +):理论值为592.24,实测分子量592.35。
实施例15:化合物180的合成:
合成路线:
Figure PCTCN2019079055-appb-000054
化合物180的制备方法同实施例7,不同之处在于用原料E14替换原料E6。
元素分析结构(分子式C 40H 28N 6):理论值C,81.06;H,4.76;N,14.18;测试值:C,81.05;H,4.77;N,14.17。ESI-MS(m/z)(M +):理论值为592.24,实测分子量592.29。
实施例16:化合物181的合成:
合成路线:
Figure PCTCN2019079055-appb-000055
化合物181的制备方法同实施例8,不同之处在于用原料E15替换原料E7。
元素分析结构(分子式C 40H 28N 6):理论值C,81.06;H,4.76;N,14.18;测试值:C,81.07;H,4.79;N,14.19。ESI-MS(m/z)(M +):理论值为592.24,实测分子量592.33。
实施例17:化合物186的合成:
合成路线:
Figure PCTCN2019079055-appb-000056
化合物186的制备方法同实施例8,不同之处在于用原料E16替换原料E7。
元素分析结构(分子式C 40H 28N 6):理论值C,81.06;H,4.76;N,14.18;测试值:C,81.06;H,4.78;N,14.19。ESI-MS(m/z)(M +):理论值为592.24,实测分子量592.34。
实施例18:化合物196的合成:
合成路线:
Figure PCTCN2019079055-appb-000057
化合物196的制备方法同实施例8,不同之处在于用原料E17替换原料E7。
元素分析结构(分子式C 40H 28N 6):理论值C,81.06;H,4.76;N,14.18;测试值:C,81.06;H,4.78;N,14.19。ESI-MS(m/z)(M +):理论值为592.24,实测分子量592.34。
实施例19:化合物213的合成:
合成路线:
Figure PCTCN2019079055-appb-000058
化合物213的制备方法同实施例8,不同之处在于用原料E18替换原料E7。
元素分析结构(分子式C 38H 23N 5O):理论值C,80.69;H,4.10;N,12.38;O,2.83;测试值:C,80.70;H,4.11;N,12.35;O,2.84。ESI-MS(m/z)(M +):理论值为565.19,实测分子量565.31。
实施例20:化合物224的合成:
合成路线:
Figure PCTCN2019079055-appb-000059
化合物224的制备方法同实施例8,不同之处在于用原料E19替换原料E7。
元素分析结构(分子式C 41H 29N 5):理论值C,83.22;H,4.94;N,11.84;测试值:C,83.24;H,4.91;N,11.83。ESI-MS(m/z)(M +):理论值为591.24,实测分子量591.35。
实施例21:化合物504的合成:
Figure PCTCN2019079055-appb-000060
化合物504的制备方法同实施例2,不同之处在于用原料A4替换原料A1,用原料E19替换原料E1。
元素分析结构(分子式C 43H 31N 3):理论值C,87.58;H,5.30;N,7.13;测试值:C,87.59;H,5.27;N,7.15。ESI-MS(m/z)(M +):理论值为589.25,实测分子量589.37。
实施例22:化合物683的合成:
Figure PCTCN2019079055-appb-000061
化合物683的制备方法同实施例2,不同之处在于用原料A5替换原料A1,用原料E8替换原料E1。
元素分析结构(分子式C 38H 23N 5O):理论值C,80.69;H,4.10;N,12.38;O,2.83;测试值:C,80.67;H,4.12;N,12.37;O,2.84。ESI-MS(m/z)(M +):理论值为565.19,实测分子量565.33。
本发明化合物可以作为发光层材料使用,对本发明化合物1、12、27、34、53、68、83、123、131、147、161、167、172、180、181、186、196、213、224、504、683和CBP分别进行T 1能级、热性能、HOMO能级的测试,测试结果如表2所示。
表2
Figure PCTCN2019079055-appb-000062
Figure PCTCN2019079055-appb-000063
注:三线态能级T1是由日立的F4600荧光光谱仪测试,材料的测试条件为2×10 -5mol/L的甲苯溶液;玻璃化温度Tg由示差扫描量热法(DSC,德国耐驰公司DSC204F1示差扫描量热仪)测定,升温速率10℃/min;热失重温度T d是在氮气气氛中失重1%的温度,在日本岛津公司的TGA-50H热重分析仪上进行测定,氮气流量为20mL/min;最高占据分子轨道HOMO能级是由电离能量测试系统(IPS3)测试,测试为大气环境。
对比材料的化学结构如下:
Figure PCTCN2019079055-appb-000064
由上表数据可知,对比目前应用的CBP,本发明制备的有机化合物具有高的玻璃转化温度,可提高材料膜相态稳定性,进一步提高器件使用寿命;同时,本发明材料还具有较高的T1能级,当作为主体材料时,较高的T1能级可以阻止发光层掺杂材料中的三线态激子返回至主体材料的T1能级中,减少能量损失,从而提升器件发光效率。因此,本发明含有氮杂苯与氮杂二苯并五元环衍生物相连接的有机材料在应用于OLED器件的不同功能层后,可有效提高器件的发光效率及使用寿命。
以下通过器件实施例1~21和器件比较例1详细说明本发明合成的OLED材料在器件中的应用效果。本发明所述器件实施例2~21、器件比较例1、器件比较例2与器件实施例1相比所述器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是器件实施例1~11对器件中的发光层材料做了变换;器件实施例12~21对器件的空穴阻挡/电子传输层材料做了变换,各实施例所得器件的性能测试结果如表3所示。
器件实施例1
如图1所示,一种电致发光器件,其制备步骤包括:
a)清洗透明基板层1上的ITO阳极层2,分别用去离子水、丙酮、乙醇超声清洗各15分钟, 然后在等离子体清洗器中处理2分钟;
b)在ITO阳极层2上,通过真空蒸镀方式蒸镀空穴注入层材料HAT-CN,厚度为10nm,这层作为空穴注入层3;
c)在空穴注入层3上,通过真空蒸镀方式蒸镀空穴传输材料NPB,厚度为60nm,该层为空穴传输层4;
d)在空穴传输层4上,通过真空蒸镀方式蒸镀电子阻挡材料TPAC,厚度为20nm,该层为电子阻挡层5;
e)在电子阻挡层5之上蒸镀发光层6,主体材料为本发明实施例制备的化合物1,掺杂材料为GD,化合物1:EM2:GD按重量比为50:50:12混掺,厚度为30nm;
f)在发光层6之上,通过真空蒸镀方式蒸镀电子传输材料TPBI,厚度为40nm,这层有机材料作为空穴阻挡/电子传输层7使用;
g)在空穴阻挡/电子传输层7之上,真空蒸镀电子注入层LiF,厚度为1nm,该层为电子注入层8;
h)在电子注入层8之上,真空蒸镀阴极Al(100nm),该层为阴极反射电极层9;
按照上述步骤完成电致发光器件的制作后,测量器件的驱动电压,电流效率,其结果见表3所示。相关材料的分子结构式如下所示:
Figure PCTCN2019079055-appb-000065
器件实施例2:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物12:EM2:GD按重量比50:50:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例3:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物34:EM2:GD按重量比50:50:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例4:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物83:EM2:GD按重量比50:50:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例5:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物131:EM2:GD按重量比50:50:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例6:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物161:EM2:GD按重量比50:50:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例7:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物167:EM2:GD按重量比50:50:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例8:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物180:EM2:GD按重量比50:50:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例9:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物186:EM2:GD按重量比50:50:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例10:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物213:EM2:GD按重量比50:50:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例11:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:本发明实施例制备的化合物224:EM2:GD按重量比50:50:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例12:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:CBP和GD按重量比88:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:本发明实施例制备的化合物27)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例13:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:CBP和GD按重量比88:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:本发明实施例制备的化合物53)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例14:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:CBP和GD按重量比88:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:本发明实施例制备的化合物68)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例15:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:CBP和GD按重量比88:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:本发明实施例制备的化合物123)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例16:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:CBP和GD按重量比88:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:本发明实施例制备的化合物147)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例17:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:CBP和GD按重量比88:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:本发明实施例制备的化合物172)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例18:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:CBP和GD按重量比88:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:本发明实施例制备的化合物181)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例19:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:CBP和GD按重量比88:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:本发明实施例制备的化合物196)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例20:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:CBP和GD按重量比88:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:本发明实施例制备的化合物504)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件实施例21:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:CBP和GD按重量比88:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:本发明实施例制备的化合物683)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。
器件比较例1:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:EM1:EM2:GD按重量比50:50:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。所得电致发光器件的检测数据见表3所示。
器件比较例2:ITO阳极层2(厚度:150nm)/空穴注入层3(厚度:10nm,材料:HAT-CN)/空穴传输层4(厚度:60nm,材料:NPB)/电子阻挡层5(厚度:20nm,材料:TAPC)/发光层6(厚度:40nm,材料:CBP和GD按重量比88:12混掺构成)/空穴阻挡/电子传输层7(厚度:35nm,材料:TPBI)/电子注入层8(厚度:1nm,材料:LiF)/Al(厚度:100nm)。所得电致发光器件的检测数据见表3所示。
表3
编号 电流效率(cd/A) 色彩 LT95寿命(Hr)@5000nits
器件实施例1 73.3 绿光 52.7
器件实施例2 71.2 绿光 50.5
器件实施例3 65.4 绿光 53.2
器件实施例4 65.7 绿光 52.7
器件实施例5 63.3 绿光 55.2
器件实施例6 73.4 绿光 54.6
器件实施例7 72.7 绿光 56.5
器件实施例8 70.8 绿光 53.4
器件实施例9 68.6 绿光 50.8
器件实施例10 66.7 绿光 53.3
器件实施例11 68.9 绿光 55.7
器件实施例12 51.7 绿光 58.3
器件实施例13 55.6 绿光 48.0
器件实施例14 57.7 绿光 58.9
器件实施例15 55.9 绿光 57.8
器件实施例16 59.1 绿光 59.2
器件实施例17 51.2 绿光 58.5
器件实施例18 53.5 绿光 49.3
器件实施例19 56.2 绿光 52.8
器件实施例20 55.6 绿光 55.8
器件实施例21 59.4 绿光 53.8
器件比较例1 45.4 绿光 22.6
器件比较例2 32.5 绿光 13.4
由表3的结果可以看出,本发明制备的有机化合物可应用于OLED发光器件制作,并且与器件比较例1相比,无论是效率还是寿命均比已知OLED材料获得较大改观,特别是器件的使用寿命获得较大的提升。进一步的本发明材料制备的OLED器件在高温下能够保持长寿命,将器件实施例1~21和器件比较例1~2在85℃进行高温驱动寿命测试,所得结果如表4所示。
表4
Figure PCTCN2019079055-appb-000066
Figure PCTCN2019079055-appb-000067
从表4的数据可知,器件实施例1~21为本发明材料和已知材料搭配的器件结构,和器件比较例1、2相比,高温下,本发明提供的OLED器件具有很好的驱动寿命。
通过进一步的实验研究,发现本发明材料制备的OLED器件在低温下工作时效率也比较稳定,将器件实施例3、8、15和器件比较例1在-10~80℃区间进行效率测试,所得结果如表5所示。
表5
Figure PCTCN2019079055-appb-000068
从表5的数据可知,器件实施例3、8、15为本发明材料和已知材料搭配的器件结构,和器件比较例1相比,不仅低温效率高,而且在温度升高过程中,效率平稳升高。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种以氮杂苯为核心的有机化合物,其特征在于,所述有机化合物的结构如通式(1)所示:
    Figure PCTCN2019079055-appb-100001
    通式(1)中,L表示为单键、取代或未取代的C 6-60亚芳基、含有一个或多个杂原子取代或未取代的5~60元亚杂芳基中的一种;所述杂原子为氮、氧或硫;
    通式(1)中,Y 1~Y 5分别独立地表示N或者C-R 1,R 1每次出现时相同或不同的表示为H、D、F、或C 1-C 20的酯族、芳族或杂芳族有机基团;所述C 1-C 20的酯族、芳族或杂芳族有机基团中的一个或多个H原子还可被D、F或C 1~10的直链或支链烷基代替;Y 1~Y 5中至少有一个表示为N;
    通式(1)中,R采用通式(2)表示:
    Figure PCTCN2019079055-appb-100002
    通式(2)中,Z 1~Z 12分别独立地表示N或者C-R 2,R 2每次出现时相同或不同的表示为H、D、F、或C 1-C 20的酯族、芳族或杂芳族有机基团;所述C 1-C 20的酯族、芳族或杂芳族有机基团中的一个或多个H原子还可被D、F或C 1~10的直链或支链烷基代替;Z 1~Z 12中含有1~4个为氮原子;
    通式(2)中,X 1表示为氧原子、硫原子、C 1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种。
  2. 根据权利要求1所述的有机化合物,其特征在于,所述通式(2)表示为:
    Figure PCTCN2019079055-appb-100003
    Figure PCTCN2019079055-appb-100004
  3. 根据权利要求2所述的有机化合物,其特征在于,所述通式(2)表示为
    Figure PCTCN2019079055-appb-100005
    并且X 1表示为O原子时,Z 4表示为C-R 2
  4. 根据权利要求2所述的有机化合物,其特征在于,所述通式(2)表示为
    Figure PCTCN2019079055-appb-100006
    并且X 1表示为S原子时,Z 1~Z 4均表示为C-R 2
  5. 根据权利要求2所述的有机化合物,其特征在于,所述通式(2)表示为
    Figure PCTCN2019079055-appb-100007
    并且X 1为C 1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基时,Z 1~Z 4均表示为C-R 2
  6. 根据权利要求2所述的有机化合物,其特征在于,所述通式(2)表示为
    Figure PCTCN2019079055-appb-100008
    Figure PCTCN2019079055-appb-100009
    并且X 1表示为烷基取代的亚胺基或芳基取代的亚胺基时,Z 1~Z 12中只含有1个氮原子,Z 4不表示为氮原子。
  7. 根据权利要求1所述的有机化合物,其特征在于,所述通式(1)中,L表示为单键、D、F或C 1~10的直链或支链烷基取代或未取代的亚苯基;D、F或C 1~10的直链或支链烷基取代或未取代的亚联苯基;D、F或C 1~10的直链或支链烷基取代或未取代的亚萘基;D、F或C 1~10的直链或支链烷基取代或未取代的亚吡啶基中的一种。
  8. 根据权利要求1所述的有机化合物,其特征在于,所述通式(1)中
    Figure PCTCN2019079055-appb-100010
    表示的具体结构如下:
    Figure PCTCN2019079055-appb-100011
    Figure PCTCN2019079055-appb-100012
  9. 根据权利要求1所述的有机化合物,其特征在于,所述有机化合物的具体结构式如下,但它们不限于此:
    Figure PCTCN2019079055-appb-100013
    Figure PCTCN2019079055-appb-100014
    Figure PCTCN2019079055-appb-100015
    Figure PCTCN2019079055-appb-100016
    Figure PCTCN2019079055-appb-100017
    Figure PCTCN2019079055-appb-100018
    Figure PCTCN2019079055-appb-100019
    Figure PCTCN2019079055-appb-100020
    Figure PCTCN2019079055-appb-100021
    Figure PCTCN2019079055-appb-100022
    Figure PCTCN2019079055-appb-100023
    化合物281~560为吡啶基取代上述化合物1~280中氮杂苯基团;化合物561~840为嘧啶基取代上述化合物1~280中氮杂苯基团;化合物841~1120为哒嗪基取代上述化合物1~280中氮杂苯基团;化合物1121~1400为吡嗪基取代上述化合物1~280中氮杂苯基团。
  10. 一种包含权利要求1~9任一项所述有机化合物的有机电致发光器件,其特征在于,所述发光器件中以氮杂苯为核心的有机化合物作为发光层主体材料,用于制作有机电致发光器件。
  11. 一种包含权利要求1~9任一项所述有机化合物的有机电致发光器件,其特征在于,所述发光器件中以氮杂苯为核心的有机化合物作为空穴阻挡/电子传输层材料,用于制作有机电致发光器件。
  12. 一种制备权利要求1~9任一项所述有机化合物的方法,其特征在于,所述方法的反应方程式为:
    Figure PCTCN2019079055-appb-100024
    所述方法包括如下具体步骤:
    称取原料Ⅱ溶于乙酸中,用冰盐浴降温至0℃;称取液溴溶于冰醋酸中并缓慢滴加至含有原料Ⅱ的乙酸溶液中,滴加结束后,升至室温搅拌反应直至反应完全,反应结束后,向反应液中加入碱液中和,用二氯甲烷萃取,分层,取有机相过滤,滤液减压旋蒸至无馏分,过硅胶柱,得到中间体S;所述反应中,原料Ⅱ与液溴的摩尔比例为1:1~3;
    Figure PCTCN2019079055-appb-100025
    所述方法包括如下具体步骤:
    (1)称取中间体A溶于乙酸中,用冰盐浴降温至0℃;称取液溴溶于冰醋酸中并缓慢滴加至含有中间体A的乙酸溶液中,滴加结束后,升至室温搅拌反应直至反应完全,反应结束后,向反应液中加入碱液中和,用二氯甲烷萃取,分层,取有机相过滤,滤液减压旋蒸至无馏分,过硅胶柱,得到中间体B;所述反应中,中间体A与液溴的摩尔比例为1:1~3;
    (2)在通氮气保护下,称取中间体B、联硼酸频那醇酯、乙酸钾、Pd(dppf)Cl 2、1,4-二氧六环,混合搅拌,加热至80~100℃,反应10~24小时,取样点板,显示无中间体B剩余,反应完全;自然冷却至室温,加水后有固体析出,过滤,滤饼用真空干燥箱烘干,然后过中性硅胶柱,得到中间体C;上述反应中,中间体B与联硼酸频那醇酯摩尔比为1:1~2;中间体B与乙酸钾的摩尔比为1:1~3;中间体B与Pd(dppf)Cl 2的摩尔比为1:0.01~0.05;
    (3)称取中间体C和中间体S,用甲苯搅拌溶解,在惰性气氛下,加入碳酸钾、四三苯 基磷钯、乙醇和水的混合溶液,搅拌升温至110-120℃,反应10-24小时,反应结束后,冷却至室温,过滤,滤液分层,取有机相减压旋蒸至无馏分,过硅胶柱,得到中间体D;上述反应中,中间体C与中间体S的摩尔比为1:1~2;中间体C与碳酸钾的摩尔比为1:1~3;中间体C与四三苯基磷钯的摩尔比为1:0.01~0.05;
    (4)在惰性气氛下,将中间体D溶于邻二氯苯中,加入三苯基膦,升温至170~190℃,搅拌反应12~16小时,反应结束后冷却至室温,过滤,滤液减压旋蒸至无馏分,过中性硅胶柱,得中间体E;上述反应中,中间体D与三苯基膦摩尔比为1:1~2;
    Figure PCTCN2019079055-appb-100026
    所述制备方法包括如下具体步骤:
    (1)称取
    Figure PCTCN2019079055-appb-100027
    和中间体E,用甲苯溶解;再加入Pd 2(dba) 3、三叔丁基膦、叔丁醇钠;在惰性气氛下,将上述反应物的混合溶液于95~110℃条件下,反应10~24h,冷却并过滤反应溶液,滤液旋蒸,过硅胶柱,得到目标产物;所述
    Figure PCTCN2019079055-appb-100028
    与中间体E的摩尔比为1:1.0~3.0,Pd 2(dba) 3
    Figure PCTCN2019079055-appb-100029
    的摩尔比为0.006~0.02:1,三叔丁基膦与
    Figure PCTCN2019079055-appb-100030
    的摩尔比为0.006~0.02:1,叔丁醇钠与
    Figure PCTCN2019079055-appb-100031
    的卤代化合物的摩尔比为3.0~5.0:1。
PCT/CN2019/079055 2018-03-22 2019-03-21 一种以氮杂苯为核心的有机化合物及其应用 WO2019179497A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810241847.7A CN110294753B (zh) 2018-03-22 2018-03-22 一种以氮杂苯为核心的有机化合物及其应用
CN201810241847.7 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019179497A1 true WO2019179497A1 (zh) 2019-09-26

Family

ID=67988239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079055 WO2019179497A1 (zh) 2018-03-22 2019-03-21 一种以氮杂苯为核心的有机化合物及其应用

Country Status (2)

Country Link
CN (1) CN110294753B (zh)
WO (1) WO2019179497A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111499656A (zh) * 2020-04-08 2020-08-07 中山大学 一种氮硫杂稠环并六苯化合物及其制备方法及应用
JP2022505594A (ja) * 2019-08-02 2022-01-14 エルジー・ケム・リミテッド 新規な化合物およびこれを含む有機発光素子
WO2023061998A1 (de) 2021-10-14 2023-04-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104364344A (zh) * 2012-06-14 2015-02-18 通用显示公司 用于oled发射区的双咔唑衍生物主体材料和红色发射体
CN106537633A (zh) * 2014-07-22 2017-03-22 罗门哈斯电子材料韩国有限公司 有机电致发光装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107021925B (zh) * 2017-05-23 2020-05-29 中节能万润股份有限公司 一种以氮杂二苯并环庚酮为核心的化合物及其在oled上的应用
CN107216279B (zh) * 2017-06-12 2020-07-17 中节能万润股份有限公司 一种以二苯并环庚烯为核心的化合物及其在有机电致发光器件上的应用
CN107586299A (zh) * 2017-09-29 2018-01-16 江苏三月光电科技有限公司 一种以氮杂苯为核心的有机化合物及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104364344A (zh) * 2012-06-14 2015-02-18 通用显示公司 用于oled发射区的双咔唑衍生物主体材料和红色发射体
CN106537633A (zh) * 2014-07-22 2017-03-22 罗门哈斯电子材料韩国有限公司 有机电致发光装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022505594A (ja) * 2019-08-02 2022-01-14 エルジー・ケム・リミテッド 新規な化合物およびこれを含む有機発光素子
CN111499656A (zh) * 2020-04-08 2020-08-07 中山大学 一种氮硫杂稠环并六苯化合物及其制备方法及应用
CN111499656B (zh) * 2020-04-08 2021-05-28 中山大学 一种氮硫杂稠环并六苯化合物及其制备方法及应用
WO2023061998A1 (de) 2021-10-14 2023-04-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen

Also Published As

Publication number Publication date
CN110294753B (zh) 2020-10-20
CN110294753A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
EP2719741B1 (en) Novel compounds and organic electronic device using same
WO2018033088A1 (zh) 一种以氧杂蒽酮为核心的五元环取代化合物及其应用
WO2018033087A1 (zh) 一种以蒽酮为核心的化合物及其应用
WO2020135687A1 (zh) 一种含硼化合物及其制备方法和其应用
CN107586261B (zh) 一种含有螺二苯并环庚烯芴的有机化合物及其应用
WO2018113538A1 (zh) 一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用
US11939341B2 (en) Organic compound, electroluminescent material, and application thereof
WO2018033085A1 (zh) 一种以蒽酮为核心的化合物及其在oled器件中的应用
WO2018033086A1 (zh) 一种以氧杂蒽酮为核心的二苯并六元环取代化合物及其应用
WO2018108034A1 (zh) 一种双主体结构的有机发光器件
KR20120051598A (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2018019254A1 (zh) 一种基于二芳基酮的化合物及其应用
WO2019085683A1 (zh) 一种含有蒽酮和含氮杂环的化合物及其在oled上的应用
WO2019179497A1 (zh) 一种以氮杂苯为核心的有机化合物及其应用
EP3263555B1 (en) Hetero ring compound and organic luminescent element comprising same
CN107880030B (zh) 以三嗪为核心的化合物及有机电致发光器件
CN110878091A (zh) 一种基于三嗪和蒽酮类结构的有机化合物及其应用
CN109575039B (zh) 一种氮杂苯类有机化合物及其应用
WO2019085759A1 (zh) 一种以氮杂螺芴和芳基酮为核心的化合物、其制备方法及其在oled上的应用
WO2019062686A1 (zh) 一种以氰基苯为核心的化合物及其在oled器件上的应用
CN113135928B (zh) 一种有机化合物及包含其的有机电致发光器件
CN107021925B (zh) 一种以氮杂二苯并环庚酮为核心的化合物及其在oled上的应用
WO2019196948A1 (zh) 一种以芳基酮为核心的化合物、其制备方法及其在oled上的应用
CN106467485B (zh) 一种以9-芴酮为核心的化合物及其应用
WO2019228430A1 (zh) 一种含酮的化合物及其在有机电致发光器件上的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19770603

Country of ref document: EP

Kind code of ref document: A1