WO2019196948A1 - 一种以芳基酮为核心的化合物、其制备方法及其在oled上的应用 - Google Patents

一种以芳基酮为核心的化合物、其制备方法及其在oled上的应用 Download PDF

Info

Publication number
WO2019196948A1
WO2019196948A1 PCT/CN2019/082568 CN2019082568W WO2019196948A1 WO 2019196948 A1 WO2019196948 A1 WO 2019196948A1 CN 2019082568 W CN2019082568 W CN 2019082568W WO 2019196948 A1 WO2019196948 A1 WO 2019196948A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
preparation
aryl
formula
Prior art date
Application number
PCT/CN2019/082568
Other languages
English (en)
French (fr)
Inventor
李崇
吴秀芹
张小庆
张兆超
Original Assignee
江苏三月光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏三月光电科技有限公司 filed Critical 江苏三月光电科技有限公司
Publication of WO2019196948A1 publication Critical patent/WO2019196948A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/94[b, c]- or [b, d]-condensed containing carbocyclic rings other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/18Ring systems of four or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/056Ortho-condensed systems with two or more oxygen atoms as ring hetero atoms in the oxygen-containing ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/153Ortho-condensed systems the condensed system containing two rings with oxygen as ring hetero atom and one ring with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Definitions

  • the invention relates to the field of semiconductor technology, in particular to a compound with an aryl ketone as a core, a preparation method thereof and application thereof to an OLED.
  • OLED Organic Light Emission Diodes
  • the OLED light-emitting device is like a sandwich structure, including an electrode material film layer and an organic functional material sandwiched between different electrode film layers, and various functional materials are superposed on each other according to the purpose to form an OLED light-emitting device.
  • OLED display technology has been applied in the fields of smart phones, tablet computers, etc., and will further expand to large-size applications such as televisions.
  • OLED devices have luminous efficiency and service life. Further improvement is needed.
  • Research on improving the performance of OLED devices includes: reducing the driving voltage of the device, improving the luminous efficiency of the device, and improving the service life of the device.
  • OLED photoelectric functional materials applied to OLED devices can be divided into two categories, namely, charge injection transport materials and luminescent materials, and further, charge injection transport materials can be divided into electron injection transport materials, electron blocking materials, and holes. The transport material and the hole blocking material are injected, and the luminescent material can also be divided into a host luminescent material and a dopant material.
  • various organic functional materials are required to have good photoelectric characteristics. For example, as a charge transport material, it is required to have good carrier mobility, high glass transition temperature, etc., as a main body of the light-emitting layer. Materials require materials with good bipolarity, appropriate HOMO/LUMO energy levels, and the like.
  • the OLED photoelectric functional material film layer constituting the OLED device includes at least two or more layers, and the industrially applied OLED device structure includes a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, and an electron.
  • a plurality of film layers such as a transport layer and an electron injection layer, that is, an optoelectronic functional material applied to an OLED device includes at least a hole injecting material, a hole transporting material, a luminescent material, an electron transporting material, etc., and the material type and the collocation form are rich. Characteristics of sex and diversity.
  • the optoelectronic functional materials used have strong selectivity, and the performance of the same materials in different structural devices may be completely different. Therefore, in view of the industrial application requirements of current OLED devices, and the different functional film layers of OLED devices, the photoelectric characteristics of the devices must be selected to be more suitable, and high-performance OLED functional materials or material combinations can achieve high efficiency and long device. Comprehensive characteristics of life and low voltage. As far as the actual demand of the current OLED display lighting industry is concerned, the development of OLED materials is still far from enough. It is lagging behind the requirements of panel manufacturers, and it is especially important to develop higher performance organic functional materials as material enterprises.
  • the Applicant provides a compound based on an aryl ketone, a preparation method thereof and its use in an organic electroluminescent device.
  • the compound of the invention contains an aryl ketone structure, has high glass transition temperature and molecular thermal stability, suitable HOMO and LUMO energy levels, high electron mobility, and can be used for OLED devices to effectively improve the luminous efficiency of the device. The lifetime of OLED devices.
  • the present invention provides a compound having an aryl ketone as a core, and the structure of the compound is as shown in the formula (1):
  • Z represents an O, S, C 1-10 linear or branched alkyl substituted alkylene group, an aryl substituted alkylene group, an alkyl substituted imido group or an aryl substituted imido group.
  • i is equal to 0 or 1;
  • L represents one of a single bond, a substituted or unsubstituted C 6 - 30 arylene group, a substituted or unsubstituted C 5 - 30 heteroarylene group;
  • M 1 , M 2 and M 3 are each independently represented by one of H, C 1-10 linear or branched alkyl, C 6 - 30 aryl, C 5 - 30 heteroarylene, and M 1 , M 2 , M 3 are not H at the same time;
  • R 1 is represented by the structure represented by the formula (2):
  • X 1 represents a single bond, O, S, C 1-10 linear or branched alkyl substituted alkylene, aryl substituted alkylene, aryl substituted alkyl or aryl substituted tertiary One of the amine groups;
  • R 2 and R 3 are each independently selected from the structures represented by H, formula (3), formula (4) or formula (5), and R 2 and R 3 are not simultaneously H. ;
  • the general formula (3), the general formula (4) or the general formula (5) passes through the * site and the C L1 -C L2 bond, the C L2 -C L3 bond, the C L3 -C L4 bond in the formula (2), C L'1 -C L'2 bond, C L'2 -C L'3 bond or C L'3 -C L'4 bond is connected and ringed;
  • Y, X 2 and X 3 are each independently represented by O, S, Se, C 1-10 linear or branched alkyl substituted alkylene, aryl substituted alkylene, alkyl substituted imido Or one of the aryl substituted imido groups.
  • L is represented by one of a single bond, a phenylene group, a biphenylylene group, and a naphthylene group.
  • M 1 , M 2 and M 3 are each independently represented by H, methyl, ethyl, propyl, isopropyl, t-butyl, cyclohexyl, phenyl, naphthyl, biphenyl, furyl. Or one of the pyridyl groups.
  • Another aspect of the present invention provides a process for the preparation of a compound as described above.
  • L is represented by a hydrogen atom
  • the procedure is as follows: after dissolving Intermediate C and Intermediate A with toluene, Pd 2 (dba) 3 is added . Tri-tert-butylphosphine and sodium tert-butoxide; under the protection of an inert gas, the above mixed solution is reacted at 95-110 ° C for 10-24 hours, naturally cooled to room temperature, filtered, and the filtrate is steamed, and the residue is passed through a neutral silica gel. Column to obtain the target product;
  • the molar ratio of the intermediate C to the intermediate A is 1:1.0 to 1.5; the molar ratio of the Pd 2 (dba) 3 to the intermediate C is 0.005 to 0.011, and the tri-tert-butyl group
  • the molar ratio of the phosphine to the starting material I is from 0.005 to 0.02:1; the molar ratio of the sodium t-butoxide to the intermediate C is from 1.5 to 3.0:1; the molar ratio of the intermediate C to the intermediate B is 1:1. ⁇ 2; the molar ratio of K 2 CO 3 to intermediate C is 1.0 to 3.0:1; and the molar ratio of Pd(PPh 3 ) 4 to intermediate C is 0.006 to 0.02:1.
  • the present invention also provides an application of an aryl ketone-based compound as described above in an organic electroluminescent device.
  • the present invention also provides an organic electroluminescent device comprising at least one functional layer, the functional layer comprising a compound having an aryl ketone as a core as described above.
  • the functional layer comprises a light-emitting layer and/or a hole transport/electron barrier layer
  • the material used for the light-emitting layer or the hole transport/electron barrier layer contains a compound based on an aryl ketone as described above.
  • the invention also provides an illumination or display element comprising the above-described organic electroluminescent device.
  • the structure of the organic compound of the invention makes the distribution of electrons and holes in the luminescent layer more balanced, and improves the hole injection and transport performance at the appropriate HOMO level; and at the appropriate LUMO level, it also acts as an electron blocking
  • the effect of enhancing the recombination efficiency of the excitons in the luminescent layer compared with the patent CN106220638A, the organic compound of the invention adds a substituent to the nucleus of the aryl ketone, and the presence of the substituent makes the DA group between the two molecules effective.
  • the aryl ketone combined with the branch within the scope of the invention can effectively improve the exciton utilization and high fluorescence radiation efficiency, reduce the efficiency roll-off at high current density, reduce the device voltage, and improve the current efficiency and life of the device;
  • the branch of the compound is a paracyclic structure.
  • the structure has a high triplet energy level (T1). As an electron blocking material, it can effectively block the exciton energy of the luminescent layer from being transferred to the hole transport layer, and the exciton is improved.
  • the composite efficiency in the light-emitting layer when used as the host material of the light-emitting layer, the high triplet state enables the energy to be sufficiently efficiently and efficiently transferred to the dopant material, thereby improving the energy utilization rate and thereby improving the luminous efficiency of the device.
  • the branched-chain moiety and the aryl-substituted structure disrupt molecular symmetry and avoid aggregation between molecules.
  • the compound of the present invention has strong rigidity, is incapable of crystallization, is difficult to aggregate, and has good film forming properties. High glass transition temperature and thermal stability, therefore, when the compound of the invention is applied to an OLED device, the film stability after film formation can be maintained, and the service life of the OLED device can be improved. After the compound of the invention is applied as an organic electroluminescent functional layer material to an OLED device, the current efficiency, power efficiency and external quantum efficiency of the device are greatly improved; at the same time, the device lifetime is greatly improved, in the OLED light-emitting device. It has good application effect and has good industrialization prospects.
  • FIG. 1 is a schematic structural view of a material exemplified in the present invention applied to an OLED device;
  • Figure 2 is a graph showing the efficiency of the device measured at different temperatures.
  • FIG 3 is a graph showing a leakage current test of the reverse voltage of the device 1, the device of Comparative Example 1, and the device Comparative Example 2 of the present invention.
  • the reagents, materials, and instruments used are all conventional reagents, conventional materials, and conventional instruments, unless otherwise specified, and are commercially available, and the reagents involved may also be conventionally used. Synthetic methods are obtained synthetically.
  • the specific preparation examples of the intermediate A are described below by the embodiment 1.
  • the naming of the intermediate A of each example can be distinguished by an Arabic numeral, such as the intermediate A1, the intermediate A2 and the like.
  • Elemental analysis structure (Molecular formula C 45 H 27 NO 2 ): Theory C, 88.07; H, 4.43; N, 2.28; O, 5.21.; Test: C, 88.06; H, 4.43; N, 2.28; O, 5.22.
  • ESI-MS (m/z) (M + ): calc.
  • Elemental analysis structure (Molecular formula C 46 H 31 NO 2 ): Theory: C, 87.73; H, 4.96; N, 2.22; O, 5.08; Tests: C, 87.73; H, 4.95; N, 2.23; O, 5.08 .
  • HPLC-MS The material had a molecular weight of 629.76 and a molecular weight of 629.81.
  • Compound 58 was prepared in the same manner as in Example 2-3 except that starting material 5 was used instead of starting material 3, and intermediate A2 was replaced with intermediate A4.
  • Elemental analysis structure (molecular formula C 40 H 27 NO 2 ): calcd. C, 86.78; H, 4.92; N, 2.53; O, 5.78; ⁇ / RTI> ⁇ /RTI> C, 86.77; H, 4.92; N, 2.54; O, 5.78.
  • Compound 65 was prepared in the same manner as in Example 2-3 except that the starting material 3 was used instead of the starting material 3 and the intermediate A2 was replaced with the intermediate A5.
  • Elemental analysis structure (Molecular formula C 43 H 26 N 2 O 2 ): Theory C, 85.69; H, 4.35; N, 4.65; O, 5.31; Tests: C, 85.70; H, 4.35; N, 4.65; 5.30.
  • Compound 70 was prepared in the same manner as in Example 2-2 except that starting material 7 was used instead of starting material 2, and intermediate A1 was replaced with intermediate A5.
  • Elemental analysis structure (Molecular formula C 49 H 30 N 2 O 2 ): Theory: C, 86.70; H, 4.45; N, 4.13; O, 4.71; Test value: C, 86.70; H, 4.44; N, 4.12; , 4.71.
  • Compound 104 was prepared in the same manner as in Example 2-3 except that the starting material 3 was replaced with the starting material 8 and the intermediate A2 was replaced with the intermediate A6.
  • Elemental analysis structure (Molecular formula C 43 H 26 N 2 O 2 ): Theory C, 85.69; H, 4.35; N, 4.65; O, 5.31; Tests: C, 85.69; H, 4.36; N, 4.64; 5.31.
  • Compound 110 was prepared in the same manner as in Example 2-3 except that the starting material 3 was replaced with the starting material 9 and the intermediate A2 was replaced with the intermediate A6.
  • Elemental analysis structure (Molecular formula C 43 H 26 N 2 O 2 ): Theory C, 85.69; H, 4.35; N, 4.65; O, 5.31; Tests: C, 85.69; H, 4.36; N, 4.65; 5.30.
  • Compound 139 was prepared in the same manner as in Example 2-1 except that the starting material A was replaced with the intermediate A8. Elemental analysis structure (Molecular formula C 37 H 21 NO 3 ): Theory C, 84.24; H, 4.01; N, 2.65; O, 9.10; Tests: C, 84.25; H, 4.01; N, 2.64; O, 9.10. ESI-MS (m/z) (M + ): 553.
  • Compound 154 was prepared in the same manner as in Example 2-3 except that the starting material 3 was replaced with the starting material 10 and the intermediate A2 was replaced with the intermediate A9.
  • Elemental analysis structure (Molecular formula C 37 H 21 NO 3 ): Theory: C, 84.24; H, 4.01; N, 2.65; O, 9.10; Tests: C, 84.23; H, 4.01; N, 2.65; O, 9.11 .
  • HPLC-MS The material had a molecular weight of 527.58 and a molecular weight of 527.63.
  • the compound 181 was prepared in the same manner as in Example 2-2 except that the starting material 3 was used instead of the starting material 2, the starting material C was replaced with the starting material C, and the intermediate A1 was replaced with the intermediate A3.
  • Elemental analysis structure (Molecular formula C 46 H 31 NO 2 ): calcd. C, 87.73; H, 4.96; N, 2.22; O, 5.08; ⁇ / RTI> ⁇ /RTI> C, 87.75; H, 4.96; N, 2.21; O, 5.07.
  • the compound 194 was prepared in the same manner as in Example 2-2 except that the starting material 2 was used instead of the starting material 2, the starting material D was replaced with the starting material D, and the intermediate A1 was replaced with the intermediate A9.
  • Elemental Analysis Structure (Molecular Formula C 41 H 23 NO 3 ): Theory C, 85.25; H, 4.01; N, 2.42; O, 8.31; Tests: C, 85.24; H, 4.01; N, 2.42; O, 8.32.
  • the compound 207 was prepared in the same manner as in Example 2-16 except that the starting material 11 was used instead of the intermediate C2, and the intermediate B2 was used instead of the intermediate B1.
  • Elemental analysis structure (Molecular formula C 41 H 31 NO 2 ): calcd. C, 86.44; H, 5.48; N, 2.46; O, 5.62; ⁇ / RTI> C, 86.45; H, 5.48; N, 2.46; O, 5.61.
  • Compound 305 was prepared in the same manner as in Example 2-2 except that the raw material 14 was used instead of the raw material 2, and the raw material B1 was substituted for the raw material B.
  • Elemental analysis structure (Molecular formula C 42 H 39 NO 2 ): Theory: C, 85.53; H, 6.67; N, 2.37; O, 5.43; Test: C, 85.55; H, 6.66; N, 2.37; O, 5.42 .
  • the compound 352 was prepared in the same manner as in Example 2-2 except that the starting material 15 was used instead of the starting material 2, the starting material B1 was substituted for the starting material B, and the intermediate A1 was replaced with the intermediate A12.
  • Elemental analysis structure (Molecular formula C 48 H 35 NO 3 ): Theory C, 85.56; H, 5.24; N, 2.08; O, 7.12; Tests: C, 85.55; H, 5.24; N, 2.09; O, 7.12.
  • the compound of the present invention is used in a light-emitting device, has a high glass transition temperature (Tg) and a triplet level (T1), and a suitable HOMO, LUMO energy level can be used as an electron blocking material or as a light-emitting layer material.
  • Tg glass transition temperature
  • T1 triplet level
  • LUMO energy level can be used as an electron blocking material or as a light-emitting layer material.
  • the triplet energy level T1 is tested by Hitachi's F4600 fluorescence spectrometer.
  • the test conditions of the material are 2*10 -5 toluene solution;
  • the glass transition temperature Tg is by differential scanning calorimetry (DSC, Germany Benz DSC204F1 differential scanning) The calorimeter was measured at a heating rate of 10 ° C/min;
  • the thermogravimetric temperature Td was a temperature at which the weight loss was 1% in a nitrogen atmosphere, and was measured on a TGA-50H thermogravimetric analyzer of Shimadzu Corporation, Japan, and the flow rate of nitrogen was 20 mL/ Min;
  • the highest occupied molecular orbital HOMO level is tested by the ionization energy test system (IPS3) and tested as the atmospheric environment;
  • the evaporation temperature is achieved during the evaporation process.
  • the evaporation equipment is an ANS coating machine.
  • the compound of the invention has high glass transition temperature, can improve the phase stability of the material film, further improve the service life of the device; has a high triplet energy level, can block the energy loss of the light-emitting layer, thereby improving the device.
  • Luminous efficiency At the same time, the material of the invention has a suitable HOMO energy level to solve the problem of carrier injection, and the device voltage can be reduced; therefore, the organic material containing the aryl ketone of the invention can effectively improve the device after being applied to different functional layers of the OLED device. Luminous efficiency and service life.
  • Example 3 The application effect of the compound of the present invention in an OLED device will be described in detail below by way of Example 3.
  • the fabrication process of the device was identical, and the same substrate material and electrode material were used, and the film thickness of the electrode material was also kept the same, except that Example 3-1
  • the materials of the light-emitting layer in the device were changed to the examples 3-14; the electron blocking layer materials of the device were changed in the examples 3-15 to 3-24, and the performance test results of the devices obtained in the respective examples are shown in the table. 4 is shown.
  • an electroluminescent device is prepared as follows:
  • a cathode Al was vacuum-deposited as a cathode reflective electrode layer 8, and a thickness of 100 nm was evaporated to obtain a device 1.
  • the molecular structure of the relevant material is as follows:
  • This embodiment differs from Example 3-1 in that the luminescent layer host material of the electroluminescent device becomes the compound 13 prepared by the present invention, and the doping materials are Ir(ppy) 3 , compound 13 and Ir(ppy).
  • the mass ratio of 3 is 90:10.
  • This embodiment differs from Example 3-1 in that the luminescent layer host material of the electroluminescent device becomes the compound 28 prepared by the present invention, and the doping material is Ir(ppy) 3 , compound 28 and Ir(ppy).
  • the mass ratio of 3 is 92:8.
  • This embodiment is different from Embodiment 3-1 in that the luminescent layer host material of the electroluminescent device becomes the compound 44 prepared by the present invention, and the doping material is Ir(ppy) 3 , compound 44 and Ir(ppy).
  • the mass ratio of 3 is 88:12.
  • Embodiment 3-1 is different from Embodiment 3-1 in that the light-emitting layer host material of the electroluminescent device becomes Compound 47 and Compound GH prepared by the present invention, and the doping material is Ir(ppy) 3 , Compound 47 and GH.
  • the mass ratio of Ir(ppy) 3 is 60:30:10.
  • the difference between this embodiment and the embodiment 3-1 is that the light-emitting layer host material of the electroluminescent device becomes the compound 58 and the compound GH prepared by the invention, and the doping material is Ir(ppy) 3 , compound 58, GH.
  • the mass ratio of Ir(ppy) 3 is 60:30:10.
  • This embodiment differs from the embodiment 3-1 in that the light-emitting layer host material of the electroluminescent device becomes the compound 65 and the compound GH prepared by the present invention, and the doping material is Ir(ppy) 3 , compound 65, GH.
  • the mass ratio of Ir(ppy) 3 is 60:30:10.
  • the luminescent layer host material of the electroluminescent device becomes the compound 139 and the compound GH prepared by the invention, and the doping material is Ir(ppy) 3 , compound 139, GH.
  • the mass ratio of Ir(ppy) 3 is 60:30:10.
  • the luminescent layer host material of the electroluminescent device becomes the compound 154 and the compound GH prepared by the invention, and the doping material is Ir(ppy) 3 , compound 154, GH.
  • the mass ratio of Ir(ppy) 3 is 60:30:10.
  • This embodiment differs from the embodiment 3-1 in that the luminescent layer host material of the electroluminescent device becomes the compound 171 and the compound GH prepared by the present invention, and the doping material is Ir(ppy) 3 , compound 171, GH.
  • the mass ratio of Ir(ppy) 3 is 60:30:10.
  • This embodiment is different from the embodiment 3-1 in that the luminescent layer host material of the electroluminescent device becomes the compound 181 and the compound GH prepared by the present invention, and the doping material is Ir(ppy) 3 , compound 181, GH.
  • the mass ratio of Ir(ppy) 3 is 60:30:10.
  • the luminescent layer host material of the electroluminescent device becomes the compound 194 and the compound GH prepared by the invention, and the doping material is Ir(ppy) 3 , compound 194, GH.
  • the mass ratio of Ir(ppy) 3 is 60:30:10.
  • This embodiment is different from the embodiment 3-1 in that the luminescent layer host material of the electroluminescent device becomes the compound 319 and the compound GH prepared by the present invention, and the doping material is Ir(ppy) 3 , compound 319, GH.
  • the mass ratio of Ir(ppy) 3 is 60:30:10.
  • the difference between this embodiment and the embodiment 3-1 is that the light-emitting layer host material of the electroluminescent device becomes the compound 352 and the compound GH prepared by the invention, and the doping material is Ir(ppy) 3 , compound 352, GH.
  • the mass ratio of Ir(ppy) 3 is 60:30:10.
  • Embodiment 3-1 differs from Embodiment 3-1 in that the electron blocking layer material of the electroluminescent device is the compound 70 of the present invention, and the light-emitting layer host material of the electroluminescent device becomes CBP, CBP and Ir(ppy) 3
  • the mass ratio is 88:12.
  • This embodiment differs from Example 3-1 in that the electron blocking layer material of the electroluminescent device is the compound 87 of the present invention, and the light-emitting layer host material of the electroluminescent device becomes CBP, CBP and Ir(ppy) 3
  • the mass ratio is 90:10.
  • This embodiment differs from Example 3-1 in that the electron blocking layer material of the electroluminescent device is the compound 96 of the present invention, and the light-emitting layer host material of the electroluminescent device becomes CBP, CBP and Ir(ppy) 3
  • the mass ratio is 80:20.
  • Embodiment 3-1 differs from Embodiment 3-1 in that the electron blocking layer material of the electroluminescent device is the compound 104 of the present invention, and the light-emitting layer host material of the electroluminescent device becomes CBP, CBP and Ir(ppy) 3
  • the mass ratio is 80:20.
  • Embodiment 3-1 differs from Embodiment 3-1 in that the electron blocking layer material of the electroluminescent device is the compound 110 of the present invention, and the light-emitting layer host material of the electroluminescent device becomes CBP, CBP and Ir(ppy) 3
  • the mass ratio is 80:20.
  • This embodiment differs from Example 3-1 in that the electron blocking layer material of the electroluminescent device is the compound 129 of the present invention, and the light-emitting layer host material of the electroluminescent device becomes CBP, CBP and Ir(ppy) 3
  • the mass ratio is 80:20.
  • This embodiment differs from Example 3-1 in that the electron blocking layer material of the electroluminescent device is the compound 207 of the present invention, and the light-emitting layer host material of the electroluminescent device becomes CBP, CBP and Ir(ppy) 3
  • the mass ratio is 80:20.
  • This embodiment differs from Example 3-1 in that the electron blocking layer material of the electroluminescent device is the compound 218 of the present invention, and the light-emitting layer host material of the electroluminescent device becomes CBP, CBP and Ir(ppy) 3
  • the mass ratio is 80:20.
  • This embodiment differs from Example 3-1 in that the electron blocking layer material of the electroluminescent device is the compound 228 of the present invention, and the light-emitting layer host material of the electroluminescent device becomes CBP, CBP and Ir(ppy) 3
  • the mass ratio is 80:20.
  • This embodiment differs from Example 3-1 in that the electron blocking layer material of the electroluminescent device is the compound 305 of the present invention, and the light-emitting layer host material of the electroluminescent device becomes CBP, CBP and Ir(ppy) 3
  • the mass ratio is 80:20.
  • Example 1 differs from Example 3-1 in that the electron blocking layer material of the electroluminescent device is NPB, and the light emitting layer host material of the electroluminescent device is CBP.
  • Example 2 differs from Example 3-1 in that the electron blocking layer material of the electroluminescent device is NPB, and the light emitting layer host material of the electroluminescent device is C03.
  • Green light 47.1 Numbering Current efficiency (cd/A) color LT95 life (Hr) @5000nits Device 1 62.5 Green light 51.4 Device 2 63.2 Green light 48.3 Device 3 64.6 Green light 49.3 Device 4 59.9 Green light 51.6 Device 5 58.5 Green light 63.3 Device 60.2 Green light 59.4 Device 7 57.5 Green light 50.2 Device 8 61.1 Green light 58.3 Device 9 59.3 Green light 59.5 Device 10 59.0 Green light 53.2 Device 11 58.6 Green light 49.5 Device 12 59.7 Green light 48.1 Device 13 60.3 Green light 50.7 Device 14 58.4 Green light 49.3 Device 15 49.3 Green light 59.4 Device 16 48.6 Green light 58.7 Device 17 49.1 Green light 56.9 Device 18 48.7 Green light 56.3 Device 19 48.1 Green light 48.4 Device 20 49.8 Green light 47.1
  • the life test system is the OLED device life tester jointly researched by the owner of the invention and Shanghai University.
  • the aryl ketone-containing compound prepared by the present invention can be applied to the fabrication of OLED light-emitting devices, and the efficiency and the lifetime are better than the known OLED materials compared with the device comparative examples. In particular, the lifetime degradation of the device is greatly improved.
  • the OLED device prepared by the compound of the invention has relatively stable efficiency when working at low temperature, and the efficiency is tested in the range of -10 to 80 °C for the devices 1, 8, 17 and the device, and the results are shown in Table 5 and Figure 2. .
  • the devices 1, 8, and 17 are the device structures of the materials of the present invention and the known materials, and the low-temperature efficiency is high compared with the device comparative example, and the efficiency is increased during the temperature increase. Smoothly rise.
  • the device of the present invention, the device of Comparative Example 1 and the device of Comparative Example 2 were subjected to a reverse voltage leakage current test, and the test data is shown in FIG. 3, which is shown in FIG. It can be seen that the device 1 and the device using the compound of the present invention have a small leakage current and a stable current curve compared with the device fabricated in the device of Comparative Example 2, and therefore, the material of the present invention is applied to the device after fabrication. Long service life.

Abstract

公开了一种通式(1)所示的以芳基酮为核心的化合物、其制备方法及其在OLED上的应用,该有机化合物的母核为芳基酮,母核通过单键、苯基、联苯基或萘基与含氮的支链相连,同时母核上的苯基通过单键与烷基、苯基、联苯基或萘基相连。所述化合物基团刚性较强,具有分子间不易结晶、不易聚集、具有良好成膜性的特点。作为有机电致发光功能层材料应用于OLED器件后,器件的电流效率,功率效率和外量子效率均得到很大改善,同时,对于器件寿命提升非常明显。

Description

一种以芳基酮为核心的化合物、其制备方法及其在OLED上的应用 技术领域
本发明涉及半导体技术领域,尤其是涉及一种以芳基酮为核心的化合物、其制备方法及其在OLED上的应用。
背景技术
有机电致发光(Organic Light Emission Diodes,OLED)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。OLED发光器件犹如三明治的结构,包括电极材料膜层,以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成OLED发光器件。作为电流器件,当对OLED发光器件的两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷,正负电荷进一步在发光层中复合,即产生OLED电致发光。
当前,OLED显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展,但是,和实际的产品应用要求相比,OLED器件的发光效率,使用寿命等性能还需要进一步提升。对于OLED器件提高性能的研究包括:降低器件的驱动电压,提高器件的发光效率,提高器件的使用寿命等。为了实现OLED器件的性能的不断提升,不但需要从OLED器件结构和制作工艺的创新,更需要OLED光电功能材料不断研究和创新,创制出更高性能OLED的功能材料。应用于OLED器件的OLED光电功能材料从用途上可划分为两大类,即电荷注入传输材料和发光材料,进一步,还可将电荷注入传输材料分为电子注入传输材料、电子阻挡材料、空穴注入传输材料和空穴阻挡材料,还可以将发光材料分为主体发光材料和掺杂材料。为了制作高性能的OLED发光器件,要求各种有机功能材料具备良好的光电特性,譬如,作为电荷传输材料,要求具有良好的载流子迁移率,高玻璃化转化温度等,作为发光层的主体材料要求材料具有良好双极性,适当的HOMO/LUMO能阶等。
构成OLED器件的OLED光电功能材料膜层至少包括两层以上结构,产业上应用的OLED器件结构,则包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层等多种膜层,也就是说应用于OLED器件的光电功能材料至少包含空穴注入材料,空穴传输材料,发光材料,电子传输材料等,材料类型和搭配形式具有丰富性和多样性的特点。另外,对于不同结构的OLED器件搭配而言,所使用的光电功能材料具有较强的选择性,相同的材料在不同结构器件中的性能表现,也可能完全迥异。因此,针对当前OLED器件的产业应用要求,以及OLED器件的不同功能膜层,器件的光电特性需求,必须选择更适合,具有高性能的OLED功能材料或材料组合,才能实现器件的高效率、长寿命和低电压的综合特性。就当前OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。
发明内容
针对现有技术存在的上述问题,本申请人提供了一种以芳基酮为核心的化合物、其制备方法及其在有机电致发光器件上的应用。本发明化合物含有芳基酮结构,具有较高的玻璃化温度和分子热稳定性,合适的HOMO和LUMO能级,高电子迁移率,应用于OLED器件制作后,可有效提高器件的发光效率和OLED器件的使用寿命。
本发明的技术方案如下:
本发明一方面提供了一种以芳基酮为核心的化合物,该化合物的结构如通式(1)所示:
Figure PCTCN2019082568-appb-000001
其中,Z表示为O、S、C 1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种,i等于0或1;
L表示为单键、经取代或未经取代的C 6- 30的亚芳基、经取代或未经取代的C 5- 30的亚杂芳基中的一种;
M 1、M 2、M 3分别独立地表示为H、C 1-10直链或支链烷基、C 6- 30的芳基、C 5- 30亚杂芳基中的一种,且M 1、M 2、M 3不同时为H;
R 1表示为通式(2)所示结构:
Figure PCTCN2019082568-appb-000002
其中,X 1表示为单键、O、S、C 1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、芳基取代的烷基或芳基取代的叔胺基中的一种;R 2、R 3分别独立地选自H、通式(3)、通式(4)或通式(5)所示结构,且R 2、R 3不同时为H;
Figure PCTCN2019082568-appb-000003
通式(3)、通式(4)或通式(5)通过*位点与通式(2)中的C L1-C L2键、C L2-C L3键、C L3-C L4键、C L‘1-C L’2键、C L‘2-C L’3键或C L‘3-C L’4键相连并环;
Y、X 2、X 3分别独立地表示为O、S、Se、C 1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种。
进一步的,L表示为单键、亚苯基、亚联苯基、亚萘基中的一种。
进一步的,M 1、M 2、M 3分别独立地表示为H、甲基、乙基、丙基、异丙基、叔丁基、环己基、苯基、萘基、联苯基、呋喃基或吡啶基中的一种。
进一步的,所述化合物的具体结构式为:
Figure PCTCN2019082568-appb-000004
Figure PCTCN2019082568-appb-000005
Figure PCTCN2019082568-appb-000006
Figure PCTCN2019082568-appb-000007
Figure PCTCN2019082568-appb-000008
Figure PCTCN2019082568-appb-000009
Figure PCTCN2019082568-appb-000010
Figure PCTCN2019082568-appb-000011
Figure PCTCN2019082568-appb-000012
Figure PCTCN2019082568-appb-000013
Figure PCTCN2019082568-appb-000014
Figure PCTCN2019082568-appb-000015
Figure PCTCN2019082568-appb-000016
Figure PCTCN2019082568-appb-000017
Figure PCTCN2019082568-appb-000018
Figure PCTCN2019082568-appb-000019
Figure PCTCN2019082568-appb-000020
Figure PCTCN2019082568-appb-000021
中的任一种。
本发明另一方面提供了一种如上所述的化合物的制备方法,当L表示为氢原子时,步骤如下:将中间体C和中间体A用甲苯溶解后,加入Pd 2(dba) 3、三叔丁基膦和叔丁醇钠;在惰性气体的保护下,将上述混合溶液于95~110℃下反应10~24h,自然冷却至室温、过滤、滤液旋蒸,残余物过中性硅胶柱,得到目标产物;
此制备过程中发生的反应方程式如下:
Figure PCTCN2019082568-appb-000022
当L不表示为氢原子时,步骤如下:在惰性气体保护下,将中间体C、中间体B用THF溶解后,加入K 2CO 3水溶液和Pd(PPh 3) 4,将上述反应物的混合溶液于80~110℃下反应10~24h,自然冷却至室温,过滤、滤液旋蒸,残余物过硅胶柱,得到目标产物;
此制备过程中发生的反应方程式如下:
Figure PCTCN2019082568-appb-000023
进一步的,所述中间体C与中间体A的摩尔比为1:1.0~1.5;所述Pd 2(dba) 3与中间体C的摩尔比为0.005~0.01:1,所述三叔丁基膦与原料I的摩尔比为0.005~0.02:1;所述叔丁醇钠与中间体C的摩尔比为1.5~3.0:1;所述中间体C与中间体B的摩尔比为1:1~2;K 2CO 3与中间体C的摩尔比为1.0~3.0:1;Pd(PPh 3) 4与中间体C的摩尔比为0.006~0.02:1。
本发明还提供了一种如上所述的以芳基酮为核心的化合物在有机电致发光器件中的应用。
本发明还提供了一种有机电致发光器件,包括至少一层功能层,所述功能层所用材料含有如上所述的以芳基酮为核心的化合物。
进一步的,所述功能层包括发光层和/或空穴传输/电子阻挡层,所述发光层或空穴传输/电子阻挡层所用材料含有如上所述的以芳基酮为核心的化合物。
本发明还提供了一种照明或显示元件,包括上述的有机电致发光器件。
本发明有益的技术效果在于:
本发明的有机化合物的结构使得电子和空穴在发光层的分布更加平衡,在恰当的HOMO能级下,提升了空穴注入和传输性能;在合适的LUMO能级下,又起到了电子阻挡的作用,提升激子在发光层中的复合效率;对比专利CN106220638A,本发明的有机化合物在芳基酮的母核上增加取代基,取代基的存在使得两个分子间的D-A基团得到有效分离,降低分子间相互作用 力,避免分子集聚结晶,以及由于集聚结晶产生的Excimer现象,从而提高材料激发态能量的利用率,使器件获得高效率及长使用寿命;同时,由于分子间作用力减少,使得材料在成膜后状态更稳定,平整度得到改善,因此,在制成器件后,器件的漏电流现象得到明显改善,从而提高器件的使用寿命。
芳基酮搭配本发明范围内的支链可有效提高激子利用率和高荧光辐射效率,降低高电流密度下的效率滚降,降低器件电压,提高器件的电流效率和寿命;本发明的有机化合物的支链为并环结构,此结构具有较高的三线态能级(T1),作为电子阻挡材料使用,可有效阻挡发光层的激子能量传递至空穴传输层中,提高激子在发光层中的复合效率;作为发光层主体材料时,高的三线态可使能量充分有效的传递至掺杂材料中,提高能量利用率,从而提高器件发光效率。
另外,支链部分和芳基取代的结构破坏分子对称性,避免分子间的聚集作用,本发明化合物基团刚性较强,具有分子间不易结晶、不易聚集、具有良好成膜性的特点,具有高的玻璃化温度及热稳定性,所以,本发明化合物应用于OLED器件时,可保持材料成膜后的膜层稳定性,提高OLED器件使用寿命。本发明所述化合物作为有机电致发光功能层材料应用于OLED器件后,器件的电流效率,功率效率和外量子效率均得到很大改善;同时,对于器件寿命提升非常明显,在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。
附图说明
图1为本发明所列举的材料应用于OLED器件的结构示意图;
图2为器件在不同温度下测量的效率曲线图。
图3为本发明器件1、器件对比例1和器件对比例2进行反向电压的漏电流测试曲线图。
附图标记说明:1—透明基板层;2—ITO阳极层;3—空穴注入层;4—空穴传输/电子阻挡层;5—发光层;6—电子传输/空穴阻挡层;7—电子注入层;8—阴极反射电极层。
具体实施方式
以下将结合附图来详细说明本发明的实施方式,所举实施例只用于解释本发明,并非用于限定本发明的范围。
在下述实施例、对比例中,所使用到的试剂、材料以及仪器如没有特殊的说明,均为常规试剂、常规材料以及常规仪器,均可商购获得,其中所涉及的试剂也可通过常规合成方法合成获得。
下面通过实施例1描述中间体A的具体制备实例,各实例的中间体A的命名可用阿拉伯数字加以区分,比如中间体A1,中间体A2等。
实施例1中间体A的制备
实施例1-1中间体A 1的制备:
Figure PCTCN2019082568-appb-000024
在250mL的三口瓶中,通氮气保护下,加入0.01mol原料M1、0.012mol原料N1、150mL甲苯与乙醇的混合溶剂(其中甲苯100mL,乙醇50mL)搅拌混合,然后加入0.02mol碳酸钾,1×10 -4mol Pd(PPh 3) 4,加热至120℃,回流反应24h,取样点板,显示无溴代物剩余,反应完全;自然冷却至室温,过滤,滤液进行减压旋蒸(-0.09MPa,85℃),残余物过中性硅胶柱,得到中间体I-1;称取0.01mol中间体I-1溶于100mL的邻二氯苯中,加入1×10 -4mol三苯基膦,180℃下反应12h,反应结束后冷却至室温,过滤,滤液旋蒸,残余物过硅胶柱,得到中间体A1;
中间体A1的HPLC纯度99.80%,收率77.%;元素分析结构(分子式C 21H 17N):理论值:C,89.01;H,6.05;N,4.94;测试值:C,89.00;H,6.05;N,4.95。ESI-MS(m/z)(M +):理论值为283.37, 实测值283.38。
实施例1-2中间体B1的制备:
Figure PCTCN2019082568-appb-000025
在250mL的三口瓶中,通氮气保护下,加入0.01mol中间体A5、0.012mol原料VI、150mL甲苯搅拌混合,然后加入6×10 -5mol Pd 2(dba) 3、6×10 -5mol三苯基膦、0.03mol叔丁醇钠,加热至105℃,回流反应24h,取样点板,显示无溴代物剩余,反应完全;自然冷却至室温,过滤,滤液旋蒸至无馏分,残余物过中性硅胶柱,得到中间体XI;
在氮气的气氛下,将0.01mol中间体XI、0.0075mol双(频哪醇合)二硼、0.0005mol Pd(dppf)Cl 2、0.025mol醋酸钾溶于甲苯中,105℃下反应24h,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,得到粗产品,粗产品过中性硅胶柱,得到中间体B1;
中间体B1的HPLC纯度99.02%,收率68.69%;元素分析结构(分子式C 36H 31BN 2O 2):理论值:C,80.90;H,5.85;B,2.02;N,5.24;O,5.99;测试值:C,80.90;H,5.84;B,2.02;N,5.25;O,5.99。ESI-MS(m/z)(M +):理论值为534.47,实测值534.50。
本发明所用到的中间体A和中间体B的具体结构式如表1和表2所示。
表1
Figure PCTCN2019082568-appb-000026
Figure PCTCN2019082568-appb-000027
表2
Figure PCTCN2019082568-appb-000028
实施例2以芳基酮为核心的化合物的制备
实施例2-1化合物5的制备:
Figure PCTCN2019082568-appb-000029
在250mL三口瓶中,通入氮气,加入0.01mol原料1、150mL的THF、0.015mol原料A、0.0001mol四(三苯基膦)钯,搅拌,然后加入0.02mol的K 2CO 3水溶液(2M),加热至80℃,回流反应15h,取样点板,反应完全。自然冷却,用200mL二氯甲烷萃取,分层,萃取液用无水硫酸钠干燥、过滤、滤液旋蒸、残余物过硅胶柱纯化,得到目标化合物,HPLC纯度99.80%,收率78.5%。元素分析结构(分子式C 45H 27NO 2):理论值C,88.07;H,4.43;N,2.28;O,5.21;测试值:C,88.06;H,4.43;N,2.28;O,5.22。ESI-MS(m/z)(M +):理论值为613.72,实测值为613.75。
实施例2-2化合物13的制备:
Figure PCTCN2019082568-appb-000030
在250mL三口瓶中,通入氮气,加入0.01mol原料2、150mL的THF、0.03mol原料B、0.0001mol四(三苯基膦)钯,搅拌,然后加入0.02mol的K 2CO 3水溶液(2M),加热至80℃,回流反应15h,取样点板,反应完全。自然冷却,用200mL二氯甲烷萃取,分层,萃取液用无水硫酸钠干燥,过滤,滤液旋蒸,残余物过硅胶柱纯化,得到中间体C1;
在250mL的三口瓶中,通氮气保护下,加入0.01mol中间体C1、0.012mol中间体A1、150mL甲苯搅拌混合,然后加入5×10 -5mol Pd 2(dba) 3、5×10 -5mol三苯基膦、0.03mol叔丁醇钠,加热至105℃,回流反应24h,取样点板,显示无溴代物剩余,反应完全;自然冷却至室温,过滤,滤液旋蒸至无馏分,过中性硅胶柱,得到目标产物,HPLC纯度99.21%,收率77.68%。元素分析结构(分子式C 46H 31NO 2):理论值:C,87.73;H,4.96;N,2.22;O,5.08;测试值:C,87.73;H,4.95;N,2.23;O,5.08。HPLC-MS:材料分子量为629.76,实测分子量629.81。
实施例2-3化合物28的制备:
Figure PCTCN2019082568-appb-000031
Figure PCTCN2019082568-appb-000032
在250mL三口瓶中,通入氮气,加入0.01mol原料3,150ml的THF,0.015mol原料B,0.0001mol四(三苯基膦)钯,搅拌,然后加入0.02mol的K 2CO 3水溶液(2M),加热至80℃,回流反应15小时,取样点板,反应完全。自然冷却,用200ml二氯甲烷萃取,分层,萃取液用无水硫酸钠干燥,过滤,滤液旋蒸,过硅胶柱纯化,得到中间体C2;
在250ml的三口瓶中,通氮气保护下,加入0.01mol中间体C2,0.012mol中间体A2,150ml甲苯搅拌混合,然后加入5×10 -5mol Pd 2(dba) 3,5×10 -5mol三苯基膦,0.03mol叔丁醇钠,加热至105℃,回流反应24小时,取样点板,显示无溴代物剩余,反应完全;自然冷却至室温,过滤,滤液旋蒸至无馏分,过中性硅胶柱,得到目标产物,HPLC纯度99.25%,收率77.23%。元素分析结构(分子式C 40H 27NO 2):理论值:C,86.78;H,4.92;N,2.53;O,5.78;测试值:C,86.78;H,4.92;N,2.52;O,5.79。HPLC-MS:材料分子量为553.66,实测分子量553.68。
实施例2-4化合物44的制备:
Figure PCTCN2019082568-appb-000033
化合物44的制备方法同实施例2-3,不同之处在于用中间体A3替换中间体A2。元素分析结构(分子式C 40H 27NO 2):理论值C,86.78;H,4.92;N,2.53;O,5.78;测试值:C,86.77;H,4.92;N,2.54;O,5.78。ESI-MS(m/z)(M +):理论值为553.66,实测值为553.69。
实施例2-5化合物47的制备:
Figure PCTCN2019082568-appb-000034
化合物47的制备方法同实施例2-2,不同之处在于用原料4代替原料2,中间体A3替换中间体A1。元素分析结构(分子式C 40H 27NO 2):理论值C,86.78;H,4.92;N,2.53;O,5.78;测试值:C,86.79;H,4.92;N,2.52;O,5.78。ESI-MS(m/z)(M +):理论值为553.66,实测值为553.60。
实施例2-6化合物58的制备
Figure PCTCN2019082568-appb-000035
化合物58的制备方法同实施例2-3,不同之处在于用原料5代替原料3,用中间体A4替换中间体A2。元素分析结构(分子式C 40H 27NO 2):理论值C,86.78;H,4.92;N,2.53;O,5.78;测试值:C,86.77;H,4.92;N,2.54;O,5.78。ESI-MS(m/z)(M +):理论值为553.66,实测值为553.68。
实施例2-7化合物65的制备
Figure PCTCN2019082568-appb-000036
化合物65的制备方法同实施例2-3,不同之处在于用原料6代替原料3,用中间体A5替换中间体A2。元素分析结构(分子式C 43H 26N 2O 2):理论值C,85.69;H,4.35;N,4.65;O,5.31;测试值:C,85.70;H,4.35;N,4.65;O,5.30。ESI-MS(m/z)(M +):理论值为602.69,实测值为602.70。
实施例2-8化合物70的制备
Figure PCTCN2019082568-appb-000037
化合物70的制备方法同实施例2-2,不同之处在于用原料7代替原料2,用中间体A5替换中间体A1。元素分析结构(分子式C 49H 30N 2O 2):理论值:C,86.70;H,4.45;N,4.13;O,4.71;测试值:C,86.70;H,4.44;N,4.12;O,4.71。ESI-MS(m/z)(M +):理论值为678.79,实测值为678.72。
实施例2-9化合物87的制备:
Figure PCTCN2019082568-appb-000038
化合物87的制备方法同实施例2-1,不同之处在于用中间体A5替换原料A。元素分析结构(分子式C 43H 26N 2O 2):理论值:C,85.69;H,4.35;N,4.65;O,5.31;测试值:C,85.69;H,4.35;N,4.66;O,5.30。ESI-MS(m/z)(M +):理论值为602.69,实测值为602.60。
实施例2-10化合物96的制备:
Figure PCTCN2019082568-appb-000039
化合物96的制备方法同实施例2-1,不同之处在于用中间体A6替换原料A。元素分析结构(分子式C 43H 26N 2O 2):理论值C,85.69;H,4.35;N,4.65;O,5.31;测试值C,85.68;H,4.35;N,4.65;O,5.32。ESI-MS(m/z)(M +):理论值为602.69,实测值为602.73。
实施例2-11化合物104的制备:
Figure PCTCN2019082568-appb-000040
化合物104的制备方法同实施例2-3,不同之处在于用原料8替换原料3,用中间体A6替换中间体A2。元素分析结构(分子式C 43H 26N 2O 2):理论值C,85.69;H,4.35;N,4.65;O,5.31;测试值:C,85.69;H,4.36;N,4.64;O,5.31。ESI-MS(m/z)(M +):理论值为602.69,实测值为602.59。
实施例2-12化合物110的制备:
Figure PCTCN2019082568-appb-000041
Figure PCTCN2019082568-appb-000042
化合物110的制备方法同实施例2-3,不同之处在于用原料9替换原料3,用中间体A6替换中间体A2。元素分析结构(分子式C 43H 26N 2O 2):理论值C,85.69;H,4.35;N,4.65;O,5.31;测试值:C,85.69;H,4.36;N,4.65;O,5.30。ESI-MS(m/z)(M +):理论值602.69,实测值为602.65。
实施例2-13化合物129的制备:
Figure PCTCN2019082568-appb-000043
化合物129的制备方法同实施例2-3,不同之处在于用中间体A7替换中间体A2。元素分析结构(分子式C 43H 26N 2O 2):理论值C,85.69;H,4.35;N,4.65;O,5.31;测试值:C,85.70;H,4.34;N,4.65;O,5.31。ESI-MS(m/z)(M +):理论值602.69,实测值为602.72。
实施例2-14化合物139的制备:
Figure PCTCN2019082568-appb-000044
化合物139的制备方法同实施例2-1,不同之处在于用中间体A8替换原料A。元素分析结构(分子式C 37H 21NO 3):理论值C,84.24;H,4.01;N,2.65;O,9.10;测试值:C,84.25;H,4.01;N,2.64;O,9.10。ESI-MS(m/z)(M +):理论值为527.58,实测值为527.52。
实施例2-15化合物154的制备:
Figure PCTCN2019082568-appb-000045
化合物154的制备方法同实施例2-3,不同之处在于用原料10替换原料3,用中间体A9替换中间体A2。元素分析结构(分子式C 37H 21NO 3):理论值:C,84.24;H,4.01;N,2.65;O,9.10;测试值:C,84.23;H,4.01;N,2.65;O,9.11。HPLC-MS:材料分子量为527.58,实测分子量527.63。
实施例2-16化合物171的制备:
Figure PCTCN2019082568-appb-000046
在250mL三口瓶中,通入氮气,加入0.01mol原料3、150ml的THF、0.015mol原料B、0.0001mol四(三苯基膦)钯,搅拌,然后加入0.02mol的K 2CO 3水溶液(2M),加热至80℃,回流反应15h,取样点板,反应完全。自然冷却,用200mL二氯甲烷萃取,分层,萃取液用无水硫酸钠干燥,过滤,滤液旋蒸,残余物过硅胶柱纯化,得到中间体C2;
在250mL三口瓶中,通入氮气,加入0.01mol中间体C2、150mL的THF、0.015mol中间体B1、0.0001mol四(三苯基膦)钯,搅拌,然后加入0.02mol的K 2CO 3水溶液(2M),加热至80℃,回流反应15h,取样点板,反应完全。自然冷却,用200mL二氯甲烷萃取,分层,萃取液用无水硫酸钠干燥,过滤,滤液旋蒸,过硅胶柱纯化,得到目标化合物,元素分析结构(分子式C 49H 30N 2O 2):理论值C,86.70;H,4.45;N,4.13;O,4.71;测试值:C,86.71;H,4.45;N,4.12;O,4.71。ESI-MS(m/z)(M +):理论值为678.79,实测值为678.75。
实施例2-17化合物181的制备:
Figure PCTCN2019082568-appb-000047
化合物181的制备方法同实施例2-2,不同之处在于用原料3代替原料2,用原料C代替原料B,用中间体A3替换中间体A1。元素分析结构(分子式C 46H 31NO 2):理论值C,87.73;H,4.96;N,2.22;O,5.08;测试值:C,87.75;H,4.96;N,2.21;O,5.07。ESI-MS(m/z)(M +):理论值为629.76,实测值为629.73。
实施例2-18化合物194的制备:
Figure PCTCN2019082568-appb-000048
Figure PCTCN2019082568-appb-000049
化合物194的制备方法同实施例2-2,不同之处在于用原料10代替原料2,用原料D代替原料B,用中间体A9替换中间体A1。元素分析结构(分子式C 41H 23NO 3):理论值C,85.25;H,4.01;N,2.42;O,8.31;测试值:C,85.24;H,4.01;N,2.42;O,8.32。ESI-MS(m/z)(M +):理论值为577.64,实测值为577.67。
实施例2-19化合物207的制备
Figure PCTCN2019082568-appb-000050
化合物207的制备方法同实施例2-16,不同之处在于用原料11代替中间体C2,用中间体B2代替中间体B1。元素分析结构(分子式C 41H 31NO 2):理论值C,86.44;H,5.48;N,2.46;O,5.62;测试值:C,86.45;H,5.48;N,2.46;O,5.61。ESI-MS(m/z)(M +):理论值为569.70,实测值为569.67。
实施例2-20化合物218的制备:
Figure PCTCN2019082568-appb-000051
化合物218的制备方法同实施例2-2,不同之处在于用原料12代替原料2,用中间体A4替换中间体A1。元素分析结构(分子式C 43H 33NO):理论值C,89.09;H,5.74;N,2.42;O,2.76;测试值:C,89.10;H,5.74;N,2.41;O,2.76。ESI-MS(m/z)(M +):理论值为579.74,实测值为579.71。
实施例2-21化合物228的制备:
Figure PCTCN2019082568-appb-000052
Figure PCTCN2019082568-appb-000053
化合物228的制备方法同实施例2-2,不同之处在于用原料13代替原料2,用中间体A10替换中间体A1。元素分析结构(分子式C 44H 35NO 2):理论值C,86.67;H,5.79;N,2.30;O,5.25;测试值:C,86.67;H,5.60;N,2.30;O,5.24。ESI-MS(m/z)(M +):理论值为609.77,实测值为609.75。
实施例2-22化合物305的制备:
Figure PCTCN2019082568-appb-000054
化合物305的制备方法同实施例2-2,不同之处在于用原料14代替原料2,原料B1代替原料B。元素分析结构(分子式C 42H 39NO 2):理论值:C,85.53;H,6.67;N,2.37;O,5.43;测试值:C,85.55;H,6.66;N,2.37;O,5.42。ESI-MS(m/z)(M +):理论值为589.78,实测值为589.75。
实施例2-23化合物319的制备:
Figure PCTCN2019082568-appb-000055
化合物319的制备方法同实施例2-2,不同之处在于用原料12代替原料2,用中间体A11替换中间体A1。元素分析结构(分子式C 40H 27NO 3):理论值C,84.34;H,4.78;N,2.46;O,8.43;测试值:C,84.35;H,4.78;N,2.46;O,8.42。ESI-MS(m/z)(M +):理论值为569.66,实测值为569.63。
实施例2-24化合物352的制备:
Figure PCTCN2019082568-appb-000056
化合物352的制备方法同实施例2-2,不同之处在于用原料15代替原料2,原料B1代替原料B,用中间体A12替换中间体A1。元素分析结构(分子式C 48H 35NO 3):理论值C,85.56;H,5.24;N,2.08;O,7.12;测试值:C,85.55;H,5.24;N,2.09;O,7.12。ESI-MS(m/z)(M +):理论值为673.81,实测值为673.85。
本发明化合物在发光器件中使用,具有高的玻璃转化温度(Tg)和三线态能级(T1),合适的HOMO、LUMO能级,可作为电子阻挡材料使用,也可作为发光层材料使用。对本发明上述实施例制备的化合物分别进行热性能、T1能级以及HOMO能级测试,结果如表3所示。
表3
Figure PCTCN2019082568-appb-000057
Figure PCTCN2019082568-appb-000058
注:三线态能级T1是由日立的F4600荧光光谱仪测试,材料的测试条件为2*10 -5的甲苯溶液;玻璃化温度Tg由示差扫描量热法(DSC,德国耐驰公司DSC204F1示差扫描量热仪)测定,升温速率10℃/min;热失重温度Td是在氮气气氛中失重1%的温度,在日本岛津公司的TGA-50H热重分析仪上进行测定,氮气流量为20mL/min;最高占据分子轨道HOMO能级是由电离能量测试系统(IPS3)测试,测试为大气环境;蒸镀温度是材料在蒸镀过程中达到
Figure PCTCN2019082568-appb-000059
的速率时的温度,蒸镀设备为ANS镀膜机。
由上表数据可知,本发明的化合物具有高的玻璃转化温度,可提高材料膜相态稳定性,进一步提高器件使用寿命;具有高的三线态能级,可以阻挡发光层能量损失,从而提升器件发光效率。同时本发明材料具有合适的HOMO能级可以解决载流子的注入问题,可降低器件电压;因此,本发明含有芳基酮的有机材料在应用于OLED器件的不同功能层后,可有效提高器件的发光效率及使用寿命。
下面将通过实施例3详细说明本发明的化合物在OLED器件中的应用效果。实施例3所包含的各实施例和对比例中,器件的制作工艺完全相同,并且采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是实施例3-1至实施例3-14对器件中的发光层材料做了变换;实施例3-15至实施例3-24对器件的电子阻挡层材料做了变换,各实施例所得器件的性能测试结果如表4所示。
实施例3 OLED器件的制备
实施例3-1器件1的制备:
如图1所示,一种电致发光器件,其制备步骤如下:
a)清洗透明基板层1上的ITO阳极层2,分别用去离子水、丙酮、乙醇超声清洗各15分钟,然后在等离子体清洗器中处理2分钟;
b)在ITO阳极层2上,通过真空蒸镀方式蒸镀HAT-CN作为空穴注入层3,蒸镀厚度为10nm;
c)在空穴注入层3上,通过真空蒸镀方式蒸镀NPB作为空穴传输/电子阻挡层4,蒸镀厚度为80nm;
d)在空穴传输/电子阻挡层4之上蒸镀发光层5,发光层5使用本发明化合物5作为主体材料,Ir(ppy) 3作为掺杂材料,Ir(ppy) 3和化合物5的质量比为1:9,发光层5的蒸镀厚度为30nm;
e)在发光层5之上,通过真空蒸镀方式蒸镀TPBI作为电子传输/空穴阻挡层6,蒸镀厚度为40nm;
f)在电子传输/空穴阻挡层6之上,真空蒸镀LiF作为电子注入层7,蒸镀厚度为1nm;
g)在电子注入层7之上,真空蒸镀阴极Al作为阴极反射电极层8,蒸镀厚度为100nm,得到器件1。
相关材料的分子结构式如下所示:
Figure PCTCN2019082568-appb-000060
实施例3-2器件2的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的发光层主体材料变为本发明制备的化合物13,掺杂材料为Ir(ppy) 3,化合物13和Ir(ppy) 3的质量比为90:10。
实施例3-3器件3的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的发光层主体材料变为本发明制备的化合物28,掺杂材料为Ir(ppy) 3,化合物28和Ir(ppy) 3的质量比为92:8。
实施例3-4器件4的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的发光层主体材料变为本发明制备的化合物44,掺杂材料为Ir(ppy) 3,化合物44和Ir(ppy) 3的质量比为88:12。
实施例3-5器件5的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的发光层主体材料变为本发明制备的化合物47和化合物GH,掺杂材料为Ir(ppy) 3,化合物47和GH和Ir(ppy) 3三者质量比为60:30:10。
实施例3-6器件6的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的发光层主体材料变为本发明制备的化合物58和化合物GH,掺杂材料为Ir(ppy) 3,化合物58、GH和Ir(ppy) 3三者质量比为60:30:10。
实施例3-7器件7的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的发光层主体材料变为本发明制备的化合物65和化合物GH,掺杂材料为Ir(ppy) 3,化合物65、GH和Ir(ppy) 3三者质量比为60:30:10。
实施例3-8器件8的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的发光层主体材料变为本发明制备的化合物139和化合物GH,掺杂材料为Ir(ppy) 3,化合物139、GH和Ir(ppy) 3三者质量比为60:30:10。
实施例3-9器件9的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的发光层主体材料变为本发明制备的化合物154和化合物GH,掺杂材料为Ir(ppy) 3,化合物154、GH和Ir(ppy) 3三者质量比为60:30:10。
实施例3-10器件10的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的发光层主体材料变为本发明制备的化合物171和化合物GH,掺杂材料为Ir(ppy) 3,化合物171、GH和Ir(ppy) 3三者质量比为60:30:10。
实施例3-11器件11的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的发光层主体材料变为本发明制备的化合物181和化合物GH,掺杂材料为Ir(ppy) 3,化合物181、GH和Ir(ppy) 3三者质量比为60:30:10。
实施例3-12器件12的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的发光层主体材料变为本发明制备的化合物194和化合物GH,掺杂材料为Ir(ppy) 3,化合物194、GH和Ir(ppy) 3三者质量比为60:30:10。
实施例3-13器件13的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的发光层主体材料变为本发明制备的化合物319和化合物GH,掺杂材料为Ir(ppy) 3,化合物319、GH和Ir(ppy) 3三者质量比为60:30:10。
实施例3-14器件14的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的发光层主体材料变为本发明制备的化合物352和化合物GH,掺杂材料为Ir(ppy) 3,化合物352、GH和Ir(ppy) 3三者质量比为60:30:10。
实施例3-15器件15的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的电子阻挡层材料为本发明化合物70,电致发光器件的发光层主体材料变为CBP,CBP和Ir(ppy) 3的质量比为88:12。
实施例3-16器件16的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的电子阻挡层材料为本发明化合物87,电致发光器件的发光层主体材料变为CBP,CBP和Ir(ppy) 3的质量比为90:10。
实施例3-17器件17的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的电子阻挡层材料为本发明化合物96,电致发光器件的发光层主体材料变为CBP,CBP和Ir(ppy) 3的质量比为80:20。
实施例3-18器件18的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的电子阻挡层材料为本发明化合物104,电致发光器件的发光层主体材料变为CBP,CBP和Ir(ppy) 3的质量比为80:20。
实施例3-19器件19的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的电子阻挡层材料为本发明化合物110,电致发光器件的发光层主体材料变为CBP,CBP和Ir(ppy) 3的质量比为80:20。
实施例3-20器件20的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的电子阻挡层材料为本发明化合物129,电致发光器件的发光层主体材料变为CBP,CBP和Ir(ppy) 3的质量比为80:20。
实施例3-21器件21的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的电子阻挡层材料为本发明化合物207,电致发光器件的发光层主体材料变为CBP,CBP和Ir(ppy) 3的质量比为80:20。
实施例3-22器件22的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的电子阻挡层材料为本发明化合物218,电致发光器件的发光层主体材料变为CBP,CBP和Ir(ppy) 3的质量比为80:20。
实施例3-23器件23的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的电子阻挡层材料为本发明化合物228,电致发光器件的发光层主体材料变为CBP,CBP和Ir(ppy) 3的质量比为80:20。
实施例3-24器件24的制备:
本实施例与实施例3-1的不同之处在于:电致发光器件的电子阻挡层材料为本发明化合物305,电致发光器件的发光层主体材料变为CBP,CBP和Ir(ppy) 3的质量比为80:20。
器件对比例1:
器件对比例1与实施例3-1的不同之处在于:电致发光器件的电子阻挡层材料为NPB,电致发光器件的发光层主体材料为CBP。
器件对比例2:
器件对比例2与实施例3-1的不同之处在于:电致发光器件的电子阻挡层材料为NPB,电致发光器件的发光层主体材料为C03。
制备好上述电致发光器件后,测量器件的电流效率和寿命,其结果如表4所示。
表4
编号 电流效率(cd/A) 色彩 LT95寿命(Hr)@5000nits
器件1 62.5 绿光 51.4
器件2 63.2 绿光 48.3
器件3 64.6 绿光 49.3
器件4 59.9 绿光 51.6
器件5 58.5 绿光 63.3
器件 60.2 绿光 59.4
器件7 57.5 绿光 50.2
器件8 61.1 绿光 58.3
器件9 59.3 绿光 59.5
器件10 59.0 绿光 53.2
器件11 58.6 绿光 49.5
器件12 59.7 绿光 48.1
器件13 60.3 绿光 50.7
器件14 58.4 绿光 49.3
器件15 49.3 绿光 59.4
器件16 48.6 绿光 58.7
器件17 49.1 绿光 56.9
器件18 48.7 绿光 56.3
器件19 48.1 绿光 48.4
器件20 49.8 绿光 47.1
器件21 48.6 绿光 49.1
器件22 47.9 绿光 50.3
器件23 49.3 绿光 58.2
器件24 50.5 绿光 59.7
器件对比例1 28 绿光 2.5
器件对比例2 41 绿光 11.2
注:寿命测试系统为本发明所有权人与上海大学共同研究的OLED器件寿命测试仪。
由表4的结果可以看出,本发明制备的含有芳基酮的化合物可应用于OLED发光器件制作,并且与器件对比例相比,无论是效率还是寿命均比已知OLED材料获得较大改观,特别是器件的寿命衰减获得较大的提升。
本发明的化合物制备的OLED器件在低温下工作时效率也比较稳定,将器件1、8、17和器件对比例在-10~80℃区间进行效率测试,所得结果如表5和图2所示。
表5
Figure PCTCN2019082568-appb-000061
从表5和图2的数据可知,器件1、8、17为本发明材料和已知材料搭配的器件结构,和器件对比例相比,不仅低温效率高,而且在温度升高过程中,效率平稳升高。
为进一步测试本发明化合物所产生的有益效果,将本发明器件1、器件对比例1和器件对比例2所制作器件进行反向电压的漏电流测试,测试数据图3所示,其从图3中可得知应用本发明化合物的器件1和器件对比例1与器件对比例2所制作器件相比,漏电流很小,且电流曲线稳定,因此,本发明材料应用于器件制作后,具有较长使用寿命。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种以芳基酮为核心的化合物,其特征在于,该化合物的结构如通式(1)所示:
    Figure PCTCN2019082568-appb-100001
    其中,Z表示为O、S、C 1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种,i等于0或1;
    L表示为单键、经取代或未经取代的C 6-30的亚芳基、经取代或未经取代的C 5-30的亚杂芳基中的一种;
    M 1、M 2、M 3分别独立地表示为H、C 1-10直链或支链烷基、C 6-30的芳基、C 5-30亚杂芳基中的一种,且M 1、M 2、M 3不同时为H;
    R 1表示为通式(2)所示结构:
    Figure PCTCN2019082568-appb-100002
    其中,X 1表示为单键、O、S、C 1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、芳基取代的烷基或芳基取代的叔胺基中的一种;R 2、R 3分别独立地选自H、通式(3)、通式(4)或通式(5)所示结构,且R 2、R 3不同时为H;
    Figure PCTCN2019082568-appb-100003
    通式(3)、通式(4)或通式(5)通过*位点与通式(2)中的C L1-C L2键、C L2-C L3键、C L3-C L4键、C L‘1-C L’2键、C L‘2-C L’3键或C L‘3-C L’4键相连并环;
    Y、X 2、X 3分别独立地表示为O、S、Se、C 1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种。
  2. 根据权利要求1所述的化合物,其特征在于,L表示为单键、亚苯基、亚联苯基、亚萘基中的一种。
  3. 根据权利要求1所述的化合物,其特征在于,M 1、M 2、M 3分别独立地表示为H、甲基、乙基、丙基、异丙基、叔丁基、环己基、苯基、萘基、联苯基、呋喃基或吡啶基中的一种。
  4. 根据权利要求1所述的化合物,其特征在于,所述化合物的具体结构式为:
    Figure PCTCN2019082568-appb-100004
    Figure PCTCN2019082568-appb-100005
    Figure PCTCN2019082568-appb-100006
    Figure PCTCN2019082568-appb-100007
    Figure PCTCN2019082568-appb-100008
    Figure PCTCN2019082568-appb-100009
    Figure PCTCN2019082568-appb-100010
    Figure PCTCN2019082568-appb-100011
    Figure PCTCN2019082568-appb-100012
    Figure PCTCN2019082568-appb-100013
    Figure PCTCN2019082568-appb-100014
    Figure PCTCN2019082568-appb-100015
    Figure PCTCN2019082568-appb-100016
    Figure PCTCN2019082568-appb-100017
    Figure PCTCN2019082568-appb-100018
    Figure PCTCN2019082568-appb-100019
    Figure PCTCN2019082568-appb-100020
    中的任一种。
  5. 一种如权利要求1~4任一项所述的化合物的制备方法,其特征在于,
    当L表示为氢原子时,步骤如下:将中间体C和中间体A用甲苯溶解后,加入Pd 2(dba) 3、三叔丁基膦和叔丁醇钠;在惰性气体的保护下,将上述混合溶液于95~110℃下反应10~24h,自然冷却至室温、过滤、滤液旋蒸,残余物过中性硅胶柱,得到目标产物;
    此制备过程中发生的反应方程式如下:
    Figure PCTCN2019082568-appb-100021
    当L不表示为氢原子时,步骤如下:在惰性气体保护下,将中间体C、中间体B用THF溶解后,加入K 2CO 3水溶液和Pd(PPh 3) 4,将上述反应物的混合溶液于80~110℃下反应10~24h,自然冷却至室温,过滤、滤液旋蒸,残余物过硅胶柱,得到目标产物;
    此制备过程中发生的反应方程式如下:
    Figure PCTCN2019082568-appb-100022
  6. 根据权利要求5所述的制备方法,其特征在于:所述中间体C与中间体A的摩尔比为1:1.0~1.5;所述Pd 2(dba) 3与中间体C的摩尔比为0.005~0.01:1,所述三叔丁基膦与原料I的摩尔比为0.005~0.02:1;所述叔丁醇钠与中间体C的摩尔比为1.5~3.0:1;所述中间体C与中间体B 的摩尔比为1:1~2;K 2CO 3与中间体C的摩尔比为1.0~3.0:1;Pd(PPh 3) 4与中间体C的摩尔比为0.006~0.02:1。
  7. 一种如权利要求1~4任一项所述的以芳基酮为核心的化合物在有机电致发光器件中的应用。
  8. 一种有机电致发光器件,包括至少一层功能层,其特征在于,所述功能层所用材料含有权利要求1~4任一项所述的以芳基酮为核心的化合物。
  9. 根据权利要求8所述的有机电致发光器件,其特征在于,所述功能层包括发光层和/或空穴传输/电子阻挡层,所述发光层或空穴传输/电子阻挡层所用材料含有权利要求1~4任一项所述的以芳基酮为核心的化合物。
  10. 一种照明或显示元件,其特征在于,包括权利要求8或9所述的有机电致发光器件。
PCT/CN2019/082568 2018-04-13 2019-04-12 一种以芳基酮为核心的化合物、其制备方法及其在oled上的应用 WO2019196948A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810332830.2 2018-04-13
CN201810332830.2A CN110372679A (zh) 2018-04-13 2018-04-13 一种以芳基酮为核心的化合物、其制备方法及其在oled上的应用

Publications (1)

Publication Number Publication Date
WO2019196948A1 true WO2019196948A1 (zh) 2019-10-17

Family

ID=68163480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082568 WO2019196948A1 (zh) 2018-04-13 2019-04-12 一种以芳基酮为核心的化合物、其制备方法及其在oled上的应用

Country Status (2)

Country Link
CN (1) CN110372679A (zh)
WO (1) WO2019196948A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004259B (zh) * 2019-12-20 2023-12-26 江苏三月科技股份有限公司 一种以蒽酮骨架为核心的化合物及其应用
KR102377021B1 (ko) * 2020-03-06 2022-03-21 한국생산기술연구원 가교결합성 벤조시클로부텐기를 갖는 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106220638A (zh) * 2016-04-25 2016-12-14 中节能万润股份有限公司 一种基于氧杂蒽酮的化合物及其应用
CN106220649A (zh) * 2016-04-25 2016-12-14 中节能万润股份有限公司 一种基于二芳基酮的化合物及其在有机电致发光器件上的应用
CN106279203A (zh) * 2016-04-25 2017-01-04 中节能万润股份有限公司 一种含酮和氮杂环的化合物及其在有机电致发光器件上的应用
CN107056701A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种基于双取代基‑9‑芴酮的化合物及其应用
CN107245079A (zh) * 2016-12-30 2017-10-13 江苏三月光电科技有限公司 一种氮杂氧杂蒽酮类化合物及其在oled器件上的应用
CN107353290A (zh) * 2017-07-05 2017-11-17 江苏三月光电科技有限公司 一种以二甲基蒽酮为核心的化合物及其在有机电致发光器件上的应用
CN107652272A (zh) * 2017-09-29 2018-02-02 江苏三月光电科技有限公司 一种以酮类结构为母核的有机化合物及其在oled器件中的应用
WO2018033087A1 (zh) * 2016-08-18 2018-02-22 江苏三月光电科技有限公司 一种以蒽酮为核心的化合物及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106220638A (zh) * 2016-04-25 2016-12-14 中节能万润股份有限公司 一种基于氧杂蒽酮的化合物及其应用
CN106220649A (zh) * 2016-04-25 2016-12-14 中节能万润股份有限公司 一种基于二芳基酮的化合物及其在有机电致发光器件上的应用
CN106279203A (zh) * 2016-04-25 2017-01-04 中节能万润股份有限公司 一种含酮和氮杂环的化合物及其在有机电致发光器件上的应用
CN107056701A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种基于双取代基‑9‑芴酮的化合物及其应用
WO2018033087A1 (zh) * 2016-08-18 2018-02-22 江苏三月光电科技有限公司 一种以蒽酮为核心的化合物及其应用
CN107245079A (zh) * 2016-12-30 2017-10-13 江苏三月光电科技有限公司 一种氮杂氧杂蒽酮类化合物及其在oled器件上的应用
CN107353290A (zh) * 2017-07-05 2017-11-17 江苏三月光电科技有限公司 一种以二甲基蒽酮为核心的化合物及其在有机电致发光器件上的应用
CN107652272A (zh) * 2017-09-29 2018-02-02 江苏三月光电科技有限公司 一种以酮类结构为母核的有机化合物及其在oled器件中的应用

Also Published As

Publication number Publication date
CN110372679A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
WO2020135687A1 (zh) 一种含硼化合物及其制备方法和其应用
WO2018033087A1 (zh) 一种以蒽酮为核心的化合物及其应用
WO2018113538A1 (zh) 一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用
CN107586261B (zh) 一种含有螺二苯并环庚烯芴的有机化合物及其应用
CN111574543A (zh) 一种含硼的有机化合物及其在有机电致发光器件上的应用
WO2018033086A1 (zh) 一种以氧杂蒽酮为核心的二苯并六元环取代化合物及其应用
CN110964021A (zh) 一种以芴为核心的化合物、制备方法及其应用
WO2019185061A1 (zh) 一种基于双二甲基芴的化合物、制备方法及其应用
CN107868048B (zh) 一种含有芴的化合物及其应用
WO2019085683A1 (zh) 一种含有蒽酮和含氮杂环的化合物及其在oled上的应用
CN110551135A (zh) 一种含有氮杂五元并环的化合物及其在有机电致发光器件上的应用
CN110835318B (zh) 一种以氮杂芴为核心的有机化合物及其制备方法与应用
CN113004259B (zh) 一种以蒽酮骨架为核心的化合物及其应用
CN107021925B (zh) 一种以氮杂二苯并环庚酮为核心的化合物及其在oled上的应用
CN110835304A (zh) 一种以螺芴烯结构为核心的化合物及其制备方法和其应用
WO2019085759A1 (zh) 一种以氮杂螺芴和芳基酮为核心的化合物、其制备方法及其在oled上的应用
CN110642732B (zh) 一种含螺芴蒽酮结构的有机化合物及其应用
WO2019179497A1 (zh) 一种以氮杂苯为核心的有机化合物及其应用
WO2019196948A1 (zh) 一种以芳基酮为核心的化合物、其制备方法及其在oled上的应用
CN109796450B (zh) 一种以吡啶并吲哚为核心的化合物及其在电致发光器件上的应用
CN109574908B (zh) 一种含螺二甲基蒽芴的化合物及其在有机电致发光器件上的应用
CN107226811B (zh) 一种以二联二苯并五元杂环为骨架的有机化合物及其在oled上的应用
CN110963904A (zh) 一种以酮和芴为核心的化合物、制备方法及其应用
CN110845508A (zh) 一种以螺芴蒽酮为核心的化合物、制备方法及其应用
CN110655486A (zh) 一种以二苯并环庚烯为核心的化合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19786243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19786243

Country of ref document: EP

Kind code of ref document: A1