KR20220029503A - 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법 - Google Patents

산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법 Download PDF

Info

Publication number
KR20220029503A
KR20220029503A KR1020210115053A KR20210115053A KR20220029503A KR 20220029503 A KR20220029503 A KR 20220029503A KR 1020210115053 A KR1020210115053 A KR 1020210115053A KR 20210115053 A KR20210115053 A KR 20210115053A KR 20220029503 A KR20220029503 A KR 20220029503A
Authority
KR
South Korea
Prior art keywords
cerium oxide
oxide particles
mechanical polishing
chemical mechanical
acid
Prior art date
Application number
KR1020210115053A
Other languages
English (en)
Other versions
KR102484632B1 (ko
Inventor
이정호
김석주
Original Assignee
솔브레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔브레인 주식회사 filed Critical 솔브레인 주식회사
Publication of KR20220029503A publication Critical patent/KR20220029503A/ko
Priority to KR1020220189123A priority Critical patent/KR20230010025A/ko
Application granted granted Critical
Publication of KR102484632B1 publication Critical patent/KR102484632B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/90Other crystal-structural characteristics not specified above
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Composite Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

화학적 기계적 연마용 산화 세륨 입자 및 이를 포함하는 화학적 기계적 연마용 슬러리 조성물을 제공한다. 상기 산화 세륨 입자의 표면에는 Ce3+ 및 Ce4+를 포함하고 있는 것을 특징으로 하고, 본 발명의 실시예에 따른 산화 세륨 입자를 사용하는 경우, 산화 세륨 표면의 Ce3+의 비율을 증가시켜 미세한 입자 크기에도 불구하고 저함량 범위에서 높은 산화막 제거 속도 및 산화막 연마 선택비를 나타낼 수 있다.

Description

산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법{CERIUM OXIDE PARTICLE, CHEMICAL-MECHANICAL POLISHING SLURRY COMPOSITION COMPRISING THE SAME AND METHOD FOR MANUFACTURING SEMICONDUCTOR BY USING THE SAME}
본 발명은 화학적 기계적 연마용 산화 세륨 입자 및 이를 포함하는 화학적 기계적 연마용 슬러리 조성물 및 반도체 소자의 제조 방법에 관한 것으로서, 보다 상세하게는, 기존 산화 세륨 입자와 다르게 합성을 통해 산화 세륨 표면의 Ce3+의 비율을 증가시켜 작은 입자 크기에도 불구하고 저함량에서 높은 산화막 제거 속도를 보유 화학적 기계적 연마용 슬러리 조성물 및 이를 이용한 반도체 소자의 제조 방법에 관한 것이다.
반도체 소자가 다양해지고 고집적화됨에 따라 더욱 미세한 패턴 형성 기술이 사용되고 있으며, 그에 따라 반도체 소자의 표면 구조가 더욱 복잡해지고 포토리소그래피(photolithography)의 정밀도 향상을 위해서 각 공정에서의 층간 평탄도가 매우 중요한 요소로 작용하고 있다. 반도체 소자를 제조하는 데 있어, 이러한 평탄화 기술로서 CMP(chemical mechanical polishing) 공정이 이용된다. 예를 들어, 층간 절연을 위해 과량으로 성막된 절연막을 제거하기 위한 공정으로 ILD(interlayer dielectronic)와, 칩(chip)간 절연을 하는 STI(shallow trench isolation)용 절연막의 평탄화를 위한 공정 및 배선, 컨택 플러그, 비아 컨택 등과 같은 금속 도전막을 형성하기 위한 공정으로서도 많이 사용되고 있다.
CMP 공정에 있어서 연마 속도, 연마 표면의 평탄화도, 스크래치의 발생 정도가 중요하며, CMP 공정 조건, 슬러리의 종류, 연마 패드의 종류 등에 의해 결정된다. 산화 세륨 슬러리에는 고순도의 산화 세륨 입자가 사용되어진다. 최근 들어, 반도체 소자의 제조 공정에서는 한층 더 높은 배선의 미세화를 달성할 것이 요구되고 있으며, 연마 시에 발생하는 연마 흠집이 문제가 되고 있다.
종래의 산화 세륨 슬러리는 30nm에서 200nm 크기의 입자를 사용하고 있으며 연마를 진행했을 때, 미세한 연마 흠집이 발생하더라도 종래의 배선 폭보다 작은 것이면 문제가 되지 않았지만 지속적으로 높은 배선의 미세화를 달성하고 하는 현 시점에서는 문제가 되고 있다. 이 문제에 대하여, 산화 세륨 입자의 평균 입자 직경을 작게 하는 시도가 이루어지고 있지만 기존의 입자의 경우 평균 입자 직경을 작게 하면 기계적 작용이 저하되기 때문에 연마 속도가 저하되는 문제점이 발생하였다.
이와 같이 산화 세륨 입자의 평균 입자 직경을 제어함으로써 연마 속도 및 연마 흠집을 제어하고자 하더라도 연마속도를 유지하면서 연마 흠집의 목표 수준을 달성하는 것은 매우 어렵다.
또한, 종래의 화학적 기계적 연마용 슬러리 조성물은 산화 세륨 입자는 Ce3+ 대 Ce4+ 비율을 최적화함과 동시에, 최적화된 수준의 평균 입자 직경을 제시하지 못하고 있으며, 따라서 산화 세륨 표면의 Ce3+의 비율을 증가시켜 작은 입자 크기에도 불구하고 높은 산화막 제거 속도를 나타내는 산화 세륨 입자를 포함하는 연마용 슬러리에 대한 연구가 필요한 실정이다.
본 발명은 전술한 문제를 해결하고자 안출된 것으로서, 본 발명의 일 실시예는 화학적 기계적 연마용 산화 세륨 입자를 제공한다.
또한, 본 발명의 다른 일 실시예는 화학적 기계적 연마용 슬러리 조성물을 제공한다.
또한, 본 발명의 다른 일 실시예는 상기 화학적 기계적 연마 슬러리 조성물을 이용하여 연마하는 단계를 포함하는 반도체 소자의 제조 방법을 제공한다.
또한, 본 발명의 다른 일 실시예는 반도체 소자를 제공한다.
또한, 본 발명의 다른 일 실시예는 화학적 기계적 연마용 산화 세륨 입자의 제조 방법을 제공한다.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 한정되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
전술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 일 측면은,
화학적 기계적 연마용 산화 세륨 입자로서, 상기 산화 세륨 입자는 UV 광전자 분광(ultraviolet photoelectron spectroscopy, UPS)분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 10 eV이하의 범위 내에 존재하는 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자를 제공한다.
상기 산화 세륨 입자는 UPS 분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 3 내지 10 eV의 범위 내에 존재하는 것을 특징으로 하는 것일 수 있다.
상기 산화 세륨 입자는 UPS 분석 시, 일 함수(work function) 값이 3.0 eV 내지 10.0 eV를 나타내는 것을 특징으로 하는 것일 수 있다.
동적광산란 입도분석기 (DLS)로 측정한 상기 산화 세륨 입자의 2차 입자 크기는 1 내지 30 nm인 것을 특징으로 하는 것일 수 있다.
동적광산란 입도분석기 (DLS)로 측정한 상기 산화 세륨 입자의 2차 입자 크기는 1 내지 20 nm인 것을 특징으로 하는 것일 수 있다.
전자투과현미경(TEM)으로 측정한 상기 산화 세륨 입자의 1차 입자 크기는 1 내지 10 nm인 것을 특징으로 하는 것일 수 있다.
X 선 광전자 분광(XPS) 분석 시 상기 화학적 기계적 연마용 산화 세륨 입자의 표면에 Ce3+를 20 원자% 이상 포함하는 것을 특징으로 하는 것일 수 있다.
상기 산화 세륨 입자의 표면에서, X 선 광전자 분광(XPS) 분석 시, Ce3+를 나타내는 Ce-O 운동 에너지를 나타내는 XPS 피크가 900.2 내지 902.2 eV의 제1 피크, 896.4 내지 898.4 eV의 제2 피크, 885.3 내지 887.3 eV의 제3 피크 및 880.1 내지 882.1 eV의 제4 피크에서 나타나는 것을 특징으로 하는 것일 수 있다.
X 선 광전자 분광(XPS) 분석시, 상기 산화 세륨 입자 표면의 Ce-O 운동 에너지를 나타내는 XPS 피크 면적의 총합에 대한, Ce3+를 나타내는 Ce-O 운동 에너지를 나타내는 XPS 피크 면적의 합의 비는 0.29 내지 0.70인 것을 특징으로 하는 것일 수 있다.
푸리에 변환 적외선(FT-IR) 분광법에 의해 측정된 스펙트럼에서, 3000 cm-1 내지 3600 cm-1의 범위 내에서 적외선 투과도는 90% 이상이고, 720 cm-1 내지 770 cm-1의 범위 내에서 적외선 투과도는 96% 이하인 것을 특징으로 하는 것일 수 있다.
상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 450 내지 800nm의 광에 대하여 평균 광투과도가 50% 이상인 것을 특징으로 하는 것일 수 있다.
상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 500nm의 광에 대하여 광투과도가 50% 이상인 것을 특징으로 하는 것일 수 있다.
또한, 본 발명의 다른 일 측면은,
산화 세륨 입자; 및 용매를 포함하고,
상기 산화 세륨 입자는 UV 광전자 분광(ultraviolet photoelectron spectroscopy, UPS)분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 10 eV이하의 범위 내에 존재하는 것을 특징으로 하는, 화학적 기계적 연마용 슬러리 조성물을 제공한다.
상기 산화 세륨 입자는 전체 슬러리 조성물 100 중량부를 기준으로 0.01 내지 5 중량부로 포함되는 것을 특징으로 하는 것일 수 있다.
상기 조성물의 pH는 2내지 10인 것을 특징으로 하는 것일 수 있다.
상기 화학적 기계적 연마용 슬러리 조성물은 황산, 염산, 질산, 인산으로 이루어진 군에서 선택된 1종 이상인 무기산, 아세트산, 시트르산, 글루타르산, 글루콜산, 포름산, 젖산, 말산, 말론산, 말레산, 옥살산, 프탈산, 숙신산, 타르타르산으로 이루어진 군에서 선택된 1종 이상인 유기산, 라이신, 글리신, 알라닌, 아르기닌, 발린, 류신, 이소류신, 메티오닌, 시스테인, 프롤린, 히스티딘, 페닐알라닌, 세린, 트라이신, 티로신, 아스파르트산, 트립토판(Tryptophan), 및 아미노부티르산으로 이루어진 군에서 선택된 1종 이상인 아미노산, 이미다졸, 알킬 아민류, 알코올 아민, 4급 아민 하이드록사이드, 암모니아 또는 이들의 조합인 것을 특징으로 하는 것일 수 있다.
상기 용매는 탈이온수인 것을 특징으로 하는 것일 수 있다.
상기 화학적 기계적 연마용 슬러리 조성물은 1,000 내지 5,000 Å/min의 실리콘 산화막 연마속도를 갖는 것을 특징으로 하는 것일 수 있다.
또한, 본 발명의 다른 일 측면은,
상기 화학적 기계적 연마 슬러리 조성물을 이용하여 연마하는 단계를 포함하는 반도체 소자의 제조 방법을 제공한다.
또한, 본 발명의 다른 일 측면은,
반도체 소자로서, 기판; 및 상기 기판 상에 절연 물질이 채워져 있는 트렌치;를 포함하고 상기 트렌치는 화학적 기계적 연마용 슬러리 조성물을 사용하여, 실리콘 산화막, 실리콘 질화막 및 폴리실리콘막으로 이루어진 군으로부터 선택된 적어도 1종의 막을 연마하는 것에 의해 생성되고, 상기 화학적 기계적 연마용 슬러리 조성물은, 산화 세륨 입자; 및 용매를 포함하고, 상기 산화 세륨 입자는 UV 광전자 분광(ultraviolet photoelectron spectroscopy, UPS)분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 10 eV이하의 범위 내에 존재하는 것을 특징으로 하는, 반도체 소자를 제공한다.
또한, 본 발명의 다른 일 측면은,
원료 전구체를 준비하는 단계; 및
원료 전구체를 포함하는 용액 내에서 산화 세륨 입자를 분쇄 또는 침전시켜 화학적 기계적 연마용 산화 세륨 입자의 분산액을 얻는 단계;를 포함하고, 상기 산화 세륨 입자는 UV 광전자 분광(ultraviolet photoelectron spectroscopy, UPS)분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 10 eV이하의 범위 내에 존재하는 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자의 제조방법을 제공한다.
본 발명의 일 실시예에 의한 산화 세륨의 입자의 경우, 산화 세륨 표면의 Ce3+의 비율을 증가시켜 작은 입자 크기에도 불구하고 화학적 기계적 연마용 슬러리에 포함될 경우, 저함량으로도 높은 산화막 제거 속도를 보유할 수 있다.
또한 본 발명의 일 실시예에 의하면, 웨이퍼의 표면 결함을 최소할 수 있으며, 종래 Trade-off 관계로 여겨진 표면 결함과 산화막 제거 속도와의 상관관계와는 달리, 표면 결함을 최소화하면서 산화막 제거 속도를 극대화할 수 있는 화학적 기계적 연마용 슬러리 조성물용 산화 세륨 입자 및 슬러리 조성물을 제공할 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 산화막 제거 메커니즘을 도시한 것이다.
도 2a 내지 2e는 본원의 일 구현예에 따른 반도체 소자 제조 방법을 도시한 단면도들이고, 도 2f 및 도 2g는 본원의 다른 일 구현예에 따른 화학적 기계적 연마의 단계적 공정 및 화학적 기계적 연마(CMP) 설비의 구조를 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른 산화 세륨 입자 및 종래 60nm급 산화 세륨 입자를 포함하는 분산액을 육안으로 관찰한 이미지이다.
도 4는 본 발명의 일 실시예에 따른 산화 세륨 입자의 TEM 이미지이다.
도 5는 비교예에 따른 종래의 산화 세륨 입자의 SEM 및 TEM 이미지를 나타낸 것이다.
도 6은 비교예인 종래의 산화 세륨 입자의 TEM 이미지를 나타낸 것이다.
도 7은 본 발명의 일 실시예에 따른 산화 세륨 입자의 동적광산란 입도분석기 (DLS)로 측정한 결과이다. 분석은 Malvern社의 Zetasizer Ultra 로 측정한 결과이다.
도 8은 본 발명의 일 실시예에 따른 산화 세륨 입자 및 60 nm급 종래 산화 세륨 입자의 XPS 분석 결과이다.
도 9는 본 발명의 일 구현예에 따라 제조된 산화 세륨 입자로 이루어진 분말 및 통상의 수산화 세륨 입자로 이루어진 분말의 FT-IR 분광 분석 결과이다.
도 10 내지 12는 본원발명의 일 실시예에 따른 산화 세륨 입자를 1 질량% 포함하는 수분산액 및 종래 60 nm급 산화 세륨 입자 및 하소법에 의한 10~20nm급 세리아를 각각 1 질량% 포함하는 분산액의 UPS 분석 결과를 나타낸 것이다.
도 13은 본 발명의 일 실시예에 따른 산화 세륨 입자 및 비교예 1 내지 4의 종래 산화 세륨 입자를 포함하는 슬러리의 광투과도를 UV-Vis(자외선-가시광선) 분광법을 이용해 측정한 결과이다.
도 14 및 도 15는 본 발명의 일 실시예에 따른 산화 세륨 입자를 포함하는 CMP 슬러리 조성물과 60nm 크기의 산화 세륨 입자를 포함하는 CMP 슬러리 조성물을 이용한 산화물 웨이퍼의 CMP 전후를 스캔한 이미지이다.
이하, 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 의해 본 발명이 한정되지 않으며 본 발명은 후술할 청구범위의 의해 정의될 뿐이다.
덧붙여, 본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명의 명세서 전체에서 어떤 구성요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
본 발명에서 사용하는 “단분산”이란, 산화 세륨 입자가 슬러리 내에 분산될 때 2차 입자로의 응집이 억제되어 비교적 1차 입자 크기를 유지하고 있는 것을 의미하는 것이며, 이는 동적광산란(DLS) 방식을 통한 2차 입자 크기(D50)가 TEM을 통한 1차 입자 크기의 3.0배 이하, 2.8배 이하, 2.5배 이하, 2.2배 이하 2.0배 이하, 또는 유리하게는 1.9배 이하의 크기를 갖는 것을 의미할 수 있다. 또한, 입도 분포 등을 검토할 때, 상대적으로 조대한 크기의 불가피한 불순물 등이 포함되는 것을 배제하는 것은 아니다.
본 발명에서 사용하는 “투명”하다는 용어의 의미는, 산화 세륨 입자가 슬러리 내에 분산될 때, 육안으로 확인할 때, 슬러리 조성물이 투명하게 관찰된다는 것을 의미하고, 보다 구체적으로는 가시광선 영역의 광에 대해 평균적인 광투과도가 50% 이상, 유리하게는 70% 이상, 더욱 유리하게는 80% 이상의 값을 나타내는 것을 의미하며, 이는 나아가 본 발명의 산화 세륨 입자가 2차 입자로의 응집이 억제되어 비교적 1차 입자 크기를 유지하고 있는 것을 의미하는 것을 의미할 수 있다.
본 발명에서 사용하는 "투명"하다는 용어의 의미는, 산화 세륨 입자가 슬러리 내에 분산될 때, 육안으로 확인할 때, 슬러리 조성물이 투명하게 관찰된다는 것을 의미하고, 보다 구체적으로는 가시광선 영역의 광에 대해 평균적인 광투과도가 50% 이상, 유리하게는 70% 이상, 더욱 유리하게는 80% 이상의 값을 나타내는 것을 의미하며, 이는 나아가 본 발명의 산화 세륨 입자가 2차 입자로의 응집이 억제되어 비교적 1차 입자 크기를 유지하고 있는 것을 의미하는 것을 의미할 수 있다.
연마 조성물은 그의 연마 속도(즉, 제거 속도) 및 그의 평탄화 효율에 따라 특징화될 수 있다. 연마 속도는 기판의 표면으로부터 재료를 제거하는 속도를 말하며, 통상 단위 시간당 길이(두께)(예를 들어, 분당 옹스트롬(Å)) 단위로 표현된다. 구체적으로, 연마 표면, 예컨대 연마 패드는 우선 그 표면의 "높은 지점"에 접촉하고 평탄한 표면을 형성하기 위해 재료를 제거해야 한다. 보다 적은 재료의 제거로 평탄한 표면을 달성하는 공정은 평탄성을 달성하기 위해 더 많은 재료를 제거할 필요가 있는 공정보다 더 효율적이라고 여겨진다.
종종, 실리콘 산화물 패턴의 제거 속도는 STI 프로세스에서 유전체 연마 단계에 대한 속도를 제한할 수 있으며, 따라서 실리콘 산화물 패턴의 높은 제거 속도가 디바이스 처리량을 증가시키는데 바람직하다. 그러나, 블랭킷 제거 속도가 너무 빠르면, 노출된 트렌치에서 산화물의 과다 연마로 인하여 트렌치 부식을 초래하고 소자 결함을 증가시킬 수 있다.
이하, 본 발명에 대해 상세히 설명한다.
본 발명의 제1 측면은,
화학적 기계적 연마용 산화 세륨 입자로서, 상기 산화 세륨 입자는 UV 광전자 분광(ultraviolet photoelectron spectroscopy, UPS)분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 10 eV이하의 범위 내에 존재하는 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자를 제공한다.
이하, 본원의 일 측면에 따른 화학적 기계적 연마용 산화 세륨 입자에 대하여 상세히 설명한다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자에 대해 광 전자분광 분석을 수행할 수 있으며, 구체적으로 UV 영역의 빛을 사용하는 UV 광전자 분광(ultraviolet photoelectron spectroscopy, UPS)분석을 수행할 수 있다. 광전자분광 기술은 전통적으로 X-선 영역의 단일 파장 빛을 사용하는 X-선 광전자 분광(X-ray photoelectron spectroscopy, XPS)과 UV 영역의 빛을 사용하는 UV 광전자 분광(ultraviolet photoelectron spectroscopy, UPS)으로 나뉠 수 있다. XPS는 1000∼1500 eV 정도의 에너지를 가지는 X-선을 사용하여 주로 시료 내부 원자의 core level에서 방출되는 전자를 분석하여, 시료에 있는 원소의 종류, 화학상태, 농도 등을 알아내는 기술로서, 많은 상용 장비가 판매되고 있고 분석 방법이나 사용법 등이 널리 알려져 있는 반면, UPS는 10∼20 eV 정도의 극자외선(extreme UV) 영역의 빛을 사용하여 시료의 가전자(valence electron) 영역의 전자를 방출도록 하여, 화학결합에 직접 참여하는 전자들이 고체 내에서 가질 수 있는 다양한 상태를 알 수 있도록 해 주는 기술이다. 특히 소위 각분해 UPS(angle-resolved UPS, ARUPS/ARPES)는 단결정 시료의 밴드구조를 직접 측정할 수 있기 때문에 이러한 측정이 물질의 특이한 성질을 이해하는데 중요한 요인이 되는 고온 초전도체나 거대 자기저항 물질 등에서 물리적 성질을 파악하는데 사용될 수 있다. 고체 시료에 hv의 에너지를 가지는 빛을 쪼이면, 에너지와 운동량 보존 법칙을 만족하면서 전자가 운동에너지를 얻게 된다. 이때 시료를 떠나서 튀어 나가는 전자의 운동 에너지의 값은 다음과 같이 주어진다.
Ekin = hv - Φ -|Eb|
여기서 Ekin는 튀어나오는 전자의 운동에너지, Φ는 시료의 일함수(work function), Eb는 튀어나오는 전자가 시료에 속박되어 있을 때의 속박에너지(binding energy)이다. 외부에서 전자에너지 분석기를 이용하여 튀어나오는 전자의 운동에너지에 따른 세기를 측정하면 시료 내부에 있는 전자들의 속박에너지에 따른 상태 밀도(density of state)를 알 수 있다. 따라서, 상기 방정식을 참고하면 측정되는 운동에너지를 통하여 속박에너지를 도출할 수 있는데, 이때 시료의 일함수 Φ는 소스 에너지의 hv값과 페르미 준위(EF) 및 진공 준위(Ecutoff)를 이용하여 나타낼 수 있다.
Φ = hv - |Ef - Ecutoff|
UPS 결과값을 그래프상에 도식했을 때, x 축의 영(zero)은 시료의 페르미 준위(EF)를 나타내고, Ecutoff는 진공준위(vacuum level)에 의해서 나타나는 수치이다. hv는 자외선을 방출시킬 때 사용하는 소스 에너지(source energy)로서 입사하는 빛의 에너지를 나타내는데, 보편적으로 소스는 헬륨(He)이 사용될 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨의 밴드구조는 입자의 크기에 따라 차이를 보일 수 있는데, 입자의 크기가 작아질수록 시료의 오비탈들 사이 에너지 준위 차이가 점점 커지게 되어 높은 값의 에너지 밴드갭을 가질 수 있다. 반면에 입자의 크기가 증가할수록 에너지 준위 차이가 점점 작아져 낮은 값의 에너지 밴드갭을 갖는다. 따라서, 앞서 서술한바와 같이 입자의 크기가 작을수록 가전자대와 전도대 사이 에너지갭이 증가하게 되고 페르미 준위(EF) 및 진공준위(vacuum level)의 값을 변화시켜 도출되는 일함수의 에너지(eV)를 증가시킬 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자는 UPS 분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 10 eV이하의 범위 내에 존재하는 것을 특징으로 할 수 있다. 이러한 특성은 종래의 세리아 입자와는 대비되는 특성이다. 상기 1초당 방출되는 광전자 수(Counts)의 최대값은 운동에너지 6 내지 10 eV, 또는 7 내지 10 eV에 존재할 수 있고, 바람직하게는 8 내지 10 eV의 범위 내에 존재할 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자의 UPS에 따라 측정된 일 함수(work function) 값은 2.5 eV이상의 범위일 수 있다. 상기 일 함수 값은 바람직하게는 2.7 eV이상의 범위 내에 있거나, 보다 바람직하게는 3.0 eV이상의 범위일 수 있다. 상기 일 함수 값의 상한은 특별히 제한되는 것은 아니고, 10 eV 미만, 9 eV 이하 또는 8 eV 이하일 수 있다. 일 함수 값이 상술한 범위를 만족한다는 것은 종래의 산화 세륨 입자들과는 대비되는 특징으로서, 슬러리에 분산되어 있는 산화 세륨 입자의 크기가 작다는 것을 의미하고, 이는 응집성이 매우 작은 것임을 나타내는 것이다. 이렇게 응집성이 작고, 단분산되는 특징을 가짐으로써, 본원의 일 구현예에 따른 산화 세륨 입자는 화학적 기계적 연마용 슬러리에 포함되어 사용될 때, 웨이퍼와 접촉하는 입자 수를 최대화할 수 있고, 산화막 연마 속도를 증가시킬 수 있음과 동시에, 입자 크기 자체는 미세하게 되므로 웨이퍼 표면의 결함은 최소화할 수 있을 것으로 예상된다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자의 슬러리 내에서의 입자 크기는 동적광산란 (DLS) 분석에 의해 측정될 수 있다(2차 입자). 상기 동적광산란 분석은 통상의 기술자에게 주지한 분석 장비를 통해 측정할 수 있으며, 바람직하게는 Anton Parr사 입도 분석기 또는 Malvern Zetasizer Ultra를 사용하여 측정할 수 있으나, 이는 비제한적인 예시일 뿐 이에 한정되는 것은 아니다.
본원의 일 구현예에 있어서, 동적광산란 입도분석기 (DLS) 로 측정한 상기 산화 세륨 입자의 입자 크기는 1 내지 30nm일 수 있다. 본원의 다른 일 구현예에서는, 29nm 이하, 27nm 이하, 25nm 이하, 23nm 이하, 22nm 이하, 20.8nm 이하, 20.5nm 이하, 20.2nm 이하, 20nm 이하, 19.8nm 이하, 19.5nm 이하, 19.2nm 이하, 18nm 이하, 17nm 이하, 또는 15nm 이하일 수 있고, 1.2nm 이상, 1.4nm 이상, 1.5nm 이상, 1.8nm 이상, 2nm 이상, 3nm 이상, 또는 4nm 이상일 수 있다. 상기 2차 입자 크기가 상기 범위 초과일 경우 슬러리 조성물에서 1차 입자의 응집이 많이 이루어지는 것을 의미하며, 이 경우 단분산된 슬러리라고 보기는 어려워진다. 상기 2차 입자 크기가 상기 범위 미만일 경우, 대상막에 대한 연마속도가 지나치게 저해되어 연마효율이 떨어질 수 있다.
전자투과현미경(TEM)으로 측정한 상기 산화 세륨 입자의 1차 입자 크기는 10 nm 이하인 것을 특징으로 하는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자의 입자 크기는 전자투과현미경(TEM)에 의해 측정될 수 있다(1차 입자). 본원의 일 구현예에 있어서, 전자투과현미경(TEM)으로 측정한 상기 산화 세륨 입자의 입자 크기는 11 nm 이하일 수 있다. 다른 일 구현예에서, 10.8 nm 이하, 10.5 nm 이하, 10.2 nm 이하, 10 nm 이하, 9.5 nm 이하, 9.0 nm 이하, 8.5 nm 이하, 8.0 nm 이하, 7.5 nm 이하, 7.0 nm 이하, 6.5 nm 이하, 6.0 nm 이하, 5.5 nm 이하, 5.0 nm 이하, 4.5 nm 이하 또는 4.0nm 이하일 수 있고, 0.3nm 이상, 0.5nm 이상, 0.7nm 이상, 1.0nm 이상, 1.1 nm 이상, 1.2 nm 이상, 1.3 nm 이상, 1.4 nm 이상, 1.5 nm 이상, 1.6 nm 이상, 1.7 nm 이상, 1.8 nm 이상, 1.9 nm 이상, 2.0 nm 이상, 2.1 nm 이상, 2.2 nm 이상, 2.3 nm 이상 또는 2.4 nm 이상일 수 있다. 상기 산화 세륨 입자의 크기가 0.3 nm 미만인 경우 결정성이 저하되고, 대상막에 대한 연마속도가 지나치게 저해되어 연마효율이 떨어질 수 있고, 반대로 11 nm를 초과하는 경우 스크래치와 같은 표면 결함이 다량으로 생길 우려가 있다. 또한 본원의 일 구현예에 있어서, 상기 전자투과현미경(TEM)으로 측정한 상기 산화 세륨 입자의 평균 입자 크기는 0.5 내지 10nm, 바람직하게는 1 내지 10nm, 더욱 바람직하게는 2 내지 9nm인 것을 특징으로 할 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자는 동적광산란 입도분석기 (DLS) 로 측정한 상기 산화 세륨 입자의 크기를 a, 전자투과현미경(TEM)으로 측정한 상기 산화 세륨 입자의 크기를 b라고 할 때, 아래의 식 1을 만족하는 것을 특징으로 하는 것일 수 있다.
[식 1]
a ≤ 2.2b
이러한 특성은 본 발명의 산화 세륨 입자가 슬러리 내에 분산될 때 응집성이 낮다는 것을 나타내는 지표가 될 것이다. 상기 b의 계수가 2.2 초과일 경우, 슬러리 내에서 응집이 많이 이루어진다는 것을 의미하고, 이는 입자 크기가 조대해지므로, 연마 시 웨이퍼 표면 결함을 억제하기 어려워짐을 의미할 것이다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자의 표면에서의 Ce3+ 함량은 XPS를 사용하여 분석할 수 있으며, 예를 들어, Thermo Fisher Scientific Co 사에서 제조한 theta probe base system을 사용할 수 있다. 상기 산화 세륨 연마입자의 표면의Ce3+ 함량은 하기의 화학식 1에 의해 계산될 수 있다.
[화학식 1]
Ce3+ 함량(%)= (Ce3+ 피크 면적)/[(Ce3+ 피크 면적)+ (Ce4+ 피크 면적)]
일 구현예에서, 상기 산화 세륨 입자 표면에서, X 선 광전자 분광(XPS) 분석시, Ce3+를 나타내는 Ce-O 운동 에너지를 나타내는 XPS 피크가 900.2 내지 902.2 eV, 896.4 내지 898.4 eV, 885.3 내지 887.3 eV 및 880.1 내지 882.1 eV에서 나타나는 것을 특징으로 할 수 있다. 구체적으로, 상기 산화 세륨 입자의 표면에서, X 선 광전자 분광(XPS) 분석 시, Ce3+를 나타내는 Ce-O 운동 에너지를 나타내는 XPS 피크가 900.2 내지 902.2 eV의 제1 피크, 896.4 내지 898.4 eV의 제2 피크, 885.3 내지 887.3 eV의 제3 피크 및 880.1 내지 882.1 eV의 제4 피크에서 나타나는 것을 특징으로 하는 것일 수 있다.
본원의 일 구현예에 있어서, 전체 XPS 피크 면적에 대하여, 상기 제1 피크의 면적은 3% 이상, 또는 4% 이상일 수 있고, 상기 제2 피크 및 제4 피크의 면적은 각각 5% 이상, 7% 이상, 또는 10% 이상일 수 있으며, 상기 제3 피크의 면적은 4% 이상, 5% 이상, 또는 6% 이상일 수 있다.
본원의 일 구현예에 있어서, X 선 광전자 분광(XPS) 분석시, 상기 산화 세륨 입자 표면의 Ce-O 운동 에너지를 나타내는 XPS 피크 면적의 총합에 대한, Ce3+를 나타내는 Ce-O 운동 에너지를 나타내는 XPS 피크 면적의 합의 비는 0.29 내지 0.70인 것을 특징으로 하는 것일 수 있다. 본원의 다른 일 구현예에 있어서, 상기 산화 세륨 입자 표면의 Ce-O 운동 에너지를 나타내는 XPS 피크 면적의 총합에 대한 Ce3+를 나타내는 Ce-O 운동 에너지를 나타내는 XPS 피크 면적의 합의 비는 0.18 이상, 0.19 이상, 0.192 이상, 0.195 이상, 0.198 이상, 0.20 이상, 0.202 이상, 0.205 이상, 0.208 이상, 0.21 이상, 0.22 이상, 0.24 이상, 0.25 이상, 0.27 이상, 0.28 이상, 0.30 이상, 0.32 이상, 또는 0.35 이상일 수 있고, 0.90 이하, 0.88 이하, 0.85 이하, 0.83 이하, 0.80 이하, 0.77 이하, 0.75 이하, 0.72 이하, 0.71 이하, 0.705 이하, 0.70 이하, 0.695 이하, 0.69 이하, 0.68 이하, 0.67 이하, 0.66 이하, 0.65 이하, 0.64 이하, 0.63 이하, 0.62 이하, 0.61 이하, 또는 0.60 이하일 수 있다. 상기 범위 미만일 경우, 상기 산화 세륨 입자 표면에 충분한 양의 Ce3+가 존재하지 못하게 되어, 충분한 산화막 연마 속도의 상승을 기대하기 어려워질 것이고, 상기 범위를 초과하게 될 경우, 산화수를 고려할 때, 산화 세륨 입자로서 존재한다고 해석하기 어려워질 수 있다.
즉, 본원의 일 구현예에 있어서, X 선 광전자 분광(XPS) 분석 시 상기 화학적 기계적 연마용 산화 세륨 입자의 표면에 Ce3+를 18 원자% 이상, 19 원자% 이상, 20 원자% 이상, 22 원자% 이상, 24 원자% 이상, 25 원자% 이상, 27 원자% 이상, 28 원자% 이상, 30 원자% 이상, 32 원자% 이상, 또는 35 원자% 이상 포함할 수 있고, 90 원자% 이하, 88 원자% 이하, 85 원자% 이하, 83 원자% 이하, 80 원자% 이하, 77 원자% 이하, 75 원자% 이하, 72 원자% 이하, 또는 70 원자% 이하로 포함하는 것을 특징으로 할 수 있다.
본원의 일 구현예에 따른 산화 세륨 입자의 경우, 입자 표면의 Ce3+ 함량이 높게 나오는 특징을 보이는데, 이는 습식 공정을 통해 액상에서 입자 합성 과정이 산성 조건에서 이루어지는 것에 기인하는 것으로 추정되며, 이렇게 입자 표면의 Ce3+ 함량이 상대적으로 높을 경우 산화막 연마율이 향상될 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자로 이루어진 분말에 대하여 푸리에 변환 적외선(Fourier-transformation infrared, FT-IR) 분광법을 실시하였을 때, 상기 FT-IR 분광법에 의해 특정된 스펙트럼에서 3000 cm-1 내지 3600 cm-1의 범위 내에서 상기 산화 세륨 입자로 이루어진 분말의 적외선 투과도는 90% 이상이고, 혹은 100% 이하, 97% 이하, 또는 95% 이하인 것을 특징으로 할 수 있다. 또한 본원의 일 구현예에서 720 cm-1 내지 770 cm-1의 범위 내에서 상기 분말의 적외선 투과도는 96 % 이하인 것을 특징으로 할 수 있고, 85% 이상, 88% 이상, 더욱 바람직하게는 90% 이상, 보다 바람직하게는 92% 이상일 수 있다. 상기 FT-IR 스펙트럼의 3000 cm-1 내지 3600 cm-1의 범위에서 적외선 투과도가 상기 범위 내의 값을 가진다는 것은 O-H group에 의한 band가 상대적으로 약하다는 것을 의미할 수 있으며, 이는 수산화 세륨 입자로 이루어진 분말의 FT-IR 스펙트럼과 차이를 보인다. 또한, 본원의 일 실시예에 따른 산화 세륨 입자로 이루어진 분말의 FT-IR 스펙트럼의 720 cm-1 내지 770 cm-1 범위 내에서 상기 범위의 적외선 투과도를 나타내는 피크가 존재한다는 것은 상기 범위 내에서 Ce-O stretching이 나타난다는 것을 의미할 수 있으며, 이는 본 발명의 일 실시예에 따라 제조된 입자가 산화 세륨 입자의 특성을 보인다는 것을 의미할 수 있다.
본원의 일 구현예에 있어서, 일 구현예에서, 상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 450 내지 800nm의 광에 대하여 평균 광투과도가 50% 이상, 또는 60% 이상인 것을 특징으로 할 수 있고, 바람직하게는 평균 광투과도가 70% 이상, 보다 바람직하게는 80% 이상, 보다 더 바람직하게는 90% 이상일 수 있다. 또한 본원의 다른 일 구현예에 있어서, 파장 500nm의 광에 대하여 광투과도가 50% 이상, 55% 이상, 60% 이상, 65% 이상, 70% 이상, 75% 이상 또는 80% 이상인 것을 특징으로 할 수 있다. 또한 파장 600nm의 광에 대하여 광투과도가 75% 이상, 80% 이상, 85% 이상, 또는 90% 이상인 것을 특징으로 할 수 있다. 또한 파장 700nm의 광에 대하여 광투과도가 87% 이상, 90% 이상, 93% 이상, 또는 95% 이상인 것을 특징으로 할 수 있다. 슬러리 조성물의 광투과도 값이 상기 범위를 만족한다는 것은 본 발명의 일 구현예에 따른 산화 세륨 입자의 1차 입자 크기 자체가 작고, 또한 2차 입자로의 응집이 종래의 세리아 입자에 비해 적다는 것을 의미할 수 있다. 이렇게 응집성이 작으면, 분산 안정성이 높아 입자가 균일하게 분포될 수 있으며, 웨이퍼에 접촉하는 입자의 수가 증가하기 때문에 산화막 연마 속도가 우수할 수 있고, 입자 자체는 미세하기 때문에 상기 입자를 포함하는 슬러리 조성물을 사용해 연마 대상막을 연마 시, 표면에 스크래치 등의 결함이 발생할 확률이 적어질 것을 쉽게 추정할 수 있다. 즉, 1차 입자 기준 10nm급 이하의 산화 세륨 입자의 경우, 가시광선 영역의 광투과도가 높을수록 실리콘 산화막 연마 속도가 우수해질 수 있다고 예측할 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 1차 입자는 구형, 등축정계(cube) 형상, 정방정계(tetragonal) 형상, 사방정계(orthorhombic) 형상, 삼방정계(Rhombohedral) 형상, 단사정계(Monoclinic) 형상, 육방정계(hexagonal) 형상, 삼사정계(triclinic) 형상 및 육팔면체(cuboctahedron)형상으로 이루어지는 군에서 선택되는 1종 이상일 수 있으나, 바람직하게는 구형 입자일 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자는 화학적 합성을 통해 입자를 성장시키는 방법으로 제조될 수 있으며, 바람직하게는 바텀 업(bottom up)방식일 수 있다. 상기 산화 세륨 입자의 합성 방법으로는 졸-겔(sol-gel)법, 초임계 반응, 수열반응 또는 공침법 등의 방법이 사용될 수 있으며 이에 한정하지는 않는다. 상기 바텀 업 방식은 최근 각광받고 있는 화학적 합성의 한 종류로서 원자나 분자들의 출발물질을 화학반응을 통하여 나노미터 크기의 입자로 성장시켜 나가는 방법이다.
본원의 일 구현예에 있어서, 상기 연마 조성물은 습식 산화 세륨 입자를 포함한다. 습식 산화 세륨 입자는 임의의 적합한 습식 산화 세륨 입자일 수 있다. 예를 들면, 습식 산화 세륨 입자는 콜로이드상 산화 세륨 입자를 포함하는, 침전된 산화 세륨 입자 또는 축합-중합된 산화 세륨 입자일 수 있다.
본원의 일 구현예에 있어서, 습식 산화 세륨 입자는 또한 바람직하게는 입자의 표면상에 결함을 가진다. 임의의 특정 이론에 결부시키고자 하는 것은 아니나, 산화 세륨 입자의 분쇄는 산화 세륨 입자의 표면상에 결함을 초래할 수 있으며, 이러한 결함은 또한 화학 기계적 연마 조성물 중 산화 세륨 입자의 성능에 영향을 미친다. 특히, 산화 세륨 입자는 분쇄될 때 파쇄될 수 있어, 덜 유리한 표면 상태가 노출될 수 있다. 이 과정은 이완(relaxation)으로 알려져 있으며, 산화 세륨 입자의 표면 주위에 있는 제한된 재구성 능력 및 제한된 보다 유리한 상태로의 복귀 능력을 갖는 원자가 입자 표면에 결함이 형성되게 한다.
본원의 일 구현예에 있어서, 연마재의 2차 입자 생성에 있어서, 용매는 각각 고유한 유전상수 값을 가지며, 용매의 유전상수는 분말 합성 시, 핵 생성 및 결정성장에 있어 표면 에너지나 표면전하 등을 변화시켜 핵의 응집 및 성장에 영향을 주고 이는 분말의 크기 및 형상 등에 영향을 주게 된다. 용매의 유전상수와 용매 내에 분산된 입자의 표면 전위(제타 포텐셜)는 서로 비례관계에 있으며, 제타 포텐셜이 낮으면 미세입자간 혹은 반응에 의해 생성된 핵간의 표면 반발력이 작으므로, 불안정한 상태로서 미세입자간 혹 은 핵간의 응집이 매우 빠른 속도로 일어날 수 있다. 이 때 표면 반발력의 크기는 미세입자 혹은 핵 간에 모두 비슷하므로, 균일한 크기로 응집이 가능하게 된다. 이렇게 응집된 2차 입자들은 온도, 농도 등과 같은 반응조건에 따라 1차 미세입자 혹은 핵들이 강한 응집작용 또는 오스왈드 라이프닝(Ostwald ripening)과 같은 입자 병합 과정을 거쳐 비교적 큰 사이즈의 입자들로 성장하게 된다.
본 발명의 제2 측면은,
산화 세륨 입자; 및 용매를 포함하고, 상기 산화 세륨 입자는 UV 광전자 분광(ultraviolet photoelectron spectroscopy, UPS)분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 10 eV이하의 범위 내에 존재하는 것을 특징으로 하는, 화학적 기계적 연마용 슬러리 조성물을 제공한다.
본원의 제1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제1 측면에 대해 설명한 내용은 제2 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
이하, 본원의 제2 측면에 따른 화학적 기계적 연마용 슬러리 조성물을 상세히 설명한다.
본원의 일 구현예에 따른 화학적 기계적 연마용 슬러리 조성물은 산화 세륨 입자 및 용매를 포함한다.
본원의 일 구현예에 있어서, 슬러리 내에 연마입자로서 포함되는 상기 산화 세륨 입자는, 제타 포텐셜 값이 양의 값을 가질 수 있으며, 바람직하게는 pH 2 내지 8의 범위에서 제타 포텐셜 값이 1 내지 80mV, 5 내지 60mV, 10 내지 50mV일 수 있다. 상기 산화 세륨 입자의 제타 포텐셜 값이 양의 값을 가짐으로써, 실리콘 산화막 표면의 극성이 음의 값을 나타냄에 따라 산화 세륨 입자와 실리콘 산화막의 표면 사이의 인력에 의하여 연마 효율이 증대될 수 있다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자는 실리카 입자나 알루미나 입자에 비해 경도가 낮지만, 실리카와 세륨간에 Si-O-Ce 결합이 형성되는 화학적 연마 메커니즘에 의해 유리나 반도체 기판과 같은 규소를 포함하는 면의 연마속도가 매우 빨라 반도체 기판의 연마에 유리하다.
본원의 일 구현예에 있어서, 상기 산화 세륨 입자는 전체 슬러리 조성물 100 중량부를 기준으로 0.01 내지 5 중량부로 포함되는 것을 특징으로 하는 것일 수 있고, 보다 바람직하게는 0.03 내지 3 중량%, 보다 더 바람직하게는 0.05 내지 1 중량%로 포함될 수 있다.
본원의 일 구현예에 있어서, 상기 조성물의 pH는 2내지 10인 것을 특징으로 하는 것일 수 있다. 본원의 일 구현예에 있어서, 상기 화학적 기계적 연마 슬러리 조성물은 조성물의 최종적인 pH, 연마 속도, 연마 선택비 등을 고려하여 pH를 조절할 수 있는 하나 이상의 산 또는 염기의 pH 조절제 및 완충제를 포함할 수 있다. 상기 pH를 조절하기 위한pH 조절제로는 화학 기계적 연마 슬러리 조성물의 특성에 영향을 미치지 않으면서 pH를 조절할 수 있는 것을 사용할 수 있다. 본원의 일 구현예에 있어서, 상기 pH 조절제는 적절한 pH를 달성하기 위해 산성 pH 조절제 또는 염기성 pH 조절제일 수 있다.
본원의 일 구현예에 있어서, 상기 pH 조절제의 예로서, 황산, 염산, 질산, 인산으로 이루어진 군에서 선택된 1종 이상인 무기산, 아세트산, 시트르산, 글루타르산, 글루콜산, 포름산, 젖산, 말산, 말론산, 말레산, 옥살산, 프탈산, 숙신산, 타르타르산으로 이루어진 군에서 선택된 1종 이상인 유기산, 라이신, 글리신, 알라닌, 아르기닌, 발린, 류신, 이소류신, 메티오닌, 시스테인, 프롤린, 히스티딘, 페닐알라닌, 세린, 트라이신, 티로신, 아스파르트산, 트립토판(Tryptophan), 및 아미노부티르산으로 이루어진 군에서 선택된 1종 이상인 아미노산, 이미다졸, 알킬 아민류, 알코올 아민, 4급 아민 하이드록사이드, 암모니아 또는 이들의 조합일 수 있다. 특히, 상기 pH 조절제는 트리에탄올아민, 테트라메틸암모늄 하이드록사이드(TMAH 또는 TMAOH) 또는 테트라에틸암모늄 하이드록사이드(TEAH 또는 TEA-OH)일 수 있다. 또한 상기 pH 조절제의 예시로서 암모늄 메틸 프로판온(ammonium methyl propanol, AMP), 테트라 메틸 암모늄 하이드록사이드(tetra methyl ammonium hydroxide, TMAH), 수산화칼륨, 수산화나트륨, 수산화마그네슘, 수산화루비듐, 수산화세슘, 탄산수소나트륨, 탄산나트륨, 트리에탄올아민, 트로메타민, 나이아신아마이드로 이루어진 군에서 선택되는 적어도 1종 이상일 수 있다. 바람직하게는, 상기 pH 조절제는 트리에탄올아민 또는 아미노부티르산일 수 있다.
본원의 일 구현예에 있어서, 상기 용매는 화학적 기계적 연마용 슬러리 조성물에 사용되는 것이면 어느 것이나 사용할 수 있고, 예를 들어 탈이온수를 사용할 수 있으나 본 발명이 이에 한정되는 것은 아니다. 또한, 바람직하게는 초순수를 사용할 수 있다. 상기 용매의 함량은 상기 화학 기계적 연마용 슬러리 조성물 전체에 대하여 상기 산화 세륨 입자 및 기타 추가적인 첨가제의 함량을 제외한 나머지 함량일 수 있다. 본원의 일 구현예에 있어서, 상기 용매는 수성 담체로서 물(예를 들어, 탈이온수)을 포함하고, 하나 이상의 수혼화성(water-miscible) 유기 용매를 포함할 수 있다. 사용될 수 있는 유기 용매의 예로는 알코올, 예를 들어 프로페닐 알코올, 이소프로필 알코올, 에탄올, 1-프로판올, 메탄올, 1-헥사놀 등; 알데히드, 예를 들어 아세틸알데히드 등; 케톤, 예를 들어 아세톤, 디아세톤 알코올, 메틸 에틸 케톤 등; 에스테르, 예를 들어 에틸 포르메이트, 프로필 포르메이트, 에틸 아세테이트, 메틸 아세테이트, 메틸 락테이트, 부틸 락테이트, 에틸 락테이트 등; 술폭사이드, 예를 들어 디메틸 술폭사이드(DMSO), 테트라히드로푸란, 디옥산, 디글림 등을 포함한 에테르; 아미드, 예를 들어 N,N-디메틸포름아미드, 디메틸이미다졸리디논, N-메틸피롤리돈 등; 다가 알코올 및 이들의 유도체, 예를 들어 에틸렌 글리콜, 글리세롤, 디에틸렌 글리콜, 디에틸렌 글리콜 모노메틸 에테르 등; 및 질소 함유 유기 화합물, 예를 들어 아세토니트릴, 아밀아민, 이소프로필아민, 디메틸아민 등이 포함될 수 있다.
본원의 일 구현예에 있어서, 상기 연마 조성물은 경우에 따라 하나 이상의 다른 첨가제를 추가로 포함한다. 상기 연마 조성물은 점도 증진제 및 응고제(예를 들어, 우레탄 중합체와 같은 고분자 레올로지 조절제)를 포함한 계면 활성제 및/또는 레올로지 조절제, 살생제(예를 들어, KATHON™ LX) 등을 포함할 수 있다. 적절한 계면 활성제에는, 예를 들어, 양이온성 계면 활성제, 음이온성 계면 활성제, 음이온성 고분자 전해질, 비이온성 계면 활성제, 양쪽성 계면 활성제, 플루오르화 계면 활성제, 이들의 혼합물 등이 포함된다.
본원의 일 구현예에 있어서, 상기 화학적 기계적 연마용 슬러리 조성물은, 분산 안정성이 우수하며, 특히 실리콘 산화막에 대한 연마율이 높은 것을 특징으로 하고 있다.
상기 화학적 기계적 연마용 슬러리 조성물은 산화 세륨 입자, 용매 및 기타 첨가제와 같은 모든 성분을 포함하는 1액형 슬러리 조성물 형태로 제공될 수도 있고, 필요에 따라 2-용기, 또는 3개 이상의 용기에 상기 성분들을 각기 저장된 후 사용 시점 또는 사용 시점 부근에서 이를 혼합하는 2액형 또는 3액형 슬러리 조성물 형태로 제공될 수도 있다. 이러한 제공 형태의 선택 및 저장 성분 조합은 당해 분야에 통상의 기술을 가진 자의 지식에 속하며, 혼합 비율을 변화시킴으로써 전체적인 연마 특성 및 연마 속도를 조정할 수 있다.
본원의 일 구현예에 있어서, 상기 화학적 기계적 연마용 슬러리 조성물은 1,000 Å/min 이상, 바람직하게는 2,000 Å/min 이상, 더 바람직하게는 3,000 Å/min 이상의 실리콘 산화막 연마속도를 갖는 것을 특징으로 하는 것일 수 있고, 기본적으로 산화막 연마속도는 높을수록 좋은 것으로 상한은 비제한적일 것이나, 바람직하게는 10000 Å/min 이하, 9000 Å/min 이하, 8000 Å/min 이하, 7000 Å/min 이하, 6000 Å/min 이하, 또는 5000 Å/min 이하의 실리콘 산화막 연마속도를 갖는 것을 특징으로 하는 것일 수 있다. 특히 본원의 일 구현예에 따른 산화 세륨 입자를 이용한 화학적 기계적 연마 슬러리 조성물의 경우, 산화 세륨 입자의 저함량 범위에서도 입자 크기가 작아 종래 산화 세륨 입자를 포함하는 슬러리 조성물에 비해 포함되는 입자 수 자체가 많고, 표면 Ce3+ 고함량으로 인해 Si-O-Ce 결합이 증가하므로 실리콘 산화막 연마 속도가 현저히 상승되는 것일 수 있다.
상기 산화 세륨을 연마재로 사용할 경우 산화 세륨의 산화 규소와의 높은 반응성으로 인해 Si-O-Ce의 화학적 결합이 발생하여 표면에 형성된 수화층 만을 제거하는 기계적 연마와는 달리, 산화 세륨이 산화 규소 막 표면에서 산화 규소 덩어리를 박리하듯이 제거하여 산화 규소 막을 연마한다. 또한, 본원발명의 실시예에 따른 산화 세륨 분말은 작은 입자 크기로 인해 강도가 낮아, 연마시의 광역 평탄도가 우수함과 동시에 대립자에 의해 형성되는 마이크로 스크래치 문제도 해결할 수 있는 장점이 있다.
본 발명의 제3 측면은,
상기 화학적 기계적 연마 슬러리 조성물을 이용하여 연마하는 단계를 포함하는 반도체 소자의 제조 방법을 제공한다.
본원의 제1 및 제2 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제1 및 제2 측면에 대해 설명한 내용은 제3 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
이하, 본원의 제3 측면에 따른 반도체 소자의 제조 방법을 상세히 설명한다.
우선, STI(shallow trench isolation) 루틴(Routine)공정을 살펴보면, 절연막의 평탄화를 위한 공정 중, 포토, 식각, 및 세정(polishing)은 공통적으로 적용되는 기본공정으로 분류할 수 있다.
소자 사이를 분리하기 위해 첫 단계인, 포토공정부터 시작될 수 있다. 포토공정은 트랙(Track)이라고 불리는 보조 장비와 빛을 노출시켜 회로패턴(Mask)을 웨이퍼 위에 복사하는 노광기에서 실시하게 된다. 먼저 감광제(Photo Resistor)를 바르는데, 감광제는 점도가 높기 때문에 웨이퍼를 회전시키면서 절연막 위에 얇게 도포를 한다. 도포되는 감광제는 균일한 높이가 되어야 감광 깊이가 적절해집니다. 노광 시 감광 깊이가 충분하지 않으면, 현상할 때 감광제찌꺼기가 남게 되고 연이은 식각공정에서 하부막(절연층)이 잘 제거되지 않게 된다. 감광을 시킨 후에는 웨이퍼를 다시 트랙장비로 옮겨서 감광부위를 제거시키는 현상공정을 진행한다.
두 번째 단계로, STI의 식각은 현상된 부위(감광막이 제거된)의 바로 밑 부분인 절연층(산화층+질화층)과 기판의 일부를 제거하는 공정이다. 상기 식각 공정은 건식 또는 습식 공정이 이용될 수 있다. 건식(Dry) 식각 방식은 보통 플라즈마 상태를 이용해 파내려가는 방식이다. 건식은 습식(액체)에 비하여 옆 벽을 식각하지도 않고(이방성 식각), 밑으로만 파내려가서 트렌치 형상을 잡는데 유리할 수 있다. 이 경우, 과식각(Over Etch)이 될 수 있어서, 식각 종말점을 정확하게 계산한 뒤 진행할 필요가 있을 것이다. 식각 후에는 잔유물이 남게 되므로 이를 처리할 수 있다.
트렌치의 형상을 식각하고 나면 감광제 층이 더 이상 쓸모가 없어지므로 에싱(Ashing)을 통해 제거할 수 있다. 상기 에싱 공정의 경우 바람직하게는 플라즈마를 사용하여 이루어질 수 있고, 보다 정확한 에싱이 가능해질 수 있다. 상기 에싱 공정까지 이루어진 반도체 소자의 형상은 도 2a에 도시되어 있다.
본원의 일 구현예에 따른 반도체 소자의 제조 방법은 상기 화학 기계적 연마 슬러리 조성물을 사용하여 실리콘 산화막, 실리콘 질화막 및 폴리실리콘막을 동시에 연마하는 단계를 포함할 수 있다.
도 2a 내지 2e는 본원의 일 구현예에 따른 반도체 소자 제조 방법을 도시한 단면도들이다.
도 2a를 참조하면, 하부막(10) 상의 상부막(11) 내에 트렌치(13)를 형성할 수 있다. 일례로, 하부막(10) 상에 상부막(11)을 형성하고, 상부막(11) 상에 질화막(연마정지막, 12)을 형성할 수 있다. 하부막(10)은 임의의 물질막을 포함할 수 있다. 가령, 하부막(10)은 절연막, 도전막, 반도체막, 혹은 반도체 웨이퍼(기판)일 수 있다. 상부막(11)은 절연막(산화막), 도전막, 반도체막, 혹은 이들의 조합을 포함할 수 있다.
상부막(11)이 복수개의 적층된 절연막들을 포함하는 경우, 그 절연막들은 같은 종류 혹은 서로 다른 종류일 수 있다. 일례로, 상부막(11)은 교대로 그리고 반복적으로 적층된 실리콘 산화막들과 실리콘 질화막들을 포함할 수 있다. 상부막(11)은 실리콘 산화막들과 실리콘 질화막들 아래에 반도체막과 하부 절연막을 더 포함할 수 있다. 가령, 하부 절연막은 반도체막 아래에 배치될 수 있다.
질화막(연마정지막, 12)은 가령 실리콘 질화물(예: SiN), 폴리실리콘, 금속 질화물(예: TiN), 금속 등을 증착하여 비교적 큰 두께(예: 100Å 내지 4,000Å)를 가지도록 형성할 수 있다. 트렌치(13)는 식각 공정 혹은 드릴링 공정으로 형성할 수 있다. 트렌치(13)는 질화막(연마정지막, 12)과 상부막(11)을 관통하여 하부막(10)에 이를 수 있는 깊이를 가질 수 있다. 가령, 트렌치(13)는 하부막(10)을 노출시킬 수 있는 충분한 깊이를 가질 수 있다.
도 2b를 참조하면, STI는 산화막을 이중으로 형성할 수 있다. 먼저 공간이 확보된 트렌치(13) 속에 본격적으로 절연물질을 채워 넣기 전에, 확산방식으로 제1 절연막(14)으로서, 라이너(Liner) 산화막을 얇게 입힙니다. 이후 단계의 CVD 증착을 이용한 제2 절연막이 실리콘 기판에 잘 형성되기 위하는 것으로 판단할 수 있다. 본원의 다른 일 구현예에 따라 고밀도 플라즈마CVD(HDPCVD)로 트렌치(13)를 채울 시, 높은 에너지를 함유한 플라즈마로부터의 손상을 막아내는 역할도 수행할 수 있다. 본원의 일 구현예에 따르면, 제1 절연막(라이너 산화막)은 확산시킬 노(Furnace)에 산소가스를 투여하고 고온으로 가열하는 것에 의해, 게이트 산화막과 같은 박막이 형성될 수 있다. 또한 본원의 다른 일 구현예에 따르면, 산화막 대신 질화막이 사용될 수도 있다.
도 2c를 참조하면, 복수개의 절연물을 증착하여 트렌치(13)를 채우는 제1 절연막(14)과 제2 절연막(15)을 형성할 수 있다. 제1 절연막(14)과 제2 절연막(15)은 밀도와 증착 속도가 서로 다를 수 있다. 본 발명의 실시예들에 따르면, 제1 절연막(14)은 고밀도 절연물을 증착하여 형성할 수 있고, 제2 절연막(15)은 저밀도 절연물을 증착하여 형성할 수 있다. 일례로, 제1 절연막(14)은 고밀도 플라즈마 (HDP) 산화물을 증착하고 패터닝하여 형성할 수 있다. 제1 절연막(14)은 트렌치(13)의 내면을 따라 연장된 형태로 형성할 수 있다. 가령, 제1 절연막(14)은 위를 향해 개구된 U자 혹은 파이프 형상을 가질 수 있다.
제1 절연막(14)은 고밀도를 갖기에 제1 절연막(14) 내에 공동(void) 발생이 어렵고, 이에 따라 후속 열처리 공정을 진행할 때 공동으로부터 유래하는 크랙의 발생이 없어지거나 현저하게 줄어들 수 있다. 제2 절연막(15)은 가령 테트라에틸오르쏘실리케이트(TEOS) 산화물을 제1 절연막(14)이 형성된 트렌치(13)를 채우면서 연마 정지막(12)을 덮기에 충분한 두께로 증착하여 형성할 수 있다. 제2 절연막(15)은 제1 절연막(14)에 비해 더 빠른 증착 속도로 형성될 수 있다. 제2 절연막(15)의 빠른 증착 속도로 인해 트렌치(13)는 제2 절연막(15)으로 비교적 빠르게 채워질 수 있다.
본원의 다른 일 구현예에 따라, 도시되지는 않았지만, 제2 절연막(15)을 부분적으로 제거하여 트렌치(13) 상에 제2 절연막(15)을 잔류시킬 수도 있다. 가령, 포토 공정과 식각 공정으로 반도체 소자의 셀 메모리 영역과 같은 특정 영역을 한정하거나 오픈시키기 위해 제2 절연막(15)을 선택적으로 제거할 수 있다. 이에 따라, 연마 정지막(12) 상의 제2 절연막(15)이 일부 혹은 전부가 제거될 수 있고, 트렌치(13) 상에 제2 절연막(15)이 잔류할 수도 있다. 상기 특정 영역의 오픈 공정은 선택적으로 진행할 수 있는 것이고, 필수적으로 진행하는 것은 아닐 것이다.
도 2d를 참조하면, 제2 절연막(15)에 대한 평탄화 공정을 진행할 수 있다. 가령 화학적 기계적 연마(CMP) 공정으로 제2 절연막(15)을 평탄화할 수 있다. 화학적 기계적 연마 공정은 질화막(연마정지막, 12)이 드러날 때까지 계속 진행될 수 있다. 화학기계적 연마 공정은 도 2b의 제2 절연막(15)의 형성 이후 진행할 수 있다. 이 경우, 질화막(연마정지막, 12) 상의 표면이 비교적 평탄하므로 혹은 평탄하지 않더라도 그 비평탄성이 심하지 않으므로 화학기계적 연마 공정이 용이하게 진행될 수 있다.
이후 도 2e를 참조하면, 질화막을 제거하여 STI를 형성할 수 있다. 질화막은 상부막(11)이 제1 절연막(14)으로부터 영향을 받지 않도록 상부막(11)을 보호하는 목적이 있었다. 상부막(11)은 얇고 신뢰성이 높아야 하는 게이트산화막이 될 수 있으므로 조심스럽게 다룰 필요가 있다. 식각 방식(습식)으로 질화막을 제거할 때는 웨이퍼를 화학용액에 담가서 산화막이 식각되지 않고 질화막만 식각되도록 할 수 있다. 이를 위해 질화막에 대한 높은 선택비(식각비율)를 갖는 용액을 사용할 수 있다. 본원의 다른 일 구현예에서, 질화막까지 CMP로 제거할 수도 있다. 이 경우, 질화막의 식각을 진행할 필요가 없을 수 있지만, 산화막을 물리적으로 손상시킬 가능성이 있으므로, 산화막을 보호하기 위해 질화막은 식각 방식으로 화학 처리하는 것이 바람직하다.
본원의 다른 일 구현예에 따라 상기 화학적 기계적 연마(CMP)공정은 갭필 이후의 질화막(연마정지막, 12) 상부의 제1 절연막(14)막 및 제2 절연막(15)을 전부 제거하여 Active영역과 Field 영역을 이격시키는(Isolation) 것으로, 공정은 도 2f와 같이, 크게 3단계로 구분되는 것일 수 있다.
첫번째 단계는 플레이튼(Platen)에서 제2 절연막(15)을 벌크(Bulk) CMP 하면서 국부적인(Local) 평탄화가 이루어진다. 두번째 단계에서는 Platen에서 단차가 완화된 제2 절연막(15)을 세정 또는 연마(Polishing)하여 질화막(연마정지막, 12)이 드러나는 시점에서 연마를 정지(Stopping)한다. 이때 이종 막질이 드러나는 시점을 감지하기 위하여 연마 종점 감지(End Point Detection, EPD)를 사용하게 된다. 세번째 단계에서는, Platen에서 질화막(연마정지막, 12) 위에 혹시라도 남아있을지 모르는 제2 절연막(15) 잔여물 제거 및 질화막과 산화막 막질을 연마하여 타겟팅(Targeting)을 하는 것일 수 있다.
도 2g는 본원의 일 구현예에 따른, 화학적 기계적 연마(CMP) 설비의 구조를 나타낸다. 이 설비의 경우 Platen이 3개로 구성되어 있는 것이 특징이고, 위에서 설명했듯이 Platen 1,2, 및 3을 순차적으로 지나며 단계별 STI CMP 연마가 진행되는 구조일 수 있다. 연마를 마치고 세정부로 이동하여 세정을 마치고 공정이 종료되게 된다.
이외에도, 본원의 일 구현예에 따른 반도체 소자의 제조 방법은 상기 화학 기계적 연마 슬러리 조성물을 사용하여 실리콘 산화막, 실리콘 질화막 및 폴리실리콘막을 동시에 연마하는 방법은 비제한적으로 종래 일반적으로 사용되는 연마 방법 및 조건이면 어느 것이나 사용할 수 있으며, 본 발명에서 특별히 한정되지 않는다.
본원의 일 구현예에 따른 화학적 기계적 연마용 슬러리 조성물은 분산 안정성이 높고 상기 슬러리 조성물에 포함되는 상기 산화 세륨 입자의 표면에 Ce3+ 함량이 높아 실리카와 세륨 간의 Si-O-Ce를 형성하는 화학적 연마 메커니즘에 의해 규소를 포함하는 기판에의 연마율을 증가시킬 수 있어, 세리아를 저함량 포함하는 조건에서도 CMP 공정에서 반도체 디바이스의 표면으로부터 특히 실리콘 산화막을 제거하는데 효과적으로 사용될 수 있다.
본 발명의 제4 측면은,
반도체 소자로서, 기판; 및 상기 기판 상에 절연 물질이 채워져 있는 트렌치;를 포함하고 상기 트렌치는 화학적 기계적 연마용 슬러리 조성물을 사용하여, 실리콘 산화막, 실리콘 질화막 및 폴리실리콘막으로 이루어진 군으로부터 선택된 적어도 1종의 막을 연마하는 것에 의해 생성되고, 상기 화학적 기계적 연마용 슬러리 조성물은, 산화 세륨 입자; 및 용매를 포함하고, 상기 산화 세륨 입자는 UV 광전자 분광(ultraviolet photoelectron spectroscopy, UPS)분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 10 eV이하의 범위 내에 존재하는 것을 특징으로 하는, 반도체 소자를 제공한다.
본원의 제1 내지 제3 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제1 내지 제3 측면에 대해 설명한 내용은 제4 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본 발명의 제5 측면은,
원료 전구체를 준비하는 단계; 및 원료 전구체를 포함하는 용액 내에서 산화 세륨 입자를 분쇄 또는 침전시켜 화학적 기계적 연마용 산화 세륨 입자의 분산액을 얻는 단계;를 포함하고, 상기 산화 세륨 입자는 UV 광전자 분광(ultraviolet photoelectron spectroscopy, UPS)분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 10 eV이하의 범위 내에 존재하는 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자의 제조방법을 제공한다.
본원의 제1 내지 제4 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제1 내지 제4 측면에 대해 설명한 내용은 제5 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본원의 일 구현예에 있어서, 원료 전구체를 준비하는 단계;를 포함할 수 있다. 상기 원료 전구체는 생성물인 산화 세륨 입자를 제조할 수 있는 전구체 물질이라면 비제한적으로 사용 가능하다.
본원의 일 구현예에 있어서, 원료 전구체를 포함하는 용액 내에서 산화 세륨 입자를 분쇄 또는 침전시켜 화학적 기계적 연마용 산화 세륨 입자의 분산액을 얻는 단계;를 포함할 수 있다. 상기 원료 전구체를 포함하는 용액 내에서 산화 세륨 입자를 분쇄하는 단계는 예컨대, 밀링 공정을 통한 분쇄일 수 있으며, 분쇄 방법에 대해서는 비제한적으로 통상의 기술자의 기술 상식 범위에서 결정될 수 있다. 원료 전구체를 포함하는 용액 내에서 산화 세륨 입자를 침전시켜 산화 세륨 입자의 분산액을 얻는 단계;의 경우, 상층액을 제거하는 단계; 또는 여과하는 단계 등을 더 포함할 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예1. 산화 세륨 입자의 제조
본원발명의 일 실시예에 따른 상기 산화 세륨 입자는 바텀 업(bottom up)방식으로 화학적 합성을 통해 합성될 수 있다. 본원의 실시예에서는 아래에 제시하는 산화 세륨 입자 제조방법 중 선택된 어느 하나의 방법으로 산화 세륨 입자를 제조하였다.
본원의 일 실시예에 따른 제조방법에 따라, 우선 충분한 양의 탈이온수에 질산 세륨 약 2~4 kg 첨가하고 교반하였다. 상기 전구체 용액에 질산을 첨가하여 pH를 1.0이하로 조절하였다. 제조된 혼합물에 침전물이 생길 때까지 암모니아수를 첨가하고 교반하였다. 교반된 혼합물의 pH는 강산성을 나타내었으며(2 이하), 교반 완료 시 방치하면 생성물은 빠르게 침전되는 것을 확인하였다. 침전물을 제외한 상층액을 제거한 후 일정량을 탈이온수를 투입하였고, 연한 노란색의 산화 세륨 입자 분산액이 생성되었다. 제조된 분산액을 맴브레인 필터를 통해 순환여과하여 투명한 황색 산화세륨 분산액을 얻었다.
본원의 또 다른 일 실시예에 따른 제조방법에 따라, 우선 산화 세륨 또는 수산화 세륨 150g을 탈이온수 3kg에 분산해 입자가 침전되지 않을 정로도 교반시켰다. 상기 혼합물에 질산을 pH가 1.0이하가 될 때까지 첨가하였다. 0.05mm 지르코니아 비드를 충진한 밀링기에 상기 혼합물을 첨가하여 4,000rpm으로 순환시키면서 분쇄시켰다. 밀링이 진행되면서 흰색 불투명한 산화 세륨 분산액이 점점 황색 투명한 산화 세륨 분산액으로 변하는 것을 관찰하였다. 밀링 종료 후 제조된 황색 투명한 산화 세륨 분산액은 맴브레인 필터를 통해 순환 여과하여 순수한 황색 투명한 산화세륨 분산액을 얻었다.
본원의 다른 일 실시예에 따른 제조방법에 따라, 우선 충분한 양의 에탄올에 세릭암모늄나이트레이트를 약 2~4 kg 첨가하고 교반하였다. 상기 전구체 용액에 침전물이 생길 때까지 이미다졸 용액을 첨가하고 교반하였다. 교반된 혼합물의 pH는 강산성을 나타내었으며(2 이하) 교반 완료 시 방치하면 생성물은 빠르게 침전되는 것을 확인하였다. 침전물을 제외한 상층액을 제거한 후 일정량을 탈이온수를 투입하였고, 산화 세륨 입자 분산액이 생성되었다. 제조된 분산액을 맴브레인 필터를 통해 순환여과하여 투명한 산화세륨 분산액을 얻었다.
본원의 또 다른 일 실시예에 따른 제조방법에 따라, 우선 반응 용기에 질산세륨 1.1kg와 탈이온수 10kg를 혼합하였다. 반응 용기 교반속도는 200rpm으로 유지하고 상온을 유지시켰다. 25% Ammonia Solution과 탈이온수 1:1 혼합액을 준비 후 반응용기에 pH가 7.0이 될 때까지 투입하였다. 1시간 교반 진행 후 70% 질산과 탈이온수 1:1 혼합액을 pH 1.0이 될 때까지 첨가하였다. 반응기 온도를 100℃까지 승온시킨 후 4시간 동안 반응시켰다. 반응이 진행되는 동안 연보라색 거대입자가 해리되면서 황색 투명한 산화세륨 나노입자가 생성되었다. 얻어진 입자를 맴브레인 필터를 사용하여 순환시키면서 분순물을 제거하고 순수한 산화 세륨 나노입자 분산액을 얻었다.
제조예2. 산화 세륨 입자를 포함하는 CMP 슬러리의 제조
상기 제조예 1에서 제조된 산화 세륨 입자를 탈이온수에 첨가하여, 연마재 농도를 0.05 중량%로 맞추고, 트리에타놀아민을 첨가하여 pH를 5.5로 맞추어 CMP 슬러리를 제조하였다.
도 3에 따르면, 종래의 세리아 입자를 포함하는 슬러리의 경우, 육안으로도 탁도가 높음을 관찰할 수 있었던 반면, 본 발명의 산화 세륨 입자를 포함하는 슬러리의 경우 투명한 것을 관찰할 수 있어, 단분산 특성이 있음을 추정할 수 있다.
비교예1 내지 4. 종래의 세리아 입자를 포함하는 슬러리 조성물의 제조
평균 입자의 크기가 각각 10, 30, 60 nm인 시판되는 습식 산화 세륨 입자 및 별도로 하소법에 의해 제조된 10 내지 20nm급 산화 세륨 입자를 제조하여, 각각 탈이온수에 첨가하여 연마재 농도를 0.05 중량%로 맞추고, pH 조절제로 암모니아를 첨가하여 최종 pH를 5.5로 맞추어 CMP 슬러리를 제조하였다.
실험예1. 산화 세륨 입자의 SEM 및 TEM 분석
본 발명의 일 실시예에 따른 제조예 1의 분산액을 대략 80~90 ℃에서 건조하여 분체 형태의 산화 세륨 입자(1차 입자)를 준비하였다(샘플 A). 한편, 비교예 1 내지 4 분산액 제조 시 사용한 산화 세륨 입자를 각각 준비하였다(순서대로 각각 샘플 B1, B2, B3 및 B4). 상기 준비된 샘플 각각에 대해 TEM 측정 기기를 이용하여 이미지를 촬영하였다.
도 4는 본 발명의 일 실시예에 따른 산화 세륨 입자의 TEM 이미지이다.
도 4를 참조하면, 발명의 일 실시예에 따라 제조된 산화 세륨 입자의 TEM 측정에 따른 입자 크기는 평균적으로 약 4 nm 이하(반복 측정에서 각각 3.9 nm, 3.4 nm, 2.9 nm 나타남)로 나타난 것을 확인할 수 있었다. 본 발명의 일 실시예에 따른 산화 세륨 입자의 평균적인 1차 입자 크기는 4 nm이하를 나타냄을 볼 수 있다. 또한 상기 산화 세륨 입자는 평균적으로 구형 입자의 형상을 갖는 것을 확인할 수 있다. 입자 크기가 작고 크기 분포가 비교적 균일한 구형의 산화 세륨 입자는 넓은 비표면적을 가질 수 있으며, 분산 안정성 및 저장 안정성이 우수한 특징을 갖는다.
도 5는 비교예에 따른 종래의 산화 세륨 입자의 SEM 및 TEM 이미지를 나타낸 것이다.
도 5를 참조하면, 종래 시판되는 산화 세륨 입자는 각각의 사이즈 급에 맞는 입자 크기를 나타내고 있고, 하소법에 의해 별도로 제조된 입자의 경우도 평균적으로는 모두 10 nm 초과의 1차 입자 크기를 나타내는 것을 볼 수 있으며, 이를 도 4에 나타난 본 발명의 일 실시예에 따른 산화 세륨 입자의 TEM에 의해 측정된 평균적인 입자 크기가 4 nm 이하를 나타냄과 비교하면, 종래 기술의 산화 세륨 입자 및 일반적인 하소법에 의해 제조된 산화 세륨 입자가 훨씬 조대한 입자 크기를 갖는 것을 확인할 수 있다. 반면, 본원발명의 산화 세륨 입자는 입자 크기(1차 입자) 자체가 작게 형성된다는 것을 확인하였고, 이렇게 상기 산화 세륨 입자 크기가 작을수록, 연마 대상막의 표면에 스크래치와 같은 결함을 줄일 수 있는 것을 예상할 수 있다.
또한, 도 6은 비교예인 종래의 산화 세륨 입자의 TEM 이미지를 나타낸 것이다. 도 6을 참조하면, 입자 크기 10nm 급 종래 산화 세륨 입자는 edge를 갖는 입자와 구형의 입자를 포함하고, 입자 크기 30nm급 이상의 종래 산화 세륨 입자는 edge를 갖는 각형의 입자로 이루어진 것을 확인할 수 있다. 반면 위에서 검토한 바와 같이, 본 발명의 실시예에 따른 산화 세륨 입자는 대체로 구형의 형상을 나타내는데, 본원발명의 산화 세륨 입자는 이렇게 구형의 입자 형상을 가지고, 입자 크기가 미세함으로써, 입자 수가 많이 포함될 수 있고, 따라서 실리콘 산화막을 연마할 때에 표면의 결함 발생 확률은 줄이고 광역 평탄도는 높일 수 있다.
실험예 2. 산화 세륨 입자의 동적광산란 입도분석기 (Dynamic Light Scattering, DLS) 분석
본원의 일 실시예에 따른 제조예 2의 슬러리 조성물, 비교예 1, 2, 3 및 4의 슬러리 조성물을 샘플로 준비하였다. 상기 준비된 샘플 각각에 대해, DLS 장비를 이용하여 분석을 수행하였다.
도 7은 본 발명의 일 실시예에 따른 산화 세륨 입자의 동적광산란 (DLS) 분석(Malvern社 Zetasizer Ultra) 결과이다. 또한 하기 표 1은 본 발명의 일 실시예에 따른 산화 세륨 입자 및 비교예 들의 산화 세륨 입자의 동적광산란 (DLS) 분석에 의해 얻은 D50 값을 나타낸 것이다.
시료 D50 Number
(nm)
본원발명 실시예 5.78
비교예 1 - 종래 10 nm급 산화 세륨 입자 33.6
비교예 2 - 종래 30 nm급 산화 세륨 입자 93.9
비교예 3 - 종래 60 nm급 산화 세륨 입자 138.7
비교예 4 - 하소법에 의해 제조된 산화 세륨 입자 139.1
도 7 및 상기 표 1을 참조하면, 본 발명의 실시예에 따른 산화세륨 입자는 약 5.78nm의 2차 입자 크기 D50 값을 갖는 것으로 나타났으며, 10 nm 이하인 것으로 측정되었다. 실험예 1에서 측정한 바와 TEM으로 측정한 1차 입자 크기 대비(도 4 참조) 약 148~199% 수준으로, 슬러리 내에서 응집이 거의 이루어지지 않고 단분산되어 입자 크기 변화가 거의 없는 수준인 것을 확인할 수 있었다.
반면, 종래 기술의 산화 세륨 입자의 동적광산란 (DLS) 측정에 의한 D50 입자크기는 30 nm를 초과하는 것을 확인할 수 있었으며, 10nm 급 산화 세륨 입자의 경우에도 TEM으로 측정한 1차 입자 크기 대비, 동적광산란 (DLS) 로 측정한 2차 입자 크기 D50 값이 약 336% 수준으로, 종래 기술의 산화 세륨 입자가 훨씬 큰 2차 입자 크기를 갖고, 이는 응집이 많이 일어난 것임을 확인할 수 있다.
따라서 본원발명의 일 실시예에 따른 산화 세륨 입자가 일 비교예에 따른 종래 기술의 산화 세륨 입자보다 슬러리 내에서 응집성이 작고, 보다 단분산된 형태로 슬러리에 분산될 수 있음을 알 수 있다.
실험예 3. 산화 세륨 입자의 XPS분석
도 8은 본 발명의 일 실시예에 따른 산화 세륨 입자 및 60 nm급 종래 산화 세륨 입자의 XPS 분석 결과이다. XPS(X-ray photoelectron spectroscopy)는 soft X-ray를 조사했을 때 Ce3+를 나타내는 Ce-O 운동 에너지를 나타내는 900.2 내지 902.2 eV, 896.4 내지 898.4 eV, 885.3 내지 887.3 eV 및 880.1 내지 882.1 eV에서 나타나는 피크를 측정하여 XPS fitting을 통해 atomic%를 분석함으로써 산화 세륨 입자에서 Ce3+ 및 Ce4+ 함량을 측정할 수 있다. 이하 표 2는 본 발명의 실시예에 따른 산화 세륨 입자의 XPS 결과 데이터이다.
Name Peak BE FWHM eV Area (P) CPS.eV Atomic % Atomic %
Ce 3+ u' 901.2 3.0 11,363 4.8% 36.9%
u0 897.4 1.7 26,481 11.2%
v' 886.3 3.0 14,432 6.1%
v0 881.1 1.7 35,248 14.8%
Ce 4+ u''' 915.5 2.2 36,591 15.5% 63.1%
u'' 906.4 3.8 20,514 8.7%
U 899.6 1.7 25,576 10.8%
v''' 896.6 1.7 19,147 8.1%
v'' 888.2 2.9 19,066 8.0%
V 882.8 3.3 29,093 12.2%
상기 XPS 분석 결과로부터 상기에서 기술한 화학식에 의해 Ce3+ 함량을 계산한 결과, Ce3+ 함량이 30 % 이상인 것을 알 수 있다. 산화 세륨 입자에서 Ce3+가 반응 위치(reactive sites)이므로, 이로 인해 연마량을 높일 수 있는 것을 알 수 있을 것이다. 상기와 같은 방법으로 종래 산화 세륨 입자와의 비교 데이터를 표 3과 같이 나타내었다.
Sample Ce 4+ Atomic % Ce 3+ Atomic %
본 발명의 실시예 63.1 36.9
비교예 (60nm급 시중 산화 세륨 입자) 86.1 13.9
종래 10nm급 세륨 입자(초임계, 아임계 조건에서 수열합성법에 의해 제조됨) 83.2 16.8
본원발명의 일 실시예에 따른 산화 세륨 입자의 경우 상기 표 3에서 볼 수 있듯이 Ce3+의 함량이 약 36.9 atomic%이고, 표 2에서 이를 종래 60nm 급 산화 세륨 입자의 Ce3+ 함량이 14 atomic% 미만이고, 종래 문헌들에 의해 알려진 바와 같이 10nm급 초임계, 또는 아임계 조건에서 수열합성법에 의해 제조된 산화 세륨 입자가 약 16.8%인 것과 비교하였을 때, 높은 Ce3+ 함량을 포함함을 확인할 수 있다. 표면 Ce3+ 함량이 본 발명의 실시예와 같이 높은 수준인 경우, 실리카와 세륨 간의 Si-O-Ce를 형성하는 화학적 연마 메커니즘에 의해 규소를 포함하는 기판에의 연마율을 증가시킬 수 있다.
실험예 4. 푸리에 변환 적외선(FT-IR) 분광 분석을 통한 산화 세륨 입자의 형성 확인
도 9는 본 발명의 일 구현예에 따라 제조된 산화 세륨 입자로 이루어진 분말 및 통상의 수산화 세륨 입자로 이루어진 분말의 FT-IR 분광 분석 결과이다. 본 발명의 일 실시예에 따른 제조예 1의 분산액을 대략 80~90 ℃에서 건조하여 분체 형태의 산화 세륨 입자(1차 입자)를 준비한 후, FT-IR 분광기를 이용하여 스펙트럼을 얻었다. 분석범위는 600 내지 4100 cm-1 내에서 1회 이상 반복 스캔하여 그래프를 도식하였다(FT-IR 스펙트럼에서 파동수(cm-1)는 ±10cm-1의 오차범위를 가질 수 있다).
도 9의 FT-IR 분광 스펙트럼을 분석한 결과, 본 발명의 일 실시예에 따른 산화 세륨 입자로 이루어진 분말의 3000 cm-1 내지 3600 cm-1의 범위 내에서 적외선 투과도는 약 92~93%이고, 720 cm-1 내지 770 cm-1의 범위 내에서 적외선 투과도는 약 93~95%인 것을 확인할 수 있다. 이를 통상의 수산화 세륨 입자로 이루어진 분말의 FT-IR 스펙트럼에서 3000 cm-1 내지 3600 cm-1의 범위 내의 적외선 투과도가 75~90%, 720 cm-1 내지 770 cm-1의 범위 내의 적외선 투과도가 97~99%인 것과 비교하면, 본 발명의 일 실시예에 따라 제조된 산화 세륨 입자가 3000 cm-1 내지 3600 cm-1의 범위 내에서 수산화 세륨 입자의 O-H group에 의한 band는 통상의 수산화 세륨 입자의 그것보다 약하게 나타나는 점과, 720 cm-1 내지 770 cm-1의 범위 내에서 Ce-O stretching에 의한 피크가 형성되는 것을 확인할 수 있다. 따라서, 상기 결과는 본 발명의 일 구현에에 따라 제조된 세륨 화합물이 산화 세륨인 것을 의미할 수 있다.
실험예5. 산화 세륨 입자의 UPS 분석 분석
본 발명의 일 실시예에 따른 산화 세륨 입자, 비교예 3 및 4의 샘플을 준비하였다.
도 10 내지 도 12는 본 발명의 일 실시예에 따른 산화 세륨 입자, 60 nm급 종래 산화 세륨 입자 및 하소법에 의해 제조된 종래 산화 세륨 입자의 UPS 분석 결과이다.
표 4는 본원의 일 실시예에 따른 산화 세륨 입자와 상기 종래 산화 세륨 입자의 구분에 따른 일함수 값을 정리한 것이다.
일 구현예에 있어서, 본원의 일 실시예에 따른 산화 세륨 입자는 초당 방출되는 광전자 수(Counts, Y축)의 최대값이 운동에너지 8 내지 10 eV의 범위에 존재하는 반면, 비교예 3 및 4의 경우, 운동에너지 11 내지 13 eV의 범위에 존재하는 것을 확인할 수 있었다. 이러한 결과를 통해, 실시예의 경우, 3.16 ev의 일 함수를 갖고, 비교예 3 및 4의 경우, 각각 2.37 eV, 2.37 eV의 일 함수를 가지는 것을 도출할 수 있었다.
일 구현예에 있어서, UPS 분석은 측정된 운동에너지(Ekin) 값을 통해 속박에너지(Eb)를 도출하였으며, 도출된 속박에너지 그래프를 통해 샘플들의 페르미 준위(EF) 및 진공 준위(Ecutoff)를 도출할 수 있었다. 따라서, 상기 페르미 준위(EF) 및 진공 준위(Ecutoff) 값을 하기 식 2에 적용하여 일함수 Φ값을 구할 수 있었다. 이때, hv는 자외선을 방출시킬 때 사용하는 소스 에너지(source energy)로서 입사하는 빛의 에너지를 나타내는데, 소스는 헬륨(He)를 사용하였다(He|UPS = 21.22 eV). 분석 결과를 통해 나타난 일함수 값은 아래 표 4와 같이 나타났다.
[식 2]
Φ = hv - |Ef - Ecutoff|
구분 일함수(eV)
본원발명 실시예 3.16
비교예 3 2.37
비교예 4 2.37
도 10 내지 도 12를 참조했을 때, 본 발명의 일 실시예에 따른 산화 세륨 입자의 일함수 값이 가장 크다는 것을 알 수 있었다. 입자의 크기가 작아질수록 시료의 오비탈들 사이 에너지 준위 차이가 점점 커지게 되어 높은 값의 에너지 밴드갭을 갖게 되는데, 본 발명의 일 실시예에 따른 산화 세륨의 입자 크기가 종래의 산화 세륨 입자들에 비해 충분히 작기 때문에 높은 에너지 밴드갭을 갖게 되고 이는 페르미 준위 및 진공 준위에 영향을 미치게 되면서 일함수의 에너지 값에 변화를 주게 된 것임을 예상할 수 있었다. 따라서, UPS 분석을 통해 도출한 일 함수 값을 통해 본 발명의 일 실시예에 따른 산화 세륨의 입자 크기가 종래의 산화 세륨 입자에 비해 충분히 작고 응집성이 매우 작은 것임을 나타내는 것이다. 이렇게 응집성이 작고, 단분산되는 특징을 가짐으로써, 본원의 일 구현예에 따른 산화 세륨 입자는 화학적 기계적 연마용 슬러리에 포함되어 사용될 때, 웨이퍼와 접촉하는 입자 수를 최대화할 수 있고, 산화막 연마 속도를 증가시킬 수 있음과 동시에, 입자 크기 자체는 미세하게 되어 웨이퍼 표면의 결함은 최소화할 수 있다.
실험예6. 산화 세륨 입자를 포함하는 슬러리의 광투과도 측정
CMP 슬러리 내의 산화 세륨 입자의 중량비율을 1 중량%로 한 것을 제외하고는, 제조예 2와 동일한 방식으로 하여 슬러리 조성물(샘플 A)을 준비하였다. 한편, CMP 슬러리 내의 산화 세륨 입자의 중량비율을 1 중량%로 한 것을 제외하고는, 비교예 1, 2, 3 및 4와 동일한 방식으로 하여 슬러리 조성물을 각각을 준비하였다(순서대로 샘플 B1, B2, B3 및 B4). 샘플 각각에 대해 UV-Vis 분광 기기(JASCO)를 이용하여 200 내지 1100 nm의 광에 대한 투과도를 측정하였다.
도 13은 본 발명의 일 실시예에 따른 산화 세륨 입자 및 비교예 1 내지 4의 종래 산화 세륨 입자를 포함하는 슬러리의 광투과도를 UV-Vis(자외선-가시광선) 분광법을 이용해 측정한 결과이다.
본원발명의 일 실시예 및 비교예들에 따른 산화 세륨 입자를 탈이온수에 첨가하여 연마재 농도를 1.0 wt%로 맞추고 CMP 슬러리를 준비하여 광투과도를 분석하였다. 이때 광학 스펙트럼은 200 ~ 1,100nm 범위내에서 범위내에서 UV-vis 분광기(Jasco UV-vis spectrophotometer)를 사용하여 측정하였다.
상기 UV-Vis 분석 그래프를 통해, 파장 500nm, 600nm 및 700nm 각각에서의 샘플 A 및 샘플 B1 내지 B4의 투과도(%)를 정리하여 하기 표 5에 나타내었다.
구분 투과도(%)
파장(nm) 샘플 A 샘플 B1 샘플 B2 샘플 B3 샘플 B4
500 95.4 48.6 0.07 0.042 0.021
600 96.9 74.9 0.162 0.072 0.048
700 97.5 86.3 1.61 0.109 0.05
도 13 및 표 5에 따르면, 본원발명의 산화 세륨 입자를 포함하는 슬러리의 경우 파장이 450 내지 800nm의 광에 대하여 평균적인 광투과도가 50% 이상임을 확인할 수 있다. 또한 약 500nm 파장의 광에 대하여 광투과도가 90% 이상, 약 600nm 및 700nm 파장의 광에 대하여 광투과도가 95% 이상임을 확인할 수 있었다.
반면, 비교예 1내지 4(10nm급, 30nm급, 60nm급 종래 산화 세륨 입자, 하소법에 의한 세리아 입자)에 따른 종래 기술의 산화 세륨 입자를 포함하는 슬러리의 광투과도를 측정하였다. 비교예 4(하소 세리아 입자)는 광투과도가 거의 0%인 것으로 나타나고, 10 nm급 시판되는 종래 산화 세륨 입자를 포함하는 비교예 1 슬러리의 광투과도가 평균적으로 80% 미만이며 파장 500nm에서의 광투과도는 50% 미만인 것을 나타내고 있다. 비교예 2 및 3의 경우 1차 입자크기도 각각 30, 60 nm로 조대하고 2차 입자 크기도 본 발명의 실시예 대비 조대하므로(즉, 슬러리 내에서 응집성이 크므로), 가시광선 영역에서 20% 미만의 투과도만을 나타내는 것을 알 수 있다.
반면, 본원발명의 일 실시예에 따른 산화 세륨 입자는 가시광선 영역에서 90 % 이상의 광투과도를 나타내는 것을 확인할 수 있으며, 이는 본원발명의 산화 세륨 입자의 경우, 1차 입자 크기 자체가 미세하며, 2차 입자로의 응집이 종래 기술의 산화 세륨 입자에 비해 적게 발생한다는 것을 의미한다. 통상 2차 입자가 20 nm를 초과하게 되면, 육안으로도 슬러리 조성물의 불투명함을 관찰할 수 있으며, 가시광선 영역 파장에서 광투과도가 80% 미만이 나올 것임은 잘 알려져 있다.
본 발명의 슬러리 조성물에 의하면, 광투과도가 상기 산화 세륨 입자의 1차 입자 크기가 작고 2차 입자로의 응집성이 작으면, 분산 안정성이 높아 입자가 균일하게 분포될 수 있으며, 웨이퍼에 접촉하는 입자의 수가 증가하기 때문에 산화막 연마 속도가 우수할 수 있고, 입자 자체는 미세하기 때문에 상기 입자를 포함하는 슬러리 조성물을 사용해 연마 대상막을 연마 시, 표면에 스크래치 등의 결함이 발생할 확률이 적어질 것을 쉽게 예측할 수 있다.
실험예 7. 산화 세륨 입자의 산화막 연마율 비교
본원의 일 실시예에 따른 제조예 2의 슬러리 조성물, 비교예 1 및 비교예 3의 슬러리 조성물 각각을 샘플로 준비하였다.
상기 샘플을 이용한 산화막 웨이퍼의 연마는 연마기(Reflexion ® LK CMP, Applied Materials)를 이용해 수행하였다. 구체적으로, 플레튼(Platen) 위에 PE-TEOS 실리콘 산화막 웨이퍼(300mm PE-TEOS Wafer)를 안착시키고, 이 웨이퍼의 표면과 연마기의 패드(IC1010, DOW)를 접촉시켰다. 이어서, 샘플의 슬러리 조성물을 200mL/min의 속도로 공급하고, 상기 플레튼(Platen) 및 상기 연마기의 패드를 회전시키면서 연마 공정을 수행하였다. 이 때, 상기 플레튼의 회전 속도 및 헤드(Head)의 회전 속도는 67rpm/65rpm로 하였고, 연마 압력은 2psi로 하였으며, 연마 시간은 60초로 하였다. 한편, 상기 웨이퍼의 실리콘 산화막 박막 두께는 ST5000(Spectra Thick 5000ST, K-MAC)를 이용해 측정하였다. 결과는 하기 표 6과 같이 나타내었다.
비교예A 비교예B 실시예
산화 세륨 시중 10nm 이하 나노 입자 시중 60nm 나노 입자 본 발명 입자
산화 세륨 함량 0.05% 0.05% 0.05%
pH 5.5 5.5 5.5
PETEOS 제거 속도 354 Å/min 546 Å/min 3,458 Å/min
상기 표 6과 같이 실시예의 슬러리 조성물을 이용하는 경우, 비교예 1 및 비교예 3의 슬러리 조성물 대비 실리콘 산화막 제거 속도가 약 6배 이상 큰 것을 확인할 수 있었다. 이는 실시예의 슬러리 조성물에 포함된 산화 세륨 입자의 경우, 입자 크기가 작아 함량 대비 연마에 유효하게 작용하는 입자 수가 많고, 표면 Ce3+의 함량(몰비 및/또는 중량비)이 높아 산화 규소 막 표면과의 화학적 반응성이 증가하기 때문인 것으로 추정된다.
실험예8. 산화 세륨 입자의 결함 평가
도 14 및 도 15는 본 발명의 일 실시예에 따른 산화 세륨 입자를 포함하는 CMP 슬러리 조성물과 60nm 크기의 산화 세륨 입자를 포함하는 CMP 슬러리 조성물을 이용한 산화물 웨이퍼의 CMP 전후를 스캔한 이미지이다.
상기 산화물 웨이퍼의 표면 분석은 AIT-XP 장비를 이용한 Full wafer scan 방식으로 실시하였다.
도 14 및 15를 참조하였을 때, 상기 본 발명의 실시예에 따른 산화 세륨 입자를 포함하는 CMP 슬러리 조성물을 이용하여 CMP를 진행한 산화물 웨이퍼의 표면을 CMP 전후 분석한 결과, CMP 전 결함 수는 6으로 집계되었고 CMP 후 결함 수는 1로 집계되어 상기 산화물 웨이퍼 표면의 결함이 본 발명의 실시예를 이용하여 CMP를 진행한 후 감소하였으며, 또한 CMP 공정 중 상기 웨이퍼의 표면에 스크래치(scratch)가 발생하지 않은 것을 확인할 수 있다. 반면, 종래 기술의 산화 세륨 입자를 포함하는 CMP 슬러리 조성물을 이용하여 CMP를 진행한 산화물 웨이퍼의 표면을 CMP 전후 분석한 결과, CMP 전 결함 수가 34였던 것에 비해, CMP 후 결함 수가 64로 증가한 것을 확인할 수 있으며 이를 통해 종래 기술의 산화 세륨 입자가 상기 웨이퍼의 표면에 스크래치를 발생시켰다는 것을 확인할 수 있다. 이는 본원발명의 일 실시예에 따른 산화 세륨 입자의 크기가 종래 기술의 산화 세륨 입자의 크기보다 작음으로 인해 연마 대상인 산화물 웨이퍼의 표면에 결함 발생 확률을 확연히 줄일 수 있음을 시사한다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (20)

  1. 화학적 기계적 연마용 산화 세륨 입자로서,
    상기 산화 세륨 입자는 UV 광전자 분광(ultraviolet photoelectron spectroscopy, UPS)분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 10 eV이하의 범위 내에 존재하는 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  2. 제1항에 있어서,
    상기 산화 세륨 입자는 UPS 분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 3 내지 10 eV의 범위 내에 존재하는 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  3. 제1항에 있어서,
    상기 산화 세륨 입자는 UPS 분석 시, 일 함수(work function) 값이 3.0 eV 내지 10.0 eV를 나타내는 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  4. 제1항에 있어서,
    동적광산란 입도분석기 (DLS)로 측정한 상기 산화 세륨 입자의 2차 입자 크기는 1 내지 30 nm인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  5. 제1항에 있어서,
    동적광산란 입도분석기 (DLS)로 측정한 상기 산화 세륨 입자의 2차 입자 크기는 1 내지 20 nm인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  6. 제1항에 있어서,
    전자투과현미경(TEM)으로 측정한 상기 산화 세륨 입자의 1차 입자 크기는 1 내지 10 nm인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  7. 제1항에 있어서,
    X 선 광전자 분광(XPS) 분석 시 상기 화학적 기계적 연마용 산화 세륨 입자의 표면에 Ce3+를 20 원자% 이상 포함하는 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  8. 제1항에 있어서,
    상기 산화 세륨 입자의 표면에서, X 선 광전자 분광(XPS) 분석 시, Ce3+를 나타내는 Ce-O 운동 에너지를 나타내는 XPS 피크가 900.2 내지 902.2 eV의 제1 피크, 896.4 내지 898.4 eV의 제2 피크, 885.3 내지 887.3 eV의 제3 피크 및 880.1 내지 882.1 eV의 제4 피크에서 나타나는 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  9. 제1항에 있어서,
    X 선 광전자 분광(XPS) 분석시, 상기 산화 세륨 입자 표면의 Ce-O 운동 에너지를 나타내는 XPS 피크 면적의 총합에 대한, Ce3+를 나타내는 Ce-O 운동 에너지를 나타내는 XPS 피크 면적의 합의 비는 0.29 내지 0.70인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  10. 제1항에 있어서,
    푸리에 변환 적외선(FT-IR) 분광법에 의해 측정된 스펙트럼에서, 3000 cm-1 내지 3600 cm-1의 범위 내에서 적외선 투과도는 90% 이상이고,
    720 cm-1 내지 770 cm-1의 범위 내에서 적외선 투과도는 96% 이하인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  11. 제1항에 있어서,
    상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 450 내지 800nm의 광에 대하여 평균 광투과도가 50% 이상인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  12. 제1항에 있어서,
    상기 산화 세륨 입자의 함유량을 1.0 중량%로 조정한 수분산액에서 파장 500nm의 광에 대하여 광투과도가 50% 이상인 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자.
  13. 산화 세륨 입자; 및
    용매를 포함하고,
    상기 산화 세륨 입자는 UV 광전자 분광(ultraviolet photoelectron spectroscopy, UPS)분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 10 eV 이하의 범위 내에 존재하는 것을 특징으로 하는, 화학적 기계적 연마용 슬러리 조성물.
  14. 제13항에 있어서,
    상기 산화 세륨 입자는 전체 슬러리 조성물 100 중량부를 기준으로 0.01 내지 5 중량부로 포함되는 것을 특징으로 하는, 화학적 기계적 연마용 슬러리 조성물.
  15. 제13항에 있어서,
    상기 조성물의 pH는 2내지 10인 것을 특징으로 하는 화학적 기계적 연마용 슬러리 조성물.
  16. 제13항에 있어서,
    상기 화학적 기계적 연마용 슬러리 조성물은 황산, 염산, 질산, 인산으로 이루어진 군에서 선택된 1종 이상인 무기산, 아세트산, 시트르산, 글루타르산, 글루콜산, 포름산, 젖산, 말산, 말론산, 말레산, 옥살산, 프탈산, 숙신산, 타르타르산으로 이루어진 군에서 선택된 1종 이상인 유기산, 라이신, 글리신, 알라닌, 아르기닌, 발린, 류신, 이소류신, 메티오닌, 시스테인, 프롤린, 히스티딘, 페닐알라닌, 세린, 트라이신, 티로신, 아스파르트산, 트립토판(Tryptophan), 및 아미노부티르산으로 이루어진 군에서 선택된 1종 이상인 아미노산, 이미다졸, 알킬 아민류, 알코올 아민, 4급 아민 하이드록사이드, 암모니아 또는 이들의 조합인 것을 특징으로 하는, 화학적 기계적 연마용 슬러리 조성물.
  17. 제13항에 있어서,
    상기 용매는 탈이온수인 것을 특징으로 하는 화학적 기계적 연마용 슬러리 조성물.
  18. 제13항에 있어서,
    상기 화학적 기계적 연마용 슬러리 조성물은 1,000 내지 5,000 Å/min의 실리콘 산화막 연마속도를 갖는 것을 특징으로 하는, 화학적 기계적 연마용 슬러리 조성물.
  19. 제13항에 따른 화학적 기계적 연마 슬러리 조성물을 이용하여 연마하는 단계를 포함하는 반도체 소자의 제조 방법.
  20. 원료 전구체를 준비하는 단계; 및
    원료 전구체를 포함하는 용액 내에서 산화 세륨 입자를 분쇄 또는 침전시켜 화학적 기계적 연마용 산화 세륨 입자의 분산액을 얻는 단계;를 포함하고,
    상기 산화 세륨 입자는 UV 광전자 분광(ultraviolet photoelectron spectroscopy, UPS)분석 시, 1초당 방출되는 광전자 수(Counts)의 최대값이 운동에너지 10 eV이하의 범위 내에 존재하는 것을 특징으로 하는, 화학적 기계적 연마용 산화 세륨 입자의 제조방법.
KR1020210115053A 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법 KR102484632B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220189123A KR20230010025A (ko) 2020-08-31 2022-12-29 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020200110237 2020-08-31
KR20200110237 2020-08-31
KR20210039098 2021-03-25
KR1020210039098 2021-03-25
KR1020210080091 2021-06-21
KR20210080091 2021-06-21
KR20210087353 2021-07-02
KR1020210087353 2021-07-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020220189123A Division KR20230010025A (ko) 2020-08-31 2022-12-29 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법

Publications (2)

Publication Number Publication Date
KR20220029503A true KR20220029503A (ko) 2022-03-08
KR102484632B1 KR102484632B1 (ko) 2023-01-04

Family

ID=80355499

Family Applications (40)

Application Number Title Priority Date Filing Date
KR1020210115046A KR102487303B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115054A KR102484634B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115042A KR102484576B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115062A KR102484654B1 (ko) 2020-08-31 2021-08-30 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115061A KR102484653B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자 및 이의 제조방법, 산화 세륨 입자를 포함하는 화학적 기계적 연마 슬러리 조성물의 제조방법
KR1020210115053A KR102484632B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115041A KR102490006B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115045A KR102484582B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115058A KR102484643B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자 및 이의 제조방법, 산화 세륨 입자를 포함하는 화학적 기계적 연마 슬러리 조성물의 제조방법
KR1020210115038A KR102490003B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115052A KR102484625B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115060A KR102484652B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자 및 이의 제조방법, 산화 세륨 입자를 포함하는 화학적 기계적 연마 슬러리 조성물의 제조방법
KR1020210115043A KR102487301B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115057A KR102484641B1 (ko) 2020-08-31 2021-08-30 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115040A KR102484573B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115037A KR102484570B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115039A KR102484572B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115056A KR102484637B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115047A KR102484583B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115059A KR102484649B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자 및 이의 제조방법, 산화 세륨 입자를 포함하는 화학적 기계적 연마 슬러리 조성물의 제조방법
KR1020210115055A KR102484635B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115044A KR102484578B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220187579A KR20230006442A (ko) 2020-08-31 2022-12-28 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220187576A KR20230008009A (ko) 2020-08-31 2022-12-28 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220187575A KR20230006441A (ko) 2020-08-31 2022-12-28 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220187572A KR20230008673A (ko) 2020-08-31 2022-12-28 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220187578A KR20230008677A (ko) 2020-08-31 2022-12-28 산화 세륨 입자 및 이의 제조방법, 산화 세륨 입자를 포함하는 화학적 기계적 연마 슬러리 조성물의 제조방법
KR1020220187577A KR20230008676A (ko) 2020-08-31 2022-12-28 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220187574A KR20230008675A (ko) 2020-08-31 2022-12-28 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220187573A KR20230008674A (ko) 2020-08-31 2022-12-28 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220189124A KR20230010026A (ko) 2020-08-31 2022-12-29 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220189128A KR20230010030A (ko) 2020-08-31 2022-12-29 산화 세륨 입자 및 이의 제조방법, 산화 세륨 입자를 포함하는 화학적 기계적 연마 슬러리 조성물의 제조방법
KR1020220189126A KR20230010028A (ko) 2020-08-31 2022-12-29 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220189125A KR20230010027A (ko) 2020-08-31 2022-12-29 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220189129A KR20230008010A (ko) 2020-08-31 2022-12-29 산화 세륨 입자 및 이의 제조방법, 산화 세륨 입자를 포함하는 화학적 기계적 연마 슬러리 조성물의 제조방법
KR1020220189127A KR20230010029A (ko) 2020-08-31 2022-12-29 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220189122A KR20230010024A (ko) 2020-08-31 2022-12-29 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220189130A KR20230004422A (ko) 2020-08-31 2022-12-29 산화 세륨 입자 및 이의 제조방법, 산화 세륨 입자를 포함하는 화학적 기계적 연마 슬러리 조성물의 제조방법
KR1020220189123A KR20230010025A (ko) 2020-08-31 2022-12-29 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220189121A KR20230006443A (ko) 2020-08-31 2022-12-29 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법

Family Applications Before (5)

Application Number Title Priority Date Filing Date
KR1020210115046A KR102487303B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115054A KR102484634B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115042A KR102484576B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115062A KR102484654B1 (ko) 2020-08-31 2021-08-30 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115061A KR102484653B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자 및 이의 제조방법, 산화 세륨 입자를 포함하는 화학적 기계적 연마 슬러리 조성물의 제조방법

Family Applications After (34)

Application Number Title Priority Date Filing Date
KR1020210115041A KR102490006B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115045A KR102484582B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115058A KR102484643B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자 및 이의 제조방법, 산화 세륨 입자를 포함하는 화학적 기계적 연마 슬러리 조성물의 제조방법
KR1020210115038A KR102490003B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115052A KR102484625B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115060A KR102484652B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자 및 이의 제조방법, 산화 세륨 입자를 포함하는 화학적 기계적 연마 슬러리 조성물의 제조방법
KR1020210115043A KR102487301B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115057A KR102484641B1 (ko) 2020-08-31 2021-08-30 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115040A KR102484573B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115037A KR102484570B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115039A KR102484572B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115056A KR102484637B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115047A KR102484583B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115059A KR102484649B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자 및 이의 제조방법, 산화 세륨 입자를 포함하는 화학적 기계적 연마 슬러리 조성물의 제조방법
KR1020210115055A KR102484635B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020210115044A KR102484578B1 (ko) 2020-08-31 2021-08-30 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220187579A KR20230006442A (ko) 2020-08-31 2022-12-28 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220187576A KR20230008009A (ko) 2020-08-31 2022-12-28 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220187575A KR20230006441A (ko) 2020-08-31 2022-12-28 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220187572A KR20230008673A (ko) 2020-08-31 2022-12-28 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220187578A KR20230008677A (ko) 2020-08-31 2022-12-28 산화 세륨 입자 및 이의 제조방법, 산화 세륨 입자를 포함하는 화학적 기계적 연마 슬러리 조성물의 제조방법
KR1020220187577A KR20230008676A (ko) 2020-08-31 2022-12-28 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220187574A KR20230008675A (ko) 2020-08-31 2022-12-28 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220187573A KR20230008674A (ko) 2020-08-31 2022-12-28 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220189124A KR20230010026A (ko) 2020-08-31 2022-12-29 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220189128A KR20230010030A (ko) 2020-08-31 2022-12-29 산화 세륨 입자 및 이의 제조방법, 산화 세륨 입자를 포함하는 화학적 기계적 연마 슬러리 조성물의 제조방법
KR1020220189126A KR20230010028A (ko) 2020-08-31 2022-12-29 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220189125A KR20230010027A (ko) 2020-08-31 2022-12-29 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220189129A KR20230008010A (ko) 2020-08-31 2022-12-29 산화 세륨 입자 및 이의 제조방법, 산화 세륨 입자를 포함하는 화학적 기계적 연마 슬러리 조성물의 제조방법
KR1020220189127A KR20230010029A (ko) 2020-08-31 2022-12-29 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220189122A KR20230010024A (ko) 2020-08-31 2022-12-29 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220189130A KR20230004422A (ko) 2020-08-31 2022-12-29 산화 세륨 입자 및 이의 제조방법, 산화 세륨 입자를 포함하는 화학적 기계적 연마 슬러리 조성물의 제조방법
KR1020220189123A KR20230010025A (ko) 2020-08-31 2022-12-29 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR1020220189121A KR20230006443A (ko) 2020-08-31 2022-12-29 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법

Country Status (5)

Country Link
US (1) US20230348753A1 (ko)
JP (1) JP2023539508A (ko)
KR (40) KR102487303B1 (ko)
TW (5) TW202400519A (ko)
WO (1) WO2022045856A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933301B (zh) * 2022-05-18 2024-04-09 广东东岛新能源股份有限公司 一种储能用长寿命人造石墨负极材料及其制备方法与应用
WO2024080833A1 (ko) * 2022-10-13 2024-04-18 솔브레인 주식회사 화학적 기계적 연마용 슬러리 조성물 및 그 제조방법
KR20240062238A (ko) * 2022-10-28 2024-05-09 솔브레인 주식회사 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR20240062237A (ko) * 2022-10-28 2024-05-09 솔브레인 주식회사 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR20240062241A (ko) * 2022-10-28 2024-05-09 솔브레인 주식회사 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170003147A (ko) * 2015-06-30 2017-01-09 유비머트리얼즈주식회사 연마 입자, 연마 슬러리 및 연마 입자의 제조 방법
KR20170004462A (ko) * 2015-07-02 2017-01-11 주식회사 케이씨텍 Sti 연마용 슬러리 조성물

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962343A (en) * 1996-07-30 1999-10-05 Nissan Chemical Industries, Ltd. Process for producing crystalline ceric oxide particles and abrasive
KR100599327B1 (ko) * 2004-03-12 2006-07-19 주식회사 케이씨텍 Cmp용 슬러리 및 그의 제조법
JP4951218B2 (ja) 2004-07-15 2012-06-13 三星電子株式会社 酸化セリウム研磨粒子及び該研磨粒子を含む組成物
KR101050136B1 (ko) * 2006-11-20 2011-07-19 주식회사 엘지화학 유기용매를 이용한 산화세륨 분말의 제조방법 및 상기분말을 포함하는cmp슬러리
JP5475642B2 (ja) 2007-05-03 2014-04-16 エルジー・ケム・リミテッド 研磨材用酸化セリウム粉末及びこれを含むcmpスラリー
CN101550318B (zh) * 2008-04-03 2012-11-14 北京有色金属研究总院 一种含Ce3+的稀土抛光粉及其制备方法
KR100873945B1 (ko) 2008-07-16 2008-12-12 (주) 뉴웰 미세 산화세륨 분말 그 제조 방법 및 이를 포함하는 씨엠피슬러리
KR101184734B1 (ko) * 2009-09-17 2012-09-20 주식회사 엘지화학 산화세륨 나노분말의 제조방법
KR101443468B1 (ko) * 2010-03-12 2014-09-22 히타치가세이가부시끼가이샤 슬러리, 연마액 세트, 연마액 및 이것들을 이용한 기판의 연마 방법
KR101512359B1 (ko) * 2012-04-16 2015-04-15 (주)디오 콜로이드 산화세륨 제조방법
JP6493207B2 (ja) 2013-06-27 2019-04-03 コニカミノルタ株式会社 酸化セリウム研磨材の製造方法
US9281210B2 (en) * 2013-10-10 2016-03-08 Cabot Microelectronics Corporation Wet-process ceria compositions for polishing substrates, and methods related thereto
KR102628333B1 (ko) * 2015-09-09 2024-01-22 가부시끼가이샤 레조낙 연마액, 연마액 세트 및 기체의 연마 방법
WO2018179061A1 (ja) * 2017-03-27 2018-10-04 日立化成株式会社 研磨液、研磨液セット及び研磨方法
US11572490B2 (en) * 2018-03-22 2023-02-07 Showa Denko Materials Co., Ltd. Polishing liquid, polishing liquid set, and polishing method
JP7056728B2 (ja) * 2018-03-22 2022-04-19 昭和電工マテリアルズ株式会社 研磨液、研磨液セット及び研磨方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170003147A (ko) * 2015-06-30 2017-01-09 유비머트리얼즈주식회사 연마 입자, 연마 슬러리 및 연마 입자의 제조 방법
KR20170004462A (ko) * 2015-07-02 2017-01-11 주식회사 케이씨텍 Sti 연마용 슬러리 조성물

Also Published As

Publication number Publication date
WO2022045856A1 (ko) 2022-03-03
KR20220029492A (ko) 2022-03-08
KR102484576B1 (ko) 2023-01-05
KR102484625B1 (ko) 2023-01-06
KR102490006B9 (ko) 2024-08-30
KR20230008673A (ko) 2023-01-16
KR102484635B1 (ko) 2023-01-04
KR20220029494A (ko) 2022-03-08
KR102484583B1 (ko) 2023-01-05
KR20220029501A (ko) 2022-03-08
TW202348557A (zh) 2023-12-16
KR102487303B1 (ko) 2023-01-13
TW202400520A (zh) 2024-01-01
KR20220029497A (ko) 2022-03-08
KR102484582B1 (ko) 2023-01-05
KR102484570B1 (ko) 2023-01-05
KR20220029508A (ko) 2022-03-08
KR102484637B1 (ko) 2023-01-04
KR20230008009A (ko) 2023-01-13
KR20220029499A (ko) 2022-03-08
KR20230010024A (ko) 2023-01-17
KR20230008010A (ko) 2023-01-13
KR20220029500A (ko) 2022-03-08
KR20220029491A (ko) 2022-03-08
TW202400519A (zh) 2024-01-01
TWI817188B (zh) 2023-10-01
KR20220029502A (ko) 2022-03-08
KR102487303B9 (ko) 2024-08-30
WO2022045856A9 (ko) 2023-08-17
KR102487301B9 (ko) 2024-08-30
KR102484643B1 (ko) 2023-01-04
KR20230008674A (ko) 2023-01-16
KR20230010029A (ko) 2023-01-17
KR20220029509A (ko) 2022-03-08
KR102484649B1 (ko) 2023-01-04
KR20230010027A (ko) 2023-01-17
KR102484652B1 (ko) 2023-01-04
KR102484572B1 (ko) 2023-01-05
KR20230010030A (ko) 2023-01-17
KR20230006443A (ko) 2023-01-10
KR20220029510A (ko) 2022-03-08
TW202212262A (zh) 2022-04-01
KR20230010026A (ko) 2023-01-17
KR102484573B9 (ko) 2024-09-26
KR102484653B1 (ko) 2023-01-04
KR102484641B1 (ko) 2023-01-04
KR20230010028A (ko) 2023-01-17
KR20220029507A (ko) 2022-03-08
KR102484578B1 (ko) 2023-01-05
KR20230006441A (ko) 2023-01-10
KR20220029495A (ko) 2022-03-08
KR20220029505A (ko) 2022-03-08
KR20220029504A (ko) 2022-03-08
KR20220029511A (ko) 2022-03-08
KR102490003B1 (ko) 2023-01-18
KR102484573B1 (ko) 2023-01-05
KR102484632B1 (ko) 2023-01-04
TW202346210A (zh) 2023-12-01
KR102487301B1 (ko) 2023-01-13
KR20230006442A (ko) 2023-01-10
KR102490006B1 (ko) 2023-01-18
KR20220029498A (ko) 2022-03-08
KR20220029506A (ko) 2022-03-08
KR20230008675A (ko) 2023-01-16
KR102484634B1 (ko) 2023-01-04
KR20230008677A (ko) 2023-01-16
KR20220029493A (ko) 2022-03-08
KR102490003B9 (ko) 2024-08-30
US20230348753A1 (en) 2023-11-02
KR20230004422A (ko) 2023-01-06
KR20230010025A (ko) 2023-01-17
KR20230008676A (ko) 2023-01-16
KR20220029512A (ko) 2022-03-08
KR20220029496A (ko) 2022-03-08
JP2023539508A (ja) 2023-09-14
KR102484654B1 (ko) 2023-01-04

Similar Documents

Publication Publication Date Title
KR102484632B1 (ko) 산화 세륨 입자, 이를 포함하는 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR20220133773A (ko) 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
KR20240062242A (ko) 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)