WO2022045244A1 - 舵システム - Google Patents

舵システム Download PDF

Info

Publication number
WO2022045244A1
WO2022045244A1 PCT/JP2021/031345 JP2021031345W WO2022045244A1 WO 2022045244 A1 WO2022045244 A1 WO 2022045244A1 JP 2021031345 W JP2021031345 W JP 2021031345W WO 2022045244 A1 WO2022045244 A1 WO 2022045244A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction force
control unit
control
steering
unit
Prior art date
Application number
PCT/JP2021/031345
Other languages
English (en)
French (fr)
Inventor
来実 田附
弘貴 富澤
尚志 亀谷
利光 坂井
正治 山下
憲治 柴田
洋介 山下
晋太郎 高山
俊博 高橋
祐志 藤田
健一 安部
雄吾 長嶋
Original Assignee
株式会社デンソー
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 株式会社ジェイテクト filed Critical 株式会社デンソー
Priority to EP21861666.2A priority Critical patent/EP4206063A4/en
Priority to CN202180052086.0A priority patent/CN115943104A/zh
Publication of WO2022045244A1 publication Critical patent/WO2022045244A1/ja
Priority to US18/172,995 priority patent/US20230202553A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/003Backup systems, e.g. for manual steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures

Definitions

  • the present disclosure relates to a rudder system including a plurality of motor units and control units.
  • the first reaction force ECU that controls the reaction force to the first steering reaction force motor the second reaction force ECU that controls the reaction force to the second steering reaction force motor, and the first steering control to perform the steering control to the first steering motor.
  • a steering system including a steering ECU and a second steering ECU that controls steering for the second steering motor (see Patent Document 1).
  • one of the two steering reaction force motors fails (does not operate correctly or does not operate at all), control is continued by one normal steering reaction force motor, and two steerings are steered. If one of the motors fails, control is continued by one normal steering motor.
  • the present disclosure has been made to solve the above-mentioned problems, and the main purpose thereof is a rudder mechanism when cooperative control cannot be performed in a rudder system including a plurality of motor units and control units. Is to continue driving properly.
  • the first means for solving the above problems is A first system including a first motor unit for driving the steering mechanism and a first control unit for controlling the first motor unit, and a second system for controlling the second motor unit and the second motor unit for driving the steering mechanism.
  • the first control unit and the second control unit perform coordinated control for controlling the first motor unit and the second motor unit to cooperate with each other.
  • the cooperative control cannot be performed, one of the control of the first motor unit by the first control unit and the control of the second motor unit by the second control unit is continued, and the other is continued. Stop control of.
  • the rudder system includes a first system and a second system.
  • the first system includes a first motor unit that drives the rudder mechanism and a first control unit that controls the first motor unit.
  • the second system includes a second motor unit that drives the rudder mechanism and a second control unit that controls the second motor unit.
  • the first control unit and the second control unit perform coordinated control for controlling the first motor unit and the second motor unit so as to cooperate with each other. Therefore, it is possible to suppress the vibration of the rudder mechanism and the lock of the rudder mechanism.
  • the vibration of the rudder mechanism and the control of the rudder mechanism are continued. Locking may occur.
  • one of the control of the first motor unit by the first control unit and the control of the second motor unit by the second control unit is continued, and the other control is continued. To stop. Therefore, it is possible to suppress the vibration of the rudder mechanism and the lock of the rudder mechanism. Therefore, when the cooperative control cannot be performed, the driving of the steering mechanism can be continued appropriately.
  • the rudder mechanism may vibrate or the rudder mechanism may be locked.
  • the first control unit can continue the control of the first motor unit, and the second control unit can continue the control of the second motor unit, and the said.
  • cooperative control cannot be performed, one of the control of the first motor unit by the first control unit and the control of the second motor unit by the second control unit is continued, and the other is continued. Stop control. Therefore, it is possible to suppress the vibration of the rudder mechanism and the lock of the rudder mechanism when there is a possibility that the vibration of the rudder mechanism or the lock of the rudder mechanism may occur.
  • the control of the first motor unit can be continued, and the second control unit can perform the coordinated control.
  • the control of the second motor unit is stopped on condition that the control of the first motor unit by the first control unit can be continued.
  • the first control unit continues the control of the first motor unit when the cooperative control cannot be performed. Therefore, even if the cooperative control cannot be performed, the driving of the steering mechanism can be continued.
  • the second control unit stops the control of the second motor unit on condition that the cooperative control cannot be performed and the control of the first motor unit by the first control unit can be continued. That is, if the second control unit has not determined that the control of the first motor unit by the first control unit can be continued even if the cooperative control cannot be performed, the control of the second motor unit is performed. Do not stop. Therefore, when the cooperative control cannot be performed, it is possible to prevent the first control unit from controlling the first motor unit and the second control unit from controlling the second motor unit. can.
  • the first control unit and the second control unit transmit and receive information necessary for the coordinated control to each other by communication, and when the coordinated control cannot be performed, the first control is performed. This is a case where the unit and the second control unit cannot communicate with each other.
  • the first control unit and the second control unit transmit and receive information necessary for cooperative control by communication with each other. If the first control unit and the second control unit cannot communicate with each other, the cooperative control cannot be performed, and whether or not the other party continues to control the first control unit and the second control unit. I don't know. In this respect, when the first control unit and the second control unit cannot communicate with each other, it is possible to continue driving the rudder mechanism while suppressing vibration of the rudder mechanism.
  • the fifth means includes a voltage detection unit that detects the voltage supplied to the first motor unit, and the second control unit is conditioned on the condition that the voltage detected by the voltage detection unit exceeds the threshold value. , It is determined that the control of the first motor unit by the first control unit can be continued.
  • the voltage detection unit detects the voltage supplied to the first motor unit.
  • the second control unit determines that the control of the first motor unit by the first control unit can be continued on condition that the voltage detected by the voltage detection unit exceeds the threshold value. Therefore, even when the first control unit and the second control unit cannot communicate with each other, it is possible to determine whether or not the control of the first motor unit by the first control unit can be continued.
  • the sixth means includes a disconnection detecting unit for detecting the disconnection of the wiring connecting the first control unit to the GND, and the second control unit detects that the wiring is not disconnected by the disconnection detecting unit. Further, it is determined that the control of the first motor unit by the first control unit can be continued under the further condition.
  • the disconnection detection unit detects the disconnection of the wiring connecting the first control unit to GND.
  • the second control unit further determines that the control of the first motor unit by the first control unit can be continued on the condition that the wiring is not broken by the disconnection detection unit. Therefore, even if the first control unit and the second control unit cannot communicate with each other, it is more carefully determined whether or not the control of the first motor unit by the first control unit can be continued. be able to.
  • the first control unit and the second control unit transmit and receive information necessary for the coordinated control to each other by communication, and the first control unit is the first control unit and the second control unit.
  • the control unit can communicate with the control unit and the cooperative control cannot be performed, the control of the first motor unit is continued, and the control of the second motor unit by the second control unit is stopped. ..
  • the first control unit and the second control unit may be able to communicate.
  • the first control unit continues to control the first motor unit when the first control unit and the second control unit can communicate with each other and cannot perform coordinated control. , The control of the second motor unit by the second control unit is stopped. Even with such a configuration, when there is a possibility that vibration of the rudder mechanism or the like may occur, it is possible to continue driving the rudder mechanism while suppressing vibration or the like of the rudder mechanism.
  • the eighth means includes a reaction force mechanism as the steering mechanism and a steering mechanism
  • the first system includes a first reaction force motor unit as the first motor unit for driving the reaction force mechanism and the steering mechanism.
  • the first reaction force control unit as the first control unit that controls the first reaction force motor unit, the first steering motor unit as the first motor unit that drives the steering mechanism, and the first rotation.
  • the second system includes a first steering control unit as the first control unit that controls the steering motor unit, and the second system is a second reaction force motor as the second motor unit that drives the reaction force mechanism.
  • the second reaction force control unit as the second control unit that controls the unit and the second reaction force motor unit, the second steering motor unit as the second motor unit that drives the steering mechanism, and the above.
  • the second control unit that controls the second steering motor unit includes a second steering control unit.
  • the reaction force mechanism and the steering mechanism can exert the effects of the first to seventh means, respectively. ..
  • the first reaction force control unit and the second reaction force control unit transmit and receive information necessary for the coordinated control to each other by communication, and the first steering control unit and the second turn control unit and the second turn.
  • the rudder control unit transmits and receives information necessary for the coordinated control to each other by communication, and the first reaction force control unit and the second reaction force control unit communicate with the first reaction force control unit and the second reaction force.
  • communication with the control unit is not possible, communication is performed via the first steering control unit and the second steering control unit, and the first steering control unit and the second steering control unit are used for communication.
  • the first reaction force control unit and the second reaction force control unit communicate with each other.
  • the first reaction force control unit and the second reaction force control unit transmit and receive information necessary for coordinated control to each other by communication, and send and receive information to the first reaction force motor unit and the second reaction force motor unit. Can perform cooperative control. Further, the first steering control unit and the second steering control unit transmit and receive information necessary for coordinated control to each other by communication, and coordinate control is performed for the first steering motor unit and the second steering motor unit. It can be carried out.
  • the first reaction force control unit and the second reaction force control unit are the first steering control unit and the second steering control unit when the first reaction force control unit and the second reaction force control unit cannot communicate with each other. Communicate via the control unit. For this reason, the first reaction force control unit and the second reaction force control unit can transmit and receive the cause of the inability to communicate, confirm that a system other than the own system can continue control, and so on. Coordinated control can be performed on the first reaction force motor unit and the second reaction force motor unit via the first steering control unit and the second steering control unit. Further, the same control can be performed in the first steering control unit and the second steering control unit.
  • the first reaction force control unit and the second reaction force control unit are described when the first reaction force control unit and the second reaction force control unit cannot communicate with each other.
  • the cooperative control by the first steering control unit and the second steering control unit is stopped, and the first steering control unit and the second steering control unit are the first steering control unit and the second steering control unit.
  • the cooperative control by the first reaction force control unit and the second reaction force control unit is stopped. According to such a configuration, if one of the coordinated control by the first reaction force control unit and the second reaction force control unit and the coordinated control by the first steering control unit and the second steering control unit cannot be performed, the other is coordinated. Control can also be stopped. Therefore, it is possible to prevent the cooperative control from becoming complicated.
  • FIG. 1 is a schematic diagram of a steering system.
  • the steering system 100 (steering system) is a so-called steer-by-wire type steering system. That is, the steering system 100 includes a non-connected portion, which is a portion that is not mechanically connected, in the transmission path that transmits the operating force of the driver.
  • the steering system 100 includes a reaction force mechanism 10 that receives steering by the driver, and a steering mechanism 20 that steers the wheels 16 according to the steering amount received by the reaction force mechanism 10.
  • the reaction force mechanism 10 (rudder mechanism) includes a steering wheel 11 that is rotated by the driver's operation, a steering shaft 12 that rotates with the rotation of the steering wheel 11, a first reaction force motor 13A, and a second reaction force motor 13B. It is equipped with a reaction force reducer 14.
  • the first reaction force motor 13A first reaction force motor section, first motor section
  • the second reaction force motor 13B second reaction force motor section, second motor section
  • the reaction force reducer 14 reduces the rotational speeds of the first reaction force motor 13A and the second reaction force motor 13B and transmits them to the steering shaft 12.
  • the first reaction force motor 13A and the second reaction force motor 13B are AC motors that are rotationally driven by AC power. Further, the first reaction force motor 13A and the second reaction force motor 13B are connected to the power supply via the first reaction force inverter 15A and the second reaction force inverter 15B, respectively.
  • the first reaction force inverter 15A and the second reaction force inverter 15B convert the DC power from the power source into AC power, and supply power to the first reaction force motor 13A and the second reaction force motor 13B, respectively.
  • a pinion shaft 12a is provided at the tip of the steering shaft 12 via a clutch 12b.
  • the clutch 12b is in the disengaged state, and the rotation of the steering shaft 12 is not transmitted to the pinion shaft 12a.
  • the clutch 12b is engaged when the steering system 100 is abnormal, the rotation of the steering shaft 12 is transmitted to the pinion shaft 12a.
  • the steering mechanism 20 (steering mechanism) includes a rack shaft 21 that changes the direction of the wheels 16, a first steering motor 22A, a second steering motor 22B, and a steering speed reducer 23. Wheels 16 are connected to both ends of the rack shaft 21 via tie rods.
  • the first steering motor 22A (first steering motor unit, first motor unit) and the second steering motor 22B (second steering motor unit, second motor unit) are racked via the steering speed reducer 23. It is connected to the shaft 21 and applies a steering force which is a force for changing the direction of the wheels 16 to the rack shaft 21.
  • the steering speed reducer 23 reduces the rotational speeds of the first steering motor 22A and the second steering motor 22B and transmits them to the rack shaft 21.
  • the first steering motor 22A and the second steering motor 22B are connected to a power source via the first steering inverter 24A and the second steering inverter 24B, respectively.
  • the first steering inverter 24A and the second steering inverter 24B convert DC power from the power source into AC power, and supply power to the first steering motor 22A and the second steering motor 22B, respectively.
  • the pinion shaft 12a meshes with the rack shaft 21, and in the disengaged state of the clutch 12b, the steering shaft 12 is not mechanically connected to the rack shaft 21. Therefore, the rotation of the steering shaft 12 accompanying the operation of the steering 11 by the driver is not converted into the linear motion of the rack shaft 21.
  • the steering shaft 12 in the connected state of the clutch 12b, the steering shaft 12 is mechanically connected to the rack shaft 21. Therefore, the rotational motion of the steering shaft 12 accompanying the operation of the steering wheel 11 by the driver is converted into the linear motion of the rack shaft 21.
  • the steering shaft 12 of the reaction force mechanism 10 is provided with a torque sensor 17 that detects the steering torque Th according to the steering of the driver.
  • the torque sensor 17 outputs the detected steering torque Th to the first reaction force ECU (Electronic Control Unit) 40A, the second reaction force ECU 40B, the first steering ECU 45A, and the second steering ECU 45B.
  • the rack shaft 21 of the steering mechanism 20 is provided with a rack stroke sensor 25 that detects a displacement amount X, which is a linear movement amount of the rack shaft 21.
  • the rack stroke sensor 25 outputs the detected displacement amount X to at least one of the first reaction force ECU 40A, the second reaction force ECU 40B, the first steering ECU 45A, and the second steering ECU 45B.
  • the steering system 100 includes a first reaction force ECU 40A and a second reaction force ECU 40B, and a first steering ECU 45A and a second steering ECU 45B.
  • the first reaction force ECU 40A, the second reaction force ECU 40B, the first steering ECU 45A, and the second steering ECU 45B each include a central processing unit (CPU), a memory (ROM, RAM), an input / output interface, etc. (not shown). There is. By executing the program stored in the memory by the CPU, the power supply to the first reaction force motor 13A, the second reaction force motor 13B, the first steering motor 22A, and the second steering motor 22B is controlled. ..
  • the first reaction force motor 13A, the first reaction force inverter 15A, the first reaction force ECU 40A, the first steering motor 22A, the first steering inverter 24A, and the first steering ECU 45A constitute the first system.
  • the second reaction force motor 13B, the second reaction force inverter 15B, the second reaction force ECU 40B, the second steering motor 22B, the second steering inverter 24B, and the second steering ECU 45B constitute the second system. ..
  • the first reaction force ECU 40A (first reaction force control unit, first control unit) and the second reaction force ECU 40B (second reaction force control unit, second control unit) rotate the steering shaft 12 as the driver steers.
  • Reaction force torque which is a command value of torque for the first reaction force motor 13A and the second reaction force motor 13B, based on the reaction force side absolute angle Y1 indicating the amount (absolute angle), the steering torque Th, and the vehicle speed Vc. Calculate the command value. Then, based on this reaction force torque command value, the operation signals for operating the first reaction force inverter 15A and the second reaction force inverter 15B are calculated respectively.
  • the first reaction force ECU 40A and the second reaction force ECU 40B communicate with each other to transmit and receive information to each other.
  • the first reaction force ECU 40A and the second reaction force ECU 40B perform coordinated control for controlling the first reaction force motor 13A and the second reaction force motor 13B so as to cooperate with each other.
  • the first reaction force ECU 40A and the second reaction force ECU 40B transmit and receive the current detection value and the current command value of the first reaction force motor 13A and the second reaction force motor 13B to each other by communication, and the first reaction force motor 13A ,
  • the second reaction force motor 13B is driven in synchronization with each other.
  • the first reaction force ECU 40A and the second reaction force ECU 40B transmit and receive information necessary for cooperative control by communication with each other.
  • the first reaction force ECU 40A and the second reaction force ECU 40B have one as a master and the other as a slave, and coordinate the slaves in response to a command from the master.
  • the absolute angle is a value indicating a rotation angle when the angle of the steering 11 when the vehicle is driven straight ahead is set as a neutral position, and the wheel 16 is steered from this neutral position to either the left or right steering limit angle.
  • the first steering ECU 45A (first steering control unit, first control unit) and the second steering ECU 45B (second steering control unit, second control unit) control the amount of rotation (absolute angle) of the steering shaft 12.
  • a steering torque command that is a command value of torque for the first steering motor 22A and the second steering motor 22B based on the steering side absolute angle Y2, the displacement amount X, the steering torque Th, and the vehicle speed Vc. Calculate the value. Then, based on the steering torque command value, the operation signals for operating the first steering inverter 24A and the second steering inverter 24B are calculated respectively.
  • the first steering ECU 45A and the second steering ECU 45B communicate with each other to transmit and receive information to each other.
  • the first steering ECU 45A and the second steering ECU 45B perform coordinated control for controlling the first steering motor 22A and the second steering motor 22B to coordinate with each other.
  • the first rudder ECU 45A and the second rudder ECU 45B transmit and receive the current detection value and the current command value of the first rudder motor 22A and the second rudder motor 22B to each other by communication, and the first rudder motor 22A.
  • the second steering motor 22B is driven in synchronization. That is, the first steering ECU 45A and the second steering ECU 45B transmit and receive information necessary for cooperative control by communication with each other.
  • the first reaction force ECU 40A and the first steering ECU 45A communicate with each other and transmit / receive information to each other.
  • the first reaction force ECU 40A and the first steering ECU 45A are the first reaction force ECU 40A, the first reaction force motor 13A, the first reaction force inverter 15A, the first steering ECU 45A, the first steering motor 22A, and the first. 1 Information on the state of the reaction force inverter 15A and information on their failures and abnormalities are transmitted and received to each other.
  • the first reaction force ECU 40A transmits / receives information to / from the second reaction force ECU 40B
  • the first steering ECU 45A transmits / receives information to / from the second steering ECU 45B.
  • the first reaction force ECU 40A and the first steering ECU 45A also transmit and receive information acquired by these transmissions and receptions.
  • the second reaction force ECU 40B and the second steering ECU 45B communicate with each other and transmit / receive information to each other.
  • the second reaction force ECU 40B and the second steering ECU 45B are the second reaction force ECU 40B, the second reaction force motor 13B, the second reaction force inverter 15B, the second steering ECU 45B, the second steering motor 22B, and the second. 2 Information on the state of the reaction force inverter 15B and information on their failures and abnormalities are transmitted and received to each other.
  • the second reaction force ECU 40B transmits and receives information to and from the first reaction force ECU 40A
  • the second steering ECU 45B transmits and receives information to and from the first steering ECU 45A.
  • the second reaction force ECU 40B and the second steering ECU 45B also transmit and receive information acquired by these transmissions and receptions.
  • first reaction force ECU 40A and the second reaction force ECU 40B can communicate with each other via the first steering ECU 45A and the second steering ECU 45B. Further, the first steering ECU 45A and the second steering ECU 45B can communicate with each other via the first reaction force ECU 40A and the second reaction force ECU 40B.
  • the reaction force voltage sensor 41 detects the voltage supplied to the first reaction force motor 13A.
  • the reaction force disconnection sensor 42 detects the disconnection of the wiring connecting the first reaction force ECU 40A to GND (ground).
  • the reaction force voltage sensor 41 and the reaction force disconnection sensor 42 output the detection result to the second reaction force ECU 40B.
  • the steering voltage sensor 46 detects the voltage supplied to the first steering motor 22A.
  • the steering disconnection sensor 47 detects the disconnection of the wiring connecting the first steering ECU 45A to GND (ground).
  • the steering voltage sensor 46 and the steering disconnection sensor 47 output the detection result to the second steering ECU 45B.
  • the vibration of the reaction force mechanism 10 when it becomes impossible to perform coordinated control with respect to the first reaction force motor 13A and the second reaction force motor 13B.
  • the reaction force mechanism 10 may be locked.
  • a failure is a condition in which it does not work properly or does not work at all.
  • cooperative control for example, when the first reaction force ECU 40A and the second reaction force ECU 40B cannot communicate with each other, the first reaction force ECU 40A and the second reaction force ECU 40B cannot synchronize with each other. There are cases.
  • the first reaction force ECU 40A can continue to control the first reaction force motor 13A
  • the second reaction force ECU 40B can continue to control the second reaction force motor 13B
  • the first reaction force motor 13A can continue to control.
  • the cooperative control for the second reaction force motor 13B cannot be performed, the control of the first reaction force motor 13A by the first reaction force ECU 40A is continued, and the control of the second reaction force motor 13B by the second reaction force ECU 40B is continued.
  • the first reaction force ECU 40A can continue to control the first reaction force motor 13A
  • the second reaction force ECU 40B can continue to control the second reaction force motor 13B
  • the first reaction force motor 13A can continue to control.
  • the first reaction force ECU 40A continues to control the first reaction force motor 13A when it cannot communicate with the second reaction force ECU 40B.
  • the control of the first reaction force motor 13A by the first reaction force ECU 40A can be continued.
  • the control of the second reaction force motor 13B is stopped.
  • the second reaction force ECU 40B has a first reaction force on condition that the voltage detected by the reaction force voltage sensor 41 exceeds the threshold value and the reaction force disconnection sensor 42 detects that the wiring is not disconnected. It is determined that the control of the first reaction force motor 13A by the ECU 40A can be continued.
  • the cooperative control by the first steering ECU 45A and the second steering ECU 45B is stopped. Specifically, when the first reaction force ECU 40A cannot communicate with the second reaction force ECU 40B, it communicates with the first steering ECU 45A and cooperates with the first steering motor 22A and the second steering motor 22B. The first steering ECU 45A is instructed to stop the control. Further, when the second reaction force ECU 40B cannot communicate with the first reaction force ECU 40A, it communicates with the second steering ECU 45B and controls the first steering motor 22A and the second steering motor 22B in a coordinated manner. Is instructed to stop the second steering ECU 45B.
  • first reaction force ECU 40A and the second reaction force ECU 40B are coordinated by the first steering ECU 45A and the second steering ECU 45B when the first reaction force ECU 40A and the second reaction force ECU 40B cannot communicate with each other. Stop control.
  • first reaction force ECU 40A and the second reaction force ECU 40B pass through the first steering ECU 45A and the second steering ECU 45B when the first reaction force ECU 40A and the second reaction force ECU 40B cannot communicate with each other. It is also possible to communicate with each other. Then, the first reaction force ECU 40A and the second reaction force ECU 40B transmit and receive the cause (abnormal content) that the first reaction force ECU 40A and the second reaction force ECU 40B cannot communicate with each other, or are different from themselves. You may want to make sure that the grid can continue to control.
  • the reaction force mechanism 10 Vibration and locking of the reaction force mechanism 10 may occur.
  • one of the control of the first reaction force motor 13A by the first reaction force ECU 40A and the control of the second reaction force motor 13B by the second reaction force ECU 40B is performed. Continue and stop control of the other. Therefore, it is possible to suppress the vibration of the reaction force mechanism 10 and the lock of the reaction force mechanism 10. Therefore, when the cooperative control cannot be performed, the drive of the reaction force mechanism 10 can be appropriately continued.
  • the first reaction force ECU 40A can continue to control the first reaction force motor 13A
  • the second reaction force ECU 40B can continue to control the second reaction force motor 13B, and cannot perform coordinated control.
  • one of the control of the first reaction force motor 13A by the first reaction force ECU 40A and the control of the second reaction force motor 13B by the second reaction force ECU 40B is continued and the control of the other is stopped. Therefore, when there is a possibility that the reaction force mechanism 10 vibrates or the reaction force mechanism 10 is locked, it is possible to suppress the vibration of the reaction force mechanism 10 or the lock of the reaction force mechanism 10.
  • the first reaction force ECU 40A continues the control of the first reaction force motor 13A when the cooperative control cannot be performed. Therefore, even if the cooperative control cannot be performed, the drive of the reaction force mechanism 10 can be continued.
  • the second reaction force motor 13B is subject to the condition that the second reaction force ECU 40B cannot perform coordinated control and the control of the first reaction force motor 13A by the first reaction force ECU 40A can be continued. Stop control of. That is, if the second reaction force ECU 40B does not determine that the control of the first reaction force motor 13A by the first reaction force ECU 40A can be continued even if the cooperative control cannot be performed, the second reaction force ECU 40B does not. The control of the force motor 13B is not stopped. Therefore, when the cooperative control cannot be performed, neither the control of the first reaction force motor 13A by the first reaction force ECU 40A nor the control of the second reaction force motor 13B by the second reaction force ECU 40B is performed. It can be suppressed.
  • the first reaction force ECU 40A and the second reaction force ECU 40B transmit and receive information necessary for cooperative control by communication with each other. If the first reaction force ECU 40A and the second reaction force ECU 40B cannot communicate with each other, the cooperative control cannot be performed, and the other party continues to control the first reaction force ECU 40A and the second reaction force ECU 40B. I don't know if I'm doing it or not. In this respect, when the first reaction force ECU 40A and the second reaction force ECU 40B cannot communicate with each other, it is possible to continue driving the reaction force mechanism 10 while suppressing vibration of the reaction force mechanism 10.
  • the reaction force voltage sensor 41 detects the voltage supplied to the first reaction force motor 13A.
  • the second reaction force ECU 40B determines that the control of the first reaction force motor 13A by the first reaction force ECU 40A can be continued on condition that the voltage detected by the reaction force voltage sensor 41 exceeds the threshold value. Therefore, even if the first reaction force ECU 40A and the second reaction force ECU 40B cannot communicate with each other, it is determined whether or not the control of the first reaction force motor 13A by the first reaction force ECU 40A can be continued. can do.
  • the reaction force disconnection sensor 42 detects the disconnection of the wiring connecting the first reaction force ECU 40A to GND.
  • the second reaction force ECU 40B determines that the control of the first reaction force motor 13A by the first reaction force ECU 40A can be continued on the condition that the wiring is not broken by the reaction force disconnection sensor 42. do. Therefore, even if the first reaction force ECU 40A and the second reaction force ECU 40B cannot communicate with each other, whether or not the control of the first reaction force motor 13A by the first reaction force ECU 40A can be continued. It can be judged more carefully.
  • the first reaction force ECU 40A and the second reaction force ECU 40B can transmit and receive information necessary for coordinated control to each other by communication, and perform coordinated control to the first reaction force motor 13A and the second reaction force motor 13B. can. Further, the first steering ECU 45A and the second steering ECU 45B transmit and receive information necessary for coordinated control to each other by communication, and perform coordinated control to the first steering motor 22A and the second steering motor 22B. Can be done.
  • the first reaction force ECU 40A and the second reaction force ECU 40B pass through the first steering ECU 45A and the second steering ECU 45B when the first reaction force ECU 40A and the second reaction force ECU 40B cannot communicate with each other. Communicate. Therefore, it is possible to send and receive the cause of the inability to communicate with the first reaction force ECU 40A and the second reaction force ECU 40B, and to confirm that the control can be continued by a system other than itself. .. Further, the same control can be performed in the first steering ECU 45A and the second steering ECU 45B.
  • the first reaction force ECU 40A and the second reaction force ECU 40B are cooperatively controlled by the first steering ECU 45A and the second steering ECU 45B when the first reaction force ECU 40A and the second reaction force ECU 40B cannot communicate with each other.
  • the first steering ECU 45A and the second steering ECU 45B stop the first steering ECU 45A and the second steering ECU 45B when the first steering ECU 45A and the second steering ECU 45B cannot communicate with each other. Stops cooperative control by. According to such a configuration, if one of the coordinated control by the first reaction force ECU 40A and the second reaction force ECU 40B and the coordinated control by the first steering ECU 45A and the second steering ECU 45B cannot be performed, the other coordinated control is also stopped. be able to. Therefore, it is possible to prevent the cooperative control from becoming complicated.
  • the reaction force disconnection sensor 42 can be omitted.
  • the second reaction force ECU 40B can continue to control the first reaction force motor 13A by the first reaction force ECU 40A on condition that the voltage detected by the reaction force voltage sensor 41 exceeds the threshold value. You just have to judge.
  • reaction force voltage sensor 41 the second reaction force ECU 40B can continue to control the first reaction force motor 13A by the first reaction force ECU 40A, provided that the wiring is not broken by the reaction force disconnection sensor 42. Should be determined.
  • the first reaction force ECU 40A and the second reaction force ECU 40B may be able to communicate with each other. Therefore, the first reaction force ECU 40A continues the control of the first reaction force motor 13A when the first reaction force ECU 40A and the second reaction force ECU 40B can communicate with each other and cannot perform coordinated control. Then, the control of the second reaction force motor 13B by the second reaction force ECU 40B may be stopped. Even with such a configuration, when there is a possibility that vibration or the like of the reaction force mechanism 10 may occur, it is possible to continue driving the reaction force mechanism 10 while suppressing the vibration or the like of the reaction force mechanism 10.
  • the first reaction force ECU 40A and the second reaction force ECU 40B pass through the first steering ECU 45A and the second steering ECU 45B when the first reaction force ECU 40A and the second reaction force ECU 40B cannot communicate with each other. Coordinated control can also be performed on the first reaction force motor 13A and the second reaction force motor 13B.
  • the first reaction force ECU 40A and the second reaction force ECU 40B are cooperatively controlled by the first steering ECU 45A and the second steering ECU 45B when the first reaction force ECU 40A and the second reaction force ECU 40B cannot communicate with each other. You may only continue.
  • the first steering ECU 45A and the second steering ECU 45B are based on the first reaction force ECU 40A and the second reaction force ECU 40B when the first steering ECU 45A and the second steering ECU 45B cannot communicate with each other. Only cooperative control may be continued.
  • the first reaction force ECU 40A and the second reaction force ECU 40B pass through the first steering ECU 45A and the second steering ECU 45B when the first reaction force ECU 40A and the second reaction force ECU 40B cannot communicate with each other. It is also possible to omit communication.
  • the first steering ECU 45A and the second steering ECU 45B use the first reaction force ECU 40A and the second reaction force ECU 40B when the first steering ECU 45A and the second steering ECU 45B cannot communicate with each other. It is also possible to omit communicating via.
  • the reaction force mechanism 10 may be driven by two systems, and the steering mechanism 20 may be driven by one system.
  • the control of the above embodiment may be applied only to the reaction force mechanism 10.
  • only the steering mechanism 20 may be driven by two systems, and the reaction force mechanism 10 may be driven by one system.
  • the control of the above embodiment may be applied only to the steering mechanism 20.
  • the control of the first reaction force motor 13A by the first reaction force ECU 40A may be stopped and the control of the second reaction force motor 13B by the second reaction force ECU 40B may be continued.
  • the clutch 12b may be omitted so that the rotation of the steering shaft 12 is not transmitted to the pinion shaft 12a.
  • a plurality of torque sensors 17 and rack stroke sensors 25 may be provided, and each control may be performed based on the detection results of each sensor of the multiplex system (redundant system). According to such a configuration, each control can be continued even if a failure or the like occurs in a part of the sensor.
  • the control is continued by one system.
  • the output torque may be increased more than when the cooperative control is performed. According to such a configuration, it is possible to suppress a decrease in the output torque of the entire steering system 100 when switching to a state in which control by only one system is continued.
  • the above embodiment can be applied not only to a rudder system including two motors but also to a rudder system that performs coordinated control on two windings (motor unit) of a double winding motor.
  • the reaction force mechanism 10 including the double winding motor including the first winding and the second winding instead of the reaction force mechanism 10 including the first reaction force motor 13A and the second reaction force motor 13B.
  • the above embodiment can also be applied.
  • the steering mechanism 20 including the double winding motor including the first winding and the second winding instead of the steering mechanism 20 including the first steering motor 22A and the second steering motor 22B.
  • the above embodiment can also be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

ステア・バイ・ワイヤ型舵システム(100)は、舵機構(10、20)を駆動する第1モータ部(13A、22A)及び第1モータ部を制御する第1制御部(40A、45A)を備える第1系統と、舵機構を駆動する第2モータ部(13B、22B)及び第2モータ部を制御する第2制御部(40B、45B)を備える第2系統と、を備える。第1制御部及び第2制御部は、第1モータ部及び第2モータ部を協調させるように制御する協調制御を行い、協調制御を行うことができない場合に、第1制御部による第1モータ部の制御、及び第2制御部による第2モータ部の制御のうち、一方の制御を続行し、他方の制御を停止する。

Description

舵システム 関連出願の相互参照
 本出願は、2020年8月27日に出願された日本出願番号2020-143535号に基づくもので、ここにその記載内容を援用する。
 本開示は、複数系統のモータ部及び制御部を備える舵システムに関する。
 従来、第1操舵反力モータに対する反力制御を行う第1反力ECU、第2操舵反力モータに対する反力制御を行う第2反力ECU、第1転舵モータに対する転舵制御を行う第1転舵ECU、及び第2転舵モータに対する転舵制御を行う第2転舵ECUを備える舵システムがある(特許文献1参照)。特許文献1に記載の舵システムでは、2つの操舵反力モータの1つが失陥(正しく動作しないか、全く動作しない)すると正常な1つの操舵反力モータにより制御を続行し、2つの転舵モータの1つが失陥すると正常な1つの転舵モータにより制御を続行している。
特許第4848717号公報
 ところで、特許文献1に記載の舵システムでは、反力制御において2つの操舵反力モータ(モータ部)に対する協調制御を行い、転舵制御において2つの転舵モータ(モータ部)に対する協調制御を行っている。モータが失陥していなくても協調制御を行うことができなくなった場合に、モータにより駆動される舵機構の振動や、舵機構のロックが発生するおそれがあることに、本願開示者は着目した。この点、特許文献1に記載の舵システムは、2つのモータのうち1つが失陥した場合に制御を続行することができるものの、協調制御を行うことができなくなった場合に、舵機構の駆動を適切に続行することができないおそれがある。
 なお、2つのモータを備える舵システムに限らず、2重巻線モータの2つの巻線(モータ部)に対して協調制御を行う場合も、上記実情は概ね共通している。
 本開示は、上記課題を解決するためになされたものであり、その主たる目的は、複数系統のモータ部及び制御部を備える舵システムにおいて、協調制御を行うことができなくなった場合に、舵機構の駆動を適切に続行することにある。
 上記課題を解決するための第1の手段は、
 舵機構を駆動する第1モータ部及び前記第1モータ部を制御する第1制御部を備える第1系統と、前記舵機構を駆動する第2モータ部及び前記第2モータ部を制御する第2制御部を備える第2系統と、を備えるステア・バイ・ワイヤ型舵システムであって、
 前記第1制御部及び前記第2制御部は、前記第1モータ部及び第2モータ部を協調させるように制御する協調制御を行い、
 前記協調制御を行うことができない場合に、前記第1制御部による前記第1モータ部の制御、及び前記第2制御部による前記第2モータ部の制御のうち、一方の制御を続行し、他方の制御を停止する。
 上記構成によれば、舵システムは、第1系統と第2系統とを備えている。第1系統は、舵機構を駆動する第1モータ部、及び第1モータ部を制御する第1制御部を備えている。第2系統は、舵機構を駆動する第2モータ部、及び第2モータ部を制御する第2制御部を備えている。第1制御部及び第2制御部は、第1モータ部及び第2モータ部を協調させるように制御する協調制御を行う。このため、舵機構の振動や、舵機構のロックが発生することを抑制することができる。
 ここで、協調制御を行うことができない場合に、第1制御部による第1モータ部の制御、及び第2制御部による第2モータ部の制御を続行すると、舵機構の振動や、舵機構のロックが発生するおそれがある。この点、協調制御を行うことができない場合に、第1制御部による第1モータ部の制御、及び第2制御部による第2モータ部の制御のうち、一方の制御を続行し、他方の制御を停止する。このため、舵機構の振動や、舵機構のロックが発生することを抑制することができる。したがって、協調制御を行うことができなくなった場合に、舵機構の駆動を適切に続行することができる。
 第1制御部は第1モータ部の制御を続行可能であり、且つ第2制御部は第2モータ部の制御を続行可能であっても、協調制御を行うことができない場合がある。この場合に、第1制御部による第1モータ部の制御、及び第2制御部による第2モータ部の制御を続行すると、舵機構の振動や、舵機構のロックが発生するおそれがある。
 この点、第2の手段では、前記第1制御部は前記第1モータ部の制御を続行可能であり、且つ前記第2制御部は前記第2モータ部の制御を続行可能であり、且つ前記協調制御を行うことができない場合に、前記第1制御部による前記第1モータ部の制御、及び前記第2制御部による前記第2モータ部の制御のうち、一方の制御を続行し、他方の制御を停止する。したがって、舵機構の振動や、舵機構のロックが発生するおそれがある場合に、舵機構の振動や、舵機構のロックが発生することを抑制することができる。
 第3の手段では、前記第1制御部は、前記協調制御を行うことができない場合に、前記第1モータ部の制御を続行し、前記第2制御部は、前記協調制御を行うことができず、且つ前記第1制御部による前記第1モータ部の制御が続行可能であると判定したことを条件として、前記第2モータ部の制御を停止する。
 上記構成によれば、第1制御部は、協調制御を行うことができない場合に、第1モータ部の制御を続行する。このため、協調制御を行うことができない場合であっても、舵機構の駆動を続行することができる。第2制御部は、協調制御を行うことができず、且つ第1制御部による第1モータ部の制御が続行可能であると判定したことを条件として、第2モータ部の制御を停止する。すなわち、第2制御部は、協調制御を行うことができなくなっても、第1制御部による第1モータ部の制御が続行可能であると判定していない場合は、第2モータ部の制御を停止しない。したがって、協調制御を行うことができなくなった場合に、第1制御部による第1モータ部の制御、及び第2制御部による第2モータ部の制御のいずれも行われなくなることを抑制することができる。
 第4の手段では、前記第1制御部と前記第2制御部とは、通信により前記協調制御に必要な情報を互いに送受信し、前記協調制御を行うことができない場合とは、前記第1制御部と前記第2制御部とが通信を行うことができない場合である。
 上記構成によれば、第1制御部と第2制御部とは、通信により協調制御に必要な情報を互いに送受信する。第1制御部と第2制御部とが通信を行うことができない場合は、協調制御を行うことができなくなるとともに、第1制御部と第2制御部とは相手が制御を続行しているか否か分からなくなる。この点、第1制御部と第2制御部とが通信を行うことができない場合に、舵機構の振動等を抑制しつつ舵機構の駆動を続行することができる。
 第5の手段では、前記第1モータ部に供給される電圧を検出する電圧検出部を備え、前記第2制御部は、前記電圧検出部により検出された電圧が閾値を超えたことを条件として、前記第1制御部による前記第1モータ部の制御が続行可能であると判定する。
 上記構成によれば、電圧検出部は、第1モータ部に供給される電圧を検出する。第2制御部は、電圧検出部により検出された電圧が閾値を超えたことを条件として、第1制御部による第1モータ部の制御が続行可能であると判定する。したがって、第1制御部と第2制御部とが通信を行うことができない場合であっても、第1制御部による第1モータ部の制御が続行可能であるか否か判定することができる。
 第6の手段では、前記第1制御部をGNDに接続する配線の断線を検出する断線検出部を備え、前記第2制御部は、前記断線検出部により前記配線が断線していないと検出されたことをさらに条件として、前記第1制御部による前記第1モータ部の制御が続行可能であると判定する。
 上記構成によれば、断線検出部は、第1制御部をGNDに接続する配線の断線を検出する。第2制御部は、断線検出部により配線が断線していないと検出されたことをさらに条件として、第1制御部による第1モータ部の制御が続行可能であると判定する。したがって、第1制御部と第2制御部とが通信を行うことができない場合であっても、第1制御部による第1モータ部の制御が続行可能であるか否かをより慎重に判定することができる。
 第7の手段では、前記第1制御部と前記第2制御部とは、通信により前記協調制御に必要な情報を互いに送受信し、前記第1制御部は、前記第1制御部と前記第2制御部とが通信を行うことができ、且つ前記協調制御を行うことができない場合に、前記第1モータ部の制御を続行し、前記第2制御部による前記第2モータ部の制御を停止させる。
 協調制御を行うことができない場合でも、第1制御部と第2制御部とが通信を行うことができる場合がある。
 上記構成によれば、第1制御部は、第1制御部と第2制御部とが通信を行うことができ、且つ協調制御を行うことができない場合に、第1モータ部の制御を続行し、第2制御部による第2モータ部の制御を停止させる。こうした構成によっても、舵機構の振動等が発生するおそれがある場合に、舵機構の振動等を抑制しつつ舵機構の駆動を続行することができる。
 第8の手段では、前記舵機構としての反力機構と転舵機構とを含み、前記第1系統は、前記反力機構を駆動する前記第1モータ部としての第1反力モータ部及び前記第1反力モータ部を制御する前記第1制御部しての第1反力制御部と、前記転舵機構を駆動する前記第1モータ部としての第1転舵モータ部及び前記第1転舵モータ部を制御する前記第1制御部しての第1転舵制御部と、を含み、前記第2系統は、前記反力機構を駆動する前記第2モータ部としての第2反力モータ部及び前記第2反力モータ部を制御する前記第2制御部しての第2反力制御部と、前記転舵機構を駆動する前記第2モータ部としての第2転舵モータ部及び前記第2転舵モータ部を制御する前記第2制御部として第2転舵制御部と、を含む。
 上記構成によれば、舵機構としての反力機構と転舵機構とを含む舵システムにおいて、反力機構と転舵機構とでそれぞれ第1~第7の手段の作用効果を奏することきができる。
 第9の手段では、前記第1反力制御部と前記第2反力制御部とは、通信により前記協調制御に必要な情報を互いに送受信し、前記第1転舵制御部と前記第2転舵制御部とは、通信により前記協調制御に必要な情報を互いに送受信し、前記第1反力制御部及び前記第2反力制御部は、前記第1反力制御部と前記第2反力制御部とが通信を行うことができない場合に、前記第1転舵制御部及び前記第2転舵制御部を介して通信を行い、前記第1転舵制御部及び前記第2転舵制御部は、前記第1転舵制御部と前記第2転舵制御部とが通信を行うことができない場合に、前記第1反力制御部及び前記第2反力制御部を介して通信を行う。
 上記構成によれば、第1反力制御部と第2反力制御部とは、通信により協調制御に必要な情報を互いに送受信し、第1反力モータ部及び第2反力モータ部に対して協調制御を行うことができる。また、第1転舵制御部と第2転舵制御部とは、通信により協調制御に必要な情報を互いに送受信し、第1転舵モータ部及び第2転舵モータ部に対して協調制御を行うことができる。
 第1反力制御部及び第2反力制御部は、第1反力制御部と第2反力制御部とが通信を行うことができない場合に、第1転舵制御部及び第2転舵制御部を介して通信を行う。このため、第1反力制御部及び第2反力制御部で、通信を行うことができない原因を送受信したり、自身とは別の系統が制御を続行可能であることを確認したり、第1転舵制御部及び第2転舵制御部を介して第1反力モータ部及び第2反力モータ部に対して協調制御を行ったりすることができる。また、第1転舵制御部及び第2転舵制御部においても、同様の制御を行うこときができる。
 第10の手段では、前記第1反力制御部及び前記第2反力制御部は、前記第1反力制御部と前記第2反力制御部とが通信を行うことができない場合に、前記第1転舵制御部及び前記第2転舵制御部による前記協調制御を停止させ、前記第1転舵制御部及び前記第2転舵制御部は、前記第1転舵制御部と前記第2転舵制御部とが通信を行うことができない場合に、前記第1反力制御部及び前記第2反力制御部による前記協調制御を停止させる。こうした構成によれば、第1反力制御部及び第2反力制御部による協調制御、及び第1転舵制御部及び第2転舵制御部による協調制御の一方ができない場合は、他方の協調制御も停止させることができる。したがって、協調制御が複雑になること抑制することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、ステアリングシステムの模式図である。
 以下、車両に搭載したステアリングシステムに具現化した一実施形態について、図面を参照しつつ説明する。
 図1に示すように、ステアリングシステム100(舵システム)は、いわゆるステア・バイ・ワイヤ型のステアリングシステムである。すなわち、ステアリングシステム100は、運転者の操作力を伝達する伝達経路に、機械的に接続されていない部分である非接続部分を含んでいる。ステアリングシステム100は、運転者の操舵を受け付ける反力機構10と、反力機構10が受け付けた操舵量に応じて、車輪16を転舵する転舵機構20とを備えている。
 反力機構10(舵機構)は、運転者の操作により回転するステアリング11と、ステアリング11の回転に伴って回転するステアリングシャフト12と、第1反力モータ13A,第2反力モータ13Bと、反力減速機14と、を備えている。第1反力モータ13A(第1反力モータ部、第1モータ部),第2反力モータ13B(第2反力モータ部、第2モータ部)は、反力減速機14を介してステアリングシャフト12に連結されており、運転者のステアリング11の操作に応じた反力を付与する。反力減速機14は、第1反力モータ13A,第2反力モータ13Bの回転速度を減速して、ステアリングシャフト12へ伝達する。第1反力モータ13A,第2反力モータ13Bは、交流電力により回転駆動する交流モータである。また、第1反力モータ13A,第2反力モータ13Bは、それぞれ第1反力インバータ15A,第2反力インバータ15Bを介して電源に接続されている。第1反力インバータ15A,第2反力インバータ15Bは、電源からの直流電力を交流電力に変換し、それぞれ第1反力モータ13A,第2反力モータ13Bに給電する。
 ステアリングシャフト12の先端には、クラッチ12bを介してピニオン軸12aが設けられている。車両の通常の運転時ではクラッチ12bは切断状態となっており、ステアリングシャフト12の回転はピニオン軸12aへ伝達されない。例えば、ステアリングシステム100の異常時等にクラッチ12bが接続状態となることにより、ステアリングシャフト12の回転は、ピニオン軸12aへ伝達される。
 転舵機構20(舵機構)は、車輪16の向きを変化させるラック軸21と、第1転舵モータ22A,第2転舵モータ22Bと、転舵減速機23と、を備えている。ラック軸21の両端には、タイロッドを介して車輪16が連結されている。第1転舵モータ22A(第1転舵モータ部、第1モータ部),第2転舵モータ22B(第2転舵モータ部、第2モータ部)は、転舵減速機23を介してラック軸21に連結されており、ラック軸21に対して車輪16の向きを変化させる力である転舵力を付与する。転舵減速機23は、第1転舵モータ22A,第2転舵モータ22Bの回転速度を減速して、ラック軸21へ伝達する。第1転舵モータ22A,第2転舵モータ22Bは、それぞれ第1転舵インバータ24A,第2転舵インバータ24Bを介して電源に接続されている。第1転舵インバータ24A,第2転舵インバータ24Bは、電源からの直流電力を交流電力に変換し、それぞれ第1転舵モータ22A,第2転舵モータ22Bに給電する。
 ピニオン軸12aは、ラック軸21に噛み合っており、クラッチ12bの切断状態では、ステアリングシャフト12はラック軸21に機械的に連結されていない状態である。そのため、運転者のステアリング11の操作に伴うステアリングシャフト12の回転は、ラック軸21の直線運動に変換されない。一方、クラッチ12bの接続状態では、ステアリングシャフト12はラック軸21に機械的に連結された状態である。そのため、運転者のステアリング11の操作に伴うステアリングシャフト12の回転運動は、ラック軸21の直線運動に変換される。
 反力機構10のステアリングシャフト12には、運転者の操舵に応じた操舵トルクThを検知するトルクセンサ17が設けられている。トルクセンサ17は、検知した操舵トルクThを、第1反力ECU(Electronic Control Unit)40A,第2反力ECU40B,第1転舵ECU45A,第2転舵ECU45Bへ出力する。また、転舵機構20のラック軸21には、ラック軸21の直線移動量である変位量Xを検知するラックストロークセンサ25が設けられている。ラックストロークセンサ25は、検知した変位量Xを、第1反力ECU40A,第2反力ECU40B,第1転舵ECU45A,第2転舵ECU45Bの少なくとも1つへ出力する。
 ステアリングシステム100は、第1反力ECU40A,第2反力ECU40Bと、第1転舵ECU45A,第2転舵ECU45Bとを備えている。第1反力ECU40A,第2反力ECU40B、及び第1転舵ECU45A,第2転舵ECU45Bは、図示しない中央処理装置(CPU)、メモリ(ROM,RAM)、入出力インターフェース等をそれぞれ備えている。メモリに記憶されたプログラムをCPUが実行することにより、第1反力モータ13A,第2反力モータ13B、及び第1転舵モータ22A,第2転舵モータ22Bへの電力供給が制御される。なお、第1反力モータ13A、第1反力インバータ15A、第1反力ECU40A、第1転舵モータ22A、第1転舵インバータ24A、及び第1転舵ECU45Aは、第1系統を構成している。第2反力モータ13B、第2反力インバータ15B、第2反力ECU40B、第2転舵モータ22B、第2転舵インバータ24B、及び第2転舵ECU45Bは、第2系統を構成している。
 第1反力ECU40A(第1反力制御部、第1制御部),第2反力ECU40B(第2反力制御部、第2制御部)は、運転者の操舵に伴うステアリングシャフト12の回転量(絶対角)を示す反力側絶対角Y1と、操舵トルクThと、車速Vcとに基づいて、第1反力モータ13A,第2反力モータ13Bに対するトルクの指令値である反力トルク指令値を演算する。そして、この反力トルク指令値に基づいて、第1反力インバータ15A,第2反力インバータ15Bを操作するための操作信号をそれぞれ演算する。
 この際に、第1反力ECU40Aと第2反力ECU40Bとは通信を行い、互いに情報を送受信する。第1反力ECU40A,第2反力ECU40Bは、第1反力モータ13A及び第2反力モータ13Bを協調させるように制御する協調制御を行う。詳しくは、第1反力ECU40A,第2反力ECU40Bは、通信により第1反力モータ13A,第2反力モータ13Bの電流検出値や電流指令値を互いに送受信し、第1反力モータ13A,第2反力モータ13Bを同期させて駆動する。すなわち、第1反力ECU40Aと第2反力ECU40Bとは、通信により協調制御に必要な情報を互いに送受信する。例えば、第1反力ECU40A,第2反力ECU40Bは、一方をマスターとして他方をスレーブとし、マスターからの指令に応じてスレーブを協調させる。絶対角は、車両を直進走行させる場合のステアリング11の角度を中立位置とし、この中立位置から、車輪16を左右のいずれかの操舵限界角度まで操舵する場合の回転角度を示す値である。
 第1転舵ECU45A(第1転舵制御部、第1制御部),第2転舵ECU45B(第2転舵制御部、第2制御部)は、ステアリングシャフト12の回転量(絶対角)を示す転舵側絶対角Y2と、変位量Xと、操舵トルクThと、車速Vcとに基づいて、第1転舵モータ22A,第2転舵モータ22Bに対するトルクの指令値である転舵トルク指令値を演算する。そして、この転舵トルク指令値に基づいて、第1転舵インバータ24A,第2転舵インバータ24Bを操作するための操作信号をそれぞれ演算する。
 この際に、第1転舵ECU45Aと第2転舵ECU45Bとは通信を行い、互いに情報を送受信する。第1転舵ECU45A,第2転舵ECU45Bは、第1転舵モータ22A及び第2転舵モータ22Bを協調させるように制御する協調制御を行う。詳しくは、第1転舵ECU45A,第2転舵ECU45Bは、通信により第1転舵モータ22A,第2転舵モータ22Bの電流検出値や電流指令値を互いに送受信し、第1転舵モータ22A,第2転舵モータ22Bを同期させて駆動する。すなわち、第1転舵ECU45Aと第2転舵ECU45Bとは、通信により協調制御に必要な情報を互いに送受信する。
 また、第1反力ECU40Aと第1転舵ECU45Aとは通信を行い、互いに情報を送受信する。例えば、第1反力ECU40Aと第1転舵ECU45Aとは、第1反力ECU40A,第1反力モータ13A,第1反力インバータ15A,第1転舵ECU45A,第1転舵モータ22A,第1反力インバータ15Aの状態に関する情報、それらの故障や異常に関する情報を互いに送受信する。さらに、第1反力ECU40Aは第2反力ECU40Bと互いに情報を送受信しており、第1転舵ECU45Aは第2転舵ECU45Bと互いに情報を送受信している。第1反力ECU40Aと第1転舵ECU45Aとは、これらの送受信で取得した情報も互いに送受信する。
 同様に、第2反力ECU40Bと第2転舵ECU45Bとは通信を行い、互いに情報を送受信する。例えば、第2反力ECU40Bと第2転舵ECU45Bとは、第2反力ECU40B,第2反力モータ13B,第2反力インバータ15B,第2転舵ECU45B,第2転舵モータ22B,第2反力インバータ15Bの状態に関する情報、それらの故障や異常に関する情報を互いに送受信する。さらに、第2反力ECU40Bは第1反力ECU40Aと互いに情報を送受信しており、第2転舵ECU45Bは第1転舵ECU45Aと互いに情報を送受信している。第2反力ECU40Bと第2転舵ECU45Bとは、これらの送受信で取得した情報も互いに送受信する。
 すなわち、第1反力ECU40A及び第2反力ECU40Bは、第1転舵ECU45A及び第2転舵ECU45Bを介して通信を行うことができる。また、第1転舵ECU45A及び第2転舵ECU45Bは、第1反力ECU40A及び第2反力ECU40Bを介して通信を行うことができる。
 反力電圧センサ41(電圧検出部)は、第1反力モータ13Aに供給される電圧を検出する。反力断線センサ42(断線検出部)は、第1反力ECU40AをGND(グランド)に接続する配線の断線を検出する。反力電圧センサ41及び反力断線センサ42は、検出結果を第2反力ECU40Bへ出力する。転舵電圧センサ46(電圧検出部)は、第1転舵モータ22Aに供給される電圧を検出する。転舵断線センサ47(断線検出部)は、第1転舵ECU45AをGND(グランド)に接続する配線の断線を検出する。転舵電圧センサ46及び転舵断線センサ47は、検出結果を第2転舵ECU45Bへ出力する。
 ところで、例えば第2反力モータ13Bが失陥していなくても、第1反力モータ13A及び第2反力モータ13Bに対する協調制御を行うことができなくなった場合に、反力機構10の振動や、反力機構10のロックが発生するおそれがある。失陥とは、正しく動作しないか、全く動作しない状態である。協調制御を行うことができない場合として、例えば第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができない場合、第1反力ECU40Aと第2反力ECU40Bが同期を取ることができない場合等がある。
 そこで、第1反力ECU40Aは第1反力モータ13Aの制御を続行可能であり、且つ第2反力ECU40Bは第2反力モータ13Bの制御を続行可能であり、且つ第1反力モータ13A及び第2反力モータ13Bに対する協調制御を行うことができない場合に、第1反力ECU40Aによる第1反力モータ13Aの制御を続行し、第2反力ECU40Bによる第2反力モータ13Bの制御を停止する。すなわち、第1反力ECU40Aは第1反力モータ13Aの制御を続行可能であり、且つ第2反力ECU40Bは第2反力モータ13Bの制御を続行可能であり、且つ第1反力モータ13A及び第2反力モータ13Bに対する協調制御を行うことができない場合に、第1反力ECU40Aによる第1反力モータ13Aの制御、及び第2反力ECU40Bによる第2反力モータ13Bの制御のうち、一方の制御を続行し、他方の制御を停止する。
 例えば、第1反力ECU40Aは、第2反力ECU40Bと通信を行うことができない場合に、第1反力モータ13Aの制御を続行する。一方、第2反力ECU40Bは、第1反力ECU40Aと通信を行うことができず、且つ第1反力ECU40Aによる第1反力モータ13Aの制御が続行可能であると判定したことを条件として、第2反力モータ13Bの制御を停止する。第2反力ECU40Bは、反力電圧センサ41により検出された電圧が閾値を超えたこと、且つ反力断線センサ42により配線が断線していないと検出されたことを条件として、第1反力ECU40Aによる第1反力モータ13Aの制御が続行可能であると判定する。すなわち、第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができない場合は、第1反力ECU40Aによる第1反力モータ13Aの制御を続行し、第2反力ECU40Bによる第2反力モータ13Bの制御を停止すると予め設定されている。
 さらに、第1反力ECU40Aは、第2反力ECU40Bと通信を行うことができない場合に、第1転舵ECU45A及び第2転舵ECU45Bによる協調制御を停止させる。詳しくは、第1反力ECU40Aは、第2反力ECU40Bと通信を行うことができない場合に、第1転舵ECU45Aと通信を行い、第1転舵モータ22A及び第2転舵モータ22Bに対する協調制御を停止するように第1転舵ECU45Aに指令する。また、第2反力ECU40Bは、第1反力ECU40Aと通信を行うことができない場合に、第2転舵ECU45Bと通信を行い、第1転舵モータ22A及び第2転舵モータ22Bに対する協調制御を停止するように第2転舵ECU45Bに指令する。すなわち、第1反力ECU40A及び第2反力ECU40Bは、第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができない場合に、第1転舵ECU45A及び第2転舵ECU45Bによる協調制御を停止させる。
 そして、第1転舵モータ22A及び第2転舵モータ22Bに対する協調制御を停止する場合は、第1転舵ECU45Aによる第1転舵モータ22Aの制御を続行し、第2転舵ECU45Bによる第2転舵モータ22Bの制御を停止する。
 また、第1反力ECU40A及び第2反力ECU40Bは、第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができない場合に、第1転舵ECU45A及び第2転舵ECU45Bを介して通信を行うこともできる。そして、第1反力ECU40A及び第2反力ECU40Bは、第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができない原因(異常内容)を互いに送受信したり、自身とは別の系統が制御を続行可能であることを確認したりしてもよい。
 上記では、第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができない場合を例に説明したが、第1転舵ECU45Aと第2転舵ECU45Bとが通信を行うことができない場合も、「反力」と「転舵」とを入れ替えて同様に制御を行う。
 以上詳述した本実施形態は、以下の利点を有する。
 ・協調制御を行うことができない場合に、第1反力ECU40Aによる第1反力モータ13Aの制御、及び第2反力ECU40Bによる第2反力モータ13Bの制御を続行すると、反力機構10の振動や、反力機構10のロックが発生するおそれがある。この点、協調制御を行うことができない場合に、第1反力ECU40Aによる第1反力モータ13Aの制御、及び第2反力ECU40Bによる第2反力モータ13Bの制御のうち、一方の制御を続行し、他方の制御を停止する。このため、反力機構10の振動や、反力機構10のロックが発生することを抑制することができる。したがって、協調制御を行うことができなくなった場合に、反力機構10の駆動を適切に続行することができる。
 ・第1反力ECU40Aは第1反力モータ13Aの制御を続行可能であり、且つ第2反力ECU40Bは第2反力モータ13Bの制御を続行可能であり、且つ協調制御を行うことができない場合に、第1反力ECU40Aによる第1反力モータ13Aの制御、及び第2反力ECU40Bによる第2反力モータ13Bの制御のうち、一方の制御を続行し、他方の制御を停止する。したがって、反力機構10の振動や、反力機構10のロックが発生するおそれがある場合に、反力機構10の振動や、反力機構10のロックが発生することを抑制することができる。
 ・第1反力ECU40Aは、協調制御を行うことができない場合に、第1反力モータ13Aの制御を続行する。このため、協調制御を行うことができない場合であっても、反力機構10の駆動を続行することができる。第2反力ECU40Bは、協調制御を行うことができず、且つ第1反力ECU40Aによる第1反力モータ13Aの制御が続行可能であると判定したことを条件として、第2反力モータ13Bの制御を停止する。すなわち、第2反力ECU40Bは、協調制御を行うことができなくなっても、第1反力ECU40Aによる第1反力モータ13Aの制御が続行可能であると判定していない場合は、第2反力モータ13Bの制御を停止しない。したがって、協調制御を行うことができなくなった場合に、第1反力ECU40Aによる第1反力モータ13Aの制御、及び第2反力ECU40Bによる第2反力モータ13Bの制御のいずれも行われなくなることを抑制することができる。
 ・第1反力ECU40Aと第2反力ECU40Bとは、通信により協調制御に必要な情報を互いに送受信する。第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができない場合は、協調制御を行うことができなくなるとともに、第1反力ECU40Aと第2反力ECU40Bとは相手が制御を続行しているか否か分からなくなる。この点、第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができない場合に、反力機構10の振動等を抑制しつつ反力機構10の駆動を続行することができる。
 ・反力電圧センサ41は、第1反力モータ13Aに供給される電圧を検出する。第2反力ECU40Bは、反力電圧センサ41により検出された電圧が閾値を超えたことを条件として、第1反力ECU40Aによる第1反力モータ13Aの制御が続行可能であると判定する。したがって、第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができない場合であっても、第1反力ECU40Aによる第1反力モータ13Aの制御が続行可能であるか否か判定することができる。
 ・反力断線センサ42は、第1反力ECU40AをGNDに接続する配線の断線を検出する。第2反力ECU40Bは、反力断線センサ42により配線が断線していないと検出されたことをさらに条件として、第1反力ECU40Aによる第1反力モータ13Aの制御が続行可能であると判定する。したがって、第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができない場合であっても、第1反力ECU40Aによる第1反力モータ13Aの制御が続行可能であるか否かをより慎重に判定することができる。
 ・第1反力ECU40Aと第2反力ECU40Bとは、通信により協調制御に必要な情報を互いに送受信し、第1反力モータ13A及び第2反力モータ13Bに対して協調制御を行うことができる。また、第1転舵ECU45Aと第2転舵ECU45Bとは、通信により協調制御に必要な情報を互いに送受信し、第1転舵モータ22A及び第2転舵モータ22Bに対して協調制御を行うことができる。
 ・第1反力ECU40A及び第2反力ECU40Bは、第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができない場合に、第1転舵ECU45A及び第2転舵ECU45Bを介して通信を行う。このため、第1反力ECU40A及び第2反力ECU40Bで、通信を行うことができない原因を送受信したり、自身とは別の系統が制御を続行可能であることを確認したりすることができる。また、第1転舵ECU45A及び第2転舵ECU45Bにおいても、同様の制御を行うことができる。
 ・第1反力ECU40A及び第2反力ECU40Bは、第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができない場合に、第1転舵ECU45A及び第2転舵ECU45Bによる協調制御を停止させ、第1転舵ECU45A及び第2転舵ECU45Bは、第1転舵ECU45Aと第2転舵ECU45Bとが通信を行うことができない場合に、第1反力ECU40A及び第2反力ECU40Bによる協調制御を停止させる。こうした構成によれば、第1反力ECU40A及び第2反力ECU40Bによる協調制御、及び第1転舵ECU45A及び第2転舵ECU45Bによる協調制御の一方ができない場合は、他方の協調制御も停止させることができる。したがって、協調制御が複雑になること抑制することができる。
 ・第1転舵ECU45Aと第2転舵ECU45Bとが通信を行うことができない場合も、「反力」と「転舵」とを入れ替えて同様に制御を行うことができる。
 なお、上記実施形態を、以下のように変更して実施することもできる。上記実施形態と同一の部分については、同一の符号を付すことにより説明を省略する。
 ・反力断線センサ42を省略することもできる。この場合、第2反力ECU40Bは、反力電圧センサ41により検出された電圧が閾値を超えたことを条件として、第1反力ECU40Aによる第1反力モータ13Aの制御が続行可能であると判定すればよい。
 ・反力電圧センサ41を省略することもできる。この場合、第2反力ECU40Bは、反力断線センサ42により配線が断線していないと検出されたことを条件として、第1反力ECU40Aによる第1反力モータ13Aの制御が続行可能であると判定すればよい。
 ・協調制御を行うことができない場合でも、第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができる場合がある。そこで、第1反力ECU40Aは、第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができ、且つ協調制御を行うことができない場合に、第1反力モータ13Aの制御を続行し、第2反力ECU40Bによる第2反力モータ13Bの制御を停止させてもよい。こうした構成によっても、反力機構10の振動等が発生するおそれがある場合に、反力機構10の振動等を抑制しつつ反力機構10の駆動を続行することができる。
 ・第1反力ECU40A及び第2反力ECU40Bは、第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができない場合に、第1転舵ECU45A及び第2転舵ECU45Bを介して第1反力モータ13A及び第2反力モータ13Bに対して協調制御を行うこともできる。
 ・第1反力ECU40A及び第2反力ECU40Bは、第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができない場合に、第1転舵ECU45A及び第2転舵ECU45Bによる協調制御のみを続行させてもよい。同様に、第1転舵ECU45A及び第2転舵ECU45Bは、第1転舵ECU45Aと第2転舵ECU45Bとが通信を行うことができない場合に、第1反力ECU40A及び第2反力ECU40Bによる協調制御のみを続行させてもよい。
 ・第1反力ECU40A及び第2反力ECU40Bは、第1反力ECU40Aと第2反力ECU40Bとが通信を行うことができない場合に、第1転舵ECU45A及び第2転舵ECU45Bを介して通信を行うことを省略することもできる。同様に、第1転舵ECU45A及び第2転舵ECU45Bは、第1転舵ECU45Aと第2転舵ECU45Bとが通信を行うことができない場合に、第1反力ECU40A及び第2反力ECU40Bを介して通信を行うことを省略することもできる。
 ・反力機構10のみが2系統により駆動され、転舵機構20は1系統により駆動されてもよい。この場合、反力機構10のみに上記実施形態の制御を適用すればよい。また、転舵機構20のみが2系統により駆動され、反力機構10は1系統により駆動されてもよい。この場合、転舵機構20のみに上記実施形態の制御を適用すればよい。
 ・協調制御を行うことができない場合に、第1反力ECU40Aによる第1反力モータ13Aの制御を停止し、第2反力ECU40Bによる第2反力モータ13Bの制御を続行してもよい。
 ・クラッチ12bを省略し、ステアリングシャフト12の回転がピニオン軸12aへ伝達されることがないようにしてもよい。
 ・トルクセンサ17、及びラックストロークセンサ25をそれぞれ複数備え、多重系(冗長系)の各センサの検出結果に基づいて各制御を行ってもよい。こうした構成によれば、センサの一部に故障等が生じた場合も各制御を続行することができる。
 ・第1系統及び第2系統により協調制御を行っている状態から、協調制御を行うことができなくなって一方の系統による制御のみを続行する状態に切り替える際に、制御を続行する一方の系統による出力トルクを、協調制御を行っていた時よりも増加させてもよい。こうした構成によれば、一方の系統による制御のみを続行する状態に切り替える際に、ステアリングシステム100全体の出力トルクが低下することを抑制することができる。
 ・2つのモータを備える舵システムに限らず、2重巻線モータの2つの巻線(モータ部)に対して協調制御を行う舵システムに対して、上記実施形態を適用することもできる。例えば、第1反力モータ13A及び第2反力モータ13Bを備える反力機構10に代えて、第1巻線及び第2巻線を含む2重巻線モータを備える反力機構10に対して、上記実施形態を適用することもできる。同様に、第1転舵モータ22A及び第2転舵モータ22Bを備える転舵機構20に代えて、第1巻線及び第2巻線を含む2重巻線モータを備える転舵機構20に対して、上記実施形態を適用することもできる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (10)

  1.  舵機構(10、20)を駆動する第1モータ部(13A、22A)及び前記第1モータ部を制御する第1制御部(40A、45A)を備える第1系統と、前記舵機構を駆動する第2モータ部(13B、22B)及び前記第2モータ部を制御する第2制御部(40B、45B)を備える第2系統と、を備えるステア・バイ・ワイヤ型舵システム(100)であって、
     前記第1制御部及び前記第2制御部は、前記第1モータ部及び第2モータ部を協調させるように制御する協調制御を行い、
     前記協調制御を行うことができない場合に、前記第1制御部による前記第1モータ部の制御、及び前記第2制御部による前記第2モータ部の制御のうち、一方の制御を続行し、他方の制御を停止する、舵システム。
  2.  前記第1制御部は前記第1モータ部の制御を続行可能であり、且つ前記第2制御部は前記第2モータ部の制御を続行可能であり、且つ前記協調制御を行うことができない場合に、前記第1制御部による前記第1モータ部の制御、及び前記第2制御部による前記第2モータ部の制御のうち、一方の制御を続行し、他方の制御を停止する、請求項1に記載の舵システム。
  3.  前記第1制御部は、前記協調制御を行うことができない場合に、前記第1モータ部の制御を続行し、
     前記第2制御部は、前記協調制御を行うことができず、且つ前記第1制御部による前記第1モータ部の制御が続行可能であると判定したことを条件として、前記第2モータ部の制御を停止する、請求項1又は2に記載の舵システム。
  4.  前記第1制御部と前記第2制御部とは、通信により前記協調制御に必要な情報を互いに送受信し、
     前記協調制御を行うことができない場合とは、前記第1制御部と前記第2制御部とが通信を行うことができない場合である、請求項3に記載の舵システム。
  5.  前記第1モータ部に供給される電圧を検出する電圧検出部(41、46)を備え、
     前記第2制御部は、前記電圧検出部により検出された電圧が閾値を超えたことを条件として、前記第1制御部による前記第1モータ部の制御が続行可能であると判定する、請求項3又は4に記載の舵システム。
  6.  前記第1制御部をGNDに接続する配線の断線を検出する断線検出部(42、47)を備え、
     前記第2制御部は、前記断線検出部により前記配線が断線していないと検出されたことをさらに条件として、前記第1制御部による前記第1モータ部の制御が続行可能であると判定する、請求項5に記載の舵システム。
  7.  前記第1制御部と前記第2制御部とは、通信により前記協調制御に必要な情報を互いに送受信し、
     前記第1制御部は、前記第1制御部と前記第2制御部とが通信を行うことができ、且つ前記協調制御を行うことができない場合に、前記第1モータ部の制御を続行し、前記第2制御部による前記第2モータ部の制御を停止させる、請求項1又は2に記載の舵システム。
  8.  前記舵機構としての反力機構(10)と転舵機構(20)とを含み、
     前記第1系統は、前記反力機構を駆動する前記第1モータ部としての第1反力モータ部(13A)及び前記第1反力モータ部を制御する前記第1制御部しての第1反力制御部(40A)と、前記転舵機構を駆動する前記第1モータ部としての第1転舵モータ部(22A)及び前記第1転舵モータ部を制御する前記第1制御部しての第1転舵制御部(45A)と、を含み、
     前記第2系統は、前記反力機構を駆動する前記第2モータ部としての第2反力モータ部(13B)及び前記第2反力モータ部を制御する前記第2制御部しての第2反力制御部(40B)と、前記転舵機構を駆動する前記第2モータ部としての第2転舵モータ部(22B)及び前記第2転舵モータ部を制御する前記第2制御部として第2転舵制御部(45B)と、を含む、請求項1~7のいずれか1項に記載の舵システム。
  9.  前記第1反力制御部と前記第2反力制御部とは、通信により前記協調制御に必要な情報を互いに送受信し、
     前記第1転舵制御部と前記第2転舵制御部とは、通信により前記協調制御に必要な情報を互いに送受信し、
     前記第1反力制御部及び前記第2反力制御部は、前記第1反力制御部と前記第2反力制御部とが通信を行うことができない場合に、前記第1転舵制御部及び前記第2転舵制御部を介して通信を行い、
     前記第1転舵制御部及び前記第2転舵制御部は、前記第1転舵制御部と前記第2転舵制御部とが通信を行うことができない場合に、前記第1反力制御部及び前記第2反力制御部を介して通信を行う、請求項8に記載の舵システム。
  10.  前記第1反力制御部及び前記第2反力制御部は、前記第1反力制御部と前記第2反力制御部とが通信を行うことができない場合に、前記第1転舵制御部及び前記第2転舵制御部による前記協調制御を停止させ、
     前記第1転舵制御部及び前記第2転舵制御部は、前記第1転舵制御部と前記第2転舵制御部とが通信を行うことができない場合に、前記第1反力制御部及び前記第2反力制御部による前記協調制御を停止させる、請求項9に記載の舵システム。
PCT/JP2021/031345 2020-08-27 2021-08-26 舵システム WO2022045244A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21861666.2A EP4206063A4 (en) 2020-08-27 2021-08-26 ROWING SYSTEM
CN202180052086.0A CN115943104A (zh) 2020-08-27 2021-08-26 转舵系统
US18/172,995 US20230202553A1 (en) 2020-08-27 2023-02-22 Rudder system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020143535A JP2022038846A (ja) 2020-08-27 2020-08-27 舵システム
JP2020-143535 2020-08-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/172,995 Continuation-In-Part US20230202553A1 (en) 2020-08-27 2023-02-22 Rudder system

Publications (1)

Publication Number Publication Date
WO2022045244A1 true WO2022045244A1 (ja) 2022-03-03

Family

ID=80353392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031345 WO2022045244A1 (ja) 2020-08-27 2021-08-26 舵システム

Country Status (5)

Country Link
US (1) US20230202553A1 (ja)
EP (1) EP4206063A4 (ja)
JP (1) JP2022038846A (ja)
CN (1) CN115943104A (ja)
WO (1) WO2022045244A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338563A (ja) * 2003-05-15 2004-12-02 Toyoda Mach Works Ltd 車両用操舵装置
JP4848717B2 (ja) 2005-09-28 2011-12-28 日産自動車株式会社 制御システムのフェールセーフ制御装置
WO2017033884A1 (ja) * 2015-08-27 2017-03-02 Ntn株式会社 車両操舵装置
JP2018130007A (ja) * 2016-11-11 2018-08-16 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP2019004682A (ja) * 2017-02-28 2019-01-10 株式会社デンソー モータ制御装置、モータ駆動システム、及び、モータ制御方法
JP2021136735A (ja) * 2020-02-25 2021-09-13 日本電産エレシス株式会社 モータ制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069849A (ja) * 2005-09-09 2007-03-22 Nissan Motor Co Ltd 車両用操舵制御装置
EP2905201B1 (en) * 2012-10-03 2016-10-26 Nissan Motor Company, Limited Steering control device, and steering control method
JP6981354B2 (ja) * 2018-04-23 2021-12-15 トヨタ自動車株式会社 操舵システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338563A (ja) * 2003-05-15 2004-12-02 Toyoda Mach Works Ltd 車両用操舵装置
JP4848717B2 (ja) 2005-09-28 2011-12-28 日産自動車株式会社 制御システムのフェールセーフ制御装置
WO2017033884A1 (ja) * 2015-08-27 2017-03-02 Ntn株式会社 車両操舵装置
JP2018130007A (ja) * 2016-11-11 2018-08-16 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP2019004682A (ja) * 2017-02-28 2019-01-10 株式会社デンソー モータ制御装置、モータ駆動システム、及び、モータ制御方法
JP2021136735A (ja) * 2020-02-25 2021-09-13 日本電産エレシス株式会社 モータ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206063A4

Also Published As

Publication number Publication date
CN115943104A (zh) 2023-04-07
US20230202553A1 (en) 2023-06-29
EP4206063A4 (en) 2024-02-14
JP2022038846A (ja) 2022-03-10
EP4206063A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
JP6747329B2 (ja) 回転電機制御装置
JP5930058B2 (ja) ステアリング制御装置、ステアリング制御方法
US11597434B2 (en) Steering control system
US20220250675A1 (en) Steering control device and steering assist system including same
CN108974113A (zh) 车辆转向柱的冗余齿轮组件及方法
JP6516792B2 (ja) 電動パワーステアリング装置を搭載した車両
WO2020003506A1 (ja) 操舵装置
WO2021085168A1 (ja) モータ駆動システム
WO2021085228A1 (ja) モータ駆動システム
JP2020040437A (ja) パワーステアリング装置
JP2020075559A (ja) ステアリング装置
JP6756243B2 (ja) 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP2007245821A (ja) 車両用操舵装置
WO2018020694A1 (ja) 電動パワーステアリング装置
CN107914765B (zh) 车辆用转向操纵装置
JP2005112025A (ja) 操舵制御装置
WO2022045244A1 (ja) 舵システム
JP2017001611A (ja) ステアリング制御装置
JP5076564B2 (ja) 駆動制御装置およびそれを用いた操舵制御装置
JP2007283891A (ja) 車両用操舵装置
JP2008030591A (ja) 制動制御装置およびその方法
JP6852580B2 (ja) 操舵制御装置
JP5131423B2 (ja) 電動パワーステアリング装置
JP2007283926A (ja) 車両用操舵装置
JP4023301B2 (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021861666

Country of ref document: EP

Effective date: 20230327