WO2022044728A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2022044728A1
WO2022044728A1 PCT/JP2021/028830 JP2021028830W WO2022044728A1 WO 2022044728 A1 WO2022044728 A1 WO 2022044728A1 JP 2021028830 W JP2021028830 W JP 2021028830W WO 2022044728 A1 WO2022044728 A1 WO 2022044728A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
acid
liquid
flow path
heat exchanger
Prior art date
Application number
PCT/JP2021/028830
Other languages
English (en)
French (fr)
Inventor
浩史 平野
卓登 ▲瀬▼戸山
和樹 須田
昇平 仲田
将弘 近藤
亮 ▲高▼岡
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to AU2021332451A priority Critical patent/AU2021332451A1/en
Priority to CN202180050450.XA priority patent/CN115956184A/zh
Priority to EP21861156.4A priority patent/EP4206565A1/en
Priority to US18/020,364 priority patent/US20230296299A1/en
Publication of WO2022044728A1 publication Critical patent/WO2022044728A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0271Compressor control by controlling pressure the discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to a refrigeration cycle device.
  • an R466A refrigerant as a refrigerant having a low global warming potential (GWP) (Patent Document 1).
  • the R466A refrigerant is a three -kind mixed refrigerant of R32 refrigerant, R125 refrigerant, and trifluoroiodomethane (CF 3I), and is decomposed in a high temperature environment to generate acid. Metal parts may corrode and damage the refrigeration cycle equipment. Therefore, as a related technique, there is one in which an acid capture filter for capturing an acid generated by the R466A refrigerant is provided in the refrigerant circuit (Patent Document 2).
  • the acid capture filter is arranged between the expansion valve and the evaporator, or between the expansion valve and the condenser, and the gas-liquid two-phase refrigerant passes through the acid capture filter.
  • the acid trapping filter has a structure having a large flow resistance in order to increase the contact area with the refrigerant. Therefore, there is a problem that a pressure loss occurs when the gas-liquid two-phase refrigerant passes through the acid capture filter, and the refrigerating capacity of the refrigerating cycle apparatus is lowered.
  • the disclosed technique has been made in view of the above, and provides a refrigerating cycle apparatus capable of suppressing a pressure loss of a refrigerant passing through a filter member and suppressing a decrease in the refrigerating capacity of the refrigerating cycle apparatus having the filter member.
  • the purpose is to do.
  • One aspect of the refrigeration cycle apparatus disclosed in the present application is provided in a refrigerant circuit having a flow path through which a liquid single-phase refrigerant flows and a flow path through which the liquid single-phase refrigerant flows, and captures an acid contained in the passing refrigerant.
  • a filter member is provided.
  • the refrigeration cycle device disclosed in the present application it is possible to suppress the pressure loss of the refrigerant passing through the filter member and suppress the decrease in the refrigerating capacity of the refrigeration cycle device having the filter member.
  • FIG. 1 is a schematic view showing the entire refrigeration cycle apparatus of Example 1.
  • FIG. 2 is a schematic view showing a first acid trap and a second acid trap included in the refrigeration cycle apparatus of Example 1.
  • FIG. 3 is a schematic view showing a main part of the refrigeration cycle apparatus of the second embodiment.
  • FIG. 4 is a schematic view showing a main part of the refrigeration cycle apparatus of the third embodiment.
  • FIG. 5 is a schematic view showing a main part of the refrigeration cycle apparatus of the fourth embodiment.
  • FIG. 1 is a schematic view showing the entire refrigeration cycle apparatus of Example 1.
  • the refrigerant used in the refrigeration cycle device 1 of the embodiment will be described.
  • the R466A refrigerant is used as the refrigerant.
  • the R466A refrigerant is a three -component mixed refrigerant of R32 refrigerant, R125 refrigerant, and trifluoroiodomethane (CF 3I).
  • the R466A refrigerant may be decomposed in a high temperature environment to generate acid after being compressed by the compression portion of the compressor, and the acid may corrode the refrigerant circuit and damage the refrigeration cycle device.
  • the acid contained in the refrigerant is captured by the first acid trap 34A and the second acid trap 34B, which will be described later, and the acid is removed from the refrigerant to remove the acid from the refrigerating cycle device 1.
  • the damage is suppressed.
  • the refrigerant is not limited to the R466A refrigerant, and other refrigerants may be used as long as they may generate acid.
  • a refrigerant containing HFO hydrofluoroolefin
  • the steam pressure [kPa] of the refrigerant is low, and a region where the pressure becomes more negative than the atmospheric pressure is likely to occur during operation in the refrigerant circuit, so that the high-pressure refrigerant is depressurized. Since there is a tendency for oxygen to easily enter the refrigerant by sucking outside air into the refrigerant circuit in the section, the refrigerant is easily oxidatively decomposed to generate acid. Even when such a refrigerant is used, the present embodiment 1 may be applied, and the effects described later can be obtained as in the present embodiment 1.
  • the refrigerating cycle device 1 includes a refrigerant circuit 2 in which a refrigerant circulates, and an outdoor unit 3 and an indoor unit 4 provided in the refrigerant circuit 2.
  • FIG. 1 shows an arrow indicating the flow of the refrigerant when the indoor unit 4 is operated for cooling.
  • the refrigerant circuit 2 has a liquid pipe 6 and a gas pipe 7 that connect the outdoor unit 3 and the indoor unit 4.
  • One end of the liquid pipe 6 is connected to the closing valve (liquid two-way valve) 16 of the outdoor unit 3, and the other end is connected to the indoor unit 4.
  • One end of the gas pipe 7 is connected to the closing valve (gas three-way valve) 17 of the outdoor unit 3, and the other end is connected to the indoor unit 4.
  • the outdoor unit 3 includes a compressor 10, an accumulator 11, a four-way valve 12, an outdoor heat exchanger 13, an outdoor fan 14, an outdoor expansion valve 15, and a closing valve 16 to which one end of a liquid pipe 6 is connected. It includes a closing valve 17 to which one end of the gas pipe 7 is connected, and an accumulator 18 which is a refrigerant reservoir.
  • the compressor 10 is a rotary compressor with variable capacity that can change the operating capacity by being driven by a motor (not shown) whose rotation speed is controlled by an inverter. Inside the compressor 10, refrigerating machine oil 9 as a lubricating oil for lubricating a sliding portion (not shown) is stored.
  • the refrigerant discharge side of the compressor 10 is connected to an oil separator 22 that separates the refrigerating machine oil 9 from the refrigerant discharged from the compressor 10 via a discharge pipe 21a. Further, the oil separator 22 is connected to the port a of the four-way valve 12 described later via the refrigerant pipe 21b, and the refrigerant separated from the refrigerating machine oil 9 is sent to the four-way valve 12.
  • the oil separator 22 is connected to a refrigerant pipe 21c connected to the refrigerant inflow side of the accumulator 18, and the refrigerating machine oil 9 separated from the refrigerant is combined with the gas refrigerant sent from the accumulator 18 to the compressor accumulator 11. Will be sent to.
  • the refrigerant pipe 21c is provided with a pressure reducing valve 23 for reducing the pressure of the refrigerating machine oil 9 from the oil separator 22.
  • the refrigerant pipe 21c may be provided with a capillary tube (not shown) instead of the pressure reducing valve 23.
  • the refrigerant suction side of the compressor 10 is connected to the refrigerant outflow side of the accumulator 18 and the refrigerant pipe 21c via the suction pipe 24. In this way, the compressor 10 is connected to the refrigerant circuit 2 filled with the refrigerant.
  • the four-way valve 12 is a switching valve for switching the flow direction of the refrigerant, and has four ports a, b, c, and d.
  • the port a is connected to the refrigerant discharge side of the compressor 10 by the discharge pipe 21a via the oil separator 22 connected by the refrigerant pipe 21b as described above.
  • the port b is connected to one of the refrigerant inlets / outlets of the outdoor heat exchanger 13 by a refrigerant pipe 26.
  • the other refrigerant inlet / outlet of the outdoor heat exchanger 13 is connected to the liquid pipe 6 by the outdoor unit liquid pipe 29.
  • the port c is connected to the refrigerant inflow side of the accumulator 18 via the refrigerant pipe 27.
  • the port d is connected to the closing valve 17 by an outdoor unit gas pipe 28.
  • the outdoor heat exchanger 13 exchanges heat between the outside air taken into the inside of the outdoor unit 3 by the outdoor fan 14 and the refrigerant.
  • One of the refrigerant inlets and outlets of the outdoor heat exchanger 13 is connected to the port b of the four-way valve 12 by a refrigerant pipe 26 as described above, and the other refrigerant inlet and outlet is connected to the closing valve 16 via the outdoor unit liquid pipe 29. Has been done.
  • the outdoor expansion valve 15 is provided in the outdoor unit liquid pipe 29.
  • the outdoor expansion valve 15 is an electronic expansion valve, and by adjusting its opening degree, the amount of refrigerant flowing into the outdoor heat exchanger 13 or the amount of refrigerant flowing out of the outdoor heat exchanger 13 is adjusted.
  • the opening degree of the outdoor expansion valve 15 is fully opened when the refrigerating cycle device 1 is performing the cooling operation. Further, when the refrigerating cycle device 1 is in the heating operation, the refrigerant discharge temperature is set to the compressor by controlling the opening degree of the outdoor expansion valve 15 according to the refrigerant discharge temperature from the compressor 10. It is adjusted so as not to exceed the upper limit of 10 in use.
  • the refrigerant inflow side of the accumulator 18 is connected to the port c of the four-way valve 12 via the refrigerant pipe 27, and the refrigerant outflow side of the accumulator 18 is connected to the refrigerant suction side of the compressor 10 via the suction pipe 24.
  • the accumulator 18 is connected to the refrigerant circuit 2 and the compressor 10.
  • the accumulator 18 separates the refrigerant flowing into the accumulator 18 from the refrigerant pipe 27 into a gas refrigerant and a liquid refrigerant. The separated gas refrigerant is sucked into the compressor 10 via the accumulator 11 for the compressor.
  • the outdoor unit 3 includes an outdoor unit control circuit 30 as a control unit.
  • the outdoor unit control circuit 30 is mounted on a control board housed in an electrical component box (not shown) of the outdoor unit 3.
  • the outdoor unit control circuit 30 controls the drive of the compressor 10 and the outdoor fan 14 based on the detection results and control signals detected by various sensors (not shown) of the outdoor unit 3.
  • the outdoor unit control circuit 30 controls switching of the four-way valve 12 and adjusts the opening degree of the outdoor expansion valve 15 based on the detection results and control signals detected by various sensors of the outdoor unit 3.
  • an outdoor unit liquid pipe 29 located between the outdoor heat exchanger 13 and the closing valve 16 is provided with a supercooler that changes a gas-liquid two-phase refrigerant into a liquid single-phase supercooling refrigerant.
  • the supercooling heat exchanger 31 is provided.
  • the refrigerant circuit 2 extends a part of the refrigerant flowing between the overcooling heat exchanger 31 and the closing valve 16 from the port c of the four-way valve 12 to the accumulator 18 via the overcooling expansion valve 32.
  • a refrigerant pipe 33 is provided.
  • the supercooling heat exchanger 31 includes a high-pressure side flow path and a low-pressure side flow path (not shown).
  • the refrigerant that has flowed out from the outdoor expansion valve 15 when the indoor unit 4 is operated for cooling flows into the high-pressure side flow path.
  • the refrigerant flowing into the high-pressure side flow path exchanges heat with the refrigerant in the low-pressure side flow path, and then flows out to the closing valve 16 side.
  • the low-pressure side flow path is provided in the refrigerant pipe 33, and the refrigerant flowing out from the supercooling expansion valve 32 flows into the flow path.
  • the refrigerant flowing into the low-pressure side flow path exchanges heat with the refrigerant in the high-pressure side flow path, and then flows out to the refrigerant pipe 27 side.
  • the outdoor unit liquid pipe 29 is provided with a supercooling expansion valve 32 on the upstream side of the supercooling heat exchanger 31 in the flow direction F2 of the refrigerant when the indoor unit 4 is heated.
  • a supercooling expansion valve 32 on the upstream side of the supercooling heat exchanger 31 in the flow direction F2 of the refrigerant when the indoor unit 4 is heated.
  • the refrigerant circuit 2 has a flow path 29a through which the liquid single-phase refrigerant flows, and this flow path 29a corresponds to one section of the outdoor unit liquid pipe 29 in the refrigerant circuit 2.
  • the section between the supercooling heat exchanger 31 and the closing valve 16 in the outdoor unit liquid pipe 29 is the flow path 29a through which the liquid single-phase refrigerant flows.
  • the section between the supercooling heat exchanger 31 and the outdoor expansion valve 15 in the outdoor unit liquid pipe 29 is the flow path 29a through which the liquid single-phase refrigerant flows.
  • the flow path 29a of the refrigerant circuit 2 has a first acid trap 34A and a second acid trap having an acid capture filter 35 as a filter member for capturing the acid contained in the passing refrigerant.
  • Each vessel 34B is provided.
  • the filter member includes an acid capture filter 35 of the first acid trap 34A as the first filter member and an acid capture filter 35 of the second acid trap 34B as the second filter member.
  • the first acid trap 34A is located on the downstream side of the supercooling heat exchanger 31 in the refrigerant flow direction F1 when the indoor unit 4 is cooled, that is, between the supercooling heat exchanger 31 and the closing valve 16. Have been placed.
  • the second acid trap 34B is located on the downstream side of the supercooling heat exchanger 31 in the refrigerant flow direction F2 when the indoor unit 4 is heated, that is, between the supercooling heat exchanger 31 and the outdoor expansion valve 15. Is located in.
  • FIG. 2 is a schematic diagram showing a first acid trap 34A and a second acid trap 34B included in the refrigeration cycle device 1 of the first embodiment.
  • the first acid trap 34A and the second acid trap 34B have the same structure.
  • the first acid trap 34A and the second acid trap 34B have a container 36 through which the refrigerant flows in one direction, and an acid trap filter 35 is provided in the container 36.
  • the acid capture filter 35 is, for example, a porous body formed by molding activated alumina particles, and captures acid by the adsorption action of the porous body.
  • the refrigerating cycle device 1 is less likely to be damaged by the acid generated by the decomposition of the refrigerant in a high temperature environment.
  • the liquid single-phase refrigerant containing no gas phase passes through the acid capture filter 35.
  • the liquid single phase refrigerant is compared with the case where the gas-liquid two-phase refrigerant passes through the inside of the acid trapping filter 35.
  • the pressure loss due to the flow resistance when the refrigerant passes through the inside of the acid capture filter 35 is reduced. This is because the flow resistance when the gas phase refrigerant passes through the acid capture filter 35 is larger than the flow resistance when the liquid phase refrigerant passes through the acid capture filter 35.
  • the flow resistance of the refrigerant passing through the acid capture filter 35 becomes smaller.
  • the turbulent flow of the refrigerant in the acid capture filter 35 can be suppressed, so that the noise generated when the refrigerant passes through the acid capture filter 35 can be reduced.
  • the upstream side and the downstream side of the first acid trap 34A in the flow path 29a are connected via the first detour flow path (bypass flow path) 37A.
  • the upstream side and the downstream side of the second acid trap 34B in the flow path 29a are connected via the second detour flow path (bypass flow path) 37B.
  • a check valve 38a for flowing the refrigerant only in the flow direction F1 toward the closing valve 16 side (indoor expansion valve 52 side described later) is provided.
  • the first detour flow path 37A is provided with a check valve 38b that shuts off the refrigerant in the flow direction F1.
  • the overcooling heat exchanger 31 side is located downstream of the second acid trap 34B in the refrigerant flow direction F2 when the indoor unit 4 is heated.
  • a check valve 38c for flowing the refrigerant only in the flow direction F2 toward the outdoor expansion valve 15 side is provided.
  • the second detour flow path 37B is provided with a check valve 38d that shuts off the refrigerant in the flow direction F2.
  • the two-phase refrigerant that has passed through the outdoor expansion valve 15 passes through the second detour flow path 37B without passing through the second acid trap 34B, and the supercooling heat exchanger 31
  • the refrigerant that has passed through the above passes through the first acid trap 34A without passing through the first detour flow path 37A.
  • the refrigerant that has passed through the closing valve 16 has passed through the first detour flow path 37A without passing through the first acid trap 34A, and has passed through the supercooling heat exchanger 31.
  • the two-phase refrigerant passes through the second acid trap 34B without passing through the second detour flow path 37B.
  • the refrigerant passes through only one of the first acid trap 34A and the second acid trap 34B during the cooling operation and the heating operation.
  • the first acid trap 34A, the first detour flow path 37A, the check valves 38a, and 38b are cooling filter circuits 39A for removing the acid contained in the refrigerant when the indoor unit 4 is cooled. Consists of.
  • the second acid trap 34B, the second detour flow path 37B, the check valves 38c, and 38d provide a heating filter circuit 39B for removing the acid contained in the refrigerant when the indoor unit 4 is heated. It is composed.
  • the indoor unit 4 includes an indoor heat exchanger 51, an indoor expansion valve 52, and an indoor fan 53.
  • one refrigerant inlet / outlet of the indoor heat exchanger 51 and the liquid pipe 6 are connected by the indoor unit liquid pipe 54, and the other refrigerant inlet / outlet of the indoor heat exchanger 51 and the gas pipe 7 are connected to the indoor unit. It is connected by a gas pipe 55.
  • the indoor heat exchanger 51 exchanges heat between the indoor air taken into the interior of the indoor unit 4 and the refrigerant from the suction port (not shown) by the indoor fan 53.
  • the indoor heat exchanger 51 functions as an evaporator when the air conditioner 1 performs a cooling operation, and functions as a condenser when the indoor unit 4 performs a heating operation.
  • the indoor expansion valve 52 is provided in the indoor unit liquid pipe 54.
  • the indoor expansion valve 52 is an electronic expansion valve, and when the indoor heat exchanger 51 functions as an evaporator, that is, when the indoor unit 4 performs a cooling operation, the degree of refrigerant overheating at the refrigerant outlet of the indoor heat exchanger 51 is high. It is adjusted to the target refrigerant superheat degree.
  • the target refrigerant superheat degree is the refrigerant superheat degree for the indoor unit 4 to exhibit sufficient cooling capacity.
  • the degree of cooling of the refrigerant excess at the refrigerant outlet of the indoor heat exchanger 51 is predetermined. It is adjusted to the target value.
  • the indoor unit 4 includes an indoor unit control circuit 60.
  • the indoor unit control circuit 60 is mounted on a control board housed in an electrical component box (not shown) of the indoor unit 4.
  • the indoor unit control circuit 60 adjusts the opening degree of the indoor expansion valve 52 and the indoor fan 53 based on the detection results detected by various sensors (not shown) of the indoor unit 4 and the signals transmitted from the remote controller and the outdoor unit 3. Control the drive of.
  • the control circuit of the refrigeration cycle device 1 is composed of the outdoor unit control circuit 30 and the indoor unit control circuit 60 described above.
  • the outdoor unit control circuit 30 communicates the four-way valve 12 with a solid line in FIG. 1, that is, the port a and the port b of the four-way valve 12. Then, the port c and the port d are switched so as to communicate with each other. As a result, the refrigerant circuit 2 becomes a cooling cycle in which the outdoor heat exchanger 13 functions as a condenser and the indoor heat exchanger 51 functions as an evaporator.
  • the high-pressure refrigerant discharged from the compressor 10 flows through the discharge pipe 21a and the refrigerant pipe 21b and flows into the four-way valve 12, and from the four-way valve 12, the refrigerant pipe 26, the outdoor heat exchanger 13, the outdoor expansion valve 15, the second.
  • the detour flow path 37B, the overcooling heat exchanger 31, the first acid trap 34A, the closing valve 16, and the liquid pipe 6 flow in this order and flow into the indoor unit 4.
  • the refrigerant that has flowed into the indoor unit 4 flows through the indoor unit liquid pipe 54, flows into the indoor heat exchanger 51, and exchanges heat with the indoor air taken into the indoor unit 4 by the rotation of the indoor fan 53 to evaporate. do.
  • the indoor heat exchanger 51 functions as an evaporator, and the indoor heat exchanger 51 exchanges heat with the refrigerant to blow out the cooled indoor air from the outlet (not shown) into the room. , The room in which the indoor unit 4 is installed is cooled.
  • the refrigerant flowing out of the indoor heat exchanger 51 flows through the indoor unit gas pipe 55 and flows into the gas pipe 7.
  • the refrigerant flowing through the gas pipe 7 flows into the outdoor unit 3 through the closing valve 17.
  • the refrigerant flowing into the outdoor unit 3 flows in the order of the outdoor unit gas pipe 28, the four-way valve 12, the refrigerant pipe 27, the accumulator 18, the suction pipe 24, and the accumulator 11 for the compressor, and is sucked into the compressor 10 and compressed again. ..
  • the four-way valve 12 When the indoor unit 4 heats the four-way valve 12, the four-way valve 12 is shown by a broken line in FIG. 1, that is, the port a and the port d of the four-way valve 12 are connected, and the port b and the port d are connected. Switch to. As a result, the refrigerant circuit 2 becomes a heating cycle in which the outdoor heat exchanger 13 functions as an evaporator and the indoor heat exchanger 51 functions as a condenser.
  • Control of expansion valve Here, the control of the outdoor expansion valve 15 and the indoor expansion valve 52 in the refrigeration cycle device 1 of the first embodiment will be described.
  • the temperature of the refrigerant for example, the high temperature is about 90 ° C, the medium temperature is about 40 ° C, and the low temperature is about 10 ° C.
  • the pressure of the refrigerant for example, the high pressure is about 3.0 MPa, the medium pressure is about 2.8 MPa, and the low pressure is about 0.9 MPa.
  • the outdoor unit control circuit 30 of the refrigeration cycle device 1 controls so that the opening degree of the outdoor expansion valve 15 is fully opened. .. That is, the outdoor expansion valve 15 does not reduce the pressure of the refrigerant during the cooling operation.
  • the indoor unit control circuit 60 of the refrigeration cycle device 1 decompresses the refrigerant to the evaporation temperature at which the indoor heat exchanger 51 can obtain an appropriate evaporation capacity, and controls the flow rate of the refrigerant.
  • the indoor unit control circuit 60 determines the degree of refrigerant superheat at the outlet of the indoor heat exchanger 51 (from the temperature of the refrigerant at the outlet of the indoor heat exchanger 51 (evaporator) to the temperature of the refrigerant at the inlet of the indoor heat exchanger 51).
  • the subtracted value is controlled to be kept at a predetermined target value.
  • medium-temperature and high-pressure refrigerant flows into the inlet of the indoor expansion valve 52, and medium-temperature and high-pressure refrigerant flows out from the outlet of the indoor expansion valve 52.
  • the high-pressure refrigerant flows into the supercooling heat exchanger 31 located on the downstream side of the indoor expansion valve 52 in the refrigerant flow direction F2, and the liquid single-phase refrigerant flows out from the supercooling heat exchanger 31.
  • the indoor unit control circuit 60 controls to keep the degree of refrigerant supercooling (a value obtained by subtracting the temperature of the refrigerant at the outlet of the indoor heat exchanger 51 (condenser) from the high-pressure saturation temperature) at a predetermined target value. ..
  • the outdoor unit control circuit 30 of the refrigeration cycle device 1 decompresses the refrigerant to the evaporation temperature at which the outdoor heat exchanger 13 can obtain an appropriate evaporation capacity by adjusting the opening degree of the outdoor expansion valve 15, and the refrigerant is charged. Control the flow rate.
  • the refrigerating cycle apparatus 1 of the first embodiment has a refrigerant circuit 2 having a flow path 29a through which a liquid single-phase refrigerant flows, and an acid provided in the flow path 29a to capture an acid contained in the passing refrigerant.
  • a capture filter 35 is provided.
  • the flow resistance when the liquid single-phase refrigerant passes through the acid capture filter 35 is smaller than that in the case where the gas-liquid two-phase refrigerant passes through the acid capture filter 35.
  • the flow resistance becomes small, the turbulent flow of the refrigerant in the acid capture filter 35 can be suppressed, so that the noise generated when the refrigerant passes through the acid capture filter 35 can be reduced.
  • the refrigerant circuit 2 of the refrigeration cycle device 1 of the first embodiment supercooling that changes the gas-liquid two-phase refrigerant into a liquid single-phase supercooling refrigerant on the upstream side in the flow direction of the refrigerant with respect to the acid capture filter 35.
  • a heat exchanger 31 is provided. This makes it possible to reliably send the liquid single-phase refrigerant to the acid capture filter 35. Further, according to the first embodiment, by arranging the acid trapping filter 35 on the downstream side of the supercooling heat exchanger 31, for example, a part of the refrigerant is caused by the pressure loss in the outdoor unit liquid pipe 29.
  • the acid capture filter 35 included in the refrigeration cycle device 1 of the first embodiment is the acid capture filter 35 of the first acid capture device 34A as the first filter member and the second acid capture device 34B as the second filter member. Includes acid capture filter 35.
  • the refrigerant circuit 2 includes a first detour flow path 37A connecting the upstream side of the first acid trap 34A and the downstream side of the first acid trap 34A in the refrigerant flow directions F1 and F2, and a second acid trap.
  • a second detour flow path 37B connecting the upstream side of the 34B and the downstream side of the second acid trap 34B is provided, and the refrigerant is the first acid trap 34A and the first acid trap 34A during the heating operation and the cooling operation of the indoor unit 4.
  • the lubricating oil 9 contained in the refrigerant is suppressed from staying in the acid capture filter 35, so that the lubricating oil 9 in the compressor 10 is suppressed.
  • the decrease in the amount of the lubricating oil 9 is suppressed, and the operation of the compressor 10 can be properly maintained by the lubricating oil 9.
  • the lubricating oil 9 may separate and stay in the acid capture filter 35, but in the case of a liquid single-phase refrigerant, the lubricating oil 9 is combined with the liquid refrigerant. Since it passes through the acid capture filter 35, it does not stay in the acid capture filter 35.
  • Example 1 the supercooling heat exchanger 31 was used to send the liquid single-phase refrigerant to the flow path 29a, but instead of the supercooling heat exchanger 31, a liquid single-phase refrigerant was used.
  • a gas-liquid separator that separates from the gas-single-phase refrigerant may be used.
  • the liquid-single-phase refrigerant is sent to the flow path 29a through the gas-liquid separator and the gas-liquid.
  • a single-phase refrigerant from the separator is sent to the refrigerant pipe 27 through the refrigerant pipe 33.
  • the gas-liquid separator tends to have a higher enthalpy of the liquid single-phase refrigerant flowing out of the gas-liquid separator as compared with the case where the supercooling heat exchanger 31 is used. Since the refrigerant having a high enthalpy is sent to the evaporator (outdoor heat exchanger 13 or indoor heat exchanger 51), the coefficient of performance (COP: Cofficient Of Performance) in the refrigeration cycle apparatus 1 decreases, so that the gas-liquid separator is used. It is preferable to use a supercooled heat exchanger rather than using it.
  • FIG. 3 is a schematic diagram showing a main part of the refrigeration cycle apparatus of the second embodiment.
  • Example 2 differs from Example 1 in that it has a bridge circuit provided with a single acid trap.
  • the refrigerant circuit 2 of the refrigeration cycle apparatus of the second embodiment includes a bridge circuit 61 having a supercooling heat exchanger 31 and an acid trap 34.
  • the bridge circuit 61 is provided with a single acid trap 34, and the refrigerant flows in only one direction with respect to the acid trap 34 as described later.
  • the acid trap 34 is configured in the same manner as the first acid trap 34A and the second acid trap 34B in Example 1, and has an acid trap filter 35.
  • a refrigerant pipe 33 that sends a gas refrigerant to the refrigerant pipe 27 is connected to the low-pressure side flow path of the supercooling heat exchanger 31 (see FIG. 1).
  • the refrigerant pipe 33 transfers a part of the refrigerant flowing between the supercooling heat exchanger 31 and the acid trap 34 from the port c of the four-way valve 12 to the accumulator 18 via the supercooling expansion valve 32 and the low pressure side flow path. It flows into the extending refrigerant pipe 27.
  • the portion A including the bridge circuit 61 having the supercooled heat exchanger 31 and the acid trap 34 is the supercooled heat exchanger 31, the first acid trap 34A, and the second acid trap 34B in FIG. It has the same function as the portion A including the above.
  • the bridge circuit 61 has a first flow path 61a, a second flow path 61b, a third flow path 61c, a fourth flow path 61d, and a fifth flow path 61e, and the first flow path excluding the third flow path 61c.
  • Check valves 62 are provided in the passage 61a, the second flow path 61b, the fourth flow path 61d, and the fifth flow path 61e, respectively.
  • the check valve 62 provided in the first flow path 61a regulates the flow of the refrigerant from the supercooling heat exchanger 31 to the outdoor expansion valve 15.
  • the check valve 62 provided in the second flow path 61b regulates the flow of the refrigerant from the outdoor expansion valve 15 to the acid trap 34.
  • the check valve 62 provided in the fourth flow path 61d regulates the flow of the refrigerant from the supercooling heat exchanger 31 to the indoor expansion valve 52.
  • the check valve 62 provided in the fifth flow path 61e regulates the flow of the refrigerant from the indoor expansion valve 52 to the acid trap 34.
  • the supercooling heat exchanger 31 and the acid trap 34 are arranged in this order along the third flow path 61c through which the refrigerant flows in only one direction.
  • one section on the downstream side of the supercooling heat exchanger 31 in the flow direction of the refrigerant corresponds to the flow path 29a through which the liquid single-phase refrigerant flows.
  • the liquid single-phase refrigerant that has passed through the supercooling heat exchanger 31 flows into the acid trapping filter 35 of the acid trapping device 34.
  • the refrigerant flowing into the bridge circuit 61 from the outdoor expansion valve 15 flows in the flow direction F1 of the refrigerant in the order of the first flow path 61a, the third flow path 61c, and the fifth flow path 61e. Is sent to the indoor expansion valve 52.
  • the refrigerant flowing into the bridge circuit 61 from the indoor expansion valve 52 is the refrigerant flow direction F2 in the order of the fourth flow path 61d, the third flow path 61c, and the second flow path 61b. And is sent to the outdoor expansion valve 15.
  • the refrigeration cycle apparatus of the second embodiment includes the bridge circuit 61, so that one acid trap 34 can be used without using the two first acid traps 34A and the second acid traps 34B as in the first embodiment.
  • the refrigerant circuit 2 can be compactly configured by using the refrigerant circuit 2.
  • the liquid single-phase refrigerant passes through the acid capture filter 35, so that the gas-liquid two-phase refrigerant passes through the acid capture filter 35, as compared with the case where the liquid single-phase refrigerant passes through the acid capture filter 35. Since it is possible to suppress the pressure loss of the refrigerant passing through the acid capture filter 35, it is possible to suppress a decrease in the refrigerating capacity of the refrigeration cycle apparatus having the acid capture filter 35. Further, also in the second embodiment, the noise generated when the liquid single-phase refrigerant passes through the acid capture filter 35 can be reduced as compared with the case where the gas-liquid two-phase refrigerant passes through the acid capture filter 35.
  • FIG. 4 is a schematic diagram showing a main part of the refrigeration cycle apparatus of the third embodiment.
  • Example 3 is different from Example 2 in that it has a bridge circuit 61 provided with a gas-liquid separator.
  • the refrigeration cycle apparatus of Example 3 includes a bridge circuit 61 having a gas-liquid separator 64 and an acid trap 34.
  • a gas-liquid separator 64 is used instead of the supercooling heat exchanger 31 in Example 2.
  • the gas-liquid separator 64 is arranged on the upstream side of the acid trap 34 so that the liquid outlet is connected to the acid trap 34 side.
  • the gas-liquid separator 64 separates the liquid single-phase refrigerant from the gas-liquid two-phase refrigerant, and sends the liquid single-phase refrigerant to the acid capture filter 35.
  • the gas outlet of the gas-liquid separator 64 is connected to a refrigerant pipe 33 that sends the separated gas phase refrigerant (gas refrigerant) to the refrigerant pipe 27 (see FIG. 1).
  • a part of the refrigerant flowing between the gas-liquid separator 64 and the acid trap 34 is passed through the bypass expansion valve (corresponding to the supercooling expansion valve 32 of the first embodiment) of the four-way valve 12. It flows into the refrigerant pipe 27 extending from the port c to the accumulator 18.
  • one section on the downstream side of the gas-liquid separator 64 in the flow direction of the refrigerant corresponds to a flow path through which the liquid single-phase refrigerant separated from the gas phase refrigerant flows.
  • the liquid single-phase refrigerant sent from the gas-liquid separator 64 passes through the acid capture filter 35 of the acid trap 34.
  • the portion A including the bridge circuit 61 having the gas-liquid separator 64 and the acid trap 34 is the supercooled heat exchanger 31, the first acid trap 34A, and the second acid trap 34B in FIG. It has the same function as the portion A including the above.
  • the refrigerating cycle apparatus of the third embodiment is provided with the bridge circuit 61 as in the second embodiment, so that the refrigerant does not use the two first acid traps 34A and the second acid traps 34B as in the first embodiment.
  • the circuit 2 can be configured compactly.
  • the gas-liquid two-phase refrigerant is the acid capture filter as in the first embodiment. Since it is possible to suppress the pressure loss of the refrigerant passing through the acid trapping filter 35 as compared with the case of passing through the acid trapping filter 35, it is possible to suppress a decrease in the refrigerating capacity of the refrigerating cycle apparatus having the acid trapping filter 35. Further, also in the second embodiment, the noise generated when the liquid single-phase refrigerant passes through the acid capture filter 35 can be reduced as compared with the case where the gas-liquid two-phase refrigerant passes through the acid capture filter 35.
  • the gas-liquid separator 64 may be used as in Example 3.
  • a gas-liquid separator 64 may be provided on the upstream side of the second acid trap 34B in the flow direction F2.
  • the two gas-liquid separators 64 are arranged so that the refrigerant can bypass the one gas-liquid separator 64 and the first acid trap 34A by the first detour flow path 37A, and the second detour flow path.
  • the 37B is arranged so that the refrigerant can bypass the other gas-liquid separator 64 and the secondary acid trap 34B.
  • one gas-liquid separator 64 is arranged so that the liquid outlet is connected to the first acid trap 34A side, and the other gas-liquid separator 64 has a liquid outlet outlet of the second acid trap 34B. Arranged to be connected to the side.
  • FIG. 5 is a schematic diagram showing a main part of the refrigeration cycle apparatus of the fourth embodiment.
  • the fourth embodiment is different from the second embodiment in that the receiver 65 is added to the bridge circuit 61 provided with the supercooled heat exchanger.
  • the refrigeration cycle apparatus of Example 4 includes a bridge circuit 61 having a receiver 65, a supercooled heat exchanger 31 and an acid trap 34.
  • the receiver 65 is arranged on the upstream side of the supercooling heat exchanger 31 in the flow direction of the refrigerant in the third flow path 61c, and the liquid single-phase refrigerant separated by the receiver 65 is transferred to the supercooling heat exchanger 31.
  • Sent Although not shown in FIG. 5, a refrigerant pipe 33 that sends a gas refrigerant to the refrigerant pipe 27 is connected to the low-pressure side flow path of the supercooling heat exchanger 31 (see FIG. 1).
  • the refrigerant pipe 33 transfers a part of the refrigerant flowing between the supercooling heat exchanger 31 and the acid trap 34 from the port c of the four-way valve 12 to the accumulator 18 via the supercooling expansion valve 32 and the low pressure side flow path. It flows into the extending refrigerant pipe 27.
  • the portion A including the receiver 65, the supercooled heat exchanger 31 and the bridge circuit 61 having the acid trap 34 is the supercooled heat exchanger 31, the first acid trap 34A, the second in FIG. It has the same function as the portion A including the acid trap 34B.
  • the refrigerating cycle apparatus of the fourth embodiment has a receiver 65 having a function of adjusting the amount of the refrigerant flowing through the refrigerant circuit 2 on the upstream side of the supercooling heat exchanger 31, the environmental load may fluctuate. I can handle it.
  • the liquid single-phase refrigerant passes through the acid capture filter 35, so that the gas-liquid two-phase refrigerant passes through the acid capture filter 35, as compared with the case where the liquid single-phase refrigerant passes through the acid capture filter 35. Since it is possible to suppress the pressure loss of the refrigerant passing through the acid capture filter 35, it is possible to suppress a decrease in the refrigerating capacity of the refrigeration cycle apparatus having the acid capture filter 35. Further, also in the fourth embodiment, the noise generated when the liquid single-phase refrigerant passes through the acid capture filter 35 can be reduced as compared with the case where the gas-liquid two-phase refrigerant passes through the acid capture filter 35.
  • the receiver 65 may be used as in Example 4.
  • the receiver 65 may be provided on either side of the upstream side of the second acid trap 34B in F2.
  • Refrigerant cycle device 2 Refrigerant circuit 15 Outdoor expansion valve 29 Outdoor unit liquid pipe 29a Flow path 31 Supercooling heat exchanger (supercooler) 34A 1st acid trap (acid trap) 34B second acid trap (acid trap) 35 Acid capture filter (filter member, first filter member, second filter member) 37A 1st detour flow path 37B 2nd detour flow path 52 Indoor expansion valve 61 Bridge circuit 64 Gas-liquid separator 65 Receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

冷凍サイクル装置(1)は、液単相の冷媒が流れる流路(29a)を有する冷媒回路(2)と、流路(29a)に設けられ、通過する冷媒に含まれる酸を捕捉するフィルタ部材(35)と、を備える。

Description

冷凍サイクル装置
 本発明は、冷凍サイクル装置に関する。
 冷凍サイクル装置では、地球温暖化係数(GWP:Global Warming Potential)が低い冷媒として、R466A冷媒を用いることが提案されている(特許文献1)。R466A冷媒は、R32冷媒、R125冷媒、トリフルオロヨードメタン(CFI)の3種混合冷媒であり、高温環境下で分解して酸が発生するため、酸によって冷媒回路を構成する配管等の金属部品が腐食して冷凍サイクル装置が損傷するおそれがある。このため、関連技術としては、R466A冷媒により発生する酸を捕捉する酸捕捉フィルタが冷媒回路に設けられるものがある(特許文献2)。
特開2020-34261号公報 特開2018-96571号公報
 上述した関連技術では、酸捕捉フィルタが、膨張弁と蒸発器との間、または膨張弁と凝縮器との間に配置されており、気液二相の冷媒が酸捕捉フィルタを通過する。酸捕捉フィルタは冷媒との接触面積を大きくするため流動抵抗の大きい構造となっている。そのため、気液二相の冷媒が酸捕捉フィルタを通過するときに圧力損失が生じて、冷凍サイクル装置の冷凍能力が低下する問題がある。
 開示の技術は、上記に鑑みてなされたものであって、フィルタ部材を通過する冷媒の圧力損失を抑え、フィルタ部材を有する冷凍サイクル装置の冷凍能力の低下を抑えることができる冷凍サイクル装置を提供することを目的とする。
 本願の開示する冷凍サイクル装置の一態様は、液単相の冷媒が流れる流路を有する冷媒回路と、液単相の冷媒が流れる流路に設けられ、通過する冷媒に含まれる酸を捕捉するフィルタ部材と、を備える。
 本願の開示する冷凍サイクル装置の一態様によれば、フィルタ部材を通過する冷媒の圧力損失を抑え、フィルタ部材を有する冷凍サイクル装置の冷凍能力の低下を抑えることができる。
図1は、実施例1の冷凍サイクル装置全体を示す模式図である。 図2は、実施例1の冷凍サイクル装置が備える第1酸捕捉器及び第2酸捕捉器を示す模式図である。 図3は、実施例2の冷凍サイクル装置の要部を示す模式図である。 図4は、実施例3の冷凍サイクル装置の要部を示す模式図である。 図5は、実施例4の冷凍サイクル装置の要部を示す模式図である。
 以下に、本願の開示する冷凍サイクル装置の実施例を図面に基づいて詳細に説明する。なお、以下の実施例によって、本願の開示する冷凍サイクル装置が限定されるものではない。
 実施例の冷凍サイクル装置としては、空気調和装置を一例として、1台の室外機に1台の室内機が接続され、室内機が冷房運転または暖房運転を行うことが可能に構成されたものを説明する。図1は、実施例1の冷凍サイクル装置全体を示す模式図である。
(冷媒)
 まず、実施例の冷凍サイクル装置1で使用される冷媒について説明する。実施例の冷凍サイクル装置1では、冷媒として、R466A冷媒が用いられる。R466A冷媒は、R32冷媒、R125冷媒、トリフルオロヨードメタン(CFI)の3成分混合冷媒である。R466A冷媒は、圧縮機の圧縮部で圧縮された後、高温環境下で分解されて酸を発生することがあり、酸によって冷媒回路が腐食して冷凍サイクル装置が損傷するおそれがある。このため、実施例の冷凍サイクル装置1では、後述する第1酸捕捉器34A及び第2酸捕捉器34Bによって冷媒に含まれる酸を捕捉し、冷媒から酸を除去することで、冷凍サイクル装置1の損傷を抑えている。
 なお、冷媒としては、R466A冷媒に限定されず、酸を発生するおそれがある冷媒であれば、他の冷媒が用いられてもよい。例えば、HFO(ハイドロフルオロオレフィン)を含む冷媒では、冷媒の蒸気圧[kPa]が低く、冷媒回路において運転中に大気圧よりも負圧になる領域が発生し易いため、高圧の冷媒が減圧される区間で冷媒回路内に外気を吸い込んで冷媒に酸素が入り込みやすい傾向があるので、冷媒が酸化分解されて酸を発生しやすい。このような冷媒を用いる場合にも、本実施例1が適用されてもよく、本実施例1と同様に後述する効果が得られる。
(冷凍サイクル装置の構成)
 図1に示すように、冷凍サイクル装置1は、冷媒が循環する冷媒回路2と、冷媒回路2に設けられた室外機3及び室内機4と、を備える。図1には、室内機4を冷房運転する際の冷媒の流れを矢印で示す。冷媒回路2は、室外機3と室内機4とを接続する液管6及びガス管7を有する。液管6は、一端が室外機3の閉鎖弁(液二方弁)16に接続され、他端が室内機4に接続されている。ガス管7は、一端が室外機3の閉鎖弁(ガス三方弁)17に接続され、他端が室内機4に接続されている。
(室外機の構成)
 まず、室外機3について説明する。室外機3は、圧縮機10及びアキュムレータ11と、四方弁12と、室外熱交換器13と、室外ファン14と、室外膨張弁15と、液管6の一端が接続された閉鎖弁16と、ガス管7の一端が接続された閉鎖弁17と、冷媒貯留器であるアキュムレータ18と、を備える。
 圧縮機10は、インバータにより回転数が制御されるモータ(図示せず)によって駆動されることで、運転容量を可変できる能力可変型のロータリ圧縮機である。圧縮機10の内部には、摺動部分(図示せず)を潤滑する潤滑油としての冷凍機油9が貯留されている。圧縮機10の冷媒吐出側は、圧縮機10から吐出された冷媒中から冷凍機油9を分離する油分離器22と吐出管21aを介して接続されている。また、油分離器22は、後述する四方弁12のポートaと冷媒配管21bを介して接続されており、冷凍機油9から分離された冷媒が四方弁12へ送られる。さらに、油分離器22は、アキュムレータ18の冷媒流入側と接続された冷媒配管21cに接続されており、冷媒から分離された冷凍機油9が、アキュムレータ18から送られるガス冷媒と共に圧縮機用アキュムレータ11へ送られる。冷媒配管21cには、油分離器22からの冷凍機油9を減圧するための減圧弁23が設けられている。なお、冷媒配管21cには、減圧弁23の代わりにキャピラリーチューブ(図示せず)が設けられてもよい。圧縮機10の冷媒吸入側は、アキュムレータ18の冷媒流出側及び冷媒配管21cと吸入管24を介して接続されている。このように圧縮機10は、冷媒が充填された冷媒回路2に接続されている。
 四方弁12は、冷媒の流れる方向を切り換えるための切換弁であり、4つのポートa、b、c、dを有している。ポートaは、上述したように冷媒配管21bで接続された油分離器22を介して、圧縮機10の冷媒吐出側に吐出管21aで接続されている。ポートbは、室外熱交換器13の一方の冷媒出入口に冷媒配管26で接続されている。室外熱交換器13の他方の冷媒出入口は、液管6と室外機液管29で接続されている。ポートcは、アキュムレータ18の冷媒流入側に冷媒配管27を介して接続されている。そして、ポートdは、閉鎖弁17に室外機ガス管28によって接続されている。
 室外熱交換器13は、室外ファン14によって室外機3の内部に取り込まれた外気と、冷媒とを熱交換する。室外熱交換器13の一方の冷媒出入口は、上述のように四方弁12のポートbに冷媒配管26で接続されており、他方の冷媒出入口が室外機液管29を介して閉鎖弁16に接続されている。
 室外膨張弁15は、室外機液管29に設けられている。室外膨張弁15は、電子膨張弁であり、その開度が調整されることにより、室外熱交換器13に流入する冷媒量、または、室外熱交換器13から流出する冷媒量を調整する。室外膨張弁15の開度は、冷凍サイクル装置1が冷房運転を行っている場合に全開とされる。また、冷凍サイクル装置1が暖房運転を行っている場合は、圧縮機10からの冷媒の吐出温度に応じて、室外膨張弁15の開度を制御することにより、冷媒の吐出温度が、圧縮機10の使用上の上限値を超えないように調整される。
 アキュムレータ18の冷媒流入側は四方弁12のポートcに冷媒配管27を介して接続されると共に、アキュムレータ18の冷媒流出側が圧縮機10の冷媒吸入側に吸入管24を介して接続されている。このようにアキュムレータ18は、冷媒回路2と圧縮機10とに接続されている。アキュムレータ18は、冷媒配管27からアキュムレータ18の内部に流入した冷媒をガス冷媒と液冷媒とに分離する。分離されたガス冷媒は圧縮機用アキュムレータ11を介して圧縮機10に吸入される。
 また、室外機3は、制御部としての室外機制御回路30を備える。室外機制御回路30は、図示しないが、室外機3の電装品箱(図示せず)に格納された制御基板に搭載されている。室外機制御回路30は、室外機3の各種センサ(図示せず)が検出した検出結果及び制御信号に基づいて、圧縮機10及び室外ファン14の駆動を制御する。また、室外機制御回路30は、室外機3の各種センサが検出した検出結果及び制御信号に基づいて、四方弁12の切り換え制御を行うと共に、室外膨張弁15の開度を調整する。
(実施例1の要部)
 また、冷媒回路2には、室外熱交換器13と閉鎖弁16との間に位置する室外機液管29に、気液二相の冷媒を液単相の過冷却冷媒に変化させる過冷却器としての過冷却熱交換器31が設けられている。また、冷媒回路2は、過冷却熱交換器31と閉鎖弁16との間を流れる冷媒の一部を、過冷却膨張弁32を介して四方弁12のポートcからアキュムレータ18に延びる冷媒配管27へ流入させる冷媒配管33を備える。過冷却熱交換器31は、図示しない高圧側流路と低圧側流路を備える。高圧側流路には、室内機4を冷房運転した際に室外膨張弁15から流出した冷媒が流入する。高圧側流路に流入した冷媒は、低圧側流路の冷媒と熱交換した後、閉鎖弁16側へ流出する。低圧側流路は、冷媒配管33に設けられ、過冷却膨張弁32から流出した冷媒が流入する。低圧側流路に流入した冷媒は、高圧側流路の冷媒と熱交換した後、冷媒配管27側へ流出する。また、室外機液管29には、室内機4を暖房運転した際の冷媒の流れ方向F2において、過冷却熱交換器31よりも上流側に過冷却膨張弁32が設けられている。これらの構成により、室外機液管29における過冷却熱交換器31の下流側は、液単相の冷媒が流れる流路29aとなる。
 このように冷媒回路2は、液単相の冷媒が流れる流路29aを有しており、この流路29aが、冷媒回路2における室外機液管29の一区間に相当する。室内機4を冷房運転した場合には、室外機液管29における過冷却熱交換器31と閉鎖弁16との間の区間が、液単相の冷媒が流れる流路29aである。室内機4を暖房運転した場合には、室外機液管29における過冷却熱交換器31と室外膨張弁15との間の区間が、液単相の冷媒が流れる流路29aである。
 そして、図1に示すように、冷媒回路2の流路29aには、通過する冷媒に含まれる酸を捕捉するフィルタ部材としての酸捕捉フィルタ35を有する第1酸捕捉器34A及び第2酸捕捉器34Bがそれぞれ設けられている。フィルタ部材は、第1フィルタ部材としての第1酸捕捉器34Aの酸捕捉フィルタ35と、第2フィルタ部材としての第2酸捕捉器34Bの酸捕捉フィルタ35と、を含む。
 第1酸捕捉器34Aは、室内機4を冷房運転した際の冷媒の流れ方向F1において、過冷却熱交換器31の下流側、すなわち、過冷却熱交換器31と閉鎖弁16との間に配置されている。第2酸捕捉器34Bは、室内機4を暖房運転した際の冷媒の流れ方向F2において、過冷却熱交換器31の下流側、すなわち、過冷却熱交換器31と室外膨張弁15との間に配置されている。
 言い換えると、冷媒回路2の流路29aには、酸捕捉フィルタ35を有する第1酸捕捉器34Aに対して、室内機4を冷房運転した際の冷媒の流れ方向F1の上流側に、気液二相の冷媒を液単相の過冷却冷媒に変化させる過冷却熱交換器31が設けられている。また、冷媒回路2の流路29aには、酸捕捉フィルタ35を有する第2酸捕捉器34Bに対して、室内機4を暖房運転した際の冷媒の流れ方向F2の上流側に、気液二相の冷媒を液単相の過冷却冷媒に変化させる過冷却熱交換器31が設けられている。
 図2は、実施例1の冷凍サイクル装置1が備える第1酸捕捉器34A及第2酸捕捉器34Bを示す模式図である。第1酸捕捉器34Aと第2酸捕捉器34Bは同一構造である。図2に示すように、第1酸捕捉器34A及び第2酸捕捉器34Bは、冷媒が一方向に流れる容器36を有しており、容器36内に酸捕捉フィルタ35が設けられている。酸捕捉フィルタ35は、例えば、活性アルミナ粒子を成形した多孔質体であり、多孔質体の吸着作用によって酸を捕捉する。これにより、冷凍サイクル装置1は、冷媒が高温環境下で分解して発生する酸による損傷を受けにくくなる。
 本実施例1では、気相を含まない液単相の冷媒が酸捕捉フィルタ35を通過する。酸捕捉フィルタ35である多孔質体の内部を冷媒が通過するときの流動抵抗を考えたとき、気液二相の冷媒が酸捕捉フィルタ35の内部を通過する場合と比べて、液単相の冷媒が酸捕捉フィルタ35の内部を通過するときの流動抵抗による圧力損失が小さくなる。これは、気相の冷媒が酸捕捉フィルタ35を通過するときの流動抵抗が、液相の冷媒が酸捕捉フィルタ35を通過するときの流動抵抗よりも大きいためである。このように液単相の冷媒が酸捕捉フィルタを通過するときの流動抵抗が小さくなることで、第1酸捕捉器34A及び第2酸捕捉器34Bによる圧力損失を抑えられるので、酸捕捉フィルタ35を用いる構造であっても、冷凍サイクル装置1の冷凍能力の低下が抑えられる。
 また、酸捕捉フィルタ35を通過する冷媒の流動抵抗が小さくなる。流動抵抗が小さくなると、酸捕捉フィルタ35での冷媒の乱流を抑制できるため、冷媒が酸捕捉フィルタ35を通過するときに発生する騒音を低減することができる。
 また、流路29aにおける第1酸捕捉器34Aの上流側と下流側は、第1迂回流路(バイパス流路)37Aを介して接続されている。これと同様に、流路29aにおける第2酸捕捉器34Bの上流側と下流側は、第2迂回流路(バイパス流路)37Bを介して接続されている。
 第1酸捕捉器34Aと閉鎖弁16との間には、室内機4を冷房運転した際の冷媒の流れ方向F1における第1酸捕捉器34Aの下流側に、過冷却熱交換器31側から閉鎖弁16側(後述する室内膨張弁52側)に向かう流れ方向F1のみへ冷媒を流す逆止弁38aが設けられている。第1迂回流路37Aには、流れ方向F1に向かう冷媒を遮断する逆止弁38bが設けられている。
 室外膨張弁15と第2酸捕捉器34Bとの間には、室内機4を暖房運転した際の冷媒の流れ方向F2における第2酸捕捉器34Bの下流側に、過冷却熱交換器31側から室外膨張弁15側に向かう流れ方向F2のみへ冷媒を流す逆止弁38cが設けられている。第2迂回流路37Bには、流れ方向F2に向かう冷媒を遮断する逆止弁38dが設けられている。
 したがって、室内機4を冷房運転した場合、室外膨張弁15を通過した二相冷媒が、第2酸捕捉器34Bを通過せずに第2迂回流路37Bを通過し、過冷却熱交換器31を通過した冷媒が、第1迂回流路37Aを通過せずに第1酸捕捉器34Aを通過する。また、室内機4を暖房運転した場合、閉鎖弁16を通過した冷媒が、第1酸捕捉器34Aを通過せずに第1迂回流路37Aを通過し、過冷却熱交換器31を通過した二相冷媒が、第2迂回流路37Bを通過せずに第2酸捕捉器34Bを通過する。このように冷媒は、冷房運転時と暖房運転時に、第1酸捕捉器34Aと第2酸捕捉器34Bのいずれか一方のみを通過する。
 このように、第1酸捕捉器34A、第1迂回流路37A、逆止弁38a、38bは、室内機4を冷房運転したときに冷媒に含まれる酸を除去するための冷房用フィルタ回路39Aを構成している。同様に、第2酸捕捉器34B、第2迂回流路37B、逆止弁38c、38dは、室内機4を暖房運転したときに冷媒に含まれる酸を除去するための暖房用フィルタ回路39Bを構成している。
(室内機の構成)
 次に、室内機4について説明する。室内機4は、室内熱交換器51と、室内膨張弁52と、室内ファン53と、を備える。室内機4は、室内熱交換器51の一方の冷媒出入口と液管6とが室内機液管54で接続されており、室内熱交換器51の他方の冷媒出入口とガス管7とが室内機ガス管55で接続されている。
 室内熱交換器51は、室内ファン53によって吸込口(図示せず)から室内機4の内部に取り込まれた室内空気と冷媒とを熱交換する。室内熱交換器51は、空気調和機1が冷房運転を行う場合に蒸発器として機能し、室内機4が暖房運転を行う場合に凝縮器として機能する。
 室内膨張弁52は、室内機液管54に設けられている。室内膨張弁52は、電子膨張弁であり、室内熱交換器51が蒸発器として機能する場合、すなわち室内機4が冷房運転を行う場合、室内熱交換器51の冷媒出口での冷媒過熱度が目標冷媒過熱度となるように調整される。ここで、目標冷媒過熱度とは、室内機4で十分な冷房能力が発揮されるための冷媒過熱度である。また、室内膨張弁52は、室内熱交換器51が凝縮器として機能する場合、すなわち室内機4が暖房運転を行う場合、室内熱交換器51の冷媒出口での冷媒過の冷却度が予め定められた目標値となるように調整される。
 また、室内機4は、室内機制御回路60を備える。室内機制御回路60は、室内機4の電装品箱(図示せず)に格納された制御基板に搭載されている。室内機制御回路60は、室内機4の各種センサ(図示せず)が検出した検出結果やリモコン及び室外機3から送信された信号に基づいて、室内膨張弁52の開度調整や室内ファン53の駆動を制御する。なお、冷凍サイクル装置1の制御回路は、上述した室外機制御回路30と室内機制御回路60によって構成される。
(冷凍サイクル装置の動作)
 次に、本実施形態における冷凍サイクル装置1の空調運転時の冷媒回路2における冷媒の流れや各部の動作について、図1を用いて説明する。以下、室内機4が冷房/除湿運転を行う場合について説明し、暖房運転を行う場合については詳細な説明を省略する。また、図1における冷媒の流れ方向F1に沿う矢印は、冷房運転時の冷媒の流れを示している。
 図1に示すように、室内機4が冷房運転を行う場合、室外機制御回路30は、四方弁12を図1中に実線で示す状態、すなわち、四方弁12のポートaとポートbを連通させ、ポートcとポートdを連通させるように切り換える。これにより、冷媒回路2が、室外熱交換器13が凝縮器として機能するとともに室内熱交換器51が蒸発器として機能する冷房サイクルとなる。
 圧縮機10から吐出された高圧の冷媒は、吐出管21a、冷媒配管21bを流れて四方弁12に流入し、四方弁12から冷媒配管26、室外熱交換器13、室外膨張弁15、第2迂回流路37B、過冷却熱交換器31、第1酸捕捉器34A、閉鎖弁16、液管6の順に流れて室内機4に流入する。室内機4に流入した冷媒は、室内機液管54を流れて室内熱交換器51に流入し、室内ファン53の回転によって室内機4の内部に取り込まれた室内空気と熱交換を行って蒸発する。このように、室内熱交換器51が蒸発器として機能し、室内熱交換器51で冷媒と熱交換を行って冷却された室内空気が吹出口(図示せず)から室内に吹き出されることによって、室内機4が設置された室内の冷房が行われる。
 室内熱交換器51から流出した冷媒は室内機ガス管55を流れ、ガス管7に流入する。ガス管7を流れる冷媒は、閉鎖弁17を介して室外機3に流入する。室外機3に流入した冷媒は、室外機ガス管28、四方弁12、冷媒配管27、アキュムレータ18、吸入管24、圧縮機用アキュムレータ11の順に流れ、圧縮機10に吸入されて再び圧縮される。
 なお、室内機4が暖房を行う場合、四方弁12を図1中に破線で示す状態、すなわち、四方弁12のポートaとポートdとを連結させ、ポートbとポートdとを連結させるように切り換える。これにより、冷媒回路2は、室外熱交換器13が蒸発器として機能すると共に室内熱交換器51が凝縮器として機能する暖房サイクルとなる。
(膨張弁の制御)
 ここで、実施例1の冷凍サイクル装置1における室外膨張弁15及び室内膨張弁52の制御について説明する。以下、冷媒の温度に関して、例えば、高温が90℃程度、中温が40℃程度、低温が10℃程度である。冷媒の圧力に関して、例えば、高圧が3.0MPa程度、中圧が2.8MPa程度、低圧が0.9MPa程度である。
 冷房運転時、室外膨張弁15の入口に中温、高圧の冷媒が流入し、室外膨張弁15の出口から中温、高圧の冷媒が流出する。これにより、冷媒の流れ方向F1における室外膨張弁15の下流側に位置する過冷却熱交換器31に高圧の冷媒が流入し、過冷却熱交換器31から液単相の冷媒が流出する。このとき、室内膨張弁52の入口まで過冷却状態を確保しながら冷媒を送るために、冷凍サイクル装置1の室外機制御回路30は、室外膨張弁15の開度が全開となるように制御する。即ち、室外膨張弁15は冷房運転時に冷媒の減圧を行わない。
 また、冷房運転時、室内膨張弁52の入口に中温、中圧の冷媒が流入し、室内膨張弁52の出口から低温、低圧の冷媒が流出する。このとき、冷凍サイクル装置1の室内機制御回路60は、室内熱交換器51で適正な蒸発能力が得られる蒸発温度まで冷媒を減圧し、冷媒の流量を制御する。また、室内機制御回路60は、室内熱交換器51の出口における冷媒過熱度(室内熱交換器51(蒸発器)の出口における冷媒の温度から、室内熱交換器51の入口における冷媒の温度を減算した値)を所定の目標値に保つように制御する。
 暖房運転時、室内膨張弁52の入口に中温、高圧の冷媒が流入し、室内膨張弁52の出口から中温、高圧の冷媒が流出する。これにより、冷媒の流れ方向F2における室内膨張弁52の下流側に位置する過冷却熱交換器31に高圧の冷媒が流入し、過冷却熱交換器31から液単相の冷媒が流出する。また、室内機制御回路60は、冷媒過冷却度(高圧飽和温度から、室内熱交換器51(凝縮器)の出口における冷媒の温度を減算した値)を所定の目標値に保つように制御する。
 また、暖房運転時、室外膨張弁15の入口に中温、中圧の冷媒が流入し、室外膨張弁15の出口から低温、低圧の冷媒が流出する。このとき、冷凍サイクル装置1の室外機制御回路30は、室外膨張弁15の開度を調節することによって室外熱交換器13で適正な蒸発能力が得られる蒸発温度まで冷媒を減圧し、冷媒の流量を制御する。
(実施例1の効果)
 上述したように実施例1の冷凍サイクル装置1は、液単相の冷媒が流れる流路29aを有する冷媒回路2と、流路29aに設けられて、通過する冷媒に含まれる酸を捕捉する酸捕捉フィルタ35と、を備える。このように液単相の冷媒が酸捕捉フィルタ35を通過することにより、気液二相の冷媒が酸捕捉フィルタ35を通過する場合と比べて、冷媒が酸捕捉フィルタ35を通過するときの流動抵抗による圧力損失が小さくなる。その結果、酸捕捉フィルタ35を通過する冷媒の圧力損失を抑えることが可能になり、酸捕捉フィルタ35を有する冷凍サイクル装置1の冷凍能力の低下を抑えることができる。
 また、冷凍サイクル装置1は、気液二相の冷媒が酸捕捉フィルタ35を通過する場合と比べて、液単相の冷媒が酸捕捉フィルタ35を通過するときの流動抵抗が小さくなる。流動抵抗が小さくなると、酸捕捉フィルタ35での冷媒の乱流を抑制できるので、冷媒が酸捕捉フィルタ35を通過するときに発生する騒音を低減できる。
 また、実施例1の冷凍サイクル装置1の冷媒回路2には、酸捕捉フィルタ35に対する冷媒の流れ方向の上流側に、気液二相の冷媒を液単相の過冷却冷媒に変化させる過冷却熱交換器31が設けられている。これにより、液単相の冷媒を酸捕捉フィルタ35に確実に送ることが可能になる。また、実施例1によれば、過冷却熱交換器31の下流側に酸捕捉フィルタ35が配置されることにより、例えば、室外機液管29内での圧力損失に伴って冷媒の一部が気化して冷媒中に気泡が発生する、いわゆるフラッシュガスが発生した場合であっても、過冷却熱交換器31において冷媒が過冷却されるため、液単相の冷媒を酸捕捉フィルタ35に適正に送ることができる。
 また、実施例1の冷凍サイクル装置1が備える酸捕捉フィルタ35は、第1フィルタ部材としての第1酸捕捉器34Aの酸捕捉フィルタ35、及び第2フィルタ部材としての第2酸捕捉器34Bの酸捕捉フィルタ35を含む。冷媒回路2には、冷媒の流れ方向F1、F2において、第1酸捕捉器34Aの上流側と第1酸捕捉器34Aの下流側を接続する第1迂回流路37Aと、第2酸捕捉器34Bの上流側と第2酸捕捉器34Bの下流側を接続する第2迂回流路37Bが設けられ、冷媒は、室内機4の暖房運転時と冷房運転時に、第1酸捕捉器34A及び第2酸捕捉器34Bのいずれか一方のみを通過する。これにより、冷房運転時の冷媒の流れ方向F1、及び暖房時の冷媒の流れ方向F2の何れにおいても、過冷却熱交換器31の下流側に酸捕捉フィルタ35を冷媒が通過する。また、第1酸捕捉器34A及び第2酸捕捉器34Bのいずれか一方のみを通過するので、運転時の酸捕捉フィルタ35による流動抵抗の影響は1つ分のみとなるため、冷凍サイクル装置1の冷凍能力の低下を抑えることができる。
 また、実施例1によれば、液単相の冷媒が酸捕捉フィルタ35を通過することにより、冷媒に含まれる潤滑油9が酸捕捉フィルタ35に留まることが抑えられるので、圧縮機10内の潤滑油9の量が減少することが抑えられ、潤滑油9で圧縮機10の動作を適正に保つことができる。気相の冷媒を含む気液二相状態の冷媒の場合、潤滑油9が分離して酸捕捉フィルタ35に留まる可能性が有るが、液単相冷媒であれば、潤滑油9は液冷媒と共に酸捕捉フィルタ35を通過するため、酸捕捉フィルタ35に留まることは無い。
 なお、上述した実施例1では、液単相の冷媒を流路29aに送るために過冷却熱交換器31が用いられたが、過冷却熱交換器31の代わりに、液単相の冷媒と気単相の冷媒とに分離する気液分離器が用いられてもよい。図1に示す冷媒回路2で過冷却熱交換器31の代わりに気液分離器が用いられる場合、気液分離器を通過して液単相の冷媒が流路29aに送られると共に、気液分離器から気単相の冷媒が冷媒配管33を通って冷媒配管27に送られる。ただし、気液分離器は、過冷却熱交換器31が用いられる場合と比べて、気液分離器から流出する液単相の冷媒のエンタルピが高くなる傾向がある。エンタルピが高い冷媒が蒸発器(室外熱交換器13または室内熱交換器51)に送られることで、冷凍サイクル装置1における成績係数(COP:Coefficient Of Performance)が低下するので、気液分離器を用いるよりも過冷却熱交換器を用いることが好ましい。
 以下、他の実施例について図面を参照して説明する。他の実施例において、実施例1と同一の構成部材には、実施例1と同一の符号を付して説明を省略する。
 図3は、実施例2の冷凍サイクル装置の要部を示す模式図である。実施例2は、単一の酸捕捉器が設けられたブリッジ回路を有する点が、実施例1と異なる。
 図3に示すように、実施例2の冷凍サイクル装置の冷媒回路2は、過冷却熱交換器31及び酸捕捉器34を有するブリッジ回路61を備える。ブリッジ回路61には、単一の酸捕捉器34が設けられており、後述のように酸捕捉器34に対して冷媒が一方向のみに流れる。酸捕捉器34は、実施例1における第1酸捕捉器34A及び第2酸捕捉器34Bと同様に構成されており、酸捕捉フィルタ35を有する。図3に示していないが、過冷却熱交換器31の低圧側流路には、冷媒配管27へガス冷媒を送る冷媒配管33が接続されている(図1参照)。冷媒配管33は、過冷却熱交換器31と酸捕捉器34との間を流れる冷媒の一部を、過冷却膨張弁32及び低圧側流路を介して四方弁12のポートcからアキュムレータ18に延びる冷媒配管27へ流入させる。
 実施例2において、過冷却熱交換器31及び酸捕捉器34を有するブリッジ回路61を含む部分Aは、図1において過冷却熱交換器31、第1酸捕捉器34A、第2酸捕捉器34Bを含む部分Aと同様の機能を有する構成となっている。
 ブリッジ回路61は、第1流路61a、第2流路61b、第3流路61c、第4流路61d、第5流路61eを有しており、第3流路61cを除く第1流路61a、第2流路61b、第4流路61d、第5流路61eに逆止弁62がそれぞれ設けられている。具体的には、第1流路61aに設けられた逆止弁62は、過冷却熱交換器31から室外膨張弁15へ向かう冷媒の流れを規制する。第2流路61bに設けられた逆止弁62は、室外膨張弁15から酸捕捉器34へ向かう冷媒の流れを規制する。第4流路61dに設けられた逆止弁62は、過冷却熱交換器31から室内膨張弁52へ向かう冷媒の流れを規制する。第5流路61eに設けられた逆止弁62は、室内膨張弁52から酸捕捉器34へ向かう冷媒の流れを規制する。ブリッジ回路61において、冷媒が一方向のみに流れる第3流路61cには、この一方向に沿って過冷却熱交換器31、酸捕捉器34の順に配置されている。ブリッジ回路61の第3流路61cにおいて、冷媒の流れ方向における過冷却熱交換器31の下流側の一区間が、液単相の冷媒が流れる流路29aに相当する。ブリッジ回路61では、過冷却熱交換器31を通過した液単相の冷媒が、酸捕捉器34の酸捕捉フィルタ35に流入する。
 室内機4を冷房運転した場合、室外膨張弁15からブリッジ回路61に流入した冷媒は、第1流路61a、第3流路61c、第5流路61eの順に、冷媒の流れ方向F1に流れて室内膨張弁52に送られる。一方、室内機4を暖房運転した場合、室内膨張弁52からブリッジ回路61に流入した冷媒は、第4流路61d、第3流路61c、第2流路61bの順に、冷媒の流れ方向F2に流れて室外膨張弁15に送られる。
(実施例2の効果)
 実施例2の冷凍サイクル装置は、ブリッジ回路61を備えることで、実施例1のように2つの第1酸捕捉器34A及び第2酸捕捉器34Bを用いることなく、1つの酸捕捉器34を用いて冷媒回路2をコンパクトに構成できる。
 また、実施例2においても、実施例1と同様に、液単相の冷媒が酸捕捉フィルタ35を通過することにより、気液二相の冷媒が酸捕捉フィルタ35を通過する場合と比べて、酸捕捉フィルタ35を通過する冷媒の圧力損失を抑えることが可能になるので、酸捕捉フィルタ35を有する冷凍サイクル装置の冷凍能力の低下を抑えられる。また、実施例2においても、気液二相の冷媒が酸捕捉フィルタ35を通過する場合と比べて、液単相の冷媒が酸捕捉フィルタ35を通過するときに発生する騒音を低減できる。
 図4は、実施例3の冷凍サイクル装置の要部を示す模式図である。実施例3は、気液分離器が設けられたブリッジ回路61を有する点が、実施例2と異なる。
 図4に示すように、実施例3の冷凍サイクル装置は、気液分離器64及び酸捕捉器34を有するブリッジ回路61を備える。実施例3では、実施例2における過冷却熱交換器31の代わりに気液分離器64が用いられている。気液分離器64は、酸捕捉器34の上流側において、液流出口が酸捕捉器34側に接続されるように配置される。気液分離器64は、気液二相の冷媒から液単相の冷媒を分離し、液単相の冷媒を酸捕捉フィルタ35に送る。図4に示さないが、気液分離器64のガス流出口は、分離された気相の冷媒(ガス冷媒)を冷媒配管27へ送る冷媒配管33が接続されている(図1参照)。冷媒配管33は、気液分離器64と酸捕捉器34との間を流れる冷媒の一部を、バイパス膨張弁(実施例1の過冷却膨張弁32に相当する)を介して四方弁12のポートcからアキュムレータ18に延びる冷媒配管27へ流入させる。ブリッジ回路61の第3流路61cにおいて、冷媒の流れ方向における気液分離器64の下流側の一区間が、気相の冷媒と分離された液単相の冷媒が流れる流路に相当する。このようにブリッジ回路61では、気液分離器64から送られる液単相の冷媒が、酸捕捉器34の酸捕捉フィルタ35を通過する。
 実施例3においても、気液分離器64及び酸捕捉器34を有するブリッジ回路61を含む部分Aは、図1において過冷却熱交換器31、第1酸捕捉器34A、第2酸捕捉器34Bを含む部分Aと同様の機能を有する構成となっている。
(実施例3の効果)
 実施例3の冷凍サイクル装置は、実施例2と同様にブリッジ回路61を備えることで、実施例1のように2つの第1酸捕捉器34A及び第2酸捕捉器34Bを用いることなく、冷媒回路2をコンパクトに構成できる。
 また、実施例3では、気液分離器64によって分離された液単相の冷媒を酸捕捉器34に送ることができるので、実施例1と同様に、気液二相の冷媒が酸捕捉フィルタ35を通過する場合と比べて、酸捕捉フィルタ35を通過する冷媒の圧力損失を抑えることが可能になるので、酸捕捉フィルタ35を有する冷凍サイクル装置の冷凍能力の低下を抑えられる。また、実施例2においても、気液二相の冷媒が酸捕捉フィルタ35を通過する場合と比べて、液単相の冷媒が酸捕捉フィルタ35を通過するときに発生する騒音を低減できる。
 なお、実施例1(図1)においても、実施例3と同様に気液分離器64が用いられてもよく、例えば、冷媒の流れ方向F1における第1酸捕捉器34Aの上流側と、冷媒の流れ方向F2における第2酸捕捉器34Bの上流側に、気液分離器64がそれぞれ設けられてもよい。この場合、2つの気液分離器64は、第1迂回流路37Aによって一方の気液分離器64及び第1酸捕捉器34Aを冷媒が迂回できるように配置されると共に、第2迂回流路37Bによって他方の気液分離器64及び第2酸捕捉器34Bを冷媒が迂回できるように配置される。また、一方の気液分離器64は、液流出口が第1酸捕捉器34A側に接続されるように配置され、他方の気液分離器64は、液流出口が第2酸捕捉器34B側に接続されるように配置される。
 図5は、実施例4の冷凍サイクル装置の要部を示す模式図である。実施例4は、過冷却熱交換器が設けられたブリッジ回路61にレシーバ65が加えられた点が、実施例2と異なる。
 図5に示すように、実施例4の冷凍サイクル装置は、レシーバ65、過冷却熱交換器31及び酸捕捉器34を有するブリッジ回路61を備える。レシーバ65は、第3流路61cの冷媒の流れ方向における過冷却熱交換器31の上流側に配置されており、レシーバ65によって分離された液単相の冷媒が、過冷却熱交換器31に送られる。図5に示していないが、過冷却熱交換器31の低圧側流路には、冷媒配管27へガス冷媒を送る冷媒配管33が接続されている(図1参照)。冷媒配管33は、過冷却熱交換器31と酸捕捉器34との間を流れる冷媒の一部を、過冷却膨張弁32及び低圧側流路を介して四方弁12のポートcからアキュムレータ18に延びる冷媒配管27へ流入させる。
 実施例4においても、レシーバ65、過冷却熱交換器31及び酸捕捉器34を有するブリッジ回路61を含む部分Aは、図1において過冷却熱交換器31、第1酸捕捉器34A、第2酸捕捉器34Bを含む部分Aと同様の機能を有する構成となっている。
(実施例4の効果)
 実施例4の冷凍サイクル装置は、過冷却熱交換器31の上流側に、冷媒回路2を流れる冷媒の量を調整する機能を持つレシーバ65を有しているため、環境負荷の変動等にも対応できる。
 また、実施例4においても、実施例1と同様に、液単相の冷媒が酸捕捉フィルタ35を通過することにより、気液二相の冷媒が酸捕捉フィルタ35を通過する場合と比べて、酸捕捉フィルタ35を通過する冷媒の圧力損失を抑えることが可能になるので、酸捕捉フィルタ35を有する冷凍サイクル装置の冷凍能力の低下を抑えられる。また、実施例4においても、気液二相の冷媒が酸捕捉フィルタ35を通過する場合と比べて、液単相の冷媒が酸捕捉フィルタ35を通過するときに発生する騒音を低減できる。
 なお、実施例1(図1)においても、実施例4と同様にレシーバ65が用いられてもよく、例えば、冷媒の流れ方向F1における第1酸捕捉器34Aの上流側と、冷媒の流れ方向F2における第2酸捕捉器34Bの上流側の、いずれか一方にレシーバ65が設けられてもよい。
   1 冷凍サイクル装置
   2 冷媒回路
  15 室外膨張弁
  29 室外機液管
  29a 流路
  31 過冷却熱交換器(過冷却器)
  34A 第1酸捕捉器(酸捕捉器)
  34B 第2酸捕捉器(酸捕捉器)
  35 酸捕捉フィルタ(フィルタ部材、第1フィルタ部材、第2フィルタ部材)
  37A 第1迂回流路
  37B 第2迂回流路
  52 室内膨張弁
  61 ブリッジ回路
  64 気液分離器
  65 レシーバ

Claims (7)

  1.  液単相の冷媒が流れる流路を有する冷媒回路と、
     前記流路に設けられ、通過する前記冷媒に含まれる酸を捕捉するフィルタ部材と、
    を備える、冷凍サイクル装置。
  2.  前記冷媒回路には、前記フィルタ部材に対する前記冷媒の流れ方向の上流側に、気液二相の前記冷媒を液単相の過冷却冷媒に変化させる過冷却器が設けられている、
    請求項1に記載の冷凍サイクル装置。
  3.  前記冷媒回路には、前記フィルタ部材に対する前記冷媒の流れ方向の上流側に、気液二相の前記冷媒から液単相の前記冷媒を分離し、液単相の前記冷媒を前記フィルタ部材に送る気液分離器が設けられている、
    請求項1に記載の冷凍サイクル装置。
  4.  前記冷媒回路には、前記過冷却器に対する前記冷媒の流れ方向の上流側に、気液二相の前記冷媒から液単相の前記冷媒を分離し、液単相の前記冷媒を前記過冷却器に送るレシーバが設けられている、
    請求項2に記載の冷凍サイクル装置。
  5.  前記フィルタ部材は、第1フィルタ部材及び第2フィルタ部材を含み、
     前記冷媒回路には、前記冷媒の流れ方向において、前記第1フィルタ部材の上流側と前記第1フィルタ部材の下流側を接続する第1迂回流路と、前記第2フィルタ部材の上流側と前記第2フィルタ部材の下流側を接続する第2迂回流路が設けられ、
     前記冷媒は、前記冷媒回路に接続された室内機の暖房運転時と冷房運転時に、前記第1フィルタ部材及び前記第2フィルタ部材のいずれか一方のみを通過する、
    請求項1ないし4のいずれか1項に記載の冷凍サイクル装置。
  6.  前記冷媒回路は、単一の前記フィルタ部材が設けられたブリッジ回路を有し、前記フィルタ部材に対して前記冷媒が一方向のみに流れる、
    請求項1ないし4のいずれか1項に記載の冷凍サイクル装置。
  7.  前記冷媒は、R466A冷媒である、
    請求項1ないし6のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2021/028830 2020-08-31 2021-08-03 冷凍サイクル装置 WO2022044728A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2021332451A AU2021332451A1 (en) 2020-08-31 2021-08-03 Refrigeration cycle device
CN202180050450.XA CN115956184A (zh) 2020-08-31 2021-08-03 制冷循环装置
EP21861156.4A EP4206565A1 (en) 2020-08-31 2021-08-03 Refrigeration cycle device
US18/020,364 US20230296299A1 (en) 2020-08-31 2021-08-03 Refrigeration cycle apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-146193 2020-08-31
JP2020146193A JP7092169B2 (ja) 2020-08-31 2020-08-31 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2022044728A1 true WO2022044728A1 (ja) 2022-03-03

Family

ID=80352275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028830 WO2022044728A1 (ja) 2020-08-31 2021-08-03 冷凍サイクル装置

Country Status (6)

Country Link
US (1) US20230296299A1 (ja)
EP (1) EP4206565A1 (ja)
JP (1) JP7092169B2 (ja)
CN (1) CN115956184A (ja)
AU (1) AU2021332451A1 (ja)
WO (1) WO2022044728A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7104260B1 (ja) 2022-03-16 2022-07-20 株式会社フジクラ 半導体パッケージおよび高周波モジュール

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286315A (ja) * 2001-03-26 2002-10-03 Mitsubishi Electric Corp 空気調和機の冷媒回路
JP2008196849A (ja) * 2008-05-26 2008-08-28 Hitachi Appliances Inc 冷凍機
JP2016194377A (ja) * 2015-03-31 2016-11-17 三菱重工業株式会社 冷媒循環装置、冷媒循環方法、冷媒充填方法および冷媒循環装置の運転方法
JP2018096571A (ja) 2016-12-09 2018-06-21 ダイキン工業株式会社 熱搬送装置及びそれを用いた熱搬送方法
JP2019027645A (ja) * 2017-07-27 2019-02-21 株式会社ガスター 暖房システム
JP2020034261A (ja) 2018-08-31 2020-03-05 日立ジョンソンコントロールズ空調株式会社 冷凍サイクル装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569708B2 (ja) 2008-12-05 2010-10-27 ダイキン工業株式会社 冷凍装置
WO2013160929A1 (ja) 2012-04-23 2013-10-31 三菱電機株式会社 冷凍サイクルシステム
JP6490237B2 (ja) 2015-11-30 2019-03-27 三菱電機株式会社 冷媒量管理装置及び冷媒量管理システム
WO2017199382A1 (ja) 2016-05-18 2017-11-23 三菱電機株式会社 冷凍装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286315A (ja) * 2001-03-26 2002-10-03 Mitsubishi Electric Corp 空気調和機の冷媒回路
JP2008196849A (ja) * 2008-05-26 2008-08-28 Hitachi Appliances Inc 冷凍機
JP2016194377A (ja) * 2015-03-31 2016-11-17 三菱重工業株式会社 冷媒循環装置、冷媒循環方法、冷媒充填方法および冷媒循環装置の運転方法
JP2018096571A (ja) 2016-12-09 2018-06-21 ダイキン工業株式会社 熱搬送装置及びそれを用いた熱搬送方法
JP2019027645A (ja) * 2017-07-27 2019-02-21 株式会社ガスター 暖房システム
JP2020034261A (ja) 2018-08-31 2020-03-05 日立ジョンソンコントロールズ空調株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
EP4206565A1 (en) 2023-07-05
US20230296299A1 (en) 2023-09-21
JP2022041146A (ja) 2022-03-11
CN115956184A (zh) 2023-04-11
AU2021332451A1 (en) 2023-03-23
JP7092169B2 (ja) 2022-06-28

Similar Documents

Publication Publication Date Title
JP5324749B2 (ja) 冷凍装置
JP4715561B2 (ja) 冷凍装置
JP3925545B2 (ja) 冷凍装置
US11384965B2 (en) Refrigeration cycle apparatus performing a refrigerant circulation operation using a liquid pump
WO2006013938A1 (ja) 冷凍装置
US9933193B2 (en) Air-conditioning apparatus
WO2016079834A1 (ja) 空気調和装置
WO2022044728A1 (ja) 冷凍サイクル装置
JP2007232265A (ja) 冷凍装置
WO2002046664A1 (fr) Refrigerateur
WO2017170538A1 (ja) 冷凍装置
JP2007155143A (ja) 冷凍装置
CN111919073B (zh) 制冷装置
JP3698132B2 (ja) 空気調和装置
KR102017405B1 (ko) 히트 펌프
JP2022070159A (ja) 空気調和装置
JP4661561B2 (ja) 冷凍装置
JP2007147228A (ja) 冷凍装置
JP2004012112A (ja) 空気調和機とその制御方法
JP7463954B2 (ja) 冷凍サイクル装置
JP4779609B2 (ja) 冷凍装置
KR100748982B1 (ko) 공기조화기 및 그 제어 방법
JP2015132414A (ja) 冷凍装置
JP2010014344A (ja) 冷凍装置
JP2022094084A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021332451

Country of ref document: AU

Date of ref document: 20210803

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021861156

Country of ref document: EP

Effective date: 20230331