WO2022045856A9 - 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법 - Google Patents

산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법 Download PDF

Info

Publication number
WO2022045856A9
WO2022045856A9 PCT/KR2021/011621 KR2021011621W WO2022045856A9 WO 2022045856 A9 WO2022045856 A9 WO 2022045856A9 KR 2021011621 W KR2021011621 W KR 2021011621W WO 2022045856 A9 WO2022045856 A9 WO 2022045856A9
Authority
WO
WIPO (PCT)
Prior art keywords
cerium oxide
oxide particles
less
peak
chemical mechanical
Prior art date
Application number
PCT/KR2021/011621
Other languages
English (en)
French (fr)
Other versions
WO2022045856A1 (ko
Inventor
이정호
김석주
Original Assignee
솔브레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔브레인 주식회사 filed Critical 솔브레인 주식회사
Priority to CN202180053272.6A priority Critical patent/CN116710531A/zh
Priority to US18/022,929 priority patent/US20230348753A1/en
Priority to JP2023513884A priority patent/JP2023539508A/ja
Publication of WO2022045856A1 publication Critical patent/WO2022045856A1/ko
Publication of WO2022045856A9 publication Critical patent/WO2022045856A9/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/90Other crystal-structural characteristics not specified above
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Definitions

  • the present invention relates to cerium oxide particles for chemical mechanical polishing, a slurry composition for chemical mechanical polishing containing the same, and a method for manufacturing a semiconductor device, and more particularly, unlike conventional cerium oxide particles, Ce 3 on the surface of cerium oxide through synthesis It relates to a slurry composition for chemical mechanical polishing having a high oxide film removal rate at a low content despite a small particle size by increasing the ratio of + and a method for manufacturing a semiconductor device using the same.
  • CMP chemical mechanical polishing
  • ILD interlayer dielectronic
  • STI shallow trench isolation
  • the polishing rate, the flatness of the polishing surface, and the degree of occurrence of scratches are important, and are determined by the CMP process conditions, the type of slurry, and the type of polishing pad.
  • High-purity cerium oxide particles are used in the cerium oxide slurry.
  • the conventional cerium oxide slurry uses particles of 30 nm to 200 nm in size, and even if fine polishing scratches occur during polishing, it is not a problem as long as the wire width is smaller than the conventional wire width. At this point, it becomes a problem. Regarding this problem, attempts have been made to reduce the average particle diameter of cerium oxide particles, but in the case of existing particles, when the average particle diameter is reduced, the mechanical action is reduced, resulting in a decrease in the polishing rate.
  • polishing rate and polishing flaws are controlled by controlling the average particle diameter of the cerium oxide particles, it is very difficult to achieve a target level of polishing flaws while maintaining the polishing rate.
  • the conventional slurry composition for chemical mechanical polishing optimizes the Ce 3+ to Ce 4+ ratio of cerium oxide particles and fails to provide an optimized level of average particle diameter. Therefore, Ce 3+ on the surface of cerium oxide Research on a polishing slurry containing cerium oxide particles exhibiting a high oxide film removal rate despite a small particle size by increasing the ratio of cerium oxide is required.
  • the present invention has been made to solve the above problems, and one embodiment of the present invention provides cerium oxide particles for chemical mechanical polishing.
  • another embodiment of the present invention provides a slurry composition for chemical mechanical polishing.
  • another embodiment of the present invention provides a method of manufacturing a semiconductor device comprising the step of polishing using the chemical mechanical polishing slurry composition.
  • another embodiment of the present invention provides a semiconductor device.
  • another embodiment of the present invention provides a method of manufacturing cerium oxide particles for chemical mechanical polishing.
  • a cerium oxide particle for chemical mechanical polishing characterized in that it has a light transmittance of 50% or more for light having a wavelength of 500 nm in an aqueous dispersion in which the content of the cerium oxide particle is adjusted to 1.0% by weight.
  • the aqueous dispersion in which the content of the cerium oxide particles is adjusted to 1.0% by weight may have an average light transmittance of 50% or more for light having a wavelength of 450 to 800 nm.
  • the chemical mechanical polishing slurry may be transparent.
  • the cerium oxide particles may be monodispersed when included in the chemical mechanical polishing slurry.
  • the secondary particle size of the cerium oxide particles measured by a dynamic light scattering particle size analyzer may be characterized in that 1 to 30 nm.
  • the secondary particle size of the cerium oxide particles measured by a dynamic light scattering particle size analyzer may be characterized in that 1 to 20 nm.
  • the primary particle size of the cerium oxide particles may be 0.5 to 15 nm.
  • the particle size of the cerium oxide particles may be characterized in that they are 10 nm or less.
  • the particle size of the cerium oxide particles may be 0.5 to 15 nm.
  • the infrared transmittance is 90% or more within the range of 3000 cm -1 to 3600 cm -1 , and within the range of 720 cm -1 to 770 cm -1 Infrared transmittance may be characterized in that 96% or less.
  • XPS peaks representing the Ce-O bond energy representing Ce 3+ are a first peak of 900.2 to 902.2 eV and a second peak of 896.4 to 898.4 eV , It may be characterized by appearing in the third peak of 885.3 to 887.3 eV and the fourth peak of 880.1 to 882.1 eV.
  • the ratio of the sum of XPS peak areas representing Ce-O binding energy representing Ce 3+ to the sum of XPS peak areas representing Ce-O binding energy on the surface of the cerium oxide particles is It may be characterized in that 0.29 to 0.70.
  • It may be characterized by having a first Raman peak within a band range of 455 cm -1 to 460 cm -1 .
  • It may be characterized by additionally having a second Raman peak within a band range of 586 cm -1 to 627 cm -1 .
  • It may be characterized by additionally having a third Raman peak within a band range of 712 cm -1 to 772 cm -1 .
  • a ratio (A/B) of the first Raman peak intensity (A) to the second Raman peak intensity (B) may be 25 or less.
  • a ratio (A/C) of the first Raman peak intensity (A) to the third Raman peak intensity (C) may be 50 or less.
  • the electron energy loss spectroscopy (EELS) spectrum includes a first peak of 876.5 to 886.5 eV and a second peak of 894.5 to 904.5 eV, wherein the maximum intensity of the first peak is greater than the maximum intensity of the second peak.
  • a third peak of 886.5 to 889.5 eV and a fourth peak of 904.5 to 908.5 eV are further included, and the sum of the areas of the third peak region relative to the sum of the total areas of the peaks of the spectrum (P t ) (P 1 ) and a ratio ((P 1 +P 2 )/P t ) of the sum of the areas of the fourth peak section (P 2 ) may be 0.1 or less.
  • the area of the peak representing Ce 3+ (A 3 ) and the area of the peak representing Ce 4+ (A 4 ) according to the X-ray absorption fine structure (XAFS) spectrum the area of the peak representing Ce 3+
  • the ratio (A 3 /(A 3 +A 4 )) of (A 3 ) may be characterized in that it is 0.03 or more.
  • the area of the peak representing Ce 3+ (A 3 ) and the area of the peak representing Ce 4+ (A 4 ) according to the X-ray absorption fine structure (XAFS) spectrum the area of the peak representing Ce 3+
  • the ratio (A 3 /(A 3 +A 4 )) of (A 3 ) may be characterized in that it is 0.1 or more.
  • the XAFS spectrum When measuring the XAFS spectrum, it may be characterized in that it has a maximum optical absorption coefficient of the first peak within a range of 5730 eV or more and less than 5740 eV, and the maximum optical absorption coefficient of the first peak is 0.1 to 0.4.
  • the XAFS spectrum When measuring the XAFS spectrum, it may be characterized in that it has a maximum optical absorption coefficient of the second peak within a range of 5740 eV or more and less than 5760 eV, and the maximum optical absorption coefficient of the second peak is less than 0.6.
  • the cerium oxide particles may be characterized in that, when analyzed by UV photoelectron spectroscopy (UPS), the maximum value of the number of photoelectrons emitted per second exists within a range of kinetic energy of 10 eV or less.
  • UPS UV photoelectron spectroscopy
  • the cerium oxide particles may be characterized in that the maximum value of the number of photoelectrons emitted per second (Counts) exists within a range of kinetic energy of 3 to 10 eV in UPS analysis.
  • the cerium oxide particles may be characterized by exhibiting a work function value of 3.0 eV to 10.0 eV in UPS analysis.
  • the cerium oxide particles may have a BET surface area value of 50 m 2 /g or less.
  • the cerium oxide particles may have an apparent density of 2.00 to 5.00 g/ml as measured by a stationary method.
  • the cerium oxide particles may have an apparent density of 2.90 to 5.00 g/ml as measured by the tap method.
  • the maximum of the first peak ( ⁇ 1 ) at a wavelength of 435 to 465 nm It may be characterized in that the strength appears in the range of 0.1 to 30.
  • the maximum intensity of the second peak ( ⁇ 2 ) of 510 to 540 nm wavelength appears in the range of 0.1 to 10.
  • the intensity ratio ( ⁇ 1 / ⁇ 2 ) of the first peak ( ⁇ 1 ) to the second peak ( ⁇ 2 ) having a wavelength of 510 to 540 nm is 5 to 15.
  • the a* may be characterized in that -12 to -3.
  • the slurry composition for chemical mechanical polishing is characterized by having a light transmittance of 50% or more with respect to light having a wavelength of 500 nm in an aqueous dispersion in which the content of the cerium oxide particles is adjusted to 1.0% by weight.
  • the cerium oxide particles may be characterized in that they are included in 0.01 to 5 parts by weight based on 100 parts by weight of the total slurry composition.
  • the pH of the composition may be characterized in that 2 to 10.
  • the slurry composition for chemical mechanical polishing includes at least one inorganic acid selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, acetic acid, citric acid, glutaric acid, glucolic acid, formic acid, lactic acid, malic acid, malonic acid, maleic acid, oxalic acid, At least one organic acid selected from the group consisting of phthalic acid, succinic acid, and tartaric acid, lysine, glycine, alanine, arginine, valine, leucine, isoleucine, methionine, cysteine, proline, histidine, phenylalanine, serine, trisine, tyrosine, aspartic acid, tryptophan (Tryptophan), and at least one amino acid selected from the group consisting of aminobutyric acid, imidazole, alkyl amines, alcohol amine, quaternary amine hydroxide, ammoni
  • the solvent may be characterized in that deionized water.
  • the slurry composition for chemical mechanical polishing may have a silicon oxide film polishing rate of 1,000 to 5,000 ⁇ /min.
  • cerium oxide particles and a solvent; a slurry composition for chemical mechanical polishing, wherein the cerium oxide particles are prepared in a wet process, and the content of the precursor material contained in the slurry composition is 300 ppm or less by weight.
  • a slurry composition is provided.
  • the slurry composition for chemical mechanical polishing may contain 0.001 to 5% or less of the cerium oxide particles based on the total weight of the composition.
  • Another aspect of the present invention is,
  • cerium oxide particles menstruum; And a cationic polymer; it provides a slurry composition for chemical mechanical polishing, characterized in that it comprises.
  • oxide film polishing rate increases according to the content of the cationic polymer.
  • the cationic polymer may increase the polishing selectivity of the oxide film/polysilicon film.
  • the content of the cationic polymer may be 0.001 to 1% by weight based on the total weight of the slurry composition for chemical mechanical polishing.
  • the cationic polymer may be a polymer or copolymer containing an amine group or an ammonium group.
  • the cationic polymer is polydiallyldimethyl ammonium chloride, polyallylamine, polyehthyleneimine, polydiallylamine, polypropyleneimine, polyacrylamide-co -Diallyldimethyl ammonium chloride (polyacrylamide-co-diallydimethyl ammonium chloride), polyacrylamide, poly(trimethylammonio ethyl methacrylate), dicyandiamide-diethylenetriamine copolymer Diallyldimethylamine / hydrochloride-acrylamide copolymer, dicyandiamide-diethylenetriamine copolymer, diallyldimethylamine / hydrochloride-acrylamide copolymer, dicyandiamide-formaldehyde copolymer, or a combination thereof it may be
  • the slurry composition for chemical mechanical polishing may have a polishing selectivity of oxide film/polysilicon film of 200 to 2,000.
  • It provides a method for manufacturing a semiconductor device comprising the step of polishing using the chemical mechanical polishing slurry composition.
  • a semiconductor device comprising: a substrate; and a trench filled with an insulating material on the substrate, wherein the trench is used for polishing at least one film selected from the group consisting of a silicon oxide film, a silicon nitride film, and a polysilicon film by using a slurry composition for chemical mechanical polishing.
  • the slurry composition for chemical mechanical polishing includes cerium oxide particles; and a solvent, wherein the light transmittance to light having a wavelength of 500 nm is 50% or more in an aqueous dispersion in which the content of the cerium oxide particles is adjusted to 1.0% by weight.
  • Preparing a raw material precursor Obtaining a dispersion of cerium oxide particles for chemical mechanical polishing by pulverizing or precipitating cerium oxide particles in a solution containing a raw material precursor; Provided is a method for producing cerium oxide particles for chemical mechanical polishing, characterized in that the light transmittance is 50% or more for light of 500 nm.
  • cerium oxide particles according to an embodiment of the present invention when included in a slurry for chemical mechanical polishing despite a small particle size by increasing the ratio of Ce 3+ on the surface of cerium oxide, a high oxide film removal rate is achieved even at a low content can hold
  • surface defects of the wafer can be minimized, and unlike the correlation between surface defects and oxide film removal rate, which is considered a conventional trade-off relationship, the oxide film removal rate is increased while minimizing surface defects. It is possible to provide cerium oxide particles and a slurry composition for a slurry composition for chemical mechanical polishing that can be maximized.
  • the oxide film polishing rate is further increased and the oxide film/polysilicon film selectivity is increased by the addition of the cationic polymer.
  • FIG 1 illustrates an oxide film removal mechanism according to an embodiment of the present invention.
  • FIGS. 2 to 6 are cross-sectional views illustrating a method of manufacturing a semiconductor device according to one embodiment of the present invention
  • FIGS. 7 and 8 are step-by-step processes of chemical mechanical polishing and chemical mechanical polishing (CMP) equipment according to another embodiment of the present invention. shows the structure of
  • 9 is a visual observation image of a dispersion in which cerium oxide particles are dispersed in the related art.
  • 10 is a visual observation image of a dispersion in which cerium oxide particles are dispersed according to an embodiment of the present invention.
  • 11 to 13 are TEM images of cerium oxide particles according to an embodiment of the present invention.
  • 19 is a particle size analysis result of cerium oxide particles according to an embodiment of the present invention through XRD (X-ray Diffraction).
  • SAXS 20 is a result of analyzing cerium oxide particles by small angle X-ray scattering method (SAXS) according to an embodiment of the present invention.
  • FT-IR Fourier Transform Infrared
  • XPS 25 is an X-ray photoelectron spectroscopy (XPS) analysis result of cerium oxide particles according to an embodiment of the present invention.
  • EELS electron energy loss spectroscopy
  • XAFS X-ray absorption fine structure
  • cerium oxide particles according to an embodiment of the present invention may be synthesized through chemical synthesis in a bottom-up manner.
  • cerium oxide particles were prepared by any one method selected from the methods for preparing cerium oxide particles presented below.
  • the manufacturing method first, about 2 to 4 kg of cerium nitrate was added to a sufficient amount of deionized water and stirred.
  • Nitric acid was added to the precursor solution to adjust the pH to 1.0 or less.
  • Ammonia water was added to the prepared mixture and stirred until a precipitate was formed.
  • the pH of the stirred mixture was strongly acidic (2 or less), and it was confirmed that the product rapidly precipitated when left after stirring was completed.
  • a certain amount of deionized water was added, and a light yellow cerium oxide particle dispersion was produced.
  • the prepared dispersion was circulated through a membrane filter to obtain a transparent yellow cerium oxide dispersion.
  • the manufacturing method first, 150 g of cerium oxide or cerium hydroxide was dispersed in 3 kg of deionized water and stirred to such an extent that particles did not precipitate. Nitric acid was added to the mixture until the pH was less than 1.0. The mixture was added to a mill filled with 0.05 mm zirconia beads and pulverized while circulating at 4,000 rpm. As the milling progressed, it was observed that the white opaque cerium oxide dispersion was gradually changed to a yellow transparent cerium oxide dispersion. After completion of the milling, the prepared yellow transparent cerium oxide dispersion was circulated through a membrane filter to obtain a pure yellow transparent cerium oxide dispersion.
  • the manufacturing method first, about 2 to 4 kg of ceric ammonium nitrate was added to a sufficient amount of ethanol and stirred.
  • the imidazole solution was added until a precipitate formed in the precursor solution. Add and stir.
  • the pH of the stirred mixture was strongly acidic (less than 2), and it was confirmed that the product rapidly precipitated when left after stirring was completed.
  • a certain amount of deionized water was added, and a cerium oxide particle dispersion was produced.
  • the prepared dispersion was circulated through a membrane filter to obtain a transparent cerium oxide dispersion.
  • the manufacturing method according to another embodiment of the present application, first, 1.1 kg of cerium nitrate and 10 kg of deionized water were mixed in a reaction vessel.
  • the reaction vessel stirring speed was maintained at 200 rpm and room temperature was maintained.
  • the reaction was performed for 4 hours. During the reaction, light purple macroparticles dissociated to produce yellow transparent cerium oxide nanoparticles. Impurities were removed while circulating the obtained particles using a membrane filter, and a pure cerium oxide nanoparticle dispersion was obtained.
  • the cerium oxide particles prepared in Preparation Example 1 were added to deionized water to adjust the abrasive concentration to 0.05% by weight, and triethanolamine was added to adjust the pH to 5.5 to prepare a CMP slurry.
  • wet cerium oxide particles having an average particle size of 10, 30, and 60 nm, respectively, and 10 to 20 nm grade cerium oxide particles prepared by a separate calcination method were prepared and added to deionized water to reduce the abrasive concentration to 0.05% by weight. , and ammonia was added as a pH adjusting agent to adjust the final pH to 5.5 to prepare a CMP slurry.
  • Example 1 The dispersion of Preparation Example 1 according to an embodiment of the present invention was dried at approximately 80 to 90° C. to prepare powdery cerium oxide particles (primary particles) (Sample A). Meanwhile, cerium oxide particles used in preparing the dispersions of Comparative Examples 1 to 4 were prepared (Samples B1, B2, B3, and B4, respectively, in that order). Images were taken using a TEM measuring instrument for each of the prepared samples.
  • 11 to 13 are TEM images of cerium oxide particles according to an embodiment of the present invention.
  • the average particle size according to TEM measurement of cerium oxide particles prepared according to an embodiment of the present invention is about 4 nm or less (3.9 nm, 3.4 nm, and 2.9 nm respectively in repeated measurements). I was able to see what appeared. It can be seen that the average primary particle size of the cerium oxide particles according to an embodiment of the present invention is 4 nm or less. In addition, it can be confirmed that the cerium oxide particles have an average spherical particle shape. Spherical cerium oxide particles having a small particle size and a relatively uniform size distribution may have a large specific surface area and have excellent dispersion stability and storage stability.
  • cerium oxide particles have particle sizes suitable for each size class, and even in the case of particles separately manufactured by the calcination method, all of the primary particles are on average larger than 10 nm. It can be seen that the average particle size measured by TEM of the cerium oxide particles according to an embodiment of the present invention shown in FIGS. 11 to 13 is 4 nm or less, compared to that of the prior art It can be seen that the cerium oxide particles and the cerium oxide particles prepared by the general calcination method have a much coarser particle size.
  • the particle size (primary particle) of the cerium oxide particles of the present invention is formed small, and it is expected that defects such as scratches on the surface of the polishing target film can be reduced as the cerium oxide particle size is smaller. can do.
  • FIG. 18 shows a TEM image of conventional cerium oxide particles as a comparative example.
  • conventional cerium oxide particles having a particle size of 10 nm include particles having edges and spherical particles, and conventional cerium oxide particles having a particle size of 30 nm or more are composed of prismatic particles having edges.
  • the cerium oxide particles according to the embodiments of the present invention exhibit a generally spherical shape, and the cerium oxide particles of the present invention have a spherical particle shape and have a fine particle size, so that a large number of particles may be included. Therefore, when polishing the silicon oxide film, the probability of occurrence of defects on the surface can be reduced and the flatness of the wide area can be increased.
  • Powdery cerium oxide particles were prepared by drying the dispersion of Preparation Example 1 according to an embodiment of the present application at approximately 80 to 90° C. (Sample A).
  • XRD 19 is an X-ray Diffraction (XRD) pattern of cerium oxide particles according to an embodiment of the present invention.
  • the particle size of the cerium oxide particles derived by analyzing the XRD pattern is shown in Table 1 below.
  • the particle size of cerium oxide particles according to an embodiment of the present invention was analyzed using small-angle X-ray scattering (SAXS) and is shown in FIG. 20 .
  • SAXS small-angle X-ray scattering
  • the particle size of the cerium oxide particles according to the embodiment of the present invention has an average particle radius of 2.41 nm and has a range of 10 nm or less. Through this, it can be confirmed that the particle size of the cerium oxide particles according to the embodiment of the present invention is much finer considering the particle size of the conventional cerium oxide particles. Therefore, the silicon oxide film using the cerium oxide particles according to the embodiment of the present invention It can be seen that the occurrence rate of defects on the surface can be further suppressed when polishing.
  • the slurry composition of Preparation Example 2 and the slurry compositions of Comparative Examples 1, 2, 3 and 4 according to one embodiment of the present application were prepared as samples. For each of the prepared samples, analysis was performed using DLS equipment.
  • Example of the present invention 5.78 Comparative Example 1 - Conventional 10 nm class cerium oxide particles 33.6 Comparative Example 2 - Conventional 30 nm class cerium oxide particles 93.9 Comparative Example 3 - Conventional 60 nm class cerium oxide particles 138.7 Comparative Example 4 - Cerium Oxide Particles Prepared by Calcination 139.1
  • the cerium oxide particle according to the embodiment of the present invention was found to have a secondary particle size D50 value of about 5.78 nm, and was measured to be 10 nm or less. At a level of about 148 to 199% compared to the primary particle size measured by TEM as measured in Experimental Example 1 (see FIGS. 11 to 13), there is little aggregation in the slurry and is monodispersed, so there is little change in particle size level was confirmed.
  • the cerium oxide particles according to one embodiment of the present invention have less aggregation in the slurry than the cerium oxide particles of the prior art according to one comparative example, and can be dispersed in the slurry in a more monodispersed form.
  • the infrared transmittance within the range of 3000 cm -1 to 3600 cm -1 of the powder made of cerium oxide particles according to an embodiment of the present invention is about 92 to 93%, , 720 cm -1 to 770 cm -1 It can be seen that the infrared transmittance is about 93 to 95% in the range.
  • the infrared transmittance in the range of 3000 cm -1 to 3600 cm -1 is 75 to 90%
  • the infrared transmittance in the range of 720 cm -1 to 770 cm -1 is Compared to 97 to 99%
  • the band by the OH group of the cerium hydroxide particles within the range of 3000 cm -1 to 3600 cm -1 of the cerium oxide particles prepared according to one embodiment of the present invention is typical cerium hydroxide It can be seen that a point appears weaker than that of the particle and that a peak is formed by Ce-O stretching within a range of 720 cm -1 to 770 cm -1 . Therefore, the above result may mean that the cerium compound prepared according to one embodiment of the present invention is cerium oxide.
  • a slurry composition (sample A) was prepared in the same manner as in Preparation Example 2, except that the weight ratio of the cerium oxide particles in the CMP slurry was 1% by weight. Meanwhile, slurry compositions were prepared in the same manner as in Comparative Examples 1, 2, 3 and 4, except that the weight ratio of the cerium oxide particles in the CMP slurry was 1% by weight (samples B1 and B2 in this order). , B3 and B4). For each sample, transmittance to light of 200 to 1100 nm was measured using a UV-Vis spectrometer (JASCO).
  • JASCO UV-Vis spectrometer
  • CMP slurry was prepared by adding cerium oxide particles according to one embodiment and comparative examples of the present invention to deionized water to adjust the abrasive concentration to 1.0 wt%, and the light transmittance was analyzed. At this time, the optical spectrum was measured using a UV-vis spectrophotometer (Jasco UV-vis spectrophotometer) within the range of 200 to 1,100 nm.
  • a UV-vis spectrophotometer Jasco UV-vis spectrophotometer
  • the average light transmittance for light having a wavelength of 450 to 800 nm is 50% or more.
  • the light transmittance was 90% or more for light with a wavelength of about 500 nm, and the light transmittance was 95% or more for light with a wavelength of about 600 nm or 700 nm.
  • the light transmittance of the slurries including the cerium oxide particles of the prior art according to Comparative Examples 1 to 4 (10 nm, 30 nm, 60 nm conventional cerium oxide particles, ceria particles by calcination) was measured.
  • Comparative Example 4 (calcined ceria particles) showed almost 0% light transmittance, and the light transmittance of the slurry of Comparative Example 1 containing commercially available conventional cerium oxide particles of 10 nm level was less than 80% on average and light at a wavelength of 500 nm. It shows that transmittance is less than 50%.
  • the primary particle size was coarse at 30 and 60 nm, respectively, and the secondary particle size was coarser than that of the examples of the present invention (that is, because cohesiveness was high in the slurry), It can be seen that only transmittance of less than % is shown.
  • the cerium oxide particles according to an embodiment of the present invention exhibit a light transmittance of 90% or more in the visible ray region, which means that in the case of the cerium oxide particles of the present invention, the primary particle size itself is fine, and 2 This means that less agglomeration into tea particles occurs compared to prior art cerium oxide particles.
  • the secondary particles exceed 20 nm, the opacity of the slurry composition can be observed with the naked eye, and it is well known that light transmittance will be less than 80% at a wavelength in the visible ray region.
  • the slurry composition of the present invention when the primary particle size of the cerium oxide particles has a small light transmittance and the aggregation into secondary particles is small, the dispersion stability is high and the particles can be uniformly distributed.
  • the polishing target film is polished using the slurry composition, it can be easily predicted that the probability of occurrence of defects such as scratches on the surface will be reduced.
  • the peak area of the (111) plane of the cerium oxide particle according to an embodiment of the present invention is about 496.9, and the peak area of the (200) plane is about 150.1.
  • the ratio of the peak area of the (111) plane to the peak area of the (200) plane is approximately 3.3.
  • X-ray photoelectron spectroscopy is 900.2 to 902.2 eV, 896.4 to 898.4 eV, 885.3 to 887.3 eV, and 880.1 to 882.1 eV representing the Ce-O bond energy representing Ce 3+ when soft X-rays are irradiated.
  • the Ce 3+ and Ce 4+ contents in the cerium oxide particles can be measured by measuring the peaks and analyzing the atomic% through XPS fitting. Table 4 below is XPS result data of cerium oxide particles according to an embodiment of the present invention.
  • Ce 3+ The content of is about 36.9 atomic%, and in Table 5, this is the Ce of the conventional 60nm class cerium oxide particles 3+ The content is less than 14 atomic% and, as known from conventional literature, cerium oxide particles prepared by hydrothermal synthesis in 10 nm class supercritical or subcritical conditions are about 16.8%, compared to about 16.8%, high Ce 3+ content can be confirmed.
  • surface Ce 3+ When the content is at a high level as in the embodiment of the present invention, the removal rate of the silicon-containing substrate can be increased by a chemical polishing mechanism that forms Si-O-Ce between silica and cerium.
  • the cerium oxide particles according to the embodiment of the present invention have vibration It can be confirmed that it has a first Raman peak near 457 cm -1 by.
  • Ce 4+ is partially reduced to Ce 3+ , and defects are induced in the cubic fluorite lattice structure of the cerium oxide particles to increase oxygen vacancies. A shift of the Raman peak appears to occur.
  • the intensity of the second Raman peak of the Example sample is higher than that of Comparative Example 1 and Comparative Example 3 according to this difference in particle structure.
  • peaks of 457, 607, and 742 cm -1 were respectively shown in the cerium oxide particles according to an embodiment of the present invention, whereas in Comparative Example 1 and Comparative Example 3, a second peak of about 607 cm -1 was hardly detected. It was confirmed that the level or very weak intensity appeared, and it was confirmed that the third peak at about 742 cm ⁇ 1 was not detected unlike in the examples.
  • the ratio (A/B) of the first Raman peak intensity (A) to the second Raman peak intensity (B) was 15.4, 46.0, and 66.4 in Example, Comparative Example 1, and Comparative Example 3, respectively.
  • the A / B value for the sample of the example is much smaller than that of Comparative Example 1 and Comparative Example 3, and in the case of this example, the first Raman peak intensity for the third Raman peak intensity (C) ( The ratio (A/C) of A) was 50 or less, but in Comparative Examples 1 and 3, the third Raman peak was not detected and A/C could not be calculated, which is due to the increase in Ce 3+ content in the cerium oxide particles. (oxygen vacancies) can be interpreted as a result of an increase.
  • the cerium oxide particles according to one embodiment of the present invention contain a higher content of Ce 3+ than the conventional cerium oxide particles according to the comparative example.
  • EELS EELS measuring instrument.
  • the EELS measurement was performed for a core-loss region, which is an energy loss region of 50 eV or more. Peaks according to the oxidation state of the sample to be measured can be distinguished using the ionization edge appearing in the high-loss region, and through this, the Ce 4+ content of the cerium oxide particles is quantitatively analyzed.
  • EELS spectra in the form of FIGS. 30 to 32 (X-axis: binding energy (eV), Y-axis: intensity (a.u. )) was derived.
  • a first peak of about 876.5 to 886.5 eV and a second peak of 894.5 to 904.5 are included, and the maximum intensity of the first peak is greater than the maximum intensity of the second peak.
  • the EELS spectrum trend of Ce 3+ follows.
  • the maximum peak intensity of the second peak follows the EELS spectrum trend of Ce 4+ , which is greater than that of the first peak. This may mean that the cerium oxide particles of Examples follow the EELS spectrum trend of Ce 3+ , whereas the cerium oxide particles of Comparative Examples 3 and 4 follow the EELS spectrum trend of Ce 4+ .
  • the EELS spectrum of the cerium oxide particles may further include a third peak region of 886.5 to 889.5 eV and a fourth peak region of 904.5 to 908.5 eV, and the peak areas of the third and fourth peak regions are cerium oxide It may be a peak representing an oxidation state representing Ce 4+ of the particle.
  • peak area ratios for specific binding energy ranges were derived, and Tables 7 to 9 (result data for Examples, Comparative Examples 3 and 4 in order) are shown.
  • the area of the third peak section (P 1 ) and the area of the fourth peak (P 2 ) relative to the sum of all EELS peak areas (P t ) is about 5.8% or less on average, that of Comparative Example 3 is about 13% or more, and that of Comparative Example 4 is about 12% or more. It can be confirmed that the cerium oxide particles according to one embodiment have a smaller content of Ce 4+ than the cerium oxide particles of Comparative Examples 3 and 4.
  • eV binding energy
  • the XAFS is an analysis method of irradiating a sample with strong X-rays and measuring the intensity of the absorbed X-rays, which is derived by measuring the light absorption coefficient (x ⁇ ) according to the X-ray energy (eV). Based on the absorption spectrum, the weight ratio (wt%) of Ce 3+ and Ce 4+ in the particles can be confirmed.
  • the absorption spectrum was derived through an X-ray absorption near edge structure (XANES) method that analyzes an XAFS spectrum within 50 eV near an absorption edge where X-ray absorption rapidly increases.
  • XANES X-ray absorption near edge structure
  • XAFS analysis results for each of the samples of Example and Comparative Example 3 XAFS spectra (X-axis: X-ray energe (eV), Y-axis: X-ray light absorption coefficient x ⁇ (E) as shown in FIGS. 33 and 34, respectively ) was derived. As shown in FIGS. 33 and 34 , each of the samples of Example and Comparative Example 3 had an absorption edge formed within a range of about 5745 to 5755 eV.
  • the peak (P 1 ) where electronic transition strongly occurs due to X-ray absorption by Ce 3+ was formed within the range of about 5735 to 5740 eV, and electron transition due to X-ray absorption by Ce 4+ It was confirmed that the strongly occurring peak (P 2 ) was formed within the range of about 5745 to 5755 eV.
  • the area ratio of Ce 3+ on the surface of the cerium oxide particle according to an embodiment of the present invention is about 4 times higher than the area ratio of Ce 3+ on the surface of the cerium oxide particle according to Comparative Example 3.
  • the embodiment of the present invention will be able to have a higher polishing rate than the conventional cerium oxide particles of the comparative example.
  • 35 to 37 are UPS analysis results of cerium oxide particles according to an embodiment of the present invention, 60 nm class conventional cerium oxide particles, and conventional cerium oxide particles prepared by a calcination method.
  • Table 11 summarizes work function values according to classification of cerium oxide particles according to an embodiment of the present invention and the conventional cerium oxide particles.
  • the cerium oxide particles according to one embodiment of the present application have a maximum value of the number of photoelectrons (Counts, Y-axis) emitted per second in the range of kinetic energy of 8 to 10 eV, while Comparative Examples 3 and 4 In the case of , it was confirmed that it exists in the range of kinetic energy of 11 to 13 eV. Through these results, it was deduced that the example had a work function of 3.16 ev, and the comparative examples 3 and 4 had work functions of 2.37 eV and 2.37 eV, respectively.
  • the UPS analysis derives the confinement energy (E b ) through the measured kinetic energy (E kin ) value, and the Fermi level (E F ) and vacuum level (E F ) of the samples through the derived confinement energy graph cutoff ) could be derived. Therefore, the value of the work function ⁇ was obtained by applying the values of the Fermi level (E F ) and the vacuum level (E cutoff ) to Equation 1 below.
  • hv represents the energy of incident light as a source energy used when emitting ultraviolet rays, and helium (He) was used as a source (He
  • UPS 21.22 eV).
  • the work function values shown through the analysis results are shown in Table 11 below.
  • the work function value of the cerium oxide particles according to an embodiment of the present invention is the highest. As the particle size decreases, the energy level difference between the orbitals of the sample gradually increases, resulting in a high energy band gap. Since it is sufficiently small compared to , it has a high energy band gap, which affects the Fermi level and the vacuum level, and it can be expected that the energy value of the work function is changed. Therefore, the work function value derived through the UPS analysis indicates that the particle size of the cerium oxide according to an embodiment of the present invention is sufficiently smaller than that of conventional cerium oxide particles and the cohesiveness is very small.
  • the cerium oxide particles according to one embodiment of the present application are included in a slurry for chemical mechanical polishing and used, the number of particles in contact with the wafer can be maximized, and the oxide film polishing rate , and at the same time, the particle size itself becomes fine, so that defects on the wafer surface can be minimized.
  • the cerium oxide particle powder according to an embodiment of the present invention had a BET surface area value of 50 m 2 / when measured 5 times under the same conditions.
  • the BET surface area value of the cerium oxide particle powder according to Comparative Example 1 exceeds 80 m 2 /g when measured 5 times under the same conditions. It can be seen that the numerical values of these comparative examples are similar to the BET surface area values of 10 nm class cerium oxide particles commonly known through literature.
  • the cerium oxide particle powder according to the embodiment of the present invention has a smaller BET surface area than the cerium oxide particle powder of Comparative Example 1 having a coarser particle size.
  • value which may mean that the cerium oxide particles according to the embodiment of the present invention have a finer particle size than the conventional cerium oxide particles, so that they can be packed at a higher density than when powdered, and also sol -
  • cerium oxide particles synthesized by self-organized synthesis methods such as gel method and bottom-up method, they have fewer -OH functional groups than cerium oxide particles synthesized by other synthesis methods, resulting in a smaller BET surface area and pore volume. It could be in the same vein.
  • Powdery cerium oxide particles (Sample A) by drying the dispersion of Preparation Example 1 according to an embodiment of the present application at approximately 80 to 90 ° C and powdery cerium oxide particles according to Comparative Examples 3 and 4 dried under the same conditions (Samples B and C, respectively) were prepared.
  • Tables 13 and 14 below show the measured apparent density and tap density of the prepared sample A and Comparative Examples 1 and 3 according to an embodiment of the present invention.
  • Sample A (Example) Sample B (Comparative Example 3) Sample C (Comparative Example 4) Apparent Density (g/ml) 2.22 1.90 1.30
  • Sample A (Example) Sample B (Comparative Example 3) Sample C (Comparative Example 4) Tap Density (g/ml) 2.94 2.86 1.60
  • the apparent density of sample A measured by the stationary method was 2.22 g/ml
  • the apparent density of the 60 nm class cerium oxide particles of Comparative Example 3 was 1.90 g/ml
  • the calcined oxide of Comparative Example 4 was 1.90 g/ml.
  • the apparent density of the cerium particles was determined to be 1.90 g/ml.
  • the apparent density of sample A measured by the tap method was 2.94 g/ml
  • the apparent density of the 60 nm class cerium oxide particles of Comparative Example 3 was 2.86 g/ml
  • the calcined oxide of Comparative Example 4 was 2.86 g/ml.
  • the apparent density of the cerium particles is 1.60 g/ml, and it can be seen that it has a value of less than 2.90 g/ml. From this, it can be confirmed that the cerium oxide particles according to an embodiment of the present application have a larger apparent density value than the cerium oxide particles of the comparative example having a coarser particle size, despite having a finer primary particle size. Therefore, in the case of the cerium oxide particles according to the embodiment of the present invention, it can be seen that the particles have a particle size of 10 nm or less, which is finer than that of the conventional cerium oxide particles, but have a relatively large apparent density value.
  • Luminescence intensity was measured according to the following test conditions. It was measured under the following test conditions.
  • Test equipment Perkin Elmer LS-55 Fluorescence Spectrometer
  • Cerium oxide particles of the present invention 0.31 1.72 0.23 5.5 7.5 10 nm grade cerium oxide particles by calcination method 1.20 43.36 32.53 36.1 1.3 Conventional commercially available 60 nm class cerium oxide particles 0.99 40.44 12.07 40.8 3.4
  • the excitation peak when analyzing the fluorescence spectrometer (Fluorescence spectrometer) performed at the excitation wavelength ( ⁇ excitation ) 325 nm, the excitation peak at a wavelength of about 325 nm in common in three samples ( ⁇ exc ) , a first emission peak ( ⁇ ems1 ) at a wavelength of about 450 nm, and a second emission peak ( ⁇ ems2 ) at a wavelength of about 525 nm.
  • the ratio of the first emission peak to the second emission peak was about 7.5, indicating a value of 5 or more.
  • the ratio of the first emission peak to the excitation peak ( ⁇ ems1 / ⁇ exc ) of the conventional 10 nm grade cerium oxide particles and the commercially available 60 nm grade cerium oxide particles obtained by the calcination method was greater than 30, It was confirmed that the ratio of the first emission peak to the second emission peak ( ⁇ ems1 / ⁇ ems2 ) was less than 5.
  • the intensity of the first emission peak representing Ce 3+ is smaller than that of conventional 10 nm grade cerium oxide particles obtained by calcination and commercially available 60 nm grade cerium oxide particles.
  • the cerium oxide particles of the present invention it is judged that the light emission intensity is relatively weak because the aggregation of the secondary particles in the dispersion is very small and the light transmission is good.
  • the ratio of the first emission peak to the second emission peak is 5 or more.
  • the cerium oxide particles of the present invention have a relatively high Ce 3+ content on the surface. Therefore, through this experimental example, when the cerium oxide particles of the present invention are used in a slurry for chemical mechanical polishing, the Ce 3+ content on the surface of the particles is high, the particles themselves are fine, and the slurry has very little aggregation. , It can be seen that this increases the chemical polishing rate due to the Si-O-Ce bond between the cerium oxide particles and the oxide film substrate, thereby improving the oxide film removal rate.
  • 43 and 44 show an aqueous dispersion containing 1 mass% of cerium oxide particles according to an embodiment of the present invention and an aqueous dispersion containing 1 mass% of conventional 60 nm class cerium oxide particles.
  • Tables 16 and 17 show the chromaticity of a dispersion containing 1 mass% of cerium oxide particles according to an embodiment of the present invention and a dispersion containing 1 mass% of conventional 60 nm cerium oxide particles in L*a*b* color system. The displayed values are summarized.
  • the analysis of the L * a * b * color system was conducted through the method of ASTM E1164 (Standard practice for obtaining spectrometric data for object color evaluation) using CM-5 (KONICA MINOLTA, JAPAN). At this time, The light source was performed at a wavelength range of 360 to 740 nm and a wavelength interval of 10 nm using a Xenon lamp D65. The analysis results were shown in Tables 16 and 17 below.
  • the aqueous dispersion containing the cerium oxide particles of the present invention had a yellowish color, and in the case of the conventional aqueous dispersion containing 60 nm class cerium oxide particles , it was seen that it was opaque but closer to white.
  • the average value of L* is about 99.7, and the average value of a* is about -5.9 , and it can be seen that the average value of b* is about 11.7.
  • the average value of L* is about 94.7, the average value of a* is about -2.2, and the average value of b* is about 0.1.
  • the cerium oxide particle dispersion according to the present invention has an L* value of 95 or more and a b* value of 10 to 25, and compared to a conventional 60 nm class cerium oxide particle dispersion, a larger L It can be seen that it has fine particle characteristics with a value of *, and it can be interpreted that the cerium oxide particle dispersion according to one embodiment of the present invention exhibits a higher yellowish color as it has a larger value of b*.
  • cerium oxide particles according to one embodiment of the present application show that each value when expressed in the L*a*b* color system for an aqueous dispersion containing the cerium oxide particles is within the above range, and that the yellowness is particularly high, cerium oxide It can be interpreted to mean that the particles are very fine and monodisperse, and that the content of Ce 3+ on the surface of the cerium oxide particles is relatively high.
  • the slurry composition temperature is 2100 G, 3300 G, 4265 G, 26188 under the condition of proceeding from 25 ° C.
  • the sedimentation rate of cerium oxide particles when centrifuged while changing G and 398282 G is shown in Table 18 below.
  • the sedimentation rate of the cerium oxide particles according to an embodiment of the present invention was the same in Comparative Example 1 and Comparative Example 3 It can be seen that it has a lower value than the sedimentation rate of cerium oxide particles according to For example, when centrifugation was performed for 30 minutes at a centrifugal force of 4,265 G, the embodiment of the present invention showed a sedimentation rate of 0% by weight, whereas Comparative Example 1 showed a sedimentation rate of 27.14% by weight, and Comparative Example 3 showed a sedimentation rate of 27.14% by weight.
  • the sedimentation rate was already 96.9% by weight. Therefore, this may mean that the primary and/or secondary particle sizes of the cerium oxide particles according to the embodiment of the present invention are finer than those of Comparative Examples 1 and 3, and also monodispersed Therefore, since the monodispersed particles come into contact with the wafer in the chemical mechanical polishing process, it can be seen that the number of contact particles increases and the oxide film polishing rate is improved.
  • the cerium oxide particles according to the embodiment of the present invention It may mean that the rate of occurrence of polishing defects such as scratches on a polished wafer can be reduced when polishing is performed using the slurry composition containing the polishing composition.
  • Evaluation was performed to measure the residual amount of the precursor for the CMP slurry containing the cerium oxide particles prepared in Preparation Example 2.
  • the slurry sample of Preparation Example 2 was prepared in powder form by drying at high temperature until powder was obtained, and then the remaining powder was dissolved again in pure water.
  • the precursor content of the solution dissolved in pure water was analyzed through ICP-MS and converted to the weight ratio of cerium oxide powder.
  • substances such as basic substances, solvents, and ammonia were almost undetected, and it was confirmed that they were less than 300 ppm. Almost undetected means more specifically that it contains significantly less amount than units of PPM or less, or it means that it is not present.
  • the cerium oxide particles are properly distributed in the slurry and do not contain cerium precursors, base materials, and other impurities that may occur due to the nature of the wet process, the cerium oxide particles according to one embodiment of the present application can be used in a wet process. Through this, it was expected that the process of redispersing in the slurry solvent through a separate separation or grinding process after being produced in the form of a dispersion is unnecessary.
  • sample name synthetic raw material impurities cerium precursor material basic substance menstruum ammonia 1 Batch not detected (ND) not detected (ND) not detected (ND) not detected (ND) 2 batches Not detected (N.D.) not detected (ND) not detected (ND) 3 batches Not detected (N.D.) not detected (ND) not detected (ND) not detected (ND)
  • Polishing of the oxide film wafer using the sample was performed using a polishing machine (Reflexion ® LK CMP, Applied Materials). Specifically, a PE-TEOS silicon oxide film wafer (300 mm PE-TEOS Wafer) was placed on a platen, and the surface of the wafer was brought into contact with a polishing machine pad (IC1010, DOW). Subsequently, the slurry composition of the sample was supplied at a rate of 200 mL/min, and a polishing process was performed while rotating the platen and the pad of the polishing machine. At this time, the rotation speed of the platen and the rotation speed of the head were 67 rpm/65 rpm, the polishing pressure was 2 psi, and the polishing time was 60 seconds. Meanwhile, the silicon oxide thin film thickness of the wafer was measured using ST5000 (Spectra Thick 5000ST, K-MAC). The results are shown in Table 20 below.
  • Comparative Example A Comparative Example B Example cerium oxide Commercially available nanoparticles below 10 nm Commercial 60nm nanoparticles Particles of the present invention cerium oxide content 0.05% 0.05% 0.05% pH 5.5 5.5 5.5 PETEOS Removal Rate 354 ⁇ /min 546 ⁇ /min 3,458 ⁇ /min
  • the silicon oxide film removal rate was about 6 times greater than that of the slurry compositions of Comparative Examples 1 and 3. This is because, in the case of the cerium oxide particles included in the slurry composition of Example, the particle size is small, the number of particles effective for polishing compared to the content is large, and the content (molar ratio and / or weight ratio) of the surface Ce 3+ is high, so that the surface of the silicon oxide film and This is presumed to be due to the increased chemical reactivity of
  • 45 and 46 are scan images before and after CMP of an oxide wafer using a CMP slurry composition containing cerium oxide particles and a CMP slurry composition containing cerium oxide particles having a size of 60 nm according to an embodiment of the present invention.
  • the surface analysis of the oxide wafer was performed by a full wafer scan method using AIT-XP equipment.
  • the number of defects before CMP is It was counted as 6, and the number of defects after CMP was counted as 1, so that the defects on the oxide wafer surface decreased after CMP was performed using the embodiment of the present invention, and scratches on the surface of the wafer during the CMP process You can check that it didn't happen.
  • cerium oxide particles prepared according to one embodiment of the present application and the commercially available 60 nm class cerium oxide particles were added to deionized water, the pH was adjusted to 5.8, and then a cationic polymer was added as shown in Table 21 below.
  • a cationic polymer was added as shown in Table 21 below.
  • an oxide film polishing rate ( ⁇ /min) and a polysilicon film polishing rate ( ⁇ /min) were measured.
  • Example 1 Particles of the present invention 0.05% - - 5.8 3,258 1,253
  • Example 2 Particles of the present invention 0.05% Poly(diallydimethyl ammonium chloride) 0.01% 5.8 3,985 15
  • Example 3 Particles of the present invention 0.05% polyacrylamide-co-diallydimethyl ammonium chloride 0.01% 5.8 4,256 13
  • Example 4 Particles of the present invention 0.05% Polyethyleneimine 0.01% 5.8 3,888 15
  • Example 5 Particles of the present invention 0.05% Poly(trimethylammonio ethyl metacrylate) 0.01% 5.8 3,978 14
  • Example 6 Particles of the present invention 0.05% dicyandiamide- diethylenetriamine copolymer 0.01% 5.8 4,655 21
  • Example 7 Particles of the present invention 0.05% diallyld
  • Example 1 of Table 21 when comparing Example 1 of Table 21 and Examples 2 to 8 containing cationic polymers, it was confirmed that the polishing rate of the polysilicon film significantly decreased while the polishing rate of the silicon oxide film increased, It was confirmed that the polishing selectivity of the oxide film/polysilicon film satisfies the range of 2000 or less in the range of about 200 to 900.
  • the polishing rate of the CMP slurry of the present invention increases as the content of the cationic polymer increases, whereas in the case of the conventional ceria slurry, the concentration is 0.001% or more It was observed that the polishing rate gradually decreased when the was continuously increased. This is because in the case of the conventional wet ceria slurry, the cationic polymer simply serves as a pH buffer and is added for particle stability, so when the content of the cationic polymer is increased, the polishing particles may be hindered from performing the polishing process. In the case of the CMP slurry of the present invention, it was found that the cationic polymer plays a role not only in particle stability but also as a polishing accelerator.
  • the term "monodisperse” used in the present invention means that when cerium oxide particles are dispersed in a slurry, aggregation into secondary particles is suppressed to maintain a relatively primary particle size, which is a dynamic light scattering (DLS) method means that the secondary particle size (D50) through TEM has a size of 3.0 times or less, 2.8 times or less, 2.5 times or less, 2.2 times or less, 2.0 times or less, or advantageously 1.9 times or less of the primary particle size through TEM. can do.
  • DFS dynamic light scattering
  • transparent used in the present invention means that when the cerium oxide particles are dispersed in the slurry, when confirmed with the naked eye, the slurry composition is observed transparently, and more specifically, it is resistant to light in the visible ray region. This means that the average light transmittance is 50% or more, advantageously 70% or more, and more advantageously 80% or more. It may mean maintaining the primary particle size.
  • Polishing compositions can be characterized according to their polishing rate (ie, removal rate) and their planarization efficiency.
  • the polishing rate refers to the rate at which material is removed from the surface of a substrate, and is usually expressed in units of length (thickness) per unit time (eg Angstroms ( ⁇ ) per minute).
  • a polishing surface such as a polishing pad, must first contact the "high points" of the surface and remove material to form a flat surface. A process that achieves a flat surface with less material removed is believed to be more efficient than a process that requires more material to be removed to achieve flatness.
  • the removal rate of the silicon oxide pattern can be rate limiting for the dielectric polishing step in an STI process, so a high removal rate of the silicon oxide pattern is desirable to increase device throughput.
  • too fast a blanket removal rate can lead to trench erosion and increase device defects due to overpolishing of the oxide in the exposed trenches.
  • a first aspect of the present invention is,
  • a cerium oxide particle for chemical mechanical polishing characterized in that it has a light transmittance of 50% or more for light having a wavelength of 500 nm in an aqueous dispersion in which the content of the cerium oxide particle is adjusted to 1.0% by weight.
  • cerium oxide particles for chemical mechanical polishing according to an aspect of the present disclosure will be described in detail.
  • FIG. 1 illustrates an oxide film removal mechanism according to an embodiment of the present invention. As shown in FIG. 1 , only when Ce 3+ ions are activated on the surface of cerium oxide particles can smoothly react with SiO 2 .
  • the particle size of the cerium oxide particles may be measured by X-ray diffraction (XRD) analysis (primary particles). In one embodiment of the present application, the particle size of the cerium oxide particles measured by X-ray diffraction (XRD) analysis may be 11 nm or less.
  • 10.8 nm or less 10.5 nm or less, 10.2 nm or less, 10 nm or less, 9.5 nm or less, 9.0 nm or less, 8.5 nm or less, 8.0 nm or less, 7.5 nm or less, 7.0 nm or less, 6.5 nm or less, 6.0 nm or less, 5.5 nm or less, 5.0 nm or less, 4.5 nm or less, or 4.0 nm or less, 0.3 nm or more, 0.5 nm or more, 0.7 nm or more, 1.0 nm or more, 1.1 nm or more, 1.2 nm or more, 1.3 nm or more, 1.4 nm or more, 1.5 nm or more, 1.6 nm or more, 1.7 nm or more, 1.8 nm or more, 1.9 nm or more, 2.0 nm or more, 2.1 nm or more, 2.2 nm
  • the average particle size of the cerium oxide particles measured by the X-ray diffraction (XRD) analysis is 0.5 to 10 nm, preferably 1 to 10 nm, and more preferably 2 to 9 nm. can be done with
  • the particle size of the cerium oxide particles may be measured by transmission electron microscopy (TEM) (primary particles). In one embodiment of the present application, the particle size of the cerium oxide particles as measured by a transmission electron microscope (TEM) may be 11 nm or less.
  • TEM transmission electron microscopy
  • 10.8 nm or less 10.5 nm or less, 10.2 nm or less, 10 nm or less, 9.5 nm or less, 9.0 nm or less, 8.5 nm or less, 8.0 nm or less, 7.5 nm or less, 7.0 nm or less, 6.5 nm or less, 6.0 nm or less, 5.5 nm or less, 5.0 nm or less, 4.5 nm or less, or 4.0 nm or less, 0.3 nm or more, 0.5 nm or more, 0.7 nm or more, 1.0 nm or more, 1.1 nm or more, 1.2 nm or more, 1.3 nm or more, 1.4 nm or more, 1.5 nm or more, 1.6 nm or more, 1.7 nm or more, 1.8 nm or more, 1.9 nm or more, 2.0 nm or more, 2.1 nm or more, 2.2 nm
  • the average particle size of the cerium oxide particles measured by the transmission electron microscope (TEM) is 0.5 to 10 nm, preferably 1 to 10 nm, more preferably 2 to 9 nm, characterized in that can do.
  • the particle size of the cerium oxide particles may be measured by small angle X-ray scattering (SAXS) (primary particles). In one embodiment of the present application, the particle size of the cerium oxide particles measured by small angle X-ray scattering (SAXS) may be 15 nm or less.
  • SAXS small angle X-ray scattering
  • the average particle size of the cerium oxide particles measured by the small angle X-ray scattering method is 0.5 to 15 nm, preferably 1 to 12 nm, more preferably 1.5 to 10 nm can be characterized.
  • the particle size of the cerium oxide particles in the slurry can be measured by dynamic light scattering (DLS) analysis (secondary particles).
  • the dynamic light scattering analysis may be measured using analysis equipment well known to those skilled in the art, and preferably may be measured using an Anton Parr particle size analyzer or Malvern Zetasizer Ultra, but this is only a non-limiting example and is limited thereto It is not.
  • the particle size of the cerium oxide particles measured by a dynamic light scattering particle size analyzer may be 1 to 30 nm. In another embodiment of the present application, 29 nm or less, 27 nm or less, 25 nm or less, 23 nm or less, 22 nm or less, 20.8 nm or less, 20.5 nm or less, 20.2 nm or less, 20 nm or less, 19.8 nm or less, 19.5 nm or less, 19.2 nm or less, 18 nm or less, 17 nm or less, or 15 nm or less, and may be 1.2 nm or more, 1.4 nm or more, 1.5 nm or more, 1.8 nm or more, 2 nm or more, 3 nm or more, or 4 nm or more.
  • DLS dynamic light scattering particle size analyzer
  • the size of the secondary particles exceeds the above range, it means that a lot of aggregation of the primary particles occurs in the slurry composition, and in this case, it is difficult to view the slurry as monodispersed.
  • the secondary particle size is less than the above range, the polishing rate for the target film is excessively inhibited, and thus the polishing efficiency may be reduced.
  • the size of the cerium oxide particles measured by a dynamic light scattering particle size analyzer is a
  • the size of the cerium oxide particles measured by a transmission electron microscope (TEM) is called b.
  • TEM transmission electron microscope
  • This characteristic will be an index indicating that the cohesiveness of the cerium oxide particles of the present invention is low when dispersed in a slurry.
  • the coefficient of b exceeds 2.2, it means that a lot of aggregation occurs in the slurry, and since the particle size becomes coarse, it may mean that it is difficult to suppress wafer surface defects during polishing.
  • the size of the cerium oxide particles measured by a dynamic light scattering particle size analyzer is a
  • the size of the cerium oxide particles measured by a small angle X-ray scattering method SAXS
  • b it may be characterized in that Equation 3 below is satisfied.
  • This characteristic will be an index indicating that the cohesiveness of the cerium oxide particles of the present invention is low when dispersed in a slurry.
  • the coefficient of b is greater than 2.5, it means that a lot of aggregation occurs in the slurry, and since the particle size becomes coarse, it may mean that it is difficult to suppress wafer surface defects during polishing.
  • the Ce 3+ content on the surface of the cerium oxide particles can be analyzed using XPS, for example, theta probe base system manufactured by Thermo Fisher Scientific Co. .
  • the Ce 3+ content of the surface of the cerium oxide abrasive grains can be calculated by Formula 1 below.
  • Ce 3+ content (%) (Ce 3+ peak area)/[(Ce 3+ peak area) + (Ce 4+ peak area)]
  • the XPS peak representing the Ce-O bond energy representing Ce 3+ is 900.2 to 902.2 eV, 896.4 to 898.4 eV, 885.3 to 887.3 eV and 880.1 to 882.1 eV.
  • the XPS peak representing the Ce-O bond energy representing Ce 3+ is the first peak of 900.2 to 902.2 eV, the first peak of 896.4 to 898.4 eV It may be characterized by appearing in the second peak, the third peak of 885.3 to 887.3 eV and the fourth peak of 880.1 to 882.1 eV.
  • the area of the first peak may be 3% or more, or 4% or more, and the areas of the second peak and the fourth peak may be 5% or more, 7% or more, respectively. % or more, or 10% or more, and the area of the third peak may be 4% or more, 5% or more, or 6% or more.
  • XPS X-ray photoelectron spectroscopy
  • the ratio of the sum of XPS peak areas representing Ce-O binding energy representing Ce3+ to the sum of XPS peak areas representing Ce-O binding energy on the surface of the cerium oxide particle is 0.18 or more, 0.19 greater than 0.192, greater than 0.195, greater than 0.198, greater than 0.20, greater than 0.202, greater than 0.205, greater than 0.208, greater than 0.21, greater than 0.22, greater than 0.24, greater than 0.25, greater than 0.27, greater than 0.28, greater than 0.30, greater than 0.32, or greater than 0.35 0.90 or less, 0.88 or less, 0.85 or less, 0.83 or less, 0.80 or less, 0.77 or less, 0.75 or less, 0.72 or less, 0.71 or less, 0.705 or less, 0.70 or less, 0.695 or less, 0.69 or less, 0.68 or less, 0.67 or less, 0.66 or less , 0.65 or less, 0.64 or less, 0.63 or less, 0.62 or less, 0.61 or less, or 0.60 or less.
  • XPS X-ray photoelectron spectroscopy
  • 18 atomic% or more, 19 atomic% or more, 20 atomic% or more, 22 atomic% or more of Ce 3+ on the surface of the cerium oxide particle for chemical mechanical polishing greater than or equal to 24 atomic %, greater than or equal to 25 atomic %, greater than or equal to 27 atomic %, greater than or equal to 28 atomic %, greater than or equal to 30 atomic %, greater than or equal to 32 atomic %, or greater than or equal to 35 atomic % and less than or equal to 90 atomic %, 88 It may be characterized as comprising less than 85 atomic %, less than 83 atomic %, less than 80 atomic %, less than 77 atomic %, less than 75 atomic %, less than 72 atomic %, or less than 70 atomic %.
  • the Ce 3+ content on the surface of the particles is high, which is presumed to be due to the fact that the particle synthesis process in the liquid phase is performed under acidic conditions through a wet process.
  • the oxide film removal rate can be improved.
  • cerium oxide particles according to an embodiment of the present invention have Raman spectrum characteristics suggesting that the particle surface contains a large amount of Ce 3+ component, which distinguishes it from abrasive particles of the prior art. indicates Specifically, the cerium oxide particles may have two or more Raman peak spectra.
  • the cerium oxide particles may have a first Raman peak within a band range of 455 cm -1 to 460 cm -1 .
  • the cerium oxide particle may have a second Raman peak within a band range of 586 cm -1 to 627 cm -1 .
  • the cerium oxide particle may have a third Raman peak within a band range of 712 cm ⁇ 1 to 772 cm ⁇ 1 .
  • the band range may mean a Raman shift numerical range that is an X-axis of the Raman spectrum.
  • the cerium oxide particle may be characterized in that the ratio (A/B) of the first Raman peak intensity (A) to the second Raman peak intensity (B) is 35 or less.
  • the A/B may be preferably 30 or less, more preferably 25 or less, and still more preferably 20 or less.
  • the lower limit of A/B is not particularly limited, but may be 5 or more, 10 or more, or 15 or more.
  • the second Raman peak can be interpreted as a Raman shift caused by an increase in the oxygen vacancy ratio as the Ce 3+ content increases, and therefore, the smaller the intensity ratio (A/B), the Ce 3+ content of the cerium oxide particles This may mean an increase, which promotes the chemical polishing action using the Si-O-Ce bond with the oxide film wafer, so that the cerium oxide particles according to the embodiment of the present invention despite the finer particle size than the conventional cerium oxide particles It can be suggested that the polishing rate can be improved when using .
  • the cerium oxide particles may be characterized in that a ratio (A/C) of the first Raman peak intensity (A) to the third Raman peak intensity (C) is 50 or less.
  • the A/B may be preferably 45 or less, more preferably 43 or less.
  • the lower limit of the A/C is not particularly limited, but may be 5 or more, 10 or more, or 15 or more.
  • the cerium oxide particles according to an embodiment of the present application include a higher content of Ce 3+ than the conventional cerium oxide particles, so that despite the small particle size, the slurry composition having an excellent polishing rate compared to the content of the cerium oxide particles provision may be possible, and also the occurrence of abrasive scratches may be controlled.
  • the Ce 3+ content on the surface of the cerium oxide particle in relation to the Ce 3+ content on the surface of the cerium oxide particle, it can be analyzed using an electron energy loss spectroscopy (EELS) spectrum, for example, two or more Ce 4+ It can be characterized as having an EELS peak representing the indicated oxidation state.
  • EELS electron energy loss spectroscopy
  • the cerium oxide particles (and/or the slurry composition including the same) may exhibit EELS spectra as shown in FIGS. 23 to 25 .
  • the EELS spectrum of the cerium oxide particles includes a first peak of 876.5 to 886.5 eV and a second peak of 894.5 to 904.5 eV, and the maximum intensity of the first peak is the maximum intensity of the second peak It may be characterized as larger.
  • This aspect may mean that as the content of Ce 3+ in the cerium oxide particles increases, an EELS spectrum similar to that of trivalent cerium oxide is displayed.
  • the spectrum may be characterized in that it further comprises a third peak of 886.5 to 889.5 eV and a fourth peak of 904.5 to 908.5 eV.
  • the third and fourth peaks it is possible to distinguish peaks according to the oxidation state, and by obtaining the area of the corresponding peak sections appearing due to the oxidation state of Ce 4+ , the cerium oxide particles of the present invention and the conventional cerium oxide particles can be obtained. will be able to differentiate.
  • the ratio (P 1 /P t ) of the sum of the areas of the third peak section (P 1 ) to the sum of the total areas of the peaks (P t ) of the spectrum may be 0.025 or less, , More preferably, it may be 0.024 or less, 0.022 or less, 0.018 or less, 0.015 or less, 0.012 or less, 0.011 or less, or 0.01 or less.
  • a value of at least 0.03 or more is exhibited, and this characteristic will be shown through the following experimental examples.
  • the sum of the areas of the third peak section (P 1 ) and the sum of the areas of the fourth peak section (P 2 ) relative to the sum of the total areas of the peaks of the spectrum (P t ) may be 0.1 or less.
  • the area ratio may be preferably 0.099 or less, 0.098 or less, 0.096 or less, 0.095 or less, 0.094 or less, 0.0092 or less, or 0.090 or less.
  • the ratio of the cerium oxide particles according to an embodiment of the present application may mean an average ratio of values measured n times, for example, when the same sample is measured n times.
  • the area ratio ((P 1 +P 2 )/P t ) may be 0.01 or more, 0.012 or more, 0.014 or more, 0.016 or more, or 0.018 or more.
  • the area ratio is 0.1 or less, it may mean that the Ce 3+ content is high compared to the total cerium oxide content on the surface of the cerium oxide particle, and the higher Ce 3+ content is Si-O-Ce with respect to the silicon oxide film It is possible to increase the polishing rate by promoting the chemical polishing action through bonding.
  • Cerium oxide particles according to one embodiment of the present application have X-ray absorption fine structure (XAFS) spectral characteristics suggesting that the particle surface contains a large amount of Ce 3+ component, which distinguishes it from abrasive particles of the prior art. indicate Specifically, the cerium oxide particles may have two or more peaks in the XAFS spectrum.
  • XAFS X-ray absorption fine structure
  • the cerium oxide particles (and/or the slurry composition including the same) may exhibit XAFS spectra as shown in FIGS. 33 and 34 .
  • the cerium oxide particles may have a maximum light absorption coefficient of a first peak within a range of 5730 eV or more and less than 5740 eV when XAFS spectrum is measured, and the first peak indicates the oxidation state of Ce 3+ . may indicate
  • the cerium oxide particle may have a maximum optical absorption coefficient of a second peak within a range of 5740 eV or more and less than 5760 eV when XAFS spectrum is measured, and the second peak is oxidation of Ce 4+ It may indicate a state.
  • the maximum light absorption coefficient (maximum value of the peak) of the first peak may be 0.1 to 0.4. In another embodiment of the present application, the maximum light absorption coefficient of the first peak may be 0.11 or more, 0.12 or more, 0.13 or more, 0.14 or more, 0.15 or more, 0.2 or more, or 0.25 or more, 0.38 or less, 0.35 or less, 0.32 or less, or 0.30 or less.
  • the maximum light absorption coefficient (maximum value of the peak) of the second peak may be less than 0.6. In another embodiment of the present application, the maximum optical absorption coefficient of the second peak may be 0.11 or more, 0.12 or more, 0.13 or more, 0.14 or more, 0.15 or more, 0.2 or more, or 0.25 or more, 0.58 or less, 0.55 or less, 0.52 or less, or less than 0.50.
  • the weight of Ce 3+ is reduced compared to the total weight of the surface of the cerium oxide, which means that the age It may mean that the polishing rate may be inhibited.
  • the ratio (A 1 /A 2 ) of the area (A 1 ) of the first peak to the area (A 2 ) of the second peak shown in the XAFS spectrum may be 0.03 or more.
  • the peak area ratio (A 1 /A 2 ) may be 0.03 or more, 0.05 or more, 0.07 or more, 0.09 or more, or 0.1 or more, more preferably 0.11 or more, more preferably 0.12 or more.
  • the peak representing Ce 3+ may be 0.1 or more (10% or more).
  • the weight ratio is less than 0.03, the amount of Ce 3+ compared to the content of Ce 4+ on the surface of the cerium oxide particle is not sufficient, and thus the polishing rate may decrease.
  • photoelectron spectroscopy analysis may be performed on the cerium oxide particles, and specifically, UV photoelectron spectroscopy (UPS) analysis using light in the UV region may be performed.
  • Photoelectron spectroscopy technology has traditionally been divided into X-ray photoelectron spectroscopy (XPS) using single wavelength light in the X-ray region and UV photoelectron spectroscopy (UPS) using light in the UV region.
  • XPS X-ray photoelectron spectroscopy
  • UPS UV photoelectron spectroscopy
  • UPS uses light in the extreme UV region of about 10 to 20 eV to detect electrons in the valence electron region of the sample. It is a technology that allows electrons directly participating in chemical bonding to know the various states that can have in a solid by allowing them to be emitted.
  • angle-resolved UPS ARUPS/ARPES
  • E kin is the kinetic energy of the protruding electron
  • is the work function of the sample
  • E b is the binding energy when the protruding electron is confined to the sample.
  • E F Fermi level
  • E cutoff is a value represented by the vacuum level.
  • hv represents the energy of incident light as a source energy used when emitting ultraviolet rays, and helium (He) can be used as a source in general.
  • the band structure of the cerium oxide may show a difference depending on the size of the particle.
  • the energy level difference between the orbitals of the sample gradually increases, resulting in a higher value of energy. may have a band gap.
  • the energy level difference gradually decreases, resulting in a low energy band gap. Therefore, as described above, as the particle size is smaller, the energy gap between the valence band and the conduction band increases, and the energy of the work function (eV) derived by changing the values of the Fermi level (E F ) and the vacuum level (eV) ) can be increased.
  • the cerium oxide particle may be characterized in that the maximum value of the number of photoelectrons emitted per second (Counts) exists within a range of kinetic energy of 10 eV or less in UPS analysis. These characteristics are in contrast to conventional ceria particles.
  • the maximum value of the number of photoelectrons emitted per second (Counts) may exist in the range of kinetic energy of 6 to 10 eV, or 7 to 10 eV, preferably in the range of 8 to 10 eV.
  • the work function (work function) value measured according to the UPS of the cerium oxide particles may be in the range of 2.5 eV or more.
  • the work function value may preferably be in the range of 2.7 eV or more, or more preferably in the range of 3.0 eV or more.
  • the upper limit of the work function value is not particularly limited, and may be less than 10 eV, less than 9 eV, or less than 8 eV. Satisfying the above-described range of the work function value is a characteristic in contrast to conventional cerium oxide particles, which means that the size of the cerium oxide particles dispersed in the slurry is small, which indicates that the cohesiveness is very small.
  • the cerium oxide particles according to one embodiment of the present application are included in a slurry for chemical mechanical polishing and used, the number of particles in contact with the wafer can be maximized, and the oxide film polishing rate At the same time as being able to increase, since the particle size itself becomes fine, it is expected that defects on the wafer surface can be minimized.
  • the BET surface area value when the specific surface area is measured for 1 g of the powder made of the cerium oxide particles, the BET surface area value may be 50 m 2 /g or less. In another embodiment, the BET surface area value is 49 m 2 /g or less, 48 m 2 /g or less, 47 m 2 /g or less, 46 m 2 /g or less, 45 m 2 / g or less, 44 m 2 /g or less, 43 m 2 /g or less, more preferably 42 m 2 /g or less. This tends to be different from conventional cerium oxide particles having a large BET surface area value as the particle size decreases.
  • cerium oxide particles synthesized by self-organized synthesis methods such as sol-gel method and bottom-up method are prepared by other synthesis methods. It can be inferred that this is because it has a smaller specific surface area and pore volume than cerium oxide particles, and in particular, the ratio of -OH functional groups present on the surface of cerium oxide particles is low.
  • the particles have a finer particle size than the conventional cerium oxide particles and are analyzed by BET under the same conditions of 1.0 g of powder, the powder samples are arranged at a higher density than the conventional cerium oxide particles according to Comparative Example 1, and the BET surface area value is smaller. outcomes can be predicted.
  • the cerium oxide particles according to an embodiment of the present invention have a finer particle size than the conventional 10 nm class cerium oxide particles according to Comparative Example 1, they have a BET surface area smaller than that of the cerium oxide particles according to Comparative Example 1. It can be confirmed, and the above results show that, when the cerium oxide particles according to the examples of the present invention are compared with the conventional cerium oxide particles, they have a finer particle size and at the same time, the Ce 4+ and -OH functional group content on the particle surface It can be inferred in the same context as the tendency to show surface chemical characteristics with high 3+ content.
  • the apparent density of the cerium oxide particles measured by the stationary method may be 2.00 to 5.00 g/ml, preferably 2.00 to 4.00 g/ml, more preferably 2.00 to 5.00 g/ml. It may be characterized in that it is 2.00 to 3.00 g / ml.
  • the apparent density of the cerium oxide particles measured by the tap method may be 2.90 to 5.00 g/ml, preferably 3.00 to 5.00 g/ml, more preferably It may be characterized in that it is 3.20 to 5.00 g / ml.
  • the cerium oxide particles according to an embodiment of the present invention have a relatively high apparent density compared to conventional cerium oxide particles despite their fine particle size, and thus there is a difference. It can be expected that these characteristics can partially affect the oxide film polishing rate.
  • aqueous dispersion in which the content of the cerium oxide particles is adjusted to 1.0% by weight when photoluminescence (PL) is measured at a wavelength of 325 nm, a wavelength of 435 to 465 nm It may be characterized in that the maximum intensity of the first peak ( ⁇ 1 ) appears in a range of 0.1 to 30, 0.2 to 20, 0.3 to 10, or 0.5 to 7. In the case of conventional commercially available coarse cerium oxide particles, the maximum peak intensity appears to exceed 30 under the same conditions, which may mean that the aggregation in the slurry is also strong, and thus light emission occurs more strongly than transmission.
  • the maximum intensity of the second peak ( ⁇ 2 ) of 510 to 540 nm wavelength is 0.1 to 10, 0.1 to It may be characterized by appearing in the range of 7.5, 0.1 to 5, or 0.1 to 3.
  • the maximum peak intensity appears to exceed 10 under the same conditions, which may mean that the aggregation in the slurry is strong, and therefore, emission occurs more strongly than transmission.
  • the characteristics of the particles can be known by measuring the photoluminescence (PL) at a wavelength of 325 nm for the aqueous dispersion in which the content of the cerium oxide particles is adjusted to 1.0% by weight.
  • PL photoluminescence
  • an excitation peak ( ⁇ exc ) appears at a wavelength of 310 to 335 nm, and a first at a wavelength of 435 to 465 nm
  • a peak ( ⁇ 1 ) appears, and a second peak ( ⁇ 2 ) may appear at a wavelength of 510 to 540 nm. It can be interpreted that the excitation peak represents a peak for an excitation wavelength, the first peak represents Ce 3+ , and the second peak represents Ce 4+ .
  • the intensity ratio ( ⁇ 1 / ⁇ exc ) of the first peak ( ⁇ 1 ) of a wavelength of 435 to 465 nm with respect to the peak ( ⁇ exc ) is less than 30, preferably 27 or less, 25 or less, more preferably 23 It may be 20 or less, more preferably 18 or less, 15 or less, and even more preferably 10 or less.
  • the intensity ratio ( ⁇ 1 / ⁇ 2 ) of the first peak ( ⁇ 1 ) to the second peak ( ⁇ 2 ) of 510 to 540 nm wavelength is 4 or more, preferably 5 or more, more preferably 5.5 or more, still more preferably 6 or more, 20 or less, preferably 18 or less, more preferably 15 or less, still more preferably 12 or less, even more preferably 10 or less.
  • the intensity ratio ( ⁇ 1 / ⁇ 2 ) of the first peak ( ⁇ 1 ) within the above range, aggregation into secondary particles is prevented from the dispersion while containing a high content of Ce 3+ on the surface of the cerium oxide particles. It can be seen that it occurs very little, exhibiting characteristics of good light transmission and at the same time exhibiting characteristics of relatively high Ce 3+ content on the surface of the particles.
  • the particle surface when used in a slurry for chemical mechanical polishing, the particle surface has a high Ce 3+ content, but the particles themselves are fine and have very little aggregation in the slurry. It can be seen that the chemical polishing rate due to the Si-O-Ce bond between the oxide film substrates is increased, and thus the oxide film polishing rate is improved.
  • the yellowness of the dispersion containing the cerium oxide particles can be evaluated by the L*a*b* color system, where L*a*b is CIE (Commission International de Eclairage: International Standard) in 1976. It is defined by the CIE1976 L*a*b* color space determined by the Illumination Commission). This color space is a color space having the quantities L*, a*, and b* determined by the following equation in a Cartesian coordinate system.
  • L*a*b is CIE (Commission International de Eclairage: International Standard) in 1976. It is defined by the CIE1976 L*a*b* color space determined by the Illumination Commission).
  • This color space is a color space having the quantities L*, a*, and b* determined by the following equation in a Cartesian coordinate system.
  • a* 500[(X/X 0 ) 1/3 - (Y/Y 0 ) 1/3 ]
  • L* represents brightness and is also referred to as "brightness index”.
  • a* and b* represent hue and chroma, and are also referred to as "chromaticness index”.
  • chromaticness index In the L*a*b* color system, a larger L* value indicates a color closer to white, and a smaller value indicates a color closer to black.
  • the red-based color becomes stronger, and as the a* value decreases (increases toward the - side), the green-based color becomes stronger.
  • the value of b* increases toward the + side, the yellow color becomes stronger, and as the b* value decreases (increases toward the - side), the blue color becomes stronger.
  • both a* value and b* value are 0, it means that it is achromatic.
  • the L * value is 80 or more, preferably 85 or more, It may be more preferably 90 or more, even more preferably 95 or more, and still more preferably 98 or more.
  • the L* value is smaller than the above range, it may mean that the grain growth of the cerium oxide abrasive particles has progressed too much, and that there are many coarse particles that cause defects in the wafer during polishing.
  • the L* value may be 100 or less, more preferably 99.9 or less.
  • the b* value may be 8 or more, preferably 10 or more, more preferably 11 or more, and less than 30, preferably 25 or less, more preferably 20 or less, even more preferably It may be characterized in that it is in the range of 15 or less. If the value of b* is smaller than the above range, a chemical reaction necessary for polishing may not be obtained, and fine irregularities of the polishing surface may not be polished smoothly.
  • the a* value may be less than -3, preferably -4 or less, more preferably -5 or less, and is in the range of -8 or more, more preferably -7 or more.
  • the color of the aqueous dispersion in which the content of the cerium oxide particles is adjusted to 1.0% by weight is expressed in the L*a*b* color system
  • the polishing speed can be improved as the yellowness of the dispersion is thicker.
  • the ratio of Ce 3+ on the surface of cerium oxide is high, so the oxide film polishing rate is remarkably high.
  • the sedimentation rate of the cerium oxide particles when the aqueous dispersion in which the content of the cerium oxide particles is adjusted to 1.0% by weight is centrifuged for 30 minutes under the condition of a centrifugal force of 4265 G (6,000 rpm) is 25% by weight % or less.
  • the sedimentation rate may be 20% by weight or less, 15% by weight or less, 10% by weight or less, more preferably 5% by weight or less.
  • the sedimentation rate of the cerium oxide particles when the aqueous dispersion in which the content of the cerium oxide particles is adjusted to 1.0% by weight is centrifuged for 10 minutes under the condition of a centrifugal force of 2100 G (3,200 rpm) is 0.6 may be less than or equal to weight percent.
  • the sedimentation rate may be 0.55 wt% or less, 0.5 wt% or less, 0.45 wt% or less, and more preferably 0.4 wt% or less.
  • the sedimentation rate of the cerium oxide particles when the aqueous dispersion in which the content of the cerium oxide particles was adjusted to 1.0% by weight was centrifuged for 30 minutes under the condition of a centrifugal force of 3300 G (4,000 rpm) It may be 5.0 wt% or less. In another embodiment, the sedimentation rate may be 4.8 wt% or less, 4.5 wt% or less, 4.2 wt% or less, and more preferably 4.0 wt% or less.
  • the sedimentation rate of the cerium oxide particles when the aqueous dispersion in which the content of the cerium oxide particles was adjusted to 1.0% by weight was centrifuged for 30 minutes under the condition of a centrifugal force of 26188 G (12,000 rpm) 45.0 wt% or less.
  • the sedimentation rate may be 42% by weight or less, 40% by weight or less, 38% by weight or less, more preferably 35% by weight or less.
  • the sedimentation rate of the cerium oxide particles when the aqueous dispersion in which the content of the cerium oxide particles was adjusted to 1.0% by weight was centrifuged for 30 minutes under the condition of a centrifugal force of 39282 G (18,000 rpm) 90.0 wt% or less.
  • the sedimentation rate may be 80% by weight or less, 70% by weight or less, 65% by weight or less, more preferably 60% by weight or less.
  • the liquid viscosity of the aqueous dispersion may be 0.3 to 2.0 mPa s, 0.5 to 1.8 mPa s, 0.55 to 1.5 mPa s, or 0.6 to 1.2 mPa s, and one preferred embodiment
  • centrifugation may be performed under conditions of 0.65 to 1.2 mPa ⁇ s.
  • the cerium oxide particles according to one embodiment of the present invention are finer than the conventional cerium oxide particles It can mean that it has a particle size and is monodispersed, and therefore, since the monodispersed particles come into contact with the wafer in the chemical mechanical polishing process, it can be expected that the oxide film polishing rate will be improved by increasing the number of contact particles. It can be seen that the polishing defect generation rate can be reduced when polishing is performed by the embodiment of.
  • the cerium oxide primary particles are spherical, cube, tetragonal, orthorhombic, rhombohedral, monoclinic It may be at least one selected from the group consisting of a shape, a hexagonal shape, a triclinic shape, and a cuboctahedron shape, but preferably may be spherical particles.
  • the cerium oxide particles may be prepared by a method of growing particles through chemical synthesis, and may be preferably a bottom-up method.
  • a sol-gel method As a method for synthesizing the cerium oxide particles, a sol-gel method, a supercritical reaction, a hydrothermal reaction, or a co-precipitation method may be used, but is not limited thereto.
  • the bottom-up method is a type of chemical synthesis that has recently been spotlighted, and is a method of growing a starting material of atoms or molecules into nanometer-sized particles through a chemical reaction.
  • the polishing composition includes wet cerium oxide particles.
  • the wet cerium oxide particles can be any suitable wet cerium oxide particles.
  • wet cerium oxide particles can be precipitated cerium oxide particles or condensation-polymerized cerium oxide particles, including colloidal cerium oxide particles.
  • the wet cerium oxide particles also preferably have defects on the surface of the particles. While not wishing to be bound by any particular theory, grinding of the cerium oxide particles can result in defects on the surface of the cerium oxide particles, which defects also affect the performance of the cerium oxide particles in chemical mechanical polishing compositions. In particular, cerium oxide particles can fracture when crushed, exposing less favorable surface states. This process, known as relaxation, results in the formation of defects on the valence particle surface that have limited reorganization ability around the surface of the cerium oxide particle and limited ability to return to a more favorable state.
  • each solvent in the generation of secondary particles of the abrasive, has a unique dielectric constant value, and the dielectric constant of the solvent is such as surface energy or surface charge in nucleation and crystal growth during powder synthesis.
  • the dielectric constant of the solvent and the surface potential (zeta potential) of the particles dispersed in the solvent are proportional to each other. If the zeta potential is low, the surface repulsive force between the microparticles or between the nuclei generated by the reaction is small, so the microspheres are in an unstable state. Aggregation between particles or between nuclei can occur at very high rates.
  • the secondary particles aggregated in this way grow into relatively large-sized particles through a particle merging process such as strong aggregation or Oswald ripening of primary fine particles or nuclei depending on reaction conditions such as temperature and concentration. do.
  • a second aspect of the present invention is,
  • the slurry composition for chemical mechanical polishing is characterized by having a light transmittance of 50% or more with respect to light having a wavelength of 500 nm in an aqueous dispersion in which the content of the cerium oxide particles is adjusted to 1.0% by weight.
  • a slurry composition for chemical mechanical polishing includes cerium oxide particles and a solvent.
  • the cerium oxide particles included as abrasive particles in the slurry may have a positive zeta potential value, preferably a zeta potential value of 1 to 80 mV in the range of pH 2 to 8 , 5 to 60 mV, may be 10 to 50 mV.
  • the polishing efficiency may be increased by the attractive force between the cerium oxide particle and the surface of the silicon oxide layer.
  • the cerium oxide particles have lower hardness than silica particles or alumina particles, but silicon, such as glass or semiconductor substrates, is formed by a chemical polishing mechanism in which a Si-O-Ce bond is formed between silica and cerium.
  • the polishing rate of the included surface is very fast, which is advantageous for polishing the semiconductor substrate.
  • the content of the precursor material included in the slurry composition may be less than 300 ppm by weight. In another embodiment of the present application, the content of the precursor material included in the slurry composition is 200 ppm or less, 150 ppm or less, 100 ppm or less, 75 ppm or less, 50 ppm or less, 25 ppm or less, 15 ppm or less, 10 ppm or less, by weight ppm or less, 7.5 ppm or less, 5 ppm or less, 2.5 ppm or less, 2 ppm or less, 1.75 ppm or less, 1.5 ppm or less, 1.25 ppm or less, 1 ppm or less, 0.75 ppm or less, or 0.5 ppm or less.
  • the slurry composition may be substantially free of precursor materials.
  • the precursor material may mean including a precursor material that may be used and generated while preparing cerium oxide particles through a wet process, such as a cerium precursor material, a basic material, a solvent, and ammonia.
  • the slurry composition for chemical mechanical polishing may be characterized in that it contains 5% by weight or less of the cerium oxide particles based on the total weight of the composition.
  • the cerium oxide particles are used in an amount of 4% by weight or less, 3% by weight or less, 2% by weight or less, 1.5% by weight or less, 1% by weight or less, 0.8% by weight or less, based on the total weight of the slurry composition for chemical mechanical polishing.
  • 0.5 wt% or less, 0.4 wt% or less, 0.3 wt% or less, 0.2 wt% or less, 0.2 wt% or less, 0.19 wt% or less, 0.15 wt% or less, 0.12 wt% or less, 0.10 wt% or less, 0.09 may be less than or equal to 0.07% by weight, or may be greater than or equal to 0.0001% by weight, or greater than or equal to 0.001% by weight.
  • the slurry composition for chemical mechanical polishing of the present invention achieves high oxide film polishing efficiency even though a smaller amount of the cerium oxide particles is added with respect to the total weight of the slurry composition for chemical mechanical polishing, even though a slurry having the same polishing rate is used What you can do can be characterized.
  • an average light transmittance of 50% or more, or 60% or more with respect to light with a wavelength of 450 to 800 nm in an aqueous dispersion in which the content of the cerium oxide particles is adjusted to 1.0% by weight It may be characterized, preferably, the average light transmittance may be 70% or more, more preferably 80% or more, and even more preferably 90% or more.
  • the light transmittance for light having a wavelength of 500 nm is 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, or 80% or more.
  • the light transmittance is 75% or more, 80% or more, 85% or more, or 90% or more with respect to light having a wavelength of 600 nm.
  • the light transmittance is 87% or more, 90% or more, 93% or more, or 95% or more with respect to light having a wavelength of 700 nm.
  • the oxide film polishing rate can be excellent because the number of particles in contact with the wafer increases, and the particles themselves are fine, so the slurry containing the particles
  • the slurry containing the particles When polishing a film to be polished using the composition, it can be easily estimated that the probability of occurrence of defects such as scratches on the surface is reduced. That is, in the case of cerium oxide particles having a size of 10 nm or less based on primary particles, it can be predicted that the higher the light transmittance in the visible ray region, the better the silicon oxide film polishing rate.
  • the infrared transmittance of the powder made of the cerium oxide particles may be 90% or more, or 100% or less, 97% or less, or 95% or less.
  • the infrared transmittance of the powder within the range of 720 cm -1 to 770 cm -1 may be characterized in that 96% or less, 85% or more, 88% or more, more preferably 90% or more, more preferably 92% or more.
  • the infrared transmittance having a value within the range may mean that the band by the OH group is relatively weak, which is a cerium hydroxide particle It shows a difference from the FT-IR spectrum of the composed powder.
  • the presence of a peak representing infrared transmittance within the range of 720 cm -1 to 770 cm -1 of the FT-IR spectrum of the powder made of cerium oxide particles according to an embodiment of the present application means that within the range Ce This may mean that -O stretching appears, which may mean that the particles manufactured according to an embodiment of the present invention exhibit characteristics of cerium oxide particles.
  • the slurry composition for chemical mechanical polishing may have a pH of 10 or less, preferably 1 to 9, 1 to 8, or 2 to 7 in terms of dispersion stability and polishing efficiency. More specifically, when the pH is less than 1, the removal rate of the silicon oxide film is rapidly lowered and undesirable polishing characteristics may be exhibited, and when the pH is greater than 10, undesirable polishing characteristics may be exhibited or pH stability and dispersion stability may be deteriorated. It decreases and agglomeration occurs, which may cause micro scratches and defects.
  • the chemical mechanical polishing slurry composition may include one or more acid or base pH adjusters and buffers capable of adjusting the pH in consideration of the final pH of the composition, polishing rate, polishing selectivity, etc. there is.
  • the pH adjusting agent for adjusting the pH one capable of adjusting the pH without affecting the properties of the chemical mechanical polishing slurry composition may be used.
  • the pH adjusting agent may be an acidic pH adjusting agent or a basic pH adjusting agent to achieve an appropriate pH.
  • one or more inorganic acids selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, acetic acid, citric acid, glutaric acid, glucolic acid, formic acid, lactic acid, malic acid, and malic acid are used.
  • At least one organic acid selected from the group consisting of ronic acid, maleic acid, oxalic acid, phthalic acid, succinic acid, and tartaric acid, lysine, glycine, alanine, arginine, valine, leucine, isoleucine, methionine, cysteine, proline, histidine, phenylalanine, serine, tricine , At least one amino acid selected from the group consisting of tyrosine, aspartic acid, tryptophan, and aminobutyric acid, imidazole, alkyl amines, alcohol amine, quaternary amine hydroxide, ammonia, or a combination thereof.
  • the pH adjusting agent may be triethanolamine, tetramethylammonium hydroxide (TMAH or TMAOH) or tetraethylammonium hydroxide (TEAH or TEA-OH).
  • TMAH tetramethylammonium hydroxide
  • TEAH tetraethylammonium hydroxide
  • AMP ammonium methyl propanol
  • TMAH tetra methyl ammonium hydroxide
  • potassium hydroxide sodium hydroxide, magnesium hydroxide, rubidium hydroxide, cesium hydroxide
  • carbonic acid It may be at least one selected from the group consisting of sodium hydrogen, sodium carbonate, triethanolamine, tromethamine, and niacinamide.
  • the pH adjusting agent may be triethanolamine or aminobutyric acid.
  • any solvent may be used as long as it is used in a slurry composition for chemical mechanical polishing, and for example, deionized water may be used, but the present invention is not limited thereto. Also, preferably, ultrapure water can be used.
  • the amount of the solvent may be the amount remaining after excluding the content of the cerium oxide particles and other additional additives with respect to the entire slurry composition for chemical mechanical polishing.
  • the solvent includes water (eg, deionized water) as an aqueous carrier and may include one or more water-miscible organic solvents.
  • organic solvents examples include alcohols such as propenyl alcohol, isopropyl alcohol, ethanol, 1-propanol, methanol, 1-hexanol and the like; aldehydes such as acetylaldehyde and the like; ketones such as acetone, diacetone alcohol, methyl ethyl ketone and the like; esters such as ethyl formate, propyl formate, ethyl acetate, methyl acetate, methyl lactate, butyl lactate, ethyl lactate and the like; ethers including sulfoxides such as dimethyl sulfoxide (DMSO), tetrahydrofuran, dioxane, diglyme, and the like; amides such as N,N-dimethylformamide, dimethylimidazolidinone, N-methylpyrrolidone and the like; polyhydric alcohols and their derivatives such as ethylene glycol, glycerol
  • the polishing composition optionally further includes one or more other additives.
  • the polishing composition may include surfactants and/or rheology modifiers including viscosity enhancers and coagulants (eg, polymer rheology modifiers such as urethane polymers), biocides (eg, KATHONTM LX), and the like.
  • Suitable surfactants include, for example, cationic surfactants, anionic surfactants, anionic polyelectrolytes, nonionic surfactants, amphoteric surfactants, fluorinated surfactants, mixtures thereof, and the like.
  • the slurry composition for chemical mechanical polishing is characterized by excellent dispersion stability and, in particular, a high polishing rate for a silicon oxide film.
  • the slurry composition for chemical mechanical polishing may be provided in the form of a one-component slurry composition containing all components such as cerium oxide particles, a solvent, and other additives, and, if necessary, the components are mixed in two containers or three or more containers. It may be provided in the form of a two-component or three-component slurry composition that mixes them at or near the time of use after each storage. Selection of such a provision form and storage component combinations are within the knowledge of those skilled in the art, and the overall polishing characteristics and polishing rate can be adjusted by varying the mixing ratio.
  • the slurry composition for chemical mechanical polishing is characterized in that it has a silicon oxide film polishing rate of 1,000 ⁇ / min or more, preferably 2,000 ⁇ / min or more, more preferably 3,000 ⁇ / min or more Basically, the higher the oxide film polishing rate, the better, and the upper limit will be non-limiting, but preferably 10000 ⁇ / min or less, 9000 ⁇ / min or less, 8000 ⁇ / min or less, 7000 ⁇ / min or less, 6000 ⁇ / min or less It may be characterized by having a silicon oxide film polishing rate of min or less, or 5000 ⁇ /min or less.
  • the particle size is small even in the low content range of cerium oxide particles, so the number of particles included is large compared to the conventional slurry composition containing cerium oxide particles , Si-O-Ce bonding increases due to the high surface Ce 3+ content, so the silicon oxide film polishing rate may be significantly increased.
  • the slurry composition for chemical mechanical polishing may have a polishing selectivity of oxide film/polysilicon film of 50 or more, 100 or more, 150 or more, or 200 or more, 3,000 or less, 2,000 or less, 1,500 or less, It may be characterized by having a polishing selectivity of an oxide film/polysilicon film of 1,000 or less, 900 or less, or 800 or less. In the case of the oxide film/polysilicon film selectivity, it cannot be ruled out that a selectivity of 3,000 or more can be achieved by appropriately adjusting the content of the cationic polymer.
  • cerium oxide When cerium oxide is used as an abrasive, chemical bonding of Si-O-Ce occurs due to the high reactivity of cerium oxide with silicon oxide, unlike mechanical polishing in which only the hydration layer formed on the surface is removed.
  • the silicon oxide film is polished by removing the silicon oxide chunks from the surface like peeling.
  • the cerium oxide powder according to the embodiment of the present invention has a low strength due to a small particle size, and thus has excellent flatness over a wide area during polishing and can solve the problem of micro scratches formed by large particles.
  • Another aspect of the present invention is,
  • cerium oxide particles menstruum; And a cationic polymer; it provides a slurry composition for chemical mechanical polishing, characterized in that it comprises.
  • the oxide film polishing rate increases according to the content of the cationic polymer. Since this is a key technical feature of the slurry composition for chemical mechanical polishing of the present application compared to the prior art, it will be described in detail below.
  • the cationic polymer may contribute two roles to the slurry composition for chemical mechanical polishing of the present invention.
  • the cationic polymer may serve as a stabilizer for the slurry composition, and serve as a pH buffer to ensure particle dispersibility and dispersion stability.
  • the cationic polymer of the present invention can serve as a polishing accelerator for an oxide film.
  • cationic polymers are added to increase dispersion stability or used for the purpose of protecting field oxides when removing steps, and in order to obtain these characteristics, the oxide film polishing rate has to be sacrificed in part.
  • the cationic polymer added to the polishing slurry of the present invention not only increases the dispersion stability, but also increases the overall polishing rate for the oxide film as the amount of the cationic polymer added increases.
  • the content of the cationic polymer may be 0.001 wt% or more, 0.002 wt% or more, 0.003 wt% or more, 0.004 wt% or more, or 0.005 wt% or more based on the total weight of the slurry composition for chemical mechanical polishing. And, it may be 1% by weight or less, 0.5% by weight or less, 0.1% by weight or less, 0.05% by weight or less, 0.03% by weight or less, or 0.01% by weight or less.
  • the content of the cationic polymer is less than 0.001% based on the total weight of the slurry composition for chemical mechanical polishing, the content is too insignificant to sufficiently play a role as a polishing accelerator, and thus cannot affect the polishing rate. On the contrary, 1% If it exceeds, the added cationic polymer may interfere with the polishing process of cerium oxide and rather reduce the polishing rate.
  • the cationic polymer may be characterized in that it is a polymer or copolymer containing an amine group or an ammonium group.
  • the cationic polymer is polydiallyldimethyl ammonium chloride, polyallylamine, polyehthyleneimine, polydiallylamine, polypropylene It may be characterized by imine (polypropyleneimine), polyacrylamide-co-diallydimethyl ammonium chloride, polyacrylamide, or a combination thereof, preferably polydi Allyldimethyl ammonium chloride, polyallylamine, polyehthyleneimine, polyacrylamide-co-diallydimethyl ammonium chloride, polyacrylamide , Poly(trimethylammonio ethyl methacrylate), dicyandiamide-diethylenetriamine copolymer, diallyldimethylamine/hydrochloride-acrylamide copolymer hydrochloride-acryl
  • the third aspect of the present invention is,
  • It provides a method for manufacturing a semiconductor device comprising the step of polishing using the chemical mechanical polishing slurry composition.
  • STI shallow trench isolation
  • Separation between devices may start with a photo process, which is the first step.
  • the photo process is performed in an auxiliary equipment called a track and an exposure machine that exposes light to copy a circuit pattern (mask) onto a wafer.
  • a photoresistor is applied. Since the photoresist has a high viscosity, it is applied thinly on the insulating film while rotating the wafer.
  • the applied photoresist should be of uniform height so that the photoresist depth is appropriate. If the exposure depth is insufficient during exposure, photoresist residue remains during development and the lower film (insulating layer) is not well removed in the subsequent etching process. After photosensitization, the wafer is moved back to the track equipment and a developing process is performed to remove the photosensitive area.
  • the etching of STI is a process of removing a part of the insulating layer (oxide layer + nitride layer) and the substrate right below the developed area (from which the photoresist film was removed).
  • the etching process may be a dry or wet process.
  • the dry etching method is usually a method of digging using a plasma state. Compared to the wet (liquid) method, the dry method does not etch side walls (anisotropic etching) and may be advantageous in shaping the trench by only digging downward. In this case, since over-etching may occur, it will be necessary to accurately calculate the etching end point before proceeding. Residues remain after etching, so they can be treated.
  • the photoresist layer is no longer useful and can be removed by ashing.
  • the ashing process it may be preferably performed using plasma, and more accurate ashing may be possible.
  • the shape of the semiconductor device up to the ashing process is shown in FIG. 2 .
  • the method of manufacturing a semiconductor device may include simultaneously polishing a silicon oxide layer, a silicon nitride layer, and a polysilicon layer using the chemical mechanical polishing slurry composition.
  • FIGS. 2 to 6 are cross-sectional views illustrating a method of manufacturing a semiconductor device according to an exemplary embodiment of the present disclosure.
  • a trench 13 may be formed in the upper layer 11 on the lower layer 10 .
  • an upper layer 11 may be formed on the lower layer 10 and a nitride layer (polishing stop layer) 12 may be formed on the upper layer 11 .
  • the lower layer 10 may include any material layer.
  • the lower layer 10 may be an insulating layer, a conductive layer, a semiconductor layer, or a semiconductor wafer (substrate).
  • the upper layer 11 may include an insulating layer (oxide layer), a conductive layer, a semiconductor layer, or a combination thereof.
  • the insulating layers may be of the same type or different types.
  • the upper layer 11 may include alternately and repeatedly stacked silicon oxide layers and silicon nitride layers.
  • the upper layer 11 may further include a semiconductor layer and a lower insulating layer under the silicon oxide layers and the silicon nitride layers.
  • the lower insulating layer may be disposed below the semiconductor layer.
  • the nitride film (polishing stop film) 12 may be formed to have a relatively large thickness (eg, 100 ⁇ to 4,000 ⁇ ) by depositing silicon nitride (eg, SiN), polysilicon, metal nitride (eg, TiN), metal, or the like.
  • the trench 13 may be formed through an etching process or a drilling process.
  • the trench 13 may have a depth that penetrates the nitride layer (polishing stop layer) 12 and the upper layer 11 to reach the lower layer 10 .
  • the trench 13 may have a sufficient depth to expose the lower layer 10 .
  • STI may form a double oxide layer.
  • a liner oxide film is thinly coated as the first insulating film 14 in a diffusion method. It can be determined that the second insulating film using the CVD deposition in the subsequent step is well formed on the silicon substrate.
  • HDPCVD high-density plasma CVD
  • the first insulating film may be formed into a thin film such as a gate oxide film by injecting oxygen gas into a furnace for diffusion and heating it to a high temperature.
  • a nitride film may be used instead of an oxide film.
  • a first insulating layer 14 and a second insulating layer 15 filling the trench 13 may be formed by depositing a plurality of insulating materials.
  • the first insulating layer 14 and the second insulating layer 15 may have different densities and different deposition rates.
  • the first insulating film 14 may be formed by depositing a high-density insulating material
  • the second insulating film 15 may be formed by depositing a low-density insulating material.
  • the first insulating layer 14 may be formed by depositing and patterning a high-density plasma (HDP) oxide.
  • the first insulating layer 14 may be formed to extend along the inner surface of the trench 13 .
  • the first insulating layer 14 may have a shape of a U or a pipe opening upward.
  • the second insulating film 15 may be formed by depositing, for example, tetraethylorthosilicate (TEOS) oxide to a thickness sufficient to cover the polishing stop film 12 while filling the trench 13 in which the first insulating film 14 is formed. there is.
  • the second insulating layer 15 may be formed at a faster deposition rate than that of the first insulating layer 14 . Due to the fast deposition rate of the second insulating layer 15 , the trench 13 can be filled with the second insulating layer 15 relatively quickly.
  • the second insulating film 15 may be partially removed to leave the second insulating film 15 on the trench 13 .
  • the second insulating layer 15 may be selectively removed to limit or open a specific region, such as a cell memory region of a semiconductor device, through a photo process and an etching process. Accordingly, part or all of the second insulating film 15 on the polishing stop film 12 may be removed, and the second insulating film 15 may remain on the trench 13 .
  • the opening process of the specific area may be selectively performed, and may not necessarily be performed.
  • a planarization process may be performed on the second insulating layer 15 .
  • the second insulating layer 15 may be planarized using a chemical mechanical polishing (CMP) process.
  • CMP chemical mechanical polishing
  • the chemical mechanical polishing process may continue until the nitride film (polishing stop film 12) is exposed.
  • the chemical mechanical polishing process may be performed after forming the second insulating layer 15 of FIG. 4 . In this case, since the surface of the nitride film (polishing stop film 12) is relatively flat or non-flat even if it is not flat, the chemical mechanical polishing process can be easily performed.
  • an STI may be formed by removing the nitride layer.
  • the purpose of the nitride film is to protect the upper film 11 so that the upper film 11 is not affected by the first insulating film 14 . Since the upper layer 11 can be a gate oxide layer that is thin and needs to be highly reliable, it needs to be handled carefully.
  • the nitride film is removed by an etching method (wet process)
  • the wafer may be immersed in a chemical solution so that the oxide film is not etched and only the nitride film is etched.
  • a solution having a high selectivity (etch rate) to the nitride film may be used.
  • the nitride film may be removed by CMP. In this case, it may not be necessary to etch the nitride film, but since there is a possibility of physically damaging the oxide film, it is preferable to chemically treat the nitride film by etching to protect the oxide film.
  • the chemical mechanical polishing (CMP) process completely removes the first insulating film 14 and the second insulating film 15 on top of the nitride film (polishing stop film 12) after gap filling to form an active region
  • CMP chemical mechanical polishing
  • the first step local planarization is performed while performing bulk CMP of the second insulating film 15 on the platen.
  • the second insulating film 15, the step of which is alleviated in the platen is washed or polished, and the polishing is stopped at the point where the nitride film (polishing stop film 12) is exposed.
  • polishing end point detection EPD
  • targeting may be performed by removing residues of the second insulating film 15 that may remain on the nitride film (polishing stop film, 12) and polishing the nitride film and oxide film quality.
  • CMP chemical mechanical polishing
  • a method of simultaneously polishing a silicon oxide film, a silicon nitride film, and a polysilicon film using the chemical mechanical polishing slurry composition is not limited to conventional and commonly used polishing methods and conditions Any surface can be used, and is not particularly limited in the present invention.
  • the slurry composition for chemical mechanical polishing has high dispersion stability and high Ce 3+ content on the surface of the cerium oxide particles included in the slurry composition, thereby forming Si-O-Ce between silica and cerium.
  • the polishing mechanism can increase the polishing rate of a silicon-containing substrate, so that it can be effectively used to remove a silicon oxide film, particularly, from the surface of a semiconductor device in a CMP process even under a condition containing a low content of ceria.
  • the fourth aspect of the present invention is,
  • a semiconductor device comprising: a substrate; and a trench filled with an insulating material on the substrate, wherein the trench is used for polishing at least one film selected from the group consisting of a silicon oxide film, a silicon nitride film, and a polysilicon film by using a slurry composition for chemical mechanical polishing.
  • the slurry composition for chemical mechanical polishing includes cerium oxide particles; and a solvent, wherein the light transmittance to light having a wavelength of 500 nm is 50% or more in an aqueous dispersion in which the content of the cerium oxide particles is adjusted to 1.0% by weight.
  • a fifth aspect of the present invention is,
  • Preparing a raw material precursor Obtaining a dispersion of cerium oxide particles for chemical mechanical polishing by pulverizing or precipitating cerium oxide particles in a solution containing a raw material precursor; Provided is a method for producing cerium oxide particles for chemical mechanical polishing, characterized in that the light transmittance is 50% or more for light of 500 nm.
  • preparing a raw material precursor may include.
  • the raw material precursor may be used without limitation as long as it is a precursor material capable of producing cerium oxide particles as a product.
  • obtaining a dispersion of cerium oxide particles for chemical mechanical polishing by grinding or precipitating cerium oxide particles in a solution containing a raw material precursor may include.
  • the step of pulverizing the cerium oxide particles in the solution containing the raw material precursor may be, for example, pulverization through a milling process, and the pulverization method may be determined within the scope of common knowledge of a person skilled in the art without limitation.
  • the cerium precursor may be at least one selected from the group consisting of cerium ammonium nitrate, cerium nitrate, cerium ammonium sulfate, cerium acetate, cerium chloride, cerium hydroxide, and cerium oxide.
  • the filtering step may be performed using non-limiting filtration equipment, more preferably using a membrane-applied filter equipment.
  • cerium oxide particles prepared by the method according to an embodiment of the present application it can be understood that not only the synthesis of the cerium oxide particles is performed in high yield, but also the cerium precursor material is almost removed through the additional filtration step. .
  • cerium oxide particles according to an embodiment of the present invention when included in a slurry for chemical mechanical polishing despite a small particle size by increasing the ratio of Ce 3+ on the surface of cerium oxide, a high oxide film removal rate is achieved even at a low content can hold
  • surface defects of the wafer can be minimized, and unlike the correlation between surface defects and oxide film removal rate, which is considered a conventional trade-off relationship, the oxide film removal rate is increased while minimizing surface defects. It is possible to provide cerium oxide particles and a slurry composition for a slurry composition for chemical mechanical polishing that can be maximized.
  • the oxide film polishing rate is further increased and the oxide film/polysilicon film selectivity is increased by the addition of the cationic polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Composite Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

화학적 기계적 연마용 산화 세륨 입자 및 이를 포함하는 화학적 기계적 연마용 슬러리 조성물을 제공한다. 상기 산화 세륨 입자의 표면에는 Ce3+ 및 Ce4+를 포함하고 있는 것을 특징으로 하고, 본 발명의 실시예에 따른 산화 세륨 입자를 사용하는 경우, 산화 세륨 표면의 Ce3+의 비율을 증가시켜 미세한 입자 크기에도 불구하고 저함량 범위에서 높은 산화막 제거 속도 및 산화막 연마 선택비를 나타낼 수 있다.

Description

산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
본 발명은 화학적 기계적 연마용 산화 세륨 입자 및 이를 포함하는 화학적 기계적 연마용 슬러리 조성물 및 반도체 소자의 제조 방법에 관한 것으로서, 보다 상세하게는, 기존 산화 세륨 입자와 다르게 합성을 통해 산화 세륨 표면의 Ce3+의 비율을 증가시켜 작은 입자 크기에도 불구하고 저함량에서 높은 산화막 제거 속도를 보유 화학적 기계적 연마용 슬러리 조성물 및 이를 이용한 반도체 소자의 제조 방법에 관한 것이다.
반도체 소자가 다양해지고 고집적화됨에 따라 더욱 미세한 패턴 형성 기술이 사용되고 있으며, 그에 따라 반도체 소자의 표면 구조가 더욱 복잡해지고 포토리소그래피(photolithography)의 정밀도 향상을 위해서 각 공정에서의 층간 평탄도가 매우 중요한 요소로 작용하고 있다. 반도체 소자를 제조하는 데 있어, 이러한 평탄화 기술로서 CMP(chemical mechanical polishing) 공정이 이용된다. 예를 들어, 층간 절연을 위해 과량으로 성막된 절연막을 제거하기 위한 공정으로 ILD(interlayer dielectronic)와, 칩(chip)간 절연을 하는 STI(shallow trench isolation)용 절연막의 평탄화를 위한 공정 및 배선, 컨택 플러그, 비아 컨택 등과 같은 금속 도전막을 형성하기 위한 공정으로서도 많이 사용되고 있다.
CMP 공정에 있어서 연마 속도, 연마 표면의 평탄화도, 스크래치의 발생 정도가 중요하며, CMP 공정 조건, 슬러리의 종류, 연마 패드의 종류 등에 의해 결정된다. 산화 세륨 슬러리에는 고순도의 산화 세륨 입자가 사용되어진다. 최근 들어, 반도체 소자의 제조 공정에서는 한층 더 높은 배선의 미세화를 달성할 것이 요구되고 있으며, 연마 시에 발생하는 연마 흠집이 문제가 되고 있다.
종래의 산화 세륨 슬러리는 30nm에서 200nm 크기의 입자를 사용하고 있으며 연마를 진행했을 때, 미세한 연마 흠집이 발생하더라도 종래의 배선 폭보다 작은 것이면 문제가 되지 않았지만 지속적으로 높은 배선의 미세화를 달성하고 하는 현 시점에서는 문제가 되고 있다. 이 문제에 대하여, 산화 세륨 입자의 평균 입자 직경을 작게 하는 시도가 이루어지고 있지만 기존의 입자의 경우 평균 입자 직경을 작게 하면 기계적 작용이 저하되기 때문에 연마 속도가 저하되는 문제점이 발생하였다.
이와 같이 산화 세륨 입자의 평균 입자 직경을 제어함으로써 연마 속도 및 연마 흠집을 제어하고자 하더라도 연마속도를 유지하면서 연마 흠집의 목표 수준을 달성하는 것은 매우 어렵다.
또한, 종래의 화학적 기계적 연마용 슬러리 조성물은 산화 세륨 입자는 Ce3+ 대 Ce4+ 비율을 최적화함과 동시에, 최적화된 수준의 평균 입자 직경을 제시하지 못하고 있으며, 따라서 산화 세륨 표면의 Ce3+의 비율을 증가시켜 작은 입자 크기에도 불구하고 높은 산화막 제거 속도를 나타내는 산화 세륨 입자를 포함하는 연마용 슬러리에 대한 연구가 필요한 실정이다.
본 발명은 전술한 문제를 해결하고자 안출된 것으로서, 본 발명의 일 실시예는 화학적 기계적 연마용 산화 세륨 입자를 제공한다.
또한, 본 발명의 다른 일 실시예는 화학적 기계적 연마용 슬러리 조성물을 제공한다.
또한, 본 발명의 다른 일 실시예는 상기 화학적 기계적 연마 슬러리 조성물을 이용하여 연마하는 단계를 포함하는 반도체 소자의 제조 방법을 제공한다.
또한, 본 발명의 다른 일 실시예는 반도체 소자를 제공한다.
또한, 본 발명의 다른 일 실시예는 화학적 기계적 연마용 산화 세륨 입자의 제조 방법을 제공한다.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 한정되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
전술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 일 측면은,
화학적 기계적 연마용 산화 세륨 입자로서, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 500 nm의 광에 대하여 광투과도가 50% 이상인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자를 제공한다.
상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 450 내지 800 nm의 광에 대하여 평균 광투과도가 50% 이상인 것을 특징으로 하는 것일 수 있다.
상기 산화 세륨 입자가 화학적 기계적 연마 슬러리에 포함될 때, 상기 화학적 기계적 연마 슬러리는 투명한 것을 특징으로 하는 것일 수 있다.
상기 산화 세륨 입자는 화학적 기계적 연마 슬러리에 포함될 때, 단분산되는 것을 특징으로 할 수 있다.
동적광산란 입도분석기(DLS)로 측정한 상기 산화 세륨 입자의 2차 입자 크기는 1 내지 30 nm인 것을 특징으로 하는 것일 수 있다.
동적광산란 입도분석기(DLS)로 측정한 상기 산화 세륨 입자의 2차 입자 크기는 1 내지 20 nm인 것을 특징으로 하는 것일 수 있다.
X선 회절(XRD) 분석 시, 상기 산화 세륨 입자의 1차 입자 크기는 0.5 내지 15 nm인 것을 특징으로 하는 것일 수 있다.
전자투과현미경(TEM) 분석 시, 상기 산화 세륨 입자의 입자 크기는 10 nm 이하인 것을 특징으로 할 수 있다.
소각 X선 산란 방식(SAXS)으로 분석 시, 상기 산화 세륨 입자의 입자 크기는 0.5 내지 15 nm인 것을 특징으로 하는 것일 수 있다.
푸리에 변환 적외선(FT-IR) 분광법에 의해 측정된 스펙트럼에서, 3000 cm-1 내지 3600 cm-1의 범위 내에서 적외선 투과도는 90% 이상이고, 720 cm-1 내지 770 cm-1의 범위 내에서 적외선 투과도는 96% 이하인 것을 특징으로 하는 것일 수 있다.
상기 산화 세륨 입자의 표면에서, X 선 광전자 분광(XPS) 분석 시, Ce3+를 나타내는 Ce-O 결합 에너지를 나타내는 XPS 피크가 900.2 내지 902.2 eV의 제1 피크, 896.4 내지 898.4 eV의 제2 피크, 885.3 내지 887.3 eV의 제3 피크 및 880.1 내지 882.1 eV의 제4 피크에서 나타나는 것을 특징으로 하는 것일 수 있다.
X 선 광전자 분광(XPS) 분석 시, 상기 산화 세륨 입자 표면의 Ce-O 결합 에너지를 나타내는 XPS 피크 면적의 총합에 대한, Ce3+를 나타내는 Ce-O 결합 에너지를 나타내는 XPS 피크 면적의 합의 비는 0.29 내지 0.70인 것을 특징으로 하는 것일 수 있다.
455 cm-1 내지 460 cm-1의 밴드 범위 내에 제1 라만 피크를 가지는 것을 특징으로 하는 것일 수 있다.
586 cm-1 내지 627 cm-1의 밴드 범위 내에 제2 라만 피크를 추가로 가지는 것을 특징으로 하는 것일 수 있다.
712 cm-1 내지 772 cm-1의 밴드 범위 내에 제3 라만 피크를 추가로 가지는 것을 특징으로 하는 것일 수 있다.
상기 제2 라만 피크 강도(B)에 대한 제1 라만 피크 강도(A)의 비(A/B)는 25 이하인 것을 특징으로 하는 것일 수 있다.
상기 제3 라만 피크 강도(C)에 대한 제1 라만 피크 강도(A)의 비(A/C)는 50 이하인 것을 특징으로 하는 것일 수 있다.
전자 에너지 손실 분광(EELS) 스펙트럼은 876.5 내지 886.5 eV의 제1 피크 및 894.5 내지 904.5 eV의 제2 피크를 포함하고, 상기 제1 피크의 최대 강도가 제2 피크의 최대 강도보다 큰 것을 특징으로 하는 것일 수 있다.
886.5 내지 889.5 eV의 제3 피크 및 904.5 내지 908.5 eV의 제4 피크를 더 포함하고, 상기 스펙트럼의 피크의 전체 면적의 합(Pt)에 대한 상기 제3 피크 구간의 면적의 합(P1) 및 상기 제4 피크 구간의 면적의 합(P2)의 비율((P1+P2)/Pt)이 0.1 이하인 것을 특징으로 하는 것일 수 있다.
XAFS(X-ray absorption fine structure) 스펙트럼에 따른 Ce3+를 나타내는 피크의 면적(A3) 및 Ce4+를 나타내는 피크의 면적(A4)의 합에 대하여, Ce3+를 나타내는 피크의 면적(A3)의 비(A3/(A3+A4))는 0.03 이상인 것을 특징으로 하는 것일 수 있다.
XAFS(X-ray absorption fine structure) 스펙트럼에 따른 Ce3+를 나타내는 피크의 면적(A3) 및 Ce4+를 나타내는 피크의 면적(A4)의 합에 대하여, Ce3+를 나타내는 피크의 면적(A3)의 비(A3/(A3+A4))는 0.1 이상인 것을 특징으로 하는 것일 수 있다.
XAFS 스펙트럼 측정 시, 5730 eV 이상 5740 eV 미만의 범위 내에서 제1 피크의 최대 광흡수계수를 가지고, 상기 제1 피크의 최대 광흡수계수는 0.1 내지 0.4인 것을 특징으로 하는 것일 수 있다.
XAFS 스펙트럼 측정 시, 5740 eV 이상 5760 eV 미만의 범위 내에서 제2 피크의 최대 광흡수계수를 가지고, 상기 제2 피크의 최대 광흡수계수는 0.6 미만인 것을 특징으로 하는 것일 수 있다.
상기 산화 세륨 입자는 UV 광전자 분광(ultraviolet photoelectron spectroscopy, UPS)분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 10 eV이하의 범위 내에 존재하는 것을 특징으로 하는 것일 수 있다.
상기 산화 세륨 입자는 UPS 분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 3 내지 10 eV의 범위 내에 존재하는 것을 특징으로 하는 것일 수 있다.
상기 산화 세륨 입자는 UPS 분석 시, 일 함수(work function) 값이 3.0 eV 내지 10.0 eV를 나타내는 것을 특징으로 하는 것일 수 있다.
상기 산화 세륨 입자는 BET 표면적 값이 50m2/g 이하인 것을 특징으로 하는 것일 수 있다.
상기 산화 세륨 입자는 정치법에 의해 측정한 겉보기 밀도가 2.00 내지 5.00 g/ml인 것을 특징으로 하는 것일 수 있다.
상기 산화 세륨 입자는 탭법에 의해 측정한 겉보기 밀도가 2.90 내지 5.00 g/ml인 것을 특징으로 하는 것일 수 있다.
상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에 대해, 325 nm의 파장에서 발광 세기(Photoluminescence: PL)를 측정할 때, 435 내지 465 nm 파장의 제1 피크(λ1)의 최대 강도가 0.1 내지 30의 범위로 나타나는 것을 특징으로 하는 것일 수 있다.
510 내지 540 nm 파장의 제2 피크(λ2)의 최대 강도가 0.1 내지 10의 범위로 나타나는 것을 특징으로 하는 것일 수 있다.
510 내지 540 nm 파장의 제2 피크(λ2)에 대한, 상기 제1 피크(λ1)의 강도비 (λ12)가 5 내지 15인 것을 특징으로 하는 것일 수 있다.
상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액의 색을 L*a*b* 표색계로 나타낼 때, L*의 값이 95 이상이고, b*의 값은 10 내지 25 인 것을 특징으로 하는 것일 수 있다.
(L*은 명도, a*는 적색도, b*는 황색도를 나타낸다)
상기 a*는 -12 내지 -3인 것을 특징으로 하는 것일 수 있다.
상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액을 원심력 4250 G의 조건으로 30분간 원심분리했을 때의 산화 세륨 입자의 침강율이 25 중량% 이하인 것을 특징으로 하는 것일 수 있다.
또한, 본 발명의 다른 일 측면은,
산화 세륨 입자; 및 용매를 포함하고, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 500 nm의 광에 대하여 광투과도가 50% 이상인 것을 특징으로 하는, 화학적 기계적 연마용 슬러리 조성물을 제공한다.
상기 산화 세륨 입자는 전체 슬러리 조성물 100 중량부를 기준으로 0.01 내지 5 중량부로 포함되는 것을 특징으로 하는 것일 수 있다.
상기 조성물의 pH는 2 내지 10인 것을 특징으로 하는 것일 수 있다.
상기 화학적 기계적 연마용 슬러리 조성물은 황산, 염산, 질산, 인산으로 이루어진 군에서 선택된 1종 이상인 무기산, 아세트산, 시트르산, 글루타르산, 글루콜산, 포름산, 젖산, 말산, 말론산, 말레산, 옥살산, 프탈산, 숙신산, 타르타르산으로 이루어진 군에서 선택된 1종 이상인 유기산, 라이신, 글리신, 알라닌, 아르기닌, 발린, 류신, 이소류신, 메티오닌, 시스테인, 프롤린, 히스티딘, 페닐알라닌, 세린, 트라이신, 티로신, 아스파르트산, 트립토판(Tryptophan), 및 아미노부티르산으로 이루어진 군에서 선택된 1종 이상인 아미노산, 이미다졸, 알킬 아민류, 알코올 아민, 4급 아민 하이드록사이드, 암모니아 또는 이들의 조합인 것을 특징으로 하는 것일 수 있다.
상기 용매는 탈이온수인 것을 특징으로 하는 것일 수 있다.
상기 화학적 기계적 연마용 슬러리 조성물은 1,000 내지 5,000 Å/min의 실리콘 산화막 연마속도를 갖는 것을 특징으로 하는 것일 수 있다.
본 발명의 다른 일 측면은, 산화 세륨 입자; 및 용매;를 포함하는 화학적 기계적 연마용 슬러리 조성물로서, 상기 산화 세륨 입자는 습식으로 제조된 것이며, 상기 슬러리 조성물에 포함된 전구체 물질의 함량은 중량 기준 300 ppm 이하인 것을 특징으로 하는, 화학적 기계적 연마용 슬러리 조성물을 제공한다.
화학적 기계적 연마용 슬러리 조성물 전체 중량에 대하여 상기 산화 세륨 입자를 0.001 내지 5% 이하로 포함하는 것을 특징으로 하는 것일 수 있다.
본 발명의 다른 일 측면은,
산화 세륨 입자; 용매; 및 양이온성 고분자;를 포함하는 것을 특징으로 하는, 화학적 기계적 연마용 슬러리 조성물를 제공한다.
상기 양이온성 고분자의 함량에 따라 산화막 연마 속도가 증가하는 것을 특징으로 하는 것일 수 있다.
상기 양이온성 고분자는 산화막/폴리실리콘 막의 연마 선택비를 증가시키는 것을 특징으로 하는 것일 수 있다.
상기 양이온성 고분자의 함량은 화학적 기계적 연마용 슬러리 조성물 전체 중량에 대하여 0.001 내지 1 중량%인 것을 특징으로 하는 것일 수 있다.
상기 양이온성 고분자는 아민기 또는 암모늄기를 포함하는 중합체 또는 공중합체인 것을 특징으로 하는 것일 수 있다.
상기 양이온성 고분자는 폴리디알릴디메틸 암모늄 클로라이드(polydiallyldimethyl ammonium chloride), 폴리알릴아민(polyallylamine), 폴리에틸렌이민(polyehthyleneimine), 폴리디아릴아민(polydiallylamine), 폴리프로필렌이민(polypropyleneimine), 폴리아크릴아미드-co-디알릴디메틸 암모늄 클로라이드(polyacrylamide-co-diallydimethyl ammonium chloride), 폴리아크릴아미드(polyacrylamide), 폴리(트리메틸암모니오 에틸메타크릴레이트)(Poly(trimethylammonio ethyl methacrylate), 디시안디아미드-디에틸렌트리아민 공중합체(dicyandiamide-diethylenetriamine copolymer), 디알릴디메틸아민/염산염-아크릴아미드 공중합체(diallyldimethylamine/hydrochloride-acrylamide copolymer), 디시안디아미드-포름알데히드 공중합체(dicyandiamide-formaldehyde copolymer) 또는 이들의 조합인 것을 특징으로 하는 것일 수 있다.
상기 화학적 기계적 연마용 슬러리 조성물은 200 내지 2,000의 산화막/폴리실리콘 막의 연마 선택비를 갖는 것을 특징으로 하는 것일 수 있다.
또한, 본 발명의 다른 일 측면은,
상기 화학적 기계적 연마 슬러리 조성물을 이용하여 연마하는 단계를 포함하는 반도체 소자의 제조 방법을 제공한다.
또한, 본 발명의 다른 일 측면은,
반도체 소자로서, 기판; 및 상기 기판 상에 절연 물질이 채워져 있는 트렌치;를 포함하고 상기 트렌치는 화학적 기계적 연마용 슬러리 조성물을 사용하여, 실리콘 산화막, 실리콘 질화막 및 폴리실리콘막으로 이루어진 군으로부터 선택된 적어도 1종의 막을 연마하는 것에 의해 생성되고, 상기 화학적 기계적 연마용 슬러리 조성물은, 산화 세륨 입자; 및 용매를 포함하고, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 500 nm의 광에 대하여 광투과도가 50% 이상인 것을 특징으로 하는, 반도체 소자를 제공한다.
또한, 본 발명의 다른 일 측면은,
원료 전구체를 준비하는 단계; 원료 전구체를 포함하는 용액 내에서 산화 세륨 입자를 분쇄 또는 침전시켜 화학적 기계적 연마용 산화 세륨 입자의 분산액을 얻는 단계;를 포함하고, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 500 nm의 광에 대하여 광투과도가 50% 이상인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자의 제조방법을 제공한다.
본 발명의 일 실시예에 의한 산화 세륨의 입자의 경우, 산화 세륨 표면의 Ce3+의 비율을 증가시켜 작은 입자 크기에도 불구하고 화학적 기계적 연마용 슬러리에 포함될 경우, 저함량으로도 높은 산화막 제거 속도를 보유할 수 있다.
또한 본 발명의 일 실시예에 의하면, 웨이퍼의 표면 결함을 최소할 수 있으며, 종래 Trade-off 관계로 여겨진 표면 결함과 산화막 제거 속도와의 상관관계와는 달리, 표면 결함을 최소화하면서 산화막 제거 속도를 극대화할 수 있는 화학적 기계적 연마용 슬러리 조성물용 산화 세륨 입자 및 슬러리 조성물을 제공할 수 있다.
또한 본 발명의 일 실시예에 의하면, 양이온성 고분자가 첨가되는 것에 의해 산화막 연마 속도가 더 상승되는 것과 동시에 산화막/폴리실리콘막 선택비가 상승되는 것을 확인할 수 있다. 양이온성 고분자의 첨가는 통상 연마 속도를 희생하면서 기타 특성을 확보하기 위한 것이 종래의 기술 상식인 것을 감안하면, 이는 본 발명의 특유의 효과로 볼 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 산화막 제거 메커니즘을 도시한 것이다.
도 2 내지 6은 본원의 일 구현예에 따른 반도체 소자 제조 방법을 도시한 단면도들이고, 도 7 및 도 8은 본원의 다른 일 구현예에 따른 화학적 기계적 연마의 단계적 공정 및 화학적 기계적 연마(CMP) 설비의 구조를 나타낸 것이다.
도 9는 종래 산화 세륨 입자를 분산시킨 분산액을 육안으로 관찰한 이미지이다.
도 10은 본 발명의 일 실시예에 따른 산화 세륨 입자를 분산시킨 분산액을 육안으로 관찰한 이미지이다.
도 11 내지 도 13은 본 발명의 일 실시예에 따른 산화 세륨 입자의 TEM 이미지이다.
도 14는 비교예1에 따른 산화 세륨 입자의 SEM 이미지이다.
도 15는 비교예2에 따른 산화 세륨 입자의 SEM 이미지이다.
도 16은 비교예3에 따른 산화 세륨 입자의 SEM 및 TEM이미지이다.
도 17은 비교예4에 따른 산화 세륨 입자의 SEM 이미지이다.
도 18은 비교예1 내지 3의 TEM 이미지이다.
도 19는 본 발명의 일 실시예에 따른 산화 세륨 입자의 XRD(X-ray Diffraction)를 통한 입자 크기 분석 결과이다.
도 20은 본 발명의 일 실시예에 따른 산화 세륨 입자의 소각 X선 산란 방식(SAXS)으로 분석한 결과이다.
도 21은 본 발명의 일 실시예에 따른 산화 세륨 입자의 동적광산란 입도분석(DLS) 결과이다.
도 22는 본 발명의 일 실시예에 따른 산화 세륨 입자 및 수산화 세륨 입자의 푸리에 변환 적외선(FT-IR) 분광법을 통한 스펙트럼 분석 결과이다.
도 23은 본 발명의 일 실시예에 따른 산화 세륨 입자 및 비교예 1 내지 4의 종래 산화 세륨 입자를 포함하는 슬러리의 광투과도를 UV-Vis(자외선-가시광선) 분광법을 이용해 측정한 결과이다.
도 24는 발명의 일 실시예에 따른 산화 세륨 입자의 XRD(X-ray Diffraction) 분석을 통한 강도비 및 피크 면적 결과이다.
도 25는 본 발명의 일 실시예에 따른 산화 세륨 입자의 X선 광전자 분광(XPS) 분석 결과이다.
도 26은 비교예 3에 따른 산화 세륨 입자의 X선 광전자 분광(XPS) 분석 결과이다.
도 27은 본 발명의 일 실시예에 따른 산화 세륨 입자의 라만 피크 분석 결과이다.
도 28은 비교예1에 따른 산화 세륨 입자의 라만 피크 분석 결과이다.
도 29는 비교예3에 따른 산화 세륨 입자의 라만 피크 분석 결과이다.
도 30은 본 발명의 일 실시예에 따른 산화 세륨 입자의 전자 에너지 손실 분광(EELS) 분석 결과이다.
도 31은 비교예3에 따른 산화 세륨 입자의 전자 에너지 손실 분광(EELS) 분석 결과이다.
도 32는 비교예4에 따른 산화 세륨 입자의 전자 에너지 손실 분광(EELS) 분석 결과이다.
도 33은 본 발명의 일 실시예에 따른 산화 세륨 입자의 XAFS(X-ray absorption fine structure) 스펙트럼 분석 결과이다.
도 34는 비교예3에 따른 산화 세륨 입자의 XAFS(X-ray absorption fine structure) 스펙트럼 분석 결과이다.
도 35는 본 발명의 일 실시예에 따른 산화 세륨 입자를 1 질량% 포함하는 수분산액의 UPS(Ultraviolet photoelectron spectroscopy) 분석 결과를 나타낸 것이다.
도 36은 비교예3에 따른 산화 세륨 입자를 1 질량% 포함하는 수분산액의 UPS(Ultraviolet photoelectron spectroscopy) 분석 결과를 나타낸 것이다.
도 37은 비교예4에 따른 산화 세륨 입자를 1 질량% 포함하는 수분산액의 UPS(Ultraviolet photoelectron spectroscopy) 분석 결과를 나타낸 것이다.
도 38은 본 발명의 일 실시예에 따른 산화 세륨 입자의 BET 표면적 측정 결과이다.
도 39는 비교예1에 따른 산화 세륨 입자의 BET 표면적 측정 결과이다.
도 40은 본 발명의 일 실시예에 따른 산화 세륨 입자의 발광 세기(Photoluminescence: PL)를 측정한 결과이다.
도 41은 비교예3에 따른 산화 세륨 입자의 발광 세기(Photoluminescence: PL)를 측정한 결과이다.
도 42는 비교예4에 따른 산화 세륨 입자의 발광 세기(Photoluminescence: PL)를 측정한 결과이다.
도 43은 표색계를 측정하기 위해 준비한 본 발명의 일 실시예에 따른 산화 세륨 입자를 1 질량% 포함하는 분산액이다.
도 44는 표색계를 측정하기 위해 준비한 비교예3에 따른 산화 세륨 입자를 1 질량% 포함하는 분산액이다.
도 45 및 도 46은 본 발명의 일 실시예에 따른 산화 세륨 입자를 포함하는 CMP 슬러리 조성물과 60 nm급 산화 세륨 입자를 포함하는 CMP 슬러리 조성물을 이용한 산화물 웨이퍼의 CMP 전후를 스캔한 이미지이다.
도 47은 본 발명의 일 실시예에 따른 산화 세륨 입자를 포함하는 CMP 슬러리 조성물의 양이온성 고분자 첨가에 따른 산화막 연마속도 거동을 측정한 결과이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예1. 산화 세륨 입자의 제조
본원발명의 일 실시예에 따른 상기 산화 세륨 입자는 바텀 업(bottom up)방식으로 화학적 합성을 통해 합성될 수 있다. 본원의 실시예에서는 아래에 제시하는 산화 세륨 입자 제조방법 중 선택된 어느 하나의 방법으로 산화 세륨 입자를 제조하였다.
본원의 일 실시예에 따른 제조방법에 따라, 우선 충분한 양의 탈이온수에 질산 세륨 약 2~4 kg 첨가하고 교반하였다. 상기 전구체 용액에 질산을 첨가하여 pH를 1.0이하로 조절하였다. 제조된 혼합물에 침전물이 생길 때까지 암모니아수를 첨가하고 교반하였다. 교반된 혼합물의 pH는 강산성을 나타내었으며(2 이하), 교반 완료 시 방치하면 생성물은 빠르게 침전되는 것을 확인하였다. 침전물을 제외한 상층액을 제거한 후 일정량을 탈이온수를 투입하였고, 연한 노란색의 산화 세륨 입자 분산액이 생성되었다. 제조된 분산액을 맴브레인 필터를 통해 순환여과하여 투명한 황색 산화세륨 분산액을 얻었다.
본원의 또 다른 일 실시예에 따른 제조방법에 따라, 우선 산화 세륨 또는 수산화 세륨 150g을 탈이온수 3kg에 분산해 입자가 침전되지 않을 정로도 교반시켰다. 상기 혼합물에 질산을 pH가 1.0이하가 될 때까지 첨가하였다. 0.05mm 지르코니아 비드를 충진한 밀링기에 상기 혼합물을 첨가하여 4,000rpm으로 순환시키면서 분쇄시켰다. 밀링이 진행되면서 흰색 불투명한 산화 세륨 분산액이 점점 황색 투명한 산화 세륨 분산액으로 변하는 것을 관찰하였다. 밀링 종료 후 제조된 황색 투명한 산화 세륨 분산액은 맴브레인 필터를 통해 순환 여과하여 순수한 황색 투명한 산화세륨 분산액을 얻었다.
본원의 다른 일 실시예에 따른 제조방법에 따라, 우선 충분한 양의 에탄올에 세릭암모늄나이트레이트를 약 2~4 kg 첨가하고 교반하였다. 상기 전구체 용액에 침전물이 생길 때까지 이미다졸 용액을 첨가하고 교반하였다. 교반된 혼합물의 pH는 강산성을 나타내었으며(2 이하) 교반 완료 시 방치하면 생성물은 빠르게 침전되는 것을 확인하였다. 침전물을 제외한 상층액을 제거한 후 일정량을 탈이온수를 투입하였고, 산화 세륨 입자 분산액이 생성되었다. 제조된 분산액을 맴브레인 필터를 통해 순환여과하여 투명한 산화세륨 분산액을 얻었다.
본원의 또 다른 일 실시예에 따른 제조방법에 따라, 우선 반응 용기에 질산세륨 1.1kg와 탈이온수 10kg를 혼합하였다. 반응 용기 교반속도는 200rpm으로 유지하고 상온을 유지시켰다. 25% Ammonia Solution과 탈이온수 1:1 혼합액을 준비 후 반응용기에 pH가 7.0이 될 때까지 투입하였다. 1시간 교반 진행 후 70% 질산과 탈이온수 1:1 혼합액을 pH 1.0이 될 때까지 첨가하였다. 반응기 온도를 100℃까지 승온시킨 후 4시간 동안 반응시켰다. 반응이 진행되는 동안 연보라색 거대입자가 해리되면서 황색 투명한 산화세륨 나노입자가 생성되었다. 얻어진 입자를 맴브레인 필터를 사용하여 순환시키면서 분순물을 제거하고 순수한 산화 세륨 나노입자 분산액을 얻었다.
제조예2. 산화 세륨 입자를 포함하는 CMP 슬러리의 제조
상기 제조예 1에서 제조된 산화 세륨 입자를 탈이온수에 첨가하여, 연마재 농도를 0.05 중량%로 맞추고, 트리에타놀아민을 첨가하여 pH를 5.5로 맞추어 CMP 슬러리를 제조하였다.
도 9 및 도 10에 따르면, 종래의 세리아 입자를 포함하는 슬러리의 경우, 육안으로도 탁도가 높음을 관찰할 수 있었던 반면, 본 발명의 산화 세륨 입자를 포함하는 슬러리의 경우 투명한 것을 관찰할 수 있어, 단분산 특성이 있음을 추정할 수 있다.
비교예1 내지 4. 종래의 세리아 입자를 포함하는 슬러리 조성물의 제조
평균 입자의 크기가 각각 10, 30, 60 nm인 시판되는 습식 산화 세륨 입자 및 별도로 하소법에 의해 제조된 10 내지 20nm급 산화 세륨 입자를 제조하여, 각각 탈이온수에 첨가하여 연마재 농도를 0.05 중량%로 맞추고, pH 조절제로 암모니아를 첨가하여 최종 pH를 5.5로 맞추어 CMP 슬러리를 제조하였다.
실험예1. 산화 세륨 입자의 SEM 및 TEM 분석
본 발명의 일 실시예에 따른 제조예 1의 분산액을 대략 80~90 ℃에서 건조하여 분체 형태의 산화 세륨 입자(1차 입자)를 준비하였다(샘플 A). 한편, 비교예 1 내지 4 분산액 제조 시 사용한 산화 세륨 입자를 각각 준비하였다(순서대로 각각 샘플 B1, B2, B3 및 B4). 상기 준비된 샘플 각각에 대해 TEM 측정 기기를 이용하여 이미지를 촬영하였다.
도 11 내지 도 13은 본 발명의 일 실시예에 따른 산화 세륨 입자의 TEM 이미지이다.
도 11 내지 13을 참조하면, 발명의 일 실시예에 따라 제조된 산화 세륨 입자의 TEM 측정에 따른 입자 크기는 평균적으로 약 4 nm 이하(반복 측정에서 각각 3.9 nm, 3.4 nm, 2.9 nm 나타남)로 나타난 것을 확인할 수 있었다. 본 발명의 일 실시예에 따른 산화 세륨 입자의 평균적인 1차 입자 크기는 4 nm이하를 나타냄을 볼 수 있다. 또한 상기 산화 세륨 입자는 평균적으로 구형 입자의 형상을 갖는 것을 확인할 수 있다. 입자 크기가 작고 크기 분포가 비교적 균일한 구형의 산화 세륨 입자는 넓은 비표면적을 가질 수 있으며, 분산 안정성 및 저장 안정성이 우수한 특징을 갖는다.
도 14 내지 도 17은 비교예에 따른 종래의 산화 세륨 입자의 SEM 이미지를 나타낸 것이다.
도 14 내지 도 17을 참조하면, 종래 시판되는 산화 세륨 입자는 각각의 사이즈 급에 맞는 입자 크기를 나타내고 있고, 하소법에 의해 별도로 제조된 입자의 경우도 평균적으로는 모두 10 nm 초과의 1차 입자 크기를 나타내는 것을 볼 수 있으며, 이를 도 11 내지 도 13에 나타난 본 발명의 일 실시예에 따른 산화 세륨 입자의 TEM에 의해 측정된 평균적인 입자 크기가 4 nm 이하를 나타냄과 비교하면, 종래 기술의 산화 세륨 입자 및 일반적인 하소법에 의해 제조된 산화 세륨 입자가 훨씬 조대한 입자 크기를 갖는 것을 확인할 수 있다. 반면, 본원발명의 산화 세륨 입자는 입자 크기(1차 입자) 자체가 작게 형성된다는 것을 확인하였고, 이렇게 상기 산화 세륨 입자 크기가 작을수록, 연마 대상막의 표면에 스크래치와 같은 결함을 줄일 수 있는 것을 예상할 수 있다.
또한, 도 18은 비교예인 종래의 산화 세륨 입자의 TEM 이미지를 나타낸 것이다. 도 18을 참조하면, 입자 크기 10nm 급 종래 산화 세륨 입자는 edge를 갖는 입자와 구형의 입자를 포함하고, 입자 크기 30nm급 이상의 종래 산화 세륨 입자는 edge를 갖는 각형의 입자로 이루어진 것을 확인할 수 있다. 반면 위에서 검토한 바와 같이, 본 발명의 실시예에 따른 산화 세륨 입자는 대체로 구형의 형상을 나타내는데, 본원발명의 산화 세륨 입자는 이렇게 구형의 입자 형상을 가지고, 입자 크기가 미세함으로써, 입자 수가 많이 포함될 수 있고, 따라서 실리콘 산화막을 연마할 때에 표면의 결함 발생 확률은 줄이고 광역 평탄도는 높일 수 있다.
실험예 2. 산화 세륨 입자의 X선 회절 (X-ray Diffraction, XRD) 분석
본원의 일 실시예에 따른 제조예 1의 분산액을 대략 80~90 ℃에서 건조하여 분체 형태의 산화 세륨 입자(1차 입자)를 준비하였다(샘플 A). 상기 준비된 샘플 A에 대해, XRD 장비(Rigaku, Ultima IV)를 이용하여 분석을 수행하였다. 이 때, 상기 XRD는 Cu Kα (λ=1.5418Å), 40kV 및 40mA의 조건으로 셋팅되었다.
도 19는 발명의 일 실시예에 따른 산화 세륨 입자의 XRD(X-ray Diffraction) 패턴이다. XRD 패턴을 분석하여 도출한 상기 산화 세륨 입자의 입자 크기를 아래 표 1로 나타내었다.
샘플 결정립 크기(Å)
산화 세륨 32.5(9)
도 19 및 상기 표 1을 참조하면, 샘플 A에 대한 XRD 분석 결과, 도 7과 같은 형태의 XRD 스펙트럼(X축: 2-theta(degree), Y축: intensity)이 도출되었다. 상기 스펙트럼으로부터 계산된 결정립 크기(crystallite size)는 3.25nm였다. 이는, 실험예 1의 TEM 분석 결과와 유사한 수준으로, 이를 통해 본 발명의 입자가 단결정임을 확인할 수 있었다.
실험예 3. 산화 세륨 입자의 소각 X선 산란 방식(SAXS) 분석
본 발명의 일 실시예에 따른 산화 세륨 입자에 대해 소각 X선 산란 방식(SAXS)을 이용하여 입자 크기를 분석하여 이를 도 20에 나타내었다.
도 20을 참조하면, 본 발명의 실시예에 따른 산화 세륨 입자의 입자 크기는 평균 입자 반경 2.41 nm로 10nm 이하의 범위를 가지는 것을 알 수 있다. 이를 통해 본 발명의 실시예에 따른 산화 세륨 입자의 입자 크기가 종래 산화 세륨 입자의 입자 크기를 고려하면 훨씬 미세하다는 것을 확인할 수 있으며, 따라서 본 발명의 실시예에 따른 산화 세륨 입자를 이용하여 실리콘 산화막을 연마할 때에 표면의 결함 발생률을 보다 억제할 수 있음을 알 수 있다.
실험예 4. 산화 세륨 입자의 동적광산란 입도분석기 (Dynamic Light Scattering, DLS) 분석
본원의 일 실시예에 따른 제조예 2의 슬러리 조성물, 비교예 1, 2, 3 및 4의 슬러리 조성물을 샘플로 준비하였다. 상기 준비된 샘플 각각에 대해, DLS 장비를 이용하여 분석을 수행하였다.
도 21은 본 발명의 일 실시예에 따른 산화 세륨 입자의 동적광산란(DLS) 분석(Malvern社 Zetasizer Ultra) 결과이다. 또한 하기 표 2는 본 발명의 일 실시예에 따른 산화 세륨 입자 및 비교예 들의 산화 세륨 입자의 동적광산란(DLS) 분석에 의해 얻은 D50 값을 나타낸 것이다.
시료 D50 Number(nm)
본원발명 실시예 5.78
비교예 1 - 종래 10 nm급 산화 세륨 입자 33.6
비교예 2 - 종래 30 nm급 산화 세륨 입자 93.9
비교예 3 - 종래 60 nm급 산화 세륨 입자 138.7
비교예 4 - 하소법에 의해 제조된 산화 세륨 입자 139.1
도 21 및 상기 표 2를 참조하면, 본 발명의 실시예에 따른 산화세륨 입자는 약 5.78nm의 2차 입자 크기 D50 값을 갖는 것으로 나타났으며, 10 nm 이하인 것으로 측정되었다. 실험예 1에서 측정한 바와 TEM으로 측정한 1차 입자 크기 대비(도 11 내지 도 13 참조) 약 148~199% 수준으로, 슬러리 내에서 응집이 거의 이루어지지 않고 단분산되어 입자 크기 변화가 거의 없는 수준인 것을 확인할 수 있었다.
반면, 종래 기술의 산화 세륨 입자의 동적광산란(DLS) 측정에 의한 D50 입자크기는 30 nm를 초과하는 것을 확인할 수 있었으며, 10nm 급 산화 세륨 입자의 경우에도 TEM으로 측정한 1차 입자 크기 대비, 동적광산란(DLS)으로 측정한 2차 입자 크기 D50 값이 약 336% 수준으로, 종래 기술의 산화 세륨 입자가 훨씬 큰 2차 입자 크기를 갖고, 이는 응집이 많이 일어난 것임을 확인할 수 있다.
따라서 본원발명의 일 실시예에 따른 산화 세륨 입자가 일 비교예에 따른 종래 기술의 산화 세륨 입자보다 슬러리 내에서 응집성이 작고, 보다 단분산된 형태로 슬러리에 분산될 수 있음을 알 수 있다.
실험예 5. 푸리에 변환 적외선(FT-IR) 분광 분석을 통한 산화 세륨 입자의 형성 확인
도 22는 본 발명의 일 구현예에 따라 제조된 산화 세륨 입자로 이루어진 분말 및 통상의 수산화 세륨 입자로 이루어진 분말의 FT-IR 분광 분석 결과이다.
도 22의 FT-IR 분광 스펙트럼을 분석한 결과, 본 발명의 일 실시예에 따른 산화 세륨 입자로 이루어진 분말의 3000 cm-1 내지 3600 cm-1의 범위 내에서 적외선 투과도는 약 92~93%이고, 720 cm-1 내지 770 cm-1의 범위 내에서 적외선 투과도는 약 93~95%인 것을 확인할 수 있다. 이를 통상의 수산화 세륨 입자로 이루어진 분말의 FT-IR 스펙트럼에서 3000 cm-1 내지 3600 cm-1의 범위 내의 적외선 투과도가 75~90%, 720 cm-1 내지 770 cm-1의 범위 내의 적외선 투과도가 97~99%인 것과 비교하면, 본 발명의 일 실시예에 따라 제조된 산화 세륨 입자가 3000 cm-1 내지 3600 cm-1의 범위 내에서 수산화 세륨 입자의 O-H group에 의한 band는 통상의 수산화 세륨 입자의 그것보다 약하게 나타나는 점과, 720 cm-1 내지 770 cm-1의 범위 내에서 Ce-O stretching에 의한 피크가 형성되는 것을 확인할 수 있다. 따라서, 상기 결과는 본 발명의 일 구현에에 따라 제조된 세륨 화합물이 산화 세륨인 것을 의미할 수 있다.
실험예 6. 산화 세륨 입자를 포함하는 슬러리의 광투과도 측정
CMP 슬러리 내의 산화 세륨 입자의 중량비율을 1 중량%로 한 것을 제외하고는, 제조예 2와 동일한 방식으로 하여 슬러리 조성물(샘플 A)을 준비하였다. 한편, CMP 슬러리 내의 산화 세륨 입자의 중량비율을 1 중량%로 한 것을 제외하고는, 비교예 1, 2, 3 및 4와 동일한 방식으로 하여 슬러리 조성물을 각각을 준비하였다(순서대로 샘플 B1, B2, B3 및 B4). 샘플 각각에 대해 UV-Vis 분광 기기(JASCO)를 이용하여 200 내지 1100 nm의 광에 대한 투과도를 측정하였다.
도 23은 본 발명의 일 실시예에 따른 산화 세륨 입자 및 비교예 1 내지 4의 종래 산화 세륨 입자를 포함하는 슬러리의 광투과도를 UV-Vis(자외선-가시광선) 분광법을 이용해 측정한 결과이다.
본원발명의 일 실시예 및 비교예들에 따른 산화 세륨 입자를 탈이온수에 첨가하여 연마재 농도를 1.0 wt%로 맞추고 CMP 슬러리를 준비하여 광투과도를 분석하였다. 이때 광학 스펙트럼은 200 ~ 1,100nm 범위내에서 범위내에서 UV-vis 분광기(Jasco UV-vis spectrophotometer)를 사용하여 측정하였다.
상기 UV-Vis 분석 그래프를 통해, 파장 500nm, 600nm 및 700nm 각각에서의 샘플 A 및 샘플 B1 내지 B4의 투과도(%)를 정리하여 하기 표 3에 나타내었다.
구분 투과도(%)
파장
(nm)
샘플 A 샘플 B1 샘플 B2 샘플 B3 샘플 B4
500 95.4 48.6 0.07 0.042 0.021
600 96.9 74.9 0.162 0.072 0.048
700 97.5 86.3 1.61 0.109 0.05
도 23 및 상기 표 3에 따르면, 본원발명의 산화 세륨 입자를 포함하는 슬러리의 경우 파장이 450 내지 800nm의 광에 대하여 평균적인 광투과도가 50% 이상임을 확인할 수 있다. 또한 약 500nm 파장의 광에 대하여 광투과도가 90% 이상, 약 600nm 및 700nm 파장의 광에 대하여 광투과도가 95% 이상임을 확인할 수 있었다.
반면, 비교예 1 내지 4(10nm급, 30nm급, 60nm급 종래 산화 세륨 입자, 하소법에 의한 세리아 입자)에 따른 종래 기술의 산화 세륨 입자를 포함하는 슬러리의 광투과도를 측정하였다. 비교예 4(하소 세리아 입자)는 광투과도가 거의 0%인 것으로 나타나고, 10 nm급 시판되는 종래 산화 세륨 입자를 포함하는 비교예 1 슬러리의 광투과도가 평균적으로 80% 미만이며 파장 500nm에서의 광투과도는 50% 미만인 것을 나타내고 있다. 비교예 2 및 3의 경우 1차 입자크기도 각각 30, 60 nm로 조대하고 2차 입자 크기도 본 발명의 실시예 대비 조대하므로(즉, 슬러리 내에서 응집성이 크므로), 가시광선 영역에서 20% 미만의 투과도만을 나타내는 것을 알 수 있다.
반면, 본원발명의 일 실시예에 따른 산화 세륨 입자는 가시광선 영역에서 90 % 이상의 광투과도를 나타내는 것을 확인할 수 있으며, 이는 본원발명의 산화 세륨 입자의 경우, 1차 입자 크기 자체가 미세하며, 2차 입자로의 응집이 종래 기술의 산화 세륨 입자에 비해 적게 발생한다는 것을 의미한다. 통상 2차 입자가 20 nm를 초과하게 되면, 육안으로도 슬러리 조성물의 불투명함을 관찰할 수 있으며, 가시광선 영역 파장에서 광투과도가 80% 미만이 나올 것임은 잘 알려져 있다.
본 발명의 슬러리 조성물에 의하면, 광투과도가 상기 산화 세륨 입자의 1차 입자 크기가 작고 2차 입자로의 응집성이 작으면, 분산 안정성이 높아 입자가 균일하게 분포될 수 있으며, 상기 입자를 포함하는 슬러리 조성물을 사용해 연마 대상막을 연마 시, 표면에 스크래치 등의 결함이 발생할 확률이 적어질 것을 쉽게 예측할 수 있다.
실험예 7. XRD 분석을 통한 산화 세륨 입자의 피크 면적 비
도 24는 발명의 일 실시예에 따른 산화 세륨 입자의 XRD(X-ray Diffraction) 분석을 통한 강도비 및 피크 면적 결과이다.
도 24의 XRD 분석 결과, 본원발명의 일 실시예에 따른 산화 세륨 입자의 (111)면의 피크 면적은 약 496.9이고, (200)면의 피크 면적은 약 150.1인 것을 확인할 수 있다. 이때 (200)면의 피크 면적에 대한 (111)면의 피크 면적 비는 대략 3.3을 나타내는 것을 확인할 수 있다. 주 피크를 라이브러리를 통해 검토하였을 때, 본 발명의 실시예에 따라 제조된 입자가 산화 세륨 입자인 것을 확인할 수 있었다.
실험예 8. 산화 세륨 입자의 XPS분석
도 25 및 도 26은 본 발명의 일 실시예에 따른 산화 세륨 입자 및 비교예3에 따른 60 nm급 종래 산화 세륨 입자의 XPS 분석 결과이다. XPS(X-ray photoelectron spectroscopy)는 soft X-ray를 조사했을 때 Ce3+를 나타내는 Ce-O 결합 에너지를 나타내는 900.2 내지 902.2 eV, 896.4 내지 898.4 eV, 885.3 내지 887.3 eV 및 880.1 내지 882.1 eV에서 나타나는 피크를 측정하여 XPS fitting을 통해 atomic%를 분석함으로써 산화 세륨 입자에서 Ce3+ 및 Ce4+ 함량을 측정할 수 있다. 이하 표 4는 본 발명의 실시예에 따른 산화 세륨 입자의 XPS 결과 데이터이다.
Name Peak BE FWHM eV Area (P) CPS.eV Atomic % Atomic %
Ce3+ u’ 901.2 3.0 11,363 4.8% 36.9%
u0 897.4 1.7 26,481 11.2%
v’ 886.3 3.0 14,432 6.1%
v0 881.1 1.7 35,248 14.8%
Ce4+ u’’’ 915.5 2.2 36,591 15.5% 63.1%
u’’ 906.4 3.8 20,514 8.7%
u 899.6 1.7 25,576 10.8%
v’’’ 896.6 1.7 19,147 8.1%
v’’ 888.2 2.9 19,066 8.0%
v 882.8 3.3 29,093 12.2%
상기 XPS 분석 결과로부터 상기에서 기술한 화학식에 의해 Ce3+ 함량을 계산한 결과, Ce3+ 함량이 30 % 이상인 것을 알 수 있다. 산화 세륨 입자에서 Ce3+가 반응 위치(reactive sites)이므로, 이로 인해 연마량을 높일 수 있는 것을 알 수 있을 것이다. 상기와 같은 방법으로 종래 산화 세륨 입자와의 비교 데이터를 아래 표 5와 같이 나타내었다.
Sample Ce4+ Atomic % Ce3+ Atomic %
본 발명의 실시예 63.1 36.9
비교예 (60nm급 시중 산화 세륨 입자) 86.1 13.9
종래 10nm급 세륨 입자(초임계, 아임계 조건에서 수열합성법에 의해 제조됨) 83.2 16.8
본원발명의 일 실시예에 따른 산화 세륨 입자의 경우 상기 표 5에서 볼 수 있듯이 Ce3+의 함량이 약 36.9 atomic%이고, 표 5에서 이를 종래 60nm 급 산화 세륨 입자의 Ce3+ 함량이 14 atomic% 미만이고, 종래 문헌들에 의해 알려진 바와 같이 10nm급 초임계, 또는 아임계 조건에서 수열합성법에 의해 제조된 산화 세륨 입자가 약 16.8%인 것과 비교하였을 때, 높은 Ce3+ 함량을 포함함을 확인할 수 있다. 표면 Ce3+ 함량이 본 발명의 실시예와 같이 높은 수준인 경우, 실리카와 세륨 간의 Si-O-Ce를 형성하는 화학적 연마 메커니즘에 의해 규소를 포함하는 기판에의 연마율을 증가시킬 수 있다.
실험예 9. 산화 세륨 입자의 라만 분광법(Raman spectroscopy)에 따른 분석
도 27 내지 29는 각각 본 발명의 일 실시예에 따른 산화 세륨 입자, 10 nm급 종래 산화 세륨 입자 및 60 nm급 종래 산화 세륨 입자의 라만 분광법에 따른 분석 결과이다. 분석 결과, 상기 실시예, 비교예 1 및 비교예 3의 샘플 각각에 대해 순서대로 도 27, 도 28 및 도 29와 같은 형태의 라만 스펙트럼(X축: Raman shift(cm-1), Y축: Counts)이 도출되었다. 상기 도출된 라만 스펙트럼에 대한 분석 결과를, 하기 표 6에 나타내었다.
구분 제1 라만 피크
강도(A)
제2 라만 피크
강도(B)
제3 라만 피크
강도(C)
A/B A/C
실시예 89,521
@ 457cm-1
5,795
@ 607cm-1
2,541
@ 742cm-1
15.4 35.2
비교예 1 133338@ 462cm-1 2899
@ 607cm-1
미검출
@ 742cm-1
46.0 -
비교예 3 45916
@ 462cm-1
691
@ 607cm-1
미검출
@ 742cm-1
66.4 -
도 27 내지 29 및 상기 표 6을 참조하면, 비교예 1 및 3에 따른 종래 산화 세륨 입자가 462 cm-1 부근에서 제1 라만 피크를 가지는 반면, 본 발명의 실시예에 따른 산화 세륨 입자는 vibration에 의해 457 cm-1 부근에 제1 라만 피크를 가지는 것을 확인할 수 있다. 본 발명의 실시예에 따른 산화 세륨 입자의 경우, Ce4+이 Ce3+으로 부분적으로 환원되어, 산화 세륨 입자가 가지고 있는 Cubic fluorite 격자 구조에 결함이 유도되어 oxygen vacancies가 증가함에 따라, 제1 라만 피크의 이동(shift)이 발생하는 것으로 보인다. 또한, 이러한 입자 구조 차이에 따라, 실시예 샘플의 제2 라만 피크의 강도가 비교예 1 및 비교예 3의 그것 대비 높은 것 또한 확인할 수 있다.
또한, 본 발명의 실시예에 따른 산화 세륨 입자에서는 457, 607, 742cm-1의 피크를 각각 나타난 반면, 비교예 1 및 비교예 3의 경우 약 607 cm-1의 제2 피크가 거의 검출되지 않는 수준이거나 아주 강도가 약하게 나타나는 것을 확인할 수 있었고, 약 742 cm-1의 제3 피크는 실시예와 달리 검출되지 않는 것으로 확인되었다.
한편, 제2 라만 피크 강도(B)에 대한 제1 라만 피크 강도(A)의 비(A/B)는 실시예, 비교예 1 및 비교예 3 각각 순서대로 15.4, 46.0 및 66.4인 것으로 확인되었다. 이와 같이 실시예의 샘플에 대한 A/B 값이 비교예 1 및 비교예 3의 그것 대비 훨씬 작은 것을 확인할 수 있고, 본 실시예의 경우 상기 제3 라만 피크 강도(C)에 대한 제1 라만 피크 강도(A)의 비(A/C)는 50 이하이나 비교예 1 및 3의 경우 제3 라만 피크가 검출되지 않아 A/C를 계산할 수 없었는데, 이는 산화 세륨 입자에서 Ce3+ 함량의 증가로 인해 결함(oxygen vacancies)의 비율이 높아짐에 따른 결과로 해석할 수 있다.
상기 결과를 통해, 본 발명의 일 실시예에 따른 산화 세륨 입자가 비교예에 따른 종래 산화 세륨 입자에 비해 고함량의 Ce3+을 포함하고 있음을 예상할 수 있다.
실험예 10. 산화 세륨 입자의 전자 에너지 손실 분광(EELS) 스펙트럼 분석
본원발명의 일 실시예에 따른 제조예 2의 슬러리 조성물, 비교예 3 및 비교예 4의 슬러리 조성물 각각을 샘플로 준비하였다.
상기 준비된 샘플 각각에 대해, EELS 측정 기기를 이용하여 분석을 수행하였다. 상기 EELS 측정은 50 eV 이상의 에너지 손실 구간인 고손실 영역(Core-loss region)에 대해 수행되었다. 상기 고손실 영역에서 나타나는 이온화 엣지(ionization edge)를 이용하여 측정하는 샘플의 산화 상태에 의한 피크를 구분할 수 있고, 이를 통해, 산화 세륨 입자의 Ce4+ 함량을 정량적으로 분석하였다.
EELS 측정 기기를 통한 샘플 분석 결과, 실시예, 비교예 3 및 4의 샘플 각각에 대해 순서대로 도 30 내지 32와 같은 형태의 EELS 스펙트럼(X축: binding energy(eV), Y축: intensity(a.u.))이 도출되었다.
분석 결과, 실시예의 EELS 스펙트럼의 경우, 약 876.5 내지 886.5 eV의 제1 피크, 894.5 내지 904.5의 제2 피크를 포함하고, 상기 제1 피크의 최대 강도가 제2 피크의 최대 강도보다 큰 것을 특징으로 하는, Ce3+의 EELS 스펙트럼 경향을 따르는 것을 확인할 수 있다. 반면 비교예 3 및 비교예 4의 EELS 스펙트럼은 제2 피크의 최대 피크 강도가 제1 피크의 최대 피크 강도보다 큰, Ce4+의 EELS스펙트럼 경향을 따르는 것을 확인할 수 있다. 이는, 실시예의 산화 세륨 입자가 Ce3+의 EELS 스펙트럼 경향을 따르는 반면, 비교예 3 및 4의 산화 세륨 입자가 Ce4+의 EELS 스펙트럼 경향을 따르는 것을 의미할 수 있다.
한편, 상기 산화 세륨 입자의 EELS 스펙트럼은 886.5 내지 889.5 eV의 제3 피크 구간 및 904.5 내지 908.5 eV의 제4 피크 구간을 더 포함할 수 있으며, 상기 제3 및 제4 피크 구간의 피크 면적은 산화 세륨 입자의 Ce4+를 나타내는 산화 상태를 나타내는 피크일 수 있다. 도 30 내지 도 32의 EELS 스펙트럼을 토대로 하여, 특정 binding energy 범위에 대한 피크 면적 비율을 도출하고, 이를 표 7 내지 9(순서대로 실시예, 비교예 3 및 비교예 4에 관한 결과 데이터)에 나타내었다. 상기 EELS 스펙트럼 분석 결과, 본 발명의 일 실시예에 따른 산화 세륨 입자에서 전체 EELS 피크 면적의 합(Pt)에 대한 제3 피크 구간의 면적의 합(P1)의 비율(P1/Pt)은 1%, 1%, 0% 및 0%로 계산되었고, 비교예 3의 그것은 3%, 3%, 4% 및 4%로 계산되었으며, 비교예 4의 그것은 3%, 3%, 3% 및 4%로 계산되었다.
또한, 본 발명의 일 실시예에 따른 산화 세륨 입자의 경우, 전체 EELS 피크 면적의 합(Pt)에 대한 제3 피크 구간의 면적(P1) 및 제4 피크의 면적(P2)의 면적 비율((P1+P2)/Pt)이 평균적으로 약 5.8% 이하이고, 비교예 3의 그것은 13% 이상 정도이며, 비교예 4의 그것은 약 12% 이상 정도인 것을 통해, 본 발명의 일 실시예에 따른 산화 세륨 입자가 비교예 3 및 4의 산화 세륨 입자 대비 적은 함량의 Ce4+를 가짐을 확인할 수 있다.
binding energy(eV) 측정 1 측정 2 측정 3 측정 4
876.5 이상 886.5 미만(제1피크) 46% 45% 46% 46%
886.5 이상 889.5 미만(제3피크) 1% 1% 0% 0%
894.5 이상 904.5 미만(제2피크) 45% 47% 51% 49%
904.5 이상 908.5 미만(제4피크) 8% 7% 2% 4%
binding energy(eV) 측정 1 측정 2 측정 3 측정 4
876.5 이상 886.5 미만(제1피크) 40% 40% 38% 38%
886.5 이상 889.5 미만(제3피크) 3% 3% 4% 4%
894.5 이상 904.5 미만(제2피크) 49% 48% 48% 48%
904.5 이상 908.5 미만(제4피크) 9% 9% 10% 10%
binding energy(eV) 측정 1 측정 2 측정 3 측정 4
876.5 이상 886.5 미만(제1피크) 40% 40% 42% 38%
886.5 이상 889.5 미만(제3피크) 3% 3% 3% 4%
894.5 이상 904.5 미만(제2피크) 48% 49% 48% 48%
904.5 이상 908.5 미만(제4피크) 9% 9% 8% 10%
실험예 11. 산화 세륨 입자의 XAFS(X-ray absorption fine structure) 스펙트럼 분석
본원발명의 일 실시예에 따른 제조예 2의 슬러리 조성물 및 비교예 3의 슬러리 조성물 각각을 샘플로 준비하였다.
상기 준비된 샘플 각각에 대해, XAFS 측정 기기를 이용하여 분석을 수행하였다. 상기 XAFS는 세기가 강한 X-ray를 샘플에 조사하여 흡수된 X-ray 세기를 측정하는 분석 방법으로, X-ray 에너지(eV)에 따른 광흡수계수(xμ)를 측정하여 도출된 X-ray 흡수 스펙트럼을 토대로 입자 내에서의 Ce3+ 및 Ce4+ 등의 중량비율(wt%)을 확인할 수 있다. 이 때, 상기 흡수 스펙트럼은 X-ray 흡수가 급격히 증가하는 absorption edge 근방 50 eV 내의 XAFS 스펙트럼을 분석하는 XANES(X-ray absorption near edge structure) 방식을 통해 도출하였다.
실시예 및 비교예 3의 샘플 각각에 대한 XAFS 분석 결과, 각각 도 33 및 도 34와 같은 XAFS 스펙트럼(X축: X-ray energe(eV), Y축: X-ray 광흡수계수 xμ(E))이 도출되었다. 도 33 및 도 34에서 보듯 실시예 및 비교예 3의 샘플 각각 모두 absorption edge가 약 5745 내지 5755 eV 범위 내에서 형성되었다. 한편, Ce3+에 의한 X-ray 흡수로 인해 전자전이가 강하게 발생하는 피크(P1)는 약 5735 내지 5740 eV 범위 내에서 형성되었고, Ce4+에 의한 X-ray 흡수로 인해 전자전이가 강하게 발생하는 피크(P2)는 약 5745 내지 5755 eV 범위 내에서 형성되는 것을 확인할 수 있었다.
상기 P1 및 P2에 대한 광흡수계수를 검토한 결과, 본 발명에 따른 실시예의 경우, 각각 0.1 내지 0.2 및 0.5 내지 0.6 정도 수준인 반면, 비교예 3의 경우, 각각 0.1 미만 및 0.6 초과의 수준인 것을 알 수 있다.
상기 분석 결과를 토대로, 실시예 및 비교예 3 샘플 각각의 Ce3+ 및 Ce4+의 피크 면적 및 면적비율은 하기 표 10과 같음을 확인할 수 있다.
구분 Ce3+의 피크 면적 Ce4+의 피크 면적 Ce3+의 면적비율(%) Ce4+의 면적비율(%)
실시예 2.03 14.7 12.1 87.9
비교예 3 0.5 17.37 2.8 97.2
상기 표 10을 참조하면, 본 발명의 일 실시예에 따른 산화 세륨 입자 표면에서 Ce3+의 면적비가 비교예 3에 따른 산화 세륨 입자 표면의 Ce3+의 면적비보다 약 4배 이상 높은 것을 확인할 수 있으며, 이를 통해 본 발명의 실시예가 비교예의 종래 산화 세륨 입자보다 높은 연마속도를 가질 수 있을 것이라고 예상할 수 있다.
실험예 12. 산화 세륨 입자의 UPS 분석 분석
본 발명의 일 실시예에 따른 산화 세륨 입자, 비교예 3 및 4의 샘플을 준비하였다.
도 35 내지 도 37은 본 발명의 일 실시예에 따른 산화 세륨 입자, 60 nm급 종래 산화 세륨 입자 및 하소법에 의해 제조된 종래 산화 세륨 입자의 UPS 분석 결과이다.
표 11은 본 발명의 일 실시예에 따른 산화 세륨 입자와 상기 종래 산화 세륨 입자의 구분에 따른 일함수 값을 정리한 것이다.
일 구현예에 있어서, 본원의 일 실시예에 따른 산화 세륨 입자는 초당 방출되는 광전자 수(Counts, Y축)의 최대값이 운동에너지 8 내지 10 eV의 범위에 존재하는 반면, 비교예 3 및 4의 경우, 운동에너지 11 내지 13 eV의 범위에 존재하는 것을 확인할 수 있었다. 이러한 결과를 통해, 실시예의 경우, 3.16 ev의 일 함수를 갖고, 비교예 3 및 4의 경우, 각각 2.37 eV, 2.37 eV의 일함수를 가지는 것을 도출할 수 있었다.
일 구현예에 있어서, UPS 분석은 측정된 운동에너지(Ekin) 값을 통해 속박에너지(Eb)를 도출하였으며, 도출된 속박에너지 그래프를 통해 샘플들의 페르미 준위(EF) 및 진공 준위(Ecutoff)를 도출할 수 있었다. 따라서, 상기 페르미 준위(EF) 및 진공 준위(Ecutoff) 값을 하기 식 1에 적용하여 일함수 Φ값을 구할 수 있었다. 이때, hv는 자외선을 방출시킬 때 사용하는 소스 에너지(source energy)로서 입사하는 빛의 에너지를 나타내는데, 소스는 헬륨(He)를 사용하였다(He|UPS = 21.22 eV). 분석 결과를 통해 나타난 일함수 값은 아래 표 11과 같이 나타났다.
[식 1]
Φ = hv - |Ef - Ecutoff|
구분 일함수(eV)
본원발명 실시예 3.16
비교예 3 2.37
비교예 4 2.37
상기 표 11을 참조했을 때, 본 발명의 일 실시예에 따른 산화 세륨 입자의 일함수 값이 가장 크다는 것을 알 수 있었다. 입자의 크기가 작아질수록 시료의 오비탈들 사이 에너지 준위 차이가 점점 커지게 되어 높은 값의 에너지 밴드갭을 갖게 되는데, 본 발명의 일 실시예에 따른 산화 세륨의 입자 크기가 종래의 산화 세륨 입자들에 비해 충분히 작기 때문에 높은 에너지 밴드갭을 갖게 되고 이는 페르미 준위 및 진공 준위에 영향을 미치게 되면서 일함수의 에너지값에 변화를 주게 된 것임을 예상할 수 있었다. 따라서, UPS 분석을 통해 도출한 일 함수 값을 통해 본 발명의 일 실시예에 따른 산화 세륨의 입자 크기가 종래의 산화 세륨 입자에 비해 충분히 작고 응집성이 매우 작은 것임을 나타내는 것이다. 이렇게 응집성이 작고, 단분산되는 특징을 가짐으로써, 본원의 일 구현예에 따른 산화 세륨 입자는 화학적 기계적 연마용 슬러리에 포함되어 사용될 때, 웨이퍼와 접촉하는 입자 수를 최대화할 수 있고, 산화막 연마 속도를 증가시킬 수 있음과 동시에, 입자 크기 자체는 미세하게 되어 웨이퍼 표면의 결함은 최소화할 수 있다.
실험예 13. 산화 세륨 입자의 BET 표면적 분석
BET 표면적을 측정하기 위해, 본 발명의 실시예에 따른 산화 세륨 입자 분말 및 비교예 1에 따른 산화 세륨 입자 분말 각 1.0g을 1회마다 200℃에서 1시간 동안 잔류압력이 소정의 값 이하가 될 때까지 탈기하는 전처리를 진행한 후, BET(Tristar II plus, Micrometrics)를 이용해 77K 조건에서 상대 압력의 증가에 따른 질소기체의 흡착량을 측정하였으며, 상기 흡착량을 통해 산출한 BET 표면적 값을 도 38 및 도 39와 아래 표 12에 나타내었다.
BET 표면적
(m2/g)

1회

2회

3회

4회

5회
실시예 분말 41.2 40.3 39.9 38.6 38.1
비교예1 분말 83.3 86.2 86.5 86.1 86.5
상기 표 12를 참조하면, 일반적인 전처리 조건(200℃, 1시간)을 적용하였을 때, 본 발명의 실시예에 따른 산화 세륨 입자 분말은 같은 조건에서 5회 측정하였을 때 BET 표면적 값이 50 m2/g 이하로 나타나는 반면 비교예 1에 따른 산화 세륨 입자 분말은 동일한 조건에서 5회 측정하였을 때 BET 표면적 값이 80 m2/g을 초과하는 것을 확인할 수 있다. 이러한 비교예의 수치는 통상 문헌을 통해 알려진 10nm급 산화 세륨 입자의 BET 표면적 값과 유사한 것을 알 수 있다.
상기 결과를 통해, 입자 크기가 작을수록 BET 표면적 값 커지는 일반적인 경향과 달리, 본 발명의 실시예에 따른 산화 세륨 입자 분말은 보다 조대한 입자 크기를 갖는 비교예 1의 산화 세륨 입자 분말보다 작은 BET 표면적 값을 갖는 것을 확인할 수 있으며, 이는 본 발명의 실시예에 따른 산화 세륨 입자가 종래 산화 세륨 입자보다 미세한 입자 크기를 가짐으로써 분말화 되었을 때 보다 고밀도로 충진될 수 있다는 것을 의미할 수 있고, 또한 졸-겔 법, 바텀-업 방식 등 자기조직화 합성 방법으로 합성된 산화 세륨 입자의 경우 다른 합성방법으로 합성된 산화 세륨 입자보다 적은 -OH 작용기를 가짐으로써 더 작은 값의 BET 표면적 및 기공부피를 갖는 현상과도 같은 맥락일 수 있다.
실험예 14. 산화 세륨 입자의 겉보기 밀도 분석
본원의 일 실시예에 따른 제조예 1의 분산액을 대략 80~90 ℃에서 건조하여 분체 형태의 산화 세륨 입자(샘플 A) 및 동일 조건으로 건조된 비교예 3,4에 따른 분체 형태의 산화 세륨 입자(각각 샘플 B,C)를 준비하였다. 하기 표 13 및 표 14는 본 발명의 일 실시예에 따른 상기 준비된 샘플 A 및 비교예 1,3에 대해, 겉보기 밀도 및 탭밀도를 측정하여 나타낸 것이다.
시료 샘플 A(실시예) 샘플 B(비교예 3) 샘플 C(비교예 4)
겉보기밀도 (g/ml) 2.22 1.90 1.30
시료 샘플 A(실시예) 샘플 B(비교예 3) 샘플 C(비교예 4)
탭밀도 (g/ml) 2.94 2.86 1.60
상기 표 13을 참조하면, 정치법에 의해 측정된 샘플 A의 겉보기 밀도는 2.22 g/ml인 반면, 비교예 3의 60nm급 산화 세륨 입자의 겉보기 밀도는 1.90 g/ml, 비교예 4의 하소 산화 세륨 입자의 겉보기 밀도는 1.90 g/ml로 측정되었다. 또한 상기 표 14를 참조하면, 탭법에 의해 측정된 샘플 A의 겉보기 밀도는 2.94 g/ml인 반면, 비교예 3의 60nm급 산화 세륨 입자의 겉보기 밀도는 2.86 g/ml, 비교예 4의 하소 산화 세륨 입자의 겉보기 밀도는 1.60 g/ml인 것으로, 2.90 g/ml 미만의 값을 가지는 것을 확인할 수 있다. 이를 통해 본원의 일 실시예에 따른 산화 세륨 입자가 더 미세한 1차 입자크기를 가짐에도 불구하고, 보다 조대한 입자 크기를 갖는 비교예의 산화 세륨 입자보다 큰 겉보기 밀도 값을 갖는 것을 확인할 수 있다. 따라서 본 발명의 실시예에 따른 산화 세륨 입자의 경우, 입자가 10nm 이하로 종래 산화 세륨 입자보다 미세한 입자 크기를 가지면서도, 겉보기 밀도 값은 상대적으로 큰 특성을 가지는 것을 확인할 수 있다.
실험예 15. 산화 세륨 입자를 포함하는 분산액의 발광 세기(Photoluminescence: PL) 측정 분석
도 40 내지 도 42 및 표 15는 본원발명의 일 실시예에 따른 산화 세륨 입자, 종래의 60nm급 산화 세륨 입자 및 하소법에 의한 10 nm급 산화 세륨 입자를 1 질량% 포함하는 수분산액 각각에 대하여 발광 세기를 측정한 결과를 나타낸 것이다. 발광 세기 측정은 아래의 시험조건에 따라서 측정되었다. 아래의 시험조건에서 측정하였다.
(1) 시험기기: Perkin Elmer LS-55 형광 분광기(Fluorescence Spectrometer)
(2) 여기 파장(Excitation wavelength): 325nm
(3) 발광 필터(Emission filter): 350nm
(4) 여기 슬릿 폭(Excitation slit width): 10.0nm
(5) 발광 슬릿 폭(Emission slit width): 10.0nm
세리아 입자
1% 분산액
피크 강도
325nm(λexc)
피크 강도
450nm(λems1)
피크 강도
525nm(λems2)
피크 강도비
ems1exc)
피크 강도비
ems1ems2)
본 발명의 산화 세륨 입자 0.31 1.72 0.23 5.5 7.5
하소법에 의한 10nm급 산화 세륨 입자 1.20 43.36 32.53 36.1 1.3
종래 시판되는 60nm급 산화 세륨 입자 0.99 40.44 12.07 40.8 3.4
도 40 내지 도 42 및 표 15를 참조하면, 여기 파장(λexcitation) 325 nm로 실시한 형광 분광(Fluorescence spectrometer)을 분석 시, 3가지 시료에서 공통적으로 약 325 nm의 파장에서 여기 피크(λexc), 약 450 nm의 파장에서 제1 발광 피크(λems1), 약 525 nm의 파장에서 제2 발광 피크(λems2)를 나타내고 있는 것을 볼 수 있다.
본 발명의 산화 세륨 입자의 경우 제2 발광 피크에 대한 제1 발광 피크의 비(λems1ems2)가 약 7.5로 5 이상의 값을 나타내는 것을 볼 수 있었다. 반면 하소법에 의한 종래의 10nm급 산화 세륨 입자 및 시판되는 60nm 급 산화 세륨 입자는 모두 여기 피크에 대한 제1 발광 피크의 비(λems1exc)가 30 초과의 값을 나타내는 것을 확인하였고, 제2 발광 피크에 대한 제1 발광 피크의 비(λems1ems2)가 5 미만의 값을 나타내는 것을 확인할 수 있었다.
본 발명의 산화 세륨 입자의 경우, Ce3+를 나타내는 제1 발광 피크의 강도가 하소법에 의한 종래의 10nm급 산화 세륨 입자 및 시판되는 60nm 급 산화 세륨 입자 대비 작게 나오는 것을 볼 수 있는데, 이는 본 발명의 산화 세륨 입자의 경우 분산액에서 2차 입자로의 응집이 매우 적게 일어나 광투과가 잘 되기 때문에 발광 세기가 비교적 약하게 나오는 것이라고 판단된다. 또한, 본 발명의 산화 세륨 입자의 경우, 종래의 60nm급 입자 또는 하소법에 의한 산화 세륨 입자와 달리, 제2 발광 피크에 대한 제1 발광 피크의 비(λems1ems2)가 5 이상의 값을 나타내는 것을 볼 때, 본 발명의 산화 세륨 입자가 표면에 상대적으로 높은 Ce3+ 함량을 가지는 것을 나타내는 것으로 해석될 수 있다. 따라서 본 실험예를 통해, 본 발명의 산화 세륨 입자의 경우 화학적 기계적 연마용 슬러리에 사용되었을 때, 입자 표면의 Ce3+ 함량은 높으면서도 입자 자체는 미세하고 슬러리에서 응집이 매우 적게 일어나는 특성을 가지고, 이에 의해 산화 세륨 입자와 산화막 기판 간의 Si-O-Ce 결합에 의한 화학적 연마율이 높아지게 되어 산화막 연마율이 향상되는 것임을 알 수 있다.
실험예 16. 산화 세륨 입자를 포함하는 분산액의 L*a*b* 표색계 분석
도 43 및 도 44는 본원발명의 일 실시예에 따른 산화 세륨 입자를 1 질량% 포함하는 수분산액 및 종래 60 nm급 산화 세륨 입자를 1 질량% 포함하는 수분산액이다.
표 16 및 표 17은 본원발명의 일 실시예에 따른 산화 세륨 입자를 1 질량% 포함하는 분산액 및 종래 60 nm급 산화 세륨 입자를 1 질량% 포함하는 분산액의 색도를 L*a*b* 표색계로 나타낸 값을 정리한 것이다.
일 구현예에 있어서, L*a*b* 표색계의 분석은 CM-5(KONICA MINOLTA, JAPAN)을 이용하여 ASTM E1164(Standard practice for obtaining spectrometric data for object color evaluation)의 방법을 통해 진행하였으며, 이때 광원은 Xenon lamp D65를 이용해 파장 범위 360~740 nm, 파장 간격10 nm에서 진행하였다. 상기 분석 결과는 아래 표 16 및 표 17과 같이 나타났다.
본 발명 L*(단위없음) a*(단위없음) b*(단위없음)
1 99.74 -5.58 11.72
2 99.74 -5.58 11.72
3 99.74 -5.58 11.72
표준편차 0.00 0.00 0.00
CV(%) 0.00 0.00 0.00
평균 99.74 -5.58 11.72
60 nm급
세리아 입자
L*(단위없음) a*(단위없음) b*(단위없음)
1 94.73 -2.19 0.13
2 94.72 -2.19 0.13
3 94.71 -2.18 0.13
표준편차 0.01 0.01 0.00
CV(%) 0.01 -0.26 0.00
평균 94.72 -2.19 0.13
도 43 및 도 44를 참조했을 때, 육안으로도 본 발명의 산화 세륨 입자를 포함하는 수분산액은 황색 계열의 색을 띄는 것을 볼 수 있었으며, 종래의 60nm급 산화 세륨 입자를 포함하는 수분산액의 경우, 불투명하면서도 보다 백색에 가까운 것을 볼 수 있었다.
또한 상기 표 16 및 표 17을 참조하였을 때, 본원발명의 일 실시예에 따른 산화 세륨 입자를 1 질량% 포함하는 분산액의 경우, L*의 평균값이 약 99.7이고, a*의 평균값은 약 -5.9이며, b*의 평균값은 약 11.7인 것을 확인할 수 있다. 반면 종래 60 nm급 산화 세륨 입자를 포함하는 분산액의 경우, L*의 평균값이 약 94.7이고, a*의 평균값은 약 -2.2이며, b*의 평균값은 약 0.1인 것을 확인할 수 있다. 따라서 본원발명에 따른 산화 세륨 입자 분산액은 L*의 값이 95 이상이고, b*의 값은 10 내지 25인 범위를 만족하고 있으며, 종래 60 nm급 산화 세륨 입자 분산액과 비교했을 때, 보다 큰 L*의 값을 가져 미세한 입자 특성을 가짐을 알 수 있었고, 보다 큰 b*값을 가짐에 따라, 본 발명의 일 구현예에 따른 산화 세륨 입자 분산액이 더 높은 황색미를 보이는 것으로 해석할 수 있다. 본원의 일 구현예에 따른 산화 세륨 입자가, 이를 포함하는 수분산액에 대해 L*a*b* 표색계로 나타낼 때의 각각의 값이 상기 범위에 있고, 특히 황색도가 높은 것을 나타내는 것이, 산화 세륨 입자가 매우 미세하고, 단분산된 특성을 보여주는 것임과 동시에, 산화 세륨 입자 표면의 Ce3+의 함량이 상대적으로 매우 높은 것을 의미하는 것이라고 해석할 수 있을 것이다.
실험예 17. 원심분리 시 산화 세륨 입자의 침강율
본원의 일 실시예에 따른 산화 세륨 입자를 1.0 중량% 포함하는 슬러리 조성물, 비교예 1 및 비교예 3의 산화 세륨 입자를 1.0 중량% 포함하는 슬러리 조성물 각각을 샘플로 준비하였다.
상기 샘플을 이용하여, 고속 원심분리기 또는 초고속 원심분리기(㈜한일과학 사의 Supra R22모델)를 활용하여, 슬러리 조성물의 온도 25℃부터 진행하는 조건으로, 원심력을 2100 G, 3300 G, 4265 G, 26188 G, 398282 G로 변화시키며 원심분리했을 때의 산화 세륨 입자의 침강율을 아래 표 18에 나타내었다.

원심분리 조건
침강율(중량%)
본 발명
산화 세륨 입자
비교예 1
산화 세륨 입자
비교예 3
산화 세륨 입자
2,100 G
10분
0 0.7 84.7
3,300 G
30분
0 5.48 96.9 (10분)
4,265 G
30분
0 27.14 -
26,188 G
30분
0 45.22 -
39,282 G
30분
0 94.66 -
상기 표 18을 참조하면, 각 산화 세륨 입자를 1.0 중량% 포함하는 슬러리 조성물을 원심분리 시, 본 발명의 일 실시예에 따른 산화 세륨 입자의 침강율이 같은 조건에서 비교예 1 및 비교예 3에 따른 산화 세륨 입자의 침강율보다 낮은 값을 갖는 것을 확인할 수 있다. 예를 들어, 4,265 G의 원심력으로 30분간 원심분리를 진행한 경우 본 발명의 실시예는 0 중량%의 침강율을 보이는 반면, 비교예 1은 27.14 중량%의 침강율을 보이고 비교예 3은 그보다 작은 3,300 G의 원심력으로 10분간 원심분리를 진행했을 때 이미 96.9 중량%의 침강율을 보이는 것을 확인할 수 있다. 따라서 이는 본 발명의 실시예에 따른 산화 세륨 입자의 1차 입자 및/혹은 2차 입자 크기가 비교예 1 및 비교예 3의 산화 세륨 입자 크기보다 미세하다는 것을 의미할 수 있으며, 또한 단분산되어 있는 것임을 의미할 수 있고, 따라서 단분산 된 입자가 화학적 기계적 연마 공정에서 웨이퍼와 접촉하게 되므로 접촉 입자 수가 많아져 산화막 연마 속도가 개선되는 것을 알 수 있으며, 또한 본 발명의 실시예에 따른 산화 세륨 입자를 포함하는 슬러리 조성물을 이용해 연마를 진행할 때 연마되는 웨이퍼 상에 스크래치와 같은 연마 결함 발생률을 저감할 수 있음을 의미할 수 있다.
실험예 18. 산화 세륨 전구체 잔량 분석
제조예2에서 제조된 산화 세륨 입자를 포함하는 CMP 슬러리에 대한 전구체 잔류량을 측정하기 위해 평가를 수행하였다. 상기 제조예 2의 슬러리 샘플을 분말을 수득할 때까지 고온에서 건조하는 과정을 통해 분말형태로 제조한 후 잔류 분말을 순수한 물로 다시 용해시켰다. 순수한 물로 용해시킨 용액의 전구체 함량을 ICP-MS를 통해 분석해 산화 세륨 분말의 중량비로 환산한 결과, 염기성 물질, 용매, 암모니아 등의 물질이 거의 미검출 되고, 300ppm 이하인 것을 확인하였다. 거의 미검출 되었다는 것은 보다 구체적으로 PPM 이하의 단위보다 현저하게 적은 양을 함유하거나, 미함유 하는 수준이라는 것을 의미하는 것이다. 따라서, 산화 세륨 입자가 적절히 슬러리 내부에 분포하고 있으며, 습식 공정의 특성상 발생할 수 있는 세륨 전구체, 염기 물질 및 기타 불순물을 거의 포함하지 않기 때문에, 본원의 일 구현예에 따른 산화 세륨 입자는 습식 공정을 통해 분산액의 형태로 생성된 후 별도의 분리 또는 분쇄공정 등을 통해 슬러리 용매에 재분산되는 과정이 불필요함을 예상할 수 있었다.
샘플명 합성 원재료 불순물
세륨 전구체 물질 염기성 물질 용매 암모니아
1 Batch 미검출
(N.D.)
미검출
(N.D.)
미검출
(N.D.)
미검출
(N.D.)
2 Batch 미검출(N.D.) 미검출
(N.D.)
미검출
(N.D.)
미검출
(N.D.)
3 Batch 미검출(N.D.) 미검출
(N.D.)
미검출
(N.D.)
미검출
(N.D.)
실험예 19. 산화 세륨 입자의 산화막 연마율 비교
본원의 일 실시예에 따른 제조예 2의 슬러리 조성물, 비교예 1 및 비교예 3의 슬러리 조성물 각각을 샘플로 준비하였다.
상기 샘플을 이용한 산화막 웨이퍼의 연마는 연마기(Reflexion ® LK CMP, Applied Materials)를 이용해 수행하였다. 구체적으로, 플레튼(Platen) 위에 PE-TEOS 실리콘 산화막 웨이퍼(300mm PE-TEOS Wafer)를 안착시키고, 이 웨이퍼의 표면과 연마기의 패드(IC1010, DOW)를 접촉시켰다. 이어서, 샘플의 슬러리 조성물을 200mL/min의 속도로 공급하고, 상기 플레튼(Platen) 및 상기 연마기의 패드를 회전시키면서 연마 공정을 수행하였다. 이 때, 상기 플레튼의 회전 속도 및 헤드(Head)의 회전 속도는 67rpm/65rpm로 하였고, 연마 압력은 2psi로 하였으며, 연마 시간은 60초로 하였다. 한편, 상기 웨이퍼의 실리콘 산화막 박막 두께는 ST5000(Spectra Thick 5000ST, K-MAC)를 이용해 측정하였다. 결과는 하기 표 20와 같이 나타내었다.
비교예A 비교예B 실시예
산화 세륨 시중 10nm 이하 나노 입자 시중 60nm 나노 입자 본 발명 입자
산화 세륨 함량 0.05% 0.05% 0.05%
pH 5.5 5.5 5.5
PETEOS 제거 속도 354 Å/min 546 Å/min 3,458 Å/min
상기 표 20와 같이 실시예의 슬러리 조성물을 이용하는 경우, 비교예 1 및 비교예 3의 슬러리 조성물 대비 실리콘 산화막 제거 속도가 약 6배 이상 큰 것을 확인할 수 있었다. 이는 실시예의 슬러리 조성물에 포함된 산화 세륨 입자의 경우, 입자 크기가 작아 함량 대비 연마에 유효하게 작용하는 입자 수가 많고, 표면 Ce3+의 함량(몰비 및/또는 중량비)이 높아 산화 규소 막 표면과의 화학적 반응성이 증가하기 때문인 것으로 추정된다.
실험예 20. 산화 세륨 입자의 결함 평가
도 45 및 도 46은 본 발명의 일 실시예에 따른 산화 세륨 입자를 포함하는 CMP 슬러리 조성물과 60nm 크기의 산화 세륨 입자를 포함하는 CMP 슬러리 조성물을 이용한 산화물 웨이퍼의 CMP 전후를 스캔한 이미지이다.
상기 산화물 웨이퍼의 표면 분석은 AIT-XP 장비를 이용한 Full wafer scan 방식으로 실시하였다.
도 45 및 도 46을 참조하였을 때, 상기 본 발명의 실시예에 따른 산화 세륨 입자를 포함하는 CMP 슬러리 조성물을 이용하여 CMP를 진행한 산화물 웨이퍼의 표면을 CMP 전후 분석한 결과, CMP 전 결함 수는 6으로 집계되었고 CMP 후 결함 수는 1로 집계되어 상기 산화물 웨이퍼 표면의 결함이 본 발명의 실시예를 이용하여 CMP를 진행한 후 감소하였으며, 또한 CMP 공정 중 상기 웨이퍼의 표면에 스크래치(scratch)가 발생하지 않은 것을 확인할 수 있다. 반면, 종래 기술의 산화 세륨 입자를 포함하는 CMP 슬러리 조성물을 이용하여 CMP를 진행한 산화물 웨이퍼의 표면을 CMP 전후 분석한 결과, CMP 전 결함 수가 34였던 것에 비해, CMP 후 결함 수가 64로 증가한 것을 확인할 수 있으며 이를 통해 종래 기술의 산화 세륨 입자가 상기 웨이퍼의 표면에 스크래치를 발생시켰다는 것을 확인할 수 있다. 이는 본원발명의 일 실시예에 따른 산화 세륨 입자의 크기가 종래 기술의 산화 세륨 입자의 크기보다 작음으로 인해 연마 대상인 산화물 웨이퍼의 표면에 결함 발생 확률을 확연히 줄일 수 있음을 시사한다.
실험예 21. 양이온성 고분자 첨가에 따른 산화막 연마속도 거동 및 산화막/폴리실리콘막 연마 선택비 분석
본원의 일 구현예에 따라 제조된 산화 세륨 입자 및 종래의 시판되는 60nm급 산화 세륨 입자를 탈이온수에 첨가하고, pH를 5.8로 조절한 후, 양이온성 고분자를 하기 표 21에 기재된 바와 같이 첨가하여, 실험예 19와 같은 연마 조건에서, 산화막(Oxide) 연마속도(Å/min) 및 폴리실리콘 막 연마속도(Å/min)를 측정하였다.
  CMP 슬러리 조성 Oxide
연마 속도
(Å/min)
Poly-si
연마 속도
(Å/min)
연마 입자 및 농도 양이온성 고분자 pH
종류 첨가량 종류 농도
(중량%)
실시예 1 본 발명 입자 0.05% - - 5.8 3,258 1,253
실시예 2 본 발명 입자 0.05% Poly(diallydimethyl
ammonium chloride)
0.01% 5.8 3,985 15
실시예 3 본 발명 입자 0.05% polyacrylamide-co-diallydimethyl
ammonium chloride
0.01% 5.8 4,256 13
실시예 4 본 발명 입자 0.05% Polyehthyleneimine 0.01% 5.8 3,888 15
실시예 5 본 발명 입자 0.05% Poly(trimethylammonio
ethyl metacrylate)
0.01% 5.8 3,978 14
실시예 6 본 발명 입자 0.05% dicyandiamide-
diethylenetriamine copolymer
0.01% 5.8 4,655 21
실시예 7 본 발명 입자 0.05% diallyldimethylamine/hydrochloride
-acrylamide copolymer
0.01% 5.8 4,355 6
실시예 8 본 발명 입자 0.05% dicyandiamide-formaldehyde
copolymer
0.01% 5.8 4,215 9
비교예 1 시중 60nm
나노 입자
0.05% - - 5.8 522 89
비교예 2 시중 60nm
나노 입자
0.05% Poly(diallydimethyl
ammonium chloride)
0.01% 5.8 11 10
비교예 3 시중 60nm
나노 입자
0.05% polyacrylamide-co-diallydimethyl
ammonium chloride
0.01% 5.8 5 6
비교예 4 시중 60nm
나노 입자
0.05% Polyehthyleneimine 0.01% 5.8 3 8
비교예 5 시중 60nm
나노 입자
0.05% Poly(trimethylammonio
ethyl metacrylate)
0.01% 5.8 2 9
비교예 6 시중 60nm
나노 입자
0.05% dicyandiamide-
diethylenetriamine copolymer
0.01% 5.8 6 12
비교예 7 시중 60nm
나노 입자
0.05% diallyldimethylamine/hydrochloride
-acrylamide copolymer
0.01% 5.8 8 10
비교예 8 시중 60nm
나노 입자
0.05% dicyandiamide-formaldehyde
copolymer
0.01% 5.8 3 5
상기 표 21을 참조하면, 비교예 2 내지 8의 시중 60nm급 산화 세륨 입자를 사용한 슬러리에서는 양이온성 고분자를 0.01 중량% 첨가한 결과, 실리콘 산화막 연마 속도가 현저히 떨어지는 것을 확인할 수 있었다. 반면, 본원발명의 산화 세륨 입자를 포함하는 슬러리에서는, 표 20의 실시예 2 내지 8의 결과를 보았을 때, 양이온성 고분자를 포함하여 산화막 연마 속도가 상승되는 것을 확인할 수 있었다. 이는 종래의 산화 세륨 입자를 사용한 CMP 슬러리에서는 나타난 바 없는 특징이다.
또한 상기 표 21의 실시예 1과, 양이온성 고분자를 포함하는 실시예 2 내지 8을 대비하면, 실리콘 산화막의 연마 속도는 상승하는 것에 반해 폴리실리콘막의 연마 속도는 대폭 감소하게 되는 것을 확인할 수 있었고, 산화막/폴리실리콘 막의 연마 선택비가 약 200 내지 900의 범위로 2000이하의 범위를 만족하는 것을 확인할 수 있었다.
추가로, 상기 표 21의 실시예 및 비교예 샘플들에 양이온성 고분자의 함량을 점차 증가시키며 산화막 연마속도(Å/min)의 거동을 살펴보았다. 도 47은 본 발명의 일 실시예에 따른 산화 세륨 입자 등을 포함하는 CMP 슬러리 조성물의 양이온성 고분자 첨가에 따른 산화막 연마속도 거동을 측정한 결과이다.
도 47 및 상기 표 20을 참조하였을 때, 본 발명의 CMP 슬러리의 연마속도는 양이온성 고분자의 함량이 증가함에 따라, 연마속도도 함께 증가하는 반면, 종래의 세리아 슬러리의 경우, 0.001% 이상으로 농도를 계속 증가시키는 경우 연마속도가 점차 감소하는 것을 관찰할 수 있었다. 이는 종래의 습식 세리아 슬러리의 경우 양이온성 고분자는 단순히 pH 버퍼역할을 하여 입자 안정성을 위해 첨가하기 때문에 양이온성 고분자의 함량을 증가시켰을 경우 연마 입자가 연마 공정을 수행하는 것을 방해할 수 있는 반면, 본 발명의 CMP 슬러리의 경우 양이온성 고분자가 입자 안정성뿐만 아니라 연마 촉진제로서의 역할도 함께 수행하고 있음을 알 수 있었다.
이하, 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 의해 본 발명이 한정되지 않으며 본 발명은 후술할 청구범위의 의해 정의될 뿐이다.
덧붙여, 본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명의 명세서 전체에서 어떤 구성요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
본 발명에서 사용하는 “단분산”이란, 산화 세륨 입자가 슬러리 내에 분산될 때 2차 입자로의 응집이 억제되어 비교적 1차 입자 크기를 유지하고 있는 것을 의미하는 것이며, 이는 동적광산란(DLS) 방식을 통한 2차 입자 크기(D50)가 TEM을 통한 1차 입자 크기의 3.0배 이하, 2.8배 이하, 2.5배 이하, 2.2배 이하 2.0배 이하, 또는 유리하게는 1.9배 이하의 크기를 갖는 것을 의미할 수 있다. 또한, 입도 분포 등을 검토할 때, 상대적으로 조대한 크기의 불가피한 불순물 등이 포함되는 것을 배제하는 것은 아니다.
본 발명에서 사용하는 “투명”하다는 용어의 의미는, 산화 세륨 입자가 슬러리 내에 분산될 때, 육안으로 확인할 때, 슬러리 조성물이 투명하게 관찰된다는 것을 의미하고, 보다 구체적으로는 가시광선 영역의 광에 대해 평균적인 광투과도가 50% 이상, 유리하게는 70% 이상, 더욱 유리하게는 80% 이상의 값을 나타내는 것을 의미하며, 이는 나아가 본 발명의 산화 세륨 입자가 2차 입자로의 응집이 억제되어 비교적 1차 입자 크기를 유지하고 있는 것을 의미하는 것을 의미할 수 있다.
연마 조성물은 그의 연마 속도(즉, 제거 속도) 및 그의 평탄화 효율에 따라 특징화될 수 있다. 연마 속도는 기판의 표면으로부터 재료를 제거하는 속도를 말하며, 통상 단위 시간당 길이(두께)(예를 들어, 분당 옹스트롬(Å)) 단위로 표현된다. 구체적으로, 연마 표면, 예컨대 연마 패드는 우선 그 표면의 "높은 지점"에 접촉하고 평탄한 표면을 형성하기 위해 재료를 제거해야 한다. 보다 적은 재료의 제거로 평탄한 표면을 달성하는 공정은 평탄성을 달성하기 위해 더 많은 재료를 제거할 필요가 있는 공정보다 더 효율적이라고 여겨진다.
종종, 실리콘 산화물 패턴의 제거 속도는 STI 프로세스에서 유전체 연마 단계에 대한 속도를 제한할 수 있으며, 따라서 실리콘 산화물 패턴의 높은 제거 속도가 디바이스 처리량을 증가시키는데 바람직하다. 그러나, 블랭킷 제거 속도가 너무 빠르면, 노출된 트렌치에서 산화물의 과다 연마로 인하여 트렌치 부식을 초래하고 소자 결함을 증가시킬 수 있다.
이하, 본 발명에 대해 상세히 설명한다.
본 발명의 제1 측면은,
화학적 기계적 연마용 산화 세륨 입자로서, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 500 nm의 광에 대하여 광투과도가 50% 이상인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자를 제공한다.
이하, 본원의 일 측면에 따른 화학적 기계적 연마용 산화 세륨 입자에 대하여 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 산화막 제거 메커니즘을 도시한 것이다. 도 1에 도시된 바와 같이, 산화 세륨 입자 표면에 Ce3+ 이온을 활성화시켜야만 SiO2와 원활히 반응을 할 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자의 입자 크기는 X선 회절(XRD) 분석에 의해 측정될 수 있다(1차 입자). 본원의 일 구현예에 있어서, X선 회절(XRD) 분석으로 측정한 상기 산화 세륨 입자의 입자 크기는 11 nm 이하일 수 있다. 다른 일 구현예에서, 10.8 nm 이하, 10.5 nm 이하, 10.2 nm 이하, 10 nm 이하, 9.5 nm 이하, 9.0 nm 이하, 8.5 nm 이하, 8.0 nm 이하, 7.5 nm 이하, 7.0 nm 이하, 6.5 nm 이하, 6.0 nm 이하, 5.5 nm 이하, 5.0 nm 이하, 4.5 nm 이하 또는 4.0nm 이하일 수 있고, 0.3nm 이상, 0.5nm 이상, 0.7nm 이상, 1.0nm 이상, 1.1 nm 이상, 1.2 nm 이상, 1.3 nm 이상, 1.4 nm 이상, 1.5 nm 이상, 1.6 nm 이상, 1.7 nm 이상, 1.8 nm 이상, 1.9 nm 이상, 2.0 nm 이상, 2.1 nm 이상, 2.2 nm 이상, 2.3 nm 이상 또는 2.4 nm 이상일 수 있다. 상기 산화 세륨 입자의 크기가 0.3 nm 미만인 경우 결정성이 저하되고, 대상막에 대한 연마속도가 지나치게 저해되어 연마효율이 떨어질 수 있고, 반대로 11 nm를 초과하는 경우 스크래치와 같은 표면 결함이 다량으로 생길 우려가 있다. 또한 본원의 일 구현예에 있어서, 상기 X선 회절(XRD) 분석으로 측정한 상기 산화 세륨 입자의 평균 입자 크기는 0.5 내지 10nm, 바람직하게는 1 내지 10nm, 더욱 바람직하게는 2 내지 9nm인 것을 특징으로 할 수 있다.
본원의 다른 일 구현예에 있어서, 상기 산화 세륨 입자의 입자 크기는 전자투과현미경(TEM)에 의해 측정될 수 있다(1차 입자). 본원의 일 구현예에 있어서, 전자투과현미경(TEM)으로 측정한 상기 산화 세륨 입자의 입자 크기는 11 nm 이하일 수 있다. 다른 일 구현예에서, 10.8 nm 이하, 10.5 nm 이하, 10.2 nm 이하, 10 nm 이하, 9.5 nm 이하, 9.0 nm 이하, 8.5 nm 이하, 8.0 nm 이하, 7.5 nm 이하, 7.0 nm 이하, 6.5 nm 이하, 6.0 nm 이하, 5.5 nm 이하, 5.0 nm 이하, 4.5 nm 이하 또는 4.0nm 이하일 수 있고, 0.3nm 이상, 0.5nm 이상, 0.7nm 이상, 1.0nm 이상, 1.1 nm 이상, 1.2 nm 이상, 1.3 nm 이상, 1.4 nm 이상, 1.5 nm 이상, 1.6 nm 이상, 1.7 nm 이상, 1.8 nm 이상, 1.9 nm 이상, 2.0 nm 이상, 2.1 nm 이상, 2.2 nm 이상, 2.3 nm 이상 또는 2.4 nm 이상일 수 있다. 상기 산화 세륨 입자의 크기가 0.3 nm 미만인 경우 결정성이 저하되고, 대상막에 대한 연마속도가 지나치게 저해되어 연마효율이 떨어질 수 있고, 반대로 11 nm를 초과하는 경우 스크래치와 같은 표면 결함이 다량으로 생길 우려가 있다. 또한 본원의 일 구현예에 있어서, 상기 전자투과현미경(TEM)으로 측정한 상기 산화 세륨 입자의 평균 입자 크기는 0.5 내지 10nm, 바람직하게는 1 내지 10nm, 더욱 바람직하게는 2 내지 9nm인 것을 특징으로 할 수 있다.
본원의 다른 일 구현예에 있어서, 상기 산화 세륨 입자의 입자 크기는 소각 X선 산란 방식(SAXS)에 의해 측정될 수 있다(1차 입자). 본원의 일 구현예에 있어서, 소각 X선 산란 방식(SAXS)으로 측정한 상기 산화 세륨 입자의 입자 크기는 15 nm 이하일 수 있다. 다른 일 구현예에서, 14 nm 이하, 13 nm 이하, 12 nm 이하, 11 nm 이하, 10 nm 이하, 9.5 nm 이하, 9.0 nm 이하, 8.5 nm 이하, 8.0 nm 이하, 7.5 nm 이하, 7.0 nm 이하, 6.5 nm 이하, 6.0 nm 이하, 5.5 nm 이하, 5.0 nm 이하, 4.5 nm 이하 또는 4.0nm 이하일 수 있고, 0.3nm 이상, 0.5nm 이상, 0.7nm 이상, 1.0nm 이상, 1.1 nm 이상, 1.2 nm 이상, 1.3 nm 이상, 1.4 nm 이상, 1.5 nm 이상, 1.6 nm 이상, 1.7 nm 이상, 1.8 nm 이상, 1.9 nm 이상, 2.0 nm 이상, 2.1 nm 이상, 2.2 nm 이상, 2.3 nm 이상 또는 2.4 nm 이상일 수 있다. 상기 산화 세륨 입자의 크기가 0.3 nm 미만인 경우 결정성이 저하되고, 대상막에 대한 연마속도가 지나치게 저해되어 연마효율이 떨어질 수 있고, 반대로 15 nm를 초과하는 경우 스크래치와 같은 표면 결함이 다량으로 생길 우려가 있다. 또한 본원의 일 구현예에 있어서, 상기 소각 X선 산란 방식(SAXS)으로 측정한 상기 산화 세륨 입자의 평균 입자 크기는 0.5 내지 15nm, 바람직하게는 1 내지 12nm, 더욱 바람직하게는 1.5 내지 10nm인 것을 특징으로 할 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자의 슬러리 내에서의 입자 크기는 동적광산란 (DLS) 분석에 의해 측정될 수 있다(2차 입자). 상기 동적광산란 분석은 통상의 기술자에게 주지한 분석 장비를 통해 측정할 수 있으며, 바람직하게는 Anton Parr사 입도분석기 또는 Malvern Zetasizer Ultra를 사용하여 측정할 수 있으나, 이는 비제한적인 예시일 뿐 이에 한정되는 것은 아니다.
본원의 일 구현예에 있어서, 동적광산란 입도분석기(DLS) 로 측정한 상기 산화 세륨 입자의 입자 크기는 1 내지 30nm일 수 있다. 본원의 다른 일 구현예에서는, 29nm 이하, 27nm 이하, 25nm 이하, 23nm 이하, 22nm 이하, 20.8 nm 이하, 20.5 nm 이하, 20.2 nm 이하, 20nm 이하, 19.8 nm 이하, 19.5 nm 이하, 19.2 nm 이하, 18nm 이하, 17nm 이하, 또는 15nm 이하일 수 있고, 1.2nm 이상, 1.4 nm 이상, 1.5nm 이상, 1.8nm 이상, 2nm 이상, 3nm 이상, 또는 4nm 이상일 수 있다. 상기 2차 입자 크기가 상기 범위 초과일 경우 슬러리 조성물에서 1차 입자의 응집이 많이 이루어지는 것을 의미하며, 이 경우 단분산된 슬러리라고 보기는 어려워진다. 상기 2차 입자 크기가 상기 범위 미만일 경우, 대상막에 대한 연마속도가 지나치게 저해되어 연마효율이 떨어질 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자는 동적광산란 입도분석기 (DLS) 로 측정한 상기 산화 세륨 입자의 크기를 a, 전자투과현미경(TEM)으로 측정한 상기 산화 세륨 입자의 크기를 b라고 할 때, 아래의 식 2를 만족하는 것을 특징으로 하는 것일 수 있다.
[식 2]
a ≤ 2.2b
이러한 특성은 본 발명의 산화 세륨 입자가 슬러리 내에 분산될 때 응집성이 낮다는 것을 나타내는 지표가 될 것이다. 상기 b의 계수가 2.2를 초과할 경우, 슬러리 내에서 응집이 많이 이루어진다는 것을 의미하고, 이는 입자 크기가 조대해지므로, 연마 시 웨이퍼 표면 결함을 억제하기 어려워짐을 의미할 수 있다.
본원의 다른 일 구현예에 있어서, 상기 산화 세륨 입자는 동적광산란 입도분석기 (DLS) 로 측정한 상기 산화 세륨 입자의 크기를 a, 소각 X선 산란 방식(SAXS)으로 측정한 상기 산화 세륨 입자의 크기를 b라고 할 때, 아래의 식 3을 만족하는 것을 특징으로 하는 것일 수 있다.
[식 3]
a ≤ 2.5b
이러한 특성은 본 발명의 산화 세륨 입자가 슬러리 내에 분산될 때 응집성이 낮다는 것을 나타내는 지표가 될 것이다. 상기 b의 계수가 2.5 초과일 경우, 슬러리 내에서 응집이 많이 이루어진다는 것을 의미하고, 이는 입자 크기가 조대해지므로, 연마 시 웨이퍼 표면 결함을 억제하기 어려워짐을 의미할 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자의 표면에서의 Ce3+ 함량은 XPS를 사용하여 분석할 수 있으며, 예를 들어, Thermo Fisher Scientific Co 사에서 제조한 theta probe base system을 사용할 수 있다. 상기 산화 세륨 연마입자의 표면의Ce3+ 함량은 하기의 화학식 1에 의해 계산될 수 있다.
[화학식 1]
Ce3+ 함량(%)= (Ce3+ 피크 면적)/[(Ce3+ 피크 면적)+ (Ce4+ 피크 면적)]
일 구현예에서, 상기 산화 세륨 입자 표면에서, X 선 광전자 분광(XPS) 분석시, Ce3+를 나타내는 Ce-O 결합 에너지를 나타내는 XPS 피크가 900.2 내지 902.2 eV, 896.4 내지 898.4 eV, 885.3 내지 887.3 eV 및 880.1 내지 882.1 eV에서 나타나는 것을 특징으로 할 수 있다. 구체적으로, 상기 산화 세륨 입자의 표면에서, X 선 광전자 분광(XPS) 분석 시, Ce3+를 나타내는 Ce-O 결합 에너지를 나타내는 XPS 피크가 900.2 내지 902.2 eV의 제1 피크, 896.4 내지 898.4 eV의 제2 피크, 885.3 내지 887.3 eV의 제3 피크 및 880.1 내지 882.1 eV의 제4 피크에서 나타나는 것을 특징으로 하는 것일 수 있다.
본원의 일 구현예에 있어서, 전체 XPS 피크 면적에 대하여, 상기 제1 피크의 면적은 3% 이상, 또는 4% 이상일 수 있고, 상기 제2 피크 및 제4 피크의 면적은 각각 5% 이상, 7% 이상, 또는 10% 이상일 수 있으며, 상기 제3 피크의 면적은 4% 이상, 5% 이상, 또는 6% 이상일 수 있다.
또한 본원의 일 구현예에 있어서, X 선 광전자 분광(XPS) 분석시, 상기 산화 세륨 입자 표면의 Ce-O 결합 에너지를 나타내는 XPS 피크 면적의 총합에 대한 Ce3+를 나타내는 Ce-O 결합 에너지를 나타내는 XPS 피크 면적의 합의 비는 0.29 내지 0.70인 것을 특징으로 하는 것일 수 있다. 본원의 다른 일 구현예에 있어서, 상기 산화 세륨 입자 표면의 Ce-O 결합 에너지를 나타내는 XPS 피크 면적의 총합에 대한 Ce3+를 나타내는 Ce-O 결합 에너지를 나타내는 XPS 피크 면적의 합의 비는 0.18 이상, 0.19 이상, 0.192 이상, 0.195 이상, 0.198 이상, 0.20 이상, 0.202 이상, 0.205 이상, 0.208 이상, 0.21 이상, 0.22 이상, 0.24 이상, 0.25 이상, 0.27 이상, 0.28 이상, 0.30 이상, 0.32 이상, 또는 0.35 이상일 수 있고, 0.90 이하, 0.88 이하, 0.85 이하, 0.83 이하, 0.80 이하, 0.77 이하, 0.75 이하, 0.72 이하, 0.71 이하, 0.705 이하, 0.70 이하, 0.695 이하, 0.69 이하, 0.68 이하, 0.67 이하, 0.66 이하, 0.65 이하, 0.64 이하, 0.63 이하, 0.62 이하, 0.61 이하, 또는 0.60 이하일 수 있다. 상기 범위 미만일 경우, 상기 산화 세륨 입자 표면에 충분한 양의 Ce3+가 존재하지 못하게 되어, 충분한 산화막 연마 속도의 상승을 기대하기 어려워질 것이고, 상기 범위를 초과하게 될 경우, 산화수를 고려할 때, 산화 세륨 입자로서 존재한다고 해석하기 어려워질 수 있다.
즉, 본원의 일 구현예에 있어서, X 선 광전자 분광(XPS) 분석 시 상기 화학적 기계적 연마용 산화 세륨 입자의 표면에 Ce3+를 18 원자% 이상, 19 원자% 이상, 20 원자% 이상, 22 원자% 이상, 24 원자% 이상, 25 원자% 이상, 27 원자% 이상, 28 원자% 이상, 30 원자% 이상, 32 원자% 이상, 또는 35 원자% 이상 포함할 수 있고, 90 원자% 이하, 88 원자% 이하, 85 원자% 이하, 83 원자% 이하, 80 원자% 이하, 77 원자% 이하, 75 원자% 이하, 72 원자% 이하, 또는 70 원자% 이하로 포함하는 것을 특징으로 할 수 있다.
본원의 일 구현예에 따른 산화 세륨 입자의 경우, 입자 표면의 Ce3+ 함량이 높게 나오는 특징을 보이는데, 이는 습식 공정을 통해 액상에서 입자 합성 과정이 산성 조건에서 이루어지는 것에 기인하는 것으로 추정되며, 이렇게 입자 표면의 Ce3+ 함량이 상대적으로 높을 경우 산화막 연마율이 향상될 수 있다.
본원의 일 구현예에 있어서, 본 발명의 일 실시예에 따른 산화 세륨 입자는, 이것을 종래 기술의 연마 입자와 구분지어 주는, 입자 표면의 Ce3+ 성분이 다량 함유되어 있다는 것을 암시하는 라만 스펙트럼 특징을 나타낸다. 구체적으로, 상기 산화 세륨 입자는 2 이상의 라만 피크 스펙트럼을 가지는 것을 특징으로 할 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자는 455 cm-1 내지 460 cm-1의 밴드 범위 내에서 제1 라만 피크를 가질 수 있다. 또 다른 일 구현예에서, 상기 산화 세륨 입자는 586 cm-1 내지 627 cm-1의 밴드 범위 내에서 제2 라만 피크를 가질 수 있다. 또 다른 일 구현예에서, 상기 산화 세륨 입자는 712 cm-1 내지 772 cm-1의 밴드 범위 내에서 제3 라만 피크를 가질 수 있다. 여기서 상기 밴드 범위는 라만 스펙트럼의 X축인 Raman shift 수치 범위를 의미하는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자는 상기 제2 라만 피크 강도(B)에 대한 상기 제1 라만 피크 강도(A)의 비(A/B)가 35 이하인 것을 특징으로 할 수 있다. 상기 A/B는 바람직하게는 30 이하, 보다 바람직하게는 25 이하, 보다 더 바람직하게는 20 이하일 수 있다. 상기 A/B의 하한은 특별히 제한되는 것은 아니나, 5 이상, 10 이상 또는 15 이상일 수 있다. 상기 제2 라만 피크는 Ce3+의 함량이 증가함에 따라 oxygen vacancy 비율이 증가하면서 생기는 Raman shift로 해석할 수 있으며, 따라서 상기 강도 비(A/B)가 작을수록 산화 세륨 입자의 Ce3+ 함량이 증가함을 의미할 수 있고, 이는 산화막 웨이퍼와의 Si-O-Ce 결합을 이용한 화학적 연마 작용을 촉진하여, 종래 산화 세륨 입자보다 미세한 입자 크기에도 불구하고 본 발명의 실시예에 따른 산화 세륨 입자를 이용하였을 때 연마 속도가 향상될 수 있음을 시사할 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자는 제3 라만 피크 강도(C)에 대한 상기 제1 라만 피크 강도(A)의 비(A/C)가 50 이하인 것을 특징으로 할 수 있다. 상기 A/B는 바람직하게는 45 이하, 더 바람직하게는 43 이하일 수 있다. 상기 A/C의 하한은 특별히 제한되는 것은 아니나, 5 이상, 10 이상 또는 15 이상일 수 있다.
본원의 일 구현예에 따른 산화 세륨 입자는, 상기와 같이 종래 산화 세륨 입자보다 Ce3+을 고함량으로 포함함으로써 작은 입자 크기에도 불구하고, 산화 세륨 입자의 함량 대비 우수한 연마속도를 가지는 슬러리 조성물의 제공이 가능할 수 있으며, 또한, 연마 흠집의 발생이 제어될 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자의 표면에서의 Ce3+ 함량과 관련하여, 전자 에너지 손실 분광(EELS) 스펙트럼을 사용하여 분석할 수 있으며, 예를 들어, 2 이상의 Ce4+를 나타내는 산화 상태를 나타내는 EELS 피크를 가지는 것을 특징으로 할 수 있다.
산화 세륨 입자(및/또는 이를 포함하는 슬러리 조성물)는 도 23 내지 25와 같은 EELS 스펙트럼을 나타낼 수 있다.
본원의 일 실시예에 따른 상기 산화 세륨 입자의 EELS 스펙트럼은 876.5 내지 886.5 eV의 제1 피크 및 894.5 내지 904.5 eV의 제2 피크를 포함하고, 상기 제1 피크의 최대 강도가 제2 피크의 최대 강도보다 큰 것을 특징으로 하는 것일 수 있다. 이러한 양상은 산화 세륨 입자의 Ce3+의 함량이 많아질수록, 3가의 산화 세륨과 유사한 EELS 스펙트럼을 나타내는 것을 의미할 수 있다.
본원의 일 구현예에 있어서, 상기 스펙트럼은 886.5 내지 889.5 eV의 제3 피크 및 904.5 내지 908.5 eV의 제4 피크를 더 포함하는 것을 특징으로 하는 것일 수 있다. 상기 제3 및 제4 피크의 경우 산화상태에 따른 피크 구분이 가능하며 Ce4+의 산화상태로 인해 나타나는 해당 피크 구간들의 면적을 구함으로써, 본 발명의 산화 세륨 입자와, 종래의 산화 세륨 입자를 구분할 수 있게 되는 것이다.
또한 본원의 일 구현예에 있어서, 상기 스펙트럼의 피크 전체 면적의 합(Pt)에 대한 상기 제3 피크 구간의 면적의 합(P1)의 비율(P1/Pt)이 0.025 이하일 수 있고, 보다 바람직하게는 0.024 이하, 0.022 이하, 0.018 이하, 0.015 이하, 0.012 이하, 0.011 이하 또는 0.01 이하일 수 있다. 반면 종래의 산화 세륨 입자의 경우 최소 0.03 이상의 값을 나타내고, 이러한 특징은 하기 실험예를 통해 나타날 것이다.
본원의 일 구현예에 있어서, 상기 스펙트럼의 피크의 전체 면적의 합(Pt)에 대한 상기 제3 피크 구간의 면적의 합(P1) 및 상기 제4 피크 구간의 면적의 합(P2)의 비율((P1+P2)/Pt)이 0.1 이하일 수 있다. 또한 상기 면적 비율은 바람직하게는 0.099 이하, 0.098 이하, 0.096 이하, 0.095 이하, 0.094 이하, 0.0092 이하 또는 0.090 이하일 수 있다. 본원의 일 실시예에 따른 산화 세륨 입자의 상기 비율은 예를 들어, 동일 샘플에 대해 n회 측정하였을 경우, 상기 n회 측정한 값의 평균 비율을 의미하는 것일 수 있다. 상기 면적의 비율((P1+P2)/Pt)은 다른 예시에서, 0.01 이상, 0.012 이상, 0.014 이상, 0.016 이상 또는 0.018 이상일 수 있다. 상기 면적의 비율이 0.1이하일 때, 상기 산화 세륨 입자 표면의 전체 산화 세륨 함량 대비 Ce3+의 함량이 높은 것을 의미하는 것일 수 있으며, 보다 높은 Ce3+ 함량은 실리콘 산화막에 대하여 Si-O-Ce 결합을 통한 화학적 연마 작용을 촉진해 연마율을 증가시킬 수 있다.
본원의 일 구현예에 따른 산화 세륨 입자는, 이것을 종래 기술의 연마 입자와 구분지어 주는, 입자 표면의 Ce3+ 성분이 다량 함유되어 있다는 것을 암시하는 XAFS(X-ray absorption fine structure) 스펙트럼 특징을 나타낸다. 구체적으로, 상기 산화 세륨 입자는 XAFS 스펙트럼에 2 이상의 피크를 가지는 것을 특징으로 할 수 있다.
본원의 일 구현예에 있어서, 산화 세륨 입자(및/또는 이를 포함하는 슬러리 조성물)은 도 33 및 도 34와 같은 XAFS 스펙트럼을 나타낼 수 있다.
일 구현예에서, 상기 산화 세륨 입자는 XAFS 스펙트럼 측정 시, 5730 eV 이상 5740 eV 미만의 범위 내에서 제1 피크의 최대 광흡수계수를 가질 수 있으며, 상기 제1 피크는 Ce3+의 산화 상태를 나타내는 것일 수 있다.
또 다른 일 구현예에서, 상기 산화 세륨 입자는 XAFS 스펙트럼 측정 시, 5740 eV 이상 5760 eV 미만의 범위 내에서 제2 피크의 최대 광흡수계수를 가질 수 있으며, 상기 제2 피크는 Ce4+의 산화 상태를 나타내는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 제1 피크의 최대 광흡수계수(피크의 최대값)는 0.1 내지 0.4일 수 있다. 본원의 다른 일 구현예에서는 상기 제1 피크의 최대 광흡수계수는 0.11 이상, 0.12 이상, 0.13 이상, 0.14 이상, 0.15 이상, 0.2 이상, 또는 0.25 이상일 수 있고, 0.38 이하, 0.35 이하, 0.32 이하, 또는 0.30 이하일 수 있다.
본원의 일 구현예에 있어서, 상기 제2 피크의 최대 광흡수계수(피크의 최대값)는 0.6 미만일 수 있다. 본원의 다른 일 구현예에서는 상기 제2 피크의 최대 광흡수계수는 0.11 이상, 0.12 이상, 0.13 이상, 0.14 이상, 0.15 이상, 0.2 이상, 또는 0.25 이상일 수 있고, 0.58 이하, 0.55 이하, 0.52 이하, 또는 0.50 이하일 수 있다.
상기 제1 피크의 광흡수계수가 0.1 미만인 경우 및 상기 제2 피크의 광흡수계수가 0.6을 초과하는 경우, 상기 산화 세륨 표면의 전체 중량 대비 Ce3+ 중량이 감소하는 것을 의미하고, 이는 나이가 연마속도가 저해될 수 있다는 것을 의미할 수 있다.
본원의 일 구현예에 있어서, 상기 XAFS 스펙트럼에 나타난 제2 피크의 면적(A2)에 대한 제1 피크의 면적(A1)의 비(A1/A2)는 0.03 이상일 수 있다. 상기 피크의 면적비(A1/A2)는 0.03 이상, 0.05 이상, 0.07이상, 0.09 이상, 또는 0.1 이상이고, 더 바람직하게는 0.11 이상, 보다 바람직하게는 0.12 이상일 수 있다. 즉, XAFS(X-ray absorption fine structure) 스펙트럼에 따른 Ce3+를 나타내는 피크의 면적(A3) 및 Ce4+를 나타내는 피크의 면적(A4)의 합에 대하여, Ce3+를 나타내는 피크의 면적(A3)의 비(A3/(A3+A4))는 0.1 이상(10% 이상)인 것일 수 있다. 상기 중량비가 0.03 미만인 경우 산화 세륨 입자 표면의 Ce4+ 함량 대비 Ce3+ 함량이 충분하지 않아 연마속도가 저하될 우려가 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자에 대해 광전자 분광 분석을 수행할 수 있으며, 구체적으로 UV 영역의 빛을 사용하는 UV 광전자 분광(ultraviolet photoelectron spectroscopy, UPS)분석을 수행할 수 있다. 광전자분광 기술은 전통적으로 X-선 영역의 단일 파장 빛을 사용하는 X-선 광전자 분광(X-ray photoelectron spectroscopy, XPS)과 UV 영역의 빛을 사용하는 UV 광전자 분광(ultraviolet photoelectron spectroscopy, UPS)으로 나뉠 수 있다. XPS는 1000∼1500 eV 정도의 에너지를 가지는 X-선을 사용하여 주로 시료 내부 원자의 core level에서 방출되는 전자를 분석하여, 시료에 있는 원소의 종류, 화학상태, 농도 등을 알아내는 기술로서, 많은 상용 장비가 판매되고 있고 분석 방법이나 사용법 등이 널리 알려져 있는 반면, UPS는 10∼20 eV 정도의 극자외선(extreme UV) 영역의 빛을 사용하여 시료의 가전자(valence electron) 영역의 전자를 방출도록 하여, 화학결합에 직접 참여하는 전자들이 고체 내에서 가질 수 있는 다양한 상태를 알 수 있도록 해 주는 기술이다. 특히 소위 각분해 UPS(angle-resolved UPS, ARUPS/ARPES)는 단결정 시료의 밴드구조를 직접 측정할 수 있기 때문에 이러한 측정이 물질의 특이한 성질을 이해하는데 중요한 요인이 되는 고온 초전도체나 거대 자기저항 물질 등에서 물리적 성질을 파악하는데 사용될 수 있다. 고체 시료에 hv의 에너지를 가지는 빛을 쪼이면, 에너지와 운동량 보존 법칙을 만족하면서 전자가 운동에너지를 얻게 된다. 이때 시료를 떠나서 튀어 나가는 전자의 운동 에너지의 값은 다음과 같이 주어진다.
Ekin = hv - Φ -|Eb|
여기서 Ekin는 튀어나오는 전자의 운동에너지, Φ는 시료의 일함수(work function), Eb는 튀어나오는 전자가 시료에 속박되어 있을 때의 속박에너지(binding energy)이다. 외부에서 전자에너지 분석기를 이용하여 튀어나오는 전자의 운동에너지에 따른 세기를 측정하면 시료 내부에 있는 전자들의 속박에너지에 따른 상태 밀도(density of state)를 알 수 있다. 따라서, 상기 방정식을 참고하면 측정되는 운동에너지를 통하여 속박에너지를 도출할 수 있는데, 이때 시료의 일함수 Φ는 소스 에너지의 hv값과 페르미 준위(EF) 및 진공 준위(Ecutoff)를 이용하여 나타낼 수 있다.
Φ = hv - |Ef - Ecutoff|
UPS 결과값을 그래프상에 도식했을 때, x 축의 영(zero)은 시료의 페르미 준위(EF)를 나타내고, Ecutoff는 진공준위(vacuum level)에 의해서 나타나는 수치이다. hv는 자외선을 방출시킬 때 사용하는 소스 에너지(source energy)로서 입사하는 빛의 에너지를 나타내는데, 보편적으로 소스는 헬륨(He)이 사용될 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨의 밴드구조는 입자의 크기에 따라 차이를 보일 수 있는데, 입자의 크기가 작아질수록 시료의 오비탈들 사이 에너지 준위 차이가 점점 커지게 되어 높은 값의 에너지 밴드갭을 가질 수 있다. 반면에 입자의 크기가 증가할수록 에너지 준위 차이가 점점 작아져 낮은 값의 에너지 밴드갭을 갖는다. 따라서, 앞서 서술한바와 같이 입자의 크기가 작을수록 가전자대와 전도대 사이 에너지갭이 증가하게 되고 페르미 준위(EF) 및 진공준위(vacuum level)의 값을 변화시켜 도출되는 일함수의 에너지(eV)를 증가시킬 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자는 UPS 분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 10 eV이하의 범위 내에 존재하는 것을 특징으로 할 수 있다. 이러한 특성은 종래의 세리아 입자와는 대비되는 특성이다. 상기 1초당 방출되는 광전자 수(Counts)의 최대값은 운동에너지 6 내지 10 eV, 또는 7 내지 10 eV에 존재할 수 있고, 바람직하게는 8 내지 10 eV의 범위 내에 존재할 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자의 UPS에 따라 측정된 일 함수(work function) 값은 2.5 eV이상의 범위일 수 있다. 상기 일 함수 값은 바람직하게는 2.7 eV이상의 범위 내에 있거나, 보다 바람직하게는 3.0 eV이상의 범위일 수 있다. 상기 일 함수 값의 상한은 특별히 제한되는 것은 아니고, 10 eV 미만, 9 eV 이하 또는 8 eV 이하일 수 있다. 일 함수 값이 상술한 범위를 만족한다는 것은 종래의 산화 세륨 입자들과는 대비되는 특징으로서, 슬러리에 분산되어 있는 산화 세륨 입자의 크기가 작다는 것을 의미하고, 이는 응집성이 매우 작은 것임을 나타내는 것이다. 이렇게 응집성이 작고, 단분산되는 특징을 가짐으로써, 본원의 일 구현예에 따른 산화 세륨 입자는 화학적 기계적 연마용 슬러리에 포함되어 사용될 때, 웨이퍼와 접촉하는 입자 수를 최대화할 수 있고, 산화막 연마 속도를 증가시킬 수 있음과 동시에, 입자 크기 자체는 미세하게 되므로 웨이퍼 표면의 결함은 최소화할 수 있을 것으로 예상된다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자로 이루어진 분말 1g에 대해 비표면적을 측정하였을 때, BET 표면적 값이 50 m2/g 이하일 수 있다. 다른 일 구현예에 있어서, 상기 BET 표면적 값은 49 m2/g 이하, 48 m2/g 이하, 47 m2/g 이하, 46 m2/g 이하, 45 m2/g 이하, 44 m2/g 이하, 43 m2/g 이하, 더 바람직하게는 42 m2/g 이하일 수 있다. 이는 입자 크기가 작아질수록 큰 BET 표면적 값을 갖는 종래 산화 세륨 입자와는 다른 경향을 보이는데, 이것은 졸-겔 법, 바텀-업 방식 등 자기조직화 합성 방법으로 합성된 산화 세륨 입자가 다른 합성법으로 제조된 산화 세륨 입자보다 작은 비표면적 및 기공부피를 가지며, 특히 산화 세륨 입자 표면에 존재하는 -OH 작용기의 비율이 낮기 때문인 것으로 유추할 수 있다. 또한, 종래 산화 세륨 입자보다 미세한 입자 크기를 가지면서 입자를 분말 1.0g의 동일한 조건에서 BET로 분석하였을 때 비교예 1에 따른 종래 산화 세륨 입자보다 고밀도로 분말 시료가 정렬되며 BET 표면적 값이 작게 측정되는 결과를 예측해볼 수 있다. 따라서 본 발명의 실시예에 따른 산화 세륨 입자는 비교예 1에 따른 종래 10 nm급 산화 세륨 입자보다도 미세한 입자 크기를 가짐에도 불구하고, 비교예 1에 따른 산화 세륨 입자보다 작은 BET 표면적 값을 갖는 것을 확인할 수 있으며, 상기 결과는, 본 발명의 실시예에 따른 산화 세륨 입자를 종래 산화 세륨 입자와 비교하였을 때, 보다 미세한 입자 크기를 가지면서 동시에 입자 표면에서 Ce4+ 및 -OH 작용기 함량에 비해 Ce3+ 함량이 높은 표면화학적 특성을 보이는 경향과 같은 맥락으로 유추할 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자의, 정치법에 의해 측정한 겉보기 밀도가 2.00 내지 5.00 g/ml인 것을 특징으로 하는 것일 수 있으며, 바람직하게는 2.00 내지 4.00 g/ml, 보다 바람직하게는 2.00 내지 3.00 g/ml인 것을 특징으로 할 수 있다.
본원의 다른 일 구현예에 있어서, 상기 산화 세륨 입자의, 탭법에 의해 측정한 겉보기 밀도가 2.90 내지 5.00 g/ml인 것을 특징으로 하는 것일 수 있으며, 바람직하게는 3.00 내지 5.00 g/ml, 보다 바람직하게는 3.20 내지 5.00 g/ml인 것을 특징으로 할 수 있다.
상기 겉보기 밀도가 5.00 g/ml를 넘는 산화 세륨 입자를 수중에 분산시킨 슬러리를 연마에 이용하게 되면, 조대한 1차 및 2차 입자크기로 인해 피연마 표면에 흠집을 발생할 수 있게 된다. 또한 본원의 일 구현예에 있어서, 2.00 g/ml 미만의 산화 세륨 입자를 이용하게 되면, 1차 입자크기의 감소와 함께 연마 속도가 극단적으로 작아지게 되면서 충분한 연마 효과를 얻을 수 없는 경우가 있기 때문에, 10nm이하의 작은 입자 크기에도 2.00 g/ml 이상의 겉보기 밀도를 유지하는 것이 바람직할 수 있다. 따라서 본 발명의 일 실시예에 따른 산화 세륨 입자는, 미세한 입자크기에도 불구하고, 종래의 산화 세륨 입자들 대비 상대적으로 높은 겉보기 밀도를 가지고 있어 차이가 있음을 알 수 있다. 이러한 특성이 산화막 연마 속도에도 일정 부분 영향을 줄 수 있을 것으로 기대할 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액을 기준으로, 325 nm의 파장에서 발광 세기(Photoluminescence: PL)를 측정할 때, 435 내지 465 nm 파장의 제1 피크(λ1)의 최대 강도가 0.1 내지 30, 0.2 내지 20, 0.3 내지 10, 또는 0.5 내지 7의 범위로 나타나는 것을 특징으로 하는 것일 수 있다. 종래 시판되는 조대한 산화 세륨 입자의 경우 최대 피크 강도가 동일한 조건에서 30을 초과하여 나타나는데, 슬러리내 응집성도 강하고 따라서 투과보다는 발광이 강하게 일어나는 것을 의미하는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액을 기준으로, 510 내지 540 nm 파장의 제2 피크(λ2)의 최대 강도가 0.1 내지 10, 0.1 내지 7.5, 0.1 내지 5, 또는 0.1 내지 3의 범위로 나타나는 것을 특징으로 하는 것일 수 있다. 종래 시판되는 조대한 산화 세륨 입자의 경우 최대 피크 강도가 동일한 조건에서 10을 초과하여 나타나는데, 슬러리내 응집성도 강하고 따라서 투과보다는 발광이 강하게 일어나는 것을 의미하는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에 대해, 325 nm의 파장에서 발광 세기(Photoluminescence: PL)를 측정하여, 입자의 특성을 알 수 있다. 구체적으로, 본원의 일 구현예에 있어서, 여기 파장 325 nm로 실시한 형광 분광(Fluorescence spectrometer)을 분석 시, 310 내지335 nm 파장에서 여기 피크(λexc)가 나타나고, 435 내지 465 nm 파장에서 제1 피크(λ1)가 나타나며, 510 내지540 nm 파장에서 제2 피크(λ2)가 나타날 수 있다. 상기 여기 피크는 여기 파장에 대한 피크를 나타내는 것이고, 상기 제1 피크는 Ce3+를 나타내는 것이며, 상기 제2 피크는 Ce4+를 나타내는 것으로 해석될 수 있을 것이다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에 대해, 325 nm의 파장에서 발광 세기(Photoluminescence: PL)를 측정할 때, 310 내지335 nm 파장의 여기 피크(λexc)에 대한, 435 내지 465 nm 파장의 제1 피크(λ1)의 강도비 (λ1exc)가 30 미만, 바람직하게는 27 이하, 25 이하이고, 더 바람직하게는 23 이하, 20이하이고, 더욱 바람직하게는 18 이하이고, 15 이하이고, 보다 더 바람직하게는 10 이하일 수 있다.
본원의 일 구현예에 있어서, 510 내지 540 nm 파장의 제2 피크(λ2)에 대한, 상기 제1 피크(λ1)의 강도비 (λ12)는 4 이상, 바람직하게는 5 이상, 더 바람직하게는 5.5 이상, 더욱 바람직하게는 6 이상일 수 있고, 20 이하, 바람직하게는 18 이하, 더 바람직하게는 15 이하, 더욱 바람직하게는 12 이하, 보다 더 바람직하게는 10 이하일 수 있다.
본원의 일 구현예에 따른 산화 세륨 입자는, 상기 여기 피크(λexc)에 대한 제1 피크(λ1)의 강도비 (λ1exc) 및 제2 피크(λ2)에 대한, 상기 제1 피크(λ1)의 강도비 (λ12)를 상기 범위로 만족함으로써, 상기 산화 세륨 입자의 표면에 고 함량의 Ce3+를 포함하면서도, 분산액에서 2차 입자로의 응집이 매우 적게 일어나 광투과가 잘 이루어지는 특성을 나타냄과 동시에 입자 표면의 Ce3+ 함량이 상대적으로 높은 특성을 나타내는 것임을 알 수 있다. 본 발명의 산화 세륨 입자의 경우 화학적 기계적 연마용 슬러리에 사용되었을 때, 입자 표면의 Ce3+ 함량은 높으면서도 입자 자체는 미세하고 슬러리에서 응집이 매우 적게 일어나는 특성을 가지고, 이에 의해 산화 세륨 입자와 산화막 기판 간의 Si-O-Ce 결합에 의한 화학적 연마율이 높아지게 되어 산화막 연마율이 향상되는 것임을 알 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자를 포함하는 분산액의 황색도를 L*a*b* 표색계로 평가할 수 있으며, 이때 L*a*b는 1976년에 CIE(Commission Internationable de Eclairage: 국제조명위원회)에서 정해진 CIE1976 L*a*b* 색공간에 의해 정의된다. 이 색공간은 다음식에서 정한 양 L*, a*, b*을 직교 좌표계에 갖는 색공간이다.
L* = 116(Y/Y0)1/3 - 16
a* = 500[(X/X0)1/3 - (Y/Y0)1/3]
b* = 200[(Y/Y0)1/3 - (Z/Z0)1/3]
(다만, X/X0, Y/Y0, Z/Z0>0.008856, X, Y, Z는 물체색의 세 자극치, X0, Y0, Z0은 물체색을 조명하는 광원의 세 자극치로 서 Y0=100으로 표준화되어 있다)
L* 은 밝기를 나타내고 「명도 지수」라고도 한다. 또한, a*와 b*는 색상과 채도(彩度)를 나타내고 있으며 「크로마틱니스(Chromaticness) 지수」」라고도 한다. L*a*b* 표색계 에서는, L* 값이 클수록 백색에 가까운 색이며, 작을 수록 흑색에 가까운 색 인 것을 나타낸다. 그리고, a* 값이 + 쪽으로 크게 되는 데 따라 적색계의 색이 강하게 되고, 작게되는(- 쪽으로 크게 되는) 데 따라서 녹색 계의 색이 강하게 된다. 또한, b* 값이 + 쪽으로 크게 되는 데 따라 황색계의 색이 강하게 되고, 작게되는(- 쪽으로 크게 되는) 데 따라서 청색 계의 색이 강하게 된다. 또한, a* 값 b* 값이 모두 0이면 무채색(無彩色)인 것을 의미한다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액의 색을 L*a*b* 표색계로 나타낼 때, L* 값이 80 이상, 바람직하게는 85 이상, 보다 바람직하게는 90 이상, 보다 더 바람직하게는 95 이상, 보다 더욱 바람직하게는 98 이상일 수 있다. 상기 범위보다 L* 값이 작을 때에는, 산화 세륨 연마 입자의 입자성장이 너무 진행된 상태를 의미하고, 연마 시 웨이퍼의 결함 발생원인으로 되는 조대한 입자가 많은 상태인 것을 의미하는 것일 수 있다. 또한 상기 L* 값은 100 이하, 보다 바람직하게는 99.9 이하일 수 있는 것을 특징으로 할 수 있다.
본원의 일 구현예에 있어서, 상기 b* 값은 8 이상, 바람직하게는 10 이상, 보다 바람직하게는 11 이상일 수 있으며, 30 미만, 바람직하게는 25 이하, 보다 바람직하게는 20 이하, 보다 더 바람직하게는 15 이하의 범위에 있는 것을 특징으로 할 수 있다. 상기 범위보다도 b* 값이 작으면, 연마시에 필요한 화학반응을 얻을 수 없을 것이고, 연마 표면의 미세한 요철을 평활하게 연마할 수 없을 것이다.
본원의 일 구현예에 있어서, 상기 a* 값은 -3 미만, 바람직하게는 -4 이하, 보다 바람직하게는 -5 이하일 수 있으며, -8 이상, 더 바람직하게는 -7 이상의 범위에 있는 것을 특징으로 할 수 있다.
따라서, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액의 색을 L*a*b* 표색계로 나타낼 때, 각각의 값이 상기 범위에 있으면, 분산액은 황색의 투명한 상태로 관찰될 수 있으며, 상기 분산액의 황색미가 짙을수록 연마 속도가 향상될 수 있을 것으로 추정된다. 특히 본원의 일 구현예에 따른 산화 세륨 입자는 미세한 입자 크기에도 불구하고 화학적 기계적 연마용 슬러리에 포함될 경우 산화 세륨 표면의 Ce3+의 비율이 높아 산화막 연마 속도는 현저히 높으면서도, 미세한 입자에 의해, 웨이퍼 표면의 결함은 최소화 할 수 있는 것으로서, 상기 L*a*b* 표색계로 나타낼 때의, 각각의 값이 상기 범위에 있거나, 특히 황색도가 높은 것을 나타내는 것은 종래의 산화 세륨 입자 대비, 산화 세륨 입자 표면의 Ce3+의 비율이 상대적으로 매우 높은 상태인 것을 의미하는 것이라고 볼 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액을 원심력 4265 G(6,000 rpm)의 조건으로 30분간 원심분리했을 때의 산화 세륨 입자의 침강율이 25 중량% 이하일 수 있다. 다른 일 구현예에서 상기 침강율은 20 중량% 이하, 15 중량% 이하, 10 중량% 이하, 보다 바람직하게는 5 중량% 이하일 수 있다.
또한 본원의 일 구현예에 있어서, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액을 원심력 2100 G(3,200 rpm)의 조건으로 10분간 원심분리했을 때의 산화 세륨 입자의 침강율이 0.6 중량% 이하일 수 있다. 다른 일 구현예에서 상기 침강율은 0.55 중량% 이하, 0.5 중량% 이하, 0.45 중량% 이하, 보다 바람직하게는 0.4 중량% 이하일 수 있다.
또한 본원의 다른 일 구현예에 있어서, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액을 원심력 3300 G(4,000 rpm)의 조건으로 30분간 원심분리했을 때의 산화 세륨 입자의 침강율이 5.0 중량% 이하일 수 있다. 다른 일 구현예에서 상기 침강율은 4.8 중량% 이하, 4.5 중량% 이하, 4.2 중량% 이하, 보다 바람직하게는 4.0 중량% 이하일 수 있다.
또한 본원의 다른 일 구현예에 있어서, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액을 원심력 26188 G(12,000 rpm)의 조건으로 30분간 원심분리했을 때의 산화 세륨 입자의 침강율이 45.0 중량% 이하일 수 있다. 다른 일 구현예에서 상기 침강율은 42 중량% 이하, 40 중량% 이하, 38 중량% 이하, 보다 바람직하게는 35 중량% 이하일 수 있다.
또한 본원의 다른 일 구현예에 있어서, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액을 원심력 39282 G(18,000 rpm)의 조건으로 30분간 원심분리했을 때의 산화 세륨 입자의 침강율이 90.0 중량% 이하일 수 있다. 다른 일 구현예에서 상기 침강율은 80 중량% 이하, 70 중량% 이하, 65 중량% 이하, 보다 바람직하게는 60 중량% 이하일 수 있다.
본원의 일 구현예에 있어서, 상기 수분산액의 액점도는 0.3 내지 2.0 mPa·s, 0.5 내지 1.8 mPa·s, 0.55 내지 1.5 mPa·s, 또는 0.6 내지 1.2 mPa·s일 수 있고, 바람직한 일 실시예에서는 0.65 내지 1.2 mPa·s 조건에서 원심분리를 진행할 수 있다.
이렇게 상기 약한 원심력 조건부터 가혹한 원심력 조건까지 각각, 원심분리했을 때, 산화 세륨 입자의 침강율이 각각 상술한 범위 이하인 경우, 본 발명의 일 실시예에 따른 산화 세륨 입자가 종래 산화 세륨 입자에 비해 미세한 입자 크기를 갖고 단분산되어 있는 것임을 의미할 수 있고, 따라서 단분산 된 입자가 화학적 기계적 연마 공정에서 웨이퍼와 접촉하게 되므로 접촉 입자 수가 많아져 산화막 연마 속도가 개선될 것임을 기대할 수 있으며, 또한 미세한 본 발명의 실시예에 의해 연마를 진행할 때 연마 결함 발생률을 감소시킬 수 있는 것으로 볼 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 1차 입자는 구형, 등축정계(cube) 형상, 정방정계(tetragonal) 형상, 사방정계(orthorhombic) 형상, 삼방정계(Rhombohedral) 형상, 단사정계(Monoclinic) 형상, 육방정계(hexagonal) 형상, 삼사정계(triclinic) 형상 및 육팔면체(cuboctahedron)형상으로 이루어지는 군에서 선택되는 1종 이상일 수 있으나, 바람직하게는 구형 입자일 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자는 화학적 합성을 통해 입자를 성장시키는 방법으로 제조될 수 있으며, 바람직하게는 바텀 업(bottom up)방식일 수 있다. 상기 산화 세륨 입자의 합성 방법으로는 졸-겔(sol-gel)법, 초임계 반응, 수열반응 또는 공침법 등의 방법이 사용될 수 있으며 이에 한정하지는 않는다. 상기 바텀 업 방식은 최근 각광받고 있는 화학적 합성의 한 종류로서 원자나 분자들의 출발물질을 화학반응을 통하여 나노미터 크기의 입자로 성장시켜 나가는 방법이다.
본원의 일 구현예에 있어서, 상기 연마 조성물은 습식 산화 세륨 입자를 포함한다. 습식 산화 세륨 입자는 임의의 적합한 습식 산화 세륨 입자일 수 있다. 예를 들면, 습식 산화 세륨 입자는 콜로이드상 산화 세륨 입자를 포함하는, 침전된 산화 세륨 입자 또는 축합-중합된 산화 세륨 입자일 수 있다.
본원의 일 구현예에 있어서, 습식 산화 세륨 입자는 또한 바람직하게는 입자의 표면상에 결함을 가진다. 임의의 특정 이론에 결부시키고자 하는 것은 아니나, 산화 세륨 입자의 분쇄는 산화 세륨 입자의 표면상에 결함을 초래할 수 있으며, 이러한 결함은 또한 화학 기계적 연마 조성물 중 산화 세륨 입자의 성능에 영향을 미친다. 특히, 산화 세륨 입자는 분쇄될 때 파쇄될 수 있어, 덜 유리한 표면 상태가 노출될 수 있다. 이 과정은 이완(relaxation)으로 알려져 있으며, 산화 세륨 입자의 표면 주위에 있는 제한된 재구성 능력 및 제한된 보다 유리한 상태로의 복귀 능력을 갖는 원자가 입자 표면에 결함이 형성되게 한다.
본원의 일 구현예에 있어서, 연마재의 2차 입자 생성에 있어서, 용매는 각각 고유한 유전상수 값을 가지며, 용매의 유전상수는 분말 합성 시, 핵 생성 및 결정성장에 있어 표면 에너지나 표면전하 등을 변화시켜 핵의 응집 및 성장에 영향을 주고 이는 분말의 크기 및 형상 등에 영향을 주게 된다. 용매의 유전상수와 용매 내에 분산된 입자의 표면 전위(제타포텐셜)는 서로 비례관계에 있으며, 제타포텐셜이 낮으면 미세입자간 혹은 반응에 의해 생성된 핵간의 표면 반발력이 작으므로, 불안정한 상태로서 미세입자간 혹 은 핵간의 응집이 매우 빠른 속도로 일어날 수 있다. 이 때 표면 반발력의 크기는 미세입자 혹은 핵 간에 모두 비슷하므로, 균일한 크기로 응집이 가능하게 된다. 이렇게 응집된 2차 입자들은 온도, 농도 등과 같은 반응조건에 따라 1차 미세입자 혹은 핵들이 강한 응집작용 또는 오스왈드 라이프닝(Ostwald ripening)과 같은 입자 병합 과정을 거쳐 비교적 큰 사이즈의 입자들로 성장하게 된다.
본 발명의 제2 측면은,
산화 세륨 입자; 및 용매를 포함하고, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 500 nm의 광에 대하여 광투과도가 50% 이상인 것을 특징으로 하는, 화학적 기계적 연마용 슬러리 조성물을 제공한다.
본원의 제1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제1 측면에 대해 설명한 내용은 제2 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
이하, 본원의 제2 측면에 따른 화학적 기계적 연마용 슬러리 조성물을 상세히 설명한다.
본원의 일 구현예에 따른 화학적 기계적 연마용 슬러리 조성물은 산화 세륨 입자 및 용매를 포함한다.
본원의 일 구현예에 있어서, 슬러리 내에 연마입자로서 포함되는 상기 산화 세륨 입자는, 제타 포텐셜 값이 양의 값을 가질 수 있으며, 바람직하게는 pH 2 내지 8의 범위에서 제타 포텐셜 값이 1 내지 80mV, 5 내지 60mV, 10 내지 50mV일 수 있다. 상기 산화 세륨 입자의 제타 포텐셜 값이 양의 값을 가짐으로써, 실리콘 산화막 표면의 극성이 음의 값을 나타냄에 따라 산화 세륨 입자와 실리콘 산화막의 표면 사이의 인력에 의하여 연마 효율이 증대될 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자는 실리카 입자나 알루미나 입자에 비해 경도가 낮지만, 실리카와 세륨간에 Si-O-Ce 결합이 형성되는 화학적 연마 메커니즘에 의해 유리나 반도체 기판과 같은 규소를 포함하는 면의 연마속도가 매우 빨라 반도체 기판의 연마에 유리하다.
본원의 일 구현예에 있어서, 상기 슬러리 조성물에 포함된 전구체 물질의 함량은 중량 기준 300 ppm 이하 인 것일 수 있다. 본원의 다른 일 구현예에서는, 상기 슬러리 조성물에 포함된 전구체 물질의 함량은 중량 기준 200 ppm 이하, 150 ppm 이하, 100 ppm 이하, 75 ppm 이하, 50 ppm 이하, 25 ppm 이하, 15 ppm 이하, 10 ppm 이하, 7.5 ppm 이하, 5 ppm 이하, 2.5 ppm 이하, 2 ppm 이하, 1.75 ppm 이하, 1.5 ppm 이하, 1.25 ppm 이하, 1 ppm 이하, 0.75 ppm 이하, 또는 0.5 ppm 이하일 수 있다. 실질적으로 상기 슬러리 조성물은 전구체 물질을 비함유할 수 있다. 여기서 전구체 물질은, 세륨 전구체 물질, 염기성 물질, 용매, 및 암모니아 등 습식 공정을 통한 산화 세륨 입자를 제조하는 동안 사용되고, 생성될 수 있는 전구체 물질을 포함하는 것을 의미할 수 있다.
본원의 일 구현예에 있어서, 화학적 기계적 연마용 슬러리 조성물 전체 중량에 대하여 상기 산화 세륨 입자를 5 중량% 이하로 포함하는 것을 특징으로 하는 것일 수 있다. 본원의 다른 일 구현예에 있어서, 화학적 기계적 연마용 슬러리 조성물 전체 중량에 대하여 상기 산화 세륨 입자를 4 중량% 이하, 3 중량% 이하, 2 중량% 이하, 1.5 중량% 이하, 1 중량% 이하, 0.8 중량% 이하, 0.5 중량% 이하, 0.4 중량% 이하, 0.3 중량% 이하, 0.2 중량% 이하, 0.2 중량% 미만, 0.19 중량% 이하, 0.15 중량% 이하, 0.12 중량% 이하, 0.10 중량% 이하, 0.09 중량% 이하, 또는 0.07 중량% 이하일 수 있고, 0.0001 중량% 이상, 또는 0.001 중량% 이상일 수 있다. 본 발명의 화학적 기계적 연마용 슬러리 조성물은 동일한 연마 속도를 가진 슬러리를 사용함에도 불구하고, 화학적 기계적 연마용 슬러리 조성물 전체 중량에 대하여 상기 산화 세륨 입자를 보다 적은 함량을 첨가하고도 높은 산화막 연마 효율을 달성할 수 있는 것을 특징으로 할 수 있다.
본원의 일 구현예에 있어서, 일 구현예에서, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 450 내지 800nm의 광에 대하여 평균 광투과도가 50% 이상, 또는 60% 이상인 것을 특징으로 할 수 있고, 바람직하게는 평균 광투과도가 70% 이상, 보다 바람직하게는 80% 이상, 보다 더 바람직하게는 90% 이상일 수 있다. 또한 본원의 다른 일 구현예에 있어서, 파장 500nm의 광에 대하여 광투과도가 50% 이상, 55% 이상, 60% 이상, 65% 이상, 70% 이상, 75% 이상 또는 80% 이상인 것을 특징으로 할 수 있다. 또한 파장 600nm의 광에 대하여 광투과도가 75% 이상, 80% 이상, 85% 이상, 또는 90% 이상인 것을 특징으로 할 수 있다. 또한 파장 700nm의 광에 대하여 광투과도가 87% 이상, 90% 이상, 93% 이상, 또는 95% 이상인 것을 특징으로 할 수 있다. 슬러리 조성물의 광투과도 값이 상기 범위를 만족한다는 것은 본 발명의 일 구현예에 따른 산화 세륨 입자의 1차 입자 크기 자체가 작고, 또한 2차 입자로의 응집이 종래의 세리아 입자에 비해 적다는 것을 의미할 수 있다. 이렇게 응집성이 작으면, 분산 안정성이 높아 입자가 균일하게 분포될 수 있으며, 웨이퍼에 접촉하는 입자의 수가 증가하기 때문에 산화막 연마 속도가 우수할 수 있고, 입자 자체는 미세하기 때문에 상기 입자를 포함하는 슬러리 조성물을 사용해 연마 대상막을 연마 시, 표면에 스크래치 등의 결함이 발생할 확률이 적어질 것을 쉽게 추정할 수 있다. 즉, 1차 입자 기준 10nm급 이하의 산화 세륨 입자의 경우, 가시광선 영역의 광투과도가 높을수록 실리콘 산화막 연마 속도가 우수해질 수 있다고 예측할 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자로 이루어진 분말에 대하여 푸리에 변환 적외선(Fourier-transformation infrared, FT-IR) 분광법을 실시하였을 때, 상기 FT-IR 분광법에 의해 특정된 스펙트럼에서 3000 cm-1 내지 3600 cm-1의 범위 내에서 상기 산화 세륨 입자로 이루어진 분말의 적외선 투과도는 90% 이상이고, 혹은 100% 이하, 97% 이하, 또는 95% 이하인 것을 특징으로 할 수 있다. 또한 본원의 일 구현예에서 720 cm-1 내지 770 cm-1의 범위 내에서 상기 분말의 적외선 투과도는 96 % 이하인 것을 특징으로 할 수 있고, 85% 이상, 88% 이상, 더욱 바람직하게는 90% 이상, 보다 바람직하게는 92% 이상일 수 있다. 상기 FT-IR 스펙트럼의 3000 cm-1 내지 3600 cm-1의 범위에서 적외선 투과도가 상기 범위 내의 값을 가진다는 것은 O-H group에 의한 band가 상대적으로 약하다는 것을 의미할 수 있으며, 이는 수산화 세륨 입자로 이루어진 분말의 FT-IR 스펙트럼과 차이를 보인다. 또한, 본원의 일 실시예에 따른 산화 세륨 입자로 이루어진 분말의 FT-IR 스펙트럼의 720 cm-1 내지 770 cm-1 범위 내에서 상기 범위의 적외선 투과도를 나타내는 피크가 존재한다는 것은 상기 범위 내에서 Ce-O stretching이 나타난다는 것을 의미할 수 있으며, 이는 본 발명의 일 실시예에 따라 제조된 입자가 산화 세륨 입자의 특성을 보인다는 것을 의미할 수 있다.
본원의 일 구현예에 있어서, 상기 화학적 기계적 연마용 슬러리 조성물은 분산 안정성과 연마 효율 측면에서 pH 10이하의 범위, 바람직하게는1 내지 9, 1 내지 8, 또는 2 내지 7의 범위 일 수 있다. 보다 상세하게, pH가 1미만일 경우, 실리콘 산화막의 제거율이 급격히 저하되어 바람직하지 않은 연마특성을 나타낼 수 있고, pH가 10 초과일 경우, 바람직하지 않은 연마특성을 나타내거나, pH 안정성 및 분산 안정성이 감소하여 응집이 발생하고 이로 인해 마이크로 스크래치 및 결함(defect)이 발생할 수 있다.
본원의 일 구현예에 있어서, 상기 화학적 기계적 연마 슬러리 조성물은 조성물의 최종적인 pH, 연마 속도, 연마 선택비 등을 고려하여 pH를 조절할 수 있는 하나 이상의 산 또는 염기의 pH 조절제 및 완충제를 포함할 수 있다. 상기 pH를 조절하기 위한pH 조절제로는 화학 기계적 연마 슬러리 조성물의 특성에 영향을 미치지 않으면서 pH를 조절할 수 있는 것을 사용할 수 있다. 본원의 일 구현예에 있어서, 상기 pH 조절제는 적절한 pH를 달성하기 위해 산성 pH 조절제 또는 염기성 pH 조절제일 수 있다.
본원의 일 구현예에 있어서, 상기 pH 조절제의 예로서, 황산, 염산, 질산, 인산으로 이루어진 군에서 선택된 1종 이상인 무기산, 아세트산, 시트르산, 글루타르산, 글루콜산, 포름산, 젖산, 말산, 말론산, 말레산, 옥살산, 프탈산, 숙신산, 타르타르산으로 이루어진 군에서 선택된 1종 이상인 유기산, 라이신, 글리신, 알라닌, 아르기닌, 발린, 류신, 이소류신, 메티오닌, 시스테인, 프롤린, 히스티딘, 페닐알라닌, 세린, 트라이신, 티로신, 아스파르트산, 트립토판(Tryptophan), 및 아미노부티르산으로 이루어진 군에서 선택된 1종 이상인 아미노산, 이미다졸, 알킬 아민류, 알코올 아민, 4급 아민 하이드록사이드, 암모니아 또는 이들의 조합일 수 있다. 특히, 상기 pH 조절제는 트리에탄올아민, 테트라메틸암모늄 하이드록사이드(TMAH 또는 TMAOH) 또는 테트라에틸암모늄 하이드록사이드(TEAH 또는 TEA-OH)일 수 있다. 또한 상기 pH 조절제의 예시로서 암모늄 메틸 프로판온(ammonium methyl propanol, AMP), 테트라 메틸 암모늄 하이드록사이드(tetra methyl ammonium hydroxide, TMAH), 수산화칼륨, 수산화나트륨, 수산화마그네슘, 수산화루비듐, 수산화세슘, 탄산수소나트륨, 탄산나트륨, 트리에탄올아민, 트로메타민, 나이아신아마이드로 이루어진 군에서 선택되는 적어도 1종 이상일 수 있다. 바람직하게는, 상기 pH 조절제는 트리에탄올아민 또는 아미노부티르산일 수 있다.
본원의 일 구현예에 있어서, 상기 용매는 화학적 기계적 연마용 슬러리 조성물에 사용되는 것이면 어느 것이나 사용할 수 있고, 예를 들어 탈이온수를 사용할 수 있으나 본 발명이 이에 한정되는 것은 아니다. 또한, 바람직하게는 초순수를 사용할 수 있다. 상기 용매의 함량은 상기 화학 기계적 연마용 슬러리 조성물 전체에 대하여 상기 산화 세륨 입자 및 기타 추가적인 첨가제의 함량을 제외한 나머지 함량일 수 있다. 본원의 일 구현예에 있어서, 상기 용매는 수성 담체로서 물(예를 들어, 탈이온수)을 포함하고, 하나 이상의 수혼화성(water-miscible) 유기 용매를 포함할 수 있다. 사용될 수 있는 유기 용매의 예로는 알코올, 예를 들어 프로페닐 알코올, 이소프로필 알코올, 에탄올, 1-프로판올, 메탄올, 1-헥사놀 등; 알데히드, 예를 들어 아세틸알데히드 등; 케톤, 예를 들어 아세톤, 디아세톤 알코올, 메틸 에틸 케톤 등; 에스테르, 예를 들어 에틸 포르메이트, 프로필 포르메이트, 에틸 아세테이트, 메틸 아세테이트, 메틸 락테이트, 부틸 락테이트, 에틸 락테이트 등; 술폭사이드, 예를 들어 디메틸 술폭사이드(DMSO), 테트라히드로푸란, 디옥산, 디글림 등을 포함한 에테르; 아미드, 예를 들어 N,N-디메틸포름아미드, 디메틸이미다졸리디논, N-메틸피롤리돈 등; 다가 알코올 및 이들의 유도체, 예를 들어 에틸렌 글리콜, 글리세롤, 디에틸렌 글리콜, 디에틸렌 글리콜 모노메틸 에테르 등; 및 질소 함유 유기 화합물, 예를 들어 아세토니트릴, 아밀아민, 이소프로필아민, 디메틸아민 등이 포함될 수 있다.
본원의 일 구현예에 있어서, 상기 연마 조성물은 경우에 따라 하나 이상의 다른 첨가제를 추가로 포함한다. 상기 연마 조성물은 점도 증진제 및 응고제(예를 들어, 우레탄 중합체와 같은 고분자 레올로지 조절제)를 포함한 계면 활성제 및/또는 레올로지 조절제, 살생제(예를 들어, KATHON™ LX) 등을 포함할 수 있다. 적절한 계면 활성제에는, 예를 들어, 양이온성 계면 활성제, 음이온성 계면 활성제, 음이온성 고분자 전해질, 비이온성 계면 활성제, 양쪽성 계면 활성제, 플루오르화 계면 활성제, 이들의 혼합물 등이 포함된다.
본원의 일 구현예에 있어서, 상기 화학적 기계적 연마용 슬러리 조성물은, 분산 안정성이 우수하며, 특히 실리콘 산화막에 대한 연마율이 높은 것을 특징으로 하고 있다.
상기 화학적 기계적 연마용 슬러리 조성물은 산화 세륨 입자, 용매 및 기타 첨가제와 같은 모든 성분을 포함하는 1액형 슬러리 조성물 형태로 제공될 수도 있고, 필요에 따라 2-용기, 또는 3개 이상의 용기에 상기 성분들을 각기 저장된 후 사용 시점 또는 사용 시점 부근에서 이를 혼합하는 2액형 또는 3액형 슬러리 조성물 형태로 제공될 수도 있다. 이러한 제공 형태의 선택 및 저장 성분 조합은 당해 분야에 통상의 기술을 가진 자의 지식에 속하며, 혼합 비율을 변화시킴으로써 전체적인 연마 특성 및 연마 속도를 조정할 수 있다.
본원의 일 구현예에 있어서, 상기 화학적 기계적 연마용 슬러리 조성물은 1,000 Å/min이상, 바람직하게는 2,000 Å/min이상, 더 바람직하게는 3,000 Å/min이상의 실리콘 산화막 연마속도를 갖는 것을 특징으로 하는 것일 수 있고, 기본적으로 산화막 연마속도는 높을수록 좋은 것으로 상한은 비제한적일 것이나, 바람직하게는 10000 Å/min이하, 9000 Å/min이하, 8000 Å/min이하, 7000 Å/min이하, 6000 Å/min이하, 또는 5000 Å/min이하의 실리콘 산화막 연마속도를 갖는 것을 특징으로 하는 것일 수 있다. 특히 본원의 일 구현예에 따른 산화 세륨 입자를 이용한 화학적 기계적 연마 슬러리 조성물의 경우, 산화 세륨 입자의 저함량 범위에서도 입자 크기가 작아 종래 산화 세륨 입자를 포함하는 슬러리 조성물에 비해 포함되는 입자 수 자체가 많고, 표면 Ce3+ 고함량으로 인해 Si-O-Ce 결합이 증가하므로 실리콘 산화막 연마 속도가 현저히 상승되는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 화학적 기계적 연마용 슬러리 조성물은 50 이상, 100 이상, 150 이상, 또는 200 이상의 산화막/폴리실리콘 막의 연마 선택비를 가질 수 있고, 3,000 이하, 2,000 이하, 1,500 이하, 1,000 이하, 900 이하, 또는 800 이하의 산화막/폴리실리콘 막의 연마 선택비를 갖는 것을 특징으로 하는 것일 수 있다. 산화막/폴리실리콘 막 선택비의 경우, 양이온성 고분자의 함량을 적절히 조절하여 3,000 이상의 선택비도 달성할 수 있다는 것을 배제할 수는 없을 것이다.
상기 산화 세륨을 연마재로 사용할 경우 산화 세륨의 산화 규소와의 높은 반응성으로 인해 Si-O-Ce의 화학적 결합이 발생하여 표면에 형성된 수화층 만을 제거하는 기계적 연마와는 달리, 산화 세륨이 산화 규소 막 표면에서 산화 규소 덩어리를 박리하듯이 제거하여 산화 규소 막을 연마한다. 또한, 본원발명의 실시예에 따른 산화 세륨 분말은 작은 입자 크기로 인해 강도가 낮아, 연마시의 광역 평탄도가 우수함과 동시에 대립자에 의해 형성되는 마이크로 스크래치 문제도 해결할 수 있는 장점이 있다.
본 발명의 다른 일 측면은,
산화 세륨 입자; 용매; 및 양이온성 고분자;를 포함하는 것을 특징으로 하는, 화학적 기계적 연마용 슬러리 조성물를 제공한다.
본원의 일 구현예에 있어서, 상기 양이온성 고분자의 함량에 따라 산화막 연마 속도가 증가하는 것을 특징으로 하는 것일 수 있다. 이는 본원의 화학적 기계적 연마용 슬러리 조성물이 종래기술과 대비되는 주요 기술적 특징이므로, 이하에서 구체적으로 설명하도록 한다.
본원의 일 구현예에 있어서, 양이온성 고분자는 본 발명의 화학적 기계적 연마용 슬러리 조성물에 대해 두 가지 역할을 기여할 수 있다. 먼저 양이온성 고분자는 상기 슬러리 조성물에 대해 안정화제 역할을 수행할 수 있는데, pH 버퍼 역할을 하여 입자 분산성 및 분산 안정성을 확보할 수 있게 된다. 또한 본 발명의 양이온성 고분자는 산화막에 대한 연마촉진제 역할을 수행할 수 있다. 종래의 연마용 슬러리에 있어서 양이온성 고분자는 분산 안정성을 증가하기 위해 첨가되거나 단차 제거 시 Field Oxide를 보호하는 목적으로 사용되었고, 이러한 특성을 얻기 위해 산화막 연마 속도는 일부 희생할 수밖에 없었다. 반면, 본 발명의 연마용 슬러리에 첨가되는 양이온성 고분자는 분산 안정성을 증가시킬 뿐만 아니라 양이온성 고분자 첨가량을 증가시킬수록 산화막에 대한 전체적인 연마속도를 증가시킬 수 있게 된다.
본원의 일 구현예에 있어서, 상기 양이온성 고분자의 함량은 화학적 기계적 연마용 슬러리 조성물 전체 중량에 대하여 0.001 중량% 이상, 0.002 중량% 이상, 0.003 중량% 이상, 0.004 중량% 이상 또는 0.005 중량% 이상일 수 있고, 1 중량% 이하, 0.5 중량% 이하, 0.1 중량% 이하, 0.05 중량% 이하, 0.03 중량% 이하, 0.01 중량% 이하일 수 있다. 상기 양이온성 고분자의 함량이 화학적 기계적 연마용 슬러리 조성물 전체 중량에 대하여 0.001% 미만인 경우 함량이 너무 미미하여 연마촉진제로서 역할을 충분히 수행할 수 없게 되어, 연마속도에 영향을 줄 수 없고, 반대로 1%를 초과하는 경우 첨가된 양이온성 고분자가 산화세륨의 연마 과정을 방해하여 오히려 연마 속도를 감소시킬 수 있다.
본원의 일 구현예에 있어서, 상기 양이온성 고분자는 아민기 또는 암모늄기를 포함하는 중합체 또는 공중합체인 것을 특징으로 하는 것일 수 있다. 예컨대, 본원의 일 구현예에 있어서, 상기 양이온성 고분자는 폴리디알릴디메틸 암모늄 클로라이드(polydiallyldimethyl ammonium chloride), 폴리알릴아민(polyallylamine), 폴리에틸렌이민(polyehthyleneimine), 폴리디아릴아민(polydiallylamine), 폴리프로필렌이민(polypropyleneimine), 폴리아크릴아미드-co-디알릴디메틸 암모늄 클로라이드(polyacrylamide-co-diallydimethyl ammonium chloride), 폴리아크릴아미드(polyacrylamide) 또는 이들의 조합인 것을 특징으로 하는 것일 수 있고, 바람직하게는 폴리디알릴디메틸 암모늄 클로라이드(polydiallyldimethyl ammonium chloride), 폴리알릴아민(polyallylamine), 폴리에틸렌이민(polyehthyleneimine), 폴리아크릴아미드-co-디알릴디메틸 암모늄 클로라이드(polyacrylamide-co-diallydimethyl ammonium chloride), 폴리아크릴아미드(polyacrylamide), 폴리(트리메틸암모니오 에틸메타크릴레이트)(Poly(trimethylammonio ethyl methacrylate), 디시안디아미드-디에틸렌트리아민 공중합체(dicyandiamide-diethylenetriamine copolymer), 디알릴디메틸아민/염산염-아크릴아미드 공중합체(diallyldimethylamine/hydrochloride-acrylamide copolymer), 디시안디아미드-포름알데히드 공중합체(dicyandiamide-formaldehyde copolymer) 또는 이들의 조합인 것을 특징으로 하는 것일 수 있다.
본 발명의 제3 측면은,
상기 화학적 기계적 연마 슬러리 조성물을 이용하여 연마하는 단계를 포함하는 반도체 소자의 제조 방법을 제공한다.
본원의 제1 및 제2 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제1 및 제2 측면에 대해 설명한 내용은 제3 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
이하, 본원의 제3 측면에 따른 반도체 소자의 제조 방법을 상세히 설명한다.
우선, STI(shallow trench isolation) 루틴(Routine)공정을 살펴보면, 절연막의 평탄화를 위한 공정 중, 포토, 식각, 및 세정(polishing)은 공통적으로 적용되는 기본공정으로 분류할 수 있다.
소자 사이를 분리하기 위해 첫 단계인, 포토공정부터 시작될 수 있다. 포토공정은 트랙(Track)이라고 불리는 보조 장비와 빛을 노출시켜 회로패턴(Mask)을 웨이퍼 위에 복사하는 노광기에서 실시하게 된다. 먼저 감광제(Photo Resistor)를 바르는데, 감광제는 점도가 높기 때문에 웨이퍼를 회전시키면서 절연막 위에 얇게 도포를 한다. 도포되는 감광제는 균일한 높이가 되어야 감광 깊이가 적절해집니다. 노광 시 감광 깊이가 충분하지 않으면, 현상할 때 감광제찌꺼기가 남게 되고 연이은 식각공정에서 하부막(절연층)이 잘 제거되지 않게 된다. 감광을 시킨 후에는 웨이퍼를 다시 트랙장비로 옮겨서 감광부위를 제거시키는 현상공정을 진행한다.
두 번째 단계로, STI의 식각은 현상된 부위(감광막이 제거된)의 바로 밑 부분인 절연층(산화층+질화층)과 기판의 일부를 제거하는 공정이다. 상기 식각 공정은 건식 또는 습식 공정이 이용될 수 있다. 건식(Dry) 식각 방식은 보통 플라즈마 상태를 이용해 파내려가는 방식이다. 건식은 습식(액체)에 비하여 옆 벽을 식각하지도 않고(이방성 식각), 밑으로만 파내려가서 트렌치 형상을 잡는데 유리할 수 있다. 이 경우, 과식각(Over Etch)이 될 수 있어서, 식각 종말점을 정확하게 계산한 뒤 진행할 필요가 있을 것이다. 식각 후에는 잔유물이 남게 되므로 이를 처리할 수 있다.
트렌치의 형상을 식각하고 나면 감광제 층이 더 이상 쓸모가 없어지므로 에싱(Ashing)을 통해 제거할 수 있다. 상기 에싱 공정의 경우 바람직하게는 플라즈마를 사용하여 이루어질 수 있고, 보다 정확한 에싱이 가능해질 수 있다. 상기 에싱 공정까지 이루어진 반도체 소자의 형상은 도 2에 도시되어 있다.
본원의 일 구현예에 따른 반도체 소자의 제조 방법은 상기 화학 기계적 연마 슬러리 조성물을 사용하여 실리콘 산화막, 실리콘 질화막 및 폴리실리콘막을 동시에 연마하는 단계를 포함할 수 있다.
도 2 내지 6는 본원의 일 구현예에 따른 반도체 소자 제조 방법을 도시한 단면도들이다.
도 2를 참조하면, 하부막(10) 상의 상부막(11) 내에 트렌치(13)를 형성할 수 있다. 일례로, 하부막(10) 상에 상부막(11)을 형성하고, 상부막(11) 상에 질화막(연마정지막, 12)을 형성할 수 있다. 하부막(10)은 임의의 물질막을 포함할 수 있다. 가령, 하부막(10)은 절연막, 도전막, 반도체막, 혹은 반도체 웨이퍼(기판)일 수 있다. 상부막(11)은 절연막(산화막), 도전막, 반도체막, 혹은 이들의 조합을 포함할 수 있다.
상부막(11)이 복수개의 적층된 절연막들을 포함하는 경우, 그 절연막들은 같은 종류 혹은 서로 다른 종류일 수 있다. 일례로, 상부막(11)은 교대로 그리고 반복적으로 적층된 실리콘 산화막들과 실리콘 질화막들을 포함할 수 있다. 상부막(11)은 실리콘 산화막들과 실리콘 질화막들 아래에 반도체막과 하부 절연막을 더 포함할 수 있다. 가령, 하부 절연막은 반도체막 아래에 배치될 수 있다.
질화막(연마정지막, 12)은 가령 실리콘 질화물(예: SiN), 폴리실리콘, 금속 질화물(예: TiN), 금속 등을 증착하여 비교적 큰 두께(예: 100Å 내지 4,000Å)를 가지도록 형성할 수 있다. 트렌치(13)는 식각 공정 혹은 드릴링 공정으로 형성할 수 있다. 트렌치(13)는 질화막(연마정지막, 12)과 상부막(11)을 관통하여 하부막(10)에 이를 수 있는 깊이를 가질 수 있다. 가령, 트렌치(13)는 하부막(10)을 노출시킬 수 있는 충분한 깊이를 가질 수 있다.
도 3을 참조하면, STI는 산화막을 이중으로 형성할 수 있다. 먼저 공간이 확보된 트렌치(13) 속에 본격적으로 절연물질을 채워 넣기 전에, 확산방식으로 제1 절연막(14)으로서, 라이너(Liner) 산화막을 얇게 입힙니다. 이후 단계의 CVD 증착을 이용한 제2 절연막이 실리콘 기판에 잘 형성되기 위하는 것으로 판단할 수 있다. 본원의 다른 일 구현예에 따라 고밀도 플라즈마CVD(HDPCVD)로 트렌치(13)를 채울 시, 높은 에너지를 함유한 플라즈마로부터의 손상을 막아내는 역할도 수행할 수 있다. 본원의 일 구현예에 따르면, 제1 절연막(라이너 산화막)은 확산시킬 노(Furnace)에 산소가스를 투여하고 고온으로 가열하는 것에 의해, 게이트 산화막과 같은 박막이 형성될 수 있다. 또한 본원의 다른 일 구현예에 따르면, 산화막 대신 질화막이 사용될 수도 있다.
도 4를 참조하면, 복수개의 절연물을 증착하여 트렌치(13)를 채우는 제1 절연막(14)과 제2 절연막(15)을 형성할 수 있다. 제1 절연막(14)과 제2 절연막(15)은 밀도와 증착 속도가 서로 다를 수 있다. 본 발명의 실시예들에 따르면, 제1 절연막(14)은 고밀도 절연물을 증착하여 형성할 수 있고, 제2 절연막(15)은 저밀도 절연물을 증착하여 형성할 수 있다. 일례로, 제1 절연막(14)은 고밀도 플라즈마 (HDP) 산화물을 증착하고 패터닝하여 형성할 수 있다. 제1 절연막(14)은 트렌치(13)의 내면을 따라 연장된 형태로 형성할 수 있다. 가령, 제1 절연막(14)은 위를 향해 개구된 U자 혹은 파이프 형상을 가질 수 있다.
제1 절연막(14)은 고밀도를 갖기에 제1 절연막(14) 내에 공동(void) 발생이 어렵고, 이에 따라 후속 열처리 공정을 진행할 때 공동으로부터 유래하는 크랙의 발생이 없어지거나 현저하게 줄어들 수 있다. 제2 절연막(15)은 가령 테트라에틸오르쏘실리케이트(TEOS) 산화물을 제1 절연막(14)이 형성된 트렌치(13)를 채우면서 연마 정지막(12)을 덮기에 충분한 두께로 증착하여 형성할 수 있다. 제2 절연막(15)은 제1 절연막(14)에 비해 더 빠른 증착 속도로 형성될 수 있다. 제2 절연막(15)의 빠른 증착 속도로 인해 트렌치(13)는 제2 절연막(15)으로 비교적 빠르게 채워질 수 있다.
본원의 다른 일 구현예에 따라, 도시되지는 않았지만, 제2 절연막(15)을 부분적으로 제거하여 트렌치(13) 상에 제2 절연막(15)을 잔류시킬 수도 있다. 가령, 포토 공정과 식각 공정으로 반도체 소자의 셀 메모리 영역과 같은 특정 영역을 한정하거나 오픈시키기 위해 제2 절연막(15)을 선택적으로 제거할 수 있다. 이에 따라, 연마 정지막(12) 상의 제2 절연막(15)이 일부 혹은 전부가 제거될 수 있고, 트렌치(13) 상에 제2 절연막(15)이 잔류할 수도 있다. 상기 특정 영역의 오픈 공정은 선택적으로 진행할 수 있는 것이고, 필수적으로 진행하는 것은 아닐 것이다.
도 5를 참조하면, 제2 절연막(15)에 대한 평탄화 공정을 진행할 수 있다. 가령 화학적 기계적 연마(CMP) 공정으로 제2 절연막(15)을 평탄화할 수 있다. 화학적 기계적 연마 공정은 질화막(연마정지막, 12)이 드러날 때까지 계속 진행될 수 있다. 화학기계적 연마 공정은 도 4의 제2 절연막(15)의 형성 이후 진행할 수 있다. 이 경우, 질화막(연마정지막, 12) 상의 표면이 비교적 평탄하므로 혹은 평탄하지 않더라도 그 비평탄성이 심하지 않으므로 화학기계적 연마 공정이 용이하게 진행될 수 있다.
이후 도 6을 참조하면, 질화막을 제거하여 STI를 형성할 수 있다. 질화막은 상부막(11)이 제1 절연막(14)으로부터 영향을 받지 않도록 상부막(11)을 보호하는 목적이 있었다. 상부막(11)은 얇고 신뢰성이 높아야 하는 게이트산화막이 될 수 있으므로 조심스럽게 다룰 필요가 있다. 식각 방식(습식)으로 질화막을 제거할 때는 웨이퍼를 화학용액에 담가서 산화막이 식각되지 않고 질화막만 식각되도록 할 수 있다. 이를 위해 질화막에 대한 높은 선택비(식각비율)를 갖는 용액을 사용할 수 있다. 본원의 다른 일 구현예에서, 질화막까지 CMP로 제거할 수도 있다. 이 경우, 질화막의 식각을 진행할 필요가 없을 수 있지만, 산화막을 물리적으로 손상시킬 가능성이 있으므로, 산화막을 보호하기 위해 질화막은 식각 방식으로 화학 처리하는 것이 바람직하다.
본원의 다른 일 구현예에 따라 상기 화학적 기계적 연마(CMP)공정은 갭필 이후의 질화막(연마정지막, 12) 상부의 제1 절연막(14)막 및 제2 절연막(15)을 전부 제거하여 Active영역과 Field 영역을 이격시키는(Isolation) 것으로, 공정은 도 7와 같이, 크게 3단계로 구분되는 것일 수 있다.
첫번째 단계는 플레이튼(Platen)에서 제2 절연막(15)을 벌크(Bulk) CMP 하면서 국부적인(Local) 평탄화가 이루어진다. 두번째 단계에서는 Platen에서 단차가 완화된 제2 절연막(15)을 세정 또는 연마(Polishing)하여 질화막(연마정지막, 12)이 드러나는 시점에서 연마를 정지(Stopping)한다. 이때 이종 막질이 드러나는 시점을 감지하기 위하여 연마 종점 감지(End Point Detection, EPD)를 사용하게 된다. 세번째 단계에서는, Platen에서 질화막(연마정지막, 12) 위에 혹시라도 남아있을지 모르는 제2 절연막(15) 잔여물 제거 및 질화막과 산화막 막질을 연마하여 타겟팅(Targeting)을 하는 것일 수 있다.
도 8은 본원의 일 구현예에 따른, 화학적 기계적 연마(CMP) 설비의 구조를 나타낸다. 이 설비의 경우 Platen이 3개로 구성되어 있는 것이 특징이고, 위에서 설명했듯이 Platen 1,2, 및 3을 순차적으로 지나며 단계별 STI CMP 연마가 진행되는 구조일 수 있다. 연마를 마치고 세정부로 이동하여 세정을 마치고 공정이 종료되게 된다.
이외에도, 본원의 일 구현예에 따른 반도체 소자의 제조 방법은 상기 화학 기계적 연마 슬러리 조성물을 사용하여 실리콘 산화막, 실리콘 질화막 및 폴리실리콘막을 동시에 연마하는 방법은 비제한적으로 종래 일반적으로 사용되는 연마 방법 및 조건이면 어느 것이나 사용할 수 있으며, 본 발명에서 특별히 한정되지 않는다.
본원의 일 구현예에 따른 화학적 기계적 연마용 슬러리 조성물은 분산 안정성이 높고 상기 슬러리 조성물에 포함되는 상기 산화 세륨 입자의 표면에 Ce3+ 함량이 높아 실리카와 세륨 간의 Si-O-Ce를 형성하는 화학적 연마 메커니즘에 의해 규소를 포함하는 기판에의 연마율을 증가시킬 수 있어, 세리아를 저함량 포함하는 조건에서도 CMP 공정에서 반도체 디바이스의 표면으로부터 특히 실리콘 산화막을 제거하는데 효과적으로 사용될 수 있다.
본 발명의 제4 측면은,
반도체 소자로서, 기판; 및 상기 기판 상에 절연 물질이 채워져 있는 트렌치;를 포함하고 상기 트렌치는 화학적 기계적 연마용 슬러리 조성물을 사용하여, 실리콘 산화막, 실리콘 질화막 및 폴리실리콘막으로 이루어진 군으로부터 선택된 적어도 1종의 막을 연마하는 것에 의해 생성되고, 상기 화학적 기계적 연마용 슬러리 조성물은, 산화 세륨 입자; 및 용매를 포함하고, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 500 nm의 광에 대하여 광투과도가 50% 이상인 것을 특징으로 하는, 반도체 소자를 제공한다.
본원의 제1 내지 제3 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제1 내지 제3 측면에 대해 설명한 내용은 제4 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본 발명의 제5 측면은,
원료 전구체를 준비하는 단계; 원료 전구체를 포함하는 용액 내에서 산화 세륨 입자를 분쇄 또는 침전시켜 화학적 기계적 연마용 산화 세륨 입자의 분산액을 얻는 단계;를 포함하고, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 500 nm의 광에 대하여 광투과도가 50% 이상인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자의 제조방법을 제공한다.
본원의 제1 내지 제4 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제1 내지 제4 측면에 대해 설명한 내용은 제5 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본원의 일 구현예에 있어서, 원료 전구체를 준비하는 단계;를 포함할 수 있다. 상기 원료 전구체는 생성물인 산화 세륨 입자를 제조할 수 있는 전구체 물질이라면 비제한적으로 사용 가능하다.
본원의 일 구현예에 있어서, 원료 전구체를 포함하는 용액 내에서 산화 세륨 입자를 분쇄 또는 침전시켜 화학적 기계적 연마용 산화 세륨 입자의 분산액을 얻는 단계;를 포함할 수 있다. 상기 원료 전구체를 포함하는 용액 내에서 산화 세륨 입자를 분쇄하는 단계는 예컨대, 밀링 공정을 통한 분쇄일 수 있으며, 분쇄 방법에 대해서는 비제한적으로 통상의 기술자의 기술 상식 범위에서 결정될 수 있다. 원료 전구체를 포함하는 용액 내에서 산화 세륨 입자를 침전시켜 산화 세륨 입자의 분산액을 얻는 단계;의 경우, 상층액을 제거하는 단계; 또는 여과하는 단계 등을 더 포함할 수 있다.
본원의 일 구현예에 있어서, 상기 세륨 전구체는 질산 세륨 암모늄, 질산 세륨, 황산 세륨 암모늄, 초산 세륨, 염화 세륨, 수산화 세륨, 산화 세륨의 군으로부터 선택되는 적어도 1종인 것을 특징으로 하는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 여과하는 단계는 비제한적인 여과 장비를 활용하여 진행될 수 있고, 더 바람직하게는 맴브레인이 적용된 필터 장비를 활용하여 진행될 수 있다. 본원의 일 실시예에 따른 방법에 의해 제조된 산화 세륨 입자의 경우, 산화 세륨 입자의 합성 자체가 높은 수율로 이루어질 뿐만 아니라, 여과 단계를 추가로 거치면서 세륨 전구체 물질이 거의 제거되는 것으로 이해할 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명의 일 실시예에 의한 산화 세륨의 입자의 경우, 산화 세륨 표면의 Ce3+의 비율을 증가시켜 작은 입자 크기에도 불구하고 화학적 기계적 연마용 슬러리에 포함될 경우, 저함량으로도 높은 산화막 제거 속도를 보유할 수 있다.
또한 본 발명의 일 실시예에 의하면, 웨이퍼의 표면 결함을 최소할 수 있으며, 종래 Trade-off 관계로 여겨진 표면 결함과 산화막 제거 속도와의 상관관계와는 달리, 표면 결함을 최소화하면서 산화막 제거 속도를 극대화할 수 있는 화학적 기계적 연마용 슬러리 조성물용 산화 세륨 입자 및 슬러리 조성물을 제공할 수 있다.
또한 본 발명의 일 실시예에 의하면, 양이온성 고분자가 첨가되는 것에 의해 산화막 연마 속도가 더 상승되는 것과 동시에 산화막/폴리실리콘막 선택비가 상승되는 것을 확인할 수 있다. 양이온성 고분자의 첨가는 통상 연마 속도를 희생하면서 기타 특성을 확보하기 위한 것이 종래의 기술 상식인 것을 감안하면, 이는 본 발명의 특유의 효과로 볼 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.

Claims (17)

  1. 화학적 기계적 연마용 산화 세륨 입자로서,
    상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 500 nm의 광에 대하여 광투과도가 50% 이상인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  2. 제1항에 있어서,
    상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 450 내지 800 nm의 광에 대하여 평균 광투과도가 50% 이상인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  3. 제1항에 있어서,
    동적광산란 입도분석기(DLS)로 측정한 상기 산화 세륨 입자의 2차 입자 크기는 1 내지 30 nm인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  4. 제1항에 있어서,
    동적광산란 입도분석기(DLS)로 측정한 상기 산화 세륨 입자의 2차 입자 크기는 1 내지 20 nm인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  5. 제1항에 있어서,
    X선 회절(XRD) 분석 시, 상기 산화 세륨 입자의 1차 입자 크기는 0.5 내지 15 nm인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  6. 제1항에 있어서,
    상기 산화 세륨 입자에 대한 전자 에너지 손실 분광(EELS) 스펙트럼은 876.5 내지 886.5 eV의 제1 피크 및 894.5 내지 904.5 eV의 제2 피크를 포함하고,
    상기 제1 피크의 최대 강도가 제2 피크의 최대 강도보다 큰 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  7. 제6항에 있어서,
    886.5 내지 889.5 eV의 제3 피크 및 904.5 내지 908.5 eV의 제4 피크를 더 포함하고, 상기 스펙트럼의 피크의 전체 면적의 합(Pt)에 대한 상기 제3 피크 구간의 면적의 합(P1) 및 상기 제4 피크 구간의 면적의 합(P2)의 비율((P1+P2)/Pt)이 0.1 이하인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  8. 제1항에 있어서,
    상기 산화 세륨 입자의 표면에서, X 선 광전자 분광(XPS) 분석 시, Ce3+를 나타내는 Ce-O 결합 에너지를 나타내는 XPS 피크가 900.2 내지 902.2 eV의 제1 피크, 896.4 내지 898.4 eV의 제2 피크, 885.3 내지 887.3 eV의 제3 피크 및 880.1 내지 882.1 eV의 제4 피크에서 나타나는 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  9. 제8항에 있어서,
    X 선 광전자 분광(XPS) 분석 시, 상기 산화 세륨 입자 표면의 Ce-O 결합 에너지를 나타내는 XPS 피크 면적의 총합에 대한, Ce3+를 나타내는 Ce-O 결합 에너지를 나타내는 XPS 피크 면적의 합의 비는 0.29 내지 0.70인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  10. 산화 세륨 입자; 및
    용매를 포함하고,
    상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 500 nm의 광에 대하여 광투과도가 50% 이상인 것을 특징으로 하는, 화학적 기계적 연마용 슬러리 조성물.
  11. 제10항에 있어서,
    상기 산화 세륨 입자는 전체 슬러리 조성물 100 중량부를 기준으로 0.01 내지 5 중량부로 포함되는 것을 특징으로 하는, 화학적 기계적 연마용 슬러리 조성물.
  12. 제10항에 있어서,
    상기 조성물의 pH는 2내지 10인 것을 특징으로 하는 화학적 기계적 연마용 슬러리 조성물.
  13. 제10항에 있어서,
    상기 화학적 기계적 연마용 슬러리 조성물은 황산, 염산, 질산, 인산으로 이루어진 군에서 선택된 1종 이상인 무기산, 아세트산, 시트르산, 글루타르산, 글루콜산, 포름산, 젖산, 말산, 말론산, 말레산, 옥살산, 프탈산, 숙신산, 타르타르산으로 이루어진 군에서 선택된 1종 이상인 유기산, 라이신, 글리신, 알라닌, 아르기닌, 발린, 류신, 이소류신, 메티오닌, 시스테인, 프롤린, 히스티딘, 페닐알라닌, 세린, 트라이신, 티로신, 아스파르트산, 트립토판(Tryptophan), 및 아미노부티르산으로 이루어진 군에서 선택된 1종 이상인 아미노산, 이미다졸, 알킬 아민류, 알코올 아민, 4급 아민 하이드록사이드, 암모니아 또는 이들의 조합인 것을 특징으로 하는, 화학적 기계적 연마용 슬러리 조성물.
  14. 제10항에 있어서,
    상기 용매는 탈이온수인 것을 특징으로 하는 화학적 기계적 연마용 슬러리 조성물.
  15. 제10항에 있어서,
    상기 화학적 기계적 연마용 슬러리 조성물은 1,000 내지 5,000 Å/min의 실리콘 산화막 연마속도를 갖는 것을 특징으로 하는, 화학적 기계적 연마용 슬러리 조성물.
  16. 제10항에 따른 화학적 기계적 연마 슬러리 조성물을 이용하여 연마하는 단계를 포함하는 반도체 소자의 제조 방법.
  17. 원료 전구체를 준비하는 단계; 및
    원료 전구체를 포함하는 용액 내에서 산화 세륨 입자를 분쇄 또는 침전시켜 화학적 기계적 연마용 산화 세륨 입자의 분산액을 얻는 단계;를 포함하고,
    상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 500 nm의 광에 대하여 광투과도가 50% 이상인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자의 제조방법.
PCT/KR2021/011621 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법 WO2022045856A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180053272.6A CN116710531A (zh) 2020-08-31 2021-08-30 氧化铈粒子、包含其的化学机械研磨用浆料组合物以及半导体器件的制造方法
US18/022,929 US20230348753A1 (en) 2020-08-31 2021-08-30 Cerium oxide particles, chemical mechanical polishing slurry composition comprising same, and method for manufacturing semiconductor device
JP2023513884A JP2023539508A (ja) 2020-08-31 2021-08-30 酸化セリウム粒子、これを含む化学的機械的研磨用スラリー組成物および半導体素子の製造方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20200110237 2020-08-31
KR10-2020-0110237 2020-08-31
KR10-2021-0039098 2021-03-25
KR20210039098 2021-03-25
KR10-2021-0080091 2021-06-21
KR20210080091 2021-06-21
KR20210087353 2021-07-02
KR10-2021-0087353 2021-07-02

Publications (2)

Publication Number Publication Date
WO2022045856A1 WO2022045856A1 (ko) 2022-03-03
WO2022045856A9 true WO2022045856A9 (ko) 2023-08-17

Family

ID=80355499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011621 WO2022045856A1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법

Country Status (5)

Country Link
US (1) US20230348753A1 (ko)
JP (1) JP2023539508A (ko)
KR (40) KR102487303B1 (ko)
TW (5) TW202400519A (ko)
WO (1) WO2022045856A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933301B (zh) * 2022-05-18 2024-04-09 广东东岛新能源股份有限公司 一种储能用长寿命人造石墨负极材料及其制备方法与应用
WO2024080833A1 (ko) * 2022-10-13 2024-04-18 솔브레인 주식회사 화학적 기계적 연마용 슬러리 조성물 및 그 제조방법
KR20240062238A (ko) * 2022-10-28 2024-05-09 솔브레인 주식회사 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR20240062237A (ko) * 2022-10-28 2024-05-09 솔브레인 주식회사 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR20240062241A (ko) * 2022-10-28 2024-05-09 솔브레인 주식회사 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962343A (en) * 1996-07-30 1999-10-05 Nissan Chemical Industries, Ltd. Process for producing crystalline ceric oxide particles and abrasive
KR100599327B1 (ko) * 2004-03-12 2006-07-19 주식회사 케이씨텍 Cmp용 슬러리 및 그의 제조법
JP4951218B2 (ja) 2004-07-15 2012-06-13 三星電子株式会社 酸化セリウム研磨粒子及び該研磨粒子を含む組成物
KR101050136B1 (ko) * 2006-11-20 2011-07-19 주식회사 엘지화학 유기용매를 이용한 산화세륨 분말의 제조방법 및 상기분말을 포함하는cmp슬러리
JP5475642B2 (ja) 2007-05-03 2014-04-16 エルジー・ケム・リミテッド 研磨材用酸化セリウム粉末及びこれを含むcmpスラリー
CN101550318B (zh) * 2008-04-03 2012-11-14 北京有色金属研究总院 一种含Ce3+的稀土抛光粉及其制备方法
KR100873945B1 (ko) 2008-07-16 2008-12-12 (주) 뉴웰 미세 산화세륨 분말 그 제조 방법 및 이를 포함하는 씨엠피슬러리
KR101184734B1 (ko) * 2009-09-17 2012-09-20 주식회사 엘지화학 산화세륨 나노분말의 제조방법
KR101443468B1 (ko) * 2010-03-12 2014-09-22 히타치가세이가부시끼가이샤 슬러리, 연마액 세트, 연마액 및 이것들을 이용한 기판의 연마 방법
KR101512359B1 (ko) * 2012-04-16 2015-04-15 (주)디오 콜로이드 산화세륨 제조방법
JP6493207B2 (ja) 2013-06-27 2019-04-03 コニカミノルタ株式会社 酸化セリウム研磨材の製造方法
US9281210B2 (en) * 2013-10-10 2016-03-08 Cabot Microelectronics Corporation Wet-process ceria compositions for polishing substrates, and methods related thereto
KR101773543B1 (ko) * 2015-06-30 2017-09-01 유비머트리얼즈주식회사 연마 입자, 연마 슬러리 및 연마 입자의 제조 방법
KR101761792B1 (ko) * 2015-07-02 2017-07-26 주식회사 케이씨텍 Sti 연마용 슬러리 조성물
KR102628333B1 (ko) * 2015-09-09 2024-01-22 가부시끼가이샤 레조낙 연마액, 연마액 세트 및 기체의 연마 방법
WO2018179061A1 (ja) * 2017-03-27 2018-10-04 日立化成株式会社 研磨液、研磨液セット及び研磨方法
US11572490B2 (en) * 2018-03-22 2023-02-07 Showa Denko Materials Co., Ltd. Polishing liquid, polishing liquid set, and polishing method
JP7056728B2 (ja) * 2018-03-22 2022-04-19 昭和電工マテリアルズ株式会社 研磨液、研磨液セット及び研磨方法

Also Published As

Publication number Publication date
WO2022045856A1 (ko) 2022-03-03
KR20220029492A (ko) 2022-03-08
KR102484576B1 (ko) 2023-01-05
KR102484625B1 (ko) 2023-01-06
KR102490006B9 (ko) 2024-08-30
KR20230008673A (ko) 2023-01-16
KR102484635B1 (ko) 2023-01-04
KR20220029494A (ko) 2022-03-08
KR102484583B1 (ko) 2023-01-05
KR20220029501A (ko) 2022-03-08
TW202348557A (zh) 2023-12-16
KR102487303B1 (ko) 2023-01-13
TW202400520A (zh) 2024-01-01
KR20220029497A (ko) 2022-03-08
KR102484582B1 (ko) 2023-01-05
KR102484570B1 (ko) 2023-01-05
KR20220029508A (ko) 2022-03-08
KR102484637B1 (ko) 2023-01-04
KR20230008009A (ko) 2023-01-13
KR20220029499A (ko) 2022-03-08
KR20230010024A (ko) 2023-01-17
KR20230008010A (ko) 2023-01-13
KR20220029500A (ko) 2022-03-08
KR20220029491A (ko) 2022-03-08
TW202400519A (zh) 2024-01-01
TWI817188B (zh) 2023-10-01
KR20220029502A (ko) 2022-03-08
KR102487303B9 (ko) 2024-08-30
KR102487301B9 (ko) 2024-08-30
KR102484643B1 (ko) 2023-01-04
KR20230008674A (ko) 2023-01-16
KR20230010029A (ko) 2023-01-17
KR20220029509A (ko) 2022-03-08
KR102484649B1 (ko) 2023-01-04
KR20230010027A (ko) 2023-01-17
KR102484652B1 (ko) 2023-01-04
KR102484572B1 (ko) 2023-01-05
KR20230010030A (ko) 2023-01-17
KR20230006443A (ko) 2023-01-10
KR20220029510A (ko) 2022-03-08
TW202212262A (zh) 2022-04-01
KR20230010026A (ko) 2023-01-17
KR102484573B9 (ko) 2024-09-26
KR102484653B1 (ko) 2023-01-04
KR102484641B1 (ko) 2023-01-04
KR20230010028A (ko) 2023-01-17
KR20220029507A (ko) 2022-03-08
KR102484578B1 (ko) 2023-01-05
KR20230006441A (ko) 2023-01-10
KR20220029495A (ko) 2022-03-08
KR20220029505A (ko) 2022-03-08
KR20220029504A (ko) 2022-03-08
KR20220029511A (ko) 2022-03-08
KR102490003B1 (ko) 2023-01-18
KR102484573B1 (ko) 2023-01-05
KR102484632B1 (ko) 2023-01-04
TW202346210A (zh) 2023-12-01
KR102487301B1 (ko) 2023-01-13
KR20230006442A (ko) 2023-01-10
KR102490006B1 (ko) 2023-01-18
KR20220029498A (ko) 2022-03-08
KR20220029506A (ko) 2022-03-08
KR20230008675A (ko) 2023-01-16
KR102484634B1 (ko) 2023-01-04
KR20230008677A (ko) 2023-01-16
KR20220029493A (ko) 2022-03-08
KR102490003B9 (ko) 2024-08-30
US20230348753A1 (en) 2023-11-02
KR20230004422A (ko) 2023-01-06
KR20230010025A (ko) 2023-01-17
KR20230008676A (ko) 2023-01-16
KR20220029512A (ko) 2022-03-08
KR20220029496A (ko) 2022-03-08
KR20220029503A (ko) 2022-03-08
JP2023539508A (ja) 2023-09-14
KR102484654B1 (ko) 2023-01-04

Similar Documents

Publication Publication Date Title
WO2022045856A9 (ko) 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
WO2019093620A1 (ko) 유기막 cmp 슬러리 조성물 및 이를 이용한 연마 방법
WO2014171766A1 (ko) 유기막 cmp 슬러리 조성물 및 이를 이용한 연마방법
WO2024091101A1 (ko) 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
WO2024091100A1 (ko) 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
WO2024091099A1 (ko) 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
WO2024091105A1 (ko) 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
WO2024091103A1 (ko) 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
WO2024091098A1 (ko) 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
WO2024091102A1 (ko) 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
WO2024091104A1 (ko) 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
WO2017034157A1 (ko) 유기막용 cmp 슬러리 조성물, 그 제조방법, 및 이를 이용한 유기막 연마 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21862152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023513884

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180053272.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21862152

Country of ref document: EP

Kind code of ref document: A1